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Abstract. Let R be a finite dimensional algebra of finite global dimension over a field k. In
this paper, we will characterize a k-linear abelian category € such that € = tails A for some
graded right coherent AS-regular algebra 4 over R. As an application, we will prove that if €
is a smooth quadric surface in a quantum PP3 in the sense of Smith and Van den Bergh, then
there exists a right noetherian AS-regular algebra A over k K» of dimension 3 and of Gorenstein
parameter 2 such that € = tails A where kK> is the path algebra of the 2-Kronecker quiver K».
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1. Introduction

1.1. Motivation. In 1955, J.-P. Serre [18] introduced and studied the cohomology
groups of coherent sheaves on projective schemes. In particular, he proved that
the category coh(Proj A) of coherent sheaves on the projective scheme Proj A4 is
equivalent to the category of finitely generated graded A-modules modulo finite di-
mensional modules. In 1994, motivated by Serre’s work, M. Artin and J. J. Zhang [1]
introduced the categorical notion of a noncommutative projective scheme, and
established a fundamental theory of noncommutative projective schemes. Since
then, the study of noncommutative projective schemes has been one of the major
projects in noncommutative algebraic geometry.

The noncommutative projective scheme associated to an AS-regular algebra of
dimension n + 1 is considered as a quantum projective space of dimension n. Since
projective spaces are the most basic and important class of projective schemes in
commutative algebraic geometry, quantum projective spaces have been studied deeply
and extensively in noncommutative algebraic geometry. It is known that although
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quantum projective spaces have many nice properties in common with coh P”, their
structures vary widely. In this paper, we consider the following question.

Question 1.1. Fix afield k. Whenis a given k-linear abelian category € equivalent to
a quantum projective space? That is, can we find necessary and sufficient conditions
on a k-linear abelian category € such that € is equivalent to the noncommutative
projective scheme associated to some AS-regular algebra?

If a k-linear abelian category € is equivalent to a quantum projective space,
then we can investigate € using the rich techniques of noncommutative algebraic
geometry. In this sense, Question 1.1 is important. The following is the main result
of this paper, which gives a complete answer to Question 1.1.

Theorem 1.2 (Theorem 4.1). Let R be a finite dimensional algebra of finite global
dimension over a field k. Then a k-linear abelian category € is equivalent to the
noncommutative projective scheme associated to some AS-regular algebra A over
Ao = R of Gorenstein parameter £ if and only if

(AS1) € has a canonical bimodule we, and

(AS2) there exist an object O € € and a k-linear autoequivalence s € Auty € such
that

(@) (0O, s) is ample for € (in the sense of Artin and Zhang [1]),
(b) {5°O}iez is a full geometric relative helix of period { for DP(€), and
(¢) Ende(O) = R.

Roughly speaking, (AS1) requires that € has an autoequivalence which induces
a Serre functor for D? (€) (Definition 3.4), and (AS2)(b) requires that Db (€) has a
“relaxed” version of a full geometric helix, consisting of shifts of a single object in €
(Definitions 3.12, 3.14).

In the last section, we will give an application of the main result. It is well known
that if Q is a smooth quadric surface in IP3, then there exists a noetherian AS-regular
algebra

A=k(x,y)/(x*y — yx*, xy* — y*x)

of dimension 3 such that coh Q is equivalent to the noncommutative projective
scheme associated to A. Using our main result, we will prove a noncommutative
generalization of this result. Namely we will show that if € is a smooth quadric
surface in a quantum P2 in the sense of Smith and Van den Bergh [19], then there
exists a right noetherian AS-regular algebra A over kK, of dimension 3 such that €
is equivalent to the noncommutative projective scheme associated to A where kK>
is the path algebra of the 2-Kronecker quiver K, (Theorem 5.17).
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1.2. Notation. In this subsection, we introduce some notation and terminology that
will be used in this paper. Throughout, let k be a field. We assume that all algebras are
over k. For an algebra R, we denote by Mod R the category of right R-modules, and
by mod R the full subcategory consisting of finitely presented right R-modules. Note
that if R is a finite dimensional algebra, then mod R is simply the full subcategory
consisting of finite dimensional R-modules. We denote by R the opposite algebra
of R and define

R® := R° ® R.

For algebras R, S, Mod R is identified with the category of left R-modules, and
Mod(R°® ®k S) is identified with the category of R-S-bimodules, so that Mod R¢ is
identified with the category of R-R-bimodules.

For a vector space V over k, we denote by DV = Homy (V, k) the vector space
dual of V over k. By abuse of notation, for a graded vector space V = @;., Vi,
we denote by DV the graded vector space dual of V defined as (DV); = D(V_;)
for i € Z. We say that a graded vector space V is locally finite if dimg V; < oo for
all i € Z. In this case, we define the Hilbert series of V' by

Hy (1) ==Y (dimy V;)t' € Z[t.t7'].
i€Z

In this paper, a graded algebra means a Z-graded algebra over a field k, although
we mainly deal with N-graded algebras. For a graded algebra A, we denote by
GrMod A the category of graded right A-modules, and by grmod 4 the full sub-
category consisting of finitely presented graded right A-modules. Morphisms in
GrMod A are A-module homomorphisms preserving degrees. For M € GrMod 4
and a graded algebra automorphism o of A, we define the twist My € GrMod A4 by
M, = M as a graded k-vector space with the new right action m * a = mo (a).

Let A be a Z-graded algebra, and r € NT. The rth Veronese algebra of A is

defined by
AT =P A,
i€Z

and the rth quasi-Veronese algebra of A is defined by

Ari Ariv1 o Aritr—
A[r] - @ Ari—l Ari Ari+r—2 ,
i€Z : : B :
Ari—r+1 Ari—r+2 T Ari

where the multiplication of Al is given by (a;;)(bij) = ( Yk akjbix) (see [13]).
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There exists an equivalence functor Q: GrMod A — GrMod Al'1 defined by

M;;
A4}ﬁ—1
QM) = @ : '
i€Z :
Mri—r+1

where the right action of A"l on Q(M) is given by (m;i)(a;j) = (Zk mkaik)
(see [13]).

Let A = @, Ai be an N-graded algebra. We say that A is connected graded
if A9 = k. For a graded module M € GrMod A and an integer n € Z, we define the
truncation

M, := P M; € GrMod A
i>n
and the shift M (n) € GrMod Aby M (n); := My, 4; fori € Z. Therule M — M(n)

is a k-linear autoequivalence for GrMod A, called the shift functor. For M, N €
GrMod A, we write the vector space

ExtYy (M, N) := Ext 00 4 (M, N)
and the graded vector space

Ext!y (M., N) := @D Exty (M, N(n)).

nez

Let A, C be N-graded algebras. Then C° ®; A becomes an N-graded algebra
by setting

(C°®k A= @ C’ @ 4.
i+j=n

We define the left exact functor I'y,: GrMod(C? ®; A) — GrMod(C? ®; A) by
I'n(M):= lim Hom,(A/A>,, M),
n—>oo -

where m = A ;. The derived functor of Iy, is denoted by RIy,,, and its cohomologies
are denoted by . _
H, (M) :=h"(R[w(M)).

For M € GrMod A, the depth of M is defined to be
depth M := inf{i | H, (M) # 0}.
The local cohomological dimension of M is defined to be

led M := sup{i | an(M) # 0}.
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The cohomological dimension of Ty, is defined by
cd(Ty) :=sup{led M | M € GrMod A}.

We say that A has finite cohomological dimension if cd(I'y,) < co. Note that if A
has finite global dimension, then it has finite cohomological dimension.

For an abelian category €, we denote by D(€) the derived category of € and
by D?(€) the bounded derived category of €. For M, N € D(€), we often write

Home (M, N) := Homgcey(M, N)
by abuse of notation. For M, N € D(€) andi € Z, we set
Ext%(cM, N) = Hom@(e) (M, :/V[l])

Connected graded AS-regular algebras defined below are the most important class
of algebras in noncommutative algebraic geometry.

Definition 1.3. A locally finite connected graded algebra A is called AS-regular
(resp. AS-Gorenstein) of dimension d and of Gorenstein parameter £ if the following
conditions are satisfied:

(1) gldim A = d < oo (resp. injdim4 A = injdim 40 A = d < 00), and
(2) RHom (k, A) = RHom 4, (k, A) = k(£)[—d] in D(GrMod k).

It is well known that if A is a noetherian AS-Gorenstein algebra of dimension d
and of Gorenstein parameter £, then A has a balanced dualizing complex

DRI (A) = A, (—0)[d]

in D (GrMod A°) with some graded algebra automorphism v of A (see [24]). This
graded algebra automorphism v is called the (generalized) Nakayama automorphism
of A. The graded A-A-bimodule w4 := A, (—£) € GrMod A¢€ is called the canonical
module over A.

Let us recall the definition of graded coherentness.

Definition 1.4. (1) A graded right A-module M is called graded right coherent if
it is finitely generated and every finitely generated graded submodule of M is
finitely presented over A.

(2) A locally finite N-graded algebra A is called graded right coherent if A and
A/As are graded right coherent modules.

Let A be a graded right coherent algebra. Then a graded right A-module is finitely
presented if and only if it is graded right coherent. In this case, grmod A is an abelian
category.

Proposition 1.5 (cf. [24, Proposition 1.9]). If A is a graded right coherent algebra,
then every finite dimensional graded right A-module is graded right coherent.



494 I. Mori and K. Ueyama

Proof. If S is a graded simple right A-module, then there exists a surjection
A/A>1(j) — S for some j € Z. Let K be the kernel of this map. Since it is finite
dimensional, it is a finitely generated submodule of A/A>1(j). Since A/A>1(j) is
graded right coherent, K is finitely presented. Since grmod A is an abelian category,
S is graded right coherent. Since every finite dimensional module is a finite extension
of graded simple right A-modules, the result follows. O

Let A be a graded right coherent algebra. We denote by tors A the full subcategory
of grmod A consisting of finite dimensional modules. By Proposition 1.5, tors 4 is a
Serre subcategory of grmod A, so the quotient category

tails A := grmod A/ tors A

is an abelian category. If A is a commutative graded algebra finitely generated in
degree 1 over k, then tails A is equivalent to the category coh(Proj A) of coherent
sheaves on the projective scheme Proj A by Serre’s theorem [18]. For this reason,
tails A is called the noncommutative projective scheme associated to 4 (see [1] for
details).

The quotient functor is denoted by 7: grmod A — tails A. We usually denote
by M = nM € tails A the image of M € grmod A. Note that the k-linear
autoequivalence M — M (n) preserves torsion modules, so it induces a k-linear
autoequivalence M — M(n) for tails A, again called the shift functor. For
M, N € tails A, we write the vector space

Ext'y (M, N) 1= Extly, 4(M, N)
and the graded vector space

Extly (M, N) := @D Extly (M, N (n))

nez

as before.
For an abelian category €, we define the global dimension of € by

gldim € := sup{i | Ext’é(cM, N) # 0 for some M, N € €}.

The notion of graded isolated singularity for a noncommutative connected graded
algebra A has been defined using the noncommutative projective scheme tails A
(see [10,20]).

Definition 1.6. A graded right coherent connected graded algebra A is called a
graded isolated singularity if gldim(tails A) < oco.
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2. Preliminaries

2.1. Ampleness. The ampleness of a line bundle is essential to construct a hom-
ogeneous coordinate ring of a projective scheme in commutative algebraic geometry.
We will define a notion of ampleness in noncommutative algebraic geometry.

Definition 2.1. (1) An algebraic triple consists of a k-linear category €, an object
O €€, and a k-linear autoequivalence s € Aut; €. In this case, we also say that (O, s)
is an algebraic pair for €.

(2) A morphism of algebraic triples
(F,0,un):(€,0,s) = (€',0',5)

consists of a k-linear functor F:€ — €', an isomorphism 0: F(@®) — ' and a
natural transformation y: F os — s’ o F.

(3) Two algebraic triples (€, O, s) and (€, @, s") are isomorphic, denoted by
(€,0,s) = (€¢',0,5)

if there exists a morphism of algebraic triples (F, 6, u): (€, 0,s) — (€’,0’,s") such
that F is an equivalence functor and u is a natural isomorphism.

(4) Two algebraic triples (€, O, s) and (€, @', s’) are equivalent, denoted by
(€,0,s) ~ (€',0,5)

if there exists an equivalence functor F:€ — €’ such that F(s'Q) = (s')! @’ for
alli € Z.

(5) For an algebraic triple (€, O, s), we define a graded algebra by
B(€.0,5) := @D Home(0,5'0),

i€z
where the multiplication is given by the following rule: for
o € B(€,0,s); = Home(O,5'0) and p € B(€,0,s); = Home(0O,s’ 9),
we define o := 5/ (a) o B € Home(O,s' 7/ O0) = B(€,0,5)i+;.
(6) For an object M in €, we define a graded right B(€, O, s)-module

HY (M) := (P ExL (0. s' M) = @D Home (0. 5" M[q]).
i€Z i€Z
where the right action is given by the following rule: for

a € HY(M); = Home (O0,5s'M[g]) and B € B(€,0,s); = Home(0,s’0),
we define aff := s/ («) o B € Home ((9,si+jM[q]) =HY(M);4;.
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(7) We define a graded left B(€, O, s)-module structure on
HY(0) = @) Home (0.5'0[q]) = @) Home (O[—¢].5' )
i€Z i€Z
by the following rule: for
@ € B(€,0,s); = Home(0,5s'0) and B € HI(O); = Home (O[], s’ 0),

we define af := s/ («) o B € Home (O[—¢], 5"t/ O) = H1(O);4;.

Example 2.2. For an algebraic triple (€, @, s)andr € NT,if A = B(€,0,s), then
A =~ B(€,0,s") and AVl = B(€,@Z3 'O, 5") (see [13]).

Remark 2.3. A morphism of algebraic triples (F, 0, u): (€,0,s) — (€',0’,s")
induces a map

B(€,0,s); = Home(0,s'©) — Home/ (F(O), F(s'0))
— Home/ (0, (s)' @) = B(€',0',s);
for every i € Z, which induces a graded algebra homomorphism
B(€,0,s) - B(€',0',s").

In particular, if (€, 0,s) =~ (€', 0’,s’), then B(€,0,s) =~ B(€’,’,s’) as graded
algebras.

Example 2.4. If A is a graded right coherent algebra, then 7: grmod A — tails A
induces a morphism of algebraic triples (grmod A, A4, (1)) — (tails A, #4, (1)), which
induces a graded algebra homomorphism

¢4 A = B(grmod A4, 4, (1)) — B(tails 4, 4, (1)).
Moreover, for M € grmod A, we have a graded right A-module homomorphism
¢m:M = H(M) — H° (M),

where we view H%(M) as a graded right A-module via ¢ 4.

The following notion of ampleness introduced in [1] is a key concept in non-
commutative projective geometry.
Definition 2.5. We say that an algebraic pair (O, s) for a k-linear abelian category €
is ample if
(A1) for every M € €, there exists an epimorphism @le s 0@ — M in € for
some iq,...,ip > 0, and

(A2) for every epimorphism ¢: M — N in €, there exists m € Z such that
Home (s O, ¢): Home (s @, M) — Home (s 2O, N)

is surjective for every i > m.
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A k-linear category € is called Hom-finite if dimy Home (M, N) < oo for every
M, N € €. The following theorem is a “coherent” version of [1, Theorem 4.5].
Theorem 2.6. The following statements hold.

(1) Let A be a graded algebra. If

(a) A is graded right coherent, and
(b) for any M € tails A and any n € 7, H* (M), is graded right coherent,

then tails A is Hom-finite k-linear abelian category and (A, (1)) is an ample
pair for tails A.

(2) Conversely, if (09,s) is an ample pair for a Hom-finite k-linear abelian cate-
gory €, then

(a) A:= B(€,0,s)>¢ is a graded right coherent algebra,
(b) for any M € € and any n € Z, H*(M)s, is graded right coherent, and

(c) the functor € — tails A; M +— w H®(M)> induces an isomorphism of
algebraic triples (€, 0, s) = (tails A, 4, (1)).

Proof. (1) First we check that tails A is Hom-finite. It is enough to show that
Hom, (4, M) = H’(M)o

is finite dimensional over k for any M € grmod A. The condition (b) says that H® (M)
is graded right coherent, so we have a surjection F — H° (M)>oingrmod A, where F
is a finitely generated graded free right A-module. Since A is locally finite, we have

dimy HY (M) < .

To prove that (4, (1)) satisfies (A1), it is enough to check that there exist positive
integers iy, ...,i, € NT and an epimorphism @le A(—i;) — A. Since A4 is
graded right coherent, we have an exact sequence

p
P Aij) > A— A4/Az1 >0
j=1

in grmod A. Since A/A>; € tors A, this induces a desired epimorphism, so (Al)
follows.

We next show that (4, (1)) satisfies (A2). First, note that, for every M € grmod A
and every n € Z, since A is graded right coherent and M/ M, is finite dimensional,
M/Ms, is graded right coherent by Proposition 1.5, so M, is also graded right
coherent. Let ¢: M — N be an epimorphism in tails A. Then there exists a hom-
omorphism ¥: M’ — N/N’in grmod A such that M/M’, N, coker y € tors A, and
w(y) = ¢. It follows that

™ Y>n

My —== M., —= N/N., = N>,



498 I. Mori and K. Ueyama

are surjective for all n > 0. Since nM>, = nM,n N>, = 7N, we may assume
that there exists an epimorphism ¥: M — N such that 7 () = ¢ by replacing M, N
by Mz, Nzp.

An exact sequence 0 - A>; - A — A/A>; — 0 induces the following exact
sequence

(¢M)Zn
EEm——

0— H2 (M)sp — My, HY(M)>p — HL(M)>, — 0

of graded right A-modules (see Example 2.4). Since the two middle terms in the
above sequence are graded right coherent, we see that ﬂ& (M)s, and ﬂlln (M)s, are
graded right coherent. Moreover, since ﬂom (M) and ﬂ}n (M) are m-torsion modules,
SO are H?n (M)sp and H,ln (M)sp. These imply that ﬂom (M)sp and H}n (M)sp are
finite dimensional over k. Hence,

(¢M)Zn: MZn - HO(M)zn

is an isomorphism in grmod A for every n > 0. By applying the same argument
for N, there exists m € Z such that both

(PM)>m: M>m — EO(M)Zm and  (¢N)>m: Nom — HO(N)zm
are isomorphisms in grmod A. Since we have the commutative diagram

H(M)>m HO (M) 2m

Hom (A, M) s ——— Hom 4 (A, M)>m

>~

(D) >m: M>p
(W)zmi iHomA(Aﬂ/f)zm imﬁ,(ﬁ@)zm
(ON)=m: Nom Hom (A, N)>m Hom 4 (A, N)>m

HO(N)>m HO(N)sm,

~ ~

it follows that
Hom , (A(—i), $): Hom g (A(—i), M) = HO(M);
— HO(N); = Hom(A(=i), N)

is surjective for every i > m.

(2) This follows from [17, Proposition 2.3, Theorem 2.4] (see also [1, Theorem 4.5]).
O
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Definition 2.7. Let A be a graded algebra. A twisting system on A is a sequence
0 ={bi}icz
of graded k-linear automorphisms of A4 such that

0 (x0;(y)) = 6 (x)0i+; (¥)

forevery i, j € Z and every x € A;,y € A. The twisted graded algebra of 4 by a
twisting system 6 is a graded algebra A? where A% = Aasa graded k-vector space
with the new multiplication x * y = x60;(y) forx € A,y € A.

If o € GrAut 4 is a graded algebra automorphism of A, then {o" };<z is a twisting

system of A. In this case, we simply write A := A©"} I B is a twisted graded
algebra of A by a twisting system, then GrMod A =~ GrMod B by [25].

Lemma 2.8. Let € and €’ be k-linear abelian categories. If (€, 0, s) and (€', 0’ s")
are equivalent algebraic triples, then the following hold:

(1) B(€',0',5")s¢ is a twisted graded algebra of B(€, O, s)>¢ by a twisting system
so that
GrMod B(€, 0, 5)>¢ = GrMod B(€’, ¢', 5")>o.

(2) (0O, s) is ample for € if and only if (O', s") is ample for €'.

Proof. Assertion (1) follows from [25, Theorems 3.3, 3.1], and assertion (2) follows
from a straightforward verification. O

There is another notion of ampleness introduced in [11]. For a ring R, a two-
sided tilting complex L of R is a complex of R-R-bimodules such that — ®II;Q L is an
autoequivalence of D (Mod R).

Definition 2.9. Let R be a finite dimensional algebra and L a two-sided tilting
complex of R.

(1) We say that L is quasi-ample if 79 (L®Ii?i) =0forallg # Oandalli > 0.

(2) We say that L is ample if L is quasi-ample and (DL-=0, DL-=9) is a ¢-structure
on D?(mod R) where

DL20 = (M € DP(mod R) | h%(M &Y% L&) =0 forallg < 0,i > 0},
PL=0 ._ (M e DP(mod R) | h (M ®% L®5ei) =0 forallg > 0,i > 0}.

The heart of this ¢-structure is denoted by L := D120 n DL-=0,

(3) Ifgldim R = n < oo, then the canonical module of R is defined as the two-sided
tilting complex wg := DR[—n].

(4) We say that R is (quasi-)Fano if wj' := RHomg (wg, R) is (quasi-)ample.

Remark 2.10. The notions of ample and Fano in the above definition were called
extremely ample and extremely Fano in [11-13].
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2.2. AS-regular algebras over R. Two generalizations of a notion of AS-regularity
were introduced in [12].

Definition 2.11 ([12, Definition 3.1]). A locally finite N-graded algebra A with
Ao = R is called AS-regular over R of dimension d and of Gorenstein parameter £
if the following conditions are satisfied:

(1) gldim R < oo,
(2) gldimA = d < o0, and
(3) RHom (R, A) = DR({)[—d] in £(GrMod A) and in D (GrMod A°).

For an AS-regular algebra A over R of Gorenstein parameter £, we define the
Beilinson algebra of A by

Ao Ay o Ay

’ 0 Ag - Ay,
VA== . .
0 o ... Ay

By [12, Corollary 3.7], a usual AS-regular algebra defined in Definition 1.3 is
exactly an AS-regular algebra over k in the above definition. A typical example of an
AS-regular algebra over R is given as follows. For a quasi-Fano algebra R of global
dimension #n, the preprojective algebra of R is defined as the tensor algebra

TR := Tr(Ext’4(DR, R)).

Theorem 2.12 ([11, Corollary 3.12], [12, Theorems 4.2, 4.12, 4.14]). If R is a Fano
algebra, then

MR = B(D”(mod R), R, — ®% wg')_,
is a graded right coherent AS-regular (Calabi-Yau) algebra of dimension gldim R+ 1
and of Gorenstein parameter 1 such that

DP(tails TIR) =~ D?(mod R)

as triangulated categories.
Conversely, if A is a graded right coherent AS-regular algebra over R of dimension
d > 1, then VA is a Fano algebra of

gldimVA=d -1 and grmodIIVA = grmod A.

Definition 2.13 ([12, Definition 3.9]). A locally finite N-graded algebra A with
Ao = R is called ASF-regular of dimension d and of Gorenstein parameter £ if the
following conditions are satisfied:

(1) gldim R < oo,
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(2) gldimA = d < oo, and
(3) Ry (A) =~ DA({)[—d] in D(GrMod A) and in H(GrMod A?).
Remark 2.14. In the definition of an ASF-regular algebra given in [12, Defini-

tion 3.9], the condition gldim R < oo was not imposed. In this paper, we impose this
condition to show that AS-regularity over R and ASF-regularity are equivalent.

In [12], Minamoto and the first author showed the following.

Theorem 2.15 ([12, Theorem 3.12]). If A is an AS-regular algebra over R of
dimension d and of Gorenstein parameter £, then A is an ASF-regular algebra
of dimension d and of Gorenstein parameter L.

It was proved that the converse of Theorem 2.15 is also true when A is noetherian
(see [22, Theorem 2.10]). For the purpose of this paper, we here show that a non-
noetherian version of the converse of Theorem 2.15.

Definition 2.16. For a locally finite N-graded algebra A, we say that the condition
(EF) holds if every finite dimensional graded right A-module is graded right coherent.

If A is graded right coherent (in particular, right noetherian), then A satisfies (EF)
by Proposition 1.5. If A is connected graded, then (EF) is equivalent to Ext-finiteness
(that is, Ext', (k, k) is finite dimensional for every 7).

Lemma 2.17. Let A be a locally finite N-graded algebra satisfying (EF). Then
RTI', (—) commutes with direct limits.

Proof. The proof is similar to that of [23, Lemma 4.3] by using (EF) instead of
Ext-finiteness. O

Let A, C be graded algebras. Note that if M is a complex of graded C - A-bimod-
ules, then DM defined by (DM )} = D(M ~*) is a complex of graded A-C -bimodules.

Theorem 2.18 (Local Duality). Let A be a locally finite N-graded algebra, and C
another N-graded algebra. Assume that A has finite cohomological dimension, and
it satisfies (EF). Then for any M € DP(GrMod(C° ®j A)),

DRT,(M) = RHom ,(M, DRT,(A))
in D(GrMod(4° ®y C)).

Proof. Using Lemma 2.17, the proof works along the same lines as that of [23,
Theorem 5.1]. O]

If A is an ASF-regular algebra, then there exists a graded algebra automorphism v
of A such that DRI (A) = A,(—f)[d] in D(GrMod A°), so, similar to the
connected graded case, we call the graded algebra automorphism v the (generalized)
Nakayama automorphism of A4, and we call the graded A-A-bimodule w4 := A, (—¥)
the canonical module over A (see [12, Section 3.2]).



502 I. Mori and K. Ueyama

Theorem 2.19. If A is an ASF-regular algebra of dimension d and of Gorenstein
parameter { satisfying (EF), then A is an AS-regular algebra over R = Ay of
dimension d and of Gorenstein parameter {.

Proof. Since A is ASF-regular, we have DRI, (A) = A, (—£)[d] in D (GrMod A°).
It follows from Theorem 2.18 that
RHom 4(R, A) = RHom 4 (R, Al,(—E)[af])v_1 D)[—d]

= RHom 4 (R, DRI (4)),~1(6)[—d]

= DRI (R),-1(0)[—d]

~ DR, —1({)[—d]
in O (GrMod A°¢), so

RHom 4 (R, A) = DR({)[—d]

in H(GrMod A) and in HD(GrMod A?). Hence the result follows. O
Remark 2.20. Let A be a graded right coherent algebra. Since A satisfies (EF)
by Proposition 1.5, A is an ASF-regular algebra of dimension d and of Gorenstein
parameter £ if and only if A is an AS-regular algebra over R = Ag of dimension d

and of Gorenstein parameter £. Note that it is conjectured that every AS-regular
algebra is graded right coherent.

3. Regular tilting objects and relative helices

3.1. Canonical bimodules. The canonical sheaf plays an essential role to study a
projective scheme in commutative algebraic geometry. We will define a notion of
canonical bimodule for an abelian category.

Definition 3.1 ([4, Definition 3.1]). Let € be a Hom-finite k-linear category. A
Serre functor for € is a k-linear autoequivalence S € Auty € such that there exists a
bifunctorial isomorphism

Fyy:Home(X,Y) — D Home(Y, S(X))
for X,Y € €.

Remark 3.2. We explain the functoriality of a Serre functor S in X in the above
definition. Define functors

G = Home(—,Y) and H = D Home(S™1(Y),—)
= Homy (Homf;(S_l(Y), -), k).

Fix 8 € Home (X, X’). Then
G(B):Home(X',Y) — Home(X,Y)
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is given by (G(B))(a) = o o B. On the other hand,
H(B): Homy (Home(S™'(Y). X’), k) — Homy (Home (S~ (Y). X). k)

is given by ((H(B))(¢))(y) = ¢(Boy)fory € Home (S~ (Y), X). By functoriality,
we have a commutative diagram

G
Home (X', Y) ———(ﬂ—)—> Home (X, Y)

FX,‘YVL lFX,Y

D Home (S~1(Y), X') =2 D Home(S~1(Y), X),

so, for @ € Home (X', Y) and y € Home(S™1(Y), X), we have

Fxy(@op)(y) = (Fx,y (G(B)(@)))(y)
= (H(B)(Fx'y (@)))(y) = Fx y(@)(B o).

Definition 3.3. Let € be an abelian category. A bimodule M over € is an adjoint
pair of functors from € to itself with the suggestive notation

M = (— Qe M, Home (M, —)).

A bimodule M over € is invertible if — ®¢ M is an autoequivalence of €. In this
case, the inverse bimodule of M is defined by

M = (—®e ML, Home(M™L,—)) = (Home(M,—), — Q¢ M).

Definition 3.4. Let € be a k-linear abelian category. A canonical bimodule for €
is an invertible bimodule we over € such that, for some n € Z, the autoequivalence
— ®]é we[n] of DP(€) induced by — ®¢ we is a Serre functor for DP(€).

Remark 3.5. Let € be a k-linear abelian category.

(1) Since the Serre functor for D?(€) is unique, a canonical bimodule for € is
unique if it exists.

(2) If € has a canonical bimodule, then D?(€) has a Serre functor by definition,
so D (€) is automatically Hom-finite.

(3) If€ hasacanonical bimodule we, and —®'@ we[n] is the Serre functor for Dree),
then it is easy to see that gldim€ = n < oo.

Example 3.6. (1) If X is a smooth projective scheme, then the canonical sheaf wy
over X is the canonical bimodule for coh X.

(2) Let A be a noetherian AS-Gorenstein algebra over k, and w4 the canonical
module of A. Then A is a graded isolated singularity if and only if w4 := Tw4
is the canonical bimodule for tails A ([20, Theorem 1.3]).
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(3) If A is a graded right coherent AS-regular algebra over R, then w4 = mwy
is the canonical bimodule for tails A where wy4 is the canonical module over 4
([12, Theorem 4.12]).

(4) If R is a finite dimensional algebra of gldim R = n < 0o, then — ®% wgr[n] is the
Serre functor for D?(mod R), but wg is not a canonical bimodule for mod R in
our sense because —® g wg is not an autoequivalence of mod R. However, if R is

Fano, then — ® g wg is an autoequivalence of # og! (see Definition 2.9 (2)) and
Db (Jf“’l_?1 ) = Db (mod R) (see [11, Corollaries 3.6, 3.12]), so wg is a canonical
bimodule for J°% .

3.2. Regular tilting objects. Let 7 be a triangulated category. For a set of objects
{Eo,...,E,_1} in T, we denote by (Ey, ..., E,_1) the smallest full triangulated
subcategory of 7 containing Ey, ..., E,_; closed under isomorphisms and direct
summands.

Definition 3.7. Let 7 be a triangulated category. An object T € T is called tilting if
(1) 7 =(T), and
(2) Homg (7. T[q]) = O for all ¢ # 0.

Remark 3.8. If € is a k-linear abelian category such that D? (€) is Hom-finite, then
it is known that D?(€) is an algebraic triangulated category (see [7, Sections 1.2,
3.1]) and Krull-Schmidt (see [8, Corollary A.2] and [2, Corollary 2.10]). Hence,
if T is a tilting object for D?(€) such that gldim Ende (T') < oo, then the functor

RHome (T, —): Db (€) — D (mod Ende (7))

gives an equivalence of triangulated categories by [9, Theorem 2.2].

Definition 3.9. Let € be a k-linear abelian category having the canonical bimod-
ule we. We say that an object T € DP(¥€) is regular tilting if

(RT1) gldimEnde(T) < oo,
(RT2) D(€) = (T), and
(RT3) Home(T,T Q% (wg1)®%i[q]) =0forallg #Oandalli > 0.

The following theorem can be derived from [6, Theorem 7]. For the convenience
of the reader, we include our own proof.

Theorem 3.10. Let € be a k-linear abelian category with the canonical bimodule we,
and T € Db (€) a tilting object. Then T is regular tilting if and only if R :=Ende (T')
is a quasi-Fano algebra of gldim R = gldim €.

Proof. Note that since € is assumed to have a canonical bimodule, D?(€) is Hom-
finite.



A categorical characterization of quantum projective spaces 505

(=) Assume that T is a regular tilting object of D?(€). Let — ®% we[m] be the
Serre functor for H?(€) and let gldim R = n. Then we have m = gldim € by
Remark 3.5 (3). Using Remark 3.8 and the uniqueness of the Serre functor, we have
the following commutative diagram

RH T,
pbe) T2 pP(mod R)
—®{‘?w~@[m]lg gl—@%DR=—®Ika[n]

DP(E) — =5 DP(modR).
RHome (T,—)

This induces the following commutative diagram

pb(e) 2T pP(mod R)

—®%wgll_ gl—@L L

D) ———— DP(mod R),
RHome (T,—)

where L = wg![m — n]. Since
e (L") = Ext, (R, R ®Y% (L®%")) = ExtL (T, T ®% (0g")®¢') = 0

for all ¢ # 0 and all i > 0, we see that L is a quasi-ample two-sided tilting complex
of R. Since L™! = wg[n —m] = DR[—ml], it follows that R is a quasi-Fano algebra
of gldim R = m = gldim € by [12, Remark 1.3] (cf. [11, Remark 4.4]).

(<) If T € € is a tilting object for D?(€) and R = Ende(T) is a quasi-Fano
algebra of gldim R = gldim €, then we have the following commutative diagram

DP(€)

—®L€w—llg El—@%wgl 3.1)

DP(E) ———— DP(mod R)
RHome (7,—)

RHome (7,
& DP(mod R)

by Remark 3.8, Remark 3.5 (3), and the uniqueness of the Serre functor. Since a)l_el
is quasi-ample, we have

Home (T, T ®% (a)gl)‘g’%i[q]) ~ Hompg (R, R ®II§ (a)l_el)@%?i[q])
= h9((wx")®k') = 0

forall g # O and alli > 0, so T is a regular tilting object of D?(€). O
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Theorem 3.11. Let € be a k-linear abelian category with the canonical bimodule we.

If T € € is regular tilting for Db (€) and (T, — ¢ a)gl) is ample for €, then

(1) R :=Ende(T) is a Fano algebra of gldim R = gldim €, and

2) A := B(E, T,— ®¢ a)gl)zo >~ TIR is a graded right coherent AS-regular
(Calabi-Yau) algebra over R := Ende(T) of dimension gldim€ + 1 and of
Gorenstein parameter 1.

Proof. Since T is regular tilting for D?(€), R is a quasi-Fano algebra of gldim R =
gldim € by Theorem 3.10, so wl_el is a quasi-ample two-sided tilting complex of R.
The commutative diagram (3.1) induces the following isomorphisms of graded
algebras

A=B(€.T.— ®c wg')

Il

B(DP(€).T. - & we'),,
~ B(i)b(mod R),R,— ®Ife wEI)

>0
=0°

Since (T, — Qe wgl) is ample for €,

B(D’(mod R), R, — ®% wgx')_, = 4

>0
is a graded right coherent algebra by Theorem 2.6, so (‘)1_21 is an ample two-sided tilting
complex of R by [11, Theorem 3.7], hence R is a Fano algebra of gldim R = gldim €.

By Theorem 2.12,

A= B(Db(mod R), R, — ®% wg')., = TR

>0 =

is a graded right coherent AS-regular (Calabi—Yau) algebra over R of dimension
gldimR + 1 = gldim€ + 1

and of Gorenstein parameter 1. O

3.3. Relative helices. Inthis subsection, we will define a “relaxed” version of a helix.
Definition 3.12. Let 7 be a k-linear triangulated category.

(1) A sequence of objects {Ey,..., E¢—1} in T is called an exceptional sequence
(resp. a relative exceptional sequence) if

(RE1) Endg(E;) = k (resp. gldimEnds E; < co) foreveryi =0,...,£—1,
(RE2) Homg (E;, Ei[g]) = O forevery ¢ # O and everyi = 0,...,{ — 1, and
(RE3) Homg (Ei, E; [q]) =0foreverygandevery0 < j <i <{—1.
A (relative) exceptional sequence {E, F} consisting of two objects is called a
(relative) exceptional pair.

(2) A sequenceofobjects {Ey,..., Eg_1}in T iscalled fullif (Ey,..., E¢—1) = T.



A categorical characterization of quantum projective spaces 507

Remark 3.13. If {Ey,..., Ey_;} is a relative exceptional sequence for a k-linear
triangulated category 7, then gldim Ends (@f;(l) E;) < o0.

Definition 3.14. Let € be a k-linear abelian category having the canonical bimod-
ule we.

(1) A sequence of objects {E; }iez in DP(€) is called a (relative) helix of period ¢
if, foreachi € Z,

(H1) {E;...., Ei1¢—1} is a (relative) exceptional sequence for D?(€), and
(H2) Eiy¢ = E; ®p wg'.
(2) A relative helix {E;};ez of period £ is called full if, for each i € Z,

(Ei,...,Eiz—1) = Db(0E).

(3) Arelative helix {E; };ez of period £ is called geometric if Homg (Ei, E;j [q]) =0
for every ¢ # O and everyi < j.

Definition 3.15. Let 7 be a k-linear triangulated category. For a pair of
objects {E, F} in T, we define Hom%-(E, F) € O (Mod k) by

(Hom-(E, F))" = Homg (E, F[i])[i]

with trivial differentials. Moreover we define objects Lg F and Ry E in T by using
distinguished triangles

LgF — Hom%(E,F)®r E - F —,
E — DHom%(E,F)®k F - RrE — .

We call Lg F (resp. Rr E) the left mutation of F' by E (resp. the right mutation of £
by F).

Itisknown thatif { £, F'} is an exceptional pair, then { Lg F, E}and {F, Rp E} are
both exceptional pairs,and R Lg F =~ F, Lr Rp E =~ E. Mutations of exceptional
pairs can be extended to mutations of exceptional sequences. For a sequence of
objects € = {Ey, ..., E¢_1}, we define

Lie ={Eo,....,Ei \,LE,Eiy1,Ei, Eiys,... Eq_1},

Rie ={Eo,....Ei—1,Ei+1,Rg;  Ei, Eita, ... E¢—1}

foreachi =0,...,¢—2.

Lemma 3.16 ([3, Assertions 2.1, 2.3.a, Lemma 2.2]). Let € = {Ey,...,E¢_1} bea
sequence of objects in a k-linear triangulated category. For eachi =0,...,£—2,
the following are equivalent:

(1) € is a (full) exceptional sequence.
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(2) Lje is a (full) exceptional sequence.
(3) Rje is a (full) exceptional sequence.

We inductively define L'E; := Lg,_, (L' 'Ej)and R'E; = Rg, ;(R"'E})
fori > 1.

Remark 3.17. Let € be a k-linear abelian category. There is another definition of a
helix, which requires the condition

(H2) Eji¢ = R*VE; (orequivalently, E;_; = L*1E;)
in place of (H2) (see [13, Definition 4.3]). If € has the canonical bimodule we, then

L VE; =~ E; ®% welgldim€ 4 1 — (]

by [3, Assertion 4.2] and Remark 3.5 (3), so the above definition of a helix agrees
with the one given in [13, Definition 4.3] if and only if £ = gldim € + 1.

Lemma 3.18. Let € be a k-linear abelian category having the canonical bimod-
ule we, and {E;}icz, a (full) geometric relative helix of period £ for DP(€). For
r € NV such that r | ¥, {@id/ E;}jez, where

Ii={ieZ|jr<i<(+Dr-1}

is a (full) geometric relative helix of period £/r for DP(€). In particular, for
an algebraic pair (O, s) for €, if {s'OYicz is a (full) geometric relative helix of
period { for DP(€), then {sj’(EB;;(l) 5'0)} jez is a (full) geometric relative helix of
period L/ r for DP(€).

Proof. First, we show that (H1), that is,
iGIj iEIj+e/r_1

is a relative exceptional sequence for D?(€) for every j € Z.

(RE1) Forany j € Z,{Ejr,..., E(j+1)r—1} is a relative exceptional sequence, so
we have gldim Ende (@ielj E;) < oo by Remark 3.13.

(RE2) Using the facts that {E£,, ..., E(j4+1)r—1} is a relative exceptional sequence
for any j € Z and {E;};ez is geometric, we have

Home (@ E.P Ei[CJ]) =0

lGIj lEIj

for every ¢ # Oand every j =0,...,¢/r — 1.
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(RE3) Foranyi € Zandanyi < j; < j, <i +4{/r—1,ifiy € Ij andi, € I},,
then
Home (E;, ., Ei,[q]) = 0

for every ¢ since 0 < i, —i; < { — 1, so we have

Home ( P E. P Ei[Q]) =0

iEIjl iEIj2
for every q.

Secondly, since

@ E; = EB Ejpg = @(Ei RF wg!) = (@E,) R we'.

iEIj+(/r iEIj iEIj iEIj

(H2) is satisfied, so {@iel,- E;}jez is arelative helix of period £/r for Dbe).
The full and geometric properties are straightforward. 0

Lemma 3.19. Let € be a k-linear abelian category having the canonical bimod-
ule we. If {E;}icz is a full geometric relative helix of period 1 for D (€), then E;
is a regular tilting object of DY (€) for every i € 7.

Proof. By definition, gldim Ende E; < co. Moreover, we have
Home (E;, Eilq]) = 0
for all ¢ # 0. Since {E;};ez is a full relative helix of period 1, (E;) = D?(€).
These say that E; is a tilting object of D?(€). Since {E; };cz is a geometric relative
helix of period 1, we have
C1®L
Home (E;, E; ®% (a)gl)&f’[q]) = Home (E;. Ei+;lq]) =0
forall ¢ # O and all j > 0, so E; is regular tilting. O
Lemma 3.20. Let € be a k-linear abelian category having the canonichl bimod-
ule we. If E is a regular tilting object of DP(€), then {E ®¥é (wgl)®f’ Yiez is a
full geometric relative helix of period 1 for DP(€).
Proof. Clearly,
gldim Ende (E ®L% (wg!)®%") = gldim Ende (E) < oc.
Moreover, we have

_ L _ L;
Home (E ®% (a).el)®€’, E ®{§ (w€1)®€’[q]) =~ Home (E, E[q]) =0
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forevery ¢ # 0. These mean that { £ ®L (we 1)®€ }iez is arelative helix of period 1
for DP(€). Forevery ¢ # O and every i < j,
Home (E ®% (0g)®¢, E @ (wg")®¢/[q))
=~ Home (E, E ®% (0g")®¢U[g]) =0

so{E ®I€, (cogl)@%i} is geometric. Since

1 ®L;

(E ®¢ (0g")®¢") = (E) = D°(C),
it follows that { £ ®L (wg")®e'} is full. O
Lemma 3.21. Let (€, O, s) be an algebraic triple. Forr e N1, (O, s) is ample for €
if and only if(@;;(l) s, s") is ample for €.
Proof. Letl; ={i € Z | jr <i < (j + 1)r — 1} so that
") (Ps'o) = Pso.
iely i€l

Clearly, (A1) for the pair (O, s) is equivalent to (A1) for the pair (@ielo 51O, s7).
For every epimorphism ¢: M — N in €, we see that

Home (@s O, qb) Home (@s 0, M) — Home (@s O, N)
i€l; iel; i€l;
is surjective if and only if
Home (s° @, ¢): Home (s' @, M) — Home (s' O, N)
is surjective for every i € ;. This implies that (A2) for (0, s) is equivalent to (A2)
for (@ielosi(D,s’). O

Proposition 3.22. Let € be a k-linear abelian category having the canonical bimod-
ule we, and (O, s) an algebraic pair for €. If {s' O}icz is a full geometric relative
helix of period £ for D (€), then the following hold.

() T := @l Z05'O € € is a regular tilting object for Dle).
2) €, T,—®e wgl) ~ (€,T,s.
3) (O, 5s) is ample for € if and only if (T, — Qe a).gl) is ample for €.

Proof. (1) If {s'O};cz is a full geometric relative helix of period £, then
(D)),
{ @ s JEZ

is a full geometric relative helix of period 1 by Lemma3.18,s0 T := f;(l) ssOet€
is a regular tilting object for D?(€) by Lemma 3.19.
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(2) Since
-1 -1
YT = (s‘)f(@sim) = Ps'tito
i=0 i=
-1
~ (@SiO) L (wgl)®%j =T ®L (wgl)cb%j
i=0

for every j € Z, it follows that (€, T, — Q¢ a)gl) ~ (€, T, se).

(3) By Lemma 2.8 (2), (T, — Q¢ a)gl) is ample for € if and only if (7, s%) is ample
for €. By Lemma3.21, (T, s%) = (@f;(l) 5@, s%) is ample for € if and only if (O, 5)
is ample for €. O

4. Main result

We are now ready to state and prove the main result of this paper, which gives a
complete answer to Question 1.1. Note that if A is an AS-regular algebra over A of
dimension 0, then A is finite dimensional over k, so tails A is trivial.

Theorem 4.1. Let € be a k-linear abelian category. Then € = tails A for some
graded right coherent AS-regular algebra over Ag of dimension at least 1 and of
Gorenstein parameter £ if and only if

(AS1) € has a canonical bimodule we, and

(AS2) there exists an ample algebraic pair (O, s) for € such that {s' O}, ez is a full
geometric relative helix of period £ for DP(€).

Infact, if (AS1) and (AS2) are satisfied, then A = B(€, O, 5)> is a graded right
coherent AS-regular algebra over Ay = Ende (O) of dimension gldim € + 1 and of
Gorenstein parameter £ such that € = tails A.

In this case, A is right noetherian if and only if O € € is a noetherian object.

Proof. (=) Let A be a graded right coherent AS-regular algebra over Ag of dim-
ension d > 1 and of Gorenstein parameter £. Then tails A has the canonical bi-
module w4 by Example 3.6. By Theorem 2.12, R := VA is a Fano algebra of
gldimR = d — 1, and B := TIR is a graded right coherent AS-regular algebra
over R of dimension d and of Gorenstein parameter 1. Since B is a twisted graded
algebra of Al by a graded algebra automorphism by [12, Theorem 4.12], there
exists an equivalence functor grmod A — grmod B sending @f;(l) A(i)to Bby[12,
Remark 4.9]. Since we have

Al) @4 0y = Al + L)
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forevery i € Z, it follows that

-1 -1
(tailsA, @D AG0). (@)) ~ (tailsA, P AG). - @4 w;l)
i=0 i=0
~ (tails B, B, — ®g 0g') = (X% , R, — % wg')

by [11 Corollary3 12]. Since (R, ®€wl_zl)1s ample for JOR' by [11, Lemma 3.5],
(@ A(z) (£)) is ample for tails A by Lemma 2.8 (2), so (s, (1)) is ample for
tails A by Lemma 3.21.

We next show that {A(i)};ez is a full geometric relative helix of period £ for
DP(tails A). By [12, Proposition 4.4],

End 4 (A(i)) = Endy (4) == Ao,

so gldim End 4 (A(7)) < oo. Since A(i) @4 w;l ~ A( + {), it follows from [12,
Proposition 4.4] again that {A(i)};cz is a geometric relative helix of period £.
Furthermore, similarly to the proof of [12, Proposition 4.3], we have

(AG), ..., Al +L—1)) = DP(tails A)

for every i € Z, so {A(i)}iez is a full relative helix.
Since € = tails A, we see that € has an ample algebraic pair (O, s) such that
{s'O}iez is a full geometric relative helix of period £ for D?(€).

(<) Suppose that € satisfies (AS1) and (AS2). Let n = gldim €. Since (0O, s) is
ample for €, A := B(€, O, s)>¢ is graded right coherent and

(€,0,s) = (tails A, A, (1))

by Theorem 2.6. By Proposition 3.22, T := @l —0S 1@ € € is aregular tilting object
for D2(€) and (T, — ®e¢ wt,l) is ample for €, so it follows from Theorem 3.11 that

MR = B(E.T,— ®c wg')

>0

is a graded right coherent AS-regular algebra over R :=Ende (7') of dimensionn + 1.
Moreover, since {s¢T10,...,s7'0, @} is a relative exceptional sequence,

Al = (B(f,@,s)zo)[“ ~ (B(t?,@,s)[‘])zo
{—1
~ B(‘c?, @sia,sf)zo = B(€.T,s%0

by [13, Lemma 3.8]. Since (€, T, — ®¢ wge 1) ~ (€, T, s%) by Proposition 3.22, we
see that
GrMod A =~ GrMod A =~ GrMod TTR

by Lemma 2.8 (1), and so we have gldim A = gldim IR =n + 1.
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For the rest, we will show that A is AS-regular over Ay = Ende () of dimension
n + 1 and of Gorenstein parameter £.
First assume n = 0. It follows from Theorem 3.11 that

gldim R = gldim€ = 0,
so R is semisimple. Since D?(€) = DP(mod R), we have
— Q¢ we = ide,
s0 79 = 51O forevery i, j € Z. It follows that
(€,0,s5% ~ (€,0,ide),

so A® =~ B(€,0,5% is a twisted graded algebra of B(€, O, ide)>o = Ag[x],
where deg x = 1 by Lemma 2.8 (1). Since {0, ..., s€_1(9} is a relative exceptional
sequence,

Home (0, s' ) =~ D Home(s° @, ©) = 0

forevery 0 <i < ¥, so

Home (0. 5'0) = Ende(0) = Ap 1fz elZ,
ifi L7.

It follows that A = B(€, 0, s)>¢ is a twisted graded algebra of Ao[x] where Ay
is semisimple and degx = £, so A is AS-regular over Ay of dimension 1 and of
Gorenstein parameter £.

We now assume n > 1. Since A is graded right coherent, it satisfies the condi-
tion (EF), so it is enough to show that A is ASF-regular of dimension n + 1 and of
Gorenstein parameter £ by Theorem 2.19. Note that we have an exact sequence

0 H®(A) > A —24 HO(A) — HL (4) - 0

and isomorphisms
HI(4) = HT7I(A), ¢ =2

of graded A-A-bimodules where ¢4: A — H°(A) is the graded algebra homomor-
phism defined in Example 2.4. Thus, it is enough to check that ¢4 above is an
isomorphism and

0 ifg #0,n,

Hi(A) = DA(t) ifq =n

as graded right and left A-modules.
If j > 0, then .
Ext‘é((D,s’ 0)=0
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for all ¢ # 0 since {s/ @} is geometric. If —¢ < j < 0, then

ExtL(0.s70) =0
since {S_ZH(Q, ...,5710, 0} is a relative exceptional sequence. If j < —¢, then

ExtL(0,s70) = DExtg /(s70,570) = DExty /(0,577 0) =0
for all ¢ # n since {s/ @} is geometric. It follows that
HY(A) = D ExL(0.570) =0
JEZ

for all ¢ # 0, n. On the other hand, if —¢ < j < 0, then

Home (0, s/ Q) = 0
since {s_€+1(9, ...,s710, 0} is a relative exceptional sequence. If j < —¢, then

Home (9,57 0) = D ExtL(s’0,s740) = DExtL(0,s770) =0

since {s/ @} is geometric. Thus, A = B(€,0,s).
Recall that the functor : grmod A — tails A induces a morphism of algebraic

triples
(grmod A4, A, (1)) — (tails 4, 4, (1))

by Example 2.4. Since € is Hom-finite and (0, s) is ample for €, we have a functor
H%(—)s0: € — grmod A by Theorem 2.6 (2). Since

H(—)0 05 = @) Home (0, 5" (-))
i=0

o
and (1) o H(—)0 = @D Home (0.5 (),
i=—1
there exists a natural transformation H’(—)so o s — (1) o H®(—)¢. Since
H’(0)z0 = B(€.0.5)>0 = A,
the functor H’(—)so: € — grmod A induces a morphism of algebraic triples
(€,0,s) — (grmod A4, 4, (1)).

By Theorem 2.6 (2), the composition of these morphisms is an isomorphism of alg-
ebraic triples (€, @, s) — (tails A, 4, (1)). In the commutative diagram

HO(—)~
U B(E.O.5) — 2% Barmod A, A, (1) —— B(tails A, 4, (1))

I I I
pa: A — H°(4) s HO(A),

¥ is an isomorphism of a graded algebras by Theorem 2.6 (2), so ¢4 is also an iso-
morphism of graded algebras.
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Consider the diagram
H"(A); x A; — H" (A)i+;

~ ~

~ ~

Home (s7 O, s'17/ O[n]) x Home (O, s7 ©) LN Home (O, s' 77 O[n))

F xid F

~ ~

D Home (s /0, 57 9) x Home (O, s/ 0) ——> D Home(si 0, 0)

~ ~

~ ~

DA(6); x A — DA()i+ ;.

where the top and the bottom squares are commutative and F is a map induced by
the Serre functor as in Remark 3.2. For

(e, B) € Home (s7 0, 5"/ O[n]) x Home (0, s7 0),
we have ®(«, f) = « o . Moreover, for
(¢, B) € D Home (si+j+e(9,sj(9) x Home (O, 57 9),
we have (¢, B)(y) = ¢(B o y) for every y € Home (s /740, 0). Since

F(®(a, p))(y) = Flaof)(y) = F(@)(Boy)
= V(F(a), B)(y) = W((F xid)(a. p))(¥)

for every y € Home (s t/t£©, 9) by Remark 3.2, the above diagram commutes, so
H"(A) = DA(()

as graded right A-modules. Similarly, we can show that H" (A) =~ DA({) as graded
left A-modules. Hence A is ASF-regular of dimension #n + 1 > 2 and of Gorenstein
parameter .

For the last statement, since € is Hom-finite, HO(M) is finite dimensional for
every object M € €. Since (O, s) is ample for €, if @ € € is a noetherian object,
then

A = B(tails 4, O, s)>0

is right noetherian by [1, Theorem 4.5]. Conversely, since
(€,0,s) = (tails 4, A, (1)),

if A = B(tails A, O, 5)> is right noetherian, then 4 € tails A4 is a noetherian object,
so @ € € is a noetherian object. O
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Corollary 4.2. Let € be a k-linear abelian category. Then € = tails A for some
graded right coherent AS-regular algebra over k of dimension at least 1 and of
Gorenstein parameter £ if and only if

(AS1) € has a canonical bimodule we, and

(AS2) there exists an ample algebraic pair (O,s) such that {s'O}icz is a full
geometric helix of period £ for D (€).

In fact, if (AS1) and (AS2) are satisfied, then A = B(€, 0, s)>¢ is a graded

right coherent AS-regular algebra over k of dimension gldim € + 1 and of Gorenstein

parameter £ such that € = tails A.
In this case, A is Koszul if and only if £ = gldim € + 1 (¢f. Remark 3.17).

Proof. Note that if A is AS-regular over k of dimension d and of Gorenstein param-
eter £, and
o> Fl S FO S5 k>0

is the minimal free resolution of k over A, then F¢ = A(—{), so k has a linear
resolution if and only if £ = d. In the above setting, d = gldim € + 1, so the last
statement holds. O

Corollary 4.3. Let € be a k-linear abelian category. Then € = tails A for some
graded right coherent AS-regular algebra over Ag of dimension at least 1 if and
only if

(AS1) € has a canonical bimodule we, and

(AS2) there exists a regular tilting object T € € for Db (€) such that (T, — e a).gl)
is ample for €.

Proof. 1f € = tails A for some graded right coherent AS-regular algebra over A¢ of
Gorenstein parameter £, then € has a canonical bimodule we, and there exists an
ample algebraic pair (O, s) for € such that {5’ O};cz is a full geometric relative helix
of period £ for D?(€) by Theorem 4.1. By Proposition 3.22,

-1
T := @sia ec
i=0

is a regular tilting object for D?(€) and (T, — ®¢ a)gl) is ample for €.
Conversely, if T € € is a regular tilting object for D? (€) such that (T, — Q¢ We !
is ample for €, then

{T ®e (0g")®¢"},o; = {T ®F (wg)®e'}, .,

is a full geometric relative helix of period 1 for D?(€) by Lemma 3.20, so the result
follows from Theorem 4.1. O
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Corollary 4.4. Let A be a graded right coherent (noetherian) AS-regular algebra
over Ag of dimension d and of Gorenstein parameter £. For r € NV such that r | ¢,
B := Al isa graded right coherent (noetherian) AS-regular algebra over By of
dimension d and of Gorenstein parameter £/ r.

Proof. Since (s, (1)) is an ample algebraic pair for tails A such that {A(i)};cz is a
full geometric relative helix of period £ for D? (tails A) by the proof of Theorem 4.1,
(@:;(1) A(i), (r)) is an ample algebraic pair for tails A such that

(@a0)e),.,

is a full geometric relative helix of period £/r for D (tails A) by Lemma 3.21 and
Lemma 3.18. Since

)
>0

r—1
B = Al ~ B(@b(taﬂs A). @A), (r))

i=0
we see that B is a graded right coherent AS-regular algebra over By of dimension
gldim(tails A) + 1 = d and of Gorenstein parameter £/r by Theorem 4.1. O

Example 4.5. In the above Corollary, the condition r | £ cannot be dropped. For
example, if A = k[x] with degx = 3, then A is AS-regular over k of dimension 1
and of Gorenstein parameter 3. If B := A[?! is AS-regular over By, then

gldim B = gldim A4 =1,

so B = By[x] as a graded vector space by the proof of Theorem 4.1 (see also [12,
Theorem 4.15]). Since

. 4l2] k 0 0 kx 0 o kx? 0
B:=4 _(0 k)@(o 0)%Wkx 0)® 0 k?)®
it is not the case, so B is not AS-regular over By = k x k. Since

GrMod A1 ~ GrMod 4

for every r € N, this example shows that AS-regularity is not a graded Morita
invariant if we do not require algebras to be connected graded (compare with [25,
Theorem 1.3]).

5. Smooth quadric surfaces in a quantum P3

It is well known that, for a smooth quadric surface Q in IP3, there exists a noetherian
AS-regular algebra

B =k(x,y)/(x*y — yx*, xy* — y*x)
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of dimension 3 and of Gorenstein parameter 4 such that coh Q = tails B. In this
section, we will prove a noncommutative generalization of this result as an application
of the main result of this paper.

Throughout this section, we assume that k is an algebraically closed field of
characteristic 0.

Definition 5.1 ([19]). We say that a k-linear abelian category € is a smooth quadric
surface in a quantum IP3 if € = tails S/( f) where S is a 4-dimensional noetherian
quadratic AS-regular algebra over k and f € S is a central regular element such
that A = S/(f) is a domain and a graded isolated singularity.

Let S be a 4-dimensional noetherian quadratic AS-regular algebra over k. Then
the Hilbert series of S is Hg(t) = 1/(1—1)*, and S is a Koszul domain. Let f € S,
be a central regular element and A = S/(f). Then A4 is a noetherian AS-Gorenstein
Koszul algebra of dimension 3 and of Gorenstein parameter 2. There exists a central
regular element z € A' of degree 2 such that A'/(z) 2 S' where A', ' are Koszul
duals of A, S. We define C(4) := A'[z7"]o.

We call M € grmod A graded maximal Cohen—Macaulay if

depthM =1cdM =1lcdA(=3) or M =0.

It is well known that M € grmod 4 is graded maximal Cohen-Macaulay if and only
if Ext}y(M,A) = 0 for all i # 0. We write CMZ(A) for the full subcategory of
grmod A consisting of graded maximal Cohen—Macaulay modules.

Proposition 5.2. Let S be a 4-dimensional noetherian quadratic AS-regular algebra

over k, and f € S, a central regular element. If A = S/(f) is a domain, then the
Jollowing are equivalent:

(1) A is a graded isolated singularity.

(2) A is of finite Cohen—Macaulay representation type (i.e. there exist only finitely
many indecomposable graded maximal Cohen—Macaulay modules up to isomor-
phisms and degree shifts).

(3) C(A) is a semisimple ring.

(4 C(4) = Ma(k) x Ma(k).

Proof. (1) = (3) follows from [19, Theorem 5.6]. (3) = (2) follows from [21,
Proposition 4.1]. (2) = (1) follows from [21, Theorem 3.4]. (3) < (4) follows
from [19, Proposition 5.3]. O

For the rest, we assume that S is a 4-dimensional noetherian quadratic AS-regular
algebra over k, f € S, is a central regular element, and A = S/(f) is a domain
and a graded isolated singularity. In this case, gldim(tails A) = 2 and tails A has
the canonical bimodule w4 such that M ® 4 w4 = M, (—2) for M € tails A by
Example 3.6 where v is the Nakayama automorphism of A. We define

M={M e CMZ(A) | M is indecomposable, My =~ k>, M = MoA}/=.
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The stable category of graded maximal Cohen—Macaulay modules, denoted by
CMZ(A), has the same objects as CMZ(A) and the morphism set is given by

Hommz(A)(M, N) = Homy(M,N)/P(M,N)

for any M, N € CMZ(A), where P(M, N) consists of degree zero A-module hom-
omorphisms that factor through a projective module in GrMod A. Since A4 is AS-
Gorenstein, CMZ (A) is a triangulated category with respect to the translation functor
M[—1] = QM (see [5)).

Proposition 5.3. The following hold.

(1) There exists a duality G:CMZ(A) 5 DP(mod C(A)) such that G(M) is a
simple C(A)-module for every M € M.

(2) M consists of two non-isomorphic modules, say X and Y. Moreover, every non-
projective indecomposable graded maximal Cohen—Macaulay module is iso-
morphic to X(i) or Y(i) for some i € Z.

Proof. (1) This follows from [19, Proposition 5.2 (1)] and [19, Proposition 5.4].

(2) By Proposition 5.2, C(A) has two non-isomorphic simple modules, so it follows
from [19, Proposition 5.4] that M consists of two non-isomorphic modules. The last
statement follows from the proof of [21, Proposition 4.1]. O

In[19], Smith and Van den Bergh developed the theory of smooth quadric surfaces
in a quantum P3. By [19, Lemma 5.5, Proposition 5.4(1)], if M € M, then
QM(1) € M and Q2M(2) = M, so, by Proposition 5.3 (2), the following two cases
may occur:

Standard. QX(1) = Y and QY (1) = X.
Non-standard. QX(1) = X and QY(1) = Y.

In [19, Theorem 5.8], Smith and Van den Bergh claim thatif A = S/(f) is a domain
and a graded isolated singularity, then A is standard. However, in the appendix, we
will give an example of a non-standard algebra A = S/(f) which is a domain and a
graded isolated singularity.

Definition 5.4. We say that a smooth quadric surface € in a quantum P3 is standard
if € = tails A where A = S/(f) is standard.

Note that a smooth quadric surface Q in P2 is standard (see the appendix). To
give an application of the main result of this paper, we focus on standard smooth
quadric surfaces in a quantum P3.

For the rest, we assume that A = S /(f) is adomain, a graded isolated singularity
and standard.
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Proposition 5.5. The following hold.

(1) We have exact sequences
0—>Y(-=1)—>A>>X -0 and 0— X(-1) > A> > Y — 0.
(2) QFTIX = V(=2i — 1), Q%X = X(=2i), Q¥TY = X(=2i — 1),
and Q%Y = Y (=2i) for everyi € Z.
(3) CM*(4) = (Y, X).

Proof. Since A is standard, (1) and (2) follows from [19, Proposition 5.4 (2)]. For (3),
by Proposition 5.3, D?(mod C(A4)) = (G(X), G(Y)), so CMZ(A) = (Y, X). O

The Auslander—Reiten quiver of CMZ (A) is given as follows:
e X(=2) = Y(—=1) o X s Y (1) e X(2) e

e Y(=2) < X (—=1) < Yo X (1) i Y(2) e+

where dotted arrows show the Auslander—Reiten translation t in CM%(A). (There
are no arrows.)

Lemma 5.6. The following hold.

(1) Hyt)= A +0)(1—1)73.

(2) Hx(r) =2(1—1)"3.

(3) Hyom ,(x,4)(1) =2t(1 —1)7>.

@ Hyom ,(x.30(1) = (L +0)(1 = 1)~
(5) Hyom,x,1) (1) =13 =) (1 —1)7.
(©) Hgyt, (x,4)(1) = 0.

(M) Hgt (x5 (1) = 0.

(8) H@L(X,Y)(t) =L

(These are also true if we exchange the roles of X and Y .)
Proof. (1) Since Hg(t) = (1 —t)™*, the result follows from the exact sequence
0—->S(-2)—>8S—>A4—-0.

(2) This is [19, Proposition 5.4 (4)].
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(3) We have an exact sequence
0— X(—-2) > A(-1)?> > A2 > X >0
by Proposition 5.5 (1). Since X € CMZ(A4), we have an exact sequence
0 — Hom (X, A) — A% — A(1)> — Hom (X, A)(2) — 0,
so the result follows.
(6) Since X € CMZ(A), this is clear.
(7) We have
Ext)y (X, X); & Extgoaa (X, X(0))
= Homgyz (4, (X, X()[1])
= Homgyz 4 (X, X(1))
= Homgyz 4 (Y(—l), X(i)).
By the structure of the Auslander—Reiten quiver of CMZ (A), this is zero for any i.
(8) We have
Ext)y (X, Y); = Extieaa (X(1). Y + 1))
= Homgyz 4 (X (1), Y(@ + 1)[1])
= Homgyz 4y (QX(l), Y(i+ 1))
= Homgyz 4, (V. Y (i + 1)).
Ifi = —1, then
dimg Homgyz 4, (Y, Y) = dimg Hom g (09 c(4)) (G(Y ). G(Y)) = 1

because C(A) is semisimple and G(Y) is a simple C(A4)-module by Proposi-
tion 5.3 (1). If i # —1, then it follows from the structure of the Auslander—Reiten
quiver of CMZ(A) that

Homgyz 4, (Y(=1),Y(i)) = 0.
Thus we get the result.
(4) Since we have exact sequences
0—>Y(-1)>A4> > X -0 and 0— X(=2) = A(-1)> > Y(=1) >0
by Proposition 5.5 (1), we obtain exact sequences
0 — Hom (X, X) — Hom 4 (A, X)*> — Hom 4(Y(—1), X)
— Exty(X. X) =0 (by (7).
0 — Hom 4 (Y(~1), X) — Hom 4(A(~1), X)* — Hom 4 (X(-2), X)
— Exty (Y(~1), X) — 0.
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Combining these, we get

Hyom ,(x,x)(1) —2Hx (t) + 217" Hx (1)
— l_zH@A(X’X)(t) + t_lH@L(Y,X)(t) =0,

so the result follows from (2), (8).

(5) Since we have an exact sequence
0—Y(—1) > 4> > X =0,
we obtain an exact sequence
0 — Hom,(X,Y) — Hom 4(4,Y)? — Hom,(Y(~1),Y) — Exty(X,Y) — 0,
so it follows that
Hyom ,(x,v) () = 2Hy (t) + t 7 Hygom , (v,7) () — Hgy (x.7) (1) = 0.
The result follows from (2), (4), (8). L]

The graded singularity category of A is defined by the Verdier localization

DE(4) := D" (grmod A)/ D (grproj A),

where grproj A is the full subcategory of grmod A consisting of projective modules.
We denote the localization functor by v: D (grmod A) — :Dégg(A). Moreover, there
exists the equivalence
CMZ%(4) = D (4)
by Buchweitz [5]. Since the Gorenstein parameter of A is £ = 2 > 0, there exists the
embedding
@ := Bo: DE(4) > D (tails A)

by Orlov [16].

Lemma 5.7 ([15, Lemma 4.1]). Let M grmod A. If M= My and Hom4(M, A(i))
=0foralli <0, then (VM) =~ aM = M.

Lemma 5.8. We have ®Dg,(A) = (¥, X).

Proof. By Lemmas 5.6 (2), (3) and 5.7, it follows that ®(vX) = X and d(vY) = ¥.
Under the equivalence

CM?(4) = DE(A),

X, Y correspond to vX, vY, so cT)Sg;(A) = (vY, vX) by Proposition 5.5 (3). Hence,

DDE(A) = (P(LY), D(LX)) = (¥. X). O
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Lemma 5.9. For M, N € CMZ%(A), the following hold.
(1) Hom (. A) = Hom (M. N).

(2) Extl (M, N) = Exty (M, N).

(3) Ext} (M, N) = D Hom (N, M, (-2)).

(4) Ext, (M. ) = 0forg 3.

Proof. Since M /M>,, is a finite dimensional module and depth N = 3, we have

lim Hom ,(M/Ms,, N) = lim Ext\(M/Ms,, N)
n—>oo - n—>oo -
= lim Ext3(M/Ms,,N) =0,
n—>oo -
so it follows from [1, Proposition 7.2 (1)] that
Hom 4 (M, N) = lim Hom, (Ms,, N) = Hom,(M,N),
n—>o0 -
Exty (M. N) = lim Ext}(Ms,,N) = Exty (M. N).
n—>o0 -
This proves (1), (2). Moreover, since depth M,,(—2) = depth M = 3,

Ext (M, N) = D Hom 4 (N, M ®,4 w4)
=~ D Hom 4 (N, M, (—2)) = D Hom (N, M, (-2))

by the Serre duality and (1). This shows (3). Since gldim(tails A) = 2, (4) holds.

Lemma 5.10. The following hold.

kK ifj—i=0,
1) Homy (A7), A(j)) =
(1) Homa(A(). 4())) {0 i
k2 ifj—i=0,
0 ifj—i=<-—L.

(3) Homu(X(@i), A(j)= 0  ifj—i <0.

(2) Homu(A(i), X(j)) = {

k if j—i =0,
4) Homu (X (), X(j)) =
(4) Hom A (X (1), X (/) {0 i
(5) Homu(X (). ¥(j)= 0 ifj—i=<O0.
(These are also true if we exchange the roles of X and Y.)
Proof. This follows from Lemma 5.9 (1) and Lemma 5.6.

Lemma 5.11. The following hold.
(1) Exty (A(). A(j)) = 0.
(2) Extl (4(i), X(j)) = 0.

523
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(3) Exty (X (i), A(j)) = 0.

(4) Exty (X (i), X(j)) = 0.

(5) Exty (X (). Y(j) = 0if j —i # —L.

(These are also true if we exchange the roles of X and Y.)

Proof. This follows from Lemma 5.9 (2) and Lemma 5.6. ]
Lemma 5.12. We have X, =~ X and Y, =Y.

Proof. Since C(A) is semisimple, D(mod C(A)) has the Serre functor id ¢ (mod C(A))>
s0 CMZ(A) has the Serre functor idcyz 4y by Proposition 5.3 (1). However, by [20,
Corollary 4.5], CMZ (A) has the Serre functor

~ ®4wa[2] = Q7 (—)u(-2).
Since (—), commutes with shifts, we have
X = Q2X(22) = Q222X (2),(-2) = X,

in CMZ% (A) by Proposition 5.5. Since X is indecomposable and non-projective, this
means that X = X, in CMZ(4). O
Lemma 5.13. The following hold.

(1) Ext(AG), A() =0if j —i = —1.

(2) Bxt(AG), X(j) =0if j —i = —2.

(3) Ext (X (i), A(j) =0if j —i = —1.

) Bx(X@0), X(j) =0if j —i = —1.

(5) ExCy(X(1). ¥Y(j)) = 0if j —i = 2.

(These are also true if we exchange the roles of X and Y.)

Proof. We only show (5). The rest are similar. It follows from Lemma 5.9 (3) and
Lemma 5.12 that

Ext2 (X (1), Y(j)) = Ex4 (X (), Y(j))o
=~ D Hom,(Y(;), Xy (i —2))o
~D HomA(Y, X)i—j—z),

so the result follows by Lemma 5.6 (5). ]

Lemma 5.14. The left mutation L 4;¥Y (i) is X (i — 1) for anyi.
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Proof. By Proposition 5.5 (1), we have an exact sequence
0> X(-1)=> YR A—>Y >0
in grmod A, so we have
0> X(i—-1)=>Yy® A@) > Y({)—>0
in grmod A. This induces an exact sequence
0—>X(Gi—-1)— YR Al) > Y(i)—0

in tails A. By Lemmas 5.9 (4), 5.10, 5.11 and 5.13, Yo = Hom (A7), ¥(i)) and
Exth (A@{), Y(i)) = 0for g # 0, so we obtain a distinguished triangle

X (i —1) = Hom$ (A(i), Y(i)) Qk Al) — Y(i) —

in D (tails A). This means that the left mutation of ¥ (i ) by #4(i ) is given by X (i —1).
O

Theorem 5.15. {A(—1), X (—1), A, X} is afull exceptional sequence for D (tails A).

Proof. By Lemmas 5.9 (4), 5.10, 5.11 and 5.13, fori = 0,—1 and any ¢ > 1, we
have

Hom (A7), A(i)) = k, Homu(X(@i), X(i)) = k,

Extf (4(1). A() = 0. Ext} (X(0). X(1)) = 0.
Hom4(X(~1). A(~1)) = 0.  Hom(s, A(=1)) = 0, Hom(X.A(~1)) = 0.

Hom (4, X (1)) =0, Hom (X, X(~1)) =0, Homy (X, A) = 0,
Ext? (X (—1), A(-1)) =0,  Ext! (A, A(-1)) =0, Ext (X, A(-1)) =0,
Ext) (A, X(=1) =0,  Ext{(X. X(~1)) = 0, Ext (X, A) =0,

so {A(—1), X (—1), A, X} is an exceptional sequence. To prove that it is full, we
now consider the sequence {A(—1), 4, ¥, X'}. By Lemma 5.14, we have

Lo{A(=1), A, Y, X} = {A(=1), LA(Y), A, X} = {A(1), X(=1), A, X},
so {A(—1), A, Y, X} is an exceptional sequence by Lemma 3.16. Moreover,

(A(=1), A, Y, X) 2 (A(—1), A, ©DE(A)) by Lemma 5.8
~ Db (tails A) by [16, Theorem 2.5 (i)],

so {A(—1), A, Y, X} is a full exceptional sequence. Hence, {A(—1), X (—1), A, X}
is also a full exceptional sequence by Lemma 3.16 again. O
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Theorem 5.16. Let E»; := A(i), Exir1 := X(i). Then {E;}icz is a full geometric
helix of period 4 for DP (tails A).

Proof. Since (—),, commutes with shifts, if M € {A({), X (i)}icz, then
MY 0 = M,-1(2) = M(2)
by Lemma 5.12, so
Eiva = E @ wy'.
To show that {E;, E;j+1, Ei+2, Ei+3} is a full exceptional sequence for every i € Z,
it is enough to show that

(A, 6, AL, X(1)} and  {X, A(1), X (1), AQ2)}

are full exceptional sequences. By Theorem 5.15, {A, X, A(1), X (1)} is a full
exceptional sequence. We now show that {X, A(1), X (1), A(2)} is a full exceptional
sequence. Similar to Theorem 5.15, we see that {A(1), ¥ (1), A(2), Y(2)} is a full
exceptional sequence. Since

by Lemma 5.14, it follows that

{6, A, X (1), AQ2); = (L) (F (1), AD), La@)(Y(2), AQ2)}
= L3L{A(1), Y(1), A(2). ¥ (2)}

is a full exceptional sequence by Lemma 3.16.
By Lemmas 5.9 (4), 5.11, 5.13, we have

Extf (A . X(i)) =0 (¢>1,i>0), Exty(A Al)=0 (g=1.i>1),
Ext! (X, A@[) =0 (¢=1,i>1), Ext/(X,X(@i)=0 (¢=1,i=>1),

so it follows that { £; }; ez is geometric. O

The following is an application of the main result of this paper.

Theorem 5.17. For every standard smooth quadric surface € in a quantum P3,
there exists a right noetherian AS-regular algebra B over kK, of dimension 3 and of
Gorenstein parameter 2 such that € = tails B where kK is the path algebra of the
2-Kronecker quiver K.

Proof. Suppose that € = tails S/(f) where S is a noetherian 4-dimensional
quadratic AS-regular algebra over k and f € S, is a central regular element such that
A = S/(f) is adomain and a graded isolated singularity. If @ := A & X € tails 4
and s := (1) € Auty(tails A), then {s'©};cz is a full geometric relative helix of
period 2 for DP (tails A) by Theorem 5.16 and Lemma 3.18. Since A is a noetherian
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AS-Gorenstein graded isolated singularity of dimension 3 and 4 & X € CMZ%(A)
such that @ = (A @ X), it follows that (O, s) is an ample algebraic pair for tails A
by the proof of [14, Theorem 2.5]. Since

_( Enda(A)  Homu(A, X)) _ (k k*\ _
EndA(0) = (HomA(X,A) End.4 () )_ (o k) = kK>,

we see that tails A4 is equivalent to tails B for an AS-regular algebra B = B(tails A, O, 5)
over kK, of dimension gldim(tails A) + 1 = 3 and of Gorenstein parameter 2 by
Theorem 4.1. Since @ = A @ X is a noetherian object in tails A as a direct sum of
two noetherian objects, B = B(tails 4, (9, s) is right noetherian by Theorem 4.1. [

Example 5.18. Let O be a smooth quadric surface in P3. If
B =k(x,y)/(x?y — yx*,xy* = y*x),

then B is a right noetherian AS-regular algebra over k of dimension 3 and of
Gorenstein parameter 4 such that coh Q = tails B, so

2] _ Byi  Bait
B = @ (BZi—l Bsi )
ieN

is a right noetherian AS-regular algebra over kK, of dimension 3 and of Gorenstein
parameter 2 by Corollary 4.4 such that coh Q = tails B = tails B!?.

A. Appendix

In this appendix, we will give an example of a non-standard algebra.
Example A.1. Let A = S/(f), where S = k[x, y, z, w] such that
degx =degy =degz =degw =1 and [ =xw—yzeS,,

so that A is the homogeneous coordinate ring of a smooth quadric surface in P3. It
is easy to see that A is standard. In fact, if

M=(x y) and N=(w —y)’
zZ w -z X

then M = {_Coker(]VI ), Coker(N-)}. Here we view M as a matrix whose entries are
in S; and M as a matrix whose entries are in A;. Since MN = NM = fE in S,

N a3 M a2 a2 42 S Coker(4) — 0,

M a3 a2 a2 A 42 S Coker(W) — 0

are the minimal free resolutions of Coker(M -), Coker(N-) over A, so A is standard.
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If 0 € GrAut S is a graded algebra automorphism of S defined by
o(x)=w, o(y)=-y, o(z)=-z, o(w)=ux,
then o(f) = f, so o induces a graded algebra automorphism of A such that A° =
S%/(f9), where

S =k(x,y,z,w)/(xy + yw, xz + zw, x>

—w?,yz —zy, yx + wy, zx + wz)

is a noetherian quadratic AS-regular algebra over k of dimension 4 and f° =
x2+yz € S is a central regular element. Since A is a domain and a graded isolated
singularity, so is A°. Since M? = N? = f°FE in S7, it follows that

M = {Coker(M ), Coker(N -)},

and

M ge 32 M qoco2 M qo—12 M (49)2 o Coker(H-) — 0,

o 032 B oao22 B ao2 D (49)2 S Coker(W) — 0
are the minimal free resolutions of Coker(M ), Coker(N-) over A%, so A° is non-
standard. However, since tails A% = tails A, Theorem 5.17 applies to this case.
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