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The unbounded Kasparov product by a differentiable module

Jens Kaad

Abstract. In this paper we investigate the unbounded Kasparov product between a differentiable
module and an unbounded cycle of a very general kind that includes all unbounded Kasparov
modules and hence also all spectral triples. Our assumptions on the differentiable module
are weak and we do in particular not require that it satisfies any kind of smooth projectivity
conditions. The algebras that we work with are furthermore not required to possess a smooth
approximate identity. The lack of an adequate projectivity condition on our differentiable
module entails that the usual class of unbounded Kasparov modules is not flexible enough
to accommodate the unbounded Kasparov product and it becomes necessary to twist the
commutator condition by an automorphism.

We show that the unbounded Kasparov product makes sense in this twisted setting and
that it recovers the usual interior Kasparov product after taking bounded transforms. Since our
unbounded cycles are twisted (or modular) we are not able to apply the work of Kucerovsky
for recognizing unbounded representatives for the bounded Kasparov product, instead we rely
directly on the connection criterion developed by Connes and Skandalis. In fact, since we do not
impose any twisted Lipschitz regularity conditions on our unbounded cycles, even the passage
from an unbounded cycle to a bounded Kasparov module requires a substantial amount of extra
care.
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1. Introduction

In a series of papers from the early eighties, Kasparov proved the fundamental results
on the K K-theory of C *-algebras, [26-28]. One of the main inventions appearing in
these papers is the interior Kasparov product which provides a bilinear and associative
pairing

® p: KK,(A,B) x KK,y (B,C) = KK 1m(A4,C)

between the K K-groups of three separable C*-algebras A, B and C. The interior
Kasparov product of two K K-classes is computable in many cases, but the main
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construction remains inexplicit as it relies on Kasparov’s absorption theorem and
Kasparov’s technical theorem.

One of the advantages of the K K -groups of C *-algebras is the wealth of explicit
examples of elements arising from geometric data. Indeed, in the unbounded picture
of KK-theory the cycles are unbounded Kasparov modules, which are bivariant
versions of Connes’ concept of a spectral triple, and these unbounded Kasparov
modules exhaust the K K-groups as proved by Baaj and Julg, [1].

The problem that we are concerned with in this paper is to construct an unbounded
version of the interior Kasparov product. More precisely, starting with two unbounded
Kasparov modules, the aim is to find an explicit unbounded Kasparov module that
represents the interior Kasparov product. In particular, this construction should
bypass the need for invoking both the absorption theorem and the technical theorem.
The problem of constructing the unbounded Kasparov product is currently receiving
an increasing amount of attention, see [7,21, 33, 34], as is also witnessed by the
quantity of recent applications, see for example [5,6, 11,13, 14,22,23,40].

More specifically, the techniques appearing in the present paper have already
been applied to the study of Morita equivalences of spectral triples, unbounded
Kasparov products in the context of Hilsum’s half-closed chains, and to factorization
problems for Dirac operators along the orbits of proper but not necessarily free
actions, [17,22,24,25]. In fact, in these applications, the techniques developed here
constitute an essential ingredient.

At a deeper level, the unbounded Kasparov product is important because of the
loss of geometric information that is inherent in the passage from an unbounded
Kasparov module to a class in KK-theory. It is thus in our interest to develop a
version of the interior Kasparov product retaining a larger amount of geometric data
(relating to the asymptotic behaviour of eigenvalues of differential operators).

In this paper we are focusing on the case where the class in the KK-group,
KK(A, B), is represented by a C*-correspondence X from A to B and where the
action of A from the left factorizes through the C *-algebra of compact operators on X .
On the other hand, our class in the K K-group K K(B, C) will be represented by an
unbounded selfadjoint and regular operator D: (D) — Y acting on a C*-corre-
spondence from B to C. The unbounded operator D is required to satisfy a couple
of extra conditions that will be detailed out in the main text. The first challenge is
then to construct a new unbounded selfadjoint and regular operator

1®v D:D(1®y D) > XY

that acts on the interior tensor product of the C*-correspondences X and Y. In
the main part of the earlier work on the unbounded Kasparov product this step is
accomplished by assuming the existence of a (tight normalized) frame {{;} for X
(see [12]) such that the associated orthogonal projection
o
Pi= ) (G mbum C(N.Y) - C(N.Y)

n,m=1
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(which acts on the standard module over Y) has a bounded commutator with the
unbounded selfadjoint and regular operator D: D(D) — Y (weaker but related
conditions are applied in [6] and [34]). The unbounded selfadjoint and regular
operator 1 ®y D: D(1 ®y D) — X ® Y can then be expressed as the infinite sum

oo
1®y D:=Y T, DT,

n=1

where T¢,: Y — X ®BY,y — {, Qg y, is the creation operator associated with
the element ¢, € X. It should be noted that the unbounded selfadjoint and regular
operator 1 ®y D can be described in an alternative way by using the notion of a densely
defined covariant derivative V on the C *-correspondence X . Indeed, the frame {y }
gives rise to a Grassmann covariant derivative Vg, and the unbounded selfadjoint and
regular operator 1 ®y D is then given by the (closure of the) sum ¢(Vg) + 1 ® D
where the “c” refers to an appropriate notion of Clifford multiplication.

One of the main contributions of this paper is that we have been able to entirely
remove the above smooth projectivity condition on the C *-correspondence X. This
step is motivated by the detailed investigations of differentiable structures in Hilbert
C*-modules carried out in [18,19]. In particular, we find that the removal of smooth
projectivity is relevant for accommodating examples arising from non-complete
manifolds.

Instead of imposing a smooth projectivity condition we simply assume that there
exists a sequence of generators {& } for X such that the associated operator

o0

Gi= Y (bn.bm)Sum: ?(N.Y) > (2(N.Y)

nm=1

has a bounded commutator with (the diagonal operator induced by) D: D(D) — Y.
We then obtain a new unbounded selfadjoint and regular operator

o0
D = Z Ty, DTy
n=1

on the interior tensor product X ® gY. We refer to this unbounded selfadjoint
and regular operator as the modular lift of D:D(D) — Y. The fact that our
sequence {£x} is no longer assumed to be a frame means that we obtain an extra
(non-trivial) bounded adjointable operator

o0
A=) "T,TS:X®pY > XQ®pY
n=1
on the interior tensor product. An investigation of the commutators between the alg-
ebra elements in A and the modular lift now shows that the usual straight commutator
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has to be replaced by a twisted commutator, where the twist is given by the (modular)
automorphism ¢ obtained from conjugation with the modular operator A. This
modular automorphism corresponds to the analytic extension at —i € C of the
modular group of automorphisms o;: T +— AYTA™ t € R. The notion of an
unbounded modular cycle appearing in this text is thus related to the concept of a
twisted spectral triple as introduced by Connes and Moscovici in [8]. We remark
however that our modular automorphism o is not required to be densely defined on the
algebra A and it need not preserve this algebra either. The concept of an unbounded
modular cycle is a more flexible concept than the more commonly encountered
notion of an unbounded Kasparov module. The extra flexibility comes from the
presence of the modular operator A and in fact unbounded Kasparov modules are
exactly unbounded modular cycles, where the modular operator A equals the identity
operator.

Our first main result can now be stated as follows, where we refer to the main text
for the precise definitions:

Theorem 1.1. Suppose that X is a differentiable C *-correspondence with left action
factorizing through the compacts and that (Y, D, I') is an unbounded modular cycle
(with modular operator I': Y — Y ). Then the triple

(X ® pY, Da, A)

is an unbounded modular cycle, where the new modular operator is defined by

oo
A=) T, TT.
n=1

The second central theme of this paper develops around the relationship between
the assignment
(X, (Y,D,T)) > (X ® gY, Da, A)

and the interior Kasparov product KKy(A, B) x KK«(B,C) - KK«(A,C). As
a first step, we have to understand how to produce a class in K K-theory from an
unbounded modular cycle. We announce the following theorem:

Theorem 1.2. Suppose that (Y, D, ") is an unbounded modular cycle (relating the
C*-algebras B and C). Then the pair (Y, D(1 + D?)~Y/2) is a bounded Kasparov
module from B to C and we thus have a class [D] € KK« (B, C).

Of course this theorem is a direct analogue of the theorem of Baaj and Julg showing
how to construct a class in K K-theory from an unbounded Kasparov module. The
proof of this result in the context of unbounded modular cycle is however far more
involved. One reason for this extra difficulty can be found in the seemingly innocent
change from straight commutators to twisted commutators. Indeed, an examination
of the proof appearing in [1] shows that the crucial step fails for algebraic reasons
when applied to unbounded modular cycles. An alternative approach would be to
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follow Connes and Moscovici and replace (1 + D?)~Y/2 by (14|D|)~, see [8]. This
alternative approach does however rely on an extra assumption of twisted Lipschitz
regularity and we do not impose this kind of extra regularity conditions on our
unbounded modular cycle. Indeed, it is unclear how twisted Lipschitz regularity
behaves with respect to the unbounded Kasparov product given in Theorem 1.1. In
order to prove Theorem 1.2 we therefore found it necessary to develop new techniques
that can be applied to non-Lipschitz unbounded modular cycles.

The main new tool appearing in the proof of Theorem 1.2 is the modular transform
Gpr:T'(D(D)) — Y which is given by the (absolutely convergent) integral

1 o0
Gpr:T& — —/ A7V2T (1 + A2 + D?)'D(TE) dA
T Jo

for all £ € D(D). The modular transform is obtained from the usual bounded
transform by making a non-commutative change of variables corresponding to
w := AI'2. This change of variables is motivated by the observation that the modular
transform (contrary to the bounded transform) has the right commutator properties
with elements in the algebra B. A substantial part of the proof of Theorem 1.2
is then devoted to a comparison between the bounded transform and the modular
transform. Notice that the modular transform does not in general seem to have a
bounded extension to ¥ but that a sufficient condition for this to happen is that the
modular operator I': Y — Y has a bounded inverse.

With the knowledge of the relationship between unbounded modular cycles and
classes in K K-theory in place, we can state our second main result:

Theorem 1.3. Suppose that X is a differentiable C *-correspondence with left action
factorizing through the compacts and suppose that (Y, D, T") is an unbounded mod-
ular cycle. Let [X] € KKo(A, B) and [D] € KK«(B, C) denote the corresponding
classes in KK-theory. Let also [Da] € KK« (A, C) denote the KK-class of the
unbounded modular cycle (X ® gY, Da, A). Then we have the identity

[Da] = [X]® g[D]

in the KK-group KK«(A,C).

The proof of this theorem does not follow the usual scheme in unbounded K K-
theory. Indeed, the standard method that is available for recognizing an unbounded
representative for the interior Kasparov product is to use the machinery invented by
Kucerovsky, [29,30]. However, the results of Kucerovsky do not apply in the context
of unbounded modular cycles because of our systematic use of twisted commutators
instead of straight commutators. Rather than applying Kucerovsky’s ideas we rely
directly on the notion of an F,-connection as introduced by Connes and Skandalis, [9].

Let us end this introduction by giving a more tangible corollary to our main the-
orems. Consider a countable union U := U7, Iy of bounded open intervals 7 CR.
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For each k € N we then choose a smooth function f;: R — R with support equal to
the closure I C R. After a rescaling we may assume that

dfk
1 + |55 = 1/
X
for all k € N (where || - | denotes the supremum norm). Define the first order

differential operator

— dfk

(Da)o —szkd—+ ka :CX(U) — L2(U)

and let D := (D)o denote the closure. We then have the following result:

Corollary 1.4. The triple (C°(U), L*>(U), D) is an odd spectral triple and the
associated class in the odd K-homology group K'(Co(U)) agrees with the interior
Kasparov product of (the KK-classes associated with) the C*-correspondence
Co(U) from Cy(U) to Co(R) and the Dirac operator on the real line.

There is a similar kind of corollary, when the setting is given by an arbitrary
spectral triple (+, H, D) together with a sequence of elements {x; } in the algebra +A
such that

lxell + D xx]ll < 1/ k

for all k € N. When the algebra + is non-commutative, it is however not true that
one obtains a new spectral triple out of this construction. In the general case, it
becomes necessary to twist all the commutators appearing by the modular operator

[e.¢]
A= Z XiXp
k=1

and the framework we are developing here is therefore relevant for treating this kind
of examples.

We announce one more corollary, which should be compared with the
constructions in [8].

Corollary 1.5. Let (A, H, D) be a unital spectral triple (where the unit in A acts as
the identity operator on H ) and let g € A be a positive and invertible element. Then
the triple (H, gDg, g?) is an unbounded modular cycle from A to C. Moreover, the
bounded transform (H , @(1 + @2)_1/2) is a bounded Kasparov module from
A to C and we have the identity

—_ —2.-1/2 _
[H,gDg(1+¢Dg") "] =[H,D(1 + D*)"/?]
in the KK-group KK«(A, C).
In fact, the passage from the unital spectral triple (4, H, D) to the unbounded
modular cycle (H,gDg, g?) is in this text interpreted as an unbounded Kasparov

product with the differentiable C*-correspondence A, where the differentiable
structure is given by the single generator g € A.



The unbounded Kasparov product by a differentiable module 429

Acknowledgements. The union U := U7 | Iy appearing in the introduction is ref-
erred to as a fractal string when it is bounded and when the open intervals are disjoint.
I am grateful to Michel Lapidus for making me aware of this example, [32].

The research for this paper was initiated during the Hausdorff Trimester Program
“Non-commutative Geometry and its Applications” at the Hausdorff Institute for
Mathematics in Bonn and continued while the author was supported by the Radboud
Excellence Initiative at the Radboud University in Nijmegen.

2. Preliminaries on operator spaces

We begin this paper by fixing our conventions for the analytic properties of the
*-algebras appearing throughout this text. It turns out that the conventional setup of
Banach spaces is not adequate for capturing the relevant structure on our x-algebras.
Indeed, it will soon become apparent that one needs to fix the analytic behaviour not
only of the x-algebra itself but of all the finite matrices with entries in the *-algebra.
The notion of operator spaces is therefore providing the correct analytic setting and
we will now briefly survey the main definitions. For more details we refer the reader
to the books by Blecher—Le Merdy and by Pisier, [4,37].

Let H and G be Hilbert spaces and let X € £(H, G) be a subspace (of the
bounded operators from H to G), which is closed in the operator norm. Then the
vector space

M(X) := lim M,(X)
n—>oo

of finite matrices over X has a canonical norm || - || x coming from the identifications
My(X) € Mu(£(H,G)) = L(H",G").

The properties of the pair (M X)), |- X) are crystallized in the next definition.
Notice that the above construction yields a canonical norm

I+ llc: M(C) — [0, 00)
on the finite matrices over C since C = £(C, C). For each n € N, the norm
I llc: Mp(C) € M(C) — [0, 00)

coincides with the unique C *-algebra norm.

Definition 2.1. An operator space is a vector space X over C with anorm || - || x on
the finite matrices M (X) := lim,— oo M, (X) such that

(1) the normed space X € M (X) is a Banach space;

(2) theinequality |[v-&-wlx < |lvlc-|I¢]lx - ||w|c holds for all v, w € M(C) and
forall £ € M(X);
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(3) the equality || & n||lx = max{||&|lx.||nllx} holds for all § € M,(X) and for
n € My, (X), where £ & n € My4,,(X) is the direct sum of the matrices.

A morphism of operator spaces is a completely bounded linear map a: X — Y.
The term completely bounded means that oy: M, (X) — M,(Y) is a bounded
operator for each n € N and that sup,, ||, |lco < 00 (Where | - | oo is the operator
norm). The supremum is denoted by |||/ := sup, ||&x|lco and is referred to as the
completely bounded norm.

By a fundamental theorem of Ruan every operator space X is completely isometric
to a closed subspace of £(H) for some Hilbert space H, see [39, Theorem 3.1].

We remark that any C *-algebra A carries a canonical operator space structure
such that M, (A) becomes a C *-algebra for all n € N.

We will in this text mainly be concerned with dense subspaces of operator spaces.
On such a dense subspace X € X we refer to the norm on X coming from the
surrounding operator space X as an operator space norm on X,.. We will often
say that a linear map «: X — Y with values in an operator space Y is completely
bounded when it extends to a completely bounded map a: X — Y.

The next assumption will remain in effect throughout this paper:

Assumption 2.2. Any x-algebra A encountered in this text will come equipped with
an operator space norm || - ||1: A — [0,00) and a C*-norm || - ||: A — [0, 00). We
denote the operator space completion of A by Ay and the C*-algebra completion
by A. We assume that the inclusion A — A extends to a completely bounded and
injective map Ay — A.

We emphasize that we never assume the existence of an approximate identity
{u;}iey for the C*-algebra A with the additional property that u; € + foralli € I
and sup; 1 [lui 1 < oo.

2.0.1. Stabilization of operator spaces. Let us consider an operator space X. The
following stabilization construction will play a central role in this paper. It does not
make any sense when X is merely a Banach space.

Definition 2.3. By the stabilization of X we understand the operator space K(X)
obtained as the completion of the vector space of finite matrices M (X ') with respect
to the canonical norm

I llx: M(X) — [0, 00).

The matrix norms for K(X) come from the matrix norms for X via the canonical
identification (forgetting the subdivisions):

My (M(X)) = Mpm(X), n,m e N.

The above stabilization procedure is functorial: any completely bounded map
a: X — Y induces a completely bounded map K(«): K(X) — K(Y') by applying «
entrywise and we have that |||, = || K () ||cb-
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3. Unbounded modular cycles

Throughout this section we let /4 be a x-algebra, which satisfies the conditions in
Assumption 2.2. We let A; denote the operator space completion of 4 and A denote
the C*-completion of 4. We let B be an arbitrary C *-algebra.

Let us recall some basic constructions for a Hilbert C*-module X over B. For
more details the reader may consult the book by Lance, [31].

The standard module over X is the Hilbert C*-module ¢>(N, X) over B
consisting of all sequences Z;o:l X6, in X such that the sequence of partial sums

N
{3 )
n=1

converge in the norm on B. The right module structure is given by

(};xn(?n) b= ’;(x,, - b)S,,

and the inner product is given by

o0

< i xnn ) yn5n> = i(xn, Yn)-
n=1 n n=1

=1

The bounded adjointable operators on X is the C*-algebra £(X) consisting of
all the bounded operators on X that admit an adjoint with respect to the inner product
on X. The C*-norm on £(X) is the operator norm || - || oo-

The compact operators on X is the C*-algebra K (X) defined as the operator
norm closure of the x-subalgebra

F(X) := spang {0, | .11 € X} € LX),

where 0 ,: X — X is defined by 0¢ ,,({) :==§ - (n,¢) forall §,7n,{ € X.

An unbounded densely defined operator D: D(D) — X is said to be symmetric
when (D&, n) = (&, Dn) forall £, 1 € D (D). An unbounded symmetric operator is
selfadjoint when the following implication holds for all € X:

(3 € X:(D&.n) = (£.0) ¥§ € D(D)) = (1 € D(D)).

An unbounded selfadjoint operator is regular when the unbounded operators D +
i:D(D) — X are surjective.

We are now ready to introduce the first of the main new concepts of the present
paper:
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Definition 3.1. An odd unbounded modular cycle from 4 to B is atriple (X, D, A),
where

(1) X is a countably generated Hilbert C *-module over B, which comes equipped
with a x-homomorphism 7: A — £(X);

(2) D:D(D) — X is an unbounded selfadjoint and regular operator on X ;

(3) A: X — X is a bounded positive and selfadjoint operator with dense image,
such that the following holds:

(1) m(a)- (i + D)™': X — X is a compact operator for all a € A;

2) (@) + HA(D(D)) < D(D) and

D(m(a) + M)A — A(zw(a) + A)D: D(D) - X

extends to a bounded adjointable operator da(a + 1): X — X foralla € A
and A € C;

(3) the supremum

sup [I(A +&)™2da(a + A)(A + )72
£€(0,1]

is finite for all @ € 4 and A € C and the linear map
pasiAh = LX) paea) = (A+e) 2da@(b +e)7"?

extends to a completely bounded map pa ¢: 41 — L£(X) for all ¢ € (0, 1] such
that

sup oA elleb < oo
e€(0,1]

(4) the sequence {m(a)A(A + 1/n)~1}% | converges in operator norm to 7 (a) for
alla € A.

We refer to A: X — X as the modular operator of our unbounded modular cycle.
An even unbounded modular cycle from 4 to B is an odd unbounded modular
cycle equipped with a Z /27Z-grading operator y: X — X such that

ym(a) = n(a)y, yA=Ay, and yD =-Dy

foralla € A.

Remark 3.2. If we disregard the operator space norm on #, then the definition of
an unbounded Kasparov module (see [1]) is a special case of the above definition.
Indeed, it corresponds exactly to the situation where the modular operator A is the
identity operator on X . In fact, given an unbounded Kasparov module (X, D) from
A to B, one may always equip + with an operator space norm such that (X, D, 1)
becomes an unbounded modular cycle from #4 to B.
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The concept of a twisted spectral triple (see [8]) is closely related to the above
definition. Indeed, one of the main examples of a twisted spectral triple is obtained
by starting from a unital spectral triple (4, H, D) together with a fixed positive and
invertible element g € . One then forms the twisted spectral triple (A, H, gDg),
where the modular automorphism o: 4 — o is given by o(a) := g2ag~2. The
triple (H, gDg, g?) is an example of an unbounded modular cycle from 4 to C
(after choosing an appropriate operator space norm on ). As explained in [8],
the above procedure provides a noncommutative analogue of the classical operation
where an underlying Riemannian metric is changed by a conformal factor, see for
example [15, Proposition 4.3.1].

Our definition of an unbounded modular cycle is inspired by the notion of a
twisted spectral triple, but there are three important differences:

(1) we are considering a bivariant theory, thus the scalars can consist of an arbitrary
C *-algebra and not just the complex numbers;

(2) the modular operator A: X — X can have zero in the spectrum, thus allowing
for a treatment of conformal changes of metrics on non-compact manifolds;

(3) the modular automorphism o given by conjugation with A need not map the
algebra +# into itself, in fact it need not even be defined on A.

For more information about twisted spectral triples we refer to [10, 35, 38].

There is a link between Hilsum’s notion of a half-closed chain and the above
notion of an unbounded modular cycle, [16]. Indeed, any half-closed chain (X, D)
gives rise to a wealth of unbounded modular cycles via a localization procedure,
which uses the methods developed in the present paper, see [24, Theorem 13].

Let us spend a little extra time commenting on the conditions in Definition 3.1.
It follows by a density argument that condition (2) and (3) also hold for all @ € A;.
For condition (4), we notice that the sequence {A(A + 1/n)~'} converges strictly
to the identity on X (this holds since A is positive and Im(A) is dense in X). In
general we have that condition (4) is automatic when A: X — X is invertible as a
bounded adjointable operator. Remark that condition (2) fora = 0 and A = 1 says
that A(D (D)) € D(D) and that the straight commutator

DA —AD:D(D) — X

has a bounded adjointable extension d(A): X — X. Notice also the important
identity
da(l) = d(A)
between straight and twisted commutators.
For later use we introduce the following terminology:

Definition 3.3. When D:D(D) — X is an unbounded selfadjoint and regular
operator and A: X — X is a bounded positive and selfadjoint operator with dense
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image we say that a bounded adjointable operator T: X — X is differentiable (with
respect to (D, A)) when the following holds:

(1) TA(D(D)) € D(D) and
DTA - ATD:D(D) - X
extends to a bounded adjointable operator da(T): X — X;
(2) the supremum

sup (A + &) V2dA(T)(A + &)7V?
£€(0,1]

is finite.

We remark that the adjoint of a differentiable operator 7: X — X is automatically
differentiable as well and that da (T)* = —da(T™*). We introduce the notation

pae(T) = (A + &) V2dA(T)(A +&)7V/2

for all ¢ € (0, 1].
For an unbounded modular cycle (X, D, A) from +4 to B, we see that

(@) + A X > X

is differentiable with respect to (D, A) foralla € A and A € C.

3.1. Stabilization of unbounded modular cycles. Letus fix an unbounded modular
cycle (X, D, A) from the *-algebra + to the C *-algebra B. Welety: X — X denote
the grading operator in the even case.

The aim of this subsection is to construct a stabilization of (X, D, A) which is
an unbounded modular cycle from the finite matrices over + to B. The parity of the
stabilization is the same as the parity of (X, D, A).

To this end, we first notice that the finite matrices over # comes equipped with a
canonical operator space norm and a canonical C *-norm (see Definition 2.3):

A - ll- M(A) — [0, 00).

The respective completions are the operator space K(A;) and the C*-algebra K(A).
We remark that K(A) is isomorphic to the compact operators on the standard module
{%(N, A), where A is considered as a Hilbert C *-module over itself.

We now consider the standard module £2(N, X) over B and we equip it with the
*-homomorphism K (r): K(A) — £({*(N, X)) given by

K<n>(zam.nm)<zxksk) S (3 wamm )b G.D

n,m=1 n=1 m=1
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where a - §,,, € K(A) denotes the finite matrix with a € A in position (1, m) and
zeroes elsewhere.

Furthermore, on the standard module over X, we have the diagonal operators
induced by the unbounded selfadjoint and regular operator D: D(D) — X and the
modular operator A: X — X. The diagonal operator induced by D: D (D) — X is
given by

diag(D): D(diag(D)) — (N X), > xp8p > > D(xa)5n,
n=1 n=1

where the domain O‘D(diag(D)) C (*(N, X) is defined by
D(diag(D))

- {Zx,,a,, € 2(N.X) | xp € D(D) and Y D(xn)ss € eZ(N,X)}.

n=1 n=1

The diagonal operator induced by A: X — X is given by
oo [.¢]
diag(A): 2(N, X) > 2(N.X). Y xuby > Y A(xn)Sn.
n=1 n=1

Likewise (in the even case), we have the diagonal operator
diag(y): £*(N, X) — (*(N, X)

induced by the grading operator y: X — X.
The unbounded operator

diag(D): D (diag(D)) — £*(N, X)

is again a selfadjoint and regular operator, indeed the relevant resolvents are the
diagonal operators

diag((D £i)7"): (3(N, X) — £*(N, X).
We also note that diag(D) has a core given by the algebraic direct sum
&2, D(D) € (N, X).
Clearly, diag(A): £2(N, X) — £2(N, X) is again positive and selfadjoint with dense
image.
To ease the notation, we put

1® D :=diag(D), 1® A :=diag(A), and 1® y:= diag(y).
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Definition 3.4. By the stabilization of (X, D, A) we understand the triple (£2(N, X),
1® D,1 ® A) with Z/2Z-grading operator 1 ® y in the even case.

Proposition 3.5. The stabilization ({*(N, X),1 ® D, 1® A) is an unbounded mod-
ular cycle from M(A) to B of the same parity as (X, D, A).

Proof. Since the statement about the grading is clear in the even case, we only need
to verify the conditions (1)—(4) in Definition 3.1. We suppress the *-homomorphism
K(£(X)) — £(¢?*(N, X)) induced by the identity £(X) — £(X) throughout this
proof, see equation (3.1).

(1) and (4): this follows by standard arguments.

(2): for elements fomzl AnmOnm € M(A) and A € C we record that

N N
d1®A< Z AnmOnm + A) = Z dA(anm)Snm +1® dA(/\)

n.m=1 n.m=1

(3): the first assertion in (3) follows since

H(l ® A+ e)—l/zdm(nmi:l nmum + A)(l ®A+e) 12 Hw

N
=| X @+o 2 da@m) (A + )7

n,m=1

18 (A +e)72daA) (A + )72

N
= Z “(A + 8)_1/2dA(anm)(A + 8)_1/2 ||oo

n.m=1

+ (A + &7 2da)(A + )72

forall e € (0, 1], Y0 1 @nmSum € M(A) and A € C.

For the second assertion in (3), we let fomzl Anmbnm € M(A) and ¢ € (0, 1]
be given and notice that

N N N
P1®A,e( Z anm8nm> = Z pA,e(anm)Snm :K(pA,s)( Z anm(gnm),

n.m=1 n.m=1 n.m=1

where K(pa ): M(A) — K(£(X)) is the completely bounded map induced by
PA et A — L£(X), see Subsection 2.0.1. O
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4. Differentiable Hilbert C *-modules

Throughout this section 4 and 8B will be x-algebras which satisfy the conditions in
Assumption 2.2. We let A; and B; denote the operator space completions and we
let A and B denote the C *-completions of +4 and B, respectively.

The next definition is the second main new concept which we introduce in this
paper:
Definition 4.1. A Hilbert C*-module X over B, which comes equipped with a
x-homomorphism 7: A — £(X) is said to be differentiable (from 4 to B) when
there exists a sequence {&,}o-; in X such that the following holds:
(1) spanc{é,-b | b € B, n € N}isnorm-dense in X;
2) &y, (w(@) + X)) &) e Bloralla e A, A € Candn,m € N;
(3) the sequence of finite matrices

{ 5 o ri@ + D)) bum

nm=1

is a Cauchy sequence in K(B) foralla € Aand A € C;
(4) the linear map

A —> K(By), a+ Z (&n. (@) Em)Snm

n.m=1
is completely bounded (with respect to the operator space norm on ).

We refer to a sequence {§, } ; in X satisfying the above conditions as a differentiable
generating sequence.

Remark 4.2. The conditions (3) and (4) in Definition 4.1 can be replaced by the
following:

(3a) the sequence of finite matrices
N

{WZZI (60 (7@ + D) bum}

is bounded in K(B;) foralla € A and A € C;
(4a) the linear map

A= My(B1), ar Y (&, w(@)Em)Sum

n.m=1
is completely bounded, where My (B1) is the operator space of infinite matrices
over By, see [4, Section 1.2.26] for details.
Given a sequence {&, } that satisfies (1), (2), (3a), and (4a) we obtain a sequence
satisfying (1), (2), (3), and (4) by rescaling each &,, € X by %, for example.
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4.0.1. Example: Finitely generated Hilbert C *-modules. Let us consider a *-alg-
ebra B which satisfies the conditions of Assumption 2.2. Let us also consider
a dense *-subalgebra + of a C*-algebra A. We do not assume that -+ satisfies
Assumption 2.2. Let now X be a finitely generated Hilbert C*-module over B
with generators &1,...,Exy € X andlet 7: A — £(X) be a x-homomorphism. By
“finitely generated” we mean that the subspace

{En-blne{l,...,N}, beB}gX

is dense in the norm-topology on X. We emphasize that this condition does not at
all imply that X is finitely generated projective as a right module over B: consider
for example Cy((0, 1)) as a Hilbert C *-module over Cy(R).

Suppose now that

(n,(m(a) + 1) &y) e B forallae A, AeCand n,me{l,...,N}.

We then have a linear map

N
tA > My(B). t@:= Y. (En7(@kn) Sum.

n,m=1
from which we can obtain an operator space norm on + by defining
llall1 := max{||a||, ||t(a)||1} forall a € My (A), k € N,

where we have suppressed the usual identification My (M N (£)) =~ Mp.n(8B) (see
Definition 2.3). By construction we get that X is a differentiable Hilbert C *-module
from 4 to B.

5. The modular lift

In this section we consider two Hilbert C *-modules X and Y with the same base C *-
algebra A. We fix an unbounded selfadjoint and regular operator D: D (D) — Y on
the Hilbert C*-module Y together with a bounded selfadjoint and positive operator
I':Y — Y with dense image. Furthermore, we consider a bounded adjointable
operator ®: X — Y such that the adjoint ®*: Y — X has dense image.

The main concern of this section is to “transport” the unbounded selfadjoint and
regular operator D: D (D) — Y to an unbounded selfadjoint and regular operator
DaA:D(DA) — X. This transportation will happen via the bounded adjointable
operator &: X — Y.

We apply the notation:

A:=dT®: X - X and G :=Pd*:Y — Y.
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Remark that A: X — X is bounded selfadjoint and positive and that Im(A) C X is
norm-dense.

We assume that G is differentiable with respect to (D, I'), see Definition 3.3.
For each ¢ € (0, 1], we recall the notation:
pre(G) := (T + &) V2dr(G)(I 4+ &) V%Y > V.
The main aim of this section is to show that the composition
O*DP: D(®*DP) > X
is essentially selfadjoint and regular, where the domain is given by
D(@*DD) := D(DD) := {x eX|Px)e i)(D)}.

We immediately remark that D (®* D ®) C X is norm-dense. Indeed, this follows

since
*I'(D(D)) € D(P*DD).

Furthermore, it is evident that the unbounded operator ®*D ®: D(®*DP) — X is

symmetric.
We notice that A (!D(QD* D CID)) C D(P*DP) and that

(P*DPA — AD*DD)(n) = (P*DPP* TP — O*TPD*DP)(n)
= (®*dr(G)®)(n)
for all n € H(D* D D). In particular, this shows that the straight commutator
O*DPA — ADP*DP: D(P*DP) — X

has a bounded adjointable extension to X .

Definition 5.1. The modular lift of D: D (D) — Y withrespect to ®: X — Y is the clo-
sure of ®* D ®: D(D* D P) — X. The modular lift is denoted by Da: D(Da)— X.

5.1. Selfadjointness. In order to show that the modular lift is selfadjoint we need a
few preliminary lemmas.

Lemma 5.2. Let £ € D((Da)*). Then A(§) € D(P*D ) and
(@*DD)(A§) = A(DA)*(§) + D*dr(G)D(§).
Proof. Letn € D(D) and compute as follows:

(BA(§). D(m) = (P(§). TGD(n)) = (®(§). DGT () — (P(§). dr(G)(n)
= ((Da)* (). 2*T'(m) — (dr(G)*@(§).n)
= (TO(Da)*(€).n) + {dr(G)@(§).n).
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Using the selfadjointness assumption on D: D (D) — Y, this implies that PA(§) €
D (D) and furthermore that

D(®AE) =T ®(Da)*(§) + dr(G)P(§).
This proves the lemma. 0

Lemma5.3. Let§ € D((Da)*)andletz € C\[0, 00) be given. Then (A—z)~1(§) €
D((Da)*) and
(DA)*(A=2)"1(E) = (A= 2)"1(Da)*(§) = (A —2) 7' ®"dr(G)D(A — 2) 1 (§).

Proof. We consider the smallest C *-subalgebra C *(A) C £(X) containing A € £(X)
together with the *x-subalgebra D (5) € C*(A) defined by

(T € D)) & (T € C*(A), T(D(Da)") € D(Da)
and T(DpA)* — DAT: D((Dp)*) — X
has a bounded adjointable extension §(7): X — X )
It follows by Lemma 5.2 that D(§) € C*(A) is norm-dense. Moreover, the linear
map §: D(6) — £(X) is a closed densely defined derivation on C*(A) and D(S)

becomes a Banach *-algebra when equipped with the norm || - ||5: D(8) — [0, o0)
defined by

ITMls := T lloo + 16(T) [loo-

As a consequence of [3, Proposition 3.12], the inclusion D (6) € C*(A) is spectrally
invariant and it holds in particular that (A — z)~! is an element in the unital *-sub-
algebra D(8) + C - 1 € £(X). This implies that (A — z)"1(§) € D((Da)*). The
explicit formula for the commutator

[(Da)*. (A —2)7']:D((Da)*) = X
is now an algebraic consequence of Lemma 5.2. O

We are now ready to show that the modular lift Da: D(Da) — X is selfadjoint:

Proposition 5.4. Suppose that ®*:Y — X has dense image and G = dd*:Y —>Y
is differentiable with respect to (D, ). Then the composition

O*DP: D(®*DP) > X
is essentially selfadjoint.

Proof. Tt is enough to prove that D((Da)*) € D(Da). Thus, let £ € D((Da)*)
be given.
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Let us consider the sequence {A(A + 1/n)71(£)} and recall that
ACA + 1/ (€) — &
Furthermore, by Lemma 5.2 and Lemma 5.3 we have that
AA+1/n)"1 () € D(P*D D)

foralln € N.
To show that £ € D(Da) it therefore suffices to prove that the sequence

{(@*DP)A(A + 1/n)" (§)}

is norm-convergent in X .
For each n € N we use Lemma 5.2 and Lemma 5.3 to compute in the following
way:

(O*DD)A(A + 1/n)71(§)
= A(DA)*(A + 1/n)"1 () + @*dr(G)D(A + 1/n) "1 (§)
= AA +1/n)""(Da)* () — AA + 1/n) ' @*dr(G)P(A + 1/n) 7 (§)
+ ®*dr(G)P(A + 1/n) 1 (&)
= A(A+1/n)""(Da)*(§) + %(A + 1/n)"'®*dr(G)D(A + 1/n) 7" (§).

Since the sequence {A(A + 1/n)7'} converges strictly to the identity operator
on X, the result of the proposition is proved, provided that the sequence

{%(A + 1/ % dr(G) (A + 1/ ®)]
converges to zero in the norm on X . But this is a consequence of the next lemma. [
Lemma 5.5. The sequence
{%(A +1/n) 1% dr(G)D(A + 1/n)—1}
is bounded in operator norm and converges strictly to the zero operator on X.

Proof. We first show that our sequence is bounded in operator norm. To this end, let
¢ € X and n € N and notice that

1
;H (A+1/n)~'0*dp(G)P(A + 1/n) 1 (§)|

=~ lim (A + 1/m) 7 T 2pr (G20 + 1/m) @)

IA

1 192
=~ T2+ 1/mTH - sup lore(@)lloo - ]
n £€(0,1]

IA

sup |lor,e(G)lloo - I]-

£€(0,1]
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To prove the lemma, we may now limit ourselves to showing that
1
—(A +1/n)7'®*dr(G)D(A + 1/n) 7' () - 0
n

for all £ in a dense subspace of X. Since Im(A) € X isdensein X weletn € X
and remark that

H%(A +1/m) 710 dr (G)D(A + 1/n) " A() H

<L (A +1/m)7te* 02| - [TV20AA +1/) " ()] - sup [lpr.e(G)loo
n £€(0,1]

1
< — 720 - 0]l - sup |lpr.e(G)]|
vn = £€(0,1] ° =

for all n € N. This computation ends the proof of the present lemma. O

5.2. Regularity. In order to show that the modular lift Da: D(Da) — X isregular

we will use the local-global principle for unbounded regular operators, see [20, 36].

We will thus pause for a moment and remind the reader how this principle works.
Let p: A — C be a state on the C *-algebra A and define the pairing

() X x X - C  (x0,x1)p := p({x0.x1)).

Putting N, :={x € X | (x, x), =0}, we obtain that the vector space quotient X /N,

has a well-defined norm,

X1l = (xx)y2,

and the completion of X /N, is a Hilbert space with inner product induced by (-, ) ,.
We denote this Hilbert space by X, and let [-]: X — X, denote the canonical map
(quotient followed by inclusion). One may also view the Hilbert space X, as an
interior tensor product X, =~ X ® 4 H,, where the Hilbert space H,, is the carrier of
the GNS-representation of A associated to the state p: 4 — C.

The unbounded selfadjoint operator Da:D(Da) — X yields an induced
unbounded symmetric operator

(Da)p: D((Da)p) = Xp  [x] = [Da(x)],
where the domain is given by
D((Da)p) == {[x]| x € D(Da)}.
We denote the closure of this unbounded symmetric operator by

DA®1L:D(DA®1) > X,
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The local-global principle states that the unbounded selfadjoint operator D, is
regular if and only if Da ® 1 is selfadjoint for every state p: A — C, see [20,
Theorem 4.2]. We remark that an even stronger result is proved in [36]: it does in
fact suffice to prove selfadjointness for every pure state on A.

Let us from now on fix a state p: A — C. We are interested in showing that
DA®RL:D(DAR®I]) — Xp

is selfadjoint. We remark that it already follows by the local-global principle that the
unbounded operator
D®1:D(DR®1)—=Y,

is selfadjoint.

The proof of the next lemma is left as an exercise to the reader (we are defining
'®1:Y, - Y,and ® ® 1: X, — Y, using the same recipe as in the unbounded
case):

Lemma 5.6. The bounded operator ®* @ 1:Y, — X, has dense image and G ® 1 =
®O* @ 1:Y, — Y, is differentiable with respect to (D ® 1,I" ® 1). Furthermore,
we have the identities

dre1(G®1) =dr(G)®1 and pre1:(G ®1) = pre(G)®1
Jorall e € (0,1].

It is a consequence of the above lemma and Proposition 5.4 that the composition
(@*@DND NP 1):@((D RN(P® 1)) - X,

is essentially selfadjoint. We denote the closure by (D ® 1)ag: and focus our
attention on proving the identity

(D ®1ag1 = Da® 1,

which will then imply the regularity of the modular lift Da.
We start by proving the easiest of the two inclusions (required for establishing the
above identity):

Lemma5.7. DA ®1C (D ® 1)agi-

Proof. Let§ € D(Da ® 1). Then there exists a sequence {£,} in D (P* D P) such
that

(6] = & and  [Da(§)] = (Da ® D(E).

But then we clearly have that [§,] € i)((d:‘* QDD ®NP® 1)) and furthermore
that

(@* @ (D @ 1)(® ® D[§a] = [Daln)]-

This proves the lemma. O
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The proof of the reverse inclusion
(D®Dag1 SDaA®1 (5.1

is more subtle. It will rely on the following lemma:
Lemma5.8. Letf € D((D®1ag1). Then (AR 1)(E) € D(Da ® 1) and further-

more,

(Da®@ DA DE) = (AR D(D ® Dag1(§) + (27dr(G)P ® 1)(£).
Proof. Letfirstn € D(D ® 1) be given. Choose a sequence {1, } in O (D) such that

[1n] = n and  [Dn] — (D & D().
Remark that (®*I" ® 1)[,] € D((Da),) forall n € N and furthermore that
(®*T ® D[na] — (2T ® D(n).
We now compute as follows:
(Da)p[®*T'np] = [@*DGTny] = [@*TGDny] + [@7dr(G)1al-

This shows that

(Da)p(®*T ® DIna] > (PTG @ 1)(D ® (1) + (2*dr(G) ® D(n).
We thus have that (®*I"' ® 1)(n) € D(Da ® 1) and furthermore that

(Da® (T ® (1) = (PTG ® N(D ® 1)(n) + (®*dr(G) ® 1)(1).

Letnow § € D((DR1)(P® 1)). It then follows from the above that (A® 1) (§) €
D(Da ® 1) and moreover that

(Da®@ DA®1)(E) = (Da®@D(PT @ (P& 1)(E)
=@ TGRNMDRNPRI)(E) + (P*dr(G)P R 1)(§)
= (A® D(D ® Dag1(§) + (P7dr(G)P ® 1)(§).

The result of the lemma now follows by using that

@*DHDOINP®]1) =D 1)ag:
by definition. 0

We are now ready to prove the reverse inclusion which (together with Lemma 5.7)
will imply the following:
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Proposition 5.9. We have the identity of unbounded operators
(D®1ag1 =Da®1
on the Hilbert space X ,. In particular, we obtain that DA ® 1 is selfadjoint.
Proof. By Lemma 5.7 we only need to show that
D((D ® 1)ae1) C DDA 1).

Let thus £ € D((D ® 1)ag1) be given. For each n € N, it is a consequence of
Lemma 5.3 and Lemma 5.8 that

(AA +1/n)"' @ 1)(§) € D(DA ® 1).
Furthermore, these two lemmas allow us to compute as follows:

(Da ® D(AA + 1/n)7 @ 1)(£)
= (A® 1)(D ® Dagi((A+1/m)7' ®@1)(§)
+ (@*dr(G)®(A + 1/n) "' @ 1)(§)
=(AA+1/n)'®@1)(D ® Dagi(§)
—(A(A + 1/n)7'@*dr (G)D(A + 1/n)"' @ 1)(£)
+ (@*dr(G)®(A + 1/n) "' ® 1)(§)
= (AA+1/m)7' @ 1)(D ® Dagi ()
+ (1/n(A + 1/n) ' ®*dr(G)D(A + 1/n) ™' ®@ 1)(£).

Together with Lemma 5.5 this computation shows that

(Da®D((A+1/m)7TAR 1)(E) — (D ® Dagi(§)-

This proves the present proposition. Indeed, the remaining fact that
DA®L:DDAR®]) = X,

is selfadjoint follows immediately since (D ® 1)ag: is selfadjoint (see Lemma 5.6
and Proposition 5.4). O

The main theorem of this section is now a consequence of the local-global princi-
ple and Proposition 5.9 (recall that differentiability is introduced in Definition 3.3):

Theorem 5.10. Suppose that ®*:Y — X has dense image and that ®®*:Y — Y
is differentiable with respect to (D, T"). Then the modular lift Dao: D(DpA) — X is
selfadjoint and regular.
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6. Compactness of resolvents

We will in this section remain in the general setting presented in Section 5. We
will thus assume that ®*: Y — X has dense image and that G = ®d*:Y — Y is
differentiable with respect to (D, I'). In particular, it follows by Theorem 5.10 that
the modular lift

D = q)*DCDZ@(DA) - X

is an unbounded selfadjoint and regular operator. We recall that A :=®*T'd: X — X

We are going to study the compactness properties of the resolvent
(i+Dpa) X —>X
of the modular lift.
Lemma 6.1. We have the identity
A%(i + DA = @*T( + D) ((i(G — DT + dr(G))®(i + Da)~' + T ®).

Proof. Leté € D(DP). Since the unbounded operator (i + P* D ®): D(DP) — X
has dense image (by Theorem 5.10) it is enough to verify that

A*(§) = @' T + D) ((i(G — DI +dr(G))® + T D@ + D*DD))(£).
But this follows from the computation
®*I'(i + D) ' ((i(G— DI +dr(G))® + LD + ®*DD))(£)

= ®*T'(i + D) '(iGT + DGT)®(§)
= O*IGT P(£) = A%(§). O

We let C*(A) C £(X) denote the smallest C *-subalgebra containing A: X — X .

Proposition 6.2. Suppose that ®*T'(i + D)™ € X(Y,X). Then T -(i + Da)~' €
K(X) forall T € C*(A).

Proof. It is an immediate consequence of Lemma 6.1 that
A%(i 4+ Dp) ! e K(X).

The result of the lemma therefore follows by noting that the sequence {A%2(A+1/n)"1}
converges to A: X — X in operator norm. O

For later use, we are also interested in the relationship between the resolvents of
the squares (Dp)?: D((Da)?) — X and D?: D(D?) — Y. In order to study these
two resolvents we need the following extra assumption:
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Assumption 6.3. I is assumed that T(D(D)) C D(D) and that the straight
commutator
DT —TD:D(D) - Y

has a bounded adjointable extension d(I'): Y — Y.

In the next lemma, we apply the notation dr(I'G):Y — Y for the bounded
adjointable extension of the twisted commutator

DIGT —T2GD = [D,T|GT + I'(DGT —TGD): D(D) — Y.

Let us fix a constant r € (|| A% + TN, oo) and apply the notation

Ty := (14AT2/r+D?) Y - Y and S; := (14+AA%/r+(Da)?) X - X

forall A > 0.

The next result will play an important role in our later investigations of the
relationship between the unbounded Kasparov product and the interior Kasparov
product:

Proposition 6.4. We have the identity
PA2S) — T, T2® = T)(PA? — T2 + dr(I'G)PDA)S;
+ (DT1)*(dr(G)GT + I'Gdr(G)) Sy
forall A > 0.

Proof. Let A > 0 and let £ € D((Da)?). To prove the proposition, it suffices to
check that

(PA? — THI?®(1 + AA%/r + (Da)?))(§)

= T3(PA? —T2® + dr(IT'G)PDA)(§) + (DT3)*(dr(G)GT + I'Gdr(G)) @(§).
We claim that

(DT3)*(dr(G)GT + T'Gdr(G))®(§) = (D>T))*®A*(£) — (DTA)*I‘CDAD(A6(§1))

and moreover that
Tydr(TG)®(§) = (DT)*TPA(E) — TAI*PDA(E) (6.2)

for all £ € D(Da). To verify these two identities, we use that D(DP) C X is a
core for the modular lift. The identity in equation (6.1) then follows since it holds for
all &£ € D(D D) that

(DT;)*(dr(G)GT + I'Gdr(G))®(£)
= (D?T))*GTGI®(§) — (DTy)*TGTGD d(§)
= (DT))*PA*(§) — (DT))* T PADA(E).
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Moreover, the identity in equation (6.2) follows from the computation

Tdr(TFG)®(§) = (DTR)*TGTp(§) — THI*GDD(§)
= (DTy)* T®A(E) — ThAT>®Da(§),
which is again valid for all £ € D (D ®).
The identities in equation (6.1) and equation (6.2) imply that
T3(®A2 ~ T20 + dr (TG)®DA)(§) + (DT3)*(dr(G)GT + T'Gdr(G)) (%)
= TH(®A? = T2 ®)(§) + (D*T3) " PA*(§) — TRI* (D) (§)
= ((1+ D)T3) @A) — T2 0(1 + (Da)*) (€)

for all £ € D((Da)?). The result of the proposition then follows since

((1+ DH)T;) ®A? = DA% — T T2® - AA?/r. O

7. The unbounded Kasparov product

Throughout this section we let 4 and B be *x-algebras which satisfy the conditions

in Assumption 2.2. As usual we denote the C*-completions by 4 and B and the

operator space completions by 4, and B;. Furthermore, we fix a third C *-algebra C.
On top of this data, we shall consider:

(1) An unbounded modular cycle (Y, D,I') from B to C (with grading operator
y:Y — Y in the even case).

(2) A differentiable Hilbert C *-module X from 4 to B with a fixed differentiable
generating sequence {&,}52 .

We let 74:A — £(X) and 7g: B — L(Y) denote the *-homomorphisms
associated with the above data. It will then be assumed that

mg(a) € K(X) foralla € A.

To explain the aims of this section we form the interior tensor product X ® ¥
of Hilbert C *-modules. We recall that this is the Hilbert C *-module over C defined
as the completion of the algebraic tensor product of modules X ® p Y with respect
to the norm coming from the C-valued inner product

() X®pYXX®pY — C (x0®B Yo, X1 ®g y1) := (yo, 78 ({xX0, X1))(¥1))-

The interior tensor product comes equipped with a x-homomorphism

Ta®1)A4A—>LXRBY), (ma®1)(a):=m4(a)R1.



The unbounded Kasparov product by a differentiable module 449

It is the main goal of this section to construct a new (and explicit) unbounded
modular cycle from A to C:

X®g(Y.D.T):=(XQ®pY.Da.A).

We shall refer to this new unbounded modular cycle as the unbounded Kasparov
product of the differentiable Hilbert C*-module X and the unbounded modular cycle
(Y,D,T).

Let us return to the interior tensor product X ® gY. For each § € X we have a
bounded adjointable operator

Te:Y > X®pY, y—>£EQpy,
where the adjoint is given explicitly by
TS X®pY - Y., x®pyr> np((5.x)(»).

For each N € N we may then define the bounded adjointable operator

N
ON:X®pY - LP(N.Y), zr0 > T (2)b

n=1
Lemma 7.1. The sequence of bounded adjointable operators

oo

{On}y_, PN:X®BY - (*(N.Y)
converges in operator norm to a bounded adjointable operator
®: X ®pY — L2(N,Y).
Furthermore, we have that ®*:£2(N,Y) — X ® gY has dense image.

Proof. Let us prove that the sequence {®y } is Cauchy in operator norm. To this end,
we let M > N be given and notice that

1Pm — Pw % = [1Ph — PN 2 = @M Ppy + PPy — Py Phy — Py Py loo-
Furthermore, it may be verified that

M M

Dy Py + ON DY — Oy Py — Py = Y > 75((EnEm))Sum-
n=N+1m=N+1

Since the sequence
K

U G bndbum)

n,m=1
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is a Cauchy sequence in K(B;) (by our assumption on the differentiable generating
sequence {&,}) and since the canonical map B; — B is completely bounded, this
shows that {® } is a Cauchy sequence as well.

To see that the image of ®*: £2(N,Y) — X ® pY is dense it suffices (since {£,}
generates X as a Hilbert C*-module over B) to check that £,b ® g y € Im(®*) for
alln e N,b € B and y € Y. But this is clear since

O (p(b)(y) - 8n) = & ®p B (D)(y) = 2D ®p .
This ends the proof of the lemma. O

Let us recall from Subsection 3.1 that the notation
1®@D:D(1®D)—*N,Y) and 1QT:¢*N,Y)— £2(N,Y)

refers to the diagonal operators induced by D: D(D) — Y and 1Y — Y.

The next lemma explains how ®: X ® gY — ¢2(N,Y) creates a link between
the x-algebra +4 and the unbounded modular cycle (Y, D, I"). We recall from Prop-
osition 3.5 that we have an unbounded modular cycle (£2(N,Y),1® D, 1 ®T) from
M(8B) to C (of the same parity as (¥, D, I")).

Lemma 7.2. Leta € A and A € C be given. Then the bounded adjointable operator
D(g(a) @ 1 + 1)P*: £2(N,Y) — £3(N,Y)

is differentiable with respect to the pair (1 @ D,1 ® I').
Furthermore, it holds for each ¢ € (0, 1] that the linear map o,: A — £L({*(N,Y))
defined by

oprar> (1T + )7 2digr(P(mala) ® NO*)(1 T + &)~ /2

is completely bounded with respect to the operator space norm || - |1 on A and we
have that

sup ||og|ler < 00.
£€(0,1]

Proof. Let t: A — K(B;) denote the completely bounded map defined by

oo

(@)= Y (kn.7a(@)(En))8um foralla € A,

n.m=1
(where the complete boundedness is understood with respect to the operator space
norm || - [|yon #4). Let also g € K(B) be given by

oo

g:= ) (£ Endum

n,m=1
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Finally, as in Subsection 3.1 we let K (75): K(B) — £({*(N, Y)) denote the *-hom-
omorphism defined by

K(”B)( Z bnmSnm)( Zyksk) = Z ( Z JTB(bnm)(ym))Sn-
n,m=1 k=1 n=1 m=1

We then have the identity
D(ra(a) ® 1 +1)®* = K(mp)(t(a) + A-g): (>(N,Y) > £*(N,Y),

(where we suppress the inclusion K(B1) — K(B)). The factthat ®(4(a) ® 1+ 1) D*
is differentiable with respect to (£2(N,Y),1 ® D,1 ® I') is now a consequence of
Proposition 3.5 (and the remarks following Definition 3.1). Moreover, the remaining
part of the lemma also follows from Proposition 3.5 by remarking that

o:(a) = (p1gre 0 7)(a) foralla € A. O
It follows by Lemma 7.1 and Lemma 7.2 (with @ = 0 and A = 1) that
O*: 2(N,Y) > X QY

has dense image and that ®®* is differentiable with respect to the pair (1T, 1 ® D).
In particular, we may form the modular lift

(1® D)a: D((1 ® D)p) = X ® 8Y,
as the closure of the symmetric unbounded operator
*(1® D)®: D((1® D)P) > X ® pY.
We also define the bounded adjointable operator
A=0*(1QDNP: XY - X ®pY.

Theorem 7.3. Suppose that the conditions outlined in the beginning of this section
are satisfied. Then the triple (X @ Y, (1® D)a, A) is an unbounded modular cycle
from A to C. The parity of (X ® gY,(1 ® D)a,A) is the same as the parity of
(Y, D, T') and the grading operator is given by

1®y:X®pY - X®pY
in the even case.

Proof. We verify each of the points in Definition 3.1 separately.
The fact that X ® Y is a countably generated Hilbert C *-module follows since
both X and Y are countably generated by assumption.



452 J. Kaad

The modular lift
(1® D)A:D((1® D)a) > X ® Y

is selfadjoint and regular by Theorem 5.10.
The bounded operator

A=0*(1DNP:XRpY - XQpY
is clearly positive and selfadjoint and it has dense image since
1®T:3(N,Y) - ¢>(N,Y) and ®*:(*(N,Y) > XQpY

have dense images.
It is finally clear that the grading operator 1 ® y: X ® g¥Y — X ® Y satisfies
the constraints

(1®y)(ra(@) ® 1) = (ma(a@) @ DA ®y),

(1®y)(1®D)a=-18D)a(1®y),
(1®y)A=A(1Q®y)

for all a € A in the even case.
We now focus on the conditions (1)—(4) in Definition 3.1.

(4) Leta € A be given. We need to show that
1/n(A+1/n) Y rg(@) ®1) -0

is the operator norm on £(X ® pY). To this end, we remark that there exists a
positive and selfadjoint compact operator K: X — X with dense image such that

P*O=K®1:X®pY - X®pY.
(In fact we may choose K := ) 17 | 6g, ¢..) Since m4(a) € K (X) we thus have that
O*P(1/m + *®) L(wg(a) @ 1) — m4(a) ® 1,

where the convergence takes place in operator norm. It therefore suffices to check
that
1/n(A+1/n)1d*® -0

in operator norm. To prove this, we notice that ®®*: {2(N, Y) — £2(N, Y) lies in the
image of the *x-homomorphism K(7g): K(B) — £({*>(N,Y)). By Proposition 3.5
it thus follows that

(1eTT+1/m™")d—d

in operator norm. We may therefore restrict our attention to showing that
1/n(A+1/n)"1®*1QT) =0

in operator norm. But this is clear since A = ®*(1 ® I')® by definition.
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(1) Letagaina € A be given. To verify that
(Ta@®1)-(i +(1®D)a) X ®pY > XY
is a compact operator it suffices (by (4) and Proposition 6.2) to check that
*(1®T)(i +(1® D)) :2(N,Y) - £*(N,Y)

is compact. But this is clear by Proposition 3.5 since ®®*: {?>(N,Y) — ¢*(N,Y)

lies in the image of K(rp): K(B) — £(£*>(N,Y)) and since
[1®LG+(1®D)™]=(+(1®D) 'digr(Di +(1® D).

(2) Leta € Aand A € C be given. Let z € D((1 ® D)P) be given (thus D(z) €

D(1 ® D)). Then,

D(ma(a) @14+ 1)A(z) = P(Ppa(a) @ 1 + M)P* (1 @ T)(Pz) € D(1® D)
(by Lemma 7.2), and therefore (74(a) ® 1 + L) A(z) € D((1 Q D)P). Furthermore,
we have that

O*(1 ® D)P(wa(a) ® 1 + L)A(2)
=0*(1@DNP(r4a(a) ® 1 + 1)P*(1 ® D)P(2)
+ ®*d1gr(P(ma(a) ® 1 + 1)P*)P(2).

But this implies that

(1 ® D)a(mal@) ® 1+ M)A — A(ma(@) ® 1 + A)(1 ® D)a)(2)
= ®*dior(P(m4(a) ® 1 + 1)D*)D(z). (7.1)

Since D((1 ® D)) € X ® gY is a core for the modular lift
(1® D)A:D((1® D)a) > X ® Y
this proves the relevant statement about twisted commutators.

(3) Recall first that the linear map

o0

T: A — K(Bl), a — Z (En, nA(a)sm>5nm

n.m=1
is assumed to be completely bounded.
Letnow a € 4 and A € C be given. Putting

o0

g:= ) (&n.m)6um € K(B1)

n,m=1
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it follows by (2) that
da(a+ 1) = ®*digr(z(a) +1-g)®.
For each ¢ € (0, 1] and each z € X ® pY we thus have that
[(A+ 97" 2data +1)(A + &) ()]
= lim [(A+) 20" (1@ D) 21 @ T + 8 2dior(r(@) + 4 -2)

S1®T +8)7 21 @ D)'2d(A + &)~ /2(2) |

< (A + &)~ (1 @ )22, - 5o p1ers(r@) + 4 lleo- I
€(0,1

< sup [piers(t(@) + A 8o lz]-
§€(0,1]

Since we know that

sup ||p1grs(t(@) + 2 - g)lleo < 00
§€(0,1]

this proves the first part of the statement in (3). The second part of the statement
in (3) follows by a similar argumentation. More precisely, we have the estimate:

sup [[paelles < sup [lp1ersllcy - [I7]lch- O
£€(0,1] 5e(0,1]

8. The modular transform

Throughout this section we consider the following data:

(1) an unbounded selfadjoint and regular operator D: D (D) — Y acting on a fixed
Hilbert C*-module Y;

(2) apositive and selfadjoint bounded operator A: Y — Y such that Im(A) C Y is
norm-dense.

We make the following standing assumption:
Assumption 8.1. It is assumed that

(1) the domain D(D) C Y is an invariant submodule for A:Y — Y and the
commutator
DA—-AD:D(D)—Y
is the restriction of a bounded adjointable operator d(A):Y — Y;

(2) the supremum of operator norms

sup [[(A + &) 2d(A)(A + )72,
£€(0,1]

is finite.
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In other words, we assume that the unit 1 € £(Y') is differentiable with respect to the
pair (D, A), see Definition 3.3.

Let us choose a constant
2
r e (A%, o)

and apply the notation:
Sy:=04+AA%/r+D*7' and Ry:=(1+A+DH7!

forall A > 0.
We are interested in studying the modular transform of the pair (D, A). This is
the unbounded operator defined by

1 o0
Gp.a: A(D(D)) — Y, Gpa(A§):=— / (Ar)"Y2AS;, D(AE) dA
T Jo
forall ¢ € D(D). In particular, we are interested in comparing the modular transform
with the bounded transform of D: D (D) — Y. We recall that the bounded transform
of D is defined by Fp := D(1 + D?)~Y/2:Y — Y and it follows that the bounded
transform is a bounded extension of the unbounded operator

1 [ _
Fp|gpy: D(D) > 7, r)l—);/; A"YV2R, D(n) dA.

The modular transform will play a key role in our later proof of one of the
main theorems in this paper, namely that the bounded transform of an unbounded
modular cycle yields a bounded Kasparov module and hence a class in K K -theory,
see Theorem 9.5.

We notice that the modular transform has been obtained from the bounded
transform by making a non-commutative change of variables in the integral over
the half-line. Indeed, the idea is just to replace the scalar-valued variable A > 0
by the operator-valued variable A - A%2/r. In the case where D and A actually
commute it can therefore be proved that the modular transform is just a restriction of
the bounded transform to A(D (D)) C Y. However, in the case of real interest, thus
when d(A) # 0, there is a substantial error-term appearing and a great deal of this
section is devoted to controlling the size of this error-term. There are easier proofs
of the main results of this section when the modular operator A: Y — Y is assumed
to be invertible (as a bounded operator). One of the important points of the whole
theory that we are developing here is however that A: Y — Y is allowed to have zero
in the spectrum. This condition should therefore not be relaxed.

Before we go any further let us immediately notice that the integral

/w(xr)—l/zAsm(Ag) dx,
0
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appearing in the definition of the modular transform, converges absolutely for all
& € D(D). Indeed, this follows from the estimate

IASAD(AE)] < [[ASL Alloo - [ DE] + [|AS3d(A)lloo - [I£] (8.1

and since Lemma A.3 and Assumption 8.1 (2) imply that we may find a constant
C > 0 such that

IAS; Alloo <C-(14+ 1)1 and ASd(A)|le <C - (1+ 1) (82)

forall A > 0.

8.1. Preliminary algebraic identities. Let us apply the notation
K:=1-A%/r and X;:=1-RK

for all A > 0. We start our work on understanding the modular transform
1 o0
Goa:A(DD) > V. Goa(s) = — [ 288,D(88) d2
7 Jo

by rewriting the (modular) resolvent S; = (1 + AA?/r + D?)~! in a way that
is more amenable to a computation of the integral appearing in the expression for
the modular transform. More precisely, we first expand the (modular) resolvent
S,:Y — Y as a power-series involving the (standard) resolvent R,:Y — Y and the
bounded adjointable operator K: Y — Y. We then reorganize this power-series by
moving all the K-terms to the left and all the Rj-terms to the right and during this
procedure we pick up an explicit error-term. These steps will be accomplished in the
present subsection.

Lemma 8.2. For each A > 0 we have the identities
o0
Sa=> X} -Ri=(0-X)""Ry=Ri(1-X)7",
n=0
where the sum converges absolutely.
Proof. Let A > 0 be given. By the resolvent identity we have that
Ry—S;, =(A+1+D>1'—AA%/r+1+ D*>!

=—A+ 14D -A%/r)AA%/r + 14 D?)7!
= —X,’L . S)L.

Since ||A?||oo < r we have that

IXalloo <A+~ < 1.
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We may thus conclude that 1 —X: Y — Y isinvertible with (1—X,)™1 = Y72 | X3
where the sum converges absolutely. From the above, we deduce that

o0
Sy =0-X,)" 'Ry = fo “Rj.

n=0

Since S} = §; and R} = Rj we also see that S; = R; (1 — X;‘)_l. This proves
the lemma. O

We will from now on apply the notation
I(T) :=[D?T]:D(D* - Y
whenever 7:Y — Y is a bounded adjointable operator such that
T(D(D?) € D(D?).
Lemma 8.3. Let A > 0, n € N and k € N U {0} be given. We have the identity
X7 AR = (X" KARR A — I(XPAF)R;.

Proof. We compute that

I(XPARYR; = AKXPTIARR, — X AR = A(X7)" KA R, — X7 A,
where we are using that KX, = X )’f K. This proves the lemma. 0

Lemma 84. Let A > 0, n € N and k € N U {0} be given. We have the identity
n—1 . ) ) '
Xp- A = ARATKTRY =Y KT 1 (XTI AR)RITI
j=0

Proof. The proof runs by induction using the identity in Lemma 8.3. 0

For each m € N and each A > 0 we define the bounded adjointable operator
Ly(m):=1((1—X]")S,KAA)Ry:Y — Y.

Lemma 8.5. Let A > 0 and N € N be given. We have the identity

N N N—-1
SOXpA Ry =) ANK'RITT - YT K"-Liy(N —n) - RyTIAM

n=0 n=0 n=0
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Proof. By an application of Lemma 8.4 (and a reordering of terms) we obtain that

N N n—1
DOXpAP Ry = ZA AKTRETN NN K1 (X TA3) RN
n=0 n=0 n=1 ;=0
N N—-1N—j
=Y AAKTRYTT - N K I(XPAR)RITA
n=0 j=0 m=1
The result of the lemma now follows since Lemma 8.2 implies that
N—j—-1 .
dxr= 3 XI'RiKA=(1-X,))S,KA. O
m=0

For each A > 0 we define the bounded adjointable operator
L :=I(S, KAA?)R;:Y — Y.

Lemma 8.6. Let A > 0 be given. Then the sequence {L,(m)},"_, converges to
L;:Y — Y in operator norm.

Proof. Using the Leibniz rule we see that it suffices to verify that the sequence
{I (XS A}m | converges to zero in operator norm. However, using the Leibniz
rule one more time, we obtain that

m—1 ) )

(XS, ==Y X I(RAHXTT 8,00 /r
=0
m—1 )
==Y X{I(RAAD) S (X" A
=0

Remark here that Lemma 8.2 indeed implies that X3 S; = S; X I . The result of the
lemma now follows easily by noting that

IXillo = A+ A)7" <
Indeed, we may then find a constant C > 0 such that

(XSl <C -m-(A(1 + A)_l)m_l

for all m € N. O

We are now ready to prove the main result of this subsection. It provides an
expansion of S3A3:Y — Y where the first power-series appearing can be directly
related (after integration over the half-line) to the bounded adjointable operator
(14 D?)~Y/2:¥ — Y. The exponent 3 that appears here (and earlier in this section)
is not special, we only need that it is large enough for certain estimates to be valid
later on.
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Proposition 8.7. Let A > 0 be given. Then we have the identity
oo [e.e]
SHA® =Y APKMRITIN =N UKLy RYTIA — (1 - X3) T HI(RAAP) Ry,
n=0 n=0

where each of the sums converges absolutely in operator norm.

Proof. It is clear that the sums converge absolutely in operator norm. Indeed, this
follows since || K|oo < 1 and since |Rj - Aloo < A(A + 17! < 1.
To continue, we notice that Lemma 8.2 entails that

SHA3 =1 —X)YA3R, + (1 — X)) Ry, A3
= (1 - X)) 'A°R; — (1= X3) ' I(RAA®)R;.

Now, by an application of Lemma 8.5, we see that we may restrict our attention
to proving that the sequence

N-1
IS KLV =) RIS
: A J 2 Ne1
Jj=0
converges in operator norm to Z;ozo K/ Ly Ri“/\j . To this end, we define

00
Co:=sup ||Ly(n)||lc and C;:= Z ||Ri+1kj”oo‘
neN j=0

Both of these constants are of course finite. Let now & > 0 be given. By Lemma 8.6
we may choose Ny, My € N such that

&
L,—L —— foralln > N,
1 L2 A(n)||oo<3(cl+1) oralln > Ny
nd : &
and Y AR W oo < o
A 3(Co + 1)

It is then straightforward to verify that

() N-1
KL, RV S KIL N — R"“M’H
H;} AR} YKL - DRIV <e

for all N > Ny + My. This proves the present proposition. O



460 J. Kaad

8.2. Integral formulae for the square root. The aim of this subsection is to com-
pute the integral over the half-line of the continuous map

o0
[:(0.00) > £(Y).  fide ()2 ASKTRITIAN
n=0
which appears (up to a factor of (Ar)~!/2) in the expression for A3S; A3 Y — Y
obtained in Proposition 8.7. The main result of this subsection is the explicit formula

1 /oo fydr = A1+ DH7/2
T Jo

which is proved in Proposition 8.13.
We start by recalling a general result on integral formulae for powers of resolvents:

Lemma 8.8. Let A: D(A) — Y be an unbounded selfadjoint and regular operator
and let p,q > 0. We have the identity

o0
B(p,q)-(1+ A% = / APTHA 4+ A+ AP TP,
0
where the integral converges absolutely and where

o0
B(p.q) :Z/O w1+ )P dp

is the beta-function.

Proof. Notice that a change of variables (A = p - ¢) implies that

o0

o
/ AP 4 1) P dL =17 / PP 4 )P dp
0 0

for all t > 0. The result now follows by an application of the functional calculus for
unbounded selfadjoint and regular operators, see [41,42]. O

Let us fix two elements £, € Y together with a state p: B — C on the base
C *-algebra.

The next lemma reduces the computation of the integral % fooo f(A)dA to a
(delicate) matter of interchanging an infinite sum and an integral.

Lemma 8.9. The sequence of partial sums

1 N [e.¢] o0
{;Z/O (A~ V2p((A2K" RN ) dAf
n=0

converges to p((A(l + D?)71/2¢, 77))
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Proof. By Lemma 8.8 we have that

1 & 1/2 A2 +1
— nan n
- rZ/ ATVZ AR AR A
n=0 Y
- o
= ZAZK”-/ AnTUZL R g2
b4 rn=0 0
1 N
_ > A2K". B(n+1/2.1/2) - (1 + D?)71/2
TTA/T
n=0

for all N € N. Thus, it suffices to check that the sequence of complex numbers

- 0o
{ nX_(:)p((AzK”S, n)- B +1/2, 1/2)}N:1

TTA/T

converges to p((AE , n)) € C. Because of the polarization identity, we may assume
(without loss of generality) that £ = 7.
Let now i > 0 be fixed and notice that

o0

SOAKT (4w =20+ Y (KA + )

n=0 n=0
=N+ (1- K1+ ")
=A*(1-K+ ™ =A2A%r + )"

Next, by a change of variables (i = A - A2/r), we obtain that

1 [ 1 [
—/ (wr) V2A2(A%)r + ) Ndp = —/ AT20 4+ 1) AdL = AL
T Jo T Jo

Therefore, by the monotone convergence theorem, we may conclude that

T/ N—o0

N
. lim (Zp((AzK"g,s)) -B(n+1/2, 1/2))
n=0

00 N
L im (/0 ()2 3 p((A7K (1 + W™ 8)) dp)
n=0

7T N—oo

= [ o822+ g ) d
— ((AE.)).

This proves the lemma. O
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In order to compute the integral of f:(0,00) — £(Y) (and to show that this
function is integrable) we now want to apply the Lebesgue dominated convergence
theorem. Or in other words we need to find a positive integrable function g: (0, co) —
[0, co) such that

N
Oy 2| 32 ASK RN < g() forall i >0, N €N,
n=0

This turns out to be a subtle problem and the solution will rely on the identities
derived in Subsection 8.1 and the estimates that we carry out in the appendix to this
paper. On top of these estimates we need the following two lemmas:

Lemma 8.10. Let p € (—o00, 2] be given. We have the identity

o0
> (14 DHPRTAA = (14 D*)P 124 + 1+ D)7,

n=0
where the sum converges absolutely in operator norm for all A > 0.
Proof. It is clear the sum converges absolutely for all A > 0. To prove the relevant

identity we let A > 0 be given and compute as follows:

o0
>+ DRI = (14 DRI (1 - R32%) ™!
n=0

=1 +DH»?(1+D>H'er+1+D*7. O

Lemma 8.11. The sequence of partial sums

N o0
{ Z AZ KZn}
n=0 N=0
is bounded in operator norm.
Proof. This follows from the identities

N N
Z(AZ/’,)KZn(z_ AZ/,.) — Z(l _KZ)KZn =1 _KZ(N+1)

n=0 n=0
by noting that 2 — A2/r:Y — Y is invertible and that || K||o < 1. O

Lemma 8.12. There exists a positive integrable function g: (0, 00) — [0, 00) such
that

N
(RS DIND Y IR0V
n=0 &

forall A € (0,00) and all N € N.
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Proof. By an application of Lemma 8.5 we obtain that

N N N
DOASKTRITIAT =D APXIRAA + Y APXTI(RLAPR;,
n=0 n=0 n=0
N-1
+ Y APKPLA(N =) RGP (8.3)
n=0

forall A > 0 and all N € N. We estimate the operator norm of each of these terms
separately.
For the first term in equation (8.3) we apply Lemma A.3 to obtain that

N
H 3 A3Xi‘R,1A3HOO < 1A383A3 0o < r3(1 + A1)
n=0

forall A > 0andall N € N.
For the second term in equation (8.3) we apply Lemma A.3 and Lemma A.1 to
find a constant C; > 0 such that

N
HM ZXQI(RAM)RA”OO
n=0

N N
< HA3ZX;DRM(A3)RAH n HA3ZX§ZRM'(A3)DR,1H
n=0 e n=0 *

= A1 = XYTY(DS)* - d(AY)Ry| A+ | AP0 = XY Sd(A®) DR, ||
<Cr-(1+ )74
forall A > 0and all N € N. We recall here that

sup [[(A +&)72d(A%)(A + )72 <00
£€(0,1]

oo

by Assumption 8.1 and that the sequence {A 1V2(A4+1/m)~V 2};)::1 converges strictly
to the identity operator on Y.

For the third term in equation (8.3) we apply the Cauchy—Schwarz inequality to
obtain that

N-1
H > ATK" LN = m Ry
n=0

N-1 12
< | 3 AR Ly =)+ DTN ) K7 AY|
n=0 o

N—-1

. H > (1 + DR+ (8.4)
n=0

1
00
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We then note that Proposition A.9 and Lemma 8.11 imply that there exists a constant
C, > 0 such that

N-1
1/2
H Y APK"Li(N —n)(1 + D) Ly(N —n)*K"A3H <Gy (1 4+ 1)1
(e 0)
n=0

forall N € N and all A > 0. Furthermore, by Lemma 8.10 we have that

1/2
<Q@r+ 1712
o0

N-1
H Z(l n D2)Ri"+212”
n=0

forall N € N and all A > 0. This provides an adequate norm estimate of the final
term in equation (8.3) and the lemma is therefore proved. ]

The main result of this subsection now follows by Lemma 8.9, Lemma 8.12, and
the Lebesgue dominated convergence theorem:

Proposition 8.13. The continuous function

Fi(0,00) > E(Y),  f(A) = (Ar)"V2 3 ACK"RITIAY

n=0

is absolutely integrable (with respect to Lebesgue measure on (0, co) and the operator
norm). Furthermore, the integral is given explicitly by

! /oo f(A)dr = A5(1 + D?)~V2,
T Jo

8.3. Comparison with the bounded transform. We are now ready to prove the
main theorem of this section, which, at least in practise, says that the bounded
transform Fp = D (14 D?)~'/2 has the same compactness properties as the modular
transform

Gp.a: AE— 1 /OO(Ar)_l/zASAD(Ag) dr, £eD(D)
7 Jo

after multiplication with a sufficiently large power of the modular operator A. We
remark that it might be possible to improve the exponent p € [0, 1/4) appearing
in the main theorem here below. Allowing exponents p € [1/4,1/2) could be
important in a more detailed analysis of summability properties in relation to the
unbounded Kasparov product. In the present text we limit ourselves to the question
of compactness of resolvents and defer a deeper analysis of decay properties of
eigenvalues to future work.
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Proposition 8.14. Suppose that the conditions in Assumption 8.1 are satisfied and
let p € [0,1/2) be given. Then the difference of unbounded operators

ASFp - (1 4+ D?)?

1 00
__/ (Ar)_l/zA:%(l_X)t)_lA?’R)Ldk'D(l+D2)p:§D(|D|2p+l)_>Y
T Jo

has a bounded extensionto Y.
Proof. Tt follows from Proposition 8.7 that
A1 = X)) 'A%R), = A3S3 A3 + A3(1 — X;) ' I(Ry AR,
o0 o0
=Y ASK"RITIAT = APKTLRyTIA”
n=0 n=0

and hence, by an application of Proposition 8.13, we may focus our attention on
proving that the unbounded operator

1 [ >
—/ (AnTV2Y CAKTLRTIA dA-D(1+ D) D(|DIPPF) > ¥ (8.5)
T Jo

n=0

has a bounded extension to Y.
To this end, we apply the Cauchy—Schwarz inequality to obtain that

(e 0)
H Y A3K"L,D(1 + D?)PRiF1A"
o0
n=0

N 1/2 0 1/2
= sup ” Z A3K"L,1LKK”A3H . H Z D(1 + D?)?P R2"+2)2n
NeN ", "o [ele) o 00

for all A > 0. Next, by an application of Proposition A.8 and Lemma 8.11 we may
find a constant C; > 0 such that

N
1/2
sup H ZMK”LALIK"M” <Ci (142712
NeN ' —, 00

Furthermore, by Lemma 8.10 we have that

/2 < |+ D> @A+ 1+ D>

1
0

o0
H Z D2(1 + Dz)szi”“/\Z"
n=0

< @A+ 1)P1/2,
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These estimates imply that the integral
1 [ >
— / (A2 APK"Ly - D1+ DA)PRITIA" d
T Jo n=0

converges absolutely in operator norm and the proposition is therefore proved. [

Before proving our main theorem we present a few extra preliminary results on
the modular transform:

Lemma 8.15. The modular transform Gp a: A(D (D)) — Y has a densely defined
adjoint Gp, \: D(Gp o) — Y. Infact, it holds that A(D(D)) € D (G}, ) and that

Ghad6) =+ [ G DS AGBH A § DD,

where the integral converges absolutely in the normon Y .

Proof. It suffices to show that the integral
1 [e.e]
- / Ar)"V2DS; A%t dA
T Jo

converges absolutely for all £ € D (D). To this end, we compute that
DS, A’ = ADS; AE 4 [DS,, AJAE (8.6)
= AS DAE + A[D, S;]AE + [DS), A]AE
= AS,DAE— L - ASAd(AZ/r)SAAé + d(A)S)AE + DIS;, A]AE.

It follows from the computations at the beginning of Section 8 (Egs. (8.1) and (8.2))
that there exists a constant C; > 0 such that

IAS,DAE|| < Cy-(14+A1)73* forall A > 0.

For the remaining three terms on the right hand side of equation (8.6) we may estimate
the operator norm directly: for the first two of these three remaining terms we obtain
from Lemma A.3 that

A+ ASd(A?/r)SiAlloe < Ca- (14 A)73/*
and Id(A)S3 Alloo < Cs- (1 + A)73/*

for some constants C,, C3 > 0, which are independent of A > 0. For the last of our
three remaining terms we use Lemma A.1 and Lemma A.2 to see that

ID[A, S3]Alleo < 12522 (A)S3Allco + [ DSd(A) DS Aloo
<Cy- (11734

for some constant C4 > 0, which is again independent of A > 0. These estimates
imply the desired convergence result and the lemma is therefore proved. O
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Lemma 8.16. We have the inclusion
D(D) < D(AGp,A)

and it holds that
- 1 [°
50pa® = [ G aTsiDEdk EeDD). 87
0

where the integral converges absolutely in the normon'Y .

Proof. Remark that Lemma 8.15 implies that AGp a: A(D(D)) — Y is indeed
closable. In fact, AG p_a has a densely defined adjoint since D (D) S D((AGp,a)*).
Remark also that the integral on the right hand side of equation (8.7) converges
absolutely since it follows by the computations in the proof of Lemma A.4 that

1A%, DE|| < [|A%Salloo - IDE < € - (1+ 1) || DE|

for some constant C > 0, which is independent of A > 0.
Let now & € D (D) be given. It holds that

A(/n+A)'E & and A(/n+ A)'E € D(AGDA)
for all n € N. It therefore suffices to show that
-1 l * —1/2 A2
AGp aA(l/n+ A)" & — (A1) A“S, DEdA.
T Jo
For each n € N, we have that

1 o0
AGpaB(/n+ &) e = — [ (NS DA/ + 2) g dA.
0

Now, since 2 [°(Ar)"1/2A2S) d A is a bounded adjointable operator we only need
to prove that
DA(1/n + A& — DE.

But this follows from the computations presented in the proof of Proposition 5.4 and
Lemma 5.5. Indeed, one has to verify that

d(A(l/n+ A7) =1/n(1/n + A)7'd(A)(1/n + A)T'E — 0. O

Theorem 8.17. Suppose that the conditions in Assumption 8.1 are satisfied and let
p € [0, 1/4) be given. Then the difference

A5Gpa(l+ D*? — AN Fp(1+ D?)?: D(ID[*?*) > ¥

extends to a bounded adjointable operator onY . In particular, we have that A>G p a
is a bounded adjointable operator.
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Proof. By Lemma 8.15, Lemma 8.16 and Proposition 8.14 we may focus on showing
that

R 1 o0
85Gpa-(1+ D% —— [T Gn A% - ) ARy a3 DO+ D
0
1 o0
= ;/ (Ar)V2A3[A%, (1 - X;) 1R, dA - D(1 + D?)?
0

extends from O (| D[*P*1) to a bounded operator on Y. We achieve this by proving
that the integral

1 o
—/ (Ar)"V2A3[A% (1 - X;)7']D(1 + D*)P R, dA
T Jo

converges absolutely in operator norm.

To this end, we start by computing that
(A% A-X)' ] ==X [A% X, ] — X))
=A(1— X)) A RyJKA - X3)7!
= A(1 — X)) 'DR (AR K(1 — X;) !
+A(1 = X;) 'Ryd(A®)DRK(1 — X;)7!
= 18,2Q,d(A%)S, K + AS3d(A*)DS; K,

where we are using the notation from Lemma A.1. We thus have that
A3[A3,(1-X)7' D € AA3S)2Q,d(A%)S) 2K + AA3S;d (AN QK
+AA3S12Qd (A S1d(A%)r) + AN S, d(A)S1d(A%/r).

The estimates in Lemma A.1, Lemma A.3, and Lemma A.4 then imply that there
exists a constant C > 0 such that

IA3[A%, (1 — X;) ' IDE| < € -A(1+ 1) - ||

for all A >0 and all £ € D (D). Since |[(1 + D?)P R |loo < (1 +A)"1T2 forall 1 >0,
we conclude that

|A3[A3 (1= X)) |D(1+ D)’ Ry < C-(1+1)734»

for all A > 0. This proves the theorem since p € [0, 1/4) by assumption. O

9. The Kasparov module of an unbounded modular cycle

Throughout this section we let # be a x-algebra which satisfies the conditions of
Assumption 2.2. We then consider a fixed unbounded modular cycle (X, D, A)
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from # to an arbitrary C *-algebra B. We assume that (X, D, A) is either of even or
odd parity and in the even case we denote the Z /27Z-grading operator by y: X — X.
We apply the notation

Fp:=D(1+ D> "?

for the bounded transform of the unbounded selfadjoint and regular operator
D:D(D) — X.

The aim of this section is to show that the pair (X, Fp) is a bounded Kasparov
module from A to B and hence that our unbounded modular cycle gives rise to a class
inthe KK-group, KK ,(A, B) (where p = 0, 1 according to the parity of (X, D, A)).

We will thus prove (see Theorem 9.5) that the following holds for all a € A:
(1) m(@)(F} — 1) € X(X):
(2) 7(@)(Fp — F}) € K(X);
(3) [Fp,m(a)] € K(X);
4) Fpy = —yFp and w(a)y = yn(a) in the even case.

For more information on K K -theory we refer the reader to the book by Blackadar [2].

The main difficulty is to prove the commutator condition (3) and it is to this end
that we have introduced and studied the modular transform in Section 8. To explain
why this was necessary we first recall the notation

Si=(AN/r+1+4 D)X - X,

where r € (||A||Z,. 00) is a fixed constant and A > 0 is a variable. The next lemma
presents the main algebraic reason for working with the modular resolvent S instead
of the ordinary resolvent R) = (A + 1 + D?)~!. Indeed, if the computation below
is carried out with R} instead of S, then the commutator [A2, 7] has to be replaced
by the commutator [(1 + A)AZ2, T] and there is then no gain in the decay properties
when the variable A tends to infinity. This observation is responsible for the failure
of the usual proof ([1]) of condition (3).

We remark that it follows from Definition 3.1 that the conditions in Assumption 8.1
are satisfied for the pair (D, A).

Lemma 9.1. Let T € £(X) be differentiable with respect to (D, A) (as in Defini-
tion 3.3). We have the identity

SAA2T — TA2S) = SH[A%, TS, — (DS3)*da(TA)S), — Syda(AT)DS;,

forall A > 0.
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Proof. Let first £ € H(D?) and notice that
SAATD?(§) — (D*S3)*TA*(§)
= (DS)*ATAD(§) — S da(AT)D(§) — (D?S3)*TA?(§)
= (DS)*DTAE) — (DS;)*da(TA) ()
— $3da(AT)D(§) — (D?S3)*TA%(§)
= —(DS3)*dA(TA)(E) — S2da(AT)D(®).
The result of the lemma then follows since
SAA2T —TA%S; = SHA2T(D? + 1+ AA%/r)S;,
— S, (1 + AA%/r)TA%S, — (D2S))*TA%S;
= S3[A%, T]S; + S, A’TD?S) — (D?S3)*TA%S,. O

In the next two lemmas we show that we may replace the bounded transform Fp
(up to a compact perturbation) by the modular transform G p a (in a slight disguise).

Lemma 9.2. Let Z be an extra Hilbert C*-module over B and let T: Z — X be a
bounded adjointable operator. Suppose that (1+D?)™'T € K (Z, X) and that there
exists a dense submodule Z C Z such that T(Z) C D(D). Then the unbounded
operator

o0
A Fp-T — 1p / Ar)"V2 A, A dA-T:Z — X
Y4 0

is the restriction of an element in K (Z, X).
Proof. It follows by Theorem 8.17 that the difference
1 o0
A FpT — —/ (Ar)"Y2. A8, dA-DT:Z — X
7T Jo
is the restriction of an element in KX (Z, X).
Furthermore, we notice that the difference
A°S; DT — DAS; A°T:Z — X

extends to a compact operator from Z to X for all A > 0 (in fact both of the two
terms have this property).
To prove the lemma, it therefore suffices to find a constant C > 0 such that

|A®SiDE — DASAE| < C - (14+2)72/* - ]
forall A > 0 and all £ € D(D). Using Lemma A.2 we see that
A®S; DE — DAS) At = A[A®, S;]DE — [D, AS; A°]¢
= AS,2Q2,d(A%)S) 72,6 + AS;d(A%)Q5Q;E
—d(A)SHAE 4+ A - AS;d(A%)r)S)AE — ASyd(AY)E
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forall A > 0 and all £ € D (D). The desired estimate then follows from Lemma A.3
and Assumption 8.1 (2). O

Lemma 9.3. Let Z be an extra Hilbert C*-module over B and let T: Z — X be a
bounded adjointable operator. Suppose that (1+D?)™'T € K (Z, X) and that there
exists a dense submodule Z C Z such that T(Z) C D(D). Then the unbounded
operator

1 o0
FDAST——D-/ Ar)"V2A%S, AdA-T:Z — X
T 0

is the restriction of an element in X(Z, X).
Proof. We start by noting that
[Fp,A°]T € X(Z.X).

Indeed, this follows by using the integral formula
1 o0
Fp=D- —/ ATV2(0 4+ 1+ D?)1da
T Jo

and the fact that [D, A]: D(D) — X has a bounded adjointable extension to X .
Now, by Lemma 9.2 we obtain that the difference of unbounded operators

1 o0
A FpT — —D / Ar)"V2AS, A dA-T:Z > X
T 0

is the restriction of an element in KX (Z, X).
We then remark that the difference

DAS, AT — DA*S;, A’T:Z — X

is a compact operator (both of these terms are in fact compact).
To prove the lemma, it therefore suffices to find a constant C > 0 such that

|DA[S,. A%1A% | < C-(1+ )7
for all A > 0. However, using Lemma A.2 we see that

DA[S;, A3]A? = d(A)[S;., A3]A? + AD[S;, A3|A?
= d(A)[Sy. A’]A% — A(Q5Qd(A%)S; + DSd(A°)DS)) A,

The relevant estimate then follows by an application of Lemmas A.1 and A.3-A.5 in
combination with Assumption 8.1 (2). O
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Proposition 9.4. Let Ty, T1 € £(X) and suppose that the following holds:

(1) Ty is differentiable with respect to (D, A) and (1 + D?)"'Ty € X (X).
(2) (1 4+ D?)7'Ty € X(X) and (T{ A)(D(D)) € D(D).

Then the bounded adjointable operator [Fp, A>Ty A>T : X — X is compact.

Proof. By Lemma 9.2 and Lemma 9.3 it suffices to show that the difference

1 o0
-D / Ar)"V2A4S, A2 dA - TyA Ty
T 0

1

b3

o0
ASTOD-/ r) Y2AS, A5 dA - Ty A(D(D)) — X
0

extends to a compact operator on X. To this end, we notice that
K := DA*S)3 A2ToA Ty — APToDAS A T: X — X

is compact for all A > 0. In order to prove the proposition, it therefore suffices to
find a constant C > 0 such that

IKillow < C-(1+ )7 (9.1)
for all A > 0. To show that this is indeed possible, we notice that
DA*S) A’TyA°> — ASTyDAS A = DA*(S; A%Ty — ToA%S;)A®
+ (DA*TyA — A’TyD)AS) A°.

The relevant estimate for the second of these two terms then follows from Lemma A.3
and the fact that 7T} is differentiable. To treat the first of these two terms we apply
Lemma 9.1 to see that
DA*(S3 ATy — ToA%S;)A° = d(A*)(S; ATy — ToA%S;)A°
+ A*QE(S)P[A2, TolS) — Quda(ToA)S), — S} da(AT))R5S, %) A%

The relevant estimate then follows from Lemmas A.1 and A.3—-A.S. J

Theorem 9.5. Let (X, D, A) be an unbounded modular cycle from 4 to the C*-alg-
ebra B (with grading operator y: X — X in the even case). Then the bounded
transform (X ,D(1+D?*)~V 2) is a bounded Kasparov module from the C *-algebra A
to the C*-algebra B of the same parity as (X, D, A) and with grading operator
y: X — X in the even case.

Proof. The only non-trivial issue is the compactness of the commutator

[Fp,m(@)]: X - X
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for all a € A. However, it already follows by Proposition 9.4 that
(A +1/n)"YFp, An(a)A°](A° + 1/n) tn(b): X - X
is compact for all @, b € 4 and all n € N. Moreover, it may be verified that

[Fp, (A% + 1/n) A 7(@) A (A° + 1/n) " 7 (b)
and (A% + 1/n) ' AP (@) A [ Fp, (A + 1/n) = (b)

are compact operators on X . Using the density of # in A and the fact that
A1 /n 4+ A tn(a) - 7(a)

in operator norm for alla € + we obtain that [Fp, w(a)]n(b) € K (X) foralla, b € A.
It then follows that [ Fp, (a)] € K (X) for all a € A by a standard trick in K K -theory.
O

Remark 9.6. There is a much easier proof of Theorem 9.5 in the case where the
unbounded modular cycle is Lipschitz regular thus when the twisted commutator

|D|r(a)A — An(a)|D]: D(D) - X

has a bounded extension for all a € 4. Indeed, it is then possible to follow [8,
Proposition 3.2] more or less to the letter. It is however unclear whether the cond-
ition of Lipschitz regularity is compatible with the unbounded Kasparov product
construction given in Section 7. In fact, to our knowledge, this problem is not
even well-understood in the case of the passage from D to gDg (see Remark 3.2
and [8, Section 2.2]). In this text, we have therefore chosen to avoid the extra Lipschitz
regularity condition altogether.

10. Relation to the bounded Kasparov product

Throughout this section we let 4 and B be two x-algebras which satisfy the conditions
in Assumption 2.2.

We consider an unbounded modular cycle (Y, D, I') from B to an auxiliary C*-
algebra C. The parity of (Y, D, I') is denoted by p € {0, 1}. Furthermore, we let X
be a differentiable Hilbert C*-module from + to B8 with differentiable generating
sequence {£,}5° ;. We finally suppose that the *-homomorphism m4: 4 — £(X)
factorizes through the compact operators J (X) C £(X).

As a consequence of Theorem 7.3 we obtain that the triple

(X®pY,(1® D)a,A)
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is an unbounded modular cycle from #4 to C of the same parity as (Y, D, I'). Thus,
by an application of Theorem 9.5 we have a bounded Kasparov module

from A to C and hence a class [(1 ® D)a] in the KK-group KK, (A4, C).

On the other hand, since m4(a) € K (X) for all @ € A, our differentiable Hilbert
C*-module X defines an even bounded Kasparov module (X,0) from A to B, and
hence a class [X] in the even K K-group KKy (A, B). The grading operator is here
just the identity operator on X. On top of this, we know from Theorem 9.5 that our
original unbounded modular cycle (Y, D, I') yields a bounded Kasparov module

(Y.D(1+ D*)7'/?)
from B to C and therefore we also have a class [D] in the KK-group KK ,(B,C).

Under the condition that A is separable and B is o-unital, we prove in this final
section that the identity

[(1® D)a] = [X]® B[D] (10.1)
holds inside the KK-group KK (A, C), where
® p: KKo(A, B) x KK,(B,C) — KK,(A,C)
denotes the interior Kasparov product in K K -theory.

To ease the notation, we define

Fa=(1®D)a-(1+(1®D)3) " ec2X&5Y)
and F:= D+ D?>7 Y2 e ().
For the rest of this section, we assume that the C *-algebra A is separable and that
the C*-algebra B has a countable approximate identity (thus that B is o-unital).

Remark 10.1. Even though the interior Kasparov product in K K-theory is only
constructed under the assumption that A is separable and B is o-unital we do not
rely on these assumptions for the construction of the unbounded Kasparov product.
The bounded Kasparov module (X & Y, Fa) therefore exists regardless of these
assumptions on the C *-algebras 4 and B.

Due to a result of Connes and Skandalis we may focus on proving that F is an
F-connection, [9, Theorem A.3]. Or in other words, if we can show that
FT} —T/Fa € X(X®pY.Y) (10.2)

for all £ € X we may conclude that the identity in equation (10.1) holds. We recall
here that
T X®pY =Y, Tl :x®pyr np((£,x)()

forallx e X,y eY.
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Remark 10.2. In the work of Kucerovsky, [29, Theorem 13], conditions are given
for recognizing unbounded representatives for the interior Kasparov product. These
conditions can not be applied in our setting since our unbounded cycles are not
unbounded Kasparov modules in the sense of [1]. Indeed, the main difference is that
we are considering a twisted commutator condition (see Definition 3.1) instead of
the straight commutator condition applied in [1].

We start by replacing the connection condition in equation (10.2) by something
more manageable. Let us recall that ®: X ® gY — £2(N, Y) is defined by

®:x ®py > Y w8 ((6, X)) ()5

n=1

forall x € X, y € Y. Furthermore, we have the modular operator
A=0*1RDNP:XR®pY - X ® Y.
Lemma 103. (i + (1 ® D)a) 'A € X(X & gY).
Proof. This follows by Proposition 6.2 since
®®* € Im(K(p): K(B) —> £((*(N,Y))).
see also Proposition 3.5. O
Lemma 10.4. Suppose that there exists a k € N such that
(1® FT¥)oAk — (1 @ TF)®A*Fp € K (X & pY, 3(N,Y))

then we have that
FT —T/Fa € X(X®pY,Y)

fJorall§ € X.
Proof. We first show that
(1® FT*)® — (1@ T*)®Fa € X(X ® pY, £3(N,Y)). (10.3)
To this end, we notice that
(1® FTHOAR(A* 4+ 1/n)™" — (1 @ TF)DAX(AF + 1/n) "' Fa
= (1 ® FTF) AR (A* +1/n)™1 = (1 @ TF)OAF Fa(AF + 1/n)7!

— (1 @ TOYOAF (AR + 1/n) " [Fa, AF|(A* + 1/n)7!
€ K(X ® Y, L*>(N,Y))



476 J. Kaad

for all n € N. Indeed, this is a consequence of the assumptions of the present lemma
and the fact that
A[FA,Al: X ® Y - X ® Y

is compact (this last assertion follows by Lemma 10.3). The inclusion in equa-
tion (10.3) now holds since the sequence

k k —1\
{1 D)2oA* Ak + 1/m)1}77
converges to
1®D)20: X ® Y — £>(N,Y)

in operator norm.
Our next step is to show that

PFr—(1Q F)® € X(X ® Y, £2(N,Y)). (10.4)

In this respect, we remark that

(1® FTY@* +1/n) ) — (1 @ TX(T% + 1/n) ") ®F,
= (1@ +1/m)'FT¥)o - (1@ THT* + 1/n)7')®Fa
— (1 @*+1/n) ' F,TFTRT* + 1/n) 1)@
€ K(X ® pY,£*(N,Y))

for all n € N. Indeed, this is a consequence of the inclusion in equation (10.3) and
the fact that

(1@ [F, TFITK(* + 1/n)™")® € X (X & Y, €*(N,Y))

(recall that ®®* lies in the image of the *-homomorphism K(7p): K(B) —
£(£%(N,Y))). The inclusion in equation (10.4) now follows since the sequence

{(1e Tk Tk +1/n)7 "))

o0
n=1

converges to ®: X ® g¥Y — £2(N, Y) in operator norm.
By the definition of ®: X ®pY — £2(N,Y) we see from equation (10.4) that

TS Fa—FT € K(X®Y.Y) (10.5)
foralln € N. Letnow b € B and n € N be given. We then have that
= np(b*) (T Fa— FT{) — [F.np(b")T .

Thus, since (Y, F) is a bounded Kasparov module we deduce from equation (10.5)
that
Tg;.,,FA—FTg.,, e K(X®pY,Y). (10.6)
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Since the sequence {£, },> ; generates X as a Hilbert C *-module over B, we conclude
from equation (10.6) that

TYFA—FT} € X(X ® Y.Y)
for all ¢ € X. This proves the lemma. O

Let us apply the notation
S = (AA2/r+14+(1®D)3)"" and Tj:= (/\(1®F)2/r+1+(1®D)2)_1,

where r € (||A||C2><> + T2, oo) is a fixed constant and A > 0 is a variable.
The next lemma relates these two modular resolvents to one another:

Lemma 10.5. The difference

(1QT%)PA%S; A* (18 D)a— (18 DTH) T, (1RT2)PA: D((1®D)®) — (3(N,Y)

(10.7)

extends to a compact operator K3: X ® gY — £>(N,Y) and there exists a constant
C > 0 such that

IKalloo < C - (14 A)73* (10.8)

forall A = 0.

Proof. 1t is not hard to see that the difference in equation (10.7) has a compact
extension K3: X ® Y — ¢2(N,Y) for all A > 0 (in fact this holds for each of the
two terms). We may thus focus our attention on providing the operator norm estimate
in equation (10.8).

Our first step in this direction is to notice that it is enough to consider the difference

(1®T?)PA?S; (18 D)aA*~(18T° D)T; (18T PA®: D((1® D)®) — £*(N,Y)

of unbounded operators. This follows since we may dominate the operator norm
(uniformly in A > 0) of each of the bounded adjointable operators
(1 ®T?)PA%S;da(A?), (1® DTH[T;, 1 @T](1 ® T)DA®
and
dier(1 @ THT;(1  THPA%: X @ pY — £2(N,Y)

by Co - (1 + 1)~/ for some constant Cy > 0. To see that this is indeed the case, it
suffices to apply Lemmas A.1-A 4.
Our next step is to define the unbounded operator

M = (1T T (PA?— (1@ TH P+ digr (1@ T)G)P(1® D)a)Si(1® D)a
+ (1) ((1®D)T1)*(dier(G)G1®I) + (1®)Gdier(G))®S,(1® D)a:
D((1® D)a) = L2(N,Y),
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where we recall the notation G := ®®*: {2(N,Y) — ¢2(N,Y). It then follows by
Lemma A.1, Lemma A.3 and Lemma A.4 that there exists a constant C; > 0 such
that

IMAE)] < Cr(1+ 1)~ ]| (10.9)

forall A > Oandall§ € D((1® D)a) € X ® pY. Furthermore, by Proposition 6.4
we have that

(1R I?)(PA%S) — Th(1® *)®)(1 ® D)a = M,

for all A > 0. In order to provide the relevant estimate on K3: X ® gY — £2(N,Y)
it therefore suffices to analyze the difference

(1 RTHTH(1 ®T?)P(1 Q@ D)aAA* —T3(1 ® D)Ty(1 @ T)PA>:
D((1 ® D)®) — £*(N,Y)

of unbounded operators.
However, we have that

(18 T)0(1® D)a(§) — (1® D)Th(1 ® T)PA(E)
= —d(T)(1 ® T)PA(E) — T5.(1 ® INdi1gr(G)P(§)

forall £ € D((1 ® D)D) and the result of the lemma therefore follows by one more
application of the operator norm estimates in Lemma A.3 and Lemma A 4. O

Lemma 10.6. The unbounded operator
o
/ Ar)"V2. (1 @ T?)®A%S,A*dL- (1 ® D)a
0

~(1®D)- /oo()u)—l/2 (1@THT(1 QT2 dA - PAS:
' D((1® D)P) — (3(N,Y)
is the restriction of an operator in X (X ® gY, £>(N,Y)).
Proof. This follows in a straightforward way by an application of Lemma 10.5. [

We are now ready to prove our final main theorem:

Theorem 10.7. Suppose that X is a differentiable Hilbert C*-module from A to B
with left action A — £(X) factorizing through the compacts, K (X). Suppose
moreover that (Y, D,T) is an unbounded modular cycle from 8B to C. Then the
bounded adjointable operator Fa: X ®pY — X ® Y is an F-connection. In
particular, we have the identity

[(1® D)a] = [X]& p[D]
inside the KK-group KK ,(A, C), when A is separable and B is o -unital.
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Proof. By Lemma 10.4, we only need to show that
(1® FT?)®A®> — (1@ I°)PA°Fp € K (X ® Y, £*(N,Y)).

However, by Lemma 9.3 (and a version of this lemma obtained by taking adjoints),
we may just check that the difference

(1® D) - /Ooo(xr)—mu QTHTi(1 @) dA- dA°

- /Oo(/\r)_l/z(l QT)PA2S; A*dA- (1 ® D)a:
0
D((1® D)®) — £*(N,Y)

is the restriction of an element in X (X ® Y, £2(N, Y)). But this is a consequence
of Lemma 10.6. O

A. Norm estimates of error terms

In this appendix we have collected various operator norm estimates needed in the
treatment of the modular transform (Section 8) and for the comparison result between
the unbounded Kasparov product and the bounded Kasparov product (Section 10).

The general setting will be exactly as in Section 8 and the conditions in
Assumption 8.1 will in particular be in effect. We recall the notation for a few
bounded adjointable operators acting on the Hilbert C *-module Y':

Sy :=@AA*/r+14+D*7'  Ry:=@Q+1+D>)7,
and K :=1-A?%/r, X5 :=A-RyK,

where r € (|| A%, oo) is a fixed constant and A > 0 is variable.

A.1. Preliminary operator norm estimates. We start with a string of elementary
operator norm estimates which will be needed throughout this appendix and in many
places in the main text as well.

Lemma A.l1. The unbounded operator S i/ ’D: D(D) — Y has a bounded
adjointable extension .Y — Y and we have the operator norm estimate

[Qillcc <1 forall A >0.
Proof. Let A > 0 be given. Consider the unbounded operator

EA:Im(Si/Z) —Y
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defined by
E;:S)%t > DS)E.

It is then clear that S ;/ ’D C E;’C Furthermore, for each £ € Y we have that

(ExSM¢. B, 8VE) = (5, D25,£.8)
< (SLAA%/r + 14 DYS;E ) = (5,76, 5,/%8).

It therefore follows that £ : Im(S ;/ 2) — Y has abounded extensionto Y, E;: Y =Y,

and furthermore that ||Ej||oc < 1. This shows that E} is everywhere defined and
that

EI = (E))*.
We may then conclude that S;/ZD = EJ and that ||S;/2D lloo < 1. This proves the
lemma. o

Lemma A.2. Let A > 0 be given. We have the identities

D(AS) — S)A) = Q5Q,d(A)S) + DS;d(A)DS;,
and AS; — SpA = 8,2Q,d(A)Sy + Sid(A)DS;.
Proof. We only prove the first of these two identities. The second identity can be

proved by a similar but easier argument.
Using that D(D?) C Y is a core for D: D(D) — Y it follows that

QiQuD = D — DS, (AA?/r + 1) (A.1)

on the common domain 9 (D) C Y. We then obtain our identity from the computa-
tion:
Q3R2.1d(A)S), + DSd(A)DS),
= DAS) — DS;(AA%/r + 1)AS) — DS, AD?2S)
= DAS, — DS, A. O

Lemma A.3. Let A > 0 be given. We have the operator norm estimate

ﬁ

ASY? < .
[AS); ”oo_m

Proof. This follows by noting that

0< 812+ 1)(A%/r)s)? < 1. O
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Lemma A.4. There exists a constant C > 0 such that
[A2S3AY 2|0 < C - (1 4+ 1)
SJorall A > 0.
Proof. Using Lemma A.2 we obtain that
A2S3AY2 = AS;AY? 4 A-817Q;3d(A)Sy - A2+ A - S3d(A)DS; - A2,

The desired estimate now follows by Lemma A.1, Lemma A.3, and the standing
Assumption 8.1. Recall here that the sequence {AY/2(1/n + A)~"/ 2}% | converges
strictly to the identity. O

Lemma A.5. There exists a constant C > 0 such that
IADS,AY [l < C - (1+ 172
forall A > 0.
Proof. By an application of Lemma A.2, we may compute as follows:
ADS; A2 = DAS; AY? — d(A)S; AV/?
= DS; A2 + Q1Q,d(A)S) - AV? + DS d(A)DS; - AV? —d(A)S; A2

The relevant estimate is now a consequence of Lemma A.l, Lemma A.3, and
Assumption 8.1. O

Lemma A.6. Let m € [2,00) be given. There exists a constant C > 0 such that
IDSA™ (i + D) Moo = C - (1 +2)7"
forall A = 0.
Proof. Using equation (A.1), we compute as follows:
DS;A(A™/r)(i + D)"' = DA™ 2(i + D)™' — DS; A" ?(i + D)™!
—Q5QDA™2(i + D)7,

Since DA™ 2(i + D)™':Y — Y is a bounded adjointable operator, we obtain the
relevant estimate by Lemma A.1. O

Lemma A.7. Let m > 3 be given. There exists a constant C > 0 such that

1532 (i + D) Moo < € - (1 +2)~171/8
and 1121 = X)T'A™ (i + D) oo < C - (1 +1)71/8
forall A > 0.
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Proof. To prove the first of the two estimates we apply Lemma A.2 to obtain that

SY2AM(i + D)™ = S}PAS - A"V + D) = 5392,d(A)S;- A" (i + D)
— 82d(A)DSy, - A"V (i + D).

After consulting Lemma A.3, Lemma A.4, and Lemma A.6, we see that it suffices to
find a constant C; > 0 such that

1S)2Q, A2 |0 < €y - (1 4 2)7 V8,

But this follows by noting that
153722 A%, = 152 DADS: oo

In fact, it follows from the proof of Lemma A.5 that || ADSy|le0 - C2 - (1 + A)~1/4
for some constant C, > 0, which is independent of A > 0.

In order to prove the second of the two estimates, we remark that Lemma 8.2
implies that

o0 o0
A=X)T =) (X)) =1+ AKR, Y (X))" =1+ AKS).

n=0 n=0

The result then follows from the first estimate, which we already proved above. [
A.2. Norm estimates of limit error terms. Let us recall (from Subsection 8.1) that
L =I(S; KAAHR,:Y - Y

for all A > 0 (where I(-) = [D?,]).

Proposition A.8. There exists a constant C > 0 such that

1A% Liflo < C - (1+1)71/? (A.2)
SJorall A > 0.
Proof. For each A > 0 we rewrite L;:Y — Y in the following way:

L = DA(S3KAA*)R; + d(S; KAA®)DR;,
= —DS;d(A?/r)AS; - KAA3R, + DS, - d(A> — A%/r)AR),
— $3d(A?/r)AS; - KAA®DR; + Sy d(A* — A°/r)A-DR;. (A3)

It is then not hard to see that the desired estimate follows from Lemma A.4 and
Lemma A.S. O
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A.3. Operator norm estimates of truncated error terms. Let us recall (again
from Subsection 8.1) that

Ly(m)=1(1—-X"S1KAN)R;:Y > Y
forall A > Oand all m € N.
Proposition A.9. There exists a constant C > 0 such that
|A2Lam)G + D), < C-(1+ )78
Jorall A > 0 and allm € N.
Proof. We first notice that
Lym)=(1—-X"L, - I(X])S1KAA’R; (A4)

forall A > 0 and all m € N. We now estimate these two terms separately.
We begin with the easiest one: (1 — X7")L,:Y — Y. Using the identity in Eg-
uation (A.3) we obtain that

Ly-(i +D)'=—-DS;d(A%?/r)A*S; KA®R, (i + D) !
+ DS;d(A* — A°/r)AR; (i + D)~ — 83d(A?/r)A*S3 KA*DR (i + D)™!
+ S5d(A3 — A3/r)ADR; (i + D)™L.

It then follows by Lemma A.1, Lemma A.3, and Lemma A.4 that there exists a
constant Cy > 0 such that

1Ly - (i 4+ D) Moo < Co- (1 +A)"1/4

forall A > 0. Since [|[1 — X7"|lcoc <2 forall A > 0 and all m € N we obtain the
relevant estimate for the first term in equation (A.4).

To take care of the second term in equation (A.4) we let [ > 3 be given. It then
suffices to estimate the operator norm of the bounded adjointable operator

A I(XMS; AN + D) Y » Y
uniformly in m € N and A > 0. In order to achieve this goal we notice that

m—1
(XS, =Y X](Dd(X;) +d(X,)D)X]' 778,
j=0
m—1 ) )
=—A- > X](DRxd(A*/r) + Ryd(A*/r)D) X} ™77 S;.
j=0
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We now define
m—1 )
Ax(m) =" A’X] - DRd(A?)- X} 778, Al + D)
j=0
m—1 ) )
and Ba(m) := > A*X{-Rpd(A*)D - X7 "5, Al i + D)
j=0

and it follows that
AZI(XT)S,{AI(I' + D)_1 =—(A/r)-Ay(m)—(A/r)-By(m):Y - Y

forall A > Oand all m € N.

Our next step is to estimate the operator norm of each of the terms A (m): Y — Y
and B)(m):Y — Y uniformly in A > 0 and m € N. We start with A, (m). Using
the Cauchy—Schwarz inequality together with Lemma 8.2, we obtain that

m—1
142 0mI% = |42 Y %] DRADRA(X) 42|+ |=i + D)7 ',
j=0

m—1
SO (X d(ANd(AY)X] - S AL G + D) HOO
j=0
< 1825, 8% oo - A (D)2, - | (=i + D) A (1 = X3!
m—1 ) .
X RXGY = xHTA G+ D)
j=0
< IA?$3A% oo - 1A (AP 13, - (1 + 1)
=i + D)y AN = X)) TS - X ANG + D)
It then follows by Lemma A.3 and Lemma A.7 that there exists a constant C; > 0

such that
”Al(m)”oo <C;-(1+ )L)_l—l/S

forallm e Nandall A > 0.
We continue with B (). Another application of the Cauchy—Schwarz inequality
and Lemma 8.2 yields that

Bz < 023 x] Rid(A)AOIR(X;) 82| [ (=i + D)'Als,
j=0

m—1

(x5 D2X] - S8 + D) H
o0

j=0
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= U407 A - |A28;A% o - [ (=i + D) AT (1= X!
m—1
X RDPR(XG (1= X7 ANG + D)7
j=0
<1+ )7 [dAYZ - 1825142
=i+ Dy AN = X)) TS = X)) T AN + D)

As a consequence of Lemma A.3 and Lemma A.7 we may then find a constant C, > 0
such that

| B5.(m)||loo < Ca(1 + 1)~171/38

for all m € N and all A > 0. Combining our estimates we find that

|A21(XM) Al G + D) < (Cofr + C3/r)- (1 4+ A)7H8

forall m € N and all A > 0. This ends the proof of the proposition. O

References

(1]

(2]

(31

(4]

(5]

(6]

(8]

(91

S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les
C*-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 21, 875-878.
Zbl 0551.46041 MR 715325

B. Blackadar, K-theory for operator algebras. Second edn., Mathematical Sciences
Research Institute Publications 5, Cambridge University Press, Cambridge, 1998.
7Zbl 0913.46054 MR 1656031

B. Blackadar and J. Cuntz, Differential Banach algebra norms and smooth subalgebras of
C *-algebras. J. Operator Theory 26 (1991), no. 2, 255-282. Zbl 0813.46036 MR 1225517

D. P. Blecher and C. Le Merdy, Operator algebras and their modules—an operator space
approach. London Mathematical Society Monographs. New Series 30, The Clarendon
Press, Oxford University Press, Oxford, 2004. Zbl 1061.47002 MR 2111973

C.Bourne, A. L. Carey, and A. Rennie, The bulk-edge correspondence for the quantum Hall
effect in Kasparov theory. Lett. Math. Phys. 105 (2015), no. 9, 1253-1273.Zbl 1325.81199
MR 3376593

S. Brain, B. Mesland, and W. D. van Suijlekom, Gauge theory for spectral triples and
the unbounded Kasparov product. J. Noncommut. Geom. 10 (2016), no. 1, 135-206.
Zbl 1341.58007 MR 3500818

A. Connes, Gravity coupled with matter and the foundation of non-commutative geometry.
Comm. Math. Phys. 182 (1996), no. 1, 155-176. Zbl 0881.58009 MR 1441908

A. Connes and H. Moscovici, Type III and spectral triples. In Traces in number theory,
geometry and quantum fields, pp. 57-71, Aspects Math., E38, Friedr. Vieweg, Wiesbaden,
2008. Zbl 1159.46041 MR 2427588

A. Connes and G. Skandalis, The longitudinal index theorem for foliations. Publ. Res. Inst.
Math. Sci. 20 (1984), no. 6, 1139-1183. Zbl 0575.58030 MR 775126


https://zbmath.org/?q=an:0551.46041
http://www.ams.org/mathscinet-getitem?mr=715325
https://zbmath.org/?q=an:0913.46054
http://www.ams.org/mathscinet-getitem?mr=1656031
https://zbmath.org/?q=an:0813.46036
http://www.ams.org/mathscinet-getitem?mr=1225517
https://zbmath.org/?q=an:1061.47002
http://www.ams.org/mathscinet-getitem?mr=2111973
https://zbmath.org/?q=an:1325.81199
http://www.ams.org/mathscinet-getitem?mr=3376593
https://zbmath.org/?q=an:1341.58007
http://www.ams.org/mathscinet-getitem?mr=3500818
https://zbmath.org/?q=an:0881.58009
http://www.ams.org/mathscinet-getitem?mr=1441908
https://zbmath.org/?q=an:1159.46041
http://www.ams.org/mathscinet-getitem?mr=2427588
https://zbmath.org/?q=an:0575.58030
http://www.ams.org/mathscinet-getitem?mr=775126

486

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

J. Kaad

F. Fathizadeh and M. Khalkhali, Twisted spectral triples and Connes’ character formula. In
Perspectives on noncommutative geometry, pp. 79-101, Fields Inst. Commun. 61, Amer.
Math. Soc., Providence, RI, 2011. Zbl 1251.58010 MR 2838682

I. Forsyth and A. Rennie, Factorisation of equivariant spectral triples in unbounded K K -
theory. J. Aust. Math. Soc. 107 (2019), no. 2, 145-180. Zbl 1423.19011 MR 4001566

M. Frank and D. R. Larson, Frames in Hilbert C *-modules and C *-algebras. J. Operator
Theory 48 (2002), no. 2, 273-314. Zbl 1029.46087 MR 1938798

M. Gofteng and B. Mesland, Spectral triples and finite summability on Cuntz-Krieger
algebras. Doc. Math. 20 (2015), 89-170. Zbl 1330.46067 MR 3398710

M. Goffeng, B. Mesland, and A. Rennie, Shift-tail equivalence and an unbounded
representative of the Cuntz-Pimsner extension. Ergodic Theory Dynam. Systems 38 (2018),
no. 4, 1389-1421. Zbl 1398.46044 MR 3789170

O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator
and Killing spinors. Comm. Math. Phys. 104 (1986), no. 1, 151-162. Zbl 0593.58040
MR 834486

M. Hilsum, Bordism invariance in K K-theory. Math. Scand. 107 (2010), no. 1, 73-89.
Zbl 1198.19005 MR 2679393

J. Kaad, Morita invariance of unbounded bivariant K-theory, 2016. arXiv:1612.08405

J. Kaad, A Serre—Swan theorem for bundles of bounded geometry. J. Funct. Anal. 265
(2013), no. 10, 2465-2499. Zbl 1288.46042 MR 3091822

J. Kaad, Differentiable absorption of Hilbert C*-modules, connections, and lifts of
unbounded operators. J. Noncommut. Geom. 11 (2017), no. 3, 1037-1068. Zbl 1386.46045
MR 3713012

J. Kaad and M. Lesch, A local global principle for regular operators in Hilbert C *-modules.
J. Funct. Anal. 262 (2012), no. 10, 4540-4569. Zbl 1251.46030 MR 2900477

J. Kaad and M. Lesch, Spectral flow and the unbounded Kasparov product. Adv. Math.
248 (2013), 495-530. Zbl 1294.19001 MR 3107519

J. Kaad and W. D. van Suijlekom, Factorization of Dirac operators on toric noncommutative
manifolds. J. Geom. Phys. 132 (2018), 282-300. Zbl 1396.58009 MR 3836782

J. Kaad and W. D. van Suijlekom, Riemannian submersions and factorization of
Dirac operators. J. Noncommut. Geom. 12 (2018), no. 3, 1133-1159. Zbl 1405.19002
MR 3873573

J. Kaad and W. D. Van Suijlekom, On a theorem of Kucerovsky for half-closed chains. J.
Operator Theory 82 (2019), no. 1, 115-145. Zbl 1463.46099 MR 3979941

J. Kaad and W. D. van Suijlekom, Factorization of Dirac operators on almost-regular
fibrations of spin® manifolds. Doc. Math. 25 (2020), 2049-2084. Zbl 1451.19018
MR 4187718

G. G. Kasparov, Topological invariants of elliptic operators. I. K-homology. Izv. Akad.
Nauk SSSR Ser. Mat. 39 (1975), no. 4, 796-838. Zbl 0328.58016 MR 0488027

G. G. Kasparov, Hilbert C *-modules: theorems of Stinespring and Voiculescu. J. Operator
Theory 4 (1980), no. 1, 133-150. Zbl 0456.46059 MR 587371


https://zbmath.org/?q=an:1251.58010
http://www.ams.org/mathscinet-getitem?mr=2838682
https://zbmath.org/?q=an:1423.19011
http://www.ams.org/mathscinet-getitem?mr=4001566
https://zbmath.org/?q=an:1029.46087
http://www.ams.org/mathscinet-getitem?mr=1938798
https://zbmath.org/?q=an:1330.46067
http://www.ams.org/mathscinet-getitem?mr=3398710
https://zbmath.org/?q=an:1398.46044
http://www.ams.org/mathscinet-getitem?mr=3789170
https://zbmath.org/?q=an:0593.58040
http://www.ams.org/mathscinet-getitem?mr=834486
https://zbmath.org/?q=an:1198.19005
http://www.ams.org/mathscinet-getitem?mr=2679393
https://arxiv.org/abs/1612.08405
https://zbmath.org/?q=an:1288.46042
http://www.ams.org/mathscinet-getitem?mr=3091822
https://zbmath.org/?q=an:1386.46045
http://www.ams.org/mathscinet-getitem?mr=3713012
https://zbmath.org/?q=an:1251.46030
http://www.ams.org/mathscinet-getitem?mr=2900477
https://zbmath.org/?q=an:1294.19001
http://www.ams.org/mathscinet-getitem?mr=3107519
https://zbmath.org/?q=an:1396.58009
http://www.ams.org/mathscinet-getitem?mr=3836782
https://zbmath.org/?q=an:1405.19002
http://www.ams.org/mathscinet-getitem?mr=3873573
https://zbmath.org/?q=an:1463.46099
http://www.ams.org/mathscinet-getitem?mr=3979941
https://zbmath.org/?q=an:1451.19018
http://www.ams.org/mathscinet-getitem?mr=4187718
https://zbmath.org/?q=an:0328.58016
http://www.ams.org/mathscinet-getitem?mr=0488027
https://zbmath.org/?q=an:0456.46059
http://www.ams.org/mathscinet-getitem?mr=587371

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]

The unbounded Kasparov product by a differentiable module 487

G. G. Kasparov, The operator K-functor and extensions of C *-algebras. Izv. Akad. Nauk
SSSR Ser. Mat. 44 (1980), no. 3, 571-636, 719. Zbl 0448.46051 MR 582160

D. Kucerovsky, The K K-product of unbounded modules. K-Theory 11 (1997), no. 1,
17-34. Zbl1 0871.19004 MR 1435704

D. Kucerovsky, A lifting theorem giving an isomorphism of K K -products in bounded and
unbounded K K-theory. J. Operator Theory 44 (2000), no. 2, 255-275. Zbl 0996.46030
MR 1794819

E. C. Lance, Hilbert C *-modules. London Mathematical Society Lecture Note Series 210,
Cambridge University Press, Cambridge, 1995. Zbl 0822.46080 MR 1325694

M. L. Lapidus and M. van Frankenhuijsen, Fractal geometry, complex dimensions and
zeta functions. Second edn., Springer Monographs in Mathematics, Springer, New York,
2013. Zbl 1261.28011 MR 2977849

B. Mesland, Unbounded bivariant K-theory and correspondences in noncommutative
geometry. J. Reine Angew. Math. 691 (2014), 101-172. Zbl 1293.58010 MR 3213549

B. Mesland and A. Rennie, Nonunital spectral triples and metric completeness in
unbounded K K-theory. J. Funct. Anal. 271 (2016), no. 9, 2460-2538. Zbl 1345.19003
MR 3545223

H. Moscovici, Local index formula and twisted spectral triples. In Quanta of maths, pp.
465-500, Clay Math. Proc. 11, Amer. Math. Soc., Providence, RI, 2010. Zbl 1232.58013
MR 2732069

F. Pierrot, Opérateurs réguliers dans les C*-modules et structure des C*-algebres de
groupes de Lie semisimples complexes simplement connexes. J. Lie Theory 16 (2006),
no. 4, 651-689. Zbl 1152.22006 MR 2270655

G. Pisier, Introduction to operator space theory. London Mathematical Society Lecture
Note Series 294, Cambridge University Press, Cambridge, 2003. Zbl 1093.46001
MR 2006539

R. Ponge and H. Wang, Noncommutative geometry and conformal geometry. III. Vafa-
Witten inequality and Poincaré duality. Adv. Math. 272 (2015), 761-819. Zbl 1311.53037
MR 3303248

Z.-J. Ruan, Subspaces of C*-algebras. J. Funct. Anal. 76 (1988), no. 1, 217-230.
Zbl 0646.46055 MR 923053

K. van den Dungen, The index of generalised Dirac—Schrédinger operators. J. Spectr.
Theory 9 (2019), no. 4, 1459-1506. Zbl 1439.19008 MR 4033528

S. L. Woronowicz, Unbounded elements affiliated with C *-algebras and noncompact
quantum groups. Comm. Math. Phys. 136 (1991), no. 2, 399-432. Zbl 0743.46080
MR 1096123

S. L. Woronowicz and K. Napiérkowski, Operator theory in the C *-algebra framework.
Rep. Math. Phys. 31 (1992), no. 3, 353-371. Zbl 0793.46039 MR 1232646

Received 03 April, 2019

J. Kaad, Department of Mathematics and Computer Science,
The University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

E-mail: kaad @imada.sdu.dk


https://zbmath.org/?q=an:0448.46051
http://www.ams.org/mathscinet-getitem?mr=582160
https://zbmath.org/?q=an:0871.19004
http://www.ams.org/mathscinet-getitem?mr=1435704
https://zbmath.org/?q=an:0996.46030
http://www.ams.org/mathscinet-getitem?mr=1794819
https://zbmath.org/?q=an:0822.46080
http://www.ams.org/mathscinet-getitem?mr=1325694
https://zbmath.org/?q=an:1261.28011
http://www.ams.org/mathscinet-getitem?mr=2977849
https://zbmath.org/?q=an:1293.58010
http://www.ams.org/mathscinet-getitem?mr=3213549
https://zbmath.org/?q=an:1345.19003
http://www.ams.org/mathscinet-getitem?mr=3545223
https://zbmath.org/?q=an:1232.58013
http://www.ams.org/mathscinet-getitem?mr=2732069
https://zbmath.org/?q=an:1152.22006
http://www.ams.org/mathscinet-getitem?mr=2270655
https://zbmath.org/?q=an:1093.46001
http://www.ams.org/mathscinet-getitem?mr=2006539
https://zbmath.org/?q=an:1311.53037
http://www.ams.org/mathscinet-getitem?mr=3303248
https://zbmath.org/?q=an:0646.46055
http://www.ams.org/mathscinet-getitem?mr=923053
https://zbmath.org/?q=an:1439.19008
http://www.ams.org/mathscinet-getitem?mr=4033528
https://zbmath.org/?q=an:0743.46080
http://www.ams.org/mathscinet-getitem?mr=1096123
https://zbmath.org/?q=an:0793.46039
http://www.ams.org/mathscinet-getitem?mr=1232646
mailto:kaad@imada.sdu.dk

	Introduction
	Preliminaries on operator spaces
	Unbounded modular cycles
	Stabilization of unbounded modular cycles

	Differentiable Hilbert C*-modules
	The modular lift
	Selfadjointness
	Regularity

	Compactness of resolvents
	The unbounded Kasparov product
	The modular transform
	Preliminary algebraic identities
	Integral formulae for the square root
	Comparison with the bounded transform

	The Kasparov module of an unbounded modular cycle
	Relation to the bounded Kasparov product
	Norm estimates of error terms
	Preliminary operator norm estimates
	Norm estimates of limit error terms
	Operator norm estimates of truncated error terms


