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Quasifolds, diffeology and noncommutative geometry
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Abstract.After embedding the objects quasifolds into the category fDiffeologyg, we associate a
C�-algebra with every atlas of any quasifold, and show how different atlases give Morita equiv-
alent algebras. This builds a new bridge between diffeology and noncommutative geometry
– beginning with the today classical example of the irrational torus – which associates a Morita
class of C�-algebras with a diffeomorphic class of quasifolds.
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Introduction

This paper is a follow-up to “Noncommutative geometry and diffeology: the case of
orbifolds” [10]. In that article, a construction was established that associated a C�-
algebra with every orbifold, in a functorial way. Here we extend the construction to
the more general quasifolds. This also provides an answer to the referee of the first
paper, who suggested to move on to more general diffeologies, in order to produce
more interesting objects.
First of all, we identify quasifolds [14] as objects in the category fDiffeologyg [8].

These are diffeological spaces that are locally diffeomorphic, at each point, to some
quotient Rn=� , for some integer n, and for � – which may change from point to
point – a countable subgroup of Aff.Rn/. As it appears clearly, the definition is
similar to that of orbifolds [6], except for the group � , which can be infinite, while
it is finite for orbifolds – whose original definition as independent objects has been
published by Ishiro Satake in [17, 18].
By considering quasifolds as diffeologies, they inherit a structure of category

which we denote by fQuasifoldsg, whose morphisms are smooth maps in the sense
of diffeology. This remark carries a strong content, as can be seen in the lifting
of smooth functions between quasifolds (§ 2): the same phenomenon happening for
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orbifolds, where smooth maps may not lift locally equivariantly, happens also for
strict quasifolds1. We have a priori the sequence of categories:

fManifoldsg � fOrbifoldsg � fQuasifoldsg � fDiffeologyg:

Then, we generalize to quasifolds the functor toward noncommutative geometry,
developed in [10] for orbifolds.2 In the same way, we associate with each atlas of a
quasifold a structure groupoid in § 5. The objects of this groupoid are the elements
of the nebula of the strict generating family associated with the atlas. The arrows
between the objects are the germs of the local diffeomorphisms of the nebula that are
absorbed by the evaluation map, that is, which project to the identity on the quasifold.
In parallel with the case of orbifolds, in § 3 and § 4 we generalize to quasifolds

the two fundamental results:
Theorem. Any local smooth map on Rn that projects to the identity in the quotient
Rn=� , where � is a countable subgroup ofAff.Rn/, is everywhere locally the action
of some  2 � .

Theorem. Local diffeomorphisms between quasifolds lift by local diffeomorphisms
on the level of the strict generating families. Pointed local diffeomorphisms lift
by pointed local diffeomorphisms, where the source and the target can be chosen
arbitrarily in the appropriate fibers over the quasifold.

The difficulty here is to pass from the action of a finite group on a Euclidean
domain to the action of a possibly infinite, but countable group, whose orbits can
be dense. This has led us to a substantial revision of the methods, focusing on the
countable nature of the groups, and has resulted in proofs that are minimal and
essential.
As said above, in § 5 we define the structure groupoid associated with an atlas of

the quasifold. Then, thanks to the previous theorem, in § 6 we prove the following:
Theorem. Two different atlases of a same quasifold give two equivalent groupoids, as
categories [11]. Consequently, two diffeomorphic quasifolds have equivalent struc-
ture groupoids.

In other words, the class of the structure groupoid is a diffeological invariant of
the quasifold. Then, in § 7, we give a general description of the structure groupoids.
Next, in § 9 we prove the following:

Theorem. The groupoids associated with two different atlases of a same quasifold
satisfy the Muhly–Renault–Williams equivalence.

Then, having proved in § 8 that the structure groupoids associated with the atlases
of a quasifold are étale and Hausdorff, we show that they fulfill the conditions of
Jean Renault’s construction of an associated C�-algebra, by equipping the set of

1Which are not orbifolds.
2Which can be regarded as the gauge groupoid of the quasifold structure.
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morphisms with the same counting measure as in the case of orbifolds. And in § 10
we prove then, thanks to § 9, the main result:
Theorem. The C�-algebras associated with different atlases of a same quasifold
are Morita-equivalent. Therefore, diffeomorphic quasifolds have Morita-equivalent
C�-algebras.
Finally, we illustrate this construction with two simple examples: the traditional

irrational torus T˛ and the Q-circle, quotient of R by Q. In these two examples, we
observe that our construction gives the expected result. In work in progress, we apply
these techniques also to the class of symplectic toric quasifolds [1, 14].
From the very beginning, with the 1983 paper [5] on the irrational torus, it was

clear that there existed some connection between diffeology and noncommutative
geometry. Beginning with the fact that two such tori T˛ and Tˇ were diffeomorphic
if and only if ˛ and ˇ were equivalent modulo GL.2;Z/, which is the same condition
for their algebra to be Morita-equivalent [16]. That could not be just chance. This
work, which began with the case of orbifolds [10] and which continues here with
quasifolds, shows and describes the logic behind this correspondence. We can
reasonably expect wider links between the two theories, which will be addressed in
the future.
Note 1. Unlike the categorical approach, which defines its objects directly by means
of higher structures (stacks, n-categories, etc.), we induce the groupoid generating
the C�-algebra of the quasifold via its singular geometry encoded in the diffeology.
So, to the current standard way fgroupoid ! C�-algebrag, we add a first floor
fdiffeology ! groupoidg, which is not trivial and makes this construction non-
tautological.
Note 2. The irrational tori in arbitrary dimension, or quasitori, are particular
quasifolds that are dual smooth geometric versions of quasilattices. Knowing how to
associate a C�-algebra to a quasifold in a structural fashion can be viewed as a kind
of geometric quantization. In fact, the study of the spectrum of the Hamiltonian in
a quasicrystal was at the origin of Alain Connes’ noncommutative geometry. It is
obviously interesting to have a smooth version of this, which is what we are providing.
Note 3. Weassume that the reader is familiar with the basic concepts in diffeology and
we refer to the textbook [8] for details. Let us just recall that a diffeology on a set X
is a set D of smooth parametrizations, called plots, that satisfy three fundamental
axioms: covering, locality and smooth compatibility. That said, there are a couple of
important diffeological constructions that we use in the following. First, the quotient
diffeology: every quotient of a diffeological space inherits a natural diffeology for
which the plots are the parametrizations that can be locally lifted by plots in the source
space. Then, the subset diffeology: every subset of a diffeological space inherits a
diffeology for which the plots are the plots of the ambient space, but with values in
the subset. For example, in diffeology a subset is discrete if the subset diffeology is
the discrete diffeology, that is, the plots are locally constant. For example Q � R is
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discrete. Finally, the local diffeology:3 a map f , from a subset A of a diffeological
space X to a diffeological space X0, is a local smooth map if and only if its composite
f ıP with a plotP in X, defined on P�1.A/, is a plot in X0. That is equivalent to: A is
an open subset for the D-topology (see [8, § 2.8]) and f restricted to A is smooth for
the subset diffeology. With local smooth maps come local diffeomorphisms, which
are the fundamentals of modeling spaces in diffeology [8, § 4.19], on which many
constructions of subcategories are based, like manifolds, manifolds with boundary
and corners, orbifolds, quasifolds etc.

Acknowledgements. It is a pleasure for Patrick Iglesias-Zemmour to thank Anatole
Khelif for useful discussions on C�-algebras.

Diffeological quasifolds

The notion of quasifold has been introduced in 1999 in the paper “On a generalization
of the notion of orbifold” [13], see also [14]. The idea is that a n-quasifold is
a smooth object which resembles locally everywhere a quotient Rn=� , where �
is some countable subgroup of diffeomorphisms. The analogy with orbifolds, for
which � is finite, is indeed clear. On the other hand, Diffeology has been precisely
developed, from the mid 1980s, to deal with this kind of situation, beginning with
“Exemple de groupes différentiels. . . ” [5]. In particular, orbifolds have been later
successfully included as a subcategory in fDiffeologyg in the paper “Orbifolds as
Diffeology” [6]. It was natural to try to include also quasifolds, and this is what we
do now.

1. What is a diffeological quasifold? We have indeed a diffeological version of
quasifolds, formally defined by:

Definition. A n-quasifold is a diffeological space X which is locally diffeomorphic,
everywhere, to some Rn=� , where � is a countable subgroup, maybe infinite, of
Aff.Rn/. The group � maybe changing from place to place.

In more words, this definition means precisely the following: for all x 2 X, there
exist a countable subgroup � � Aff.Rn/, and a local diffeomorphism � from Rn=�
to X, defined on some open subset U � Rn=� , such that x 2 �.U/. The subset U is
open for the D-topology, that is in this case, the quotient topology [8, § 2.12] by the
projection map4 classWRn ! Rn=� . That said:

Definition. Any such diffeomorphism is called a chart. A set of chartsA, coveringX,
is called an atlas.

3Introduced with the definition of local smooth maps in [7, § 1.2.3], see also [8, § 2.1].
4In this paper the word class will denote generically the class map from a space onto its quotient, for

a relation which has been clearly identified.
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Note. In the following we consider only quasifolds that support a locally finite atlas,
that is, every point in the quasifold is covered by a finite number of charts. For
example, a symplectic toric quasifold has a canonical atlas made of a finite number
of charts [1, Thm. 3.2].
Remark 1. This approach to quasifolds considers spaces that are already equipped
with a smooth structure, that is, a diffeology, and then, checks if that diffeology is
generated by local diffeomorphisms with some quotients Rn=� . This is the standard
construction of modeling diffeology we mentioned above; it applies to manifolds,
orbifolds. . . and now quasifolds. It is a reverse construction as the usual one, where
the smooth structure is built after equipping the underlying set with a family of
injections, compatible according to some specific conditions. Recent works and
results involving quasifolds in symplectic geometry can be found in [2–4].
Remark 2. The group � is chosen inside the affine group and not just the linear
subgroup, as it is the case for orbifolds. In this way, one immediately has the well
known example of the irrational torus ([5])

T˛ D R=.ZC ˛Z/;
where ˛x 2 R � Q, as a quasifold. But, we can notice that � could be embedded
in GL.nC 1;R/ by considering Rn as the subspace of height 1 in Rn � R, and an
element .A; b/ 2 Aff.Rn/ acting on Rn � f1g by�

A b

0 1

��
X
1

�
D

�
AXC b
1

�
:

Hence, the affine or linear nature for the subgroup � is not really discriminant.
Remark 3. In the paper “Example of singular reduction in symplectic diffeology” [9],
an infinite dimensional quasi-projective space is built inside the category of diffeol-
ogy. That is, an example of an infinite dimensional analog of the present concept of
quasifold. That leaves some space for a generalization of the kind of constructions
explored in this paper.
2. Smooth maps between quasifolds. As an object of the category of diffeological
spaces, quasifolds inherit automatically the notion of smooth maps. A smooth map
fromaquasifold to another quasifold is just amapwhich is smoothwhen the quasifolds
are regarded as diffeological spaces. It follows immediately that the composite of
smooth maps between quasifolds is again a smooth map. Hence, quasifolds form a
full subcategory of fDiffeologyg we shall denote by fQuasifoldsg.
A special phenomenon appearing in the case of orbifolds persists for quasifolds:

smooth maps between diffeological quasifolds may have no local equivariant lifting,
as shown by the following example inspired by [6, Example 25].
Let ˛ 2 R �Q and C˛ be the irrational quotient:

C˛ D C=� with � D fei2�˛kgk2Z:

This diffeological space5 falls into the category of quasifolds.
5Appearing already in [7, Appendix 6].
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Figure 1. The function �n.

Let now f WC! C be defined by

f .z/ D

�
0 if r > 1 or r D 0;
e�1=r�n.r/ r if 1

nC1
< r � 1

n
and n is even;

e�1=r�n.r/ z if 1
nC1

< r � 1
n
and n is odd;

where r D
p
jzj2 and �n is a function vanishing flatly outside the interval �1=.nC1/;

1=nŒ and not inside; see Figure 1.
If we consider now � 2 U.1/, one has: f .�z/ D f .z/ on the annulus

1

nC 1
< r �

1

n

if n even, and f .�z/ D �f .z/ if n is odd. That is, f .�z/ D hz.�/f .z/, where
hz.�/ D 1 or hz.�/ D � depending on whether z is in an even or odd annulus.
Hence,

class.f .z// D class.f .z//

for all  2 � . Then, the map f projects onto a smooth map �WC˛ ! C˛ defined by

�.class.z// D class.f .z//:

Next, assume that f 0 is another lifting of �. For all z 2 C, there exists .z/ 2 �
such that f 0.z/ D .z/f .z/. We then get a smooth map

z 7! f 0.z/=f .z/ D .z/

defined on C � f0g. Since ��U.1/ is diffeologically discrete [8, Exercise 8, p. 14],
this map is constant .z/ D  and f 0.z/ D f .z/ on C � f0g, and by continuity
on C. Thus, two lifts of � differ only by a constant in � , which gives the same
function h0z D hz . Therefore, because the homomorphism hz flips from the trivial
homomorphism to the identity on successive annuli, � has no local equivariant
smooth lifting.



Quasifolds, diffeology and noncommutative geometry 7

3. Lifting the identity. LetQ D Rn=� . Consider a local smooth map F from Rn to
itself, such that class ı F D class. In other words, F is a local lifting of the identity
on Q. Then, we have:
Theorem. F is locally equal to some group action

F.r/ Dloc  � r D Ar C b;

where  D .A; b/ 2 � , for some A 2 GL.Rn/ and b 2 Rn.

Proof. Let us assume first that F is defined on an open ball B. Then, for all r in the
ball, there exists a  2 � such that F.r/ D  � r . Next, for every  2 � , let

F WB ! Rn � Rn with F .r/ D .F.r/;  � r/:

Let � � Rn � Rn be the diagonal and let us consider

� D F�1 .�/ D fr 2 B j F.r/ D  � rg:

Lemma 1. There exist at least one  2 � such that the interior V� is non-empty.

Indeed, since F is smooth (thus continuous), the preimage � by F of the
diagonal is closed in B. However, the union of all the preimages F�1 .�/ – when 
runs over� – is the ballB. Then,B is a countable union of closed subsets. According
to Baire’s theorem, there is at least one  such that the interior V� is not empty.

Lemma 2. The union V�� D [2� V� is an open dense subset of B.

Indeed, let B 0 � B be an open ball. Let us denote with a prime the sets defined
above but for B 0. Then,

�0 D .F � B 0/�1.�/ D � \B 0;

and then V�0 D V� \B 0: Thus,

B 0 \ V�� D B 0 \ .[2� V� / D [2� V�
0
 ;

which is not empty for the same reason that [2� V� is not empty. Therefore, V�� is
dense.

Hence, there exists a subset of� , indexed by a family I, for whichOi D V�i
� B

is open and non-empty, [i2IOi is an open dense subset of B, and

F � Oi W r 7! Air C bi ;

where .Ai ; bi / 2 Aff.Rn/. Since F is smooth, the first derivative D.F/ restricted
to Oi is equal to Ai , and then the second derivative

D2.F/ � Oi D 0;
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for all i 2 I. Then, since D2.F/ D 0 on an open dense subset of B, D2.F/ D 0

on B, that is D.F/.r/ D A for all r 2 B, with A 2 GL.n;R/. Now, the map

r 7! F.r/ � Ar;

defined onB, is smooth. But, restricted onOi it is equal to bi . Its derivative vanishes
on the open dense subset[i2IOi and thus vanishes onB. Therefore, F.r/�Ar D b
on the whole B, for b 2 Rn and F.r/ D Ar C b on B, with  D .A; b/ 2 � .

4. Lifting local diffeomorphisms. Let Q D Rn=� and Q0 D Rn0=� 0, where � �
Aff.Rn/ and � 0 � Aff.Rn0/ are countable subgroups. Then,
Theorem. Every local smooth lifting zf of any local diffeomorphism f of Q is nec-
essarily a local diffeomorphism. In particular, nDn0. Moreover, let x2dom.f /,
x0 D f .x/, r; r 0 2 Rn be such that

class.r/ D x and class.r 0/ D x0:

Then, the local lifting zf can be chosen such that zf .r/ D r 0.
Note that n is also the diffeological dimension of Rn=� , see [8, § 1.78].

Proof. Let the local diffeomorphism f be defined on U with values in U0. By
definition of local diffeomorphism, they are both open for the D-topology. Then
zU D class�1.U/ is open in Rn. Since the composite

f ı classW zU! U0

is a plot in Q0, for all r 2 zU there exists a smooth local lifting zf W zV! Rn0 , defined
on an open neighborhood of r , such that

class0 ı zf D f ı class � zV:

Rn � zU � zV Rn0

Q � U Q0

class

zf

class0

f

Rn zV0 � zU0 � Rn0

Q U0 � Q0

class

yf

class0

f �1

Let x D class.r/, x0 D f .x/, r 0 D zf .r/, and then x0 D class0.r 0/.
Next, let

zU0 D class0�1.U0/:
Since the compositef �1ıclass0 is a plot inQ, there exists a smooth lifting yf WzV0!Rn;
defined on an open neighborhood of r 0, such that

class ı yf D f �1 ı class0 � zV0:

Let r 00 D yf .r 0/, which is a priori different from r .
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Now, we consider the composite

yf ı zf W zW! Rn;

where
zW D zf �1.zV0/

is a non-empty open subset of Rn since it contains r . Moreover, yf ı zf .r/ D r 00. It
also satisfies

class ı . yf ı zf / D class:

Indeed,

class ı . yf ı zf / D .class ı yf / ı zf

D .f �1 ı class0/ ı zf

D f �1 ı .class0 ı zf /
D f �1 ı .f ı class/
D .f �1 ı f / ı class D class:

Thus, thanks to § 3, there exists, locally,  2 � such that

yf ı zf D  � zW:

By the way,
r 00 D . yf ı zf /.r/ D  � r:

Let xf D �1 ı yf , then:

class ı xf D class ı �1 ı yf D class ı yf D f �1 ı class0;

and xf is still a local lifting of f �1. Thus,

xf ı zf D 1 zW;

that is, xf D zf �1 � zW. We conclude that, around r , zf is a local diffeomorphism.
Now, if we consider any another point r 000 over x0, there exists  0 such that

 0 � r 0 D r 000I

changing zf to  0 ı zf and xf to xf ı 0�1, we get zf .r/ D r 000, and zf and xf still remain
inverse of each other.
Therefore, for any r 2 Rn over x and any r 0 2 Rn over x0 D f .x/, we can locally

lift f to a local diffeomorphism zf such that zf .r/ D r 0.
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Structure groupoids of a quasifold

In this section, we associate a structure groupoid, or gauge groupoid, which is a
diffeological groupoid [8, § 8.3], with every atlas of a quasifold. Then we show that
different atlases give equivalent groupoids: as categories, according to the Mac Lane
definition [11], and in the sense of Muhly–Renault–Williams [12]. We give a precise
description of the structure groupoid in terms or the groupoid associated with the
action of the structure groups � , and the connecting points of the charts. This
construction is the foundation for a C�-algebra associated with the quasifold.
5. Building the groupoid of a quasifold. Let X be a quasifold, letA be an atlas and
let F be the strict generating family overA. We denote byN the nebula6 of F , that
is, the sum of the domains of its elements:

N D
a
F2F

dom.F/ D
˚
.F; r/ j F 2 F and r 2 dom.F/

	
:

The evaluation map is the natural subduction

evWN ! X with ev.F; r/ D F.r/:

Following the construction in the case of orbifolds [10], the structure groupoid of the
quasifold X, associated with the atlas A, is defined as the subgroupoid G of germs
of local diffeomorphisms of N that project to the identity of X along ev. That is,(

Obj.G/ D N ;

Mor.G/ D
˚
germ.ˆ/� j ˆ 2 Diffloc.N / and ev ıˆ D ev � dom.ˆ/

	
:

The set Mor.G/ is equipped with the functional diffeology inherited by the full
groupoid of germs of local diffeomorphisms [10, §§ 2,3]. Note that, given ˆ 2
Diffloc.N / and � 2 dom.ˆ/, there exist always two plots F and F0 in F such that
� D .F; r/, with r 2 dom.F/, and a local diffeomorphism � of Rn, defined on an
open ball centered in r , such that

dom.�/ � dom.F/;
� D ˆ � fFg � dom.F/ and F0 ı � D F � dom.�/:

That is summarized by the diagram:

dom.F/ � dom.�/ dom.F0/

X:
F

�

F0

6See definition in [8, § 1.76].
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Figure 2. The three levels of a quasifold.

Note. According to the theorem in § 3, the local diffeomorphisms, defined on the
domain of a generating plot, and lifting the identity of the quasifold, are just the
elements of the structure group associated with the plot. We can legitimately wonder
what is the point of involving general germs of local diffeomorphisms, if we merely
end up with the structure group we could have began with. The reason is that the
structure groups connect the points of the nebula that project on a same point of
the quasifold, only when they are inside the same domain. They cannot connect the
points of the nebula that project on the same point of the quasifold but belonging to
different domains, with maybe different structure groups. This is the reason why we
cannot avoid the use of germs of local diffeomorphisms in the nebula, to begin with.
That situation is illustrated in Figure 2.

6. Equivalence of structure groupoids. Let us recall that a functor SWA! C is an
equivalence of categories if and only if, S is full and faithful, and each object c in C
is isomorphic to S.a/ for some object a in A [11, Chap. 4, § 4, Thm. 1]. If A and C
are groupoids, the last condition means that, for each object c of C, there exist an
object a of A and an arrow from S.a/ to c.
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In other words: let the transitivity-components of a groupoid be the maximal full
subgroupoids such that each object is connected to any other object by an arrow. The
functor S is an equivalence of groupoids if it is full and faithful, and surjectively
projected on the set of transitivity-components.
Now, consider an n-quasifold X. LetA be an atlas, let F be the associated strict

generating family, let N be the nebula of F and let G be the associated structure
groupoid. Let us first describe the morphology of the groupoid.

Proposition. The fibers of the subduction evWObj.G/ ! X are exactly the transi-
tivity-components of G. In other words, the space of transitivity components of the
groupoid G associated with any atlas of the quasifold X, equipped with the quotient
diffeology, is the quasifold itself.

Theorem. Different atlases of X give equivalent structure groupoids. The structure
groupoids associated with diffeomorphic quasifolds are equivalent.

In other words, the equivalence class of the structure groupoids of a quasifold is
a diffeological invariant.

Proof. These results are analogous to the results of [10, § 5]. They have the same
kind of proof. The fact that the structure groups � of the quasifolds are countable
instead of finite has no negative consequences, thanks to § 4.
Let us start by proving the proposition. Let FWU ! X and F0WU0 ! X0 be two

generating plots from the strict family F , and r 2 U � R and r 0 2 U0 � R0. Assume
that

ev.F; r/ D ev.F0; r 0/ D x;

that is, x D F.r/ D F0.r 0/. Note that

F D f ı class � U and F0 D f 0 ı class0 � U0;

where f; f 0 2 A. Then,
 D f 0�1 ı f;

defined on f �1.f 0.U0// to U0, is a local diffeomorphism that maps � D f .class.r//
to � 0 D f 0.class0.r 0//.
Then, according to § 4, n D n0 and there exists a local diffeomorphism ' of Rn,

lifting locally  and mapping r to r 0. Its germ realizes an arrow of the groupoid G
connecting .F; r/ to .F0; r 0/. Of course, when F.r/ ¤ F0.r 0/ there cannot be an arrow,
by definition. Therefore, as in the more restrictive case of orbifolds, the fibers of
the evaluation map are the transitive components of the structure groupoid G of the
quasifold.
Now, the theorem follows the formal flow of (op. cit. § 5): let A and A0 be two

atlases of X and consider
A00 D A

a
A0:
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With an obvious choice of notation:

Obj.G00/ D Obj.G/
a
Obj.G0/

and G00 contains naturally G and G0 as full subgroupoids. The question then is: how
does the adjunction of the crossed arrows betweenG andG0 change the distribution of
transitivity-components? According to the previous proposition, it changes nothing
since, forG,G0 orG00, the set of transitivity-components are always exactly the fibers
of the respective subductions ev. In other words, the set of groupoid components is
always X, for any atlas of X. ThusG andG0 are equivalent toG00, thereforeG andG0
are equivalent.

7. General description of the structure groupoid. The general description of the
structure groupoid of a quasifold X follows exactly the description in the case of
orbifolds (op. cit.). We remind it here for clarity. Let X be a quasifold. Let A

be an atlas, let F be the associated strict generating family, and let G be the
associated groupoid. We know from the previous paragraph that the groupoid
components in Obj.G/ are the fibers of the projection evW .F; r/ 7! F.r/. Then,
the (algebraic) structure of the groupoid reduces to the algebraic structure of each
full subgroupoid Gx , x 2 X, that is,(

Obj.Gx/ D
˚
.F; r/ 2 N j F.r/ D x

	
;

Mor.Gx/ D
˚
g 2 MorG

�
.F; r/; .F0; r 0/

�
j F.r/ D x

	
I

more precisely, g D germ.'/r where ' is a local diffeomorphism defined in the
domain of F to the domain of F0, mapping r to r 0 and such that F0 ı ' Dloc F on an
open neighborhood of r . In other words,

Obj.Gx/ D ev�1.x/ and Mor.Gx/ D .ev ısrc/�1.x/:

Let f be a chart in A, let U D dom.f / and let zU D class�1.U/ � Rn be the
domain of its strict lifting F D f ı class � zU, where classWRn ! Rn=� . Without
loss of generality, we shall assume that the domains of all charts, and thus the domains
of the strict liftings, are connected.
The subgroupoid Gx is the assemblage of the subgroupoids GFx . For all F 2 F ,(

Obj.GFx/ D fFg � dom.F/;
Mor.GFx/ D

˚
germ.'/r 2 Mor.Gx/ j r; '.r/ 2 dom.F/

	
:

That is,
Mor.GFx/ D src�1.Obj.GFx// \ trg�1.Obj.GFx//:

The assemblage is made first by connecting the groupoid GFx to GF0x with any arrow
germ.'/r , from .F; r/ to .F0; r 0/ such that

x D F.r/ D F0.r 0/ and '.r/ D r 0:
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Secondly, by spreading the arrows by composition. We can represent this construction
by a groupoid-set-theoretical diagram:

G D
a
x2X

Gx and Gx D GF1
x — GF2

x — � � � — GFNx
x ;

where the Fi ’s are the charts having x in their images and Nx is the number of
such charts (the atlas A is assumed locally finite). The link between two groupoids:
GFi
x —G

Fj
x represents the spreading of the arrows by adjunction of one of them.

Note that this is absolutely not a smooth representation of G, since the projection

ev ısrcWMor.G/! X

is a subduction. Moreover, the order of assembly has no influence on the result.

Examples. In the case of orbifolds, where the structure group is finite, this
assemblage of groupoids can be completely visual: for example, the teardrop in [10,
Figure 3]. It is more difficult in the case of a strict quasifold, with dense structure
group. For example, the irrational torus

T˛ D R=.ZC ˛Z/;

which was described as a diffeological space in [5] for the first time. Now, with the
identification of this new subcategory fQuasifoldsg in fDiffeologyg, the irrational
torus becomes a quasitorus.7 For the generating family fclassWR! T˛g, the objects
of the structure groupoid equal just R. Moreover, in this simple case, as we see
in § 11, the groupoid G˛ is the groupoid of the action of the subgroup Z C ˛Z by
translation. Therefore, one has

Obj.G˛/ D R and Mor.G˛/ D f.x; tnC˛m/ j x 2 R and n;m 2 Zg;

where the bold letter t denotes a translation. The source and target are given by

src.x; tnC˛m/ D x and trg.x; tnC˛m/ D x C nC ˛m:

Also, the composition of arrows is given by

.x; tnC˛m/ � .x C nC ˛m; tn0C˛m0/ D .x; tnCn0C˛.mCm0//:

The subgroupoid Gclass˛;� , with � 2 T˛ , is then

Gclass˛;� D f.x; tk/ j class.x/ D � and k 2 ZC ˛Zg:

For example, at � D 0 we get Gclass˛;0 D f.nC ˛m; tn0C˛m0/ j n; n0; m;m0 2 Zg.
7Or, in this case, a quasicircle.
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8. The structure groupoid is étale and Hausdorff.LetA be an atlas of a quasifoldX.
The structure groupoidG associated with the generating family of the atlasA is étale,
namely: the projection srcWMor.G/ ! Obj.G/ is an étale smooth map, that is, a
local diffeomorphism at each point [8, § 2.5].

Proposition 1. For all g 2 Mor.G/, there exists a D-open superset O of g such that
src restricted to O is a local diffeomorphism.

Proposition 2. The groupoid G is locally compact and Hausdorff.

Note. Since the atlas A is assumed to be locally finite, the preimages of the objects
of G by the source map, or the target map, are countable.

Proof. This proof is the same as in the case of orbifolds [10, § 7]. We just have to
pay attention to the fact the structure group is now countable, and not just finite.

(1) Let us first check that the groupoid G is étale. That is, srcWMor.G/ ! Obj.G/
is everywhere a local diffeomorphism.
Let us pick a germ g D germ.ˆ/� 2 Mor.G/; with

� D src.g/ D .F; r/ and trg.g/ D .F0; r 0/:

Thus, ˆ is defined by some ' 2 Diffloc.Rn/ with

dom.'/ � dom.F/; r 0 D '.r/ 2 dom.F0/

and such that
F0 ı ' D F � B:

We choose 'WB ! dom.F0/ to be defined on a small ball centered at r . By abuse of
notation, we shall denote g D germ.'/r , where ' 2 Diffloc.dom.F/; dom.F0//. That
is, ' now contains implicitly the data source and target. Now, let

F D f ı class and F0 D f 0 ı class0;

where f and f 0 belong toA,

classWRn ! Rn=� and class0WRn ! Rn=� 0

are the projections. If  is the transition map f 0�1 ı f , then class.r/ 2 dom. /
and  .class.r// D class0.r 0/. This situation is illustrated by the diagram of Figure 3,
where, except for the family 's which will vary around ', the vertices and arrows are
fixed as soon as the representant ˆ of the germ g is chosen. Now, let

O D fgerm.'/t j t 2 Bg � Mor.G/:
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dom.F/ dom.F0/

dom.f / dom.f 0/

X

's

class class0

 

f f 0

Figure 3. Lifting local diffeomorphisms.

Hence,
src � OW germ.'/t 7! t

is smooth and injective,8 as well as its inverse t 7! germ.'/t , which is defined
on B. Let us now show that O is a D-open subset, that is, for each plot PW s 7! gs
in Mor.G/, the subset P�1.O/ � dom.P/ is open. Let s 2 P�1.O/, that is, gs 2 O,
i.e. gs D germ.'/rs , where rs D src.gs/, the discrete index F here is implicit.
Then, for all s 2 dom.P/, there exists a small ball V centered at s and a plot s0 7!

.'s0 ; rs0/, defined on V , such that gs0 D germ.'s0/rs0 with germ.'s/rs D germ.'/rs
and rs0 2 B. Since s0 7! 's0 is smooth, by definition the subset

f.s0; r/ 2 V �B j r 2 dom.'s0/g

is necessarily open. Since it contains .s; rs/, it contains a product V 0 �B 0, where V 0

is a small ball centered at s and B 0 is a small ball centered at rs . This implies that,
for all s0 2 V 0, B 0 � dom.'s0/. In particular, B 0 � dom.'/. Then,

�s D 's ı '
�1
W'.B 0/! dom.F0/

is a local diffeomorphism of dom.F0/. However, for all s0, one has

class0 ı 's0 D  ı class;

wherever it is defined. This is shown by the above diagram, where the dots denote a
local map. Thus, class0 ı �s0 D class0. Indeed,

class0 ı �s0 D class0 ı 's0 ı '�1 D  ı class ı '�1 and  ı class D class0 ı ':

Now, thanks to § 7, for all s0 2 V 0 there is a  0 2 � 0 such that �s0 D  0, and the map
s0 7!  0 is smooth. Then, since V 0 is connected and � 0 is discrete [8, Exercise 8],
 0 is constant on V 0. Now s 2 V 0, thus, for s0 D s,

 0 D '�1 ı 's D '
�1
ı ' D 1 :

8Maybe we should recall that germ.'/t D germ.'0/t 0 if and only if: t D t 0 and there exists an open
ballB centered at t such that ' � B D '0 � B.
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Hence, 's0 D ' on V 0, and gs0 D germ.'/rs0 on V 0, that is, P.V 0/ � O. Then, each
s 2 dom.P/ such that P.s/ 2 O is the center of an open ball whose image is contained
in O. Therefore, P�1.O/ is a union of open balls, thus P�1.O/ is open and O is
D-open. Thus, the map srcW germ.'/t 7! t , restricted toO, is a local diffeomorphism:
the source map is étale.

(2) Next, let us check thatMor.G/ isHausdorff. As above, letgDgerm.'/r 2Mor.G/.
We can also representgby a triple .F; r; germ.'/r/, with'2Diffloc.dom.F/; dom.F0//.
Then, let g0 D germ. /s be another germ represented by .G; s; germ. /s/, different
from g, with  2 Diffloc.dom.G/; dom.G0//. We separate the situation in three
cases:

F ¤ G
or
F D G

�
r ¤ s

or
r D s but germ.'/r ¤ germ. /s:

In the first two cases (F ¤ G, and F D G but r ¤ s), since the source map is étale
and since the Nebula is Hausdorff, it is sufficient to consider two small separated
balls B and B 0, centered around r and s, to get two D-open subsets of Mor.G/ that
separate the two different germs. Indeed, let O D src�1.B/ and O0 D src�1.B 0/ be
the D-open subset on which the source map is a local diffeomorphism. If there were
a point g00 2 O \O0, then src.g00/ would belong to B \B 0, which is empty.
The last case (.F; r; germ.'/r/ and .F; r; germ. /r/with germ.'/r ¤ germ. /r )

divides in two subcases: codom.'/ ¤ codom. / and codom.'/ D codom. /.
In the first sub-case, when codom.'/ ¤ codom. /, since the codomains are

different, we consider a small ball B around r such that its images by ' and  are
separated. Then

O D fgerm.'/t j t 2 Bg and O0 D fgerm. /t j t 2 Bg

are two open subsets in Mor.G/ that separate g and g0, since no germ in O0 has the
same codomain as any germ in O.
In the second sub-case, when codom.'/ D codom. /, let us consider the

composite f D ' ı  �1, defined on an open neighborhood of  .r/. Thanks to
the theorem of § 3,

f .s/ Dloc 
0
� s;

for some  0 2 � 0, which is the structure group of the quasifold for the plot F0. Since
we have assumed that germ.'/r ¤ germ. /r , we have that  0 ¤ 1. Hence, there is
a small ball B around r on which ' D  0 ı  . Let

O0 D f.F; t; germ. /t / j t 2 Bg and O D f.F; t; germ.'/t / j t 2 Bg;

that is,
O D f.F; t;  0 ı germ. /t / j t 2 Bg:
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As we know, they are two D-open subsets in Mor.G/ and, since  0 ¤ 1, we have that
O \ O0 D ¿. Therefore, the two germs .F; r; germ.'/r/ and .F; r; germ. /r/ are
separated.
In conclusion, Mor.G/ is Hausdorff for the D-topology.
According to the previous Note, the preimages of an object .F; r/ 2 N D Obj.G/

are the germs of all the local diffeomorphisms ˆW .F; r/ 7! .F0; r 0/, such that

F.r/ D r 0 and F Dloc F0 ı '

around r , where ' is a local diffeomorphism of Rn. Since the atlas A is locally
finite, there are a finite number of F0 2 F such that F.r/ D F0.r 0/. Now, for such F0
the number of r 0 2 domF0 such that F0.r 0/ D F.r/ is at most equal to the number
of elements of the structure group � 0, that is countable. Therefore, the preimages
of .F; r/ by the source map are countable, and that works obviously in the same way
for the preimages of the target map.

9. MRW-equivalence of structure groupoids. We consider a quasifold X and two
atlasesA andA0, with associated strict generating familiesF andF 0. We shall show
in this section that the associated groupoids are equivalent in the sense of Muhly–
Renault–Williams [12, § 2.1]; this will later give Morita-equivalent C�-algebras.
This section follows [10, § 8]; we just check that the fact that the structure groups

are countable and not just finite, does not change the result.
Let us recall what is an MRW-equivalence of groupoids. Let G and G0 be two

locally compact groupoids. We say that a locally compact space Z is a .G;G0/-
equivalence if
(i) Z is a left principal G-space.
(ii) Z is a right principal G0-space.
(iii) The G and G0 actions commute.
(iv) The action of G on Z induces a bijection of Z=G onto Obj.G0/.
(v) The action of G0 on Z induces a bijection of Z=G0 onto Obj.G/.
Let srcWZ ! Obj.G/ and trgWZ ! Obj.G0/ be the maps defining the composable
pairs associated with the actions of G and G0. That is, a pair .g; z/ is composable
if trg.g/ D src.z/, and the composite is denoted by g � z. Moreover, a pair .g0; z/ is
composable if src.g0/ D trg.z/, and the composite is denoted by z � g0.
Let us also recall that an action is principal in the sense of Muhly–Renault–

Williams, if it is free: g�z D z only if g is a unit, and the action map .g; z/ 7! .g�z; z/,
defined on the composable pairs, is proper [12, § 2].
Now, using the hypothesis and notations of § 6, let us define Z to be the space of

germs of local diffeomorphisms, from the nebula of the family F to the nebula of
the family F 0, that project on the identity by the evaluation map. That is,

Z D

(
germ.f /r

ˇ̌̌̌
f 2 Diffloc.dom.F/; dom.F0/; r 2 dom.F/;
F 2 F ;F0 2 F 0 and F0 ı f D F � dom.f /

)
:
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Let9
src.germ.f /r/ D r and trg.germ.f /r/ D f .r/:

Then, the action of g 2 Mor.G/ on germ.f /r is defined by composition if trg.g/ D r ,
that is,

g � germ.f /r D germ.f ı '/s;

where g D germ.'/s , ' 2 Diffloc.N / and '.s/ D r . Symmetrically, the action of
g0 2 Mor.G0/ on germ.f /r is defined if src.g0/ D f .r/ by z � g0 D germ.'0 ı f /r ,
where g0 D germ.'0/f .r/. Then, we have:
Theorem. The actions of G and G0 onZ are principal, andZ is a .G;G0/-equivalence
in the sense of Muhly–Renault–Williams.

Proof. First of all, let us point out that Z is a subspace of the morphisms of the
groupoid G00 built in § 6 by adjunction of G and G0, and is equipped with the subset
diffeology. All these groupoids are locally compact and Hausdorff (§ 8).
Let us check that the action of G on Z is free. In our case,

z D germ.f /r and g D germ.'/s;

where f and ' are local diffeomorphisms. If g �z D z, then obviously g D germ.1/r .
Next, let us denote by � the action of G on Z, defined on

G ? Z D f.g; z/ 2 Mor.G/ � Z j trg.g/ D src.z/g by �.g; z/ D g � z:

This action is smooth because the composition of local diffeomorphisms is smooth,
and passes onto the quotient groupoid in a smooth operation, see [10, § 3]. Moreover,
this action is invertible, its inverse being defined on

Z ? Z D f.z0; z/ 2 Z � Z j trg.z0/ D trg.z/g by ��1.z0; z/ D .g D z0 � z�1; z/:

In detail,

��1.germ.h/s; germ.f /r/ D .germ.f �1 ı h/s; germ.f /r/;

with f .r/ D h.s/. Now, the inverse is also smooth, when Z?Z � Z�Z is equipped
with the subset diffeology. In other words, � is an induction, that is, a diffeomorphism
fromG?Z to Z?Z. However, sinceG?Z and Z?Z are defined by closed relations,
and G and Z are Hausdorff, G ? Z and Z ? Z are closed into their ambient spaces.
Thus, the intersection of a compact subset in Z � Z with Z ? Z is compact, and its
preimage by the induction � is compact. Therefore, � is proper. We notice that the
fact that the structure groups are no longer finite but just countable does not play a
role here.

9For the sake of simplicity, we make an abuse of notation: in reality one should write, more precisely,
src.germ.f /r/ D .F; r/ and trg.germ.f /r/ D .F0; f .r//.
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It remains to check that the action of G on Z induces a bijection of Z=G onto
Obj.G0/. Let us consider the map

classWZ! Obj.G0/

defined by class.germ.f /r/ D f .r/. Then, let

class.z/ D class.z0/;

with z D germ.f /r and z0 D germ.f 0/r 0 , that is,

f .r/ D f 0.r 0/:

However, since f and f 0 are local diffeomorphisms, ' D f 0�1 ı f is a local diff-
eomorphism with '.r 0/ D r . Let g D germ.'/r 0 , then g 2 Mor.G/ and z0 D g � z.
Hence, the map class projects onto an injection from Z=G to Obj.G0/. Now, let
.F0; r 0/ 2 Obj.G0/, and let

x D F0.r 0/ 2 X:

Since F is a generating family, there exist .F; r/ 2 Obj.G/ such that F.r/ D x. Let
 and  0 be the charts of X defined by factorization:

F D  ı class and F0 D  0 ı class0;

where classWRn ! Rn=� and class0WRn ! Rn=� 0. Let

� D class.r/ and � 0 D class0.r 0/:

Since  .�/ D  0.� 0/ D x, ‰ Dloc  0�1 ı  is a local diffeomorphism from
Rn=� to Rn=� 0 mapping � to � 0. Hence, according to § 4, there exists a local
diffeomorphism f from dom.F/ to dom.F0/, such that

class0 ı f D ‰ ı class and f .r/ D r 0:

Thus, z D germ.f /r belongs to Z and class.z/ D r 0 (precisely the element .F0; r 0/
of the nebula of F 0). Therefore, the injective map class from Z=G to Obj.G0/ is
also surjective, and identifies the two spaces. Obviously, what has been said for the
side G can be translated to the side G0; the construction is completely symmetric.
In conclusion, Z satisfies the conditions of a .G;G0/-equivalence, in the sense of
Muhly–Renault–Williams.

The C�-algebras of a quasifold

We use the construction of the C�-Algebra associated with an arbitrary locally
compact groupoid G, equipped with a Haar system, introduced and described by
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Jean Renault in [15, Part II, § 1]. Note that, for this construction, only the topology of
the groupoid is involved, and diffeological groupoids, when regarded as topological
groupoids, are equipped with the D-topology10.
We will denote by C.G/ the completion of the compactly supported continuous

complex functions on Mor.G/, for the uniform norm. And we still consider, as
is done for orbifolds, the particular case where the Haar system is given by the
counting measure. Let f and g be two compactly supported complex functions, the
convolution and the involution are defined by

f � g./ D
X
ˇ2Gx

f .ˇ � /g.ˇ�1/ and f �./ D f .�1/�:

The sums involved are supposed to converge. Here,  2 Mor.G/, x D src./ and
Gx D trg�1.x/ is the subset of arrows with target x. The star in z� denotes the
conjugate of the complex number z. By definition, the vector space C.G/, equipped
with these two operations, is the C�-algebra associated with the groupoid G.
10. The C�-algebra of a quasifold. Let X be a quasifold, letA be an atlas and letG
be the structure groupoid associated with A. Since the atlas A is locally finite, the
convolution defined above is well defined. Indeed, in this case:
Proposition. For every compactly supported complex function f on G, for all
� D .F; r/ 2 N D Obj.G/, the set of arrows g 2 G� such that f .g/ ¤ 0 is finite.
That is, # Supp.f � G�/ <1. The convolution is then well defined on C.G/.
Then, for each atlasA of the quasifold X, we get the C�-algebra A D .C.G/;�/.

The dependence of the C�-algebra on the atlas is given by the following theorem,
which is a generalization of [10, § 9].
Theorem. Different atlases give Morita-equivalent C�-algebras. Diffeomorphic
quasifolds have Morita-equivalent C�-algebras.
In other words, we have defined a functor from the subcategory of isomorphic

fQuasifoldsg in diffeology, to the category of Morita-equivalent fC�-Algebrasg.

Proof. Considering the proposition, G� D trg�1.�/ with � 2 Obj.G/. The space
of objects of G is a disjoint sum of Euclidean domains, thus f�g is a closed subset.
Now,

trgWMor.G/! Obj.G/
is smooth then continuous, for the D-topology. Hence, G� D trg�1.�/ is closed and
countable by § 8. Now,

Supp.f � G�/ D Supp.f / \G�

is the intersection of a compact and a closed countable subspace, thus it is compact
and countable, that is finite.

10Since smooth maps are D-continuous and diffeomorphism are D-homeomorphisms.
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Next, thanks to § 9, different atlases give equivalent groupoids in the sense of
Muhly–Renault–Williams. Moreover, thanks to [12, Thm. 2.8], different atlases give
strongly Morita-equivalent C�-algebras. Therefore, diffeomorphic quasifolds have
strongly Morita-equivalent associated C�-algebras.

11. The C�-algebra of the irrational torus. The first and most famous example is
the so-called Denjoy–Poincaré torus, or irrational torus, or noncommutative torus, or,
more recently, quasitorus. It is, according to its first definition, the quotient set of the
2-torus T2 by the irrational flow of slope ˛ 2 R�Q. We denote it by T˛ D T2=�˛ ,
where �˛ is the image of the line y D ˛x by the projection R2 ! T2 D R2=Z2.
This space has been the first example studied with the tools of diffeology, in [5],
where many non trivial properties have been highlighted.11 Diffeologically speaking,

T˛ ' R=.ZC ˛Z/:

The composite

R R=.ZC ˛Z/ T˛;class f
with F D f ı class;

summarizes the situation whereA D ff WR=.ZC ˛Z/! T˛g is the canonical atlas
of T˛ , containing the only chart f , and F D fF D f ı classg is the associated
canonical strict generating family. According to the above (§ 3), the groupoid G˛

associated with the atlasA is simply

Obj.G˛/ D R and Mor.G˛/ D f.x; tnC˛m/ j x 2 R and n;m 2 Zg:

However, we can also identify T˛ with .R=Z/=Œ.ZC ˛Z/=Z�, that is

T˛ ' S1=Z; with m.z/ D e2i�˛mz;

for allm 2 Z and z 2 S1. Moreover, the groupoid S of this action of Z on S1 � C is
simply

Obj.S˛/ D S1 and Mor.S˛/ D f.z; e2i�˛m/ j z 2 S1 and m 2 Zg:

The groupoidsG˛ and S˛ are equivalent, thanks to the functorˆ from the first to the
second:

ˆObj.x/ D e
2i�x and ˆMor.x; tnC˛m/ D .e2i�x; e2i�˛m/:

Moreover, they are also MRW-equivalent, by considering the set of germs of local
diffeomorphisms x 7! e2i�x , everywhere from R to S1. Therefore, their associated
C�-algebras are Morita equivalent. The algebra associated with S˛ has been
computed numerous times and it is called irrational rotation algebra [16]. It is
the universal C�-algebra generated by two unitary elements U and V, satisfying the
relation VU D e2i�˛UV.

11See for example Exercise 4 and § 8.39 in [8].
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Remark 1. Thanks to the theorem (§ 10), and because two irrational tori T˛ and Tˇ
are diffeomorphic if and only if ˛ and ˇ are conjugate modulo GL.2;Z/ (see [5]),
we get the corollary that, if ˛ and ˇ are conjugate modulo GL.2;Z/, then A˛ and Aˇ
are Morita equivalent. Which is the direct sense of Rieffel’s theorem [16, Thm. 4].

Remark 2. The converse of Rieffel’s theorem is a different matter altogether. We
should recover a diffeological groupoid G˛ from the algebra A˛ . Then, the space of
transitive components would be the required quasifold, as stated by the proposition
in § 6. In the case of the irrational torus, it is not very difficult. The spectrum of
the unitary operator V is the circle S1 and the adjoint action by the operator U gives
UVU�1 D e2i�˛V, which translates on the spectrum by the irrational rotation of
angle ˛. In that way, we recover the groupoid of the irrational rotations on the circle,
which gives T˛ as quasifold.

Remark 3. Of course, the situation of the irrational torus is simple and we do not
exactly know how it can be reproduced for an arbitrary quasifold. However, this
certainly is the way to follow to recover the quasifold from its algebra: find the
groupoid made with the Morita invariant of the algebra, which will give the space of
transitivity components as the requested quasifold.

12. The example of R=Q. The diffeological space R=Q is a legitimate quasifold.
This is a simple example with a groupoid G given by

Obj.G/ D R and Mor.G/ D f.x; tr/ j x 2 R and r 2 Qg:

The algebra that is associated with G is the set A of complex compact supported
functions on Mor.G/. Let us identify C0.Mor.G/;C/ with Maps.Q;C0.R;C// by

f D .fr/r2Q with fr.x/ D f .x; tr/; and let Supp.f / D fr j fr ¤ 0g:

Then,
A D

˚
f 2 Maps.Q;C0.R;C// j # Supp.f / <1

	
:

The convolution product and the algebra conjugation are, thus, given by:

.f � g/r.x/ D
X
s

fr�s.x C s/gs.x/ and f �r .x/ D f�r.x C r/
�:

Now, the quotient R=Q is also diffeomorphic to the Q-circle

SQ D S1=UQ; whereUQ D fe
2i�r
gr2Q

is the subgroup of rational roots of unity. As a diffeological subgroup of S1, UQ is
discrete. The groupoid S of the action ofUQ on S1 is given by:

Obj.S/ D S1 and Mor.S/ D
˚
.z; �/ j z 2 S1 and � 2 UQ

	
:
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The exponentialx 7! z D e2i�x realizes aMRW-equivalence between the twogroup-
oidsG and S. Their associated algebras are Morita-equivalent. The algebraS assoc-
iated with S is made of families of continuous complex functions indexed by rational
roots of unity, in the same way as before:

S D
˚
.f� /�2UQ j f� 2 C0.S1;C/ and # Supp.f / <1

	
:

The convolution product and the algebra conjugation are, then, given by:

.f � g/� .z/ D
X
�

fx�� .�z/g� .z/ and f �� .z/ D fx� .�z/
�;

where x� D 1=� D ��, the complex conjugate.
Now, consider f and letUp be the subgroup inUQ generated by Supp.f /; this is

the group of some root of unity " of some order p. Let Mp.C/ be the space of p �p
matrices with complex coefficients. Define f 7! M, fromS to Mp.C/˝C0.S1;C/,
by

M.z/�� D fx�� .�z/; for all z 2 S1 and �; � 2 Up:

That gives a representation ofS in the tensor product of the space of endomorphisms
of the infinite-dimensional C-vector space Maps.UQ;C/ by C0.S1;C/, with finite
support.
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