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The unbounded Kasparov product by a differentiable module

Jens Kaad

Abstract. In this paper we investigate the unbounded Kasparov product between a differentiable
module and an unbounded cycle of a very general kind that includes all unbounded Kasparov
modules and hence also all spectral triples. Our assumptions on the differentiable module
are weak and we do in particular not require that it satisfies any kind of smooth projectivity
conditions. The algebras that we work with are furthermore not required to possess a smooth
approximate identity. The lack of an adequate projectivity condition on our differentiable
module entails that the usual class of unbounded Kasparov modules is not flexible enough
to accommodate the unbounded Kasparov product and it becomes necessary to twist the
commutator condition by an automorphism.
We show that the unbounded Kasparov product makes sense in this twisted setting and

that it recovers the usual interior Kasparov product after taking bounded transforms. Since our
unbounded cycles are twisted (or modular) we are not able to apply the work of Kucerovsky
for recognizing unbounded representatives for the bounded Kasparov product, instead we rely
directly on the connection criterion developed by Connes and Skandalis. In fact, since we do not
impose any twisted Lipschitz regularity conditions on our unbounded cycles, even the passage
from an unbounded cycle to a bounded Kasparov module requires a substantial amount of extra
care.

Mathematics Subject Classification (2020). 46L08, 19K35; 46L07, 58B34.
Keywords. Hilbert C*-modules, unbounded KK-theory, unbounded Kasparov product, twisted
spectral triples.

1. Introduction

In a series of papers from the early eighties, Kasparov proved the fundamental results
on theKK-theory of C �-algebras, [26–28]. One of the main inventions appearing in
these papers is the interior Kasparov product which provides a bilinear and associative
pairing

y̋ B WKKn.A;B/ �KKm.B; C /! KKnCm.A; C /

between the KK-groups of three separable C �-algebras A;B and C . The interior
Kasparov product of two KK-classes is computable in many cases, but the main
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construction remains inexplicit as it relies on Kasparov’s absorption theorem and
Kasparov’s technical theorem.
One of the advantages of theKK-groups of C �-algebras is the wealth of explicit

examples of elements arising from geometric data. Indeed, in the unbounded picture
of KK-theory the cycles are unbounded Kasparov modules, which are bivariant
versions of Connes’ concept of a spectral triple, and these unbounded Kasparov
modules exhaust the KK-groups as proved by Baaj and Julg, [1].
The problem that we are concerned with in this paper is to construct an unbounded

version of the interiorKasparov product. More precisely, startingwith two unbounded
Kasparov modules, the aim is to find an explicit unbounded Kasparov module that
represents the interior Kasparov product. In particular, this construction should
bypass the need for invoking both the absorption theorem and the technical theorem.
The problem of constructing the unbounded Kasparov product is currently receiving
an increasing amount of attention, see [7, 21, 33, 34], as is also witnessed by the
quantity of recent applications, see for example [5, 6, 11, 13, 14, 22, 23, 40].
More specifically, the techniques appearing in the present paper have already

been applied to the study of Morita equivalences of spectral triples, unbounded
Kasparov products in the context of Hilsum’s half-closed chains, and to factorization
problems for Dirac operators along the orbits of proper but not necessarily free
actions, [17, 22, 24, 25]. In fact, in these applications, the techniques developed here
constitute an essential ingredient.
At a deeper level, the unbounded Kasparov product is important because of the

loss of geometric information that is inherent in the passage from an unbounded
Kasparov module to a class in KK-theory. It is thus in our interest to develop a
version of the interior Kasparov product retaining a larger amount of geometric data
(relating to the asymptotic behaviour of eigenvalues of differential operators).
In this paper we are focusing on the case where the class in the KK-group,

KK.A;B/, is represented by a C �-correspondence X from A to B and where the
action ofA from the left factorizes through theC �-algebra of compact operators onX .
On the other hand, our class in the KK-group KK.B;C / will be represented by an
unbounded selfadjoint and regular operator DWD.D/ ! Y acting on a C �-corre-
spondence from B to C . The unbounded operator D is required to satisfy a couple
of extra conditions that will be detailed out in the main text. The first challenge is
then to construct a new unbounded selfadjoint and regular operator

1˝r DWD.1˝r D/! X y̋ BY

that acts on the interior tensor product of the C �-correspondences X and Y . In
the main part of the earlier work on the unbounded Kasparov product this step is
accomplished by assuming the existence of a (tight normalized) frame f�kg for X
(see [12]) such that the associated orthogonal projection

P WD

1X
n;mD1

h�n; �miınmW `
2.N; Y /! `2.N; Y /
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(which acts on the standard module over Y ) has a bounded commutator with the
unbounded selfadjoint and regular operator DWD.D/ ! Y (weaker but related
conditions are applied in [6] and [34]). The unbounded selfadjoint and regular
operator 1˝r DWD.1˝r D/! X y̋ BY can then be expressed as the infinite sum

1˝r D WD

1X
nD1

T�n
DT �

�n
;

where T�n
WY ! X y̋ BY , y 7! �n ˝B y, is the creation operator associated with

the element �n 2 X . It should be noted that the unbounded selfadjoint and regular
operator 1˝rD can be described in an alternativeway by using the notion of a densely
defined covariant derivative r on the C �-correspondence X . Indeed, the frame f�kg
gives rise to a Grassmann covariant derivativerGr and the unbounded selfadjoint and
regular operator 1˝r D is then given by the (closure of the) sum c.rGr/C 1˝D
where the “c” refers to an appropriate notion of Clifford multiplication.
One of the main contributions of this paper is that we have been able to entirely

remove the above smooth projectivity condition on the C �-correspondence X . This
step is motivated by the detailed investigations of differentiable structures in Hilbert
C �-modules carried out in [18,19]. In particular, we find that the removal of smooth
projectivity is relevant for accommodating examples arising from non-complete
manifolds.
Instead of imposing a smooth projectivity condition we simply assume that there

exists a sequence of generators f�kg for X such that the associated operator

G WD

1X
n;mD1

h�n; �miınmW `
2.N; Y /! `2.N; Y /

has a bounded commutator with (the diagonal operator induced by)DWD.D/! Y .
We then obtain a new unbounded selfadjoint and regular operator

D� WD

1X
nD1

T�n
DT �

�n

on the interior tensor product X y̋ BY . We refer to this unbounded selfadjoint
and regular operator as the modular lift of DWD.D/ ! Y . The fact that our
sequence f�kg is no longer assumed to be a frame means that we obtain an extra
(non-trivial) bounded adjointable operator

� WD

1X
nD1

T�n
T ��n
WX y̋ BY ! X y̋ BY

on the interior tensor product. An investigation of the commutators between the alg-
ebra elements inA and the modular lift now shows that the usual straight commutator
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has to be replaced by a twisted commutator, where the twist is given by the (modular)
automorphism � obtained from conjugation with the modular operator �. This
modular automorphism corresponds to the analytic extension at �i 2 C of the
modular group of automorphisms �t WT 7! �itT��it , t 2 R. The notion of an
unbounded modular cycle appearing in this text is thus related to the concept of a
twisted spectral triple as introduced by Connes and Moscovici in [8]. We remark
however that ourmodular automorphism � is not required to be densely defined on the
algebra A and it need not preserve this algebra either. The concept of an unbounded
modular cycle is a more flexible concept than the more commonly encountered
notion of an unbounded Kasparov module. The extra flexibility comes from the
presence of the modular operator � and in fact unbounded Kasparov modules are
exactly unbounded modular cycles, where the modular operator� equals the identity
operator.
Our first main result can now be stated as follows, where we refer to the main text

for the precise definitions:
Theorem 1.1. Suppose thatX is a differentiableC �-correspondence with left action
factorizing through the compacts and that .Y;D; �/ is an unbounded modular cycle
(with modular operator �WY ! Y ). Then the triple

.X y̋ BY;D�; �/

is an unbounded modular cycle, where the new modular operator is defined by

� WD

1X
nD1

T�n
�T ��n

:

The second central theme of this paper develops around the relationship between
the assignment �

X; .Y;D; �/
�
7!
�
X y̋ BY;D�; �

�
and the interior Kasparov product KK0.A;B/ � KK�.B; C / ! KK�.A; C /. As
a first step, we have to understand how to produce a class in KK-theory from an
unbounded modular cycle. We announce the following theorem:
Theorem 1.2. Suppose that .Y;D; �/ is an unbounded modular cycle (relating the
C �-algebras B and C ). Then the pair .Y;D.1CD2/�1=2/ is a bounded Kasparov
module from B to C and we thus have a class ŒD� 2 KK�.B; C /.
Of course this theorem is a direct analogue of the theoremofBaaj and Julg showing

how to construct a class in KK-theory from an unbounded Kasparov module. The
proof of this result in the context of unbounded modular cycle is however far more
involved. One reason for this extra difficulty can be found in the seemingly innocent
change from straight commutators to twisted commutators. Indeed, an examination
of the proof appearing in [1] shows that the crucial step fails for algebraic reasons
when applied to unbounded modular cycles. An alternative approach would be to
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follow Connes andMoscovici and replace .1CD2/�1=2 by .1CjDj/�1, see [8]. This
alternative approach does however rely on an extra assumption of twisted Lipschitz
regularity and we do not impose this kind of extra regularity conditions on our
unbounded modular cycle. Indeed, it is unclear how twisted Lipschitz regularity
behaves with respect to the unbounded Kasparov product given in Theorem 1.1. In
order to prove Theorem 1.2 we therefore found it necessary to develop new techniques
that can be applied to non-Lipschitz unbounded modular cycles.
Themain new tool appearing in the proof of Theorem 1.2 is themodular transform

GD;� W�.D.D//! Y which is given by the (absolutely convergent) integral

GD;� W�� 7!
1

�

Z 1
0

��1=2�.1C ��2 CD2/�1D.��/ d�

for all � 2 D.D/. The modular transform is obtained from the usual bounded
transform by making a non-commutative change of variables corresponding to
� WD ��2. This change of variables is motivated by the observation that the modular
transform (contrary to the bounded transform) has the right commutator properties
with elements in the algebra B . A substantial part of the proof of Theorem 1.2
is then devoted to a comparison between the bounded transform and the modular
transform. Notice that the modular transform does not in general seem to have a
bounded extension to Y but that a sufficient condition for this to happen is that the
modular operator �WY ! Y has a bounded inverse.
With the knowledge of the relationship between unbounded modular cycles and

classes in KK-theory in place, we can state our second main result:

Theorem 1.3. Suppose thatX is a differentiableC �-correspondence with left action
factorizing through the compacts and suppose that .Y;D; �/ is an unbounded mod-
ular cycle. Let ŒX� 2 KK0.A;B/ and ŒD� 2 KK�.B; C / denote the corresponding
classes in KK-theory. Let also ŒD�� 2 KK�.A; C / denote the KK-class of the
unbounded modular cycle .X y̋ BY;D�; �/. Then we have the identity

ŒD�� D ŒX� y̋ B ŒD�

in the KK-group KK�.A; C /.

The proof of this theorem does not follow the usual scheme in unbounded KK-
theory. Indeed, the standard method that is available for recognizing an unbounded
representative for the interior Kasparov product is to use the machinery invented by
Kucerovsky, [29,30]. However, the results of Kucerovsky do not apply in the context
of unbounded modular cycles because of our systematic use of twisted commutators
instead of straight commutators. Rather than applying Kucerovsky’s ideas we rely
directly on the notion of anF2-connection as introduced byConnes and Skandalis, [9].
Let us end this introduction by giving a more tangible corollary to our main the-

orems. Consider a countable union U WD[1
kD1

Ik of bounded open intervals Ik�R.



428 J. Kaad

For each k 2 N we then choose a smooth function fk WR! R with support equal to
the closure xIk � R. After a rescaling we may assume that

kfkk C
dfk
dx

 � 1=k
for all k 2 N (where k � k denotes the supremum norm). Define the first order
differential operator

.D�/0 WD i

1X
kD1

f 2k
d

dx
C i

1X
kD1

fk
dfk

dx
WC1c .U /! L2.U /

and letD� WD .D�/0 denote the closure. We then have the following result:
Corollary 1.4. The triple .C1c .U /; L2.U /;D�/ is an odd spectral triple and the
associated class in the odd K-homology group K1.C0.U // agrees with the interior
Kasparov product of (the KK-classes associated with) the C �-correspondence
C0.U / from C0.U / to C0.R/ and the Dirac operator on the real line.
There is a similar kind of corollary, when the setting is given by an arbitrary

spectral triple .A;H;D/ together with a sequence of elements fxkg in the algebraA

such that
kxkk C kŒD; xk�k � 1=k

for all k 2 N. When the algebra A is non-commutative, it is however not true that
one obtains a new spectral triple out of this construction. In the general case, it
becomes necessary to twist all the commutators appearing by the modular operator

� WD

1X
kD1

xkx
�
k

and the framework we are developing here is therefore relevant for treating this kind
of examples.
We announce one more corollary, which should be compared with the

constructions in [8].
Corollary 1.5. Let .A;H;D/ be a unital spectral triple (where the unit in A acts as
the identity operator onH ) and let g 2 A be a positive and invertible element. Then
the triple .H; gDg; g2/ is an unbounded modular cycle from A to C. Moreover, the
bounded transform

�
H;gDg

�
1C gDg

2��1=2� is a bounded Kasparov module from
A to C and we have the identity�

H;gDg
�
1C gDg

2��1=2�
D
�
H;D.1CD2/�1=2

�
in the KK-group KK�.A;C/.
In fact, the passage from the unital spectral triple .A;H;D/ to the unbounded

modular cycle .H; gDg; g2/ is in this text interpreted as an unbounded Kasparov
product with the differentiable C �-correspondence A, where the differentiable
structure is given by the single generator g 2 A.
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2. Preliminaries on operator spaces

We begin this paper by fixing our conventions for the analytic properties of the
�-algebras appearing throughout this text. It turns out that the conventional setup of
Banach spaces is not adequate for capturing the relevant structure on our �-algebras.
Indeed, it will soon become apparent that one needs to fix the analytic behaviour not
only of the �-algebra itself but of all the finite matrices with entries in the �-algebra.
The notion of operator spaces is therefore providing the correct analytic setting and
we will now briefly survey the main definitions. For more details we refer the reader
to the books by Blecher–LeMerdy and by Pisier, [4, 37].
Let H and G be Hilbert spaces and let X � L.H;G/ be a subspace (of the

bounded operators from H to G), which is closed in the operator norm. Then the
vector space

M.X/ WD lim
n!1

Mn.X/

of finite matrices overX has a canonical norm k � kX coming from the identifications

Mn.X/ �Mn.L.H;G// Š L.Hn; Gn/:

The properties of the pair
�
M.X/; k � kX

�
are crystallized in the next definition.

Notice that the above construction yields a canonical norm

k � kCWM.C/! Œ0;1/

on the finite matrices over C since C Š L.C;C/. For each n 2 N, the norm

k � kCWMn.C/ �M.C/! Œ0;1/

coincides with the unique C �-algebra norm.
Definition 2.1. An operator space is a vector space X over C with a norm k � kX on
the finite matricesM.X/ WD limn!1Mn.X/ such that
(1) the normed space X �M.X/ is a Banach space;
(2) the inequality kv � � �wkX � kvkC � k�kX � kwkC holds for all v;w 2M.C/ and
for all � 2M.X/;
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(3) the equality k� ˚ �kX D maxfk�kX ; k�kXg holds for all � 2 Mn.X/ and for
� 2Mm.X/, where � ˚ � 2MnCm.X/ is the direct sum of the matrices.
A morphism of operator spaces is a completely bounded linear map ˛WX ! Y .

The term completely bounded means that ˛nWMn.X/ ! Mn.Y / is a bounded
operator for each n 2 N and that supnk˛nk1 < 1 (where k � k1 is the operator
norm). The supremum is denoted by k˛kcb WD supnk˛nk1 and is referred to as the
completely bounded norm.
By a fundamental theoremofRuan every operator spaceX is completely isometric

to a closed subspace of L.H/ for some Hilbert spaceH , see [39, Theorem 3.1].
We remark that any C �-algebra A carries a canonical operator space structure

such thatMn.A/ becomes a C �-algebra for all n 2 N.
We will in this text mainly be concerned with dense subspaces of operator spaces.

On such a dense subspace X � X we refer to the norm on X coming from the
surrounding operator space X as an operator space norm on X. We will often
say that a linear map ˛WX ! Y with values in an operator space Y is completely
bounded when it extends to a completely bounded map ˛WX ! Y .
The next assumption will remain in effect throughout this paper:

Assumption 2.2. Any �-algebra A encountered in this text will come equipped with
an operator space norm k � k1WA! Œ0;1/ and a C �-norm k � kWA! Œ0;1/. We
denote the operator space completion of A by A1 and the C �-algebra completion
by A. We assume that the inclusion A ! A extends to a completely bounded and
injective map A1 ! A.
We emphasize that we never assume the existence of an approximate identity

fuigi2I for the C �-algebra A with the additional property that ui 2 A for all i 2 I
and supi2I kuik1 <1.

2.0.1. Stabilization of operator spaces. Let us consider an operator space X . The
following stabilization construction will play a central role in this paper. It does not
make any sense when X is merely a Banach space.
Definition 2.3. By the stabilization of X we understand the operator space K.X/
obtained as the completion of the vector space of finite matricesM.X/ with respect
to the canonical norm

k � kX WM.X/! Œ0;1/:

The matrix norms for K.X/ come from the matrix norms for X via the canonical
identification (forgetting the subdivisions):

Mn.Mm.X// ŠMn�m.X/; n;m 2 N:

The above stabilization procedure is functorial: any completely bounded map
˛WX ! Y induces a completely bounded mapK.˛/WK.X/! K.Y / by applying ˛
entrywise and we have that k˛kcb D kK.˛/kcb.
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3. Unbounded modular cycles

Throughout this section we let A be a �-algebra, which satisfies the conditions in
Assumption 2.2. We let A1 denote the operator space completion ofA and A denote
the C �-completion ofA. We let B be an arbitrary C �-algebra.
Let us recall some basic constructions for a Hilbert C �-module X over B . For

more details the reader may consult the book by Lance, [31].
The standard module over X is the Hilbert C �-module `2.N; X/ over B

consisting of all sequences
P1
nD1 xnın in X such that the sequence of partial sumsn NX

nD1

hxn; xni
o

converge in the norm on B . The right module structure is given by� 1X
nD1

xnın

�
� b WD

1X
nD1

.xn � b/ın

and the inner product is given byD 1X
nD1

xnın;

1X
nD1

ynın

E
WD

1X
nD1

hxn; yni:

The bounded adjointable operators on X is the C �-algebra L.X/ consisting of
all the bounded operators onX that admit an adjoint with respect to the inner product
on X . The C �-norm on L.X/ is the operator norm k � k1.
The compact operators on X is the C �-algebra K.X/ defined as the operator

norm closure of the �-subalgebra

F .X/ WD spanCf��;� j �; � 2 Xg � L.X/;

where ��;�WX ! X is defined by ��;�.�/ WD � � h�; �i for all �; �; � 2 X .
An unbounded densely defined operator DWD.D/! X is said to be symmetric

when hD�; �i D h�;D�i for all �; � 2 D.D/. An unbounded symmetric operator is
selfadjoint when the following implication holds for all � 2 X :�

9� 2 X W hD�; �i D h�; �i 8� 2 D.D/
�
)
�
� 2 D.D/

�
:

An unbounded selfadjoint operator is regular when the unbounded operators D ˙
i WD.D/! X are surjective.

We are now ready to introduce the first of the main new concepts of the present
paper:
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Definition 3.1. An odd unbounded modular cycle fromA to B is a triple .X;D;�/,
where
(1) X is a countably generated Hilbert C �-module over B , which comes equipped
with a �-homomorphism � WA! L.X/;

(2) DWD.D/! X is an unbounded selfadjoint and regular operator on X ;
(3) �WX ! X is a bounded positive and selfadjoint operator with dense image,
such that the following holds:
(1) �.a/ � .i CD/�1WX ! X is a compact operator for all a 2 A;
(2) .�.a/C �/�.D.D// � D.D/ and

D.�.a/C �/� ��.�.a/C �/DWD.D/! X

extends to a bounded adjointable operator d�.a C �/WX ! X for all a 2 A

and � 2 C;
(3) the supremum

sup
"2.0;1�

k.�C "/�1=2d�.aC �/.�C "/
�1=2
k1

is finite for all a 2 A and � 2 C and the linear map

��;"WA! L.X/ ��;".a/ D .�C "/
�1=2d�.a/.�C "/

�1=2

extends to a completely bounded map ��;"WA1 ! L.X/ for all " 2 .0; 1� such
that

sup
"2.0;1�

k��;"kcb <1:

(4) the sequence f�.a/�.�C 1=n/�1g1nD1 converges in operator norm to �.a/ for
all a 2 A.

We refer to �WX ! X as the modular operator of our unbounded modular cycle.
An even unbounded modular cycle from A to B is an odd unbounded modular

cycle equipped with a Z=2Z-grading operator  WX ! X such that

�.a/ D �.a/; � D �; and D D �D

for all a 2 A.
Remark 3.2. If we disregard the operator space norm on A, then the definition of
an unbounded Kasparov module (see [1]) is a special case of the above definition.
Indeed, it corresponds exactly to the situation where the modular operator � is the
identity operator on X . In fact, given an unbounded Kasparov module .X;D/ from
A to B , one may always equip A with an operator space norm such that .X;D; 1/
becomes an unbounded modular cycle fromA to B .
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The concept of a twisted spectral triple (see [8]) is closely related to the above
definition. Indeed, one of the main examples of a twisted spectral triple is obtained
by starting from a unital spectral triple .A;H;D/ together with a fixed positive and
invertible element g 2 A. One then forms the twisted spectral triple .A;H; gDg/,
where the modular automorphism � WA ! A is given by �.a/ WD g2ag�2. The
triple .H; gDg; g2/ is an example of an unbounded modular cycle from A to C
(after choosing an appropriate operator space norm on A). As explained in [8],
the above procedure provides a noncommutative analogue of the classical operation
where an underlying Riemannian metric is changed by a conformal factor, see for
example [15, Proposition 4.3.1].
Our definition of an unbounded modular cycle is inspired by the notion of a

twisted spectral triple, but there are three important differences:
(1) we are considering a bivariant theory, thus the scalars can consist of an arbitrary

C �-algebra and not just the complex numbers;
(2) the modular operator �WX ! X can have zero in the spectrum, thus allowing
for a treatment of conformal changes of metrics on non-compact manifolds;

(3) the modular automorphism � given by conjugation with � need not map the
algebraA into itself, in fact it need not even be defined onA.
For more information about twisted spectral triples we refer to [10, 35, 38].
There is a link between Hilsum’s notion of a half-closed chain and the above

notion of an unbounded modular cycle, [16]. Indeed, any half-closed chain .X;D/
gives rise to a wealth of unbounded modular cycles via a localization procedure,
which uses the methods developed in the present paper, see [24, Theorem 13].
Let us spend a little extra time commenting on the conditions in Definition 3.1.

It follows by a density argument that condition .2/ and .3/ also hold for all a 2 A1.
For condition .4/, we notice that the sequence f�.� C 1=n/�1g converges strictly
to the identity on X (this holds since � is positive and Im.�/ is dense in X ). In
general we have that condition .4/ is automatic when �WX ! X is invertible as a
bounded adjointable operator. Remark that condition .2/ for a D 0 and � D 1 says
that �.D.D// � D.D/ and that the straight commutator

D� ��DWD.D/! X

has a bounded adjointable extension d.�/WX ! X . Notice also the important
identity

d�.1/ D d.�/

between straight and twisted commutators.
For later use we introduce the following terminology:

Definition 3.3. When DWD.D/ ! X is an unbounded selfadjoint and regular
operator and �WX ! X is a bounded positive and selfadjoint operator with dense
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image we say that a bounded adjointable operator T WX ! X is differentiable (with
respect to .D;�/) when the following holds:
(1) T�.D.D// � D.D/ and

DT� ��TDWD.D/! X

extends to a bounded adjointable operator d�.T /WX ! X ;
(2) the supremum

sup
"2.0;1�

k.�C "/�1=2d�.T /.�C "/
�1=2
k1

is finite.
We remark that the adjoint of a differentiable operator T WX ! X is automatically

differentiable as well and that d�.T /� D �d�.T �/. We introduce the notation

��;".T / WD .�C "/
�1=2d�.T /.�C "/

�1=2

for all " 2 .0; 1�.
For an unbounded modular cycle .X;D;�/ fromA to B , we see that

�.a/C �WX ! X

is differentiable with respect to .D;�/ for all a 2 A and � 2 C.

3.1. Stabilization of unbounded modular cycles. Let us fix an unboundedmodular
cycle .X;D;�/ from the �-algebraA to theC �-algebraB . We let  WX ! X denote
the grading operator in the even case.

The aim of this subsection is to construct a stabilization of .X;D;�/ which is
an unbounded modular cycle from the finite matrices overA to B . The parity of the
stabilization is the same as the parity of .X;D;�/.

To this end, we first notice that the finite matrices overA comes equipped with a
canonical operator space norm and a canonical C �-norm (see Definition 2.3):

k � k1 ; k � kWM.A/! Œ0;1/:

The respective completions are the operator spaceK.A1/ and the C �-algebraK.A/.
We remark thatK.A/ is isomorphic to the compact operators on the standard module
`2.N; A/, where A is considered as a Hilbert C �-module over itself.
We now consider the standard module `2.N; X/ over B and we equip it with the

�-homomorphism K.�/WK.A/! L.`2.N; X// given by

K.�/
� 1X
n;mD1

anm � ınm

�� 1X
kD1

xkık

�
WD

1X
nD1

� 1X
mD1

�.anm/.xm/
�
ın; (3.1)
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where a � ınm 2 K.A/ denotes the finite matrix with a 2 A in position .n;m/ and
zeroes elsewhere.
Furthermore, on the standard module over X , we have the diagonal operators

induced by the unbounded selfadjoint and regular operator DWD.D/ ! X and the
modular operator �WX ! X . The diagonal operator induced by DWD.D/! X is
given by

diag.D/WD
�
diag.D/

�
! `2.N; X/;

1X
nD1

xnın 7!

1X
nD1

D.xn/ın;

where the domainD
�
diag.D/

�
� `2.N; X/ is defined by

D
�
diag.D/

�
WD

n 1X
nD1

xnın 2 `
2.N; X/ j xn 2 D.D/ and

1X
nD1

D.xn/ın 2 `
2.N; X/

o
:

The diagonal operator induced by �WX ! X is given by

diag.�/W `2.N; X/! `2.N; X/;
1X
nD1

xnın 7!

1X
nD1

�.xn/ın:

Likewise (in the even case), we have the diagonal operator

diag./W `2.N; X/! `2.N; X/

induced by the grading operator  WX ! X .
The unbounded operator

diag.D/WD
�
diag.D/

�
! `2.N; X/

is again a selfadjoint and regular operator, indeed the relevant resolvents are the
diagonal operators

diag
�
.D ˙ i/�1

�
W `2.N; X/! `2.N; X/:

We also note that diag.D/ has a core given by the algebraic direct sum

˚
1
nD1D.D/ � `2.N; X/:

Clearly, diag.�/W `2.N; X/! `2.N; X/ is again positive and selfadjoint with dense
image.
To ease the notation, we put

1˝D WD diag.D/; 1˝� WD diag.�/; and 1˝  WD diag./:
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Definition 3.4. By the stabilization of .X;D;�/we understand the triple .`2.N; X/;
1˝D; 1˝�/ with Z=2Z-grading operator 1˝  in the even case.
Proposition 3.5. The stabilization .`2.N; X/; 1˝D; 1˝�/ is an unbounded mod-
ular cycle from M.A/ to B of the same parity as .X;D;�/.

Proof. Since the statement about the grading is clear in the even case, we only need
to verify the conditions .1/–.4/ in Definition 3.1. We suppress the �-homomorphism
K.L.X//! L.`2.N; X// induced by the identity L.X/! L.X/ throughout this
proof, see equation (3.1).
.1/ and .4/: this follows by standard arguments.

.2/: for elements
PN
n;mD1 anmınm 2M.A/ and � 2 C we record that

d1˝�

� NX
n;mD1

anmınm C �
�
D

NX
n;mD1

d�.anm/ınm C 1˝ d�.�/:

.3/: the first assertion in .3/ follows since.1˝�C "/�1=2d1˝�� NX
n;mD1

anmınm C �
�
.1˝�C "/�1=2


1

D

 NX
n;mD1

.�C "/�1=2d�.anm/.�C "/
�1=2ınm

C 1˝ .�C "/�1=2d�.�/.�C "/
�1=2


1

�

NX
n;mD1

.�C "/�1=2d�.anm/.�C "/�1=21
C
.�C "/�1=2d�.�/.�C "/�1=21

for all " 2 .0; 1�,
PN
n;mD1 anmınm 2M.A/ and � 2 C.

For the second assertion in .3/, we let
PN
n;mD1 anmınm 2 M.A/ and " 2 .0; 1�

be given and notice that

�1˝�;"

� NX
n;mD1

anmınm

�
D

NX
n;mD1

��;".anm/ınm D K.��;"/
� NX
n;mD1

anmınm

�
;

where K.��;"/WM.A/ ! K.L.X// is the completely bounded map induced by
��;"WA! L.X/, see Subsection 2.0.1.
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4. Differentiable Hilbert C �-modules

Throughout this section A and B will be �-algebras which satisfy the conditions in
Assumption 2.2. We let A1 and B1 denote the operator space completions and we
let A and B denote the C �-completions ofA and B, respectively.
The next definition is the second main new concept which we introduce in this

paper:
Definition 4.1. A Hilbert C �-module X over B , which comes equipped with a
�-homomorphism � WA ! L.X/ is said to be differentiable (from A to B) when
there exists a sequence f�ng1nD1 in X such that the following holds:
(1) spanCf�n � b j b 2 B ; n 2 Ng is norm-dense in X ;
(2) h�n; .�.a/C �/ �mi 2 B for all a 2 A, � 2 C and n;m 2 N;
(3) the sequence of finite matricesn NX

n;mD1

˝
�n; .�.a/C �/�m

˛
ınm

o1
ND1

is a Cauchy sequence in K.B1/ for all a 2 A and � 2 C;
(4) the linear map

� WA! K.B1/; a 7!

1X
n;mD1

˝
�n; �.a/�m

˛
ınm

is completely bounded (with respect to the operator space norm onA).
We refer to a sequence f�ng1nD1 inX satisfying the above conditions as a differentiable
generating sequence.
Remark 4.2. The conditions .3/ and .4/ in Definition 4.1 can be replaced by the
following:
(3a) the sequence of finite matricesn NX

n;mD1

˝
�n; .�.a/C �/�m

˛
ınm

o1
ND1

is bounded in K.B1/ for all a 2 A and � 2 C;
(4a) the linear map

A!MN.B1/; a 7!

1X
n;mD1

˝
�n; �.a/�m

˛
ınm

is completely bounded, whereMN.B1/ is the operator space of infinite matrices
over B1, see [4, Section 1.2.26] for details.
Given a sequence f�ng that satisfies .1/, .2/, (3a), and (4a) we obtain a sequence

satisfying .1/, .2/, .3/, and .4/ by rescaling each �n 2 X by 1n , for example.
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4.0.1. Example: Finitely generated Hilbert C �-modules. Let us consider a �-alg-
ebra B which satisfies the conditions of Assumption 2.2. Let us also consider
a dense �-subalgebra A of a C �-algebra A. We do not assume that A satisfies
Assumption 2.2. Let now X be a finitely generated Hilbert C �-module over B
with generators �1; : : : ; �N 2 X and let � WA ! L.X/ be a �-homomorphism. By
“finitely generated” we mean that the subspace˚

�n � b j n 2 f1; : : : ; N g ; b 2 B
	
� X

is dense in the norm-topology on X . We emphasize that this condition does not at
all imply that X is finitely generated projective as a right module over B: consider
for example C0..0; 1// as a Hilbert C �-module over C0.R/.
Suppose now that

h�n; .�.a/C �/ �mi 2 B for all a 2 A; � 2 C and n;m 2 f1; : : : ; N g:

We then have a linear map

� WA!MN .B/; �.a/ WD

NX
n;mD1

h�n; �.a/�mi ınm;

from which we can obtain an operator space norm onA by defining

kak1 WD max
˚
kak; k�.a/k1

	
for all a 2Mk.A/; k 2 N;

where we have suppressed the usual identification Mk

�
MN .B/

�
Š Mk�N .B/ (see

Definition 2.3). By construction we get that X is a differentiable Hilbert C �-module
fromA to B.

5. The modular lift

In this section we consider two HilbertC �-modulesX and Y with the same baseC �-
algebra A. We fix an unbounded selfadjoint and regular operatorDWD.D/! Y on
the Hilbert C �-module Y together with a bounded selfadjoint and positive operator
�WY ! Y with dense image. Furthermore, we consider a bounded adjointable
operator ˆWX ! Y such that the adjoint ˆ�WY ! X has dense image.

The main concern of this section is to “transport” the unbounded selfadjoint and
regular operator DWD.D/! Y to an unbounded selfadjoint and regular operator
D�WD.D�/ ! X . This transportation will happen via the bounded adjointable
operator ˆWX ! Y .

We apply the notation:

� WD ˆ��ˆWX ! X and G WD ˆˆ�WY ! Y:
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Remark that �WX ! X is bounded selfadjoint and positive and that Im.�/ � X is
norm-dense.

We assume that G is differentiable with respect to .D; �/, see Definition 3.3.

For each " 2 .0; 1�, we recall the notation:

��;".G/ WD .� C "/
�1=2d�.G/.� C "/

�1=2
WY ! Y:

The main aim of this section is to show that the composition

ˆ�DˆWD.ˆ�Dˆ/! X

is essentially selfadjoint and regular, where the domain is given by

D.ˆ�Dˆ/ WD D.Dˆ/ WD
˚
x 2 X j ˆ.x/ 2 D.D/

	
:

We immediately remark thatD.ˆ�Dˆ/ � X is norm-dense. Indeed, this follows
since

ˆ��.D.D// � D.ˆ�Dˆ/:

Furthermore, it is evident that the unbounded operator ˆ�DˆWD.ˆ�Dˆ/! X is
symmetric.
We notice that �

�
D.ˆ�Dˆ/

�
� D.ˆ�Dˆ/ and that

.ˆ�Dˆ� ��ˆ�Dˆ/.�/ D .ˆ�Dˆˆ��ˆ �ˆ��ˆˆ�Dˆ/.�/

D .ˆ�d�.G/ˆ/.�/

for all � 2 D.ˆ�Dˆ/. In particular, this shows that the straight commutator

ˆ�Dˆ� ��ˆ�DˆWD.ˆ�Dˆ/! X

has a bounded adjointable extension to X .
Definition 5.1. Themodular lift ofDWD.D/!Y with respect to ˆWX!Y is the clo-
sure of ˆ�DˆWD.ˆ�Dˆ/!X . The modular lift is denoted byD�WD.D�/!X .

5.1. Selfadjointness. In order to show that the modular lift is selfadjoint we need a
few preliminary lemmas.
Lemma 5.2. Let � 2 D

�
.D�/

�
�
. Then �.�/ 2 D

�
ˆ�Dˆ

�
and

.ˆ�Dˆ/.��/ D �.D�/
�.�/Cˆ�d�.G/ˆ.�/:

Proof. Let � 2 D.D/ and compute as follows:

hˆ�.�/;D.�/i D hˆ.�/; �GD.�/i D hˆ.�/;DG�.�/i � hˆ.�/; d�.G/.�/i

D h.D�/
�.�/; ˆ��.�/i � hd�.G/

�ˆ.�/; �i

D h�ˆ.D�/
�.�/; �i C hd�.G/ˆ.�/; �i:
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Using the selfadjointness assumption on DWD.D/! Y , this implies that ˆ�.�/ 2
D.D/ and furthermore that

D.ˆ��/ D �ˆ.D�/
�.�/C d�.G/ˆ.�/:

This proves the lemma.

Lemma 5.3. Let � 2 D..D�/
�/ and let z 2 CnŒ0;1/ be given. Then .��z/�1.�/ 2

D..D�/
�/ and

.D�/
�.�� z/�1.�/ D .�� z/�1.D�/

�.�/� .�� z/�1ˆ�d�.G/ˆ.�� z/
�1.�/:

Proof. Weconsider the smallestC �-subalgebraC �.�/�L.X/ containing�2L.X/

together with the �-subalgebraD.ı/ � C �.�/ defined by�
T 2 D.ı/

�
,

�
T 2 C �.�/; T

�
D..D�/

�/
�
� D.D�/

and T .D�/� �D�T WD..D�/
�/! X

has a bounded adjointable extension ı.T /WX ! X
�
:

It follows by Lemma 5.2 that D.ı/ � C �.�/ is norm-dense. Moreover, the linear
map ıWD.ı/ ! L.X/ is a closed densely defined derivation on C �.�/ and D.ı/

becomes a Banach �-algebra when equipped with the norm k � kı WD.ı/ ! Œ0;1/

defined by
kT kı WD kT k1 C kı.T /k1:

As a consequence of [3, Proposition 3.12], the inclusionD.ı/ � C �.�/ is spectrally
invariant and it holds in particular that .� � z/�1 is an element in the unital �-sub-
algebra D.ı/C C � 1 � L.X/. This implies that .� � z/�1.�/ 2 D..D�/

�/. The
explicit formula for the commutator�

.D�/
�; .� � z/�1

�
WD

�
.D�/

�
�
! X

is now an algebraic consequence of Lemma 5.2.

We are now ready to show that the modular liftD�WD.D�/! X is selfadjoint:
Proposition 5.4. Suppose that ˆ�WY ! X has dense image and GDˆˆ�WY!Y

is differentiable with respect to .D; �/. Then the composition

ˆ�DˆWD.ˆ�Dˆ/! X

is essentially selfadjoint.

Proof. It is enough to prove that D..D�/
�/ � D.D�/. Thus, let � 2 D..D�/

�/

be given.
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Let us consider the sequence f�.�C 1=n/�1.�/g and recall that

�.�C 1=n/�1.�/! �:

Furthermore, by Lemma 5.2 and Lemma 5.3 we have that

�.�C 1=n/�1.�/ 2 D
�
ˆ�Dˆ

�
for all n 2 N.
To show that � 2 D.D�/ it therefore suffices to prove that the sequence˚

.ˆ�Dˆ/�.�C 1=n/�1.�/
	

is norm-convergent in X .
For each n 2 N we use Lemma 5.2 and Lemma 5.3 to compute in the following

way:

.ˆ�Dˆ/�.�C 1=n/�1.�/

D �.D�/
�.�C 1=n/�1.�/Cˆ�d�.G/ˆ.�C 1=n/

�1.�/

D �.�C 1=n/�1.D�/
�.�/ ��.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1.�/

Cˆ�d�.G/ˆ.�C 1=n/
�1.�/

D �.�C 1=n/�1.D�/
�.�/C

1

n
.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1.�/:

Since the sequence f�.� C 1=n/�1g converges strictly to the identity operator
on X , the result of the proposition is proved, provided that the sequencen1

n
.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1.�/
o

converges to zero in the norm onX . But this is a consequence of the next lemma.

Lemma 5.5. The sequencen1
n
.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1
o

is bounded in operator norm and converges strictly to the zero operator on X .

Proof. We first show that our sequence is bounded in operator norm. To this end, let
� 2 X and n 2 N and notice that
1

n

.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/�1.�/
D
1

n
lim
"&0

.�C 1=n/�1ˆ��1=2��;".G/�1=2ˆ.�C 1=n/�1.�/
�
1

n
�
�1=2ˆ.�C 1=n/�12

1
� sup
"2.0;1�

k��;".G/k1 � k�k

� sup
"2.0;1�

k��;".G/k1 � k�k:
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To prove the lemma, we may now limit ourselves to showing that

1

n
.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1.�/! 0

for all � in a dense subspace of X . Since Im.�/ � X is dense in X we let � 2 X
and remark that1
n
.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1�.�/


�
1

n
�
.�C 1=n/�1ˆ��1=2

1
�
�1=2ˆ�.�C 1=n/�1.�/ � sup

"2.0;1�

k��;".G/k1

�
1
p
n
� k�1=2ˆk1 � k�k � sup

"2.0;1�

k��;".G/k1

for all n 2 N. This computation ends the proof of the present lemma.

5.2. Regularity. In order to show that the modular liftD�WD.D�/! X is regular
we will use the local-global principle for unbounded regular operators, see [20, 36].
We will thus pause for a moment and remind the reader how this principle works.
Let �WA! C be a state on the C �-algebra A and define the pairing

h�; �i�WX �X ! C hx0; x1i� WD �
�
hx0; x1i

�
:

Putting N� WDfx2X j hx; xi�D0g, we obtain that the vector space quotient X=N�
has a well-defined norm,

kŒx�k� WD hx; xi
1=2
� ;

and the completion of X=N� is a Hilbert space with inner product induced by h�; �i�.
We denote this Hilbert space by X� and let Œ � �WX ! X� denote the canonical map
(quotient followed by inclusion). One may also view the Hilbert space X� as an
interior tensor product X� Š X y̋ AH�, where the Hilbert spaceH� is the carrier of
the GNS-representation of A associated to the state �WA! C.
The unbounded selfadjoint operator D�WD.D�/ ! X yields an induced

unbounded symmetric operator

.D�/�WD
�
.D�/�

�
! X� Œx� 7! ŒD�.x/�;

where the domain is given by

D
�
.D�/�

�
WD
˚
Œx� j x 2 D.D�/

	
:

We denote the closure of this unbounded symmetric operator by

D� ˝ 1WD.D� ˝ 1/! X�:
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The local-global principle states that the unbounded selfadjoint operator D� is
regular if and only if D� ˝ 1 is selfadjoint for every state �WA ! C, see [20,
Theorem 4.2]. We remark that an even stronger result is proved in [36]: it does in
fact suffice to prove selfadjointness for every pure state on A.

Let us from now on fix a state �WA! C. We are interested in showing that

D� ˝ 1WD.D� ˝ 1/! X�

is selfadjoint. We remark that it already follows by the local-global principle that the
unbounded operator

D ˝ 1WD.D ˝ 1/! Y�

is selfadjoint.
The proof of the next lemma is left as an exercise to the reader (we are defining

� ˝ 1WY� ! Y� and ˆ ˝ 1WX� ! Y� using the same recipe as in the unbounded
case):
Lemma 5.6. The bounded operatorˆ�˝1WY� ! X� has dense image andG˝1 D
ˆˆ� ˝ 1WY� ! Y� is differentiable with respect to .D ˝ 1; � ˝ 1/. Furthermore,
we have the identities

d�˝1.G ˝ 1/ D d�.G/˝ 1 and ��˝1;".G ˝ 1/ D ��;".G/˝ 1

for all " 2 .0; 1�.
It is a consequence of the above lemma and Proposition 5.4 that the composition

.ˆ� ˝ 1/.D ˝ 1/.ˆ˝ 1/WD
�
.D ˝ 1/.ˆ˝ 1/

�
! X�

is essentially selfadjoint. We denote the closure by .D ˝ 1/�˝1 and focus our
attention on proving the identity

.D ˝ 1/�˝1 D D� ˝ 1;

which will then imply the regularity of the modular liftD�.
We start by proving the easiest of the two inclusions (required for establishing the

above identity):
Lemma 5.7. D� ˝ 1 � .D ˝ 1/�˝1:

Proof. Let � 2 D.D� ˝ 1/. Then there exists a sequence f�ng in D.ˆ�Dˆ/ such
that

Œ�n�! � and ŒD�.�n/�! .D� ˝ 1/.�/:

But then we clearly have that Œ�n� 2 D
�
.ˆ� ˝ 1/.D ˝ 1/.ˆ˝ 1/

�
and furthermore

that
.ˆ� ˝ 1/.D ˝ 1/.ˆ˝ 1/Œ�n� D ŒD�.�n/�:

This proves the lemma.
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The proof of the reverse inclusion

.D ˝ 1/�˝1 � D� ˝ 1 (5.1)

is more subtle. It will rely on the following lemma:

Lemma 5.8. Let � 2 D..D˝1/�˝1/. Then .�˝1/.�/ 2 D.D�˝1/ and further-
more,

.D� ˝ 1/.�˝ 1/.�/ D .�˝ 1/.D ˝ 1/�˝1.�/C .ˆ
�d�.G/ˆ˝ 1/.�/:

Proof. Let first � 2 D.D˝1/ be given. Choose a sequence f�ng inD.D/ such that

Œ�n�! � and ŒD�n�! .D ˝ 1/.�/:

Remark that .ˆ�� ˝ 1/Œ�n� 2 D
�
.D�/�

�
for all n 2 N and furthermore that

.ˆ�� ˝ 1/Œ�n�! .ˆ�� ˝ 1/.�/:

We now compute as follows:

.D�/�Œˆ
���n� D Œˆ

�DG��n� D Œˆ
��GD�n�C Œˆ

�d�.G/�n�:

This shows that

.D�/�.ˆ
�� ˝ 1/Œ�n�! .ˆ��G ˝ 1/.D ˝ 1/.�/C .ˆ�d�.G/˝ 1/.�/:

We thus have that .ˆ�� ˝ 1/.�/ 2 D.D� ˝ 1/ and furthermore that

.D� ˝ 1/.ˆ
�� ˝ 1/.�/ D .ˆ��G ˝ 1/.D ˝ 1/.�/C .ˆ�d�.G/˝ 1/.�/:

Let now � 2 D
�
.D˝1/.ˆ˝1/

�
. It then follows from the above that .�˝1/.�/ 2

D.D� ˝ 1/ and moreover that

.D� ˝ 1/.�˝ 1/.�/ D .D� ˝ 1/.ˆ
�� ˝ 1/.ˆ˝ 1/.�/

D .ˆ��G ˝ 1/.D ˝ 1/.ˆ˝ 1/.�/C .ˆ�d�.G/ˆ˝ 1/.�/

D .�˝ 1/.D ˝ 1/�˝1.�/C .ˆ
�d�.G/ˆ˝ 1/.�/:

The result of the lemma now follows by using that

.ˆ� ˝ 1/.D ˝ 1/.ˆ˝ 1/ D .D ˝ 1/�˝1

by definition.

We are now ready to prove the reverse inclusion which (together with Lemma 5.7)
will imply the following:
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Proposition 5.9. We have the identity of unbounded operators

.D ˝ 1/�˝1 D D� ˝ 1

on the Hilbert space X�. In particular, we obtain that D� ˝ 1 is selfadjoint.

Proof. By Lemma 5.7 we only need to show that

D
�
.D ˝ 1/�˝1

�
� D.D� ˝ 1/:

Let thus � 2 D..D ˝ 1/�˝1/ be given. For each n 2 N, it is a consequence of
Lemma 5.3 and Lemma 5.8 that�

�.�C 1=n/�1 ˝ 1
�
.�/ 2 D.D� ˝ 1/:

Furthermore, these two lemmas allow us to compute as follows:

.D� ˝ 1/
�
�.�C 1=n/�1 ˝ 1

�
.�/

D .�˝ 1/.D ˝ 1/�˝1
�
.�C 1=n/�1 ˝ 1

�
.�/

C
�
ˆ�d�.G/ˆ.�C 1=n/

�1
˝ 1

�
.�/

D
�
�.�C 1=n/�1 ˝ 1

�
.D ˝ 1/�˝1.�/

�
�
�.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1
˝ 1

�
.�/

C
�
ˆ�d�.G/ˆ.�C 1=n/

�1
˝ 1

�
.�/

D
�
�.�C 1=n/�1 ˝ 1

�
.D ˝ 1/�˝1.�/

C
�
1=n.�C 1=n/�1ˆ�d�.G/ˆ.�C 1=n/

�1
˝ 1

�
.�/:

Together with Lemma 5.5 this computation shows that

.D� ˝ 1/
�
.�C 1=n/�1�˝ 1

�
.�/! .D ˝ 1/�˝1.�/:

This proves the present proposition. Indeed, the remaining fact that

D� ˝ 1WD.D� ˝ 1/! X�

is selfadjoint follows immediately since .D ˝ 1/�˝1 is selfadjoint (see Lemma 5.6
and Proposition 5.4).

The main theorem of this section is now a consequence of the local-global princi-
ple and Proposition 5.9 (recall that differentiability is introduced in Definition 3.3):

Theorem 5.10. Suppose that ˆ�WY ! X has dense image and that ˆˆ�WY ! Y

is differentiable with respect to .D; �/. Then the modular lift D�WD.D�/! X is
selfadjoint and regular.
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6. Compactness of resolvents

We will in this section remain in the general setting presented in Section 5. We
will thus assume that ˆ�WY ! X has dense image and that G D ˆˆ�WY ! Y is
differentiable with respect to .D; �/. In particular, it follows by Theorem 5.10 that
the modular lift

D� WD ˆ�DˆWD.D�/! X

is an unbounded selfadjoint and regular operator. We recall that� WDˆ��ˆWX!X .

We are going to study the compactness properties of the resolvent

.i CD�/
�1
WX ! X

of the modular lift.

Lemma 6.1. We have the identity

�2.i CD�/
�1
D ˆ��.i CD/�1 �

��
i.G � 1/� C d�.G/

�
ˆ.i CD�/

�1
C �ˆ

�
:

Proof. Let � 2 D.Dˆ/. Since the unbounded operator .iCˆ�Dˆ/WD.Dˆ/! X

has dense image (by Theorem 5.10) it is enough to verify that

�2.�/ D ˆ��.i CD/�1
��
i.G � 1/� C d�.G/

�
ˆC �ˆ.i Cˆ�Dˆ/

�
.�/:

But this follows from the computation

ˆ��.i CD/�1
��
i.G � 1/� C d�.G/

�
ˆC �ˆ.i Cˆ�Dˆ/

�
.�/

D ˆ��.i CD/�1.iG� CDG�/ˆ.�/

D ˆ��G�ˆ.�/ D �2.�/:

We let C �.�/�L.X/ denote the smallest C �-subalgebra containing�WX!X .
Proposition 6.2. Suppose that ˆ��.i CD/�1 2K.Y;X/. Then T � .i CD�/�1 2
K.X/ for all T 2 C �.�/.

Proof. It is an immediate consequence of Lemma 6.1 that

�2.i CD�/
�1
2K.X/:

The result of the lemma therefore follows by noting that the sequence f�2.�C1=n/�1g
converges to �WX ! X in operator norm.

For later use, we are also interested in the relationship between the resolvents of
the squares .D�/2WD..D�/

2/! X and D2WD.D2/! Y . In order to study these
two resolvents we need the following extra assumption:
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Assumption 6.3. It is assumed that �.D.D// � D.D/ and that the straight
commutator

D� � �DWD.D/! Y

has a bounded adjointable extension d.�/WY ! Y .
In the next lemma, we apply the notation d�.�G/WY ! Y for the bounded

adjointable extension of the twisted commutator

D�G� � �2GD D ŒD; ��G� C �.DG� � �GD/WD.D/! Y:

Let us fix a constant r 2
�
k�k21 C k�k

2
1;1

�
and apply the notation

T� WD
�
1C��2=rCD2

��1
WY ! Y and S� WD

�
1C��2=rC.D�/

2
��1
WX ! X

for all � � 0.
The next result will play an important role in our later investigations of the

relationship between the unbounded Kasparov product and the interior Kasparov
product:
Proposition 6.4. We have the identity

ˆ�2S� � T��
2ˆ D T�

�
ˆ�2 � �2ˆC d�.�G/ˆD�

�
S�

C .DT�/
�
�
d�.G/G� C �Gd�.G/

�
ˆS�

for all � � 0.

Proof. Let � � 0 and let � 2 D..D�/
2/. To prove the proposition, it suffices to

check that�
ˆ�2 � T��

2ˆ
�
1C ��2=r C .D�/

2
��
.�/

D T�
�
ˆ�2��2ˆC d�.�G/ˆD�

�
.�/C .DT�/

�
�
d�.G/G�C�Gd�.G/

�
ˆ.�/:

We claim that

.DT�/
�
�
d�.G/G� C �Gd�.G/

�
ˆ.�/ D .D2T�/

�ˆ�2.�/ � .DT�/
��ˆ�D�.�/

(6.1)
and moreover that

T�d�.�G/ˆ.�/ D .DT�/
��ˆ�.�/ � T��

2ˆD�.�/ (6.2)

for all � 2 D.D�/. To verify these two identities, we use that D.Dˆ/ � X is a
core for the modular lift. The identity in equation (6.1) then follows since it holds for
all � 2 D.Dˆ/ that

.DT�/
�
�
d�.G/G� C �Gd�.G/

�
ˆ.�/

D .D2T�/
�G�G�ˆ.�/ � .DT�/

��G�GDˆ.�/

D .D2T�/
�ˆ�2.�/ � .DT�/

��ˆ�D�.�/:
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Moreover, the identity in equation (6.2) follows from the computation

T�d�.�G/ˆ.�/ D .DT�/
��G��.�/ � T��

2GDˆ.�/

D .DT�/
��ˆ�.�/ � T��

2ˆD�.�/;

which is again valid for all � 2 D.Dˆ/.
The identities in equation (6.1) and equation (6.2) imply that

T�
�
ˆ�2 � �2ˆC d�.�G/ˆD�

�
.�/C .DT�/

�
�
d�.G/G� C �Gd�.G/

�
ˆ.�/

D T�.ˆ�
2
� �2ˆ/.�/C .D2T�/

�ˆ�2.�/ � T��
2ˆ.D�/

2.�/

D
�
.1CD2/T�

��
ˆ�2.�/ � T��

2ˆ.1C .D�/
2/.�/

for all � 2 D..D�/
2/. The result of the proposition then follows since�
.1CD2/T�

��
ˆ�2 D ˆ�2 � T��

2ˆ � ��2=r:

7. The unbounded Kasparov product

Throughout this section we let A and B be �-algebras which satisfy the conditions
in Assumption 2.2. As usual we denote the C �-completions by A and B and the
operator space completions byA1 andB1. Furthermore, we fix a thirdC �-algebraC .
On top of this data, we shall consider:

(1) An unbounded modular cycle .Y;D; �/ from B to C (with grading operator
 WY ! Y in the even case).

(2) A differentiable Hilbert C �-module X from A to B with a fixed differentiable
generating sequence f�ng1nD1.

We let �AWA ! L.X/ and �B WB ! L.Y / denote the �-homomorphisms
associated with the above data. It will then be assumed that

�A.a/ 2K.X/ for all a 2 A:

To explain the aims of this section we form the interior tensor product X y̋ BY
of Hilbert C �-modules. We recall that this is the Hilbert C �-module over C defined
as the completion of the algebraic tensor product of modules X ˝B Y with respect
to the norm coming from the C -valued inner product

h�; �iWX ˝B Y �X ˝B Y ! C hx0˝B y0; x1˝B y1i WD hy0; �B.hx0; x1i/.y1/i:

The interior tensor product comes equipped with a �-homomorphism

.�A ˝ 1/WA! L.X y̋ BY /; .�A ˝ 1/.a/ WD �A.a/˝ 1:
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It is the main goal of this section to construct a new (and explicit) unbounded
modular cycle from A to C :

X y̋ B.Y;D; �/ WD .X y̋ BY;D�; �/:

We shall refer to this new unbounded modular cycle as the unbounded Kasparov
product of the differentiable HilbertC �-moduleX and the unbounded modular cycle
.Y;D; �/.

Let us return to the interior tensor product X y̋ BY . For each � 2 X we have a
bounded adjointable operator

T� WY ! X y̋ BY; y 7! � ˝B y;

where the adjoint is given explicitly by

T �� WX y̋ BY ! Y; x ˝B y 7! �B
�
h�; xi

�
.y/:

For each N 2 N we may then define the bounded adjointable operator

ˆN WX y̋ BY ! `2.N; Y /; z 7!

NX
nD1

T ��n
.z/ın:

Lemma 7.1. The sequence of bounded adjointable operators˚
ˆN

	1
ND1

ˆN WX y̋ BY ! `2.N; Y /

converges in operator norm to a bounded adjointable operator

ˆWX y̋ BY ! `2.N; Y /:

Furthermore, we have that ˆ�W `2.N; Y /! X y̋ BY has dense image.

Proof. Let us prove that the sequence fˆN g is Cauchy in operator norm. To this end,
we letM > N be given and notice that

kˆM �ˆN k
2
1 D kˆ

�
M �ˆ

�
N k

2
1 D kˆMˆ

�
M CˆNˆ

�
N �ˆNˆ

�
M �ˆMˆ

�
N k1:

Furthermore, it may be verified that

ˆMˆ
�
M CˆNˆ

�
N �ˆNˆ

�
M �ˆMˆ

�
N D

MX
nDNC1

MX
mDNC1

�B
�
h�n; �mi

�
ınm:

Since the sequence n KX
n;mD1

h�n; �miınm

o1
KD1
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is a Cauchy sequence in K.B1/ (by our assumption on the differentiable generating
sequence f�ng) and since the canonical map B1 ! B is completely bounded, this
shows that fˆN g is a Cauchy sequence as well.
To see that the image ofˆ�W `2.N; Y /! X y̋ BY is dense it suffices (since f�ng

generates X as a Hilbert C �-module over B) to check that �nb ˝B y 2 Im.ˆ�/ for
all n 2 N, b 2 B and y 2 Y . But this is clear since

ˆ�.�B.b/.y/ � ın/ D �n ˝B �B.b/.y/ D �nb ˝B y:

This ends the proof of the lemma.

Let us recall from Subsection 3.1 that the notation

1˝DWD.1˝D/! `2.N; Y / and 1˝ �W `2.N; Y /! `2.N; Y /

refers to the diagonal operators induced byDWD.D/! Y and �WY ! Y .
The next lemma explains how ˆWX y̋ BY ! `2.N; Y / creates a link between

the �-algebra A and the unbounded modular cycle .Y;D; �/. We recall from Prop-
osition 3.5 that we have an unbounded modular cycle .`2.N; Y /; 1˝D; 1˝�/ from
M.B/ to C (of the same parity as .Y;D; �/).
Lemma 7.2. Let a 2 A and � 2 C be given. Then the bounded adjointable operator

ˆ.�A.a/˝ 1C �/ˆ
�
W `2.N; Y /! `2.N; Y /

is differentiable with respect to the pair .1˝D; 1˝ �/.
Furthermore, it holds for each "2.0; 1� that the linear map �"WA!L.`2.N; Y //

defined by

�"W a 7! .1˝ � C "/�1=2d1˝�
�
ˆ.�A.a/˝ 1/ˆ

�
�
.1˝ � C "/�1=2

is completely bounded with respect to the operator space norm k � k1 on A and we
have that

sup
"2.0;1�

k�"kcb <1:

Proof. Let � WA! K.B1/ denote the completely bounded map defined by

�.a/ WD

1X
n;mD1

h�n; �A.a/.�m/iınm for all a 2 A;

(where the complete boundedness is understood with respect to the operator space
norm k � k1onA). Let also g 2 K.B1/ be given by

g WD

1X
n;mD1

h�n; �miınm:
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Finally, as in Subsection 3.1we letK.�B/WK.B/! L.`2.N; Y // denote the�-hom-
omorphism defined by

K.�B/
� 1X
n;mD1

bnmınm

�� 1X
kD1

ykık

�
WD

1X
nD1

� 1X
mD1

�B.bnm/.ym/
�
ın:

We then have the identity

ˆ.�A.a/˝ 1C �/ˆ
�
D K.�B/

�
�.a/C � � g

�
W `2.N; Y /! `2.N; Y /;

(wherewe suppress the inclusionK.B1/!K.B/). The fact thatˆ.�A.a/˝1C�/ˆ�
is differentiable with respect to .`2.N; Y /; 1˝D; 1˝ �/ is now a consequence of
Proposition 3.5 (and the remarks following Definition 3.1). Moreover, the remaining
part of the lemma also follows from Proposition 3.5 by remarking that

�".a/ D .�1˝�;" ı �/.a/ for all a 2 A:

It follows by Lemma 7.1 and Lemma 7.2 (with a D 0 and � D 1) that

ˆ�W `2.N; Y /! X y̋ BY

has dense image and thatˆˆ� is differentiable with respect to the pair .1˝�; 1˝D/.
In particular, we may form the modular lift

.1˝D/�WD
�
.1˝D/�

�
! X y̋ BY;

as the closure of the symmetric unbounded operator

ˆ�.1˝D/ˆWD
�
.1˝D/ˆ

�
! X y̋ BY:

We also define the bounded adjointable operator

� WD ˆ�.1˝ �/ˆWX y̋ BY ! X y̋ BY:

Theorem 7.3. Suppose that the conditions outlined in the beginning of this section
are satisfied. Then the triple .X y̋ BY; .1˝D/�; �/ is an unbounded modular cycle
from A to C . The parity of .X y̋ BY; .1 ˝ D/�; �/ is the same as the parity of
.Y;D; �/ and the grading operator is given by

1˝  WX y̋ BY ! X y̋ BY

in the even case.

Proof. We verify each of the points in Definition 3.1 separately.
The fact that X y̋ BY is a countably generated Hilbert C �-module follows since

both X and Y are countably generated by assumption.
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The modular lift

.1˝D/�WD
�
.1˝D/�

�
! X y̋ BY

is selfadjoint and regular by Theorem 5.10.
The bounded operator

� WD ˆ�.1˝ �/ˆWX y̋ BY ! X y̋ BY

is clearly positive and selfadjoint and it has dense image since

1˝ �W `2.N; Y /! `2.N; Y / and ˆ�W `2.N; Y /! X y̋ BY

have dense images.
It is finally clear that the grading operator 1˝  WX y̋ BY ! X y̋ BY satisfies

the constraints

.1˝ /.�A.a/˝ 1/ D .�A.a/˝ 1/.1˝ /;

.1˝ /.1˝D/� D �.1˝D/�.1˝ /;

.1˝ /� D �.1˝ /

for all a 2 A in the even case.
We now focus on the conditions .1/–.4/ in Definition 3.1.

(4) Let a 2 A be given. We need to show that

1=n.�C 1=n/�1.�A.a/˝ 1/! 0

is the operator norm on L.X y̋ BY /. To this end, we remark that there exists a
positive and selfadjoint compact operator KWX ! X with dense image such that

ˆ�ˆ D K ˝ 1WX y̋ BY ! X y̋ BY:

(In fact we may chooseK WD
P1
nD1 ��n;�n

.) Since �A.a/ 2K.X/we thus have that

ˆ�ˆ.1=mCˆ�ˆ/�1.�A.a/˝ 1/! �A.a/˝ 1;

where the convergence takes place in operator norm. It therefore suffices to check
that

1=n.�C 1=n/�1ˆ�ˆ! 0

in operator norm. To prove this, we notice thatˆˆ�W `2.N; Y /! `2.N; Y / lies in the
image of the �-homomorphism K.�B/WK.B/! L.`2.N; Y //. By Proposition 3.5
it thus follows that �

1˝ �.� C 1=m/�1
�
ˆ! ˆ

in operator norm. We may therefore restrict our attention to showing that

1=n.�C 1=n/�1ˆ�.1˝ �/! 0

in operator norm. But this is clear since � D ˆ�.1˝ �/ˆ by definition.
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(1) Let again a 2 A be given. To verify that

.�A.a/˝ 1/ �
�
i C .1˝D/�

��1
WX y̋ BY ! X y̋ BY

is a compact operator it suffices (by .4/ and Proposition 6.2) to check that

ˆ�.1˝ �/
�
i C .1˝D/

��1
W `2.N; Y /! `2.N; Y /

is compact. But this is clear by Proposition 3.5 since ˆˆ�W `2.N; Y / ! `2.N; Y /
lies in the image of K.�B/WK.B/! L.`2.N; Y // and since�

1˝ �; .i C .1˝D//�1
�
D .i C .1˝D//�1d1˝�.1/.i C .1˝D//

�1:

(2) Let a 2 A and � 2 C be given. Let z 2 D
�
.1˝D/ˆ

�
be given (thus ˆ.z/ 2

D.1˝D/). Then,

ˆ.�A.a/˝ 1C �/�.z/ D ˆ.�A.a/˝ 1C �/ˆ
�.1˝ �/.ˆz/ 2 D.1˝D/

(by Lemma 7.2), and therefore .�A.a/˝1C�/�.z/ 2 D..1˝D/ˆ/. Furthermore,
we have that

ˆ�.1˝D/ˆ.�A.a/˝ 1C �/�.z/

D ˆ�.1˝ �/ˆ.�A.a/˝ 1C �/ˆ
�.1˝D/ˆ.z/

Cˆ�d1˝�.ˆ.�A.a/˝ 1C �/ˆ
�/ˆ.z/:

But this implies that�
.1˝D/�.�A.a/˝ 1C �/� ��.�A.a/˝ 1C �/.1˝D/�

�
.z/

D ˆ�d1˝�.ˆ.�A.a/˝ 1C �/ˆ
�/ˆ.z/: (7.1)

SinceD
�
.1˝D/ˆ

�
� X y̋ BY is a core for the modular lift

.1˝D/�WD
�
.1˝D/�

�
! X y̋ BY

this proves the relevant statement about twisted commutators.

(3) Recall first that the linear map

� WA! K.B1/; a 7!

1X
n;mD1

h�n; �A.a/�miınm

is assumed to be completely bounded.
Let now a 2 A and � 2 C be given. Putting

g WD

1X
n;mD1

h�n; �miınm 2 K.B1/
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it follows by .2/ that

d�.aC �/ D ˆ
�d1˝�.�.a/C � � g/ˆ:

For each " 2 .0; 1� and each z 2 X y̋ BY we thus have that.�C "/�1=2d�.aC �/.�C "/�1=2.z/
D lim
ı&0

.�C "/�1=2ˆ�.1˝ �/1=2.1˝ � C ı/�1=2d1˝�.�.a/C � � g/
� .1˝ � C ı/�1=2.1˝ �/1=2ˆ.�C "/�1=2.z/


� k.�C "/�1=2ˆ�.1˝ �/1=2k21 � sup

ı2.0;1�

k�1˝�;ı.�.a/C � � g/k1 � kzk

� sup
ı2.0;1�

k�1˝�;ı.�.a/C � � g/k1 � kzk:

Since we know that

sup
ı2.0;1�

k�1˝�;ı.�.a/C � � g/k1 <1

this proves the first part of the statement in .3/. The second part of the statement
in .3/ follows by a similar argumentation. More precisely, we have the estimate:

sup
"2.0;1�

k��;"kcb � sup
ı2.0;1�

k�1˝�;ıkcb � k�kcb:

8. The modular transform

Throughout this section we consider the following data:
(1) an unbounded selfadjoint and regular operatorDWD.D/! Y acting on a fixed
Hilbert C �-module Y ;

(2) a positive and selfadjoint bounded operator �WY ! Y such that Im.�/ � Y is
norm-dense.
We make the following standing assumption:

Assumption 8.1. It is assumed that
(1) the domain D.D/ � Y is an invariant submodule for �WY ! Y and the

commutator
D� ��DWD.D/! Y

is the restriction of a bounded adjointable operator d.�/WY ! Y ;
(2) the supremum of operator norms

sup
"2.0;1�

.�C "/�1=2d.�/.�C "/�1=2
1

is finite.
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In other words, we assume that the unit 1 2 L.Y / is differentiable with respect to the
pair .D;�/, see Definition 3.3.

Let us choose a constant
r 2

�
k�k21;1

�
and apply the notation:

S� WD .1C ��
2=r CD2/�1 and R� WD .1C �CD

2/�1

for all � � 0.
We are interested in studying the modular transform of the pair .D;�/. This is

the unbounded operator defined by

GD;�W�.D.D//! Y; GD;�.��/ WD
1

�

Z 1
0

.�r/�1=2�S�D.��/ d�

for all � 2 D.D/. In particular, we are interested in comparing themodular transform
with the bounded transform ofDWD.D/! Y . We recall that the bounded transform
of D is defined by FD WD D.1CD2/�1=2WY ! Y and it follows that the bounded
transform is a bounded extension of the unbounded operator

FD
ˇ̌
D.D/
WD.D/! Y; � 7!

1

�

Z 1
0

��1=2R�D.�/ d�:

The modular transform will play a key role in our later proof of one of the
main theorems in this paper, namely that the bounded transform of an unbounded
modular cycle yields a bounded Kasparov module and hence a class in KK-theory,
see Theorem 9.5.
We notice that the modular transform has been obtained from the bounded

transform by making a non-commutative change of variables in the integral over
the half-line. Indeed, the idea is just to replace the scalar-valued variable � � 0

by the operator-valued variable � � �2=r . In the case where D and � actually
commute it can therefore be proved that the modular transform is just a restriction of
the bounded transform to �.D.D// � Y . However, in the case of real interest, thus
when d.�/ ¤ 0, there is a substantial error-term appearing and a great deal of this
section is devoted to controlling the size of this error-term. There are easier proofs
of the main results of this section when the modular operator �WY ! Y is assumed
to be invertible (as a bounded operator). One of the important points of the whole
theory that we are developing here is however that�WY ! Y is allowed to have zero
in the spectrum. This condition should therefore not be relaxed.
Before we go any further let us immediately notice that the integralZ 1

0

.�r/�1=2�S�D.��/ d�;
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appearing in the definition of the modular transform, converges absolutely for all
� 2 D.D/. Indeed, this follows from the estimate

k�S�D.��/k � k�S��k1 � kD�k C k�S�d.�/k1 � k�k (8.1)

and since Lemma A.3 and Assumption 8.1 (2) imply that we may find a constant
C > 0 such that

k�S��k1 � C � .1C �/
�1 and k�S�d.�/k1 � C � .1C �/�3=4 (8.2)

for all � � 0.

8.1. Preliminary algebraic identities. Let us apply the notation

K WD 1 ��2=r and X� WD � �R�K

for all � � 0. We start our work on understanding the modular transform

GD;�W�
�
D.D/

�
! Y; GD;�.��/ D

1

�

Z 1
0

.�r/�1=2�S�D.��/ d�

by rewriting the (modular) resolvent S� D .1 C ��2=r C D2/�1 in a way that
is more amenable to a computation of the integral appearing in the expression for
the modular transform. More precisely, we first expand the (modular) resolvent
S�WY ! Y as a power-series involving the (standard) resolvent R�WY ! Y and the
bounded adjointable operator KWY ! Y . We then reorganize this power-series by
moving all the K-terms to the left and all the R�-terms to the right and during this
procedure we pick up an explicit error-term. These steps will be accomplished in the
present subsection.
Lemma 8.2. For each � � 0 we have the identities

S� D

1X
nD0

Xn� �R� D .1 �X�/
�1R� D R�.1 �X

�
� /
�1;

where the sum converges absolutely.

Proof. Let � � 0 be given. By the resolvent identity we have that

R� � S� D .�C 1CD
2/�1 � .��2=r C 1CD2/�1

D �.�C 1CD2/�1�.1 ��2=r/.��2=r C 1CD2/�1

D �X� � S�:

Since k�2k1 < r we have that

kX�k1 � �.1C �/
�1 < 1:
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Wemay thus conclude that 1�X�WY ! Y is invertiblewith .1�X�/�1 D
P1
nD0X

n
�
,

where the sum converges absolutely. From the above, we deduce that

S� D .1 �X�/
�1R� D

1X
nD0

Xn� �R�:

Since S�
�
D S� and R�� D R� we also see that S� D R�.1 � X

�
�
/�1. This proves

the lemma.

We will from now on apply the notation

I.T / WD ŒD2; T �WD.D2/! Y

whenever T WY ! Y is a bounded adjointable operator such that

T .D.D2// � D.D2/:

Lemma 8.3. Let � � 0, n 2 N and k 2 N [ f0g be given. We have the identity

Xn� ��
k
D .X�� /

n�1K�kR�� � I
�
Xn��

k
�
R�:

Proof. We compute that

I.Xn��
k/R� D �KX

n�1
� �kR� �X

n
��

k
D �.X�� /

n�1K�kR� �X
n
��

k;

where we are using that KX� D X��K. This proves the lemma.

Lemma 8.4. Let � � 0, n 2 N and k 2 N [ f0g be given. We have the identity

Xn� ��
k
D �k�nKnRn� �

n�1X
jD0

Kj � I
�
X
n�j

�
�k
�
R
jC1

�
�j :

Proof. The proof runs by induction using the identity in Lemma 8.3.

For each m 2 N and each � � 0 we define the bounded adjointable operator

L�.m/ WD I
�
.1 �Xm� /S�K��

3
�
R�WY ! Y:

Lemma 8.5. Let � � 0 and N 2 N be given. We have the identity

NX
nD0

Xn� ��
3
�R� D

NX
nD0

�3�nKnRnC1
�
�

N�1X
nD0

Kn � L�.N � n/ �R
nC1
�

�n:
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Proof. By an application of Lemma 8.4 (and a reordering of terms) we obtain that
NX
nD0

Xn� ��
3
�R� D

NX
nD0

�3�nKnRnC1
�
�

NX
nD1

n�1X
jD0

Kj � I
�
X
n�j

�
�3
�
R
jC2

�
�j

D

NX
nD0

�3�nKnRnC1
�
�

N�1X
jD0

N�jX
mD1

Kj � I
�
Xm� �

3
�
R
jC2

�
�j :

The result of the lemma now follows since Lemma 8.2 implies that
N�jX
mD1

Xm� D

N�j�1X
mD0

Xm� R�K� D .1 �X
N�j

�
/S�K�:

For each � � 0 we define the bounded adjointable operator

L� WD I.S�K��
3/R�WY ! Y:

Lemma 8.6. Let � � 0 be given. Then the sequence fL�.m/g1mD1 converges to
L�WY ! Y in operator norm.

Proof. Using the Leibniz rule we see that it suffices to verify that the sequence˚
I.Xm

�
/S�

	1
mD1

converges to zero in operator norm. However, using the Leibniz
rule one more time, we obtain that

I.Xm� /S� D �

m�1X
jD0

X
j

�
I.R��

2/X
m�1�j

�
S� � �=r

D �

m�1X
jD0

X
j

�
I.R��

2/S�.X
�
� /
m�1�j

� �=r:

Remark here that Lemma 8.2 indeed implies that X�S� D S�X
�
�
. The result of the

lemma now follows easily by noting that

kX�k1 � �.1C �/
�1 < 1:

Indeed, we may then find a constant C > 0 such that

kI.Xm� /S�k1 � C �m �
�
�.1C �/�1

�m�1
for all m 2 N.

We are now ready to prove the main result of this subsection. It provides an
expansion of S��3WY ! Y where the first power-series appearing can be directly
related (after integration over the half-line) to the bounded adjointable operator
.1CD2/�1=2WY ! Y . The exponent 3 that appears here (and earlier in this section)
is not special, we only need that it is large enough for certain estimates to be valid
later on.
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Proposition 8.7. Let � � 0 be given. Then we have the identity

S��
3
D

1X
nD0

�3KnRnC1
�

�n �

1X
nD0

KnL�R
nC1
�

�n � .1 �X�/
�1I.R��

3/R�;

where each of the sums converges absolutely in operator norm.

Proof. It is clear that the sums converge absolutely in operator norm. Indeed, this
follows since kKk1 � 1 and since kR� � �k1 � �.�C 1/�1 < 1.
To continue, we notice that Lemma 8.2 entails that

S��
3
D .1 �X�/

�1�3R� C .1 �X�/
�1ŒR�; �

3�

D .1 �X�/
�1�3R� � .1 �X�/

�1I.R��
3/R�:

Now, by an application of Lemma 8.5, we see that we may restrict our attention
to proving that the sequence

nN�1X
jD0

Kj � L�.N � j / �R
jC1

�
�j
o1
ND1

converges in operator norm to
P1
jD0K

jL�R
jC1

�
�j . To this end, we define

C0 WD sup
n2N
kL�.n/k1 and C1 WD

1X
jD0

kR
jC1

�
�j k1:

Both of these constants are of course finite. Let now " > 0 be given. By Lemma 8.6
we may choose N0;M0 2 N such that

kL� � L�.n/k1 <
"

3.C1 C 1/
for all n � N0

and
1X

jDM0C1

kR
jC1

�
�j k1 <

"

3.C0 C 1/
:

It is then straightforward to verify that

 1X
jD0

KjL�R
jC1

�
�j �

N�1X
jD0

KjL�.N � j /R
jC1

�
�j

1
< "

for all N � N0 CM0. This proves the present proposition.
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8.2. Integral formulae for the square root. The aim of this subsection is to com-
pute the integral over the half-line of the continuous map

f W .0;1/! L.Y /; f W� 7! .�r/�1=2
1X
nD0

�6KnRnC1
�

�n;

which appears (up to a factor of .�r/�1=2) in the expression for �3S��3WY ! Y

obtained in Proposition 8.7. The main result of this subsection is the explicit formula

1

�

Z 1
0

f .�/ d� D �5.1CD2/�1=2;

which is proved in Proposition 8.13.
We start by recalling a general result on integral formulae for powers of resolvents:

Lemma 8.8. Let ƒWD.ƒ/! Y be an unbounded selfadjoint and regular operator
and let p; q > 0. We have the identity

B.p; q/ � .1Cƒ2/�q D

Z 1
0

�p�1.1C �Cƒ2/�p�q d�;

where the integral converges absolutely and where

B.p; q/ WD

Z 1
0

�p�1.1C �/�p�q d�

is the beta-function.

Proof. Notice that a change of variables (� D � � t ) implies thatZ 1
0

�p�1.�C t /�p�q d� D t�q �

Z 1
0

�p�1.1C �/�p�q d�

for all t > 0. The result now follows by an application of the functional calculus for
unbounded selfadjoint and regular operators, see [41, 42].

Let us fix two elements �; � 2 Y together with a state �WB ! C on the base
C �-algebra.
The next lemma reduces the computation of the integral 1

�

R1
0
f .�/ d� to a

(delicate) matter of interchanging an infinite sum and an integral.
Lemma 8.9. The sequence of partial sumsn 1

�

NX
nD0

Z 1
0

.�r/�1=2�
�˝
�2KnRnC1

�
�n�; �

˛�
d�
o1
ND1

converges to �
�˝
�.1CD2/�1=2�; �

˛�
.
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Proof. By Lemma 8.8 we have that

1

�
p
r

NX
nD0

Z 1
0

��1=2 ��2Kn�nRnC1
�

d�

D
1

�
p
r

NX
nD0

�2Kn �

Z 1
0

�n�1=2 �RnC1
�

d�

D
1

�
p
r

NX
nD0

�2Kn � B.nC 1=2; 1=2/ � .1CD2/�1=2

for all N 2 N. Thus, it suffices to check that the sequence of complex numbersn 1

�
p
r

NX
nD0

�
�˝
�2Kn�; �

˛�
� B.nC 1=2; 1=2/

o1
ND1

converges to �
�
h��; �i

�
2 C. Because of the polarization identity, we may assume

(without loss of generality) that � D �.
Let now � > 0 be fixed and notice that

1X
nD0

�2Kn � .1C �/�n�1 D �2.1C �/�1 �

1X
nD0

�
K.1C �/�1

�n
D �2.1C �/�1

�
1 �K.1C �/�1

��1
D �2.1 �K C �/�1 D �2.�2=r C �/�1:

Next, by a change of variables .� D � ��2=r/, we obtain that

1

�

Z 1
0

.�r/�1=2�2.�2=r C �/�1 d� D
1

�

Z 1
0

��1=2.1C �/�1�d� D �:

Therefore, by the monotone convergence theorem, we may conclude that

1

�
p
r
� lim
N!1

� NX
nD0

�.h�2Kn�; �i/ � B.nC 1=2; 1=2/
�

D
1

�
� lim
N!1

� Z 1
0

.�r/�1=2
NX
nD0

�
�˝
�2Kn.1C �/�n�1�; �

˛�
d�
�

D
1

�

Z 1
0

.�r/�1=2�
�˝
�2.�2=r C �/�1�; �

˛�
d�

D �
�
h��; �i

�
:

This proves the lemma.



462 J. Kaad

In order to compute the integral of f W .0;1/ ! L.Y / (and to show that this
function is integrable) we now want to apply the Lebesgue dominated convergence
theorem. Or in other wordswe need to find a positive integrable function gW .0;1/!
Œ0;1/ such that

.�r/�1=2
 NX
nD0

�6KnRnC1
�

�n

1
� g.�/ for all � > 0 ; N 2 N:

This turns out to be a subtle problem and the solution will rely on the identities
derived in Subsection 8.1 and the estimates that we carry out in the appendix to this
paper. On top of these estimates we need the following two lemmas:
Lemma 8.10. Let p 2 .�1; 2� be given. We have the identity

1X
nD0

.1CD2/pR2nC2
�

�2n D .1CD2/p�1.2�C 1CD2/�1;

where the sum converges absolutely in operator norm for all � � 0.

Proof. It is clear the sum converges absolutely for all � � 0. To prove the relevant
identity we let � � 0 be given and compute as follows:

1X
nD0

.1CD2/pR2nC2
�

�2n D .1CD2/pR2�.1 �R
2
��
2/�1

D .1CD2/p.1CD2/�1.2�C 1CD2/�1:

Lemma 8.11. The sequence of partial sumsn NX
nD0

�2K2n
o1
ND0

is bounded in operator norm.

Proof. This follows from the identities
NX
nD0

.�2=r/K2n.2 ��2=r/ D

NX
nD0

.1 �K2/K2n D 1 �K2.NC1/

by noting that 2 ��2=r WY ! Y is invertible and that kKk1 � 1.

Lemma 8.12. There exists a positive integrable function gW .0;1/ ! Œ0;1/ such
that

.�r/�1=2
 NX
nD0

�6KnRnC1
�

�n

1
� g.�/

for all � 2 .0;1/ and all N 2 N.
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Proof. By an application of Lemma 8.5 we obtain that

NX
nD0

�6KnRnC1
�

�n D

NX
nD0

�3Xn�R��
3
C

NX
nD0

�3Xn�I.R��
3/R�

C

N�1X
nD0

�3KnL�.N � n/R
nC1
�

�n (8.3)

for all � � 0 and all N 2 N. We estimate the operator norm of each of these terms
separately.
For the first term in equation (8.3) we apply Lemma A.3 to obtain that NX

nD0

�3Xn�R��
3

1
� k�3S��

3
k1 � r

3.1C �/�1

for all � � 0 and all N 2 N.
For the second term in equation (8.3) we apply Lemma A.3 and Lemma A.1 to

find a constant C1 > 0 such that�3 NX
nD0

Xn�I.R��
3/R�


1

�

�3 NX
nD0

Xn�DR�d.�
3/R�


1
C

�3 NX
nD0

Xn�R�d.�
3/DR�


1

D
�3.1 �XNC1

�
/.DS�/

�
� d.�3/R�


1
C
�3.1 �XNC1

�
/S�d.�

3/DR�

1

� C1 � .1C �/
�3=4

for all � � 0 and all N 2 N. We recall here that

sup
"2.0;1�

.�C "/�1=2d.�3/.�C "/�1=2
1
<1

byAssumption 8.1 and that the sequence
˚
�1=2.�C1=m/�1=2

	1
mD1

converges strictly
to the identity operator on Y .
For the third term in equation (8.3) we apply the Cauchy–Schwarz inequality to

obtain thatN�1X
nD0

�3KnL�.N � n/R
nC1
�

�n

1

�

N�1X
nD0

�3KnL�.N � n/.1CD
2/�1L�.N � n/

�Kn�3
1=2
1

�

N�1X
nD0

.1CD2/R2nC2
�

�2n
1=2
1
: (8.4)
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We then note that Proposition A.9 and Lemma 8.11 imply that there exists a constant
C2 > 0 such thatN�1X

nD0

�3KnL�.N � n/.1CD
2/�1L�.N � n/

�Kn�3
1=2
1
� C2 � .1C �/

�1=8

for all N 2 N and all � � 0. Furthermore, by Lemma 8.10 we have that

N�1X
nD0

.1CD2/R2nC2
�

�2n
1=2
1
� .2�C 1/�1=2

for all N 2 N and all � � 0. This provides an adequate norm estimate of the final
term in equation (8.3) and the lemma is therefore proved.

The main result of this subsection now follows by Lemma 8.9, Lemma 8.12, and
the Lebesgue dominated convergence theorem:

Proposition 8.13. The continuous function

f W .0;1/! L.Y /; f .�/ WD .�r/�1=2
1X
nD0

�6KnRnC1
�

�n

is absolutely integrable (with respect to Lebesgue measure on .0;1/ and the operator
norm). Furthermore, the integral is given explicitly by

1

�

Z 1
0

f .�/ d� D �5.1CD2/�1=2:

8.3. Comparison with the bounded transform. We are now ready to prove the
main theorem of this section, which, at least in practise, says that the bounded
transformFD D D.1CD2/�1=2 has the same compactness properties as themodular
transform

GD;�W�� 7!
1

�

Z 1
0

.�r/�1=2�S�D.��/ d�; � 2 D.D/

after multiplication with a sufficiently large power of the modular operator �. We
remark that it might be possible to improve the exponent p 2 Œ0; 1=4/ appearing
in the main theorem here below. Allowing exponents p 2 Œ1=4; 1=2/ could be
important in a more detailed analysis of summability properties in relation to the
unbounded Kasparov product. In the present text we limit ourselves to the question
of compactness of resolvents and defer a deeper analysis of decay properties of
eigenvalues to future work.
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Proposition 8.14. Suppose that the conditions in Assumption 8.1 are satisfied and
let p 2 Œ0; 1=2/ be given. Then the difference of unbounded operators

�5FD � .1CD
2/p

�
1

�

Z 1
0

.�r/�1=2�3.1 �X�/
�1�3R� d� �D.1CD

2/pWD
�
jDj2pC1

�
! Y

has a bounded extension to Y .

Proof. It follows from Proposition 8.7 that

�3.1 �X�/
�1�3R� D �

3S��
3
C�3.1 �X�/

�1I.R��
3/R�

D

1X
nD0

�6KnRnC1
�

�n �

1X
nD0

�3KnL�R
nC1
�

�n

and hence, by an application of Proposition 8.13, we may focus our attention on
proving that the unbounded operator

1

�

Z 1
0

.�r/�1=2
1X
nD0

�3KnL�R
nC1
�

�n d� �D.1CD2/pWD
�
jDj2pC1

�
! Y (8.5)

has a bounded extension to Y .
To this end, we apply the Cauchy–Schwarz inequality to obtain that

 1X
nD0

�3KnL�D.1CD
2/pRnC1

�
�n

1

� sup
N2N

 NX
nD0

�3KnL�L
�
�K

n�3
1=2
1
�

 1X
nD0

D2.1CD2/2pR2nC2
�

�2n
1=2
1

for all � � 0. Next, by an application of Proposition A.8 and Lemma 8.11 we may
find a constant C1 > 0 such that

sup
N2N

 NX
nD0

�3KnL�L
�
�K

n�3
1=2
1
� C1 � .1C �/

�1=2:

Furthermore, by Lemma 8.10 we have that 1X
nD0

D2.1CD2/2pR2nC2
�

�2n
1=2
1
�
.1CD2/2p.2�C 1CD2/�1

1=2
1

� .2�C 1/p�1=2:
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These estimates imply that the integral

1

�

Z 1
0

.�r/�1=2
1X
nD0

�3KnL� �D.1CD
2/pRnC1

�
�n d�

converges absolutely in operator norm and the proposition is therefore proved.

Before proving our main theorem we present a few extra preliminary results on
the modular transform:
Lemma 8.15. The modular transform GD;�W�.D.D//! Y has a densely defined
adjointG�D;�WD.G�D;�/! Y . In fact, it holds that�.D.D// � D.G�D;�/ and that

G�D;�.��/ D
1

�

Z 1
0

.�r/�1=2DS��.��/ d�; � 2 D.D/;

where the integral converges absolutely in the norm on Y .

Proof. It suffices to show that the integral

1

�

Z 1
0

.�r/�1=2DS��
2� d�

converges absolutely for all � 2 D.D/. To this end, we compute that

DS��
2� D �DS��� C ŒDS�; ���� (8.6)
D �S�D�� C�ŒD; S���� C ŒDS�; ����

D �S�D�� � � ��S�d.�
2=r/S��� C d.�/S��� CDŒS�; ����:

It follows from the computations at the beginning of Section 8 (Eqs. (8.1) and (8.2))
that there exists a constant C1 > 0 such that

k�S�D��k � C1 � .1C �/
�3=4 for all � � 0:

For the remaining three terms on the right hand side of equation (8.6) wemay estimate
the operator norm directly: for the first two of these three remaining terms we obtain
from Lemma A.3 that

k� ��S�d.�
2=r/S��k1 � C2 � .1C �/

�3=4

and kd.�/S��k1 � C3 � .1C �/
�3=4

for some constants C2; C3 > 0, which are independent of � � 0. For the last of our
three remaining terms we use Lemma A.1 and Lemma A.2 to see that

kDŒ�; S���k1 � k�
�
���d.�/S��k1 C kDS�d.�/DS��k1

� C4 � .1C �/
�3=4

for some constant C4 > 0, which is again independent of � � 0. These estimates
imply the desired convergence result and the lemma is therefore proved.
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Lemma 8.16. We have the inclusion

D.D/ � D
�
�GD;�

�
and it holds that

�GD;�.�/ D
1

�

Z 1
0

.�r/�1=2�2S�D� d�; � 2 D.D/; (8.7)

where the integral converges absolutely in the norm on Y .

Proof. Remark that Lemma 8.15 implies that �GD;�W�.D.D// ! Y is indeed
closable. In fact,�GD;� has a densely defined adjoint sinceD.D/�D..�GD;�/

�/.
Remark also that the integral on the right hand side of equation (8.7) converges
absolutely since it follows by the computations in the proof of Lemma A.4 that

k�2S�D�k � k�
2S�k1 � kD�k � C � .1C �/

�3=4
� kD�k

for some constant C > 0, which is independent of � � 0.
Let now � 2 D.D/ be given. It holds that

�.1=nC�/�1� ! � and �.1=nC�/�1� 2 D.�GD;�/

for all n 2 N. It therefore suffices to show that

�GD;��.1=nC�/
�1� !

1

�

Z 1
0

.�r/�1=2�2S�D� d�:

For each n 2 N, we have that

�GD;��.1=nC�/
�1� D

1

�

Z 1
0

.�r/�1=2�2S�D�.1=nC�/
�1� d�:

Now, since 1
�

R1
0
.�r/�1=2�2S� d� is a bounded adjointable operator we only need

to prove that
D�.1=nC�/�1� ! D�:

But this follows from the computations presented in the proof of Proposition 5.4 and
Lemma 5.5. Indeed, one has to verify that

d
�
�.1=nC�/�1

�
D 1=n.1=nC�/�1d.�/.1=nC�/�1� ! 0:

Theorem 8.17. Suppose that the conditions in Assumption 8.1 are satisfied and let
p 2 Œ0; 1=4/ be given. Then the difference

�5GD;�.1CD
2/p ��5FD.1CD

2/pWD
�
jDj2pC1

�
! Y

extends to a bounded adjointable operator on Y . In particular, we have that�5GD;�
is a bounded adjointable operator.
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Proof. By Lemma 8.15, Lemma 8.16 and Proposition 8.14 we may focus on showing
that

�5GD;� � .1CD
2/p �

1

�

Z 1
0

.�r/�1=2�3.1 �X�/
�1�3R� d� �D.1CD

2/p

D
1

�

Z 1
0

.�r/�1=2�3
�
�3; .1 �X�/

�1
�
R� d� �D.1CD

2/p

extends fromD
�
jDj2pC1

�
to a bounded operator on Y . We achieve this by proving

that the integral

1

�

Z 1
0

.�r/�1=2�3
�
�3; .1 �X�/

�1
�
D.1CD2/pR� d�

converges absolutely in operator norm.
To this end, we start by computing that�

�3; .1 �X�/
�1
�
D .1 �X�/

�1
�
�3; X�

�
.1 �X�/

�1

D �.1 �X�/
�1
�
�3; R�

�
K.1 �X�/

�1

D �.1 �X�/
�1DR�d.�

3/R�K.1 �X�/
�1

C �.1 �X�/
�1R�d.�

3/DR�K.1 �X�/
�1

D �S
1=2

�
��d.�

3/S�K C �S�d.�
3/DS�K;

where we are using the notation from Lemma A.1. We thus have that

�3
�
�3; .1 �X�/

�1
�
D � ��3S

1=2

�
��d.�

3/S
1=2

�
��K C ��

3S�d.�
3/�����K

C ��3S
1=2

�
��d.�

3/S�d.�
2=r/C ��3S�d.�

3/S�d.�
2=r/:

The estimates in Lemma A.1, Lemma A.3, and Lemma A.4 then imply that there
exists a constant C > 0 such that

k�3Œ�3; .1 �X�/
�1�D�k � C � �.1C �/�3=4 � k�k

for all ��0 and all �2D.D/. Since k.1CD2/pR�k1�.1C �/
�1Cp for all ��0,

we conclude that�3��3; .1 �X�/�1�D�1CD2
�p
R�

1
� C � .1C �/�3=4Cp

for all � � 0. This proves the theorem since p 2 Œ0; 1=4/ by assumption.

9. The Kasparov module of an unbounded modular cycle

Throughout this section we let A be a �-algebra which satisfies the conditions of
Assumption 2.2. We then consider a fixed unbounded modular cycle .X;D;�/
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fromA to an arbitrary C �-algebra B . We assume that .X;D;�/ is either of even or
odd parity and in the even case we denote the Z=2Z-grading operator by  WX ! X .
We apply the notation

FD WD D
�
1CD2

��1=2
for the bounded transform of the unbounded selfadjoint and regular operator

DWD.D/! X:

The aim of this section is to show that the pair .X; FD/ is a bounded Kasparov
module fromA toB and hence that our unbounded modular cycle gives rise to a class
in theKK-group,KKp.A;B/ (wherep D 0; 1 according to the parity of .X;D;�/).

We will thus prove (see Theorem 9.5) that the following holds for all a 2 A:
(1) �.a/.F 2D � 1/ 2K.X/;
(2) �.a/.FD � F �D/ 2K.X/;
(3) ŒFD; �.a/� 2K.X/;
(4) FD D �FD and �.a/ D �.a/ in the even case.
For more information onKK-theory we refer the reader to the book by Blackadar [2].

The main difficulty is to prove the commutator condition .3/ and it is to this end
that we have introduced and studied the modular transform in Section 8. To explain
why this was necessary we first recall the notation

S� WD
�
��2=r C 1CD2

��1
WX ! X;

where r 2
�
k�k21;1

�
is a fixed constant and � � 0 is a variable. The next lemma

presents the main algebraic reason for working with the modular resolvent S� instead
of the ordinary resolvent R� D .�C 1CD2/�1. Indeed, if the computation below
is carried out with R� instead of S�, then the commutator Œ�2; T � has to be replaced
by the commutator

�
.1C �/�2; T

�
and there is then no gain in the decay properties

when the variable � tends to infinity. This observation is responsible for the failure
of the usual proof ([1]) of condition .3/.
We remark that it follows fromDefinition 3.1 that the conditions inAssumption 8.1

are satisfied for the pair .D;�/.
Lemma 9.1. Let T 2L.X/ be differentiable with respect to .D;�/ (as in Defini-
tion 3.3). We have the identity

S��
2T � T�2S� D S�Œ�

2; T �S� � .DS�/
�d�.T�/S� � S�d�.�T /DS�

for all � � 0.
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Proof. Let first � 2 D.D2/ and notice that

S��
2TD2.�/ � .D2S�/

�T�2.�/

D .DS�/
��T�D.�/ � S�d�.�T /D.�/ � .D

2S�/
�T�2.�/

D .DS�/
�DT�2.�/ � .DS�/

�d�.T�/.�/

� S�d�.�T /D.�/ � .D
2S�/

�T�2.�/

D �.DS�/
�d�.T�/.�/ � S�d�.�T /D.�/:

The result of the lemma then follows since

S��
2T � T�2S� D S��

2T .D2
C 1C ��2=r/S�

� S�.1C ��
2=r/T�2S� � .D

2S�/
�T�2S�

D S�Œ�
2; T �S� C S��

2TD2S� � .D
2S�/

�T�2S�:

In the next two lemmas we show that we may replace the bounded transform FD
(up to a compact perturbation) by the modular transform GD;� (in a slight disguise).
Lemma 9.2. Let Z be an extra Hilbert C �-module over B and let T WZ ! X be a
bounded adjointable operator. Suppose that .1CD2/�1T 2K.Z;X/ and that there
exists a dense submodule Z � Z such that T .Z/ � D.D/. Then the unbounded
operator

�5FD � T �
1

�
D �

Z 1
0

.�r/�1=2 ��S��
5 d� � T WZ! X

is the restriction of an element in K.Z;X/.

Proof. It follows by Theorem 8.17 that the difference

�5FDT �
1

�

Z 1
0

.�r/�1=2 ��6S� d� �DT WZ! X

is the restriction of an element inK.Z;X/.
Furthermore, we notice that the difference

�6S�DT �D�S��
5T WZ! X

extends to a compact operator from Z to X for all � � 0 (in fact both of the two
terms have this property).
To prove the lemma, it therefore suffices to find a constant C > 0 such that�6S�D� �D�S��5� � C � .1C �/�3=4 � k�k

for all � � 0 and all � 2 D.D/. Using Lemma A.2 we see that

�6S�D� �D�S��
5� D �Œ�5; S��D� � ŒD;�S��

5��

D �S
1=2

�
��d.�

5/S
1=2

�
��� C�S�d.�

5/������

� d.�/S��
5� C � ��S�d.�

2=r/S��
5� ��S�d.�

5/�
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for all � � 0 and all � 2 D.D/. The desired estimate then follows from Lemma A.3
and Assumption 8.1 .2/.

Lemma 9.3. Let Z be an extra Hilbert C �-module over B and let T WZ ! X be a
bounded adjointable operator. Suppose that .1CD2/�1T 2K.Z;X/ and that there
exists a dense submodule Z � Z such that T .Z/ � D.D/. Then the unbounded
operator

FD�
5T �

1

�
D �

Z 1
0

.�r/�1=2�4S��
2 d� � T WZ! X

is the restriction of an element in K.Z;X/.

Proof. We start by noting that

ŒFD; �
5� T 2K.Z;X/:

Indeed, this follows by using the integral formula

FD D D �
1

�

Z 1
0

��1=2.�C 1CD2/�1 d�

and the fact that ŒD;��WD.D/! X has a bounded adjointable extension to X .
Now, by Lemma 9.2 we obtain that the difference of unbounded operators

�5FDT �
1

�
D �

Z 1
0

.�r/�1=2�S��
5 d� � T WZ! X

is the restriction of an element inK.Z;X/.
We then remark that the difference

D�S��
5T �D�4S��

2T WZ ! X

is a compact operator (both of these terms are in fact compact).
To prove the lemma, it therefore suffices to find a constant C > 0 such thatD�ŒS�; �3��21 � C � .1C �/�1

for all � � 0. However, using Lemma A.2 we see that

D�ŒS�; �
3��2 D d.�/ŒS�; �

3��2 C�DŒS�; �
3��2

D d.�/ŒS�; �
3��2 ��

�
�����d.�

3/S� CDS�d.�
3/DS�

�
�2:

The relevant estimate then follows by an application of Lemmas A.1 and A.3–A.5 in
combination with Assumption 8.1 .2/.
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Proposition 9.4. Let T0; T1 2 L.X/ and suppose that the following holds:
(1) T0 is differentiable with respect to .D;�/ and .1CD2/�1T0 2K.X/.
(2) .1CD2/�1T1 2K.X/ and .T1�/.D.D// � D.D/.
Then the bounded adjointable operator ŒFD; �5T0�5�T1WX ! X is compact.

Proof. By Lemma 9.2 and Lemma 9.3 it suffices to show that the difference

1

�
D �

Z 1
0

.�r/�1=2�4S��
2 d� � T0�

5T1

�
1

�
�5T0D �

Z 1
0

.�r/�1=2�S��
5 d� � T1W�.D.D//! X

extends to a compact operator on X . To this end, we notice that

K� WD D�
4S��

2T0�
5T1 ��

5T0D�S��
5T1WX ! X

is compact for all � � 0. In order to prove the proposition, it therefore suffices to
find a constant C > 0 such that

kK�k1 � C � .1C �/
�1 (9.1)

for all � � 0. To show that this is indeed possible, we notice that

D�4S��
2T0�

5
��5T0D�S��

5
D D�4.S��

2T0 � T0�
2S�/�

5

C .D�4T0� ��
5T0D/�S��

5:

The relevant estimate for the second of these two terms then follows from LemmaA.3
and the fact that T0 is differentiable. To treat the first of these two terms we apply
Lemma 9.1 to see that

D�4.S��
2T0 � T0�

2S�/�
5
D d.�4/.S��

2T0 � T0�
2S�/�

5

C�4���
�
S
1=2

�
Œ�2; T0�S� ���d�.T0�/S� � S

1=2

�
d�.�T0/�

�
�S

1=2

�

�
�5:

The relevant estimate then follows from Lemmas A.1 and A.3–A.5.

Theorem 9.5. Let .X;D;�/ be an unbounded modular cycle from A to the C �-alg-
ebra B (with grading operator  WX ! X in the even case). Then the bounded
transform

�
X;D.1CD2/�1=2

�
is a bounded Kasparov module from theC �-algebraA

to the C �-algebra B of the same parity as .X;D;�/ and with grading operator
 WX ! X in the even case.

Proof. The only non-trivial issue is the compactness of the commutator

ŒFD; �.a/�WX ! X
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for all a 2 A. However, it already follows by Proposition 9.4 that

.�5 C 1=n/�1ŒFD; �
5�.a/�5�.�5 C 1=n/�1�.b/WX ! X

is compact for all a; b 2 A and all n 2 N. Moreover, it may be verified that�
FD; .�

5
C 1=n/�1

�
�5�.a/�5.�5 C 1=n/�1�.b/

and .�5 C 1=n/�1�5�.a/�5
�
FD; .�

5
C 1=n/�1

�
�.b/

are compact operators on X . Using the density ofA in A and the fact that

�5.1=nC�5/�1�.a/! �.a/

in operator norm for all a 2 Awe obtain that ŒFD; �.a/��.b/2K.X/ for all a; b2A.
It then follows that ŒFD; �.a/�2K.X/ for all a2A by a standard trick inKK-theory.

Remark 9.6. There is a much easier proof of Theorem 9.5 in the case where the
unbounded modular cycle is Lipschitz regular thus when the twisted commutator

jDj�.a/� ���.a/jDjWD.D/! X

has a bounded extension for all a 2 A. Indeed, it is then possible to follow [8,
Proposition 3.2] more or less to the letter. It is however unclear whether the cond-
ition of Lipschitz regularity is compatible with the unbounded Kasparov product
construction given in Section 7. In fact, to our knowledge, this problem is not
even well-understood in the case of the passage from D to gDg (see Remark 3.2
and [8, Section 2.2]). In this text, we have therefore chosen to avoid the extra Lipschitz
regularity condition altogether.

10. Relation to the bounded Kasparov product

Throughout this sectionwe letA andB be two�-algebraswhich satisfy the conditions
in Assumption 2.2.
We consider an unbounded modular cycle .Y;D; �/ from B to an auxiliary C �-

algebra C . The parity of .Y;D; �/ is denoted by p 2 f0; 1g. Furthermore, we let X
be a differentiable Hilbert C �-module from A to B with differentiable generating
sequence f�ng1nD1. We finally suppose that the �-homomorphism �AWA ! L.X/

factorizes through the compact operatorsK.X/ � L.X/.
As a consequence of Theorem 7.3 we obtain that the triple�

X y̋ BY; .1˝D/�; �
�
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is an unbounded modular cycle from A to C of the same parity as .Y;D; �/. Thus,
by an application of Theorem 9.5 we have a bounded Kasparov module�

X y̋ BY; .1˝D/� �
�
1C .1˝D/2�

��1=2�
from A to C and hence a class Œ.1˝D/�� in the KK-group KKp.A; C /.
On the other hand, since �A.a/ 2K.X/ for all a 2 A, our differentiable Hilbert

C �-module X defines an even bounded Kasparov module
�
X; 0

�
from A to B , and

hence a class ŒX� in the even KK-group KK0.A;B/. The grading operator is here
just the identity operator on X . On top of this, we know from Theorem 9.5 that our
original unbounded modular cycle .Y;D; �/ yields a bounded Kasparov module�

Y;D.1CD2/�1=2
�

from B to C and therefore we also have a class ŒD� in the KK-group KKp.B; C /.
Under the condition that A is separable and B is � -unital, we prove in this final

section that the identity �
.1˝D/�

�
D ŒX� y̋ B ŒD� (10.1)

holds inside the KK-group KKp.A; C /, where

y̋ B WKK0.A;B/ �KKp.B; C /! KKp.A; C /

denotes the interior Kasparov product in KK-theory.

To ease the notation, we define

F� WD .1˝D/� �
�
1C .1˝D/2�

��1=2
2 L.X y̋ BY /

and F WD D.1CD2/�1=2 2 L.Y /:

For the rest of this section, we assume that the C �-algebra A is separable and that
the C �-algebra B has a countable approximate identity (thus that B is � -unital).
Remark 10.1. Even though the interior Kasparov product in KK-theory is only
constructed under the assumption that A is separable and B is � -unital we do not
rely on these assumptions for the construction of the unbounded Kasparov product.
The bounded Kasparov module .X y̋ BY; F�/ therefore exists regardless of these
assumptions on the C �-algebras A and B .
Due to a result of Connes and Skandalis we may focus on proving that F� is an

F -connection, [9, Theorem A.3]. Or in other words, if we can show that

F T �� � T
�
� F� 2K.X y̋ BY; Y / (10.2)

for all � 2 X we may conclude that the identity in equation (10.1) holds. We recall
here that

T �� WX y̋ BY ! Y; T �� W x ˝B y 7! �B.h�; xi/.y/

for all x 2 X , y 2 Y .
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Remark 10.2. In the work of Kucerovsky, [29, Theorem 13], conditions are given
for recognizing unbounded representatives for the interior Kasparov product. These
conditions can not be applied in our setting since our unbounded cycles are not
unbounded Kasparov modules in the sense of [1]. Indeed, the main difference is that
we are considering a twisted commutator condition (see Definition 3.1) instead of
the straight commutator condition applied in [1].

We start by replacing the connection condition in equation (10.2) by something
more manageable. Let us recall that ˆWX y̋ BY ! `2.N; Y / is defined by

ˆW x ˝B y 7!

1X
nD1

�B
�
h�n; xi

�
.y/ın

for all x 2 X , y 2 Y . Furthermore, we have the modular operator

� WD ˆ�.1˝ �/ˆWX y̋ BY ! X y̋ BY:

Lemma 10.3.
�
i C .1˝D/�

��1
� 2K.X y̋ BY /:

Proof. This follows by Proposition 6.2 since

ˆˆ� 2 Im
�
K.�B/WK.B/! L.`2.N; Y //

�
;

see also Proposition 3.5.

Lemma 10.4. Suppose that there exists a k 2 N such that

.1˝ F�k/ˆ�k � .1˝ �k/ˆ�kF� 2K
�
X y̋ BY; `

2.N; Y /
�

then we have that
F T �� � T

�
� F� 2K.X y̋ BY; Y /

for all � 2 X .

Proof. We first show that

.1˝ F�k/ˆ � .1˝ �k/ˆF� 2K
�
X y̋ BY; `

2.N; Y /
�
: (10.3)

To this end, we notice that

.1˝ F�k/ˆ�k.�k C 1=n/�1 � .1˝ �k/ˆ�k.�k C 1=n/�1F�

D .1˝ F�k/ˆ�k.�k C 1=n/�1 � .1˝ �k/ˆ�kF�.�
k
C 1=n/�1

� .1˝ �k/ˆ�k.�k C 1=n/�1ŒF�; �
k�.�k C 1=n/�1

2K.X y̋ BY; `
2.N; Y //
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for all n 2 N. Indeed, this is a consequence of the assumptions of the present lemma
and the fact that

�ŒF�; ��WX y̋ BY ! X y̋ BY

is compact (this last assertion follows by Lemma 10.3). The inclusion in equa-
tion (10.3) now holds since the sequence˚

.1˝ �/1=2ˆ�k.�k C 1=n/�1
	1
nD1

converges to
.1˝ �/1=2ˆWX y̋ BY ! `2.N; Y /

in operator norm.
Our next step is to show that

ˆF� � .1˝ F /ˆ 2K.X y̋ BY; `
2.N; Y //: (10.4)

In this respect, we remark that�
1˝ F�k.�k C 1=n/�1

�
ˆ �

�
1˝ �k.�k C 1=n/�1

�
ˆF�

D
�
1˝ .�k C 1=n/�1F�k

�
ˆ �

�
1˝ �k.�k C 1=n/�1

�
ˆF�

�
�
1˝ .�k C 1=n/�1ŒF; �k��k.�k C 1=n/�1

�
ˆ

2K.X y̋ BY; `
2.N; Y //

for all n 2 N. Indeed, this is a consequence of the inclusion in equation (10.3) and
the fact that �

1˝ ŒF; �k��k.�k C 1=n/�1
�
ˆ 2K

�
X y̋ BY; `

2.N; Y /
�

(recall that ˆˆ� lies in the image of the �-homomorphism K.�B/WK.B/ !

L.`2.N; Y //). The inclusion in equation (10.4) now follows since the sequence˚�
1˝ �k.�k C 1=n/�1

�
ˆ
	1
nD1

converges to ˆWX y̋ BY ! `2.N; Y / in operator norm.
By the definition of ˆWX y̋ BY ! `2.N; Y / we see from equation (10.4) that

T ��n
F� � F T

�
�n
2K.X y̋ BY; Y / (10.5)

for all n 2 N. Let now b 2 B and n 2 N be given. We then have that

T ��n�b
F� � F T

�
�n�b
D �B.b

�/T ��n
F� � F�B.b

�/T ��n

D �B.b
�/
�
T ��n

F� � F T
�
�n

�
� ŒF; �B.b

�/�T ��n
:

Thus, since .Y; F / is a bounded Kasparov module we deduce from equation (10.5)
that

T ��n�b
F� � F T

�
�n�b
2K.X y̋ BY; Y /: (10.6)
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Since the sequence f�ng1nD1 generatesX as a HilbertC �-module overB , we conclude
from equation (10.6) that

T �� F� � F T
�
� 2K.X y̋ BY; Y /

for all � 2 X . This proves the lemma.

Let us apply the notation

S� WD
�
��2=rC1C.1˝D/2�

��1 and T� WD
�
�.1˝�/2=rC1C.1˝D/2

��1
;

where r 2
�
k�k21 C k�k

2
1;1

�
is a fixed constant and � � 0 is a variable.

The next lemma relates these two modular resolvents to one another:
Lemma 10.5. The difference

.1˝�5/ˆ�2S��
4.1˝D/��.1˝D�

4/T�.1˝�
2/ˆ�5WD

�
.1˝D/ˆ

�
! `2.N; Y /

(10.7)
extends to a compact operatorK�WX y̋ BY ! `2.N; Y / and there exists a constant
C > 0 such that

kK�k1 � C � .1C �/
�3=4 (10.8)

for all � � 0.

Proof. It is not hard to see that the difference in equation (10.7) has a compact
extension K�WX y̋ BY ! `2.N; Y / for all � � 0 (in fact this holds for each of the
two terms). We may thus focus our attention on providing the operator norm estimate
in equation (10.8).
Our first step in this direction is to notice that it is enough to consider the difference

.1˝�5/ˆ�2S�.1˝D/��
4
�.1˝�5D/T�.1˝�/ˆ�

5
WD

�
.1˝D/ˆ

�
! `2.N; Y /

of unbounded operators. This follows since we may dominate the operator norm
(uniformly in � � 0) of each of the bounded adjointable operators

.1˝ �5/ˆ�2S�d�.�
3/; .1˝D�4/ŒT�; 1˝ ��.1˝ �/ˆ�

5

and
d1˝�.1˝ �

4/T�.1˝ �
2/ˆ�5WX y̋ BY ! `2.N; Y /

by C0 � .1C �/�3=4 for some constant C0 > 0. To see that this is indeed the case, it
suffices to apply Lemmas A.1–A.4.
Our next step is to define the unbounded operator

M� WD .1˝�
3/T�

�
ˆ�2� .1˝�2/ˆCd1˝�

�
.1˝�/G

�
ˆ.1˝D/�

�
S�.1˝D/�

C .1˝�3/..1˝D/T�/
�
�
d1˝�.G/G.1˝�/C .1˝�/Gd1˝�.G/

�
ˆS�.1˝D/�W

D..1˝D/�/! `2.N; Y /;
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where we recall the notation G WD ˆˆ�W `2.N; Y /! `2.N; Y /. It then follows by
Lemma A.1, Lemma A.3 and Lemma A.4 that there exists a constant C1 > 0 such
that

kM�.�/k � C1.1C �/
�3=4
� k�k (10.9)

for all � � 0 and all � 2 D..1˝D/�/ � X y̋ BY . Furthermore, by Proposition 6.4
we have that

.1˝ �3/
�
ˆ�2S� � T�.1˝ �

2/ˆ
�
.1˝D/� DM�

for all � � 0. In order to provide the relevant estimate onK�WX y̋ BY ! `2.N; Y /
it therefore suffices to analyze the difference

.1˝ �5/T�.1˝ �
2/ˆ.1˝D/��

4
� �5.1˝D/T�.1˝ �/ˆ�

5
W

D
�
.1˝D/ˆ

�
! `2.N; Y /

of unbounded operators.
However, we have that

T�.1˝ �
2/ˆ.1˝D/�.�/ � .1˝D/T�.1˝ �/ˆ�.�/

D �d.T�.1˝ �//ˆ�.�/ � T�.1˝ �/d1˝�.G/ˆ.�/

for all � 2 D..1˝D/ˆ/ and the result of the lemma therefore follows by one more
application of the operator norm estimates in Lemma A.3 and Lemma A.4.

Lemma 10.6. The unbounded operatorZ 1
0

.�r/�1=2 � .1˝ �5/ˆ�2S��
4 d� � .1˝D/�

� .1˝D/ �

Z 1
0

.�r/�1=2 � .1˝ �4/T�.1˝ �
2/ d� �ˆ�5W

D..1˝D/ˆ/! `2.N; Y /

is the restriction of an operator in K.X y̋ BY; `
2.N; Y //.

Proof. This follows in a straightforward way by an application of Lemma 10.5.

We are now ready to prove our final main theorem:
Theorem 10.7. Suppose that X is a differentiable Hilbert C �-module from A to B

with left action A ! L.X/ factorizing through the compacts, K.X/. Suppose
moreover that .Y;D; �/ is an unbounded modular cycle from B to C . Then the
bounded adjointable operator F�WX y̋ BY ! X y̋ BY is an F -connection. In
particular, we have the identity�

.1˝D/�
�
D ŒX� y̋ B ŒD�

inside the KK-group KKp.A; C /, when A is separable and B is � -unital.
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Proof. By Lemma 10.4, we only need to show that

.1˝ F�5/ˆ�5 � .1˝ �5/ˆ�5F� 2K
�
X y̋ BY; `

2.N; Y /
�
:

However, by Lemma 9.3 (and a version of this lemma obtained by taking adjoints),
we may just check that the difference

.1˝D/ �

Z 1
0

.�r/�1=2.1˝ �4/T�.1˝ �
2/ d� �ˆ�5

�

Z 1
0

.�r/�1=2.1˝ �5/ˆ�2S��
4 d� � .1˝D/�W

D
�
.1˝D/ˆ

�
! `2.N; Y /

is the restriction of an element inK.X y̋ BY; `
2.N; Y //. But this is a consequence

of Lemma 10.6.

A. Norm estimates of error terms

In this appendix we have collected various operator norm estimates needed in the
treatment of the modular transform (Section 8) and for the comparison result between
the unbounded Kasparov product and the bounded Kasparov product (Section 10).
The general setting will be exactly as in Section 8 and the conditions in

Assumption 8.1 will in particular be in effect. We recall the notation for a few
bounded adjointable operators acting on the Hilbert C �-module Y :

S� WD .��
2=r C 1CD2/�1; R� WD .�C 1CD

2/�1;

and K WD 1 ��2=r; X� WD � �R�K;

where r 2
�
k�k21;1

�
is a fixed constant and � � 0 is variable.

A.1. Preliminary operator norm estimates. We start with a string of elementary
operator norm estimates which will be needed throughout this appendix and in many
places in the main text as well.

Lemma A.1. The unbounded operator S
1=2

�
DWD.D/ ! Y has a bounded

adjointable extension ��WY ! Y and we have the operator norm estimate

k��k1 � 1 for all � � 0:

Proof. Let � � 0 be given. Consider the unbounded operator

E�W Im.S
1=2

�
/! Y
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defined by
E�WS

1=2

�
� 7! DS��:

It is then clear that S1=2
�
D � E�

�
. Furthermore, for each � 2 Y we have that

hE�S
1=2

�
�; E�S

1=2

�
�i D hS�D

2S��; �i

�
˝
S�.��

2=r C 1CD2/S��; �
˛
D hS

1=2

�
�; S

1=2

�
�i:

It therefore follows thatE�W Im.S
1=2

�
/!Y has a bounded extension toY , xE�WY!Y ,

and furthermore that k xE�k1 � 1. This shows that E�� is everywhere defined and
that

E�� D .
xE�/
�:

We may then conclude that S1=2
�
D D E�

�
and that kS1=2

�
Dk1 � 1. This proves the

lemma.

Lemma A.2. Let � � 0 be given. We have the identities

D.�S� � S��/ D �
�
���d.�/S� CDS�d.�/DS�

and �S� � S�� D S
1=2

�
��d.�/S� C S�d.�/DS�:

Proof. We only prove the first of these two identities. The second identity can be
proved by a similar but easier argument.
Using thatD.D2/ � Y is a core forDWD.D/! Y it follows that

�����D D D �DS�.��
2=r C 1/ (A.1)

on the common domainD.D/ � Y . We then obtain our identity from the computa-
tion:

�����d.�/S� CDS�d.�/DS�

D D�S� �DS�.��
2=r C 1/�S� �DS��D

2S�

D D�S� �DS��:

Lemma A.3. Let � � 0 be given. We have the operator norm estimate

k�S
1=2

�
k1 �

p
r

p
1C �

:

Proof. This follows by noting that

0 � S
1=2

�
.�C 1/.�2=r/S

1=2

�
� 1:
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Lemma A.4. There exists a constant C > 0 such that

k�2S��
1=2
k1 � C � .1C �/

�1

for all � � 0.

Proof. Using Lemma A.2 we obtain that

�2S��
1=2
D �S��

3=2
C� � S

1=2

�
��d.�/S� ��

1=2
C� � S�d.�/DS� ��

1=2:

The desired estimate now follows by Lemma A.1, Lemma A.3, and the standing
Assumption 8.1. Recall here that the sequence f�1=2.1=nC�/�1=2g1nD1 converges
strictly to the identity.

Lemma A.5. There exists a constant C > 0 such that

k�DS��
1=2
k1 � C � .1C �/

�1=2

for all � � 0.

Proof. By an application of Lemma A.2, we may compute as follows:

�DS��
1=2
D D�S��

1=2
� d.�/S��

1=2

D DS��
3=2
C�����d.�/S� ��

1=2
CDS�d.�/DS� ��

1=2
� d.�/S��

1=2:

The relevant estimate is now a consequence of Lemma A.1, Lemma A.3, and
Assumption 8.1.

Lemma A.6. Let m 2 Œ2;1/ be given. There exists a constant C > 0 such that

kDS��
m.i CD/�1k1 � C � .1C �/

�1

for all � � 0.

Proof. Using equation (A.1), we compute as follows:

DS��.�
m=r/.i CD/�1 D D�m�2.i CD/�1 �DS��

m�2.i CD/�1

������D�
m�2.i CD/�1:

Since D�m�2.i CD/�1WY ! Y is a bounded adjointable operator, we obtain the
relevant estimate by Lemma A.1.

Lemma A.7. Let m � 3 be given. There exists a constant C > 0 such that

kS
3=2

�
�m.i CD/�1k1 � C � .1C �/

�1�1=8

and kS
1=2

�
.1 �X�� /

�1�m.i CD/�1k1 � C � .1C �/
�1=8

for all � � 0.
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Proof. To prove the first of the two estimates we apply Lemma A.2 to obtain that

S
3=2

�
�m.iCD/�1 D S

1=2

�
�S� ��

m�1.iCD/�1�S���d.�/S� ��
m�1.iCD/�1

� S
3=2

�
d.�/DS� ��

m�1.i CD/�1:

After consulting Lemma A.3, Lemma A.4, and Lemma A.6, we see that it suffices to
find a constant C1 > 0 such that

kS
1=2

�
���

1=2
k1 � C1 � .1C �/

�1=8:

But this follows by noting that

kS
1=2

�
���

1=2
k
2
1 D kS�D�DS�k1:

In fact, it follows from the proof of Lemma A.5 that k�DS�k1 � C2 � .1C �/�1=4
for some constant C2 > 0, which is independent of � � 0.
In order to prove the second of the two estimates, we remark that Lemma 8.2

implies that

.1 �X�� /
�1
D

1X
nD0

.X�� /
n
D 1C �KR�

1X
nD0

.X�� /
n
D 1C �KS�:

The result then follows from the first estimate, which we already proved above.

A.2. Norm estimates of limit error terms. Let us recall (from Subsection 8.1) that

L� D I.S�K��
3/R�WY ! Y

for all � � 0 (where I.�/ D ŒD2; ��).
Proposition A.8. There exists a constant C > 0 such that

k�2 � L�k1 � C � .1C �/
�1=2 (A.2)

for all � � 0.

Proof. For each � � 0 we rewrite L�WY ! Y in the following way:

L� D Dd.S�K��
3/R� C d.S�K��

3/DR�

D �DS�d.�
2=r/�S� �K��

3R� CDS� � d.�
3
��5=r/�R�

� S�d.�
2=r/�S� �K��

3DR� C S�d.�
3
��5=r/� �DR�: (A.3)

It is then not hard to see that the desired estimate follows from Lemma A.4 and
Lemma A.5.
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A.3. Operator norm estimates of truncated error terms. Let us recall (again
from Subsection 8.1) that

L�.m/ D I
�
.1 �Xm� /S�K��

3
�
R�WY ! Y

for all � � 0 and all m 2 N.
Proposition A.9. There exists a constant C > 0 such that�2L�.m/.i CD/�11 � C � .1C �/�1=8
for all � � 0 and all m 2 N.

Proof. We first notice that

L�.m/ D .1 �X
m
� /L� � I.X

m
� /S�K��

3R� (A.4)

for all � � 0 and all m 2 N. We now estimate these two terms separately.
We begin with the easiest one: .1 � Xm

�
/L�WY ! Y . Using the identity in Eq-

uation (A.3) we obtain that

L� � .i CD/
�1
D �DS�d.�

2=r/�2S�K�
3R�.i CD/

�1

CDS�d.�
3
��5=r/�R�.i CD/

�1
� S�d.�

2=r/�2S�K�
3DR�.i CD/

�1

C S�d.�
3
��5=r/�DR�.i CD/

�1:

It then follows by Lemma A.1, Lemma A.3, and Lemma A.4 that there exists a
constant C0 > 0 such that

kL� � .i CD/
�1
k1 � C0 � .1C �/

�1=4

for all � � 0. Since k1 � Xm
�
k1 � 2 for all � � 0 and all m 2 N we obtain the

relevant estimate for the first term in equation (A.4).
To take care of the second term in equation (A.4) we let l � 3 be given. It then

suffices to estimate the operator norm of the bounded adjointable operator

�2I.Xm� /S��
l.i CD/�1WY ! Y

uniformly in m 2 N and � � 0. In order to achieve this goal we notice that

I.Xm� /S� D

m�1X
jD0

X
j

�

�
Dd.X�/C d.X�/D

�
X
m�1�j

�
S�

D �� �

m�1X
jD0

X
j

�

�
DR�d.�

2=r/CR�d.�
2=r/D

�
X
m�1�j

�
S�:
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We now define

A�.m/ WD

m�1X
jD0

�2X
j

�
�DR�d.�

2/ �X
m�1�j

�
S��

l.i CD/�1

and B�.m/ WD

m�1X
jD0

�2X
j

�
�R�d.�

2/D �X
m�1�j

�
S��

l.i CD/�1

and it follows that

�2I.Xm� /S��
l.i CD/�1 D �.�=r/ � A�.m/ � .�=r/ � B�.m/WY ! Y

for all � � 0 and all m 2 N.
Our next step is to estimate the operator norm of each of the termsA�.m/WY ! Y

and B�.m/WY ! Y uniformly in � � 0 and m 2 N. We start with A�.m/. Using
the Cauchy–Schwarz inequality together with Lemma 8.2, we obtain that

kA�.m/k
2
1 �

�2 m�1X
jD0

X
j

�
DR�DR�.X

�
� /
j�2


1
�

.�i CD/�1�lS�
�

m�1X
jD0

.X�� /
jd.�2/d.�2/X

j

�
� S��

l.i CD/�1

1

� k�2S��
2
k1 � kd.�

2/k21 �
.�i CD/�1�l.1 �X�/�1

�

m�1X
jD0

X
j

�
R2�.X

�
� /
j
� .1 �X�� /

�1�l.i CD/�1

1

� k�2S��
2
k1 � kd.�

2/k21 � .1C �/
�1

�
.�i CD/�1�l.1 �X�/�1S�.1 �X�� /�1�l.i CD/�11:

It then follows by Lemma A.3 and Lemma A.7 that there exists a constant C1 > 0

such that
kA�.m/k1 � C1 � .1C �/

�1�1=8

for all m 2 N and all � � 0.
We continue withB�.m/. Another application of the Cauchy–Schwarz inequality

and Lemma 8.2 yields that

kB�.m/k
2
1 �

�2 m�1X
jD0

X
j

�
R�d.�

2/d.�2/R�.X
�
� /
j�2


1
�

.�i CD/�1�lS�
�

m�1X
jD0

.X�� /
jD2X

j

�
� S��

l.i CD/�1

1
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� .1C �/�1 � kd.�2/k21 � k�
2S��

2
k1 �

.�i CD/�1�l.1 �X�/�1
�

m�1X
jD0

X
j

�
R�D

2R�.X
�
� /
j
� .1 �X�� /

�1�l.i CD/�1

1

� .1C �/�1 � kd.�2/k21 � k�
2S��

2
k1

�
.�i CD/�1�l.1 �X�/�1S�.1 �X�� /�1�l.i CD/�11:

As a consequence of LemmaA.3 and LemmaA.7 wemay then find a constantC2 > 0
such that

kB�.m/k1 � C2.1C �/
�1�1=8

for all m 2 N and all � � 0. Combining our estimates we find that�2I.Xm� /S��l.i CD/�11 � .C2=r C C3=r/ � .1C �/�1=8
for all m 2 N and all � � 0. This ends the proof of the proposition.
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