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Odd characteristic classes in entire cyclic homology
and equivariant loop space homology
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Abstract. Given a compact manifoldM and a smooth map gWM ! U.l � l IC/ fromM to the
Lie group of unitary l � l matrices with entries in C, we construct a Chern character Ch�.g/
which lives in the odd part of the equivariant (entire) cyclic Chen-normalized cyclic complex
N�.�T .M � T // of M , and which is mapped to the odd Bismut–Chern character under the
equivariant Chen integral map. It is also shown that the assignment g 7! Ch�.g/ induces a
well-defined group homomorphism from the K�1 theory ofM to the odd homology group of
N�.�T .M � T //.
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Introduction

LetM be a closed Riemannian spin manifold with its Clifford multiplication

cW�.M/ �! End.S/

and its Dirac operator D acting in L2.M; S/, and given g 2 C1.M;U.l � l IC//
letDg denote the twisted Dirac operator

Dg WD g
�1Dg D D C c.g�1dg/;

considered to be acting on L2.M; S ˝Cl/. Then with

Dg;s WD .1 � s/D C sDg ; s 2 Œ0; 1�;

the odd dimensional variant of Atiyah–Singer’s ‘index’ theorem states that if M is
odd dimensional, then [9]

1

2�

Z 1

0

Tr
�
PDg;s exp

�
�D2

g;s

��
ds D

Z
M

yA.M/ ^ ch�.g/; (1)
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where ch�.g/ 2 ��.M/ denotes the odd Chern character. The l.h.s. of (1) is
precisely the spectral flow sf.D;Dg/ [9]. Furthermore, on the r.h.s. of this formula,
the odd Chern character can be obtained integration along the fiber ofM � I !M

of the even Chern character of an appropriately chosen connection onM � I [9]. In
fact, this formula can be proved by noting the l.h.s. admits an infinite dimensional
version of such an even/odd periodicity [4, 5] in terms of the eta form.
Being motivated by the considerations of Atiyah and Bismut [1, 2] for the even-

dimensional case, one finds that another very elegant and geometric, however purely
formal, way to prove (1) is to assume the existence of a Duistermaat–Heckmann
localization formula for the smooth loop space LM : indeed, the spin structure onM
induces an orientation onLM [1] and the path integral formalism entails the elegant,
however mathematically ill-defined, formula (the even-dimensional variant of this
formula is well known [2] and the odd-dimensional case can be proved similarly [13])

1

2�

Z 1

0

Tr
�
PDg;s exp

�
�D2

g;s

��
ds D

Z
LM

exp.�ˇ/ ^ Bch�.g/; (2)

where ˇ 2 �C.LM/ denotes the even differential form onLM given by ˇ D EC!
with E the energy functional on LM considered as a 0-form on LM and with
! 2 �2.LM/ the (presymplectic) 2-form given on smooth vector fieldsX; Y onLM
by

!.X; Y / WD

Z 1

0

.rXt=rt; Yt / dt;

andwhere Bch�.g/ 2 ��.M/ denotes the odd Bismut–Chern character [3,16]. Now
both differential forms exp.�ˇ/ and Bch�.g/ are equivariantly closed (cf. Section 4
for the definition of the degree �1 differential P ),

.d C P / exp.�ˇ/ D 0 D .d C P /Bch�.g/

and so is their product. As the fixed point set of the T -action on LM given by
rotating every loop is precisely M � LM , a hypothetical Duistermaat–Heckmann
localization formula immediately givesZ

LM

exp.�ˇ/ ^ Bch�.g/ D
Z
M

yA.M/ ^ exp.�ˇ/jM ^ Bch�.g/jM ;

as yA.M/ is the inverse of the (appropriately renormalized) Euler class of the normal
bundle ofM � LM . This proves (1), as clearly exp.�ˇ/jM D 1 and by construction
Bch�.g/jM D ch�.g/.
A direct implementation of the above arguments is not possible, as the right

hand side of formula (2) is not well-defined for various reasons. For example, there
exists no volume measure on LM , while smooth loops have Wiener measure zero,
and, on the other hand, it is notoriously difficult to produce a variant of the super
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complex .�.LM/; d C P / if one replaces LM with the smooth Banach manifold
of continuous loops. Nevertheless and strikingly, the above formal manipulations
lead to the powerful machinery of hypoelliptic Dirac and Laplace operators, as is
explained in [3] and the references therein.
However, a possible way out of these problems has been proposed by Getzler,

Jones and Petrack (GJP) [8, 10]. In this approach, the idea is to take as model for
�.LM/ the space of equivariant Chen integrals: these are given by the image of a
morphism of super complexes (cf. Section 4 below for the relevant definitions)

�W
�
N�.�T .M � T //; b C B

�
�!

�
y�.LM/; d C P

�
:

Above, N�.�T .M � T // denotes the Chen-normalized entire cyclic (or Connes)
complex of the locally convex unital DGA �T .M � T /, and y�.LM/ denotes
a completed space of smooth differential forms on LM . Now the GJP-program
for infinite dimensional localization is as follows: here it is conjectured that the
composition Z

LM

exp.�ˇ/ ^ �.�/WN�.�T .M � T // �! C

is a mathematically well-defined continuous functional, and that
�
R
LM
exp.�ˇ/ ^ �.�/ is odd (as LM is formally odd-dimensional if M is so [3])

and co-closed, meaning that it vanishes on the exact elements ofN�.�T .M �T //,
� if w 2 N�.�T .M � T // is closed, then one has the ‘Duistermaat–Heckmann
localization formula’Z

LM

exp.�ˇ/ ^ �.w/ D
Z
M

yA.TM/ ^ �.w/jM : (3)

If in addition one could canonically construct an element

Ch�.g/ 2 N�� .�T .M � T //

such that
(i) Ch�.g/ is closed;
(ii) �.Ch�.g// D Bch�.g/;
(iii) �.Ch�.g//jM D ch�.g/,
then from the above observations we would immediately obtain a proof of (1)
within the GJP-program for infinite dimensional localization. Note that in the even
dimensional case such a Chern character has been constructed as an even cycle in
N�.�T .M � T // in [10].

The aim of this paper is precisely to construct a canonically given element

Ch�.g/ 2 N�� .�T .M � T //



618 S. Cacciatori and B. Güneysu

satisfying the above properties (i)–(iii). In fact, our main results Theorem 5.1 and
Theorem 5.4 below construct Ch�.g/ for M a compact manifold (possibly with
boundary), which satisfies (i) and (iii) and in addition (ii) ifM is closed (so that LM
is a well-defined smooth Fréchet manifold). We also show in Theorem 5.1 that the
assignment g 7! Ch�.g/ induces a well-defined group homomorphism

K�1.M/ �! N.�T .M � T //:

Finally, taking for granted that the even variant of Ch�.g/ and BCh�.g/ have
been previously defined [2, 10], we establish an even/odd periodicity, relating these
constructions to ours, showing another analogy to (1).

Note added in proof. Recently, a mathematically rigorous version of the Duister-
maat–Heckmann localization formula (3) on the loop space of an even dimensional
dimensional spin manifold has been established in [12].

Acknowledgements. The authors would like to thank Jean-Michel Bismut, Markus
Pflaum and Shu Shen for their discussions. We are very grateful to Matthias Ludewig
for sharing his construction of the equivariant Chen integral map with us.

1. Cyclic bar complex of a differential graded algebra (DGA)

In the sequel, we understand all our linear spaces to be overC. Assume we are given
a unital DGA �, that is,
� � is a unital algebra;
� � D

L1
jD�1�

j is graded into subspaces �j � � such that�i�j � �iCj for
all i; j 2 Z, there is a degreeC1 differential d W�! �which satisfies the graded
Leibniz rule.
Note that the space� WD �=.C � 1/ is a graded linear space (but not canonically

an algebra), and the space of cyclic chains C.�/ is defined as

C.�/ WD

1M
nD0

�˝�˝n:

We give �˝�˝n the grading

�˝�˝n D

1M
jD0

M
j0C���CjnDj�n

�j0 ˝�j1 ˝ � � � ˝�jn ;

which induces a linear map

�WC.�/ �! C.�/; �.w0; w1; : : : / WD
�
.�1/deg.w0/w0; .�1/

deg.w1/w1; : : :
�
:
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Since we have �2 D 1, we can define a superstructure C.�/ D CC.�/˚ C�.�/ by
setting

C˙.�/ WD fw 2 C.�/ W �w D ˙wg:

The following notation will be useful in the sequel:
Notation 1.1. Given a 2 �˝�˝n we define

hai WD .: : : ; a; : : : / 2 C.�/

to be the cochain which has a in its n-th slot and 0 anywhere else.
We have the Hochschild map of the DGA-category

bWC.�/ �! C.�/

defined on �j0 ˝�j1 ˝ � � � ˝�jn by

b h!0 ˝ � � � ˝ !ni D hd!0 ˝ � � � ˝ !i ˝ � � � ˝ !ni

�

nX
iD1

.�1/j0C:::Cji�1�iC1 h!0 ˝ � � � ˝ d!i ˝ � � � ˝ !ni

�

n�1X
iD0

.�1/j0C:::Cji�i h!0 ˝ � � � ˝ !i!iC1 ˝ � � � ˝ !ni

C .�1/.jn�1/.j0C:::Cjn�1�nC1/ h.!n!0/˝ !1 ˝ � � � ˝ !n�1i ;

and Connes’ operator
BWC.�/ �! C.�/;

which is defined on �j0 ˝�j1 ˝ � � � ˝�jn by

B h!0 ˝ � � � ˝ !ni

D

nX
iD0

.�1/.ri�1C1/.rn�ri�1/ h1˝ !i ˝ � � � ˝ !n ˝ !0 ˝ � � � ˝ !i�1i ;

with rl D j0 C � � � C jl � l . It is a well known fact that one has

b2 D 0; B2 D 0; bB C Bb D 0; �b D �b�; �B D �B�:

We get the super complex

CC.�/
bCB
���! C�.�/

bCB
���! CC.�/: (4)

The subspaceD.�/ � C.�/ is defined to be the linear span of all w 2 C.�/ that
satisfy one of the following relations:
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� For all n 2 N there exist 1 � r � n, f 2 �0, !0 2 �, !s 2 �, s ¤ r , with

hwni D h!0 ˝ � � � ˝ !r�1 ˝ f ˝ !rC1 ˝ � � � ˝ !ni : (5)

� for all n 2 N there exist 1 � r � n, f 2 �0, !0 2 �, !s 2 �, s ¤ r , with

h!0 ˝ � � � ˝ !r�1f ˝ !rC1 ˝ � � � ˝ !ni

C h!0 ˝ � � � ˝ !r�1 ˝ df ˝ !rC1 ˝ � � � ˝ !ni

� h!0 ˝ � � � ˝ !r�1 ˝ f!rC1 ˝ � � � ˝ !ni : (6)

The maps �; b; B map D.�/ to itself, so that with

D˙.�/ WD fw 2 D.�/ W �w D ˙wg;

there is a super complex

DC.�/
bCB
���! D�.�/

bCB
���! DC.�/:

With N˙.�/ WD C˙.�/=D˙.�/, the induced quotient complex

NC.�/
bCB
���! N�.�/

bCB
���! NC.�/:

Whenever there is no danger of confusion, the equivalence class of w 2 C.�/

in N.�/ is denoted by the same symbol again.

2. Entire cyclic homology of a locally convex unital DGA

We recall that a topological vector space is called locally convex, if the topology is
induced by a family of seminorms, noting that then the topology is equivalent to the
topology induced by all continuous seminorms.
Definition 2.1. By a locally convex unital DGA we understand a unital DGA �
which is also a locally convex Hausdorff space, such that
� the differential is continuous, e.g., for every continuous seminorm " on � there
exists a continuous seminorm "0 on � such that

".d!/ � "0.!/ for all ! 2 �I (7)

� the multiplication is jointly continuous, e.g., for every continuous seminorm "

on � there exists a continuous seminorm "0 on � such that

".!1!2/ � "
0.!1/"

0.!2/ for all !1; !2 2 �: (8)
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The space� becomes a graded locally convex Hausdorff space, and we equip the
algebraic tensor product �˝�˝n with the induced family of �-tensor seminorms,
that is,

"n.!/ D inf
�X

˛

".!
.1/
0 / � � � ".!.˛/n / W ! D

X
˛

!
.˛/
0 ˝ � � � ˝ !

.˛/
n

�
;

where the sum runs through all representations of ! as a finite sum of elementary
tensors, and where � is a continuous seminorm on �.
Definition 2.2. The space of entire cyclic chains C�.�/ is defined to be the closure
of C.�/ with respect to the seminorms

�".w/ WD

1X
nD0

"n.wn/
p
nŠ

;

where " is an arbitrary continuous seminorm on �.
The space C�.�/ is a complete locally convex Hausdorff space. Note that the

above family of seminorms is equivalent to the family of seminorms

�";l.w/ WD

1X
nD0

"n.wn/l
n

p
nŠ

<1;

where " is an arbitrary continuous seminorm on � and l 2 N, as l" is again a
continuous seminorm and the "n’s are cross seminorms. Thus, our growth conditions
are modelled on the entire growth conditions for ungraded Banach algebras by
Getzler–Szenes from [11]. We refer the reader also to Connes’ original variant [7]
for ungraded Banach algebras.
Before stating the next auxiliary result, we recall that a continuous linear map

from a locally convex Hausdorff space X to a complete locally convex Hausdorff
space Y can be uniquely extended to a continuous linear map yX! Y, noting that the
completion yX is Hausdorff again. This can be proved precisely as for normed spaces.
Lemma 2.3. The operators �; b; B map C.�/ continuously to itself, in particular,
with

C˙� .�/ WD fw 2 C�.�/ W �w D ˙wg;

there is a well-defined super complex

CC� .�/
bCB
���! C�� .�/

bCB
���! CC� .�/: (9)

Proof. Let " be an arbitrary continuous seminorm on �. Clearly, one has

�".�w/ � �".w/

for all w 2 C.�/.
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Pick continuous seminorms "0; "00 on � such that for all ! 2 � one has

".d!/ � "00.!/

and such that for all !1; !2 2 � one has

".!1!2/ � "
0.!1/"

0.!2/:

Using nC 1 � 2n it is then easily checked that

�".bw/ � C max.�"0 ; �"00/.w/ for all w 2 C.�/.

Likewise, it follows immediately that �".Bw/ � C�".w/ for all w 2 C.�/.

Defining the subspace D�.�/ � C�.�/ as the closure of D.�/, it follows
automatically that the maps �; b; B mapD.�/ continuously to itself, too, producing
with

N˙� .�/ WD C˙� .�/=D
˙
� .�/

the quotient complex

NC� .�/
bCB
���! N�� .�/

bCB
���! NC� .�/: (10)

Finally, we can give:
Definition 2.4. The complex (9) is called the (reduced) entire cyclic complex of �
and its homology groups are denoted with HC˙� .�/. Likewise, the complex (10) is
called the (reduced) Chen-normalized entire cyclic complex of � and its homology
groups are denoted with HN˙� .�/.
Above, ‘reduced’ refers to the fact that we work with � ˝ �˝n rather than

�˝.nC1/, which leads to a simpler formula for the Connes differential B .

3. The unital locally convex DGA �T .N � T /

Assume N is a manifold (possibly with boundary) and denote with T the 1-sphere.
We denote by �T .N � T / the smooth T -invariant differential forms on N � T ,
where T acts trivially on N and by rotation on itself. Every element of�T .N �T /
can be uniquely written in the form ˛ C #T ^ ˇ for some ˛; ˇ 2 �.N/, where #T

denotes the canonical 1-form on T . We turn �T .N � T / into a unital algebra by
means of �T .N � T / � �.N � T /, and give �T .N � T / the grading

˛ C #T ^ ˇ 2 �
j
T .N � T / ” ˛ 2 �j .N /; ˇ 2 �jC1.N /:

With @T the canonical vector field on T , we have the differential dT D d C �@T

defined by

dT .˛ C #T ^ ˇ/ D d˛ C ˇ � #T ^ dˇ; if ˛ C #T ^ ˇ is homogeneous;

finally turning �T .N � T / into a unital DGA.
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Remark 3.1. Given a manifold X (possibly with boundary), the wedge product and
the de Rham differential is continuous with respect to the canonical locally convex
structure on �.X/ [15]. In addition, if B is a vector field on X then the contraction

�B W�.X/ �! �.X/

is continuous, and ifY is anothermanifold (possiblywith boundary) and if‰WX ! Y

is a smooth map, then the pullback map

‰�W�.Y / �! �.X/

is continuous [15].
For every continuous seminorm " on�.N/we get a seminorm "T on�T .N �T /

by setting
"T .˛ C #T ^ ˇ/ WD ".˛/C ".ˇ/:

In view of the formula dT , the space �T .N � T / then becomes a locally convex
unital DGA (by Remark 3.1) in terms of the "T ’s. As a consequence, we get the
super complexes

CC.�T .N � T //
bCB
���! C�.�T .N � T //

bCB
���! CC.�T .N � T //; (11)

NC.�T .N � T //
bCB
���! N�.�T .N � T //

bCB
���! NC.�T .N � T //; (12)

CC� .�T .N � T //
bCB
���! C�� .�T .N � T //

bCB
���! CC.�T .N � T //; (13)

NC� .�T .N � T //
bCB
���! N�� .�T .N � T //

bCB
���! NC� .�T .N � T //: (14)

4. Equivariant Chen integrals

Let us consider a compact manifold N without boundary, and the space LN of
smooth loops 
 WT ! N , where in the sequel we read T as T D Œ0; 1�=�. This
becomes an infinite dimensional Fréchet manifold which is locally modelled on the
Fréchet space LRdimN of smooth loops T ! RdimN . Then LN carries a natural
smooth T -action, given by rotating each loop, and the fixed point set of this action is
precisely N � LN , embedded as constant loops. Given 
 2 LN the tangent space
T
LN is given by linear space of smooth vector fields on N along 
 , that is,

T
 .LN/ D
˚
X 2 C1.T ; N / W X.t/ 2 T
.t/N for all t 2 T

	
;

and the generator of the T -action on LN is the vector field 
 7! P
 on LN . Let �
denote the contraction with respect to the latter vector field. In the sequel, we
understand

�.LN/ WD

1M
kD0

�k.LM/:
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For fixed s 2 T one has the diffeomorphism

�sWLN �! LN; 
 7�! 
.s C �/

induced by the T -action, and one gets an induced operator

P W�.LN/ �! �.LN/; defined on �k.LN/ by P˛ WD
Z 1

0

��s �˛ ds.

Then P becomes a degree �1 derivation. In addition, there is the usual exterior
derivative

d W�.LN/ �! �.LN/;

a degree C1 derivation. Taking only odd/even degree forms, one gets the
superstructure � D �C.LN/˚��.LN/, and we get the super complex

�C.LN/
dCP
����! ��.LN/

dCP
����! �C.LN/; (15)

called the equivariant de Rham complex of LN . This complex does not carry much
information, as the differential forms of interest, like the Bismut–Chern character
below, are actually elements of

1Y
kD0

�k.LN/; rather than �.LN/ D

1M
kD0

�k.LN/:

Thus, we are going to ‘complete’ �.LN/ in some way. To this end, following
Chen’s approach [6] of constructing a smooth structure on LN in terms of plots,
we consider smooth maps f WX ! LN , where X is a finite dimensional manifold
(without boundary). Given a continuous seminorm " on �.X/ we get an induced
seminorm

"f .!/ WD ".f
�!/ on �.LN/:

The locally convex topology induced by the �f ’s is Hausdorff and we define y�.LN/
to be the completion of �.LN/ with respect to this locally convex topology. The
maps d , P and the grading operator become continuous maps �.LN/! �.LN/:
indeed, the continuity of the grading map is trivial. The continuity of d follows from

"f .d!/ D "
�
dŒf �!�

�
� "0.f �!/ D "0f .!/

for some continuous seminorm "0 on �.X/, where we have used the continuity of
d W�.X/ ! �.X/. Finally, the continuity of P follows easily from the continuity
of �, which in turn follows from writing

"f .�!/ D "
�
f �Œ�!�

�
D "

�
r��@T

yf �j �Œ!�
�
� "0

jı yf
.!/
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for some continuous seminorm "0 on �.X � T /, where

r WX �! X � T ; j WN �! LN

are the canonical embeddings, and
yf WX � T �! N

themap induced by f WX ! LN , andwherewe have usedRemark 3.1 (the continuity
of r��@T

, which implies the existence of "0).
We end up with the super complex

y�C.LN/
dCP
����! y��.LN/

dCP
����! y�C.LN/; (16)

called the completed equivariant de Rham complex of LN . The corresponding
homology groups are denoted by yH˙T .LN/.
Given t 2 T and ˛ 2 �k.N / one denotes with ˛.t/ 2 �k.LN/ the form

obtained by pulling ˛ back with respect to the evaluation map 
 7! 
.t/. With this
notation at hand, one has the equivariant Chen integral map

�WC.�T .N � T // �! �.LN/;

which is defined by

� h.˛0 C #T ^ ˇ0/˝ � � � ˝ .˛n C #T ^ ˇn/i

WD

Z 1

0

ds ��s

Z
�n

˛0.0/^ .�˛1.t1/�ˇ1.t1//^� � �^ .�˛n.tn/�ˇn.tn// dt1 � � � dtn;

where
�n D f0 � t1 � � � � � tn � 1g � Rn

denotes the standard n-simplex. We will also write

� h.˛0 C #T ^ ˇ0/˝ � � � ˝ .˛n C #T ^ ˇn/i

D

Z 1

0

ds��s z� h.˛0 C #T ^ ˇ0/˝ � � � ˝ .˛n C #T ^ ˇn/i :

We collect the essential properties of � in the following proposition:
Proposition 4.1. The map � is a continuous morphism of super complexes

�WC.�T .N � T // �! �.LN/; (17)

which in turn descends to a continuous map of super complexes

�WN.�T .N � T // �! �.LN/: (18)

In particular, by density, we obtain the continuous maps of super complexes

�WC�.�T .N � T // �! y�.LN/; �WN�.�T .N � T // �! y�.LN/:
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Proof. (i) The fact that (17) is a map of superspaces follows easily from observing
that

CC.�T .N � T // D
1M
jD0

C2j .�T .N � T //;

C�.�T .N � T // D
1M
jD0

C2jC1.�T .N � T //;

where

Ck.�T .N � T //

D

1M
rD0

M
l0C���ClrDkCr

�
l0
T .N � T //˝�l1T .N � T //˝ � � � ˝�lrT .N � T //;

and that � maps Ck.�T .N � T //! �k.LN/.

(ii) Next we show that �.bCB/ D .d CP /�. Setting !j D ˛j C#T ^ˇj , we first
notice

z�bh!0 ˝ � � � ˝ !ni D z� hdT!0 ˝ � � � ˝ !j�1 ˝ !j ˝ !jC1 ˝ � � � ˝ !ni

� z�

� nX
jD1

.�1/rj�1!0 ˝ � � � ˝ !j�1 ˝ dT!j ˝ !jC1 ˝ � � � ˝ !n

�

� z�

� n�1X
jD0

.�1/rj!0 ˝ � � � ˝ !j�1 ˝ !j ^ !jC1 ˝ !jC2 ˝ � � � ˝ !n

�
C .�1/.jn�1/rn�1 z� h!n ^ !0 ˝ !1 ˝ � � � ˝ !n�1i : (19)

The first two lines giveZ
�n

�
d˛0.0/C ˇ0.0/

�
^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

�

nX
jD1

.�1/rj�1
Z
�n

˛0.0/
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^
�
�d˛j .tj /C �ˇj .tj�1/C dˇj .tj /

�
^
�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt;

where dnt D dt1 � � � dtn: Using that

�n D f.t1; t2; : : : ; tn/ W 0 � t1 � � � � � tj�1 � tj � tjC1 � � � � � tng;
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and that

�d˛j .tj / D
d

dtj
˛j .tj / � d�˛j .tj /;

it can be rewritten asZ
�n

�
d˛0.0/C ˇ0.0/

�
^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

C

nX
jD1

.�1/rj�1
Z
�n

˛0.0/
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ d

�
�˛j .tj / � ˇj .tj /

�
^
�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

�

nX
jD1

.�1/rj�1
Z
�n

˛0.0/
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^

d

dtj
˛j .tj / ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

�

nX
jD1

.�1/rj�1
Z
�n

˛0.0/
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ �ˇj .tj / ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt:

The first two (three) lines give

d z� h!0 ˝ � � � ˝ !niC

Z
�n

ˇ0.0/^
�
�˛1.t1/�ˇ1.t1/

�
^� � �^

�
�˛n.tn/�ˇn.tn/

�
dnt;

(20)
while the third (fourth and fifth) line can be integrated in tj from tj�1 to tjC1 thus
getting

d z� h!0 ˝ � � � ˝ !ni C

Z
�n

ˇ0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

�

n�1X
jD1

.�1/rj�1
Z
�n�1

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ ˛j .tjC1/ ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntj

� .�1/rn�1
Z
�n�1

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n�1.tn�1/ � ˇn�1.tn�1/

�
^ ˛n.1/ d

ntn
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C

nX
jD2

.�1/rj�1
Z
�n�1

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ ˛j .tj�1/ ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntj

C .�1/r0
Z
�n�1

˛0.0/ ^ ˛1.0/ ^
�
�˛2.t2/ � ˇ2.t2/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt1

�

nX
jD1

.�1/rj�1
Z
�n

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ �ˇj .tj / ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt; (21)

where dntj D dt1 � � � dtj�1dtjC1 � � � dtn. If in the fourth sum of integrals we change
the summation variable from j to jC1, then make the change of variable tj ! tjC1,
and put it together with the second sum of integrals, after noting that

.�1/rj�1.�1/jj D �.�1/rj ;

then summing the fourth and the second integrals, we get

�

n�1X
jD1

.�1/rj�1
Z
�n�1

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^
�
˛j .tjC1/ ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

��
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntj

C

n�1X
jD1

.�1/rj
Z
�n�1

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^
��
�˛j .tjC1/ � ˇj .tjC1/

�
^ ˛jC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntj

D

n�1X
jD1

.�1/rj
Z
�n�1

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^
��
�˛j .tjC1/ � ˇj .tjC1/

�
^ ˛jC1.tjC1/C .�1/

jj�1˛j .tjC1/

^
�
�˛jC1.tjC1/ � ˇjC1.tjC1/

��
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntj

D

n�1X
jD1

.�1/rj z�h!0 ˝ � � � ˝ !j�1 ˝ !j ^ !jC1 ˝ !jC2 ˝ � � � ˝ !ni;

which including the fifth integral in (21) becomes

z�

� n�1X
jD0

.�1/rj!0 ˝ � � � ˝ !j�1 ˝ !j ^ !jC1 ˝ !jC2 ˝ � � � ˝ !n

�
:
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This cancels the second line of (19). After noting that ˛n.1/ D ˛n.0/, we see that
the third integral in (21) is just

�.�1/.jn�1/rn�1 z� h!n ^ !0 ˝ !1 ˝ � � � ˝ !n�1i ;

which cancels the third line of (19). Thus, we get

z�b h!0 ˝ � � � ˝ !ni D d z� h!0 ˝ � � � ˝ !ni

C

Z
�n

ˇ0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

�

nX
jD1

.�1/rj�1
Z
�n

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ �ˇj .tj / ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt:

(22)

Now, let us consider

P z� h!0 ˝ � � � ˝ !ni

D

Z
I

ds��s �

Z
�n

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt

D

Z
I��n

�˛0.s/ ^
�
�˛1.t1 C s/ � ˇ1.t1 C s/

�
^ � � � ^

�
�˛n.tn C s/ � ˇn.tn C s/

�
dnt ds

�

nX
jD1

.�1/rj�1
Z
I

ds��s

Z
�n

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ �ˇj .tj / ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt; (23)

where now I must be identified with the circle T , and where we used that

�.�˛k.tk/ � ˇk.tk// D ��ˇk.tk/:

Now, for any given choice of xt D .t1; : : : ; tn/ such that 0 � t1 � � � � � tn � 1, we
can understand T as the union of almost everywhere nC 1 disjoint intervals defined
by

Ij .xt / D fs 2 T jtj�1 C s � 1; tj C s � 1 � 0g; j D 1; : : : ; nC 1:

We see that
Dj D fIj .xt / � xt j xt 2 �ng

is an .nC 1/-simplex for any given j , and
nC1[
jD1

Dj D I ��n;
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whileDj \Dk has zero measure if j ¤ k. Therefore,Z
I��n

�˛0.s/ ^
�
�˛1.t1 C s/ � ˇ1.t1 C s/

�
^ � � � ^

�
�˛n.tn C s/ � ˇn.tn C s/

�
dnt ds

D

Z
I��n

ˇ0.s/ ^
�
�˛1.t1 C s/ � ˇ1.t1 C s/

�
^ � � � ^

�
�˛n.tn C s/ � ˇn.tn C s/

�
dnt ds

C

Z
I��n

�
�˛0.s/ � ˇ0

�
^
�
�˛1.t1 C s/ � ˇ1.t1 C s/

�
^ � � � ^

�
�˛n.tn C s/ � ˇn.tn C s/

�
dnt ds

D

Z
I

ds��s

Z
�n

ˇ0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt ds

C

nC1X
jD1

Z
Dj

�
�˛0.s/ � ˇ0.s/

�
^
�
�˛1.t1 C s/ � ˇ1.t1 C s/

�
^ � � � ^

�
�˛n.tn C s/ � ˇn.tn C s/

�
dnt ds:

Now, for any given j we introduce the variables

�k D tjCk�1 C s � 1; k D 1; : : : ; nC 1 � j;

�nC2�j D s;

�k D tkCj�n�2 C s; k D nC 3 � j; : : : ; nC 1 .if j � 2/:

In these coordinates we have

Dj D f.�1; : : : ; �nC1/j0 � �1 � � � � � �nC1 � 1g � �nC1; dnt ds D dnC1�;

and�
�˛0.s/ � ˇ0.s/

�
^
�
�˛1.t1 C s/ � ˇ1.t1 C s/

�
^ � � � ^

�
�˛n.tn C s/ � ˇn.tn C s/

�
D .�1/rj�1.rn�rj /1 ^

�
�˛j .�1/ � ˇj .�1/

�
^ � � � ^

�
�˛n.�n�jC1/ � ˇn.�n�jC1/

�
^
�
�˛0.�n�jC2/ � ˇ0.�n�jC2/

�
^ � � � ^

�
�˛j�1.�nC1/ � ˇj�1.�nC1/

�
:

Integrating overDj D �nC1 it becomesZ
Dj

�
�˛0.s/�ˇ0.s/

�
^
�
�˛1.t1Cs/�ˇ1.t1Cs/

�
^� � �^

�
�˛n.tnCs/�ˇn.tnCs/

�
D �

˝
.�1/rj�1.rn�rj /1˝ !j ˝ � � � ˝ !n ˝ !0 ˝ � � � ˝ !j�1

˛
;

and after summation over j we finally get

P z� h!0 ˝ � � � ˝ !ni D z�B h!0 ˝ � � � ˝ !ni

C

Z
I

ds��s

Z
�n

ˇ0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt ds
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�

nX
jD1

.�1/rj�1
Z
I

ds��s

Z
�n

˛0.0/ ^
�
�˛1.t1/ � ˇ1.t1/

�
^ � � � ^

�
�˛j�1.tj�1/ � ˇj�1.tj�1/

�
^ �ˇj .tj / ^

�
�˛jC1.tjC1/ � ˇjC1.tjC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt:

Notice that the second and third lines here are the means over T of the corresponding
terms in (22). After taking the mean of both expressions and subtracting each other,
we finally get �.b C B/ D .d C P /� as desired.

(iii) We now prove that z� vanishes onD.�T .N �T //. This implies that � vanishes
on D.�T .N � T //, too. For elements of the form (5) the assertion immediately
follows from the fact that �f .t/ D 0, as f .t/ is a zero form. So, let us consider an
element of the form (6). Since (recall that f is constant over T )

�df .t/ D
d

dt
f .t/;

and df D dTf , we can write

z�
�
h!0 ˝ � � � ˝ !r�1f ˝ !rC1 ˝ � � � ˝ !ni

C h!0 ˝ � � � ˝ !r�1 ˝ df ˝ !rC1 ˝ � � � ˝ !ni

� h!0 ˝ � � � ˝ !r�1 ˝ f!rC1 ˝ � � � ˝ !ni
�

D

Z
�n�1

˛0.0/ ^ � � � ^
�
�˛r�1.tr�1/f .tr�1/ � ˇr�1.tr�1/f .tr�1/

�
^
�
�˛rC1.trC1/ � ˇrC1.trC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntr

�

Z
�n�1

˛0.0/ ^ � � � ^
�
�˛r�1.tr�1/ � ˇr�1.tr�1/

�
^
�
f .trC1/�˛rC1.trC1/ � f .trC1/ˇrC1.trC1/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dntr

C

Z
�n

˛0.0/ ^ � � � ^
�
�˛r�1.tr�1/ � ˇr�1.tr�1/

�
^
d

dtr
f .tr/ ^

�
�˛r.tr/ � ˇr.tr/

�
^ � � � ^

�
�˛n.tn/ � ˇn.tn/

�
dnt:

After integrating tr from tr�1 to trC1 in the last term, we get exactly zero.

(iv) It remains to check the continuity of (17), which easily follow from the continuity
of z�. To see the latter, let X be a smooth manifold (without boundary), let " be a
continuous seminorm on �.X/, and let f WX ! LN be smooth. For s 2 T let rs
denote the embedding

X �! X � T ; x 7�! .x; s/:
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Then we have

"f
�
z� h.˛0 C #T ^ ˇ0/˝ � � � ˝ .˛n C #T ^ ˇn/i

�
�

Z
�n

"
�
f �Œ˛0.0/�

� nY
iD1

"
�
f �Œ�˛i .ti / � ˇi .ti /�

�
dt1 � � � dtn

D

Z
�n

"
�
r�0
yf �˛0

� nY
iD1

"
�
r�ti �@T

yf �˛i � r
�
ti
yf �ˇi

�
dt1 � � � dtn

�

Z
�n

"
�
r�0
yf �˛0

� nY
iD1

�
"
�
r�ti �@T

yf �˛i
�
C "

�
r�ti
yf �ˇi

��
dt1 � � � dtn

�

Z
�n

z".˛0/

nY
iD1

�
z".˛i /C z".ˇi /

�
dt1 � � � dtn

�
1

nŠ

nY
iD0

�
z".˛i /C z".ˇi /

�
D

1

nŠ
z"T
n

�
.˛0 C #T ^ ˇ0/˝ � � � ˝ .˛n C #T ^ ˇn/

�
;

for some continuous seminorm z" on �.N/. This estimate shows the continuity of z�
and completes the proof.

5. Construction of cycles inN�
� .�T .M�T // and the induced cycles in y��.LM/

LetM be a compactmanifold (possiblywith boundary). Giveng2C1.M;U.l�l IC//
our aim is to construct a canonically given element

Ch�.g/ 2 C�� .�T .M � T //

with .bCB/Ch�.g/ D 0 in the Chen normalized complex. To this end, let I WD Œ0; 1�
and denote the canonical vector field on I with @I . We denote the canonical Maurer–
Cartan form on U.l � l IC/ by

! 2 �1
�
U.l � l IC/;Mat.l � l IC/

�
:

Then for all s 2 I we can form the covariant derivative d C s! on the trivial vector
bundle U.l � l IC/ �Cl ! U.l � l IC/. Let

As 2 �1
�
U.l � l IC/;Mat.l � l IC/

�
; Rs 2 �2

�
U.l � l IC/;Mat.l � l IC/

�
denote the connection 1-form of d C s! and the curvature of d C s!, respectively,
and

As
WD As � #T ^R

s
2 �T

�
U.l � l IC/ � T ;Mat.l � l IC/

�
:

We set
As.g/ WD g�As; Rsg WD g

�Rs; !g WD g
�!;
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so that As.g/ D s!g and by the Maurer–Cartan equation Rsg D .s=2/!2g . Then we
can define

As.g/ WD Asg � #T ^R
s
g 2 �T .M � T ;Mat.l � l IC//:

By varying s, the formsAs.g/ induce a form

A.g/ 2 �T .M � I � T ;Mat.l � l IC//

and we set

B.g/ WD �@IA.g/ 2 �T .M � I � T ;Mat.l � l IC//:

Then we can define

Bs.g/ 2 �T .M � T ;Mat.l � l IC//

to be the pullback of B.g/ with respect to the embedding

M � T �!M � I � T ; .x; t/ 7�! .x; s; t/:

In fact, by a simple calculation one finds

As.g/ D s!g C s.1 � s/#T ^ !
2
g ; Bs.g/ D �#T ^ !g ; (24)

so thatBs.g/ actually does not depend on s. With these preparations, we can define
an element

Ch�.g/ D .Ch�0 .g/;Ch
�
1 .g/; : : : / 2 C.�T .M � T //

by setting

Ch�n .g/ WD Trn
� Z 1

0

1˝

nX
kD1

As.g/˝.k�1/ ˝Bs.g/˝As.g/˝.n�k/ ds

�
;

where given linear spaces V0; : : : ; Vn, and v.j / 2 Mat.l � l IVi /, j D 0; : : : ; n, the
generalized trace is defined by

Trn
�
v.0/ ˝ � � � ˝ v.n/

�
WD

X
i0;:::;inD1;:::l

v
.0/
i0;i1
˝ v

.1/
i1;i2
˝ � � � ˝ v

.n/
in;i0

:

We refer the reader to the paper [14] by Simons and Sullivan, where a construction
of the usual odd Chern character ch�.g/ 2 ��.M/ (cf. formula (25) below) has been
given that influenced our definition of Ch�.g/.
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Theorem 5.1. Let M be a compact manifold, possibly with boundary.

(a) One has

Ch�.g/ 2 C�� .�T .M�T //; and .b C B/Ch�.g/ D 0 in N�.�T .M � T //;

in particular, Ch�.g/ induces a homology class�
Ch�.g/

�
2 HN�� .�T .M � T //:

(b) The map

K�1.M/ �! HN�� .�T .M � T //; Œg� 7�!
�
Ch�.g/

�
is a well-defined group homomorphism.

Proof. (a) It is easily seen that �Ch�.g/ D �Ch�.g/. To show that

Ch�.g/ 2 C�� .�T .M � T //;

given a continuous seminorm " on �T .M � T / set

C" WD sup
s2Œ0;1�

max
�
".1/; max

i;jD1;:::;l
".As.g/ij /; max

i;jD1;:::;l
".Bs.g/ij /

�
:

It is then easily checked that

�".Ch�.g// �
1X
nD0

n
.l2C"/

n

p
nŠ

<1:

It remains to prove

.b C B/Ch�.g/ 2 D�.�T .M � T //:

In fact,
BCh�.g/ 2 D�.�T .M � T //;

as every hCh�n .g/i contains the 0-form 1 and so is of the form (5) with f D 1. It
remains to show that

bCh�.g/ 2 D�.�T .M � T //:

In order to see the latter, let us first notice that

.bCh�.g//n D
�
b hCh�n .g/i

�
n
C
�
bhCh�nC1.g/i

�
n
:
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Using (24) and the explicit definition of b, we get�
bhCh�n .g/i

�
n

D �Trn
� Z 1

0

1˝

nX
kD1

k�2X
lD0

As.g/˝l ˝ .�s2!2g/˝As.g/˝.k�l�2/

˝ .�#T ^ !g/˝As.g/˝.n�k/ ds

�
C Trn

� Z 1

0

1˝

nX
kD1

n�k�1X
lD0

As.g/˝.k�1/ ˝ .�#T ^ !g/

˝As.g/˝l ˝ .�s2!2g/˝As.g/˝.n�k�l�1/ ds

�
� Trn

� Z 1

0

1˝

nX
kD1

As.g/˝.k�1/ ˝ .#T ^ !
2
g C !g/˝As.g/˝.n�k/ ds

�
;

and�
bhCh�nC1.g/i

�
n

D �Trn
� Z 1

0

1˝

nX
kD1

k�2X
lD0

As.g/˝l ˝ .Cs2!2g/˝As.g/˝.k�l�2/

˝ .�#T ^ !g/˝As.g/˝.n�k/ ds

�
C Trn

� Z 1

0

1˝

nX
kD1

n�k�1X
lD0

As.g/˝.k�1/ ˝ .�#T ^ !g/˝As.g/˝l

˝ .Cs2!2g/˝As.g/˝.n�k�l�1/ ds

�
� Trn

� Z 1

0

1˝

nX
kD1

As.g/˝.k�1/ ˝ .�2s#T ^ !
2
g/˝As.g/˝.n�k/ ds

�
;

whose sum is

Trn
� Z 1

0

1˝

nX
kD1

As.g/˝.k�1/ ˝

�
d

ds
As.g/

�
˝As.g/˝.n�k/ ds

�
D Trn

� Z 1

0

d

ds

�
1˝As.g/˝n

�
ds

�
D Trn

�
1˝A1.g/˝n

�
� Trn

�
1˝A0.g/˝n

�
:

Thus, we finally have

.bCh�.g//n D Trn
�
1˝ ˝ng

�
; n D 1; 2; : : : :
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We now prove that�
: : : ;Trn

�
1˝ ˝ng

�
; : : :

�
2 D�.�T .M � T //:

To this end we have simply to employ the properties of the generalized trace. Indeed,
for n � 2 we can write˝
Trn

�
1˝ ˝ng

�˛
D
˝
Trn

�
1˝ !g ˝ !g ˝

˝.n�2/
g

�˛
D �

˝
Trn

�
1˝ dg�1 ˝ dg ˝ ˝.n�2/g

�˛
D �

˝
Trn

�
1˝ dg�1 ˝ dg ˝ ˝.n�2/g

�˛
�
˝
Trn�1

�
g�1 ˝ dg ˝ ˝.n�2/g

�˛
C
˝
Trn�1

�
1˝ g�1dg ˝ ˝.n�2/g

�˛
;

where the last two terms cancel each other because of the trace property, which is
precisely of the form (6) for f D g�1. Similarly, for n D 1 it is sufficient to notice
that ˝

Tr1
�
1˝ !g

�˛
D
˝
Tr1
�
g�1 ˝ dg

�˛
;

which is of the form (5) with f D g�1, completing the proof of

bCh�.g/ 2 D�.�T .M � T //:

(b) It suffices to prove the following two facts:

(i) If g; h 2 C1.M;U.l � l IC//, then one has Ch�.g˚ h/ D Ch�.g/C Ch�.h/.

(ii) If g0; g1 2 C1.M;U.l � l IC// are connected by a smooth homotopy

g� 2 C
1.M � I; U.l � l IC//;

then one has

Ch�.g1/ � Ch�.g0/ D .b C B/w in N�.�T .M � T //

for some w 2 C�.�T .M � T //.

Here, property (i) is an immediate consequence of the properties of the generalized
trace Trn using the block diagonal form of g ˚ h.
To see (ii), for any t 2 I , we define the embedding

jt WM ,!M � I; x 7�! .x; t/;
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and w D .w0; w1; : : : / 2 C�.�T .M � T // by setting

wn WD �Trn
� Z 1

0

Z 1

0

1˝

nX
kD1

k�2X
lD0

j �t

�
As.g�/

˝l
˝ �@IAs.g�/˝As.g�/

˝.k�l�2/

˝Bs.g�/˝As.g�/
˝.n�k/

�
ds dt

�
C Trn

� Z 1

0

Z 1

0

1˝

nX
kD1

n�k�1X
lD0

j �t

�
As.g�/

˝.k�1/
˝Bs.g�/˝As.g�/

˝l

˝ �@IAs.g�/˝As.g�/
˝.n�k�l�1/

�
ds dt

�
� Trn

� Z 1

0

Z 1

0

1˝

nX
kD1

j �t

�
As.g�/

˝.k�1/
˝ �@IBs.g�/˝As.g�/

˝.n�k/
�
ds dt

�
:

The C� growth conditions are easily checked for w. Then again it is clear that
Bw 2 D�.�T .M � T //. On the other hand, by using the identity

dj �t �@IAs.g�/ D �j
�
t �@I dAs.g�/C

@

@t
j �t As.g�/;

and similarly for Bs , and the same computations as in part a) we get, as elements in
the Chen normalized complex,

.bw C Bw/n D .bw/n D
�
bhwni

�
n
C
�
bhwnC1i

�
n
D

�� Z 1

0

d

dt
j �t Ch

�.g:/

��
n

D Ch�n .g1/ � Ch
�
n .g0/:

This completes the proof.

IfM has no boundary (so that LM is a well-defined Fréchet manifold), in view
of .d C P /� D �.b C B/, we immediately get:
Corollary 5.2. Assume M is a compact manifold without boundary. Then for all
g 2 C1.M;U.l � l IC// one has .d C P /�.Ch�.g// D 0 in N�.�T .M � T //, in
particular, �.Ch�.g// induces a homology class in yH�T .LM/.
Remark 5.3. There is an even version of Ch�.g/ given as follows: If N is a
manifold and d CC is a connection on a trivial vector bundle over N , then with RC
the curvature of the connection 1-form C one defines

ChC.C / D .ChC0 .C /;Ch
C
1 .C /; : : : / 2 CC� .�T .N � T //

by
ChCn .C / WD Trn

�
1˝ .C � #T ^RC /

˝n
�
;

which by an analogous calculation as in the proof of Theorem 5.1 is seen to satisfy

.b C B/ChC.C / D 0 in N�.�T .N � T //:
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Then, there holds an even/odd periodicity, that is, one can obtain Ch�.g/ from its
even variant by a fiber integration: indeed, by varying s 2 I in

As.g/ 2 �T .M;Mat.l � l IC//

we get a form
A.g/ 2 �T .M � I;Mat.l � l IC//

and can consider the fibration

� WM � I �!M:

Then, for the connection d C zAg on the trivial vector bundle over M � I , where
zAg WD �

�Ag , one has, using the definitions ofAs.g/ and Bs.g/ that

Ch�.g/ D
Z
I

�@ICh
C. zAg/ D ��ChC. zAg/;

the integration along the fibers of � .
The odd Chern character ch�.g/ 2 ��.M/ is the closed odd differential form

defined by

ch�.g/ WD Tr
� 1X
jD0

.�1/j j Š

.2j C 1/Š
.g�1dg/^.2jC1/

�
; (25)

and the odd Bismut–Chern character is the differential form

Bch�.g/ D .Bch�1 .g/;Bch
�
3 .g/; : : : / 2

y��.LM/

defined by

Bch�2n�1.g/ D Tr
� Z 1

0

Z
f0�t1�:::tn�1g

nX
jD1

j�1^
iD1

�sti .g/R
s
g.ti /

^
�stj .g/ PA

s
g.tj /

n̂

lDjC1

�stl .g/R
s
g.tl/ �

s
1 .g/ dt1 � � � dtnds

�
;

where
PAsg D

d

ds
Asg D !g 2 �

1.M;Mat.l � l IC//;

andwhere�s� .g/ denotes the parallel transport with respect to the connection dCs!g
on the trivial vector bundle overM .
Theorem 5.4. Assume M is a compact Riemannian manifold, possibly with
boundary, and let g 2 C1.M;U.l � l IC//. Then one has �.Ch�.g//jM D ch�.g/,
and if M has no boundary then Bch�.g/ D �.Ch�.g//.
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Note that in view of Corollary 5.2, Theorem 5.4 provides a new proof of

.d C P /Bch�.g/ D 0

We refer the reader to [16] for a variant of this result.

Proof of Theorem 5.4. The formula �.Ch�.g//jM D ch�.g/ is a simple conse-
quence of the definitions, once one has noticed the formula

� h.˛0 C #T ^ ˇ0/˝ � � � ˝ .˛n C #T ^ ˇn/i jM D ˛0 ^ � � � ^ ˛n:

In order to see Bch�.g/ D �.g/, given t; s 2 I define

V s.g; t/ 2 y��.LM;Mat.l � l IC//

by

V s2nC1.g; t/ D

Z
f0�t1�:::tnC1�tg

nC1X
jD1

j�1^
iD1

�sti .g/R
s
g.ti /

^
�stj .g/ PA

s
g.tj /

�

nC1̂

lDjC1

�stl .g/R
s
g.tl/ �

s
1 .g/dt1 � � � dtnC1;

and the differential form

W s.g; t/ 2 y��.LM;Mat.l � l IC//

by

W s
2nC1.g; t/ D

1X
kDnC1

kX
r;j1;:::;jnD1; pairwise distinct

�

Z
f0�t1�:::tk�tg

�Asg.t1/ � � �R
s
g.tj1/ � � �

PAsg.tr/ � � �R
s
g.tjn/ � � � �A

s
g.tk/dt1 � � � dtk :

Then obviously one has

Bch�.g/ D Tr
� Z 1

0

V s.g; t/jtD1 ds

�
and it is easily checked from the definitions that

�.Ch�.g// D Tr
� Z 1

0

W s.g; t/jtD1 ds

�
:
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Thus, it suffices to show that W s.g; t/ D V s.g; t/ for all t; s 2 I . To see this,
the essential idea is to consider for every t; s 2 I the even form

X s.g; t/ D .X s0.g; t/; X
s
2.g; t/; : : : / 2

y�C.LM;Mat.l � l IC//;

which is defined by

X s0.g; t/ D �st .g/;
d

dt
X s2n.g; t/ D X

s
2n.g; t/�A

s
g.t/CX

s
2n�2.g; t/R

s
g.t/;

X s2n.g; t/jtD0 D 0 for all n � 1,

and the odd form

Y s.g; t/ D .Y s1 .g; t/; Y
s
3 .g; t/; : : : / 2 �

�.LM;Mat.l � l IC//

which is defined by

d

dt
Y s1 .g; t/ D Y

s
1 .g; t/�A

s
g.t/CX

s
0.g; t/

PAsg.t/;

d

dt
Y s2nC1.g; t/ D Y

s
2nC1.g; t/�A

s
g.t/C Y

s
2n�1.g; t/R

s
g.t/CX

s
2n.g; t/

PAsg.t/

for all n � 1;
Y s2nC1.g; t/jtD0 D 0 for all n:

Noting that the sum that definesW s
2nC1.g; t/ converges uniformly in t so that one can

interchange d=dt with
P1
kDnC1, it is now easily checked that both t 7! W s.g; t/

and t 7! V s.g; t/ solve the IVP’s which define Y s.g; t/, so that

V s.g; t/ D W s.g; t/ D Y s.g; t/ for all t; s 2 I ;

as was claimed.

Remark 5.5. If N is a compact manifold without boundary and given a connection
d C C over a trivial vector bundle over N , the even Bismut–Chern character is the
differential form

BchC.C / D .BchC0 .C /;Bch
C
2 .C /; : : : / 2

y�C.LN/

defined by

BchC2n.C / D Tr
� Z
f0�t1�:::tn�1g

n̂

iD1

�CtiRC .ti / �
C
1 dt1 � � � dtn

�
;
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where RC is again the curvature of d C C and �C� is the parallel transport with
respect to d C C . Then one has another even/odd periodicity as in Remark 5.3: we
can consider Asg as defining a connection 1-form zAg over a trivial vector bundle over
M �I . However, sinceM �I is a manifold with boundary, it is convenient to embed
it in a larger manifold, say

�WM � I ,!M � J

where J D .�1; 2/. Therefore, we extend Asg to s 2 J , consider it as defining a
connection 1-form zAg over a trivial vector bundle overM � J .
The corresponding curvature

R zAg 2 �
2.M � J;Mat.l � l IC//

is given by varying s 2 J in

Rsg C ds ^
PAsg 2 �

2.M;Mat.l � l IC//:

Since �@JR zAg D PAsg , after restricting to loops fibering over J , we immediately get
that under integration along the fibers of

� WM � I �!M;

one has
Bch�2n�1.g/ D

Z
I

���@JBch
C
2n.
zAg/ D ���

�BchC2n. zAg/:
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