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G -homotopy invariance of the analytic signature of
proper co-compact G -manifolds and equivariant

Novikov conjecture

Yoshiyasu Fukumoto

Abstract. The main result of this paper is the G-homotopy invariance of the G-index of the signa-
ture operator of proper co-compact G-manifolds. If proper co-compact G-manifolds X and Y are
G-homotopy equivalent, then we prove that the images of their signature operators by the G-index
map are the same in the K-theory of the C�-algebra of the group G. Neither discreteness of the
locally compact group G nor freeness of the action of G on X are required, so this is a general-
ization of the classical case of closed manifolds. Using this result, we can deduce the equivariant
version of Novikov conjecture for proper co-compact G-manifolds from the strong Novikov con-
jecture for G.

1. Introduction

Before discussing our case of proper action of a locally compact group G, let us review
the classical case of closed manifolds. For even-dimensional oriented closed manifoldM ,
the ordinary Fredholm index of the signature operator @M is equal to the signature of the
manifold M which is defined using the cup product of the ordinary cohomology of M . In
particular, it follows that ind.@M / is invariant under orientation-preserving homotopy. We
have the following classical and important result.

Theorem 1.1 ([7–9]). Let M and N be even-dimensional oriented closed manifolds.
Assume that M and N are orientation-preserving homotopy equivalent to each other.
The fundamental groups of M and N are identified with each other via the isomorphism
�1.M/

'
�! �1.N / induced by the homotopy equivalent map and let � denote this group.

Let @M and @N be their signature operators. Then, ind�.@M / D ind�.@N / 2 K0.�/.

Notice that we can deduce the Novikov conjecture from the strong Novikov conjecture
by using this theorem. Moreover, we also have a more generalized result.

Theorem 1.2 ([13, Proposition 3.3 and Theorem 3.6]). Let a finite group G act on M
and N . Assume that M and N are orientation-preserving G-equivariantly homotopy
equivalent. The fundamental groups ofM andN are identified with each other via the iso-
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morphism �1.M/
'
�! �1.N / induced by the homotopy equivalent map and let � denote

this group. Let indG� be the G-equivariant �-index map with value in KG0 .C
�
red.�// '

K0.C
�
red.G

�//, whereG� denotes the group extension ¹1º! �!G�!G!¹1º. Then,
indG� .@M / D indG� .@N / 2 K0.C

�
red.G

�//.

Our main theorem is a generalization of them. Let us fix the settings. Let X and Y be
oriented even-dimensional complete Riemannian manifolds and let G be a second count-
able locally compact Hausdorff group acting on X and Y isometrically, properly, and
co-compactly.

Theorem A. Let X and Y be oriented even-dimensional complete Riemannian mani-
folds and let G be a second countable locally compact Hausdorff group acting on X and
Y isometrically, properly, and co-compactly. Let @X and @Y be the signature operators.
Assume that we have a G-equivariant orientation-preserving homotopy equivalent map
f WY ! X . Then, indG.@X / D indG.@Y / 2 K0.C �.G//.

This claim is also stated in [1] without proofs and here we will give a proof for it to
obtain Corollary B. The method we use in this paper is based on [7], so we will construct
a map that sends indG.@X / to indG.@Y /. Our group C �-algebras can be either a maximal
or a reduced one.

Theorem 1.1 is the case when X and Y are the universal covering of closed manifolds
M and N . Thus, analogously to the case of closed manifolds, the equivariant version of
the Novikov conjecture can be deduced from the strong Novikov conjecture for the acting
group G. In particular, by using this theorem and the result discussed in [3], we obtain the
following equivariant version of Novikov conjecture for low-dimensional cohomologies.

Corollary B. Let X , Y , and G be as above and let L be a G-Hermitian line bundle
over X which is induced from a G-line bundle over EG, or more generally, G-Hermitian
line bundle L over X satisfying c1.L/ D 0 2 H 2.X IR/. Suppose, in addition, that G is
unimodular and H1.X IR/ D H1.Y IR/ D ¹0º. Then,Z

X

cX .x/L.TX/ ^ ch.L/ D
Z
Y

cY .y/L.T Y / ^ ch.f �L/;

where cX denotes the cut-off function, that is, cX is an R�0-valued compactly supported
function on X satisfying

R
G
c.�1x/ d D 1 for any x 2 X . In the case of the closed

manifold, that is, when X is obtained as the universal covering of a closed manifold M ,
and the acting group is the fundamental group, the above value is equal to the ordinary,
so called, higher signature hL.TX/[ ch.L/; ŒM �i. The same result in this case of closed
manifolds was obtained in [5, 12].

Moreover, in Section 5, we will prove the G-homotopy invariance of the analytic sig-
nature twisted by almost flat bundles as in [7, Section 4]. However, we will use a different
method from [7] to deal with generalG-invariant elliptic operators. To be specific, we will
prove the following Theorem C to obtain Corollary D.
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Theorem C. Let X be a complete oriented Riemannian manifold and let G be a lo-
cally compact Hausdorff group acting on X isometrically, properly, and co-compactly.
Moreover, we assume that X is simply connected. Let D be a G-invariant properly sup-
ported elliptic operator of order 0 on G-Hermitian vector bundle over X .

Then, there exists " > 0 satisfying the following: for any finitely generated projective
HilbertB-moduleG-bundleE overX equipped with aG-invariant Hermitian connection
such that kREk < ", we have

indG
�
ŒE� b̋C0.X/ ŒD�� D 0 2 K0�C �Max.G/˝Max B

�
if indG.ŒD�/ D 0 2 K0.C �Max.G//. If we only consider commutative C �-algebras for B ,
then the same conclusion is also valid for C �red.G/.

Corollary D. Consider the same conditions as Theorem A on X , Y , and G and assume
additionally that X and Y are simply connected.

Then, there exists " > 0 satisfying the following: for any finitely generated projective
HilbertB-moduleG-bundleE overX equipped with aG-invariant Hermitian connection
such that kREk < ", we have

indG
�
ŒE� b̋ Œ@X �� D indG

�
Œf �E� b̋ Œ@Y �� 2 K0�C �Max.G/ b̋Max B

�
:

If we only consider commutative C �-algebras for B , then the same conclusion is also
valid for C �red.G/.

2. Preliminaries on proper actions

Definition 2.1. Let G be a second countable locally compact Hausdorff group. Let X be
a complete Riemannian manifold.

� X is called a G-Riemannian manifold if G acts on X isometrically.

� The action of G on X is said to be proper or X is called a proper G-space if the
following continuous map is proper: X �G ! X �X , .x; / 7! .x; x/.

� The action of G on X is said to be co-compact or X is called G-compact space if the
quotient space X=G is compact.

Definition 2.2. The action of G on X induces actions on TX and T �X given by

 WTxX ! TxX

v 7! .v/ WD �v
and

 WT �x X ! T �xX

� 7! .�/ WD .�1/��:

The action on X.X/ and ��.X/ is given by

ŒV � WD �V and Œ!� WD .�1/�!

for  2G, V 2X.X/, and ! 2��.X/. Obviously, Œ! ^ ��D Œ!�^ Œ�� and d.Œ!�/D
Œd!�.
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Proposition 2.3 (Slice theorem). LetG be a second countable locally compact Hausdorff
group that acts properly and isometrically on X . Then, for any neighborhood O of any
point x 2 X there exists a compact subgroup K � G including the stabilizer at x, K �
Gx WD ¹ 2 G j x D xº and there exists a K-slice ¹xº � S � O .

Here S � X is called K-slice if the following are satisfied:

� S is K-invariant; K.S/ D S ,

� the tubular subset G.S/ � X is open,

� there exists a G-equivariant map  WG.S/! G=K satisfying  �1.Œe�/ D S , called a
slice map.

Corollary 2.4. We additionally assume thatX isG-compact. Then, for any open covering
X D

S
x2X Ox , there exists a subfamily of finitely many open subsets ¹Oxi ; : : : ;OxN º such

that [
2G

N[
iD1

.Oxi / D X:

In particular,X is of bounded geometry, namely, the injective radius is bounded below
and the norm of Riemannian curvature is bounded.

Lemma 2.5. LetX and Y be manifolds on whichG acts properly. Suppose that the action
on Y is co-compact. Let f W Y ! X be a G-equivariant continuous map. Then, f is a
proper map.

Proof. Since the action on Y is co-compact, there exists a compact subset F � Y satisfy-
ing G.F / D Y . Fix a compact subset C � X and assume that the closed set f �1C � Y
is not compact. Then, there exists a sequence ¹yj º � f �1C tending to the infinity, that is,
any compact subset in Y contains only finitely many points of ¹yj º. Since the action on
Y is proper, there exists a sequence ¹j º � G tending to the infinity satisfying yj 2 jF .
Then, it follows that f .yj / 2 f .jF / D jf .F /. Due to the compactness of f .F / � X
and the properness of the action on X , the sequence ¹f .yj /º � X tends to the infinity.
However, the compact subset C cannot contain such a sequence. So, f �1C is com-
pact.

3. Perturbation arguments

In this section, we will discuss on some technical methods introduced in [7, Sections 1 and
2]. For now, we will forget about the manifolds and group actions. Let A be a C �-algebra,
which may not be unital. Especially we will consider A D C �.G/. Let E be a Hilbert
A-module equipped with A-valued scalar product h�; �i. Let us fix some notations:

� L.E1; E2/ denotes a space consisting of adjointable A-linear operators, and we also
use L.E/ WD L.E;E/;
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� K.E1;E2/ denotes a subspace of L.E1;E2/ consisting of compact A-linear operators,
namely, the norm closure of the space of operators whose A-rank are finite. We also
use K.E/ WD K.E;E/.

3.1. Quadratic forms and graded modules

Definition 3.1 (Regular quadratic forms). QWE � E ! A is called a quadratic form on E

if it satisfies

Q.�; �/ D Q.�; �/� and Q.�; �a/ D Q.�; �/a for �; � 2 E; a 2 A: (3.1)

A quadratic form Q is said to be regular if there exists an invertible operator B 2 L.E/
satisfying that Q.�;B�/ D h�; �i.

For an operator T 2 L.E/, let T 0 denote the adjoint with respect to Q, that is, an
operator satisfying that Q.T �; �/ D Q.�; T 0�/. Using B , it is written as T 0 D BT �B�1.

Definition 3.2 (Compatible scalar product). Another scalar product h�; �i1W E � E ! A

is called compatible with h�; �i if there exists a linear bijection P W E ! E satisfying that
h�; �i1 D h�; P �i.

Note that P is a positive operator with respect to both scalar products, and
p
P W .E; h�; �i1/ ! .E; h�; �i/ is a unitary isomorphism. In particular, neither the space

L.E/ nor K.E/ depends on the choice of a compatible scalar product.

Lemma 3.3. Let Q be a regular quadratic form on E . Then, there exists a compatible
scalar product h�; �iQ with the initial scalar product of E and U 2 L.E/ satisfying that
Q.�; U�/ D h�; �iQ and U 2 D 1. Moreover, they are unique.

Proof. With respect to the initial scalar product h�; �i, we have that

h�; B�1�i D Q.�; �/ D Q.�; �/� D h�; B�1�i� D hB�1�; �i D
˝
�; .B�1/��

˛
;

which implies that B�1 is an invertible self-adjoint operator. Thus, it has the polar decom-
position B�1 D UP in which B�1, U , and P commute one another; here U is unitary and
P is positive. To be specific, U and P are given by the continuous functional calculus. Let
f and g be continuous functions given by f .x/ WD x

jxj
and g.x/ WD jxj on the spectrum

of B�1, which is contained in R n ¹0º, and set U WD f .B�1/ and P WD g.B�1/. Note that

U D P�1B�1 D P�1.B�1/� D P�1PU � D U �;

so it follows that U 2 D U �U D 1. Let us set h�; �iQ WD h�; P �i. Then,

Q.�; U�/ D Q.�; U�1�/ D Q.�;BP �/ D h�; P �i D h�; �iQ:

If there is another such operator U1 satisfying that U 21 D 1 and that Q.�; U1�/ is another
scalar product, then U�11 U is a positive unitary operator, which implies that U�11 U D 1.
Thus we obtained the uniqueness.
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Remark 3.4. A regular quadratic form Q on a Hilbert A-module E determines the re-
newed compatible scalar product h�; �iQ associated to Q and the .Z=2Z/-grading given
by the ˙1-eigen spaces of U . Conversely, if a Hilbert A-module E is equipped with
a .Z=2Z/-grading, then it determines a regular quadratic form Q given by Q.�; �/ D
h�; .�1/deg.�/�i for homogeneous elements.

Definition 3.5. Let A be a C �-algebra. J.A/ denotes the space consisting of unitary
equivalent classes of triples .E; Q; ı/, where E is a Hilbert A-module, Q is a regular
quadratic form on E , and ıW dom.ı/! E is a densely defined closed operator satisfying
the following conditions:

(1) ı0 D �ı, namely, Q.�ı.�/; �/ D Q.�; ı.�// for �; � 2 dom.ı/;

(2) Im.ı/ � dom.ı/ and ı2 D 0;

(3) there exists �; � 2 K.E/ satisfying �ı C ı� � 1 2 K.E/.

The typical example, which we will use for dealing with the signature, is given by Def-
inition 4.7. Roughly speaking, E is a completion of the space of compactly supported dif-
ferential forms ��c , Q is given by the Hodge �-operation, and ı is the exterior derivative.

Remark 3.6. This definition is slightly different from Lnb.A/ in [7, Définition 1.5] and
our J.A/ is smaller. However, it is sufficient for our purpose.

Lemma 3.7. If a closed operator ı satisfies the condition (3), then both operators .ı C
ı� ˙ i/�1 can be defined and they belong to K.E/. Here, ı� denotes the adjoint of ı with
respect to a certain scalar product on E .

Proof. Since ı is a closed operator, ı C ı� is self-adjoint. Thus Im.ı C ı� ˙ i/ are equal
to E and both operators ı C ı� ˙ i are invertible. We now claim that both .ı C ı� ˙
i/�1 2 L.E/ are compact operators. Since Im..ı C ı� ˙ i/�1/ D dom.ı C ı� ˙ i/ D
dom.ı/ \ dom.ı�/ and ı and ı� are closed operators, the operators

˛˙ WD ı.ı C ı
�
˙ i/�1 and ˇ˙ WD ı

�.ı C ı� ˙ i/�1

are closed operator defined on entire E , which implies that they are bounded; ˛;ˇ 2L.E/.
On the other hand, note that .�ı/2 D .�ı/.1 � ı�/ D �ı and .ı�/2 D ı� modulo

K.E/. Let p be the orthogonal projection onto Im.ı�/ and let q D 1 � p. Then, we have
that p.ı�/ D ı� and .ı�/p D p modulo K.E/. Moreover,

.�ı/q D .1 � ı�/.1 � p/ D 1 � ı� � p C .ı�/p D 1 � ı� D �ı;

q.�ı/ D .1 � p/.1 � ı�/ D 1 � p � ı� C p.ı�/ D 1 � p D q;

1� .ı���/q � .ı�/p D 1� .q�ı/� �p D 1� q� �p D 1� q �p D 0 modulo K.E/:

Then, set ` WD 1 � .ı���/q � .ı�/p 2 K.E/. Now we conclude that

1 D `C .ı���q � ı�p/;

.ı C ı� ˙ i/�1 D .ı C ı� ˙ i/�1`C .˛���
�q � ˇ���p/ 2 K.E/

because `, � , and � belong to K.E/; and ˛˙ and ˇ˙ belong to L.E/.
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Definition 3.8. For .E;Q; ı/ 2 J.A/, we define the K-theory class ‰.E;Q; ı/ 2 K0.A/
as follows. As in Lemma 3.3, let E be equipped with the compatible scalar product h�; �iQ
and .Z=2Z/-grading associated to Q. Next, put

Fı WD .ı C ı
�/
�
1C .ı C ı�/2

�� 12 2 L.E/;

where ı� is the adjoint of ı with respect to the scalar product h�; �iQ. Obviously Fı is
self-adjoint and Fı is an odd operator since UıU D ı0 D �ı. Moreover, it follows that

1 � F 2ı D
�
1C .ı C ı�/2

��1
2 K.E/

by the previous lemma. Then, we define ‰.E; Q; ı/ WD .E; Fı/ 2 KK.C; A/ Š K0.A/.
The action of C on E is the natural multiplication.

Lemma 3.9. For .E;Q; ı/ 2 J.A/ satisfying Im.ı/ D Ker.ı/, ‰.E;Q; ı/ D 0 2 K0.A/.

Proof. First, remark that Im.ı/ and Ker.ı�/ are orthogonal to each other, and hence,
Im.ı/\Ker.ı�/D¹0º. Indeed, for ı.�/2 Im.ı/ and �2Ker.ı�/, it follows that hı.�/;�iD
h�; ı�.�/i D 0. Now let � 2 Ker.ı C ı�/. Then,

0 D
˝
�; .ı C ı�/2.�/

˛
D
˝
�; ı�ı.�/C ıı�.�/

˛
D
˝
ı.�/; ı.�/

˛
C
˝
ı�.�/; ı�.�/

˛
;

which implies that � 2Ker.ı/\Ker.ı�/D Im.ı/\Ker.ı�/D ¹0º. Therefore, Ker.Fı/D
¹0º. Since Fı is a bounded self-adjoint operator, it is invertible. To conclude, .E; Fı/ D
0 2 KK.C; A/.

3.2. Perturbation arguments

Lemma 3.10 ([7, Lemme 2.1]). Let .EX ; QX ; ıX /; .EY ; QY ; ıY / 2 J.A/. Suppose that
we have

(1) T 2 L.EX ;EY / satisfying T .dom.ıX // � dom.ıY /, T ıX D ıY T and T induces
an isomorphism ŒT �WKer.ıX /= Im.ıX /! Ker.ıY /= Im.ıY /;

(2) � 2 L.EX / satisfying �.dom.ıX // � dom.ıX / and 1 � T 0T D ıX� C �ıX ;

(3) " 2 L.EX / satisfying "2 D 1, "0 D ", "ıX D�ıX", and ".1� T 0T /D .1� T 0T /".

Then, ‰.EX ;QX ; ıX / D ‰.EY ;QY ; ıY / 2 K0.A/.

Proof. First, we may assume that �0 D ��. Indeed, since 1 � T 0T D .1 � T 0T /0 D

.ıX� C �ıX /
0 D �.ıX�

0 C �0ıX /, we may replace � by 1
2
.� � �0/ which satisfies the

same assumption.
Set E WD EX ˚ EY , Q WDQX ˚ .�QY /, and r WD

� ıX 0

0 �ıY

�
. Note that the replacing

of QY by �QY means the reversing of the grading of EY . Then, it is easy to see that
‰.E;Q;r/ D ‰.EX ;QX ; ıX / �‰.EY ;QY ; ıY /. Therefore, it is sufficient to verify that
‰.E;Q;r/ D 0.
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Let us introduce invertible operators Rt 2 L.E/ and a quadratic form Bt on E given
by

Rt WD

"
1 0

itT " 1

#
and Bt .�; �/ WD Q.Rt�;Rt�/ D Q.R

0
tRt�; �/

for t 2 Œ0; 1�. We claim that .E; Bt ;r/ 2 J.A/.
It is easy to see that rRt D Rtr, and hence, Bt .�;r�/ D Bt .�r�; �/. Clearly the

scalar products associated to Bt and Q are compatible with each other, also the condi-
tions (2) and (3) in the definition of J.A/ are satisfied. Therefore, .E; Bt ;r/ 2 J.A/ and
‰.E; Bt ;r/ D ‰.E;Q;r/.

Next let us introduce

Lt WD

"
1 � T 0T .i"C t�/T 0

T .i"C t�/ 1

#
and Ct .�; �/ WD Q.Lt�; �/:

Let T 0 denote the adjoint of T with respect to QX and QY . Notice that since Q D QX ˚
.�QY /, the adjoint of the matrix

�
0 0
T 0

�
with respect to Q is equal to

�
0 �T 0

0 0

�
. Thus we

have that R0t D
�
1 it"T 0

0 1

�
and that

R01R1 D

"
".1 � T 0T /" i"T 0

iT " 1

#
D

"
.1 � T 0T /"2 i"T 0

iT " 1

#
D L0:

In particular, B1 D C0. Since Lt is invertible at t D 0, there exists t0 > 0 such that Lt is
invertible for t 2 Œ0; t0�. Besides, it is clear that L0t D Lt , so Ct is a regular quadratic form
for t 2 Œ0; t0�.

Moreover, consider the operator rt WD
� ıX tT 0

0 �ıY

�
. We claim that .E; Ct ;rt / 2 J.A/,

for t 2 Œ0; t0�. The adjoint ofrt with respect to the quadratic formCt is equal toL�1t r
0
tLt ,

so in order to check that it is equal to�rt , we should check thatLtrt D�r 0tLt . We have

Ltrt D

"
.1 � T 0T /ıX t .1 � T 0T /T 0 � .i"C t�/T 0ıY

T .i"C t�/ıX tT .i"C t�/T 0 � ıY

#
;

r
0
tLt D

"
�ıX .1 � T

0T / �ıX .i"C t�/T
0

�tT .1 � T 0T / � ıY T .i"C t�/ �tT .i"C t�/T
0 C ıY

#
:

Obviously, the .1; 1/- and .2; 2/-entries are the negative of each other. Besides, we can see
that �

.1; 2/-entry of Ltrt
�
D t .ıX� C �ıX /T

0
� .i"C t�/ıXT

0

D tıX�T
0
� i"ıXT

0
D ıX .i"C t�/T

0

D �
�
.1; 2/-entry of r 0tLt

�
:

Since .Ltrt /0 D r 0tLt , it automatically follows that Œ.2; 1/-entry of Ltrt � D �Œ.2; 1/-
entry of r 0tLt � as well, and now we obtained that Ltrt D �r 0tLt . It is easy to see that
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.rt /
2D 0. If �X ; �X 2K.EX / and �Y ; �Y 2K.EY / satisfy �XıX C ıX�X � 1 2K.EX / and

�Y ıY C ıY �Y � 1 2 K.EY /, then it follows that Œ �X 0
0 ��Y

�rt Crt Œ
�X 0
0 ��Y

� � 1 2 K.E/,
since T 2 L.EX ; EY /. Thus we obtained that .E; Ct ;rt / 2 J.E/ and ‰.E; Ct ;rt / D
‰.E; B1;r/ D ‰.E;Q;r/.

Finally, check that Ker.rt /D Im.rt / for any t 2 .0; t0�. Ker.rt /� Im.rt / is implied
by .rt /2 D 0, so let

� �1
�2

�
2 Ker.rt /. Then, �2 2 Ker.ıY / and tT 0�2 D �ıX�1 2 Im.ıX /.

Since T 0 induces an isomorphism ŒT 0�WKer.ıY /= Im.ıY /! Ker.ıX /= Im.ıX /, it follows
from the injectivity that �2 2 Im.ıY /. There exists � 2 E2 such that ıY �D �2. On the other
hand, �1C tT 0� 2 Ker.ıX / and the surjectivity of ŒT 0� imply that there exists � 2 Ker.ıY /
such that T 0� D 1

t
.�1C tT

0�/. Therefore, Im.rt / 3 rt
� 0
���

�
D
� tT 0.���/
�ıY .�/

�
D
� �1
�2

�
, which

concludes that Ker.rt / � Im.rt /.
Due to Lemma 3.9, it follows that ‰.E; Ct ;rt / D 0 2 KK.C; A/ and we conclude

that ‰.EX ;QX ; ıX / �‰.EY ;QY ; ıY / D ‰.E;Q;r/ D 0.

4. G -signature
4.1. Description of the analytic G -index

Let G be a second countable locally compact Hausdorff group. Let X be a G-compact
proper complete G-Riemannian manifold. And let V be a G-Hermitian vector bundle
over X . In this section, we will define and investigate a C �.G/-module denoted by E.V /
obtained by completing Cc.X I V /. This will be used for the definition of the index of
G-invariant elliptic operators, in particular, the signature operator.

Definition 4.1 ([11, Section 5]). First, we define, on Cc.X I V /, the structure of a pre-
Hilbert module over Cc.G/ using the action of G on Cc.X I V / given by Œs�.x/ D
.s.�1x// for  2 G.

� The action of Cc.G/ on Cc.X IV / from the right is given by

s � b D

Z
G

Œs� � b.�1/�./�
1
2 d 2 Cc.X IV / (4.1)

for s 2 Cc.X IV / and b 2 Cc.G/. Here, � denotes the modular function.

� The scalar product valued in Cc.G/ is given by

hs1; s2iE./ D �./
� 12
˝
s1; Œs2�

˛
L2.V /

(4.2)

for si 2 Cc.V /.

Define E.V / as the completion of Cc.V / in the norm khs; sik
1
2

C�.G/
.

Theorem 4.2 ([11, Theorem 5.8]). Let G be a second countable locally compact Haus-
dorff group. Let X be a G-compact proper complete G-Riemannian manifold. Let

DWC1c .X IV /! C1c .X IV /

be a formally self-adjoint G-invariant first-order elliptic operator on a G-Hermitian vec-
tor bundle V . Then, both operators D ˙ i have dense range as operators on E.V / and
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.D ˙ i/�1 belong to K.E.V //. The operator D.1CD2/�1=2 2 L.E.V // is a Fredholm
operator and determines an element indG.D/ 2 K0.C �.G//.

In this paper, mainly we consider V as
V�

T �X equipped with the Z=2Z-grading
given by the Hodge �-operation and D as a signature operator.

Definition 4.3. Let X and Y be proper and co-compact Riemannian G-manifolds and let
V and W beG-Hermitian vector bundles overX and Y , respectively. Let T WC1c .X IV /!
C.Y IW / be a linear operator. The support of the distributional kernel of T is given by the
closure of the complement of the following union of all subsets KX �KY � X � Y :[

hT s1;s2iD0 for any sections
s12Cc.X IV / and s22Cc.Y IW / satisfying

supp.s1/�KX ; supp.s2/�KY

KX �KY :

T is said to be properly supported if both

supp.kT / [ .KX � Y / and supp.kT / [ .X �KY / � X � Y

are compact for any compact subset KX � X and KY � Y .
T is said to be compactly supported if supp.kT / � X � Y is compact.

The following proposition is used for the construction of the bounded operators on
E.V /.

Proposition 4.4 ([11, Proposition 5.4]). Let G, X , Y , V , and W be as above. Let

T WCc.X IV /! Cc.Y IW /

be a properly supported G-invariant operator which is L2-bounded. Then, T defines an
element of L.E.V /;E.W //.

For the proof, we will use the following two lemmas.

Lemma 4.5. Let P 2 L.L2.X IV /;L2.Y IW // be a compactly supported bounded oper-
ator. Then, the operator eP WD Z

G

ŒP � d

is well defined as a bounded operator in L.L2.X I V /; L2.Y IW // and the inequation
keP kop � CkP kop holds, where C is a constant depending on its support.

Proof. Assume that the support of the distributional kernel of P is contained inKX �KY
for some compact subsets KX�X and KY �Y . We will follow the proof of [2, Lem-
mas 1.4 and 1.5]. Fix an arbitrary smooth section with compact support s 2 C1c .X IV /
and let us consider Fs 2 L2.GIL2.Y IW // given by

Fs./ WD ŒP �s:
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Note that for any  2 G the support of the distributional kernel of ŒP � is contained in
.KX / � .KY /. This is because for any s 2 C1c .X IV /, it follows that supp.ŒP �s/ �
.KY / and ŒP �s D 0 whenever supp.s/ \ .KX / D ;. In particular, since the actions
are proper, Fs has compact support in G. In addition, again since the actions are proper,
.KY /\ �.KY /D .KY \ 

�1�.KY //D ; if �1� 2G is outside some compact neigh-
borhood Z � G in particular,Fs./L2.Y IW /

� kFs.�/kL2.Y IW / D 0

for such  and � 2 G. Recall that Z is determined only by KY being so independent of s.
Then, Z

G

Fs./ d
2
L2.Y IW /

D

 Z
G

Fs./ d

L2.Y IW /

 Z
G

Fs.�/ d�

L2.Y IW /

�

Z
G

Z
G

kFs./kL2.Y IW /kFs.�/kL2.Y IW / d d�

�

Z
G

kFs./kL2.Y IW /

�Z
G

�Z.
�1�/kFs.�/kL2.Y IW / d�

�
d

� kFskL2.G/k�ZkL2.G/kFskL2.G/

� jZjkFsk
2
L2.G/

;

where �Z WG! Œ0; 1� is the characteristic function of C , that is �Z./D 1 for  2 Z and
�Z./ D 0 for  … Z.

Next, take a compactly supported smooth function c1 2C1c .X I Œ0;1�/ such that c1D 1
on KX . Noting that P D Pc1, we obtain

kFsk
2
L2.G/

D

Z
G

Fs./2L2.Y IW /
d D

Z
G

kPc1
�1sk2

L2.Y IW /
d

�

Z
G

kP k2opkc1
�1sk2

L2.X IV / d

� kP k2op

Z
G

Z
X

ˇ̌
c1.x/

ˇ̌2�1s.x/2
V

dx d

� kP k2op

Z
G

Z
X

ˇ̌
c1.

�1x/
ˇ̌2s.x/2

V
dx d

� kP k2op sup
x2X

�Z
G

ˇ̌
c1.

�1x/
ˇ̌2 d

�
ksk2

L2.X IV /:

Since the action of G is proper, ¹ 2 G j �1x 2 supp.c1/º � G is compact, so the valueR
G
jc1.

�1x/j2 d is always finite for any fixed x 2 X . Besides, since X=G is compact,
this value is uniformly bounded:

C WD sup
x2X

�Z
G

ˇ̌
c1.

�1x/
ˇ̌2 d

�
D sup
Œx�2X=G

�Z
G

ˇ̌
c1.

�1x/
ˇ̌2 d

�
<1:
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Recall that C depends only on KX , not on s. We conclude that Z
G

ŒP �s d
2
L2.Y IW /

D

 Z
G

Fs./ d
2
L2.Y IW /

� jZjkFsk
2
L2.G/

� jZjC � kP k2opksk
2
L2.X IV /:

Lemma 4.6 ([11, Lemma 5.3]). Let P be a bounded positive operator on L2.X IV / with
a compactly supported distributional kernel. Then, the scalar product

.s1; s2/ 7!

�
s1;

�Z
G

ŒP � d
�
s2

�
E.V /

2 C �.G/

is well defined and positive for any s1 D s2 2 Cc.X IV /.

Proof. Note that˝
Œs�; P

�
Œs�

�˛
L2.X IV /

D
˝p
P
�
Œs�

�
;
p
P
�
Œs�

�˛
L2.X IV /

for  2 G and s 2 Cc.X IV /. Regarding each side of the above equation as a function
in  2 G, it is clear that the left-hand side vanishes outside some compact subset in G
depending on the support of s and P . This implies that

p
P .Œs�/ has a compact support

inG. Take any unitary representation space H ofG and h 2H . By the above observation
of the compact support,

v WD

Z
G

�./�
1
2

p
P
�
Œs�

�
˝ Œh� d 2 L2.X IV /˝H

is well defined. Then, we obtain that

0 � kvk2

D

Z
G

Z
G

�./�
1
2�.�/�

1
2
˝p
P
�
Œs�

�
;
p
P
�
�Œs�

�˛
L2.X IV /

˝
Œh�; �Œh�

˛
H

d d�

D

Z
G

Z
G

�./�
1
2�.�/�

1
2
˝
s; �1

�
P
�
�Œs�

��˛
L2.X IV /

˝
h; �1�Œh�

˛
H

d d�

D

Z
G

Z
G

�./�1�.�1�/�
1
2
˝
s; �1ŒP �

�
�1�Œs�

�˛
L2.X IV /

˝
h; �1�Œh�

˛
H

d d.�1�/

D

Z
G

Z
G

�.�/�
1
2
˝
s; �1ŒP �

�
�Œs�

�˛
L2.X IV /

˝
h; �Œh�

˛
H

d.�1/ d�

D

Z
G

�.�/�
1
2

�
s;

�Z
G

ŒP � d
��
�Œs�

��
L2.X IV /

˝
h; �Œh�

˛
H

d�

D

Z
G

�
s;

�Z
G

ŒP � d
�
.s/

�
E.V /

.�/ �
˝
h; �Œh�

˛
H

d�:

Recall that the action of f WD hs; .
R
G
ŒP �d/.s/iE.V / 2 Cc.G/ on H is given by f Œh�DR

G
f .�/�Œh�d� for h2H . Thus, by rewriting the above inequality, we have hh;f Œh�iH � 0

for any h, which means that this f is a positive operator on any unitary representation
space H . To conclude, f is positive in C �.G/ for any s 2 Cc.E.V //.
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Proof of Proposition 4.4. Let T1 WD 1
2
.cT �T C T �Tc/, which is a bounded self-adjoint

operator L2.X IV /! L2.X IV /. Moreover, the distributional kernel of T1 is contained
in K �K for some compact subset K � X . By Lemma 4.5,

R
G
ŒT1� is well defined in

L.L2.X IV // and Z
G

ŒT1� D

Z
G

1

2

�
Œc�T �T C T �T Œc�

�
D T �T:

Consider a compactly supported continuous function f 2 Cc.X I Œ0; 1�/ satisfying that
c1 D 1 on K so that c1T1c1 D T1 holds. Consider the following self-adjoint operator:

P WD c1
�
kT k2kck � T1

�
c1 D c

2
1kT k

2
kck � T1 2 L

�
L2.X IV /

�
:

Obviously P is compactly supported and since T1 � kT1k � kT k2kck, P is positive.
Using Lemma 4.6, for any s 2 Cc.V /, the following value is positive:

0 �

�
s;

�Z
G

ŒP � d
�
s

�
E.V /

� CkT k2kckhs; siE.V / �

�
s;

�Z
G

ŒT1�

�
s

�
E.V /

2 C �.G/;

where C is the maximum of a G-invariant bounded function
R
G
Œc21 �, which is indepen-

dent of s. To conclude,˝
T .s/; T .s/

˛
E.W /

D
˝
s; T �T .s/

˛
E.V /
D

�
s;

�Z
G

ŒT1�

�
s

�
E.V /

� CkT k2kckhs; siE.V /:

4.2. Proof of Theorem A

The theorem we will discuss is the following.

Theorem A. LetX and Y be oriented even-dimensional complete Riemannian manifolds
and let a locally compact Hausdorff group G act on X and Y isometrically, properly,
and co-compactly. Let f W Y ! X be a G-equivariant orientation-preserving homotopy
equivalent map. Let @X and @Y be the signature operators. Then, indG.@X /D indG.@Y / 2
K0.C

�.G//.

From now on we will slightly change the notation for simplicity. We will only consider
V for the cotangent bundle

V�
T �X ˝C. Let us use EX for E.

V�
T �X ˝C/. Let��c .X/

be the space consisting of compactly supported smooth differential forms on X , namely,
C1c .X IV /. We will prove Theorem A using Lemma 3.10.

Definition 4.7. Let us introduce the following data .E; Q; ı/ to present the G-index of
the signature operator.



Y. Fukumoto 774

� Let C �.G/-valued quadratic form QX be defined by the formula

QX .�; �/./ WD i
k.n�k/�./�

1
2

Z
X

N� ^ Œ��

for � 2 �kc .X/; � 2 �
n�k
c .X/;  2 GI (4.3)

here N� denotes the complex conjugate. If deg.�/Cdeg.�/¤ dim.X/, thenQX .�;�/ WD
0. This “deg” means the degree of the differential form.

� The grading UX determined by QX is given by

UX .�/ D i
�k.n�k/

� � for � 2 �kc .X/; (4.4)

where � denotes the Hodge �-operation.
Clearly, U 2X D 1 and QX .�; UX .�// D h�; �iEX hold.

� ıX .�/ WD i
kdX� for � 2 �kc .X/, here dX denotes the exterior derivative on X .

We will also use similar notations for Y .

Lemma 4.8. .EX ; QX ; ıX / 2 J.C �.G// and ‰.EX ; QX ; ıX / D indG.@X /, where @X is
the signature operator of X .

Proof. First, obviously ı2 D 0. Applying Theorem 4.2 to the signature operator on X , it
follows that ıX �UXıXUX W��c .X/! EX is closable and its closure is self-adjoint. Let us
use ıX � UXıXUX for also its closure. Since Im.ıX / and Im.�UXıXUX / are orthogonal
to each other with respect to the scalar product h�; �iEX , it follows that ıX itself is a closed
operator on E . Moreover, set

� D � WD
ı�X

1C .ı�X C ıX /
2
:

They belong to K.EX / since ı�X
ı�XCıX˙i

2 L.EX / and 1
ı�XCıX˙i

2K.EX /. Then, from Theo-
rem 4.2, we obtain

�ıX C ıX� � 1 D
�1

1C .ı�X C ıX /
2
2 K.EX /:

Therefore, .EX ;QX ; ıX / 2 J.C �.G// and ‰.EX ;QX ; ıX / D indG.@X / by the definition
of ‰.

Let f WY!X be a G-equivariant proper orientation-preserving homotopy equivalent
map between n-dimensional proper co-compact Riemannian G-manifolds. In order to
construct a map T 2L.EX ;EY / satisfying the hypothesis of Lemma 3.10, it is sufficient to
construct anL2-boundedG-invariant operator T W��c .X/!�

�
c .Y / due to Proposition 4.4.

Remark 4.9. Note that f �W��c .X/!��c .Y /may not be L2-bounded unless f WY ! X

is a submersion. For instance, let Y D X D Œ�1; 1� and f .y/ D y3. Consider an L2-form
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! on X given by !.x/ D 1

jxj1=4
. Actually k!k2

L2.X/
D
R 1
�1

1

jxj1=2
dx D 2, however,

kf �!k2
L2.Y /

D

Z 1

�1

1

jyj3=2
dy D C1:

So we need to replace f � by a suitable operator.

Let us construct operator T that we need and investigate its properties in a slightly
more general condition.

� X and Y are Riemannian manifolds and G acts on them isometrically and properly.
For a while, X and Y may have a boundary and the action may not be co-compact if
not mentioned.

� Let W be an oriented G-invariant fiber bundle over Y whose typical fiber is an even-
dimensional unit open disk Bk � Rk . Let qWW � Y denote the canonical projection
map and qI W��Ckc .W /! ��c .Y / be the integration along the fiber.

� Let us fix ! 2 �k.W / to be a G-invariant closed k-form with fiber-wisely compact
support such that the integral along the fiber is always equal to 1; qI .!/.y/D

R
Wy
! D

1 for any y 2 Y . Let e! denote the operator given by e!.�/ D � ^ ! for � 2 ��.W /.
We can construct a G-invariant ! as follows. Let � 2 �k.W / be a k-form inducing
a Thom class of W . We may assume that

R
Wy
� D 1 for any y 2 Y . Then, ! WDR

G
Œc��d is a desired G-invariant form.

� Suppose that we have a G-equivariant submersion pWW ! X whose restriction on
supp.!/ � W is proper.

Definition 4.10. For the above data, let us set Tp;! WD qI e!p
�W��c .X/! ��c .Y /. We

may write just Tp for simplicity.

W

q
����

p

  

Y X

��c .X/ �!
p�

��.W / �!
e!

��Ckc .W / �!
qI
��c .Y /:

Lemma 4.11. If the actions of G are co-compact, then Tp;! determines an operator in
L.EX ;EY /.

Proof. By Proposition 4.4, it is sufficient to check that Tp;! is L2-bounded.
Since qI is obviously L2-bounded, only the boundedness of e!p�W��c .X/!��c .W /

is non-trivial. Note that our proper submersion p restricted on supp.!/ � W is a locally
trivial G-invariant fibration. Let pI denote the integration along this fibration. Then,Z

W

� D

Z
X

pI �

holds for any compactly supported differential form � 2 ��c .W / satisfying supp.�/ �
supp.!/, in particular, � D j.p��/^ !j2volW 2�nCkc .W / for � 2��c .X/. Let C! be the
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maximum of the norm of bounded G-invariant form pI .j!j
2volW / 2 �n.X/. We havee!p�.�/2L2.W / D Z

W

ˇ̌
.p��/ ^ !

ˇ̌2volW
.�/
D

Z
X

j�j2pI
�
j!j2volW

�
� C!

Z
X

j�j2volX D C!k�k2L2.X/ for � 2 ��c .X/:

The equation .�/ holds because the function p�j�j2 is constant along the fiber p�1.x/.

Lemma 4.12. Let us consider proper co-compact G-manifolds X , Y , and Z and let q1W
W � Y and q2WV �Z beG-invariant oriented disk bundles over Y andZ with typical
fiber Bk1 and Bk2 . Fix G-invariant closed forms !1 2 �k1.W / and !2 2 �k2.V / with
fiber-wisely compact support satisfying .qj /I .!j / D 1. Let p1WW ! X p2W V ! Y be
G-equivariant submersions whose restriction on supp.!j / is proper.

On the other hand, as in the diagram below, let us consider the pull-back bundle
p�2W D ¹.v;w/ 2 V �W j p2.v/ D q1.w/º over V and let us regard it as a fiber bundle
over Z with projection denoted by q21. Let us set !21 WDfp2�!1 ^ eq1�!2 2 ��.p�2W /,
p21 WD p1fp2, where eq1Wp�2W ! V denotes the projection and fp2Wp�2W ! W denotes
the map induced by p2.

Then, Tp2Tp1 D Tp21 WEX ! EZ .

V

q2

����

p2

��

W

q1

����

p1

��

Z Y X

p�2Weq1
����

p21

��

ep2
��

q21

�� ��

V

����   

W

���� ��

Z Y X

Tp2Tp1 WEX ! EY ! EZ ; Tp21 WEX ! EZ :

Proof. First we can see that for � 2 ��c .X/,

Tp21.�/ D .q21/I ı e!21p
�
21.�/

D .q2/I .eq1/I ®fp2�p�1� ^ .fp2�!1 ^ eq1�!2/¯
D .q2/I .eq1/I ®fp2�.p�1� ^ !1/ ^ eq1�!2¯
D .q2/I

®
.eq1/I �fp2�.p�1� ^ !1/� ^ !2¯

D .q2/I e!2.eq1/Ifp2�e!1p�1 .�/;
Tp2Tp1.�/ D .q2/I e!2p

�
2 ı .q1/I e!1p

�
1 .�/:

Note that .eq1/I in the second bottom row is well defined because the differential formfp2�e!1p�1 .�/ is compactly supported along each fiber of eq1W p�W � V . We need to
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prove the commutativity of the following diagram:

��.p�2W /

.eq1/I
��

��.V / ��c .W /

.q1/I

��

ep2�ee

��.Y /

p�2

ff
(4.5)

It is easy to check this using local trivializations. Suppose that W � Y is trivialized on
U � Y . Then, p�2W is trivialized on p�12 U � V . We write these trivializations asW jU '
U �Bk and p�2W jU ' p

�1
2 U �Bk . Then, for �.y;w/D f .y;w/dy ^ dw 2��c .W jU /,�

.eq1/Ifp2���.v/ D Z
Bk

�
f
�
p2.v/; w

�
p�2 .dy/

�
dw

D
�
p�2 .q1/I �

�
.v/ for v 2 p�1U � V:

We will use the following proposition repeatedly.

Proposition 4.13. Let W1 and W2 be oriented G-invariant disk bundles over Y with typ-
ical fiber Bk1 and Bk2 , and let qj WWj � Y be the projection. Let !j 2 �kj be closed
forms with fiber-wisely compact support satisfying .qj /I .!/!j D 1.

Suppose that there exist G-equivariant submersions pj WWj ! X whose restrictions
on the 0-sections pj .�; 0/WY ! X are G-equivariant homotopic to each other.

Then, there exists a properly supported G-equivariant L2-bounded operator  W
��c .X/! ��c .Y / satisfying that Tp2;!2 � Tp1;!1 D dX C  dY .

First, let us prove the following lemma.

Lemma 4.14. Let QW eW � Y � Œ0; 3� be a G-invariant disk bundle over Y � Œ0; 3� and
let ! 2�k.eW / be a closed form with fiber-wisely compact support satisfyingQI .!/D 1.
Suppose that there exists a G-equivariant submersion P W eW ! X whose restriction on
supp.!/ is proper. Then, there exists a properly supported G-equivariant L2-bounded
operator  W��c .X/! ��c .Y / satisfying that TP.�;3/;!.�;3/ � TP.�;0/;!.�;0/ D dX C dY .

Proof. Let � 2 ��c .X/ and � WD QI .P �� ^ !/ 2 ��c .Y � Œ0; 3�/. Then, it is easy to see
that Z

Œ0;3�

d� D �d
�Z

Œ0;3�

�

�
C .i�3 � � i

�
0 �/;

where it WY � ¹tº ,! Y � Œ0; 3� denotes the inclusion map. Note that i�t � D TP.�;t/;!.�;t/�.
Now, set  W��c .X/! ��c .Y / by the formula;  .�/ WD

R
Œ0;3�

QI .P
�� ^ !/ for � 2

��c .X/. Note that the identity map L1.Œ0; 3�/! L2.Œ0; 3�/ is a continuous inclusion due
to the finiteness of vol.Œ0; 3�/; hence, the map

R
Œ0;3�
W��c .Y � Œ0; 3�/ ! ��c .Y / is L2-

bounded. Moreover, since P �� ^ ! vanishes at the boundary of each fiber of eW , the
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integration along the fiber commutes with taking exterior derivative, in particular,

d� D dQI .P �� ^ !/ D QId.P �� ^ !/ D QI
�
P �.d�/ ^ !

�
:

To conclude, we obtain

 .d�/ D
Z
Œ0;3�

dQI .P �� ^ !/

D �d .�/C TP.�;3/;!.�;3/� � TP.�;0/;!.�;0/�;

Proof of Proposition 4.13. We need to construct eW and P as above satisfying

TP.�;0/;!.�;0/ D Tp1;!1 and TP.�;3/;!.�;3/ D Tp2;!2 :

Let hWY � Œ0; 3�!X be a re-parametrizedG-homotopy between p1.�; 0/ and p2.�; 0/,
that is, h is a G-equivariant smooth map satisfying

h.y; t/ D p1.y; 0/ for t 2 Œ0; 1� and h.y; t/ D p2.y; 0/ for t 2 Œ2; 3�:

HereG acts on Œ0;3� trivially. Moreover, consider the following fiber productW1 �Y W2D
¹.y1;w1/; .y2;w2/ 2W1 �W2 j y0D y1º. Let us introduce a smooth map �W Œ0;3�! Œ0;1�

satisfying that

�.t/ D 0 for t 2
�
0; 1
10

�
[
�
29
10
; 3
�

and �.t/ D 1 for t 2
�
9
10
; 21
10

�
:

Then,

zhW .W1 �Y W2/ � Œ0; 3�! X

�
.y; t/; w1; w2

�
7!

8̂̂<̂
:̂
p1
�
y;
�
1 � �.t/

�
w1
�

for t 2 Œ0; 1�;

h.y; t/ for t 2 Œ1; 2�;

p2
�
y;
�
1 � �.t/

�
w2
�

for t 2 Œ2; 3�:

This zh is submersion as long as �.t/ ¤ 1 due to the submergence of p1 and p2. Let
BX WD ¹v 2 TX j kvk < 1º be the unit disk tangent bundle; consider the pull-back bundleeW WD zh�BX ; let us regard it as a bundle over Y � Œ0; 3� and set

P W eW ! X�
.y; t/; w1; w2; v

�
7! expzh..y;t/;w1;w2/

�
�.t/v

�
:

Due to the .�.t/v/-component, P is a submersion also when �.t/ ¤ 0 not only when
�.t/ ¤ 1.

Moreover, define ! 2 ��.W / as ! WD ��1!1 ^ �
�
2!2 ^

zh�!BX , where �j W eW � Wj
for j D 1; 2 and !BX 2 ��.BX/ is a G-invariant differential with fiber-wisely compact
support satisfying

R
BXx

!BX D 1. These eW , P , and ! satisfy the assumption of Lemma
4.14.
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It is easy to see that TP.�;0/;!.�;0/D Tp1;!1 and TP.�;3/;!.�;3/D Tp2;!2 as follows. For the
simplicity, let � W eW Y�¹0º � W1 denote the projection. Note that P.y; 0/ D p1� and we
can write !.�; 0/ D ��!1 ^e!, using some e! 2 ��.eW Y�¹0º/ satisfying �Ie! D 1. Then,
we obtain that

TP.�;0/;!.�;0/.�/ D .q1/I�I .�
�p�1� ^ �

�!1 ^e!/
D .q1/I�I

�
��.p�1� ^ !1/ ^e!�

D .q1/I
�
.p�1� ^ !1/ ^ �Ie!�

D .q1/I .p
�
1� ^ !1/ D Tp1;!1.�/;

and similarly, TP.�;3/;!.�;3/ D Tp2;!2 .

Now let us define a map T 2 L.EX ; EY / which satisfies the assumption of Lemma
3.10. First, remark that our map f WY ! X is a proper map by Lemma 2.5.

Definition 4.15. Let BX WD ¹v 2 TX j kvk < 1º be the unit disk tangent bundle and let
W WD f �BX be the pull-back on Y , that is, W D ¹.y; v/ 2 Y � BX j v 2 BX jf .y/º.
Let zf WW ! BX be a map given by zf .x; v/ WD .f .x/; v/. Since the action of G on X is
isometric and f isG-equivariant,G acts on BX and also onW . Consider aG-equivariant
submersion given by the formula

pWW ! X

.y; v/ 7! expf .y/.v/:
(4.6)

Let us fix aG-invariant R-valued closed n-form !0 2�
n.BX/ with fiber-wisely compact

support whose integral along the fiber is always equal to 1, and let ! WD zf �!0 2 �n.W /.
For these W , p, and !, let us set T WD Tp;! .

Lemma 4.16. The adjoint with respect to quadratic forms QX and QY is given by T 0 D
pI e!q

�.

Proof. Note that deg.!/ D dim.X/ is even; hence, ! commutes with other differential
forms. For � 2 �kc .Y / and � 2 �n�kc .X/,Z

X

pI e!q
�.�/ ^ � D

Z
X

pI .q
�� ^ !/ ^ � D

Z
X

pI .q
�� ^ ! ^ p��/

D

Z
BX

q�� ^ ! ^ p�� D

Z
Y

qI .q
�� ^ p�� ^ !/

D

Z
Y

� ^ qI .p
�� ^ !/ D

Z
Y

� ^ T .�/:

SinceQX .�; �/./ WD ik.n�k/�./�
1
2

R
X
N� ^ Œ��, the proof ends by replacing � and � by

N� and Œ��, respectively, and using the G-invariance of T .

Proposition 4.17. There exists � 2 L.EX / such that 1 � T 0T D dX� C �dX .
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Proof. Consider the fiber productW �Y W and let q1 and q2WW �Y W !W denote the
projections given by qj .y; v1; v2/ WD .y; vj /. Take � 2 ��c .W /, hereW is regarded as the
first component of W �Y W . Using the commutativity of the diagram (4.5),

��.W �Y W /

.q2/I

��

��.W / ��c .W /

qI

��

q�1

gg

��.Y /

q�
gg

we obtain that

e!q
�qI .�/ D e!.q2/Iq

�
1 .�/ D .q2/I .q

�
1 �/ ^ ! D .q2/I .q

�
1 � ^ q

�
2!/

D .q2/I eq�2!q
�
1 .�/;

and hence,
T 0T D pI e!q

�qI e!p
�
D pI .q2/I eq�2!q

�
1e!p

�:

On the other hand, since q1.y; 0/ D q2.y; 0/, by Proposition 4.13, there exists a properly
supported G-equivariant L2-bounded operator  W W��c .W /! ��c .W / satisfying

.q2/I eq�2!q
�
2 � .q2/I eq�2!q

�
1 D d W C  W d:

Moreover, it is obvious that .q2/I eq�2!q
�
2 D id�c.W /, so we obtain

pI e!p
�
� T 0T D pI .id�c.W / � .q2/I eq�2!q

�
1 /e!p

�

D pI .d W C  W d/e!p�

D d ı pI W e!p� C pI W e!p� ı d: (4.7)

Remark that pI ı d D d ı pI because the act on differential forms with compact support,
and e! ı d D d ı e! because ! is a closed form.

Next let us consider submersion pX WBX ! X given by .x; v/ 7! expx.v/. Note that
p D pX zf .

f �BX

p
##

zf
// BX

pX

��

X

Now we want to check that pI e!p�D .pX /I e!0p
�
X . For any � 2��c .X/ and � 2��c .BX/,Z

X

� ^ pI . zf
��/ D

Z
W

p�� ^ zf �� D

Z
W

zf �.p�X� ^ �/

D deg. zf /
Z
BX

p�X� ^ � D

Z
BX

p�X� ^ �

D

Z
X

� ^ .pX /I .�/;
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since f is orientation-preserving proper homotopy equivalent. In particular, we obtain

pI . zf
��/ D .pX /I .�/:

Put � WD p�X� ^ !0 for � 2 ��c .X/ to obtain

pI e!p
�.�/ D pI

�
zf �p�X� ^

zf �!0
�
D pI

�
zf �.p�X� ^ !0/

�
D .pX /I .p

�
X� ^ !0/ D .pX /I e!0p

�
X .�/: (4.8)

Let � W BX ! X be the natural projection. Since pX .x; 0/ D �.x; 0/, by Proposition
4.13, there exists a properly supportedG-equivariantL2-bounded operator X W��c .X/!
��c .X/ satisfying

�I e!0�
�
� .pX /I e!0p

�
X D d X C  Xd: (4.9)

On the other hand, it is obvious that �I e!0�
� D id�c.X/. Therefore, combining (4.7),

(4.8), and (4.9), we conclude that

id�c.X/ � T
0T D d� C �d;

where � D pI W e!p
� C  X . Since � is properly supported G-invariant L2-bounded

operator, it defines an element in L.EX /.

Proof of Theorem A. First, let us check that T satisfies the assumption (1) of Lemma 3.10.
Since ! is a closed form and has fiber-wisely compact support, it follows that T ıX D ıY T .
Let gWX ! Y be the G-equivariant homotopy inverse of f and consider a map S 2
L.EY ;EX / constructed in the same method as T from g instead of f in Definition 4.15.
By 4.12, the composition ST is equal to the map Tp 2 L.EX / for p satisfying that p.�; 0/
is G-equivariant homotopic to idX . Then, by Proposition 4.13, there exists �X 2 L.EX /
satisfying that ST � .ıX�X C �XıX / D TidX D idEX . Thus, ST induces the identity map
on Ker.ıX /= Im.ıX /. Similarly TS induces the identity map on Ker.ıY /= Im.ıY /, and
hence, T induces an isomorphism Ker.ıX /= Im.ıX /! Ker.ıY /= Im.ıY /.

The assumption (2) of Lemma 3.10 is obtained from Proposition 4.17.
Finally, let ".�/ WD .�1/k� for � 2 �kc .X/. Clearly, " determines an operator " 2

L.EX /, "2 D 1 and satisfies "0 D ", ".dom.ıX // � dom.ıX / and "ıX D �ıX". More-
over, since neither T nor T 0 changes the order of the differential forms, " commutes with
1 � T 0T . Thus " satisfies the assumption (3) of Lemma 3.10. To conclude, we obtain
indG.@X / D ‰.EX ;QX ; ıX / D ‰.EY ;QY ; ıY / D indG.@Y /.

4.3. Proof of Corollary B

To prove Corollary B, we will combine [3, Theorem A] with Theorem A. Suppose, in
addition, that G is unimodular and H1.X IR/ D H1.Y IR/ D ¹0º. Let f W Y ! X be a
G-equivariant orientation-preserving homotopy invariant map and consider a G-manifold
Z WDX t .�Y /, the disjoint union ofX and the orientation reversed Y . Let @Z be the sig-
nature operator, then we have that indG.@Z/D indG.@X /� indG.@Y /D 0 2K0.C �.G//.
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Although the G-manifold should be connected in [3, Theorem A], however in this case,
we can apply it to Z after replacing some arguments in [3] as follows.

When constructing a U.1/-valued cocycle ˛ 2Z.GIU.1// from the given line bundle,
we just use a line bundle L over X ignoring f � over Y (see [3, Subsections 6.1 and 6.2]).
When constructing a family of line bundles ¹Ltº on which the central extension group
G˛t acts, just construct a family of line bundles ¹Ltº over X in the same way and pull
back on Y to obtain a family ¹f �Ltº. To be specific, f �Lt is a trivial bundle Y � C,
equipped with the connection given by rt D dC i tf ��, and the action of G˛t is given by

.; u/.y; z/ D
�
y; expŒ�i tf �  .x/�uz

�
for .; u/ 2 G˛t , y 2 Y , z 2 C D .Lt /x . Then, consider a family of G˛t -line bundles
¹Lt t f

�Ltº over Z. We also need the similar replacement in [3, Definition 7.19] to
obtain the global section on Lt t f �Lt . Then, the remaining parts proceed similarly.

5. Index of Dirac operators twisted by almost flat bundles

Now we will discuss the Dirac operators twisted by a family of Hilbert module bundles
¹Ekºwhose curvature tends to zero and prove Theorem C. Such a family is called a family
of almost flat bundles. In this section, it is convenient to formulate the index map using
KK-theory.

5.1. G -index map in KK -theory

Lemma 5.1 ([10, Theorem 3.11]). Let G be a second countable locally compact Haus-
dorff group. For any G-algebras A and B there exists a natural homomorphism

jG WKKG.A;B/! KK
�
C �.GIA/; C �.GIB/

�
:

Furthermore, if x 2 KKG.A;B/ and y 2 KKG.B;D/, then

jG.x b̋B y/ D jG.x/ b̋C�.GIB/ jG.y/:
Lemma 5.2. Using a cut-off function c 2 Cc.X/, one can define an idempotent p 2
Cc.GIC0.X// by the formula

Lc./.x/ D
p
c.x/c.�1x/�./�1:

In particular, it defines an element of K-theory denoted by Œc� 2 K0.C �.GI C0.X///.
Moreover, the element of K-theory Œc� 2 K0.C �.GI C0.X/// does not depend on the
choice of cut-off functions.

Definition 5.3 (G-index [11, Theorem 5.6]). Define

�G WKK
G
�
C0.X/;C

�
! K0

�
C �.G/

�
as the composition of

� jG WKKG.C0.X/;C/! KK.C �.GIC0.X//; C
�.G// and
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� Œc� b̋ WKK.C �.GIC0.X//; C �.G//! KK.C; C �.G// ' K0.C �.G//, i.e.,

�G.-/ WD Œc� b̋C�.GIC0.X// jG.-/ 2 K0�C �.G/�:
Remark 5.4. As in [11, Remark 4.4] or [3, Subsection 5.2], for calculating the index
indG ŒD�, it is sufficient to consider the case when the operatorD is a Dirac type operator.

Let B be a unital C �-algebra. Following Definition 5.3, we define the index maps with
coefficients.

Definition 5.5. For unital C �-algebras B , define the index map

indG WKKG
�
C0.X/; B

�
! K0

�
C �.GIB/

�
as the composition of

� jG WKKG.C0.X/; B/! KK.C �.GIC0.X//; C
�.GIB// and

� Œc� b̋ WKK.C �.GIC0.X//; C �.GIB//! K0.C
�.GIB//, i.e.,

indG.-/ WD Œc� b̋C�.GIC0.X// jG.-/ 2 K0�C �.GIB/�:
The crossed product C �.GIB/ is either maximal or reduced one. In this paper, we assume
that G acts on B trivially. Then, C �Max.GI B/ and C �red.GI B/ will be naturally identi-
fied with C �Max.G/˝Max B and C �red.G/˝min B , respectively. Moreover, if B is nuclear,
˝Max B and˝min B are identified.

Definition 5.6. LetE be a finitely generated projective .Z=2Z/-graded HilbertB-module
G-bundle. Define C0.X IE/ as a space consisting of sections sWX ! E vanishing at
infinity. It is considered as a Z=2Z-graded Hilbert C0.X IB/-module with the right action
given by point-wise multiplications and the scalar product given by

hs1; s2i.x/ WD hs1.x/; s2.x/iEx 2 C0.X IB/:

Remark 5.7. The C �-algebra C0.X I B/ consisting of B-valued function vanishing at
infinity is naturally identified with C0.X/ b̋B by [14, Theorem 6.4.17]. Similarly, if E D
X �E0 is a trivial Hilbert B-module bundle overX , then C0.X IE/ is naturally identified
with C0.X/ b̋E0 as Hilbert .C0.X IB/ Š C0.X/ b̋B/-modules.

Definition 5.8. E defines an element in KK-theory

ŒE� D
�
C0.X IE/; 0

�
2 KKG

�
C0.X/; C0.X/ b̋B�:

The action of C0.X/ on C0.X IE/ is the point-wise multiplication.

Definition 5.9. Let E be a finitely generated Hilbert B-module bundle over X equipped
with a Hermitian connection rE . Let RE 2 C1.X I End.E/˝

V2
.T �.X/// denote its

curvature. Then, define its norm as follows: first, define the point-wise norm as the opera-
tor norm given by

kREkx WD sup
®RE .u ^ v/

L.E/ j u; v 2 TxX; ku ^ vk D 1
¯

for x 2 X:
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Then, define the global norm as the supremum in x 2X of the point-wise norm; kREk WD
supx2X kR

Ekx .

Theorem C. Let X be a complete oriented Riemannian manifold and let G be a locally
compact Hausdorff group acting on X isometrically, properly, and co-compactly. More-
over, assume that X is simply connected. Let D be a G-invariant properly supported
elliptic operator of order 0 on G-Hermitian vector bundle over X .

Then, there exists " > 0 satisfying the following: for any finitely generated projective
HilbertB-moduleG-bundleE overX equipped with aG-invariant Hermitian connection
such that kREk < ", we have

indG
�
ŒE� b̋C0.X/ ŒD�� D 0 2 K0�C �Max.G/˝Max B

�
if indG.ŒD�/ D 0 2 K0.C �Max.G//. If we only consider commutative C �-algebras for B ,
then the same conclusion is also valid for C �red.G/.

5.2. Infinite product of C �-algebras

Definition 5.10. Let Bk be a sequence of C �-algebras.

� Define
Q
k2N Bk as the C �-algebra consisting of norm-bounded sequencesY

k2N

Bk WD
®
¹b1; b2; : : :º j bk 2 Bk ; sup

k

®
kbkkBk

¯
<1

¯
:

The norm of Bk is given by k¹b1; b2; : : :ºkQBk WD supk¹kbkkBk º.

� Let
L
k2N Bk be a closed two-sided ideal in

Q
k2N Bk consisting of sequences van-

ishing at infinityM
k2N

Bk WD
®
¹b1; b2; : : :º j bk 2 Bk ; lim

k!1
kbkk D 0

¯
:

In other words,
L
k2N Bk is a closure of the subspace in

Q
k2N Bk consisting of

sequences ¹b1; b2; : : : ; 0; 0; : : :º whose entries are zero except for finitely many of
them.

� Define Qk2N Bk as the quotient algebra given by

Q
k2N

Bk WD
�Y

Bk
�ı�M

Bk
�
:

The norm of QBk is given by k¹b1; b2; : : :ºkQBk WD lim supk!1 kbkkBk .

� If Ek are Hilbert Bk-modules, one can similarly define
Q

Ek as a Hilbert
Q
Bk-

module consisting of bounded sequencesY
k2N

Ek WD
®
¹s1; s2; : : :º j sk 2 Ek ; sup

k

®
kskkEk

¯
<1

¯
:
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The action of
Q
Bk and

Q
Bk-valued scalar product are defined as follows:

¹skº � ¹bkº WD ¹sk � bkº 2
Y

Ek ;˝®
s1k
¯
;
®
s2k
¯˛Q

Ek
WD
®˝
s1k ; s

2
k

˛
Ek

¯
2

Y
Bk ;

for ¹skº; ¹s1kº; ¹s
2
k
º 2

Q
Ek , ¹bkº 2

Q
Bk .

One can define similarlyM
k2N

Ek WD
®
¹s1; s2; : : :º j sk 2 Ek ; lim

k!1
kskkEk D 0

¯
as a Hilbert

Q
Bk-module, and define

Q
k2N

Ek WD
�Y

Ek
� b̋� .QBk/ D

�Y
Ek
�ı�M

Ek
�

as a Hilbert QBk-module, where � W
Q
Bk ! QBk denotes the projection.

Example 5.11. If all of Bk are C, then
Q

C D `1.N/ and
L

C D C0.N/.

Following [4, Section 3], we will construct “infinite product bundle
Q
Ek” over X

which has a structure of finite generated projective
Q
Bk-module.

Definition 5.12. Let us fix some notations about the holonomy.

� Two paths p0 and p1 from x to y in X are thin homotopic to each other if there exists
an endpoint preserving homotopy hW Œ0; 1� � Œ0; 1�! X with h.�; j / D pj that factors
through a finite tree T ,

hW Œ0; 1� � Œ0; 1�! T ! X;

such that both restrictions of the first map Œ0; 1� � ¹j º ! T are piecewise-linear for
j D 0; 1.

� The path groupoid P1.X/ is a groupoid consisting of all the points inX as objects. The
morphism from x to y is the equivalence class of piece-wise smooth paths connecting
two given points

P1.X/Œx; y� WD
®
pW Œ0; 1�! X j p.0/ D x; p.1/ D y

¯
= � :

The equivalent relationship is given by re-parametrization and thin homotopy.

� If a Hilbert B-module G-bundle E over X is given, the transport groupoid T .X IE/

is a groupoid with the same objects as P1.X/. The morphisms from x to y are the
unitary isomorphisms between the fibers T .X IE/Œx; y� WD IsoB.Ex ; Ey/.

Definition 5.13. A parallel transport ofE is a continuous functorˆE WP1.X/!T .X IE/.
ˆE is called "-close to the identity if for each x2X and contractible loop p2P1.X/Œx;x�,
it follows that ˆEp � idEx

 < " � area.D/

for any two-dimensional disk D � X spanning p. D may be degenerated partially or
completely.
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Remark 5.14. Let E be a Hermitian vector bundle, in other words, a finitely generated
Hilbert C-module bundle, equipped with a compatible connectionr. LetˆE be the paral-
lel transport with respect to r in the usual sense. If its curvature RE 2 C1.X IEnd.E/˝V2
.T �.X/// has uniformly bounded operator norm kREk < C , then for any loop p 2

P1.X/Œx; x� and any two-dimensional disk D � X spanning p, it follows that kˆEp �
idExk <

R
D
kREk < C � area.D/; so it is C -closed to identity.

Proposition 5.15. Let ¹Ekº be a sequence of Hilbert Bk-module G-bundles over X with
Bk unital C �-algebras. Assume that each parallel transport ˆk for Ek is "-close to the
identity uniformly, that is, " is independent of k.

Then, there exists a finitely generated Hilbert .
Q
k Bk/-module G-bundle V over X

with Lipschitz continuous transition functions in diagonal form and so that the kth com-
ponent of this bundle is isomorphic to the original Ek .

Moreover, if the parallel transport ˆk for each of Ek comes from the G-invariant
connection rk on Ek , V is equipped with a continuous G-invariant connection induced
by Ek .

Proof. We will essentially follow the proof of [4, Proposition 3.12]. For each x 2 X take
an open ballUx �X of radius� 1whose center is x. Assume that eachUx is geodesically
convex. Due to Corollary 2.4 of the slice theorem, there exists a subfamily of finitely many
open subsets ¹Ux1 ; : : : ; UxN º such that X D

S
2G

SN
iD1 .Uxi /.

Fix k. In order to simplify the notation, let Ui WD Uxi and ˆyIx WEky ! Ekx denote the
parallel transport of Ek along the minimal geodesic from y to x for x and y in the same
neighborhood .Ui /. Trivialize Ek via ˆyIxi WE

k
y ! Ekxi on each Ui . Similarly, trivialize

Ek on each .Ui / for  2 G via ˆyIxi WE
k
y ! Ekxi . Note that since parallel transport

commute with the action of G, it follows that ˆy;xi D  ıˆyIxi ı 
�1.

These provide local trivializations for Ek whose transition functions have uniformly
bounded Lipschitz constants. More precisely, we have to fix unitary isomorphisms �xi W
Ekxi ! Ek between the fiber on xi and the typical fiber Ek . Our local trivialization
is �xiˆyIxi WE

k
y ! Ek . If y; z 2 .Ui / \ �.Uj / ¤ ;, we can consider the transition

function

y 7!  .Ui /;�.Uj /.y/ WD .��xj ıˆyI�xj /.�xi ıˆyIxi /
�1
2 EndBk .E

k/:

Now we will estimate its Lipschitz constant as follows:

 .Ui /;�.Uj /.y/ �  .Ui /;�.Uj /.z/

D .��xjˆyI�xj /.�xiˆyIxi /
�1
� .��xjˆzI�xj /.�xiˆzIxi /

�1

D ��xj
®
.ˆyI�xj /

�
ˆ�1yIxi

�
� .ˆzI�xjˆyIz/

�
ˆ�1yIzˆ

�1
zIxi

�¯
��1xi

D ��xj
®
.ˆyI�xj �ˆzI�xjˆyIz/

�
ˆ�1yIxi

�
C .ˆzI�xjˆyIz/

�
ˆ�1yIxi �ˆ

�1
yIzˆ

�1
zIxi

�¯
��1xi :

Since �’s and ˆ’s are isometry, it follows that .Ui /;�.Uj /.y/ �  .Ui /;�.Uj /.z/
� kˆyI�xj �ˆzI�xjˆyIzk C

ˆ�1yIxi �ˆ�1yIzˆ�1zIxi
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D
ˆyI�xjˆzIyˆ�xj Iz � idEk�xj

C ˆzIxiˆyIzˆxi Iy � idEkxi


� " �
�

area.D1/C area.D2/
�
: (5.1)

Here D1 � �.Uj / is a two-dimensional disk spanning the piece-wise geodesic loops con-
necting �xj , y, z, and �xj and D2 � .Ui / is a two-dimensional disk spanning the
piece-wise geodesic loop connecting xi , y, z, and xi .

We claim that there exists a constant C depending only on X such that

area.D1/; area.D2/ � C � dist.y; z/ (5.2)

if we choose suitable disks D1 and D2.
We verify this using the geodesic coordinate exp�1�xj W �.Uj / ! T�xjX centered at

�xj 7! 0. More precisely, let p denote the minimal geodesic from y D p.0/ to z D
p.dist.y; z// with unit speed. Consider

D0 WD
®
.r cos �; r sin �/ 2 R2 j 0 � r; 0 � � � dist.y; z/

¯
� R2

and F WD0 ! �.Uj / � X given by

F.r cos �; r sin �/ WD exp�xj
�
r exp�1�xj

�
p.�/

��
:

Set D1 WD F.D0/. F is injective if exp�1�xj .y/ and ˙ exp�1�xj .z/ are on different radial
directions, in which case F is a homeomorphism onto its image, and hence F.D0/ is a
two-dimensional disk spanning the target loop. The Lipschitz constant of F is bounded by
a constant depending on the curvature on �.Uj /, so there exists a constant C�;j depending
on the Riemannian curvature on �.Uj / satisfying

area.D1/ � C�;j � area.D0/ � C�;j � dist.y; z/:

However, the constant C�;j can be taken independent of �.Uj / due to the bounded geom-
etry of X implied by the slice theorem (Corollary 2.4). In the case of exp�1�xj .y/ and
˙ exp�1�xj .z/ being on the same radial direction, D1 is completely degenerated and
area.D1/ D 0. We can construct D2 in the same manner so the claim (5.2) has been
verified.

Therefore combining (5.1) and (5.2), we conclude that the Lipschitz constants of the
transition functions of these local trivializations are less than 2C", which are independent
of Ek , Ui , and  2 G, in particular, the products of them

‰.Ui /;�.Uj / WD
®
 k.Ui /;�.Uj /

¯
k2N
W .Ui / \ �.Uj /! L.

Q
Bk/

�Y
k

Ek
�

are Lipschitz continuous. So it is allowed to use them to define the Hilbert
Q
k Bk-module

bundle V as required. Precisely V can be constructed as follows:

V WD
G
;i

�
.Ui / �

Y
k

Ek
�.
� :
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Here, .x; v/ 2 .Ui / �
Q
k Ek and .y; w/ 2 �.Uj / �

Q
k Ek are equivalent if and only

if x D y 2 .Ui / \ �.Uj / ¤ ; and ‰.Ui /;�.Uj /.v/ D w. By the construction of V , if
pnW

Q
k Bk! Bn denotes the projection onto the nth component, V b̋pn Bn is isomorphic

to the original nth component En.
In order to verify the continuity of the induced connection, let ¹eiº be any orthonormal

local frame on Ui for an arbitrarily fixed Ek obtained by the parallel transport along the
minimal geodesic from the center xi 2 Ui , namely, ei .y/D ˆxi Iyei .xi /. It is sufficient to
verify that krkeik < C . Let v 2 TyX be a unit tangent vector and p.t/ WD expy.tv/ be
the geodesic of unit speed with direction v,

r
k
v ei .y/ D lim

t!0

1

t

�
p̂.t/Ip.0/ei

�
p.t/

�
� ei

�
p.0/

��
D lim

t!0

1

t

�
p̂.t/Ip.0/ˆxi Ip.t/ �ˆxi Ip.0/

�
ei .xi /;rkv ei .y/

 � lim
t!0

1

jt j


p̂.t/Ip.0/ˆxi Ip.t/ �ˆxi Ip.0/


� lim
t!0

1

jt j
" � area

�
D.t/

�
;

where D.t/ is a two-dimensional disk in Ui spanning the piece-wise geodesic connecting
xi , p.0/ D y, p.t/, and xi . As above, we can find a constant C > 0 and disks D.t/
satisfying

area
�
D.t/

�
� C � dist

�
p.0/; p.t/

�
D C jt j

for jt j � 1. Hence, we obtain krkv ei .y/k � C".

Definition 5.16. Let us define a Hilbert .QBk/-module bundle

W WD V b̋� .QBk/;

where � W
Q
Bk � QBk denotes the projection.

The family of parallel transport of Ek induces the parallel transport ˆW of W which
commutes with the action of G.

Proposition 5.17. If the parallel transport of Ek is Ck-close to the identity with Ck & 0,
then the G-bundle W constructed above is a flat bundle. More precisely, the parallel
transport ˆW .p/ 2 Hom.Wx ; Wy/ depends only on the ends-fixing homotopy class of
p 2 P1.X/Œx; y�.

Proof. It is sufficient to prove that for any contractive loop p 2 P1.X/Œx; x�, it satisfies
ˆW .p/ D idWx . Fix a two-dimensional disk D � X spanning the loop p. For arbitrary
" > 0, there exists n0 such that every k � n0 satisfies that ˆE

k
is "
1Carea.D/ -close to the

identity. ˆW .p/ � idWx
 D lim sup

k!1

ˆEk .p/ � id


� sup
k�n0

ˆEk .p/ � id
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�
"

1C area.D/
� area.D/

� ":

This implies ˆW .p/ D idWx .

5.3. Index of the product bundle

Proposition 5.18. (1) Let pnW
Q
Bk ! Bn denote the projection onto the nth com-

ponent and consider

.1˝ pn/�WK0

�
C �.G/ b̋ �YBk

��
! K0

�
C �.G/ b̋Bn�:

Then,
.1˝ pn/�indG

��Y
Ek
� b̋ ŒD�� D indG

�
ŒEn� b̋ ŒD��:

(2) Let � W
Q
Bk ! QBk denote the quotient map and consider

.1˝ �/�WK0

�
C �.G/ b̋ �YBk

��
! K0

�
C �.G/ b̋ .QBk/

�
:

Then,
.1˝ �/�indG

��Y
Ek
� b̋ ŒD�� D indG

�
ŒW � b̋ ŒD��:

Proof. As for the first part, ŒEn� D .pn/�Œ
Q
Ek � 2 KKG.C0.X/; C0.X/ b̋ Bn/ by the

construction of
Q
Ek . Then, it follows that

indG
�
ŒEn� b̋ ŒD�� D indG

�
.pn/�

�Y
Ek
� b̋ ŒD��

D Œc� b̋ jG��YEk
� b̋ ŒD� b̋ pn

�
D Œc� b̋ jG��YEk

� b̋ ŒD�� b̋ jG.pn/

D indG
��Y

Ek
� b̋ ŒD�� b̋ jG.pn/

D .1˝ pn/�indG
��Y

Ek
� b̋ ŒD��;

where pn D .Bn; pn; 0/ 2 KK.
Q
k2N Bk ; Bn/. Then, note that

jG.pn/ D
�
C �.G/ b̋Bn; 1 b̋ pn; 0� 2 KK C �.G/ b̋  Y

k2N

Bk

!
; C �.G/ b̋Bn!:

Since ��Œ
Q
Ek � D ŒW � 2 KKG.C0.X/; C0.X/ b̋ .QBk// by the construction of W , the

second part can be proved in the similar way.

Proposition 5.19. Let ŒD� 2 KKG.C0.X/;C/ be the K-homology element of X deter-
mined by a Dirac operator on a G-Hermitian vector bundle V over X . Suppose that W
is a finitely generated flat B-module G-bundle. Assume that X is simply connected. Then,
indG.ŒW � b̋ ŒD�/ D 0 2 K0.C �.G/ b̋B/ if indG.ŒD�/ D 0.
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In order to prove this, we introduce an element ŒW �rpn 2KK
G.C;B/ using the holon-

omy representation.

Definition 5.20. � Let ˆxIy denote the parallel transport of W along an arbitrary path
from x 2 X to y 2 X . Since X is simply connected and W is flat, it depends only on
the ends of the path.

� Let us fix a base point x0 2 X and let Wx0 be the fiber on x0. Define ŒW �rpn as

ŒW �rpn WD .Wx0 ; 0/ 2 KK
G.C; B/:

The action of G on Wx0 is given by the holonomy �WG ! EndQ.Wx0/,

�Œ�.w/ D .ˆx0Ix0/
�1.w/ for  2 G; w 2 Wx0 :

Lemma 5.21. One has

ŒW � b̋C0.X/ ŒD� D ŒD� b̋C ŒW �rpn 2 KK
G
�
C0.X/; B

�
:

Proof. Recall that ŒD�2KKG.C0.X/;C/ is given by .L2.X IV /;FD/, where FD denotes
the operator Dp

1CD2
, and that

ŒW � b̋C0.X/ ŒD� D �C0.X IW / b̋C0.X/L2.X IV /; FDW

�
;

where DW is the Dirac operator twisted by W acting on

L2.X IW ˝ V / ' C0.X IW / b̋C0.X/L2.X IV /;
that is,

DW
D

X
j

�
idW ˝ c.ej /

��
r
W
ej
˝ idV C idW ˝rV

ej

�
;

where ¹ej º denotes an orthogonal basis for TX and c.�/ denotes the Clifford multiplication
by Cliff.TX/ on V . The action of C0.X/ on C0.X IW / and L2.X IV / are the point-wise
multiplications. On the other hand,

ŒD� b̋C ŒW �rpn D
�
L2.X IV / b̋C Wx0 ; FD b̋ 1�:

The action of C0.X/ is the point-wise multiplications. Note that the action of G on Wx0
is given by the holonomy representation �. It is sufficient to give a G-equivariant isomor-
phism

'WL2.X IV / b̋C Wx0 ! C0.X IW / b̋C0.X/L2.X IV /;
which is compatible with DW and D b̋ 1. Set a section for W given by

wW x 7! ˆx0Ixw 2 Wx (5.3)

and define ' on a dense subspace Cc.X IV / b̋Wx0 as

'.s ˝ w/ WD w � �˝ s for s 2 Cc.X IV / and w 2 Wx0 ;
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where � 2 C0.X/ is an arbitrary compactly supported function on X with values in Œ0; 1�
satisfying that �.x/ D 1 for all x 2 supp.s/.

' is independent of the choice of � and hence well defined. Indeed, Let �0 2 Cc.X/
be another such function, and let � 2 Cc.X/ be a compactly supported function on X
with values in Œ0; 1� satisfying that �.x/ D 1 for all x 2 supp.�/ [ supp.�0/. Then, in
C0.X IW / b̋C0.X/ Cc.X IV /,

w � �˝ s � w � �0 ˝ s D w � .� � �0/˝ s

D w � � � .� � �0/˝ s

D w � �˝ .� � �0/s

D 0:

Now we obtain that

DW ı '.s ˝ w/ D DW .w ˝ s/ D w ˝D.s/ D ' ı .D b̋ 1/.s ˝ w/
for s 2 Cc.V / and w 2 Wx0 . This is because rWw D 0 by its construction.

Compatibility with the action of G is verified as follows:

'
�
.s ˝ w/

�
.x/ D ˆx0Ix

�
�Œ�.w/

�
˝ 

�
s.�1x/

�
D ˆx0Ix.ˆx0Ix0/

�1.w/˝ 
�
s.�1x/

�
D ˆx0Ix

�
.b/

�
˝ 

�
s.�1x/

�
;


�
'.s ˝ w/

�
.x/ D 

�
.ˆx0I�1x/.w/˝ s.

�1x/
�

D ˆx0Ix
�
.w/

�
˝ 

�
s.�1x/

�
:

Let us check that ' induces an isomorphism. For s1˝w1; s2˝w22Cc.X IV / b̋CWx0 ,
it follows that˝

'.s1 ˝ w1/; '.s2 ˝ w2/
˛
C0.X IW /b̋C0.X IX/L2.X IV /

D
˝
s1; hw1 � �;w2 � �iC0.X IW /s2

˛
L2.X IV /

D

Z
X

˝
s1.x/;

˝
.ˆx0Ixw1/�.x/; .ˆx0Ixw2/�.x/

˛
Wx
s2.x/

˛
Vx

d vol.x/

D

Z
X

hw1; w2iW0�.x/
2
˝
s1.x/; s2.x/

˛
Vx

d vol.x/

D hw1; w2iW0hs1; s2iL2.X IV /

D hs1 ˝ w1; s2 ˝ w2iL2.X IV /b̋Wx0 ;
where � 2 C0.X/ is a compactly supported function on X satisfying that �.x/D 1 for all
x 2 supp.s1/ [ supp.s2/. This implies that ' is continuous and injective.

Moreover, choose arbitrary F 2 Cc.X IW / and s 2 Cc.X IV /. Since ˆ�1x0Ix provides
a trivialization ofW ' X �Wx0 , we have an isomorphism Cc.X IW /' Cc.X/ b̋C Wx0 .
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Remark that, however, this is not a G-equivariant isomorphism, just as pre-Hilbert
.C0.X IB/ Š C0.X/ b̋ B/-modules. Then, there exist countable subsets ¹f1; f2; : : :º �
Cc.X/ and ¹w1; w2; : : :º � Wx0 satisfying that

P
j2N fjwj D F in C0.X IW /. Now it

follows that

'

 X
j2N

fj s ˝ wj

!
D

X
j2N

.wj � �˝ fj s/ D
X
j2N

.wj � �fj ˝ s/

D

 X
j2N

wjfj

!
� �˝ s D F ˝ s;

where � 2 C0.X/ is a compactly supported function on X satisfying that �.x/D 1 for all
x2 supp.F /[ supp.s/. This implies that the image of ' is dense inC0.XIW / b̋L2.XIV /.
Therefore, ' induces an isomorphism.

Proof of Proposition 5.19. Due to the previous lemma, it follows that

indG
�
ŒW � b̋ ŒD�� D indG

�
ŒD� b̋ ŒW �rpn

�
D Œc� b̋ jG�ŒD� b̋ ŒW �rpn

�
D Œc� b̋ �jG ŒD�� b̋ �jG ŒW �rpn

�
D
�
indG ŒD�

� b̋ �jG ŒW �rpn
�
:

Thus the assumption indG ŒD� D 0 implies indG.ŒW � b̋ ŒD�/ D 0.

5.4. Proof of Theorem C

Proof of Theorem C. As in Remark 5.4, we may assume that D is a Dirac type operator.
Assume that indG ŒD�D 0 and we assume the converse, that is, for each k 2N there exists
a Hilbert Bk-moduleG-bundle Ek over X whose curvature norm is less than 1

k
satisfying

that
indG

�
ŒEk � b̋ ŒD�� ¤ 0 2 K0�C �.G/ b̋Bk�:

To begin with, we have an exact sequence:

0!
M

Bk
�
�!

Y
Bk

�
�! QBk ! 0;

where � and � are natural inclusion and projection. We also have the following exact
sequence [14, Theorem T.6.26]:

0! C �Max.G/ b̋Max
�M

Bk
� 1b̋�
���! C �Max.G/ b̋Max

�Y
Bk
�

1b̋�
����! C �Max.G/ b̋Max .QBk/! 0:

We have the exact sequence of K-groups

K0

�
C �Max.G/ b̋Max

�M
Bk
��
! K0

�
C �Max.G/ b̋Max

�Y
Bk
��

! K0
�
C �Max.G/ b̋Max .QBk/

�
:
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If all of Bk are commutative, then QBk is also commutative and hence nuclear. In that
case, we also have the same exact sequences in which C �Max.G/ and b̋Max are replaced by
C �red.G/ and b̋min, respectively.

Let us start with indG.Œ
Q
Ek � b̋ ŒD�/ 2 K0.C �.G/ b̋ .QBk//. Due to the flatness of

W (Proposition 5.17) and Propositions 5.19 and 5.18, we have

.1 b̋ �/�indG
��Y

Ek
� b̋ ŒD�� D indG

�
ŒW � b̋ ŒD�� D 0:

It follows from the exactness that there exists � 2 K0.C �.G/ b̋ .LBk// such that

.1 b̋ �/�.�/ D indG
��Y

Ek
� b̋ ŒD��:

Lemma 5.22. A b̋ .Lk2N Bk/ is naturally isomorphic to

M
k2N

.A b̋Bk/ D lim
�!
n

nM
kD1

.A b̋Bk/:
Proof. Let C denote the direct product lim

�!n

Ln
kD1.A b̋Bk/. Note that for the finite direct

product, we have the natural isomorphism
Ln
kD1.A b̋ Bk/ Š A b̋ .Ln

kD1 Bk/. For each
n 2 N, we have the following commutative diagram:

A b̋  nM
kD1

Bk

!
idA b̋�nC1n //

idA b̋�n ''

A b̋  nC1M
kD1

Bk

!
idA b̋�nC1
��

A b̋ �M
k2N

Bk

�
:

Now by using the universal property of the direct limit, we obtain a map �:

A b̋  nM
kD1

Bk

!
//

''

lim
�!n

A b̋  nM
kD1

Bk

!
�

��

A b̋ �M
k2N

Bk

�
:

Since idA b̋ �n are isometric and injective, � is isometric and injective on each subspace
A b̋ .Ln

kD1 Bk/ � lim
�!n

A b̋ .Ln
kD1 Bk/. Since the union of such subspaces is dense in

lim
�!n

A b̋ .Ln
kD1 Bk/, it follows that � itself is isometric and injective.

As for the surjectivity of �, take any a b̋ ¹bkº 2 A b̋ .Lk2N Bk/. For any " > 0, there
exists n 2 N such that kbkk < "

1Ckak
for k � n. Then, replace bk by 0 for all k � n to
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obtain an element ˇ WD ¹b1; b2; : : : ; 0n; 0nC1; : : :º 2
L
k2N Bk . Now we have that

a b̋ ˇ D .idA b̋ �n/�a b̋ ¹b1; b2; : : : ; bn�1º� D ��a b̋ ¹b1; b2; : : : ; bn�1º� 2 Im.�/

and
ka b̋ ¹bkº � a b̋ ˇk � kakk¹bkº � ˇk � ":

These imply that Im.�/ is dense in A b̋ .Lk2N Bk/ and hence, � is surjective since it has
a closed range.

By this lemma, C �.G/ b̋ .L Bk/ is naturally isomorphic to
L
.C �.G/ b̋ Bk/.

Besides, we have the natural isomorphismK0.
L
.C �.G/ b̋Bk//'LK0.C

�.G/ b̋Bk/
[6, Proposition 4.1.15 and Remark 4.2.3], with the last

L
meaning the algebraic direct

sum. Thus we can consider the following diagram:

K0
�
C �.G/ b̋ .LBk/

� �� //

¹.1˝pk/�º Š
��

K0
�
C �.G/ b̋ .QBk/

�.1˝�/� //
¹.1˝pk/�º

��

K0
�
C �.G/ b̋ QBk

�
L
K0
�
C �.G/ b̋Bk� inclusion

//
Q
K0
�
C �.G/ b̋Bk�

Since pk D �pk , this diagram commutes. Note that both
L

and
Q

in the bottom row are
in the algebraic sense. Again due to Proposition 5.18,®

indG
�
ŒEk � b̋ ŒD��¯

k2N
D
®
.1˝ pk/�

¯�
indG

��Y
Ek
� b̋ ŒD���

D
®
.1˝ pk/�

¯�
.1˝ �/�.�/

�
D
®
.1˝ pk/�

¯
.�/ 2

M
K0
�
C �.G/ b̋Bk�:

This implies that all of indG.ŒEn� b̋ ŒD�/ 2K0.C �.G/ b̋Bn/ are equal to zero except for
finitely many n 2 N, which contradicts to our assumption.

5.5. Proof of Corollary D

To prove Corollary D, we will combine Theorem C with Theorem A. Consider the same
conditions as Theorem A on X , Y , and G and assume additionally that X and Y are
simply connected. Let f W Y ! X be a G-equivariant orientation-preserving homotopy
invariant map. Assume that for each k 2 N there exists a Hilbert Bk-module G-bundle
Ek over X whose curvature norm is less than 1

k
satisfying that

indG
�
ŒEk � b̋ Œ@X �� ¤ indG

�
Œf �Ek � b̋ Œ@Y �� 2 K0�C �.G/ b̋Bk�:

as in the proof of Theorem C. Consider a G-manifold Z WD X t .�Y /, the disjoint union
of X , and the orientation reversed Y with the signature operator @Z on it. Although Z is
not connected, however, we may apply Theorem C to @Z , after replacing some argument
in the proof as follows. Consider a family of Hilbert Bk-module bundles ¹Ek t f �Ekº
overZ and obtain a flat bundleW t f �W as in Subsection 5.2. In order to obtain a global
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section w as in (5.3) in the proof of Lemma 5.21, we have used the connectedness of the
base space. In this case, construct a section wWX ! W on X in the same way and pull it
back on Y by f to obtain a global section on Z. The other parts are the same as above.

Funding. Research supported by the Natural Science Foundation of China (NSFC) grant
no. 11771143.
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