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Ideals of étale groupoid algebras and
Exel’s Effros–Hahn conjecture

Benjamin Steinberg

Abstract. We extend to arbitrary commutative base rings a recent result of Demeneghi that every
ideal of an ample groupoid algebra over a field is an intersection of kernels of induced representa-
tions from isotropy groups, with a much shorter proof, by using the author’s Disintegration Theorem
for groupoid representations. We also prove that every primitive ideal is the kernel of an induced
representation from an isotropy group; however, we are unable to show, in general, that it is the
kernel of an irreducible induced representation. If each isotropy group is finite (e.g., if the groupoid
is principal) and if the base ring is Artinian (e.g., a field), then we can show that every primitive
ideal is the kernel of an irreducible representation induced from isotropy.

1. Introduction

The original Effros–Hahn conjecture [4,5] suggested that every primitive ideal of a crossed
product of an amenable locally compact group with a commutative C �-algebra should be
induced from a primitive ideal of an isotropy group. The result was proved by Sauvageot
[18] for discrete groups and a more general result than the original conjecture was proved
by Gootman and Rosenberg in [7]. Crossed products of the above form are special cases
of groupoid C �-algebras and analogues of the Effros–Hahn conjecture in the groupoid
setting were achieved by Renault [16] and Ionescu and Williams [9].

In [19], the author initiated the study of convolution algebras of ample groupoids over
commutative rings with unit; see also [1]. R. Exel conjectured at the PARS meeting in Gra-
mado, 2014 (and perhaps earlier), that an analogue of the Effros–Hahn conjecture should
hold in this context. The author had previously developed in [19] a theory of induction
from isotropy groups in this setting and proved that inducing an irreducible representation
from an isotropy group results in an irreducible representation of the groupoid algebra.

In [3], Dokuchaev and Exel showed that if a discrete groupG acts partially on a locally
compact and totally disconnected space X , then every ideal of the partial crossed product
Cc.X;k/ ÌG, where Cc.X;k/ is the ring of locally constant, compactly supported func-
tions from X to the field k, is an intersection of ideals induced from isotropy. Note that
such partial crossed products are ample groupoid convolution algebras. Since in a C �-
algebra, every closed ideal is an intersection of primitive ideals, this result can be viewed
as an analogue of Effros–Hahn for partial crossed products.
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Demeneghi [2] extended the result of Dokuchaev and Exel to arbitrary ample groupoid
algebras over a field. Namely, he showed that each ideal is an intersection of kernels of
induced representations from isotropy subgroups. His proof is rather indirect. First he
develops a theory of induced representations for crossed products of the form Cc.X;k/ Ì
S , where S is an inverse semigroup acting on a locally compact and totally disconnected
space X . Then he proves the result for such crossed products. Finally, he proves that
groupoid convolution algebras are such crossed products using the full strength of his the-
ory (and the converse is essentially true as well) and he shows that the process of cross
product induction corresponds to the process of groupoid induction under the isomor-
phism. His paper is around 50 pages in all.

In this paper, we prove that over an arbitrary base commutative ring each ideal of
an ample groupoid convolution algebra is an intersection of kernels of induced repre-
sentations from isotropy groups. Moreover, our proof is direct—circumventing entirely
the crossed product machinery—and short. It relies on the author’s Disintegration Theo-
rem [20], which shows that modules for ample groupoid convolution algebras come from
sheaves on the groupoid. This machinery is not very cumbersome to develop and is quite
useful for analyzing irreducible representations, as was done in [21]. In future work, it
will be shown that the Disintegration Theorem can be used to establish the isomorphism
between inverse semigroup crossed products and groupoid algebras directly, without using
induced representations.

We also obtain some new progress on Exel’s original conjecture on the structure of
primitive ideals for groupoid algebras. Namely, we show that every primitive ideal is the
kernel of a single representation induced from an isotropy group (rather than an infinite
intersection of such kernels). We are, unfortunately, not able to show in general that it
is the kernel of an irreducible representation induced from an isotropy group. We are,
however, able to prove Exel’s version of the Effros–Hahn conjecture on primitive ideals if
the base ring R is Artinian and each isotropy group is either finite or locally finite abelian
with orders of elements invertible in R=J.R/, where J.R/ is the Jacobson radical of R
(e.g., if R has a characteristic zero).

2. Preliminaries

This section summarizes definitions and results from [19, 20] that we use throughout.
There are no new results in this section.

2.1. Groupoids

Following Bourbaki, compactness will include the Hausdorff axiom throughout this paper.
However, we do not require locally compact spaces to be Hausdorff. A topological group-
oid G D .G.0/; G.1// is étale if its domain map d (or, equivalently, its range map r) is a
local homeomorphism. In this case, identifying objects with identity arrows, we have that
G.0/ is an open subspace of G.1/ and the multiplication map is a local homeomorphism.
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See, for example, [6, 14, 17]. Notice that we follow the category theorists’ convention of
viewing a category as a multi-sorted object involving a set G.0/ of objects and a set G.1/ of
arrows, rather than viewing G as a set of arrows.

Following [14], an étale groupoid is called ample if its unit space G.0/ is locally com-
pact Hausdorff with a basis of compact open subsets. We shall say that an ample groupoid
G is Hausdorff if G.1/ is Hausdorff.

A bisection of an étale groupoid G is an open subset U � G.1/ such that both d jU and
r jU are homeomorphisms onto their images. Notice that we require bisections to be open.
Some authors [12] write local bisection to indicate this. The bisections form a basis for
the topology on G.1/ [6]. The set �.G/ of bisections is an inverse monoid (cf. [11]) under
the binary operation

UV D
®

� j 
 2 U; � 2 V; d.
/ D r.�/

¯
:

The semigroup inverse is given by U�1 D ¹
�1 j 
 2 U º. The set �c.G/ of compact
bisections is an inverse subsemigroup of �.G/ [14]. Note that G is ample if and only if
�c.G/ is a basis for the topology on G.1/ [6, 14].

If u 2 G.0/, then the orbit Ou of u consists of all v 2 G.0/ such that there is an arrow

 with d.
/ D u and r.
/ D v. The orbits form a partition of G.0/. A subset X � G.0/ is
invariant if it is a union of orbits.

If u 2 G.0/, the isotropy group of G at u is

G.u/ D
®

 2 G.1/ j d.
/ D u D r.
/

¯
:

Isotropy groups of elements in the same orbit are isomorphic.

2.2. Ample groupoid algebras

Fix a commutative ring with unit R. The author [19] associated an R-algebra RG to each
ample groupoid G as follows. We define RG to be the R-span in RG.1/ of the characteristic
functions 1U of compact open subsets U of G.1/. It is shown in [19, Proposition 4.3] that
RG is spanned by the elements 1U with U 2 �c.G/. If G.1/ is Hausdorff, then RG consists
of the locally constant R-valued functions on G.1/ with compact support. Convolution is
defined on RG by

f � g.
/ D
X

d.�/Dd.
/

f .
��1/g.�/ D
X
˛ˇD


f .˛/g.ˇ/:

The finiteness of the sums is proved in [19]. The fact that the convolution belongs to RG
comes from the computation 1U � 1V D 1UV for U; V 2 �c.G/ [19].

The algebra RG is unital if and only if G.0/ is compact, but it always has local units
(i.e., it is a directed union of unital subrings) [19, 20].

A module M over a ring S with local units is termed unitary if SM DM . A module
M over a unital ring is unitary if and only if 1m D m for all m 2 M . The category of
unitary S -modules is denoted by S -mod. Notice that every simple module is unitary; M
is simple if SM ¤ 0 and M has no proper, non-zero submodules.
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2.3. Induced modules

We recall from [19] the induction functor

InduWRG.u/-mod! RG-mod:

For u 2 G.0/, let Gu D d�1.u/ denote the set of all arrows starting at u. Then G.u/ acts
freely on the right of Gu by multiplication. Hence RGu is a free right RG.u/-module. A
basis can be obtained by choosing, for each v 2 Ou, an arrow 
vW u! v. We normally
choose 
u D u. There is a left RG-module structure on RGu given by

f ˛ D
X

d.
/Dr.˛/

f .
/
˛ (2.1)

for ˛ 2 Gu and f 2RG. TheRG-action commutes with theRG.u/-action by associativity,
and so RGu is an RG-RG.u/-bimodule, unitary under both actions (as is easily checked).

The functor Indu is defined by

Indu.M/ D RGu ˝RG.u/M:

This functor is exact by freeness of RGu as a right RG.u/-module and there is, in fact, an
R-module direct sum decomposition:

Indu.M/ D
M
v2Ou


v ˝M:

The action of f 2 RG in these coordinates is given by

f .
v ˝m/ D
X
w2Ou


w ˝
X


 Wv!w

f .
/
�

�1w 

v

�
m; (2.2)

as is easily checked. An immediate corollary of (2.2) is the following (see also [2]).

Proposition 1. Let u 2 G.0/ andM anRG.u/-module. Fix 
uWu! v for all v 2Ou. Then
the equality

Ann.Indu.M// D

´
f 2 RG j 8v;w 2 Ou;

X

 Wv!w

f .
/.
�1w 

v/ 2 Ann.M/

µ
holds.

A crucial result is that induction preserves simplicity.

Theorem 2 (Steinberg [19, Propositions 7.19 and 7.20]). Let M be a simple RG.u/-
module with u 2 G.0/. Then Indu.M/ is a simple RG-module. Moreover, the functor Indu
reflects an isomorphism and Indu.M/ Š Indv.N / implies Ou D Ov .

The Effros–Hahn conjecture for ample groupoids, first stated to the best of our knowl-
edge by Exel at the PARS2014 conference in Gramado (see also [3]), says that each
primitive ideal of RG is of the form Ann.Indu.M// for some u 2 G.0/ and simple RG.u/-
module M .
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2.4. Modules over ample groupoid algebras

The key ingredient to our approach is the author’s analogue [20] of Renault’s Disintegra-
tion Theorem [15] for modules over groupoid algebras. Here R will be a fixed commuta-
tive ring with unit and G an ample groupoid (not necessarily Hausdorff).

A G-sheaf E D .E; p/ consists of a space E, a local homeomorphism pWE ! G.0/,
and an action map G.1/ �G.0/ E ! E (where the fiber product is with respect to d and p),
denoted by .
; e/ 7! 
e, satisfying the following axioms:

� p.e/e D e for all e 2 E;

� p.
e/ D r.
/ whenever p.e/ D d.
/;

� 
.�e/ D .
�/e whenever p.e/ D d.�/ and d.
/ D r.�/.

A G-sheaf of R-modules is a G-sheaf E D .E;p/ together with an R-module structure
on each stalk Eu D p�1.u/ such that

� the addition E �G.0/ E ! E is continuous;

� the scalar multiplication R �E ! E is continuous;

� for each 
 2 G.1/, the map Ed.
/ ! Er.
/ given by e 7! 
e is R-linear,

where R has the discrete topology in the third item. Note that the zero section, u 7! 0u
(the zero of Eu), and the fiberwise inversion are automatically continuous since they are
given via scalar multiplication by 0 and by �1, respectively. Observe that the first two
conditions are equivalent to .E; p/ being a sheaf of R-modules over G.0/. Crucial to this
paper is that Eu is an RG.u/-module for each u 2 G.0/.

Note that the zero subspace

0 D ¹0u j u 2 G.0/º

is an open subspace of E, being the image of a section of a local homeomorphism.
The support of E is

supp.E/ D
®
u 2 G.0/ j Eu ¤ ¹0uº

¯
:

Note that supp.E/ is an invariant subset of G.0/ but it needs not be closed.
A (global) section of E is a continuous mapping sWG.0/ ! E such that p ı s D 1G.0/ .

Note that if sWG.0/ ! E is a section, then its support

supp.s/ D s�1.E n 0/

is closed. We denote by �c.E/ the set of (global) sections with compact support. Note that
�c.E/ is an R-module with respect to pointwise operations and it becomes a unitary left
RG-module under the operation

.f s/.u/ D
X

r.
/Du

f .
/
s
�

d.
/
�
D

X
v2Ou

X

 Wv!u

f .
/
s.v/: (2.3)

See [20] for details (where right actions and right modules are used).
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If e 2 Eu, then there is always a global section s with compact support such that
s.u/ D e. Indeed, we can choose a neighborhood U of e such that pjU WU ! p.U / is a
homeomorphism with p.U / open. Then we can find a compact open neighborhood V of u
with V � U and define s to be the restriction of .pjU /�1 on V and 0, elsewhere. Then s is
continuous, s.u/D e, and the support of s is closed and contained in V , whence compact.

Conversely, if M is a unitary left RG-module, we can define a G-sheaf of R-modules
Sh.M/ D .E; p/, where Eu D lim

�!u2U
1UM (with the direct limit over all compact open

neighborhoods U of u in G.0/) and if 
 W u ! v and Œm�u is the class of m at u, then

Œm�u D ŒUm�v , where U is any compact bisection containing 
 . Here E D

`
u2G.0/ Eu

has the germ topology. See [20] for details.

Theorem 3 (Steinberg [20]). The functor E 7! �c.E/ is an equivalence between the cat-
egory BGR of G-sheaves of R-modules and RG-mod with quasi-inverse M 7! Sh.M/.

Remark 4. As a consequence of Theorem 3, M Š �c.Sh.M// for any unitary module
M and so we have an equality of annihilator ideals:

Ann.M/ D Ann
�
�c
�

Sh.M/
��
:

In particular, we have I D Ann.�c.Sh.RG=I ///. Thus we can describe the ideal structure
of RG in terms of the annihilators of modules of the form �c.E/.

3. The ideal structure of ample groupoid algebras

In this section, we show how the Disintegration Theorem (Theorem 3) provides informa-
tion about the ideal structure of RG.

3.1. General ideals

Our main goal in this subsection is to prove the following theorem, generalizing a result of
Demeneghi [2] that was originally proved over fields. Demeneghi’s proof is indirect, via
crossed products, and therefore quite long. Our proof is direct, using the Disintegration
Theorem, and shorter, even including the 11 pages of [20].

Theorem 5. Let G be an ample groupoid and R a ring. Let E D .E; p/ be a G-sheaf of
R-modules. Then the equality

Ann
�
�c.E/

�
D

\
u2G.0/

Ann
�

Indu.Eu/
�

holds. Consequently, every ideal I C RG is an intersection of annihilators of induced
modules.

Proof. The final statement follows from the first by the equivalence of categories in The-
orem 3 (cf. Remark 4). So we prove the first statement. Let I D Ann.�c.E// and put
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Ju D Ann.Indu.Eu// for u 2 G.0/. Set J D
T
u2G.0/ Ju. Then we want to prove that

I D J .
Fix u 2 G.0/ and, for each v 2 Ou, choose 
vWu! v. To show I � Ju, it suffices, by

Proposition 1, to show that if f 2 I , then, for each v;w 2 Ou, we have thatX

 Wv!w

f .
/
�

�1w 

v

�
2 Ann.Eu/:

So let e 2 Eu and let s 2 �c.E/ with s.u/ D e. Since G is ample, the set r�1.w/ \

supp.f / is finite. Since G.0/ is Hausdorff, we can find U � G.0/ compact open with v 2 U
and U \ d.r�1.w/ \ supp.f // � ¹vº.

Let Uv be a compact bisection containing 
v and Uw a compact bisection containing

w . Replacing Uv by UUv , we may assume that

r.Uv/ \ d
�

r�1.w/ \ supp.f /
�
� ¹vº:

By construction, the only elements in the support of 1U�1w � f � 1Uv with range u are of
the form 
�1w 

v with 
 Wv! w and f .
/¤ 0. As 1U�1w � f � 1Uv 2 I , we have by (2.3)
that

0 D
�
1U�1w � f � 1Uv s

�
.u/

D

X
r.˛/Du

�
1U�1w � f � 1Uv

�
.˛/˛s

�
d.˛/

�
D

X

 Wv!w

f .
/
�

�1w 

v

�
s.u/

D

X

 Wv!w

f .
/
�

�1w 

v

�
e

as required. Thus I � Ju for all u 2 G.0/.
Suppose now that f 2 J and let s 2 �c.E/. Then

.f s/.v/ D
X
u2Ov

X

 Wu!v

f .
/
s.u/: (3.1)

Let us fix u 2 Ov . Let 
u D u and let 
vW u! v be arbitrary. Then, since f 2 J � Ju,
we have by Proposition 1 that X


 Wu!v

f .
/
�

�1v 


�
s.u/ D 0:

Multiplying on the left by 
v yields that, for each u 2 Ov ,X

 Wu!v

f .
/
s.u/ D 0;

and so the right-hand side of (3.1) is 0. Thus f 2 I . This completes the proof.
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Remark 6. More concretely, if I C RG is an ideal, then following the construction of the
proof we see that

I D
\
u2G.0/

Ann
�

Indu

�
lim
�!
u2U

1U .RG=I /

��
;

where lim
�!u2U

1U .RG=I / has the RG.u/-module structure


Œ1Uf C I � D Œ1V 1Uf C I �

where V is any compact bisection containing 
 .

3.2. Primitive ideals

Recall that an ideal I of a ring is primitive if it is the annihilator of a simple module.
(Technically, we should talk about left primitive ideals since we are using left modules,
but because groupoid algebras admit an involution, it does not matter.) We prove that
each primitive ideal is the annihilator of a single induced representation (rather than an
intersection of such annihilators, as in Theorem 5). Unfortunately, we are not yet able to
show, in general, that the induced representation is simple. Still, this is a new progress
towards Exel’s Effros–Hahn conjecture.

Theorem 7. LetR be a commutative ring with unit and G an ample groupoid. Let I CRG

be a primitive ideal. Then I D Ann.Indu.M// for some u 2 G.0/ and RG.u/-module M .

Proof. By Theorem 3, we may assume that our simple module with annihilator I is of
the form �c.E/ for some G-sheaf E D .E; p/ of R-modules. Let u 2 supp.E/ and put
Ju D Ann.Indu.Eu//. We claim that I D Ju. We know that I � Ju by Theorem 5; we
must prove the converse. Suppose that Ju does not annihilate �c.E/. Then we can find
a section s with Jus ¤ ¹0º. As Ju is an ideal, Jus is a submodule and so Jus D �c.E/.
Let 0u ¤ e 2 Eu. Then there is a section t 2 �c.E/ such that t .u/ D e. Let f 2 Ju with
f s D t . Then we have that

e D t .u/ D .f s/.u/ D
X
v2Ou

X

 Wv!u

f .
/
s.v/: (3.2)

Let us fix v 2 Ou, fix 
vWu! v, and put 
u D u. Then by the assumption f 2 Ju and
Proposition 1, we have (since 
�1v s.v/ 2 Eu) that

0 D
X

 Wv!u

f .
/.

v/
�

�1v s.v/

�
D

X

 Wv!u

f .
/
s.v/:

Thus the right-hand side of (3.2) is 0, contradicting that e ¤ 0. We conclude that Ju � I .
This completes the proof.

We now show that theRG.u/-moduleM above can be chosen to be simple under some
strong hypotheses on the base ring and isotropy groups. Let J.S/ denote the Jacobson
radical of a ring S . A ring S is called a left max ring if each non-zero left S -module has a
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maximal (proper) submodule. For example, any Artinian ring S is a left max ring. Indeed,
if M ¤ 0, then J.S/M ¤ M by nilpotency of the Jacobson radical. But M=J.S/M is
then a non-zero S=J.S/-module and every non-zero module over a semisimple ring is a
direct sum of simple modules and hence has a simple quotient. Thus M has a maximal
proper submodule. A result of Hamsher [8] says that if S is commutative, then S is a left
max ring if and only if J.S/ is T -nilpotent (e.g., if J.S/ is nilpotent) and S=J.S/ is a
von Neumann regular ring. We now establish the Effros–Hahn conjecture in the case that
all isotropy group rings are left max rings.

Theorem 8. Let R be a commutative ring and G an ample groupoid such that RG.u/ is a
left max ring for all u 2 G.0/. Then the primitive ideals of RG are exactly the ideals of the
form Ann.Indu.M//, where M is a simple RG.u/-module.

Proof. By Theorem 2, it suffices to show that any primitive ideal I is of the form
Ann.Indu.M//, whereM is a simpleRG.u/-module. By Theorem 3, we may assume that
our simple module with annihilator I is of the form �c.E/ for some G-sheaf E D .E; p/

of R-modules. Let u 2 supp.E/. We already know from the proof of Theorem 7 that
I D Ann.Indu.Eu//. Let N be a maximal submodule of Eu (which exists by assumption
onRG.u/) and let J D Ann.Indu.Eu=N//. SinceEu=N is simple, it suffices to show that
J D I . Clearly, I � J (by Proposition 1) since Ann.Eu/ � Ann.Eu=N/. So it suffices
to show that J annihilates �c.E/.

Suppose that this is not the case. Then there exists s 2 �c.E/ with Js ¤ 0. Since J is
an ideal and �c.E/ is simple, we deduce Js D �c.E/. Let e 2 Eu n N (using that N is
a proper submodule) and let t 2 �c.E/ with t .u/ D e. Then t D f s with f 2 J . Let us
compute

e D t .u/ D .f s/.u/ D
X
v2Ou

X

 Wv!u

f .
/
s.v/: (3.3)

Let us fix v 2 Ou, fix 
vWu! v, and set 
u D u. Then by the assumption f 2 J and
Proposition 1, we have (since 
�1v s.v/ 2 Eu) thatX


 Wv!u

f .
/
s.v/ D
X

 Wv!u

f .
/.

v/
�

�1v s.v/

�
2 N:

We deduce from (3.3) that e 2 N , which is a contradiction. It follows that J annihilates
�c.E/ and so I D J .

We obtain as a consequence a special case of Exel’s Effros–Hahn conjecture, which
will include the algebras of principal groupoids (or, more generally, groupoids with finite
isotropy) over a field. Recall that a groupoid is called principal if all its isotropy groups
are trivial.

It is well known that a group ring RG is Artinian if and only if R is Artinian and G
is finite [13]. A result of Villamayor [22] says that, for a group G and a commutative ring
R, one has that RG is von Neumann regular if and only if R is von Neumann regular, G
is locally finite, and the order of any element of G is invertible in R. The reader should
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recall that any Artinian semisimple ring is von Neumann regular and also that any von
Neumann regular ring has a zero Jacobson radical [10, Corollary 4.24].

Corollary 9. Let R be a commutative Artinian ring and G an ample groupoid such that
each isotropy group of G is either finite or locally finite abelian with elements having an
order invertible in R=J.R/. Then the primitive ideals ofRG are precisely the annihilators
of modules induced from simple modules of isotropy group rings.

Proof. By Theorem 8, it suffices to show that RG.u/ is a left max ring for each u 2 G.0/.
If G.u/ is finite, then RG.u/ is Artinian and hence a left max ring. Suppose that G.u/ is
locally finite abelian with each element of an order invertible in R=J.R/. In particular,
RG.u/ is commutative and it suffices by Hamsher’s theorem to show that J.RG.u// is
nilpotent and RG.u/=J.RG.u// is von Neumann regular. First note that since J.R/ is
nilpotent, we have that J.R/RG.u/ is a nilpotent ideal of RG.u/ and hence contained
J.RG.u//. On the other hand, RG.u/=J.R/RG.u/ Š .R=J.R//G.u/ is von Neumann
regular by [22] and the hypotheses, and hence it has a zero radical. Thus J.RG.u// D
J.R/RG.u/, and hence it is nilpotent, and RG.u/=J.RG.u// is von Neumann regular.
Therefore, RG.u/ is a left max ring.

IfR is commutative Artinian of a characteristic zero, then the order of any element of a
locally finite group is invertible in R=J.R/ (which is a product of fields of a characteristic
zero) and so Corollary 9 applies if each isotropy group is either finite or locally finite
abelian.
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