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Poisson cohomology, Koszul duality, and
Batalin–Vilkovisky algebras

Xiaojun Chen, Youming Chen, Farkhod Eshmatov, and Song Yang

Abstract. We study the noncommutative Poincaré duality between the Poisson homology and coho-
mology of unimodular Poisson algebras, and show that Kontsevich’s deformation quantization as
well as Koszul duality preserve the corresponding Poincaré duality. As a corollary, the Batalin–
Vilkovisky algebra structures that naturally arise in these cases are all isomorphic.

1. Introduction
In this paper, we study the noncommutative Poincaré duality between the Poisson homol-
ogy and cohomology of unimodular Poisson algebras, and show that Kontsevich’s defor-
mation quantization as well as Koszul duality preserve the corresponding Poincaré duality.

Let AD RŒx1; : : : ; xn� be the real polynomial algebra in n variables. A Poisson bivec-
tor on A, say � , is called quadratic if it is in the form
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Several years ago, Shoikhet [30] observed that if � is quadratic, then the Koszul dual alge-
bra AŠ of A, namely, the graded symmetric algebraƒ.�1; : : : ; �n/ generated by n elements
of degree �1, has a Poisson structure (let us call it the Koszul dual of �), given by
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He also proved that Kontsevich’s deformation quantization preserves this type of Koszul
duality. Shoikhet’s result motivates us to study some other properties of a Poisson algebra
under Koszul duality.

First, the following theorem is clear from Shoikhet’s article, once we explicitly write
down the corresponding complexes.

Theorem 1.1. Let A D RŒx1; : : : ; xn� be a quadratic Poisson algebra. Denote by AŠ the
Koszul dual Poisson algebra of A. Then there are isomorphisms

HP�.A/ Š HP�.AŠIA¡/ and HP�.A/ Š HP�.AŠ/; (1.3)

where A¡ WD HomR.A
Š;R/ is the linear dual of AŠ.
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In the above theorem, HP�.�/ is the Poisson homology, HP�.�/ is the Poisson coho-
mology, and HP�.AŠIA¡/ is the Poisson cohomology of AŠ with values in its dual space.

Historically, the Poisson homology and cohomology were introduced by Koszul [20]
and Lichnerowicz [24], respectively. In 1997, Weinstein [37] introduced the notion of
unimodular Poisson manifolds, and two years later Xu [40] proved that in this case, there
is a Poincaré duality between the Poisson cohomology and homology of M . A purely
algebraic version of Weinstein’s notion was later formulated by Dolgushev in [9] (see also
[22, 27]), and in this case we also have

HP�.A/ Š HPn��.A/; (1.4)

for some n depending on A.
For a finite-dimensional algebra such as AŠ above, Zhu, Van Oystaeyen, and Zhang

introduced in [42] the notion of Frobenius Poisson algebra and proved that if they are uni-
modular in some sense (to be recalled below), then there also exists a version of Poincaré
duality:

HP�.AŠ/ Š HP��n.AŠIA¡/: (1.5)

Combining the above two versions of Poincaré duality, (1.4) and (1.5), as well as
Theorem 1.1, we have the following theorem.

Theorem 1.2. Let A D RŒx1; : : : ; xn� be a quadratic Poisson algebra. Then .A; �/ is
unimodular if and only if its Koszul dual .AŠ; � Š/ is unimodular Frobenius. In this case,
one has the following commutative diagram:

HP�.A/ Š

PD
//

Š

��

HPn��.A/

Š

��

HP�.AŠ/ Š

PD
// HP��n.AŠIA¡/:

The main technique to prove the above theorem is the so-called “differential calcu-
lus”, a notion introduced by Tamarkin and Tsygan in [31]. Later, Lambre [21] used the
terminology “differential calculus with duality” to study the “noncommutative Poincaré
duality” in these cases.

In the above-mentioned two references [40, 42], the authors also proved that the Pois-
son cohomology of a unimodular Poisson algebra (in both cases) has a Batalin–Vilkovisky
algebra structure. The Batalin–Vilkovisky structure is a very important algebraic structure
that has appeared in, for example, mathematical physics, Calabi–Yau geometry, and string
topology. For unimodular quadratic Poisson algebras, we have the following theorem.

Theorem 1.3. Suppose A D RŒx1; : : : ; xn� is a unimodular quadratic Poisson algebra.
Denote by AŠ its Koszul dual. Then

HP�.A/ Š HP�.AŠ/

is an isomorphism of Batalin–Vilkovisky algebras.
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The above three theorems have some analogy to the case of Calabi–Yau algebras which
was introduced by Ginzburg [15] in 2006. Suppose a Calabi–Yau algebra, sayA, is Koszul,
then its Koszul dual, denoted by AŠ, is a symmetric Frobenius algebra. For these two
algebras, we also have a version of Poincaré duality, due to van den Bergh [36] and Tradler
[33], respectively (compare with (1.4) and (1.5)):

HH�.A/ Š HHn��.A/ and HH�.AŠ/ Š HH��n.AŠIA¡/:

In [15, §5.4] Ginzburg stated a conjecture, which he attributed to R. Rouquier, saying
that for a Koszul Calabi–Yau algebra, say A, its Hochschild cohomology is isomorphic to
the Hochschild cohomology of its Koszul dual AŠ:

HH�.A/ Š HH�.AŠ/; (1.6)

as Batalin–Vilkovisky algebras. This conjecture has recently been proved by two authors
of the current paper together with G. Zhou in [6]. In fact, Theorem 1.3 may be viewed as
a generalization of Rouquier’s conjecture in Poisson geometry, which has been a folklore
for several years.

More than just being an analogy, in [9, Theorem 3], Dolgushev proved that for the
coordinate ring A of an affine Calabi–Yau Poisson variety, its deformation quantization
in the sense of Kontsevich, say A„, is Calabi–Yau if and only if A is unimodular. Sim-
ilarly, Felder and Shoikhet [12] and later Willwacher and Calaque [39] proved that, for
a Frobenius Poisson algebra, its deformation quantization is again symmetric Frobenius
if and only if it is unimodular. Based on these results, Dolgushev asked two questions in
[9, §7] (see also [10]). The first question is whether there exists a relationship between
the Poincaré duality of the Poisson (co)homology of A and the Poincaré duality of the
Hochschild (co)homology of A„. The following theorem answers this question in the case
of polynomials (the second half also includes the case of Frobenius algebras).

Theorem 1.4. (1) Suppose A D RŒx1; : : : ; xn� is a unimodular Poisson algebra. Let
A„ be its deformation quantization. Then the diagram

HP�
�
AŒŒ„��

� Š

PD
//

Š
��

HPn��
�
AŒŒ„��

�
Š
��

HH�.A„/
Š

PD
// HHn��.A„/

commutes.

(2) Similarly, supposeAŠDƒ.�1; : : : ; �n/ is a unimodular Frobenius Poisson algebra,
and let AŠ

„
be its deformation quantization. Then the diagram

HP�
�
AŠŒŒ„��

� Š //

Š
��

HP��n
�
AŠŒŒ„��IA¡ŒŒ„��

�
Š
��

HH�
�
AŠ
„

� Š // HH��n
�
AŠ
„
IA

¡
„

�
commutes.
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In other words, the two versions of Poincaré duality, one between the Poisson coho-
mology and homology and the other between the Hochschild cohomology and homology,
are preserved under Kontsevich’s deformation quantization.

The second question that Dolgushev asked is whether there is any relationship between
the roles that the unimodularity plays in the above two types of deformation quantization.
The following theorem partially answers this question, although both cases that Dolgushev
and Felder–Shoikhet/Willwacher–Calaque considered are more general (i.e., not necessar-
ily Koszul).

Theorem 1.5. Suppose A D RŒx1; : : : ; xn� is a quadratic Poisson algebra. Denote by AŠ

the Koszul dual algebra of A, and by A„ and AŠ
„

the Kontsevich deformation quantization
of A and AŠ, respectively. If A is unimodular (and by Theorem 1.2 AŠ is unimodular
Frobenius), then A„ is Calabi–Yau, AŠ

„
is symmetric Frobenius, and the diagram

HP�
�
AŒŒ„��

� Š //

Š

��

HP�
�
AŠŒŒ„��

�
Š

��

HH�.A„/
Š // HH�

�
AŠ
„

� (1.7)

is commutative as Batalin–Vilkovisky algebra isomorphisms, where AŒŒ„�� and AŠŒŒ„�� are
equipped with the Poisson bivectors „� and „� Š, respectively.

In other words, the theorem says that the unimodularity that appears in the deformation
quantization of Calabi–Yau Poisson algebras and Frobenius Poisson algebras is related by
Koszul duality. Note that in the theorem, A„ and AŠ

„
are Koszul dual to each other by

Shoikhet [30].
Thus as a corollary, one obtains that if A D RŒx1; : : : ; xn� is a unimodular quadratic

Poisson algebra, then the homology and cohomology groups (Poisson and Hochschild)
in Theorems 1.4 and 1.5 are all isomorphic. That is, we have the following commutative
diagram of isomorphisms:
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�
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HP��n
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AŠŒŒ„��IA¡ŒŒ„��

�

��
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HH�
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AŠ
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�
// HH��n

�
AŠ
„
IA

¡
„

�
HH�.A„/ //

66

HHn��.A„/;

44

where the horizontal arrows are the Poincaré duality, the vertical arrows are given by
deformation quantization, and the slanted arrows are given by Koszul duality.

The rest of the paper is devoted to the proof of the above theorems. It is organized as
follows: in Section 2 we collect several facts on Koszul algebras, and their application to
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quadratic Poisson polynomials; in Section 3 we first recall the definition of Poisson homol-
ogy and cohomology, and then prove Theorem 1.1; in Section 4 we study unimodular
quadratic Poisson algebras and their Koszul dual, and prove Theorem 1.2; in Section 5 we
prove Theorem 1.3 by means of the so-called “differential calculus with duality;” in Sec-
tion 6 we discuss Calabi–Yau algebras, their Koszul duality and the Batalin–Vilkovisky
algebras associated to them; and at last, in Section 7 we discuss the deformation quantiza-
tion of Poisson algebras and prove Theorems 1.4 and 1.5.

This paper has a sequel [5], where the cyclic homology groups of the Poisson mixed
complexes discussed in this paper were studied and the gravity algebra structure on them
was discussed.

Convention. Throughout the paper, k is a field of a characteristic zero, which we may
assume to be R as in Section 1. All tensors and morphisms are graded over k unless
otherwise specified. All complexes are graded such that the differential has degree �1; for
a cochain complex, it is viewed as a chain complex by negating the original grading, and
it is cohomology H�.�/ WD H��.�/.

2. Preliminaries on Koszul algebras

In this section, we collect some necessary facts about Koszul algebras. The interested
reader may refer to Loday–Vallette [26, Chapter 3] for some more details.

Let V be a finite-dimensional vector space over k. Denote by T V the free (tensor)
algebra generated by V over k. Suppose R is a subspace of V ˝ V , and let .R/ be the
two-sided ideal generated by R in T V , then the quotient algebra A WD T V=.R/ is called
a quadratic algebra.

Consider the subspace

U D

1M
nD0

Un WD

1M
nD0

\
iCjC2Dn

V ˝i ˝R˝ V ˝j

of T V , then U is a coalgebra whose coproduct is induced from the de-concatenation of
the tensor products. The Koszul dual coalgebra of A, denoted by A¡, is

A¡
D

1M
nD0

†˝n.Un/;

where† is the degree shifting-up (suspension) functor.A¡ has a graded coalgebra structure
induced from that of U with

.A¡/0 D k; .A¡/1 D †V; .A¡/2 D .†˝†/.R/; : : : :

The Koszul dual algebra of A, denoted by AŠ, is just the linear dual space of A¡, which
is then a graded algebra. More precisely, let V � D Hom.V; k/ be the linear dual space of



X. Chen, Y. Chen, F. Eshmatov, and S. Yang 894

V , and let R? denote the space of annihilators of R in V � ˝ V �. Shift the grading of V �

down by one, denoted by †�1V �, then1

AŠ D T .†�1V �/=
�
†�1 ˝†�1 ıR?

�
:

Choose a set of basis ¹eiº for V and let ¹e�i º be their duals in V �. There is a chain
complex associated to A, called the Koszul complex:

� � �
ı
�! A˝ A

¡
iC1

ı
�! A˝ A

¡
i

ı
�! � � � �! A˝ A

¡
0

ı
�! k; (2.1)

where for any r ˝ f 2 A˝ A¡, ı.r ˝ f / D
P
i eir ˝†

�1e�i f .

Definition 2.1 (Koszul algebra). A quadratic algebra AD T V=.R/ is called Koszul if the
Koszul chain complex (2.1) is acyclic.

Example 2.2 (Polynomials). Let A D kŒx1; x2; : : : ; xn� be the space of polynomials (the
symmetric tensor algebra) with n generators. Then A is a Koszul algebra and its Koszul
dual algebraAŠ is the graded symmetric algebraƒ.�1; �2; : : : ; �n/, with grading j�i j D �1.

Lemma 2.3 (Shoikhet [30]). Let A D kŒx1; : : : ; xn� with a bivector � in the form (1.1).
Then .A; �/ is quadratic Poisson if and only if .AŠ; � Š/ is quadratic Poisson, where � Š is
given by (1.2).

So far, we have assumed that V is a k-linear space. In Section 7, we will study the
deformed algebras, which are algebras over kŒŒ„��. In [30], Shoikhet proved that the defini-
tions and results in the above subsections remain to hold for algebras over a discrete evalu-
ation ring, such as kŒŒ„��. For example, kŒx1; : : : ;xn�ŒŒ„�� is Koszul dual toƒ.�1; : : : ; �n/ŒŒ„��
as graded algebras over kŒŒ„�� (see [30, Theorem 0.3]).

3. Poisson homology and cohomology

The notions of Poisson homology and cohomology were introduced by Koszul [20] and
Lichnerowicz [24], respectively. Later, Huebschmann [16] studied both of them from a
purely algebraic perspective.

For a commutative algebra A, in the following we denote by �p.A/ the set of p-th
Kähler differential forms of A, and by Xp.AIM/ the space of skew-symmetric multilin-
ear maps A˝p ! M that are derivations in each argument (note that, by our convention,
elements in �p.A/ and in Xp.AIM/ have gradings p and �p, respectively). In the fol-
lowing, if M D A, we write Xp.AIM/ simply by Xp.A/. Note that from the universal
property of Kähler differentials, there is an identity of A-modules:

Xp.AIM/ D HomA
�
�p.A/;M

�
: (3.1)

1In the literature such as [26], AŠ is defined to be T .V �/=R?, or equivalently, .AŠ/i Š
†i Hom..A¡/i ; k/, but not Hom..A¡/i ; k/. This will cause some issues in our later calculations, so in this
paper, we take AŠ as given above, or equivalently AŠ D Hom.A¡; k/.
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Definition 3.1 (Koszul [20]). Suppose .A;�/ is a Poisson algebra. Then the Poisson chain
complex of A, denoted by CP�.A/, is

� � � �! �pC1.A/
@
�! �p.A/

@
�! �p�1.A/

@
�! � � � �! �0.A/ D A; (3.2)

where @ is given by

@.f0df1 ^ � � � ^ dfp/ D

pX
iD1

.�1/i�1¹f0; fiºdf1 ^ � � �cdfi � � � ^ dfp
C

X
1�i<j�p

.�1/j�if0d¹fi ; fj º ^ df1 ^ � � �cdfi � � � cdfj � � � ^ dfp:
The associated homology is called the Poisson homology of A and is denoted by HP�.A/.

Definition 3.2 (Lichnerowicz [24]). Suppose .A; �/ is a Poisson algebra and M is a left
Poisson A-module. The Poisson cochain complex of A with values in M , denoted by
CP�.AIM/, is the cochain complex

M D X0.AIM/
ı
�! � � � �! Xp.AIM/

ı
�! XpC1.AIM/

ı
�! � � � ;

where ı is given by

ı.P /.f0; f1; : : : ; fp/ WD
X
0�i�p

.�1/i
®
fi ; P.f0; : : : ; bfi ; : : : ; fp/¯

C

X
0�i<j�p

.�1/iCjP
�
¹fi ; fj º; f1; : : : ; bfi ; : : : ; bfj ; : : : ; fp�:

The associated cohomology is called the Poisson cohomology of A with values in M and
is denoted by HP�.AIM/. In particular, if M D A, then the cochain complex is denoted
by CP�.A/, and the cohomology is called the Poisson cohomology of A and is denoted by
HP�.A/.

Note that in the above definition, the Poisson cochain complex, viewed as a chain
complex, is negatively graded, and the coboundary ı has degree �1. However, by our
convention, the Poisson cohomology is positively graded.

Remark 3.3 (The graded case). The Poisson homology and cohomology can be defined
for graded Poisson algebras as well. In this case,

�p.A/ D
M
n2Z

®
f0df1 ^ � � � ^ dfn j fi 2 A; jf0j C jf1j C � � � C jfnj C n D p

¯
and Xp.AIM/ is again given by HomA.�p.A/;M/. The boundary maps are completely
analogous to those of Poisson chain and cochain complexes (with Koszul’s sign conven-
tion taken into account).
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Proof of Theorem 1.1. (1) We first show the first isomorphism in (1.3). Since A D

kŒx1; : : : ; xn�, we have an explicit expression for ��.A/, which is

��.A/ D ƒ.x1; : : : ; xn; dx1; : : : ; dxn/; (3.3)

where ƒ means the graded symmetric tensor product, jxi j D 0, and jdxi j D 1, for i D
1; : : : ; n. Similarly,

��.AŠ/ D ƒ.�1; : : : ; �n; d�1; : : : ; d�n/;

where j�i j D �1 and jd�i j D 0, for i D 1; : : : ; n, and therefore

X�.AŠIA¡/

D HomAŠ
�
��.AŠ/; A¡�

D Homƒ.�1;:::;�n/

�
ƒ.�1; : : : ; �n; d�1; : : : ; d�n

�
;Hom

�
ƒ.�1; : : : ; �n/; k

��
D Homƒ.�1;:::;�n/

�
ƒ.�1; : : : ; �n/˝ƒ.d�1; : : : ; d�n/;Hom

�
ƒ.�1; : : : ; �n/; k

��
D Hom

�
ƒ.d�1; : : : ; d�n/;Hom

�
ƒ.�1; : : : ; �n/; k

��
D Hom

�
ƒ.d�1; : : : ; d�n/˝ƒ.�1; : : : ; �n/; k

�
D Hom

�
ƒ.d�1; : : : ; d�n; �1; : : : ; �n/; k

�
D �

� @

@�1
; : : : ;

@

@�n
; ��1 ; : : : ; �

�
n

�
: (3.4)

Thus, from (3.3) and (3.4), there is a canonical grading preserving an isomorphism of
vector spaces:

ˆ W ��.A/! X�.AŠIA¡/;

xi 7!
@

@�i
;

dxi 7! ��i ; i D 1; : : : ; n:

(3.5)

It is a direct check that ˆ is a chain map, and thus we obtain an isomorphism of Poisson
complexes:

ˆ W CP�.A/ Š CP��.AŠIA¡/; (3.6)

which then induces an isomorphism on the homology.
(2) We now show the second isomorphism in (1.3). Similar to the above argument, we

have

CP�.A/ D HomA
�
��.A/; A

�
D Homƒ.x1;:::;xn/

�
ƒ.x1; : : : ; xn; dx1; : : : ; dxn/;ƒ.x1; : : : ; xn/

�
D Homƒ.x1;:::;xn/

�
ƒ.x1; : : : ; xn/˝ƒ.dx1; : : : ; dxn/;ƒ.x1; : : : ; xn/

�
D Hom

�
ƒ.dx1; : : : ; dxn/;ƒ.x1; : : : ; xn/

�
D ƒ

�
@

@x1
; : : : ;

@

@xn

�
˝ƒ.x1; : : : ; xn/ (3.7)
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and

CP�.AŠ/ D HomAŠ
�
��.AŠ/; AŠ

�
D Homƒ.�1;:::;�n/

�
ƒ.�1; : : : ; �n; d�1; : : : ; d�n/;ƒ.�1; : : : ; �n/

�
D Homƒ.�1;:::;�n/

�
ƒ.�1; : : : ; �n/˝ƒ.d�1; : : : ; d�n/;ƒ.�1; : : : ; �n/

�
D Hom

�
ƒ.d�1; : : : ; d�n/;ƒ.�1; : : : ; �n/

�
D �

�
@

@�1
; : : : ;

@

@�n

�
˝ƒ.�1; : : : ; �n/: (3.8)

Under the identity

xi 7!
@

@�i
;

@

@xi
7! �i ; (3.9)

we again obtain an isomorphism of chain complexes:

‰ W CP�.A/ Š CP�.AŠ/:

This completes the proof.

4. Unimodular Poisson algebras and Koszul duality

In this section, we study unimodular Poisson algebras. We are particularly interested in
the algebraic structures on their Poisson cohomology and homology groups, which are
summarized by a differential calculus, a notion introduced by Tamarkin and Tsygan in
[31].

Definition 4.1 (Differential calculus; Tamarkin–Tsygan [31]). Let H� and H� be graded
vector spaces. A differential calculus is the sextuple�

H�;H�;[; �; Œ�;��; d
�

satisfying the following conditions:

(1) .H�;[; Œ�;��/ is a Gerstenhaber algebra; that is, .H�;[/ is a graded commutative
algebra, .H�; Œ�;��/ is a degree 1 or �1 graded Lie algebra, and the product and
Lie bracket are compatible in the following sense:

ŒP [Q;R� D P [ ŒQ;R�C .�1/pqQ [ ŒP;R�;

for homogeneous P;Q;R 2 V of degree p; q; r , respectively;

(2) H� is a graded (left) module over .H�;[/ via the map

� W Hn ˝ Hm ! Hm�n; f ˝ ˛ 7! �f ˛;

for any f 2 Hn and ˛ 2 Hm;
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(3) there is a map d W H� ! H�C1 satisfying d2 D 0. Moreover, if we set Lf WD
Œd; �f � D d�f � .�1/

jf j�f d , then

.�1/jf jC1�Œf;g� D ŒLf ; �g � WD Lf �g � .�1/
jgj.jf jC1/�gLf :

In the following, if [, �, Œ�;�� and d are clear from the context, we will simply write
a differential calculus by .H�;H�/ for short.

4.1. Differential calculus on Poisson (co)homology

SupposeA is a commutative algebra. Besides the de Rham differential on��.A/, we have
the following operations on X�.A/ and ��.A/.

(1) Wedge (cup) product: suppose P 2 Xp.A/ andQ 2 Xq.A/, then the wedge prod-
uct of P and Q, denoted by P [Q, is a polyvector in XpCq.A/ defined by

.P [Q/.f1; f2; : : : ; fpCq/

WD

X
�2Sp;q

sgn.�/P.f�.1/; : : : ; f�.p// �Q.f�.pC1/; : : : ; f�.pCq//;

where � runs over all .p; q/-shuffles of .1; 2; : : : ; p C q/.

(2) Schouten bracket: suppose P 2Xp.A/ andQ2Xq.A/, then their Schouten bracket,
denoted by ŒP;Q�, is an element in XpCq�1.A/ given by

ŒP;Q�.f1; f2; : : : ; fpCq�1/

WD

X
�2Sq;p�1

sgn.�/P
�
Q.f�.1/; : : : ; f�.q//; f�.qC1/; : : : ; f�.qCp�1/

�
� .�1/.p�1/.q�1/

X
�2Sp;q�1

sgn.�/Q
�
P.f�.1/; : : : ; f�.p//;

f�.pC1/; : : : ; f�.pCq�1/
�
:

(3) Contraction (inner product): suppose P 2 Xp.A/ and ! D df1 ^ � � � ^ dfn 2

�n.A/, then the contraction of P with !, denoted by �P .!/, is an A-linear map
with values in �n�p.A/ given by

�P .!/

D

8̂<̂
:

X
�2Sp;n�p

sgn.�/P.f�.1/; : : : ; f�.p//df�.pC1/ ^ � � � ^ df�.n/; if n � p;

0; otherwise:

(4) Lie derivative: the Lie derivative is given by the Cartan formula, namely, for P 2
Xp.A/ and ! 2 �n.A/, the Lie derivative of ! with respect to P is given by

LP! WD Œ�P ; d � D �P .d!/ � .�1/
pd.�P!/;

where d is the de Rham differential.
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Theorem 4.2. Suppose A is a Poisson algebra. Then�
HP�.A/;HP�.A/;[; �; Œ�;��; d

�
;

where d is the de Rham differential, is a differential calculus.

Proof. We only have to show that the operations listed above respect the Poisson boundary
and coboundary. It is a direct check and can be found in [23, Chapter 3].

In the following, we will give another differential calculus structure for a Poisson
algebra, which will be used later.

(1) For any P 2 Xp.A/ and � 2 Xq.AIA�/, let ��P .�/ 2 XpCq.AIA�/ be given by

.��P�/.f1; : : : ; fpCq/

WD

X
�2Sp;q

sgn.�/P.f�.1/; : : : ; f�.p// � �.f�.pC1/; : : : ; f�.pCq//: (4.1)

It is clear that �� is associative, i.e., ��Q ı �
�
P D �

�
P[Q. Also, �� respects the Poisson cobound-

ary maps, which is completely analogous to the proof of that[ commutes with the Poisson
coboundary map (cf. [23, §4.3]).

(2) Observe that

X�.AIA�/ D HomA
�
��.A/; A�

�
D HomA

�
��.A/;Hom.A; k/

�
D HomA

�
��.A/˝ A; k

�
D Hom

�
��.A/; k

�
: (4.2)

By dualizing the de Rham differential d on ��.A/, we obtain a differential d� on
Hom.��.A/; k/, i.e., on X�.AIA�/. It is proved in [42, Theorem 4.10] that d� commutes
with the Poisson boundary.

(3) For any P 2 X�.A/ and ! 2 X�.AIA�/, let LP! WD Œ��P ; d
��.!/; it is a direct

check that
ŒLP ; �

�
Q� D �

�
ŒP;Q�:

By (1)–(3) listed above, we obtain the following.

Theorem 4.3. Suppose A is a Poisson algebra and let A� be its dual space. Then�
HP�.A/;HP�.AIA�/;[; ��; Œ�;��; d�

�
is a differential calculus.

We next introduce two DG Lie algebras associated to the above two differential calculi.
Let us start with the notion of negative cyclic homology.
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Definition 4.4 (Cyclic homology; cf. Jones [17] and Kassel [18]). Suppose .C�; b; B/ is
a mixed complex, with jbj D �1 and jBj D 1. Let u be a free variable of degree �2 which
commutes with b and B . The negative cyclic chain complex of C� is�

C�ŒŒu��; b C uB
�
;

and is denoted by CC�� .C�/. The associated homology is called the negative cyclic homol-
ogy of C� and is denoted by HC�� .C�/.

Remark 4.5 (Cyclic cohomology). Suppose .C�; b; B/ is a mixed cochain complex,
namely, jbj D 1 and jBj D �1. By negating the degrees of C�, we obtain a mixed chain
complex, denoted by .C�; b;B/ with jbj D �1 and jBj D 1. By our convention, the cyclic
cohomology of .C�; b; B/, denoted by HC�.C�/, is the cohomology of the negative cyclic
complex of .C�; b; B/.

Consider the mixed complex ��.A/ with differential .0; d/, where d is the de Rham
differential. Equip X�.A/ with trivial differential. Since ��.A/ is a Lie module over
X�.A/ whose action commutes with d , the negative cyclic complex .��.A/ŒŒu��; ud/ is
a DG module over X�.A/. Consider the semi-direct product

P.A/# WD †X�.A/ Ë†�1�n��.A/ŒŒu��; (4.3)

where n is an arbitrary integer number. It is a DG Lie algebra with differential .0; ud/.
Similarly, for the mixed complex .X.A�/; 0; d�/, we have the DG Lie algebra

Pı.A/# WD †X�.A/ Ë†�1�nX�.AIA�/ŒŒu��; (4.4)

with a differential given by .0; ud�/.

4.2. Unimodular Poisson algebras

Suppose A is a commutative algebra and � 2 �n.A/. We say � is a volume form if

X�.A/
�.�/�

���! �n��.A/ is an isomorphism of vector spaces. Now suppose A is Poisson,
then we have the diagram

X�.A/
�.�/�

// �n��.A/

X��1.A/
�.�/�

//

ı

OO

�n��C1.A/;

@

OO

(4.5)

which may not be commutative, i.e., �may not be a Poisson cycle. We sayA is unimodular
if there exists a volume form � such that (4.5) commutes.

In terms of the DG Lie algebra (4.3), being unimodular is equivalent to the following.

Proposition 4.6. Let A, � , and � be as above. Then the bivector � is unimodular Poisson
if and only if .†�;†�1�n�/ is a Maurer–Cartan element of the DG Lie algebra (4.3).
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The proof is a direct check, and we leave it to the interested reader. Recall that for
a DG Lie algebra .L; d/, any Maurer–Cartan element, say a 2 L, gives a new DG Lie
algebra structure on L with differential Qd D d C Œa;��. Denote this DG Lie algebra by
La. Going back to the above proposition, in the following we write

P.A; �/ WD P.A/#
.†�;†�1�n�/

;

which will be used later in Section 7.
The following is also immediate from (4.5).

Theorem 4.7 (Xu [40]). Suppose A is a unimodular Poisson algebra with the volume
form of degree n. Then .HP�.A/;HPn��.A// forms a differential calculus with duality,
and therefore there exists an isomorphism (the Poincaré duality)

HP�.A/ Š HPn��.A/:

4.3. Unimodular Frobenius Poisson algebras

Now, we go to unimodular Frobenius Poisson algebras, a notion introduced by Zhu, Van
Oystaeyen, and Zhang in [42].

Suppose AŠ is a finite-dimensional graded not-necessarily commutative algebra. AŠ is
called symmetric Frobenius if it is equipped with a bilinear, non-degenerate symmetric
pairing

h�;�i W AŠ ˝ AŠ ! k

of degree n which is cyclically invariant, that is, ha; b � ci D .�1/.jajCjbj/jcjhc; a � bi, for
all homogeneous a; b; c 2 AŠ. This is equivalent to saying that there is an AŠ-bimodule
isomorphism

�Š W .AŠ/� ! .A¡/nC�; for some n 2 N;

where A¡ D .AŠ/�. In this case, we may view �Š as an element in HomAŠ.A
Š; A¡/ �

X�.AŠIA¡/. Now assume AŠ is Poisson, then we have a diagram

X�.AŠ/
��
.�/
�Š

// X��n.AŠIA¡/

X��1.AŠ/
��
.�/
�Š

//

ı

OO

X��1�n.AŠIA¡/:

ı

OO
(4.6)

According to Zhu–Van Oystaeyen–Zhang [42], if there exists �Š 2 X�.AŠIA¡/ such that
��
.�/
�Š is an isomorphism, then �Š is called a volume form, and if furthermore the diagram

(4.6) commutes, then AŠ is called a unimodular Frobenius Poisson algebra of degree n (in
[42] the authors call it unimodular Frobenius Poisson). From the definition, we immedi-
ately arrive at the following theorem.

Theorem 4.8 (Zhu–Van Oystaeyen–Zhang [42]). Suppose AŠ is a unimodular Frobenius
Poisson algebra with the volume form of degree n. Then .HP�.AŠ/;HP��n.AŠIA¡// forms
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a differential calculus with duality and therefore there exists an isomorphism

HP�.AŠ/ Š HP��n.AŠIA¡/:

In this paper, since we are interested in A D kŒx1; : : : ; xn� or AŠ D ƒ.�1; : : : ; �n/, we
always assume that the volume form is constant. The following is completely analogous
to Proposition 4.6.

Proposition 4.9. Suppose AŠ Dƒ.�1; : : : ; �n/ with volume form �Š. Then a bivector � Š is
unimodular Frobenius Poisson if and only if .†� Š;†�1�n�Š/ is a Maurer–Cartan element
of the DG Lie algebra Pı.AŠ/# given by (4.4).

In Section 7, we shall use the DG Lie algebra

Pı.AŠ; �Š/ WD Pı.AŠ/#
.†� Š;†�1�n�Š/

:

Proof of Theorem 1.2. First, we show that a quadratic Poisson algebra .AD kŒx1; : : : ;xn�;
�/ is unimodular if and only if .AŠ; � Š/ is unimodular Frobenius. In fact, recall that for
A D kŒx1; : : : ; xn�,

X�.A/ D ƒ

�
x1; : : : ; xn;

@

@x1
; : : : ;

@

@xn

�
;

��.A/ D ƒ.x1; : : : ; xn; dx1; : : : ; dxn/;

X�.AŠ/ D ƒ

�
�1; : : : ; �n;

@

@�1
; : : : ;

@

@�n

�
;

X�.AŠIA¡/ D ƒ

�
��1 ; : : : ; �

�
n ;

@

@�1
; : : : ;

@

@�n

�
:

Let
� D dx1dx2 � � � dxn and �Š D ��1 �

�
2 � � � �

�
n ;

where �Š is understood as a contraction, namely,

�Š.�i1 � � � �ip / WD
X

�2Sp;n�p

h�i1 � � � �ip ; �
�
�.1/ � � � �

�
�.p/i � �

�
�.pC1/ � � � �

�
�.n/:

Then under the identification

xi 7!
@

@�i
; dxi 7! ��i ;

@

@xi
7! �i (4.7)

the diagram

X�.A/Dƒ

�
x1; : : : ; xn;

@

@x1
; : : : ;

@

@xn

�
�.�/�
//

Š

��

��.A/Dƒ.x1; : : : ; xn; dx1; : : : ; dxn/

Š

��

X�.AŠ/Dƒ

�
�1; : : : ; �n;

@

@�1
; : : : ;

@

@�n

�
��
.�/
�Š

//X�.AŠIA¡/Dƒ

�
��1 ; : : : ; �

�
n ;

@

@�1
; : : : ;

@

@�n

�
(4.8)
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commutes. This means � is a Poisson cycle for A if and only if �Š is a Poisson cocycle for
AŠ, which proves the claim.

Second, for A as above, we show that the diagram

HP�.A/ Š //

Š

��

HPn��.A/

Š

��

HP�.AŠ/ Š // HP��n.AŠIA¡/

(4.9)

commutes. In fact, the two vertical isomorphisms are given by Theorem 1.1, and the two
horizontal isomorphisms are given by Theorems 4.7 and 4.8, respectively. The commuta-
tivity of the diagram (4.9) follows from the chain level commutative diagram (4.8).

Remark 4.10. By the same identification (4.7), one immediately sees that for a quadratic
Poisson algebra A and its Koszul dual AŠ, the two DG Lie algebras given by (4.3) and
(4.4) are isomorphic.

5. Poisson cohomology and the Batalin–Vilkovisky algebra

The purpose of this section is to show that for unimodular quadratic Poisson polynomial
algebras, the horizontal isomorphisms in (4.9) naturally induce on HP�.A/ and HP�.AŠ/
a Batalin–Vilkovisky algebra structure, and the vertical isomorphisms in (4.9) are isomor-
phisms of Batalin–Vilkovisky algebras. We start with the notion of differential calculus
with duality.

Definition 5.1 (Lambre [21]). A differential calculus .H�;H�;[; �; Œ�;��; d / is called a
differential calculus with duality if there exists an integer n and an element � 2 Hn such
that

(a) �1� D �, where 1 2 H0 is the unit, d.�/ D 0, and

(b) for any i 2 Z,
PD.�/ WD �.�/� W Hi ! Hn�i (5.1)

is an isomorphism.

Such isomorphism PD is called the van den Bergh duality (also called the noncommutative
Poincaré duality), and � is called the volume form.

Definition 5.2 (Batalin–Vilkovisky algebra). Suppose .V; �/ is a graded commutative
algebra. A Batalin–Vilkovisky algebra structure on V is the triple .V; �; �/ such that

(1) � W V i ! V i�1 is a differential, that is, �2 D 0, and

(2) � is a second-order operator, that is,

�.a � b � c/ D �.a � b/ � c C .�1/jaja ��.b � c/C .�1/.jaj�1/jbjb ��.a � c/

� .�a/ � b � c � .�1/jaja � .�b/ � c � .�1/jajCjbja � b � .�c/:
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Equivalently, if we define the bracket

Œa; b� WD .�1/jajC1
�
�.a � b/ ��.a/ � b � .�1/jaja ��.b/

�
;

then Œ�;�� is a derivation with respect to � for each component. In other words, a Batalin–
Vilkovisky algebra is a Gerstenhaber algebra .V; �; Œ�;��/ with a differential � W V i !
V i�1 such that

Œa; b� D .�1/jajC1
�
�.a � b/ ��.a/ � b � .�1/jaja ��.b/

�
; (5.2)

for any a; b 2 V (cf. [14, Proposition 1.2]). � is also called the Batalin–Vilkovisky oper-
ator or the generator (of the Gerstenhaber bracket).

Now suppose .H�;H�;[; �; Œ�;��; d; �/ is a differential calculus with duality. Let
� W H� ! H��1 be the linear operator such that

H� � //

PD
��

H��1

PD
��

Hn��
d // Hn��C1

(5.3)

commutes. Then we have the following theorem.

Theorem 5.3 (Lambre [21]). Let .H�;H�;[; �; Œ�;��; d; �/ be a differential calculus with
duality. Then the triple .H�;[; �/ is a Batalin–Vilkovisky algebra.

The proof can be found in the work of Lambre [21, Théorème 1.6]; however, since
some details in loc. cit. are omitted, we give a proof here for completeness.

Proof. Since .H�;[; Œ�;��/ is a Gerstenhaber algebra, we only need to show that the
Gerstenhaber bracket is compatible with the operator � in (5.3); that is, equation (5.2)
holds. For any homogeneous elements f; g 2 H�, by the definition of Poincaré duality PD
(5.1) and the Cartan formulae (Lemma 6.3), we have

.�1/jf jC1PD
�
Œf; g�

�
D .�1/jf jC1�Œf;g�.�/ D ŒLf ; �g �.�/ D Lf �g.�/ � .�1/

jgj.jf jC1/�gLf .�/

D d�f �g.�/ � .�1/
jf j�f d�g.�/ � .�1/

jgj.jf jC1/�gd�f .�/C .�1/
jgj.jf jC1/Cjf j�g �f d.�/

D d ı PD.f [ g/ � .�1/jgj.jf jC1/�gd ı PD.f / � .�1/jf j�f d ı PD.g/

D PD
�
�.f [ g/

�
� .�1/jgj.jf jC1/�g PD

�
�.f /

�
� .�1/jf j�f PD

�
�.g/

�
D ��.f [g/.�/ � .�1/

jgj.jf jC1/�g ��.f /.�/ � .�1/
jf j�f ��.g/.�/

D
�
��.f [g/ � .�1/

jgj.jf jC1/�g[�.f / � .�1/
jf j�f [�.g/

�
.�/

D PD
�
�.f [ g/ ��.f / [ g � .�1/jf jf [�.g/

�
:

Since PD is an isomorphism, we thus have

Œf; g� D .�1/jf jC1
�
�.f [ g/ ��.f / [ g � .�1/jf jf [�.g/

�
:
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Corollary 5.4 (see also Xu [40] and Zhu–Van Oystaeyen–Zhang [42]). Suppose A is a
unimodular Poisson or a unimodular Frobenius Poisson algebra. Then HP�.A/ admits a
Batalin–Vilkovisky algebra structure.

Proof. IfA is unimodular Poisson, then Theorems 4.2 and 4.7 imply that the pair .HP�.A/;
HP�.A// is, in fact, a differential calculus with duality; similarly, ifA is unimodular Frobe-
nius Poisson, then Theorems 4.3 and 4.8 imply that the pair .HP�.A/;HP�.AIA�// is a
differential calculus with duality. The theorem then follows from Theorem 5.3.

Proof of Theorem 1.3. Note that in Theorem 1.2, the right vertical isomorphism preserves
the Kähler differential as well as the volume form, that is, the two differential calculi with
duality �

HP�.A/;HP�.A/
�

and
�
HP�.AŠ/;HP�.AŠIA¡/

�
are isomorphic. Combining with Corollary 5.4, the theorem follows.

Remark 5.5. Not all quadratic Poisson algebras are unimodular. For example, for A D
RŒx1; x2; x3�, Etingof–Ginzburg [11, Lemma 4.2.3 and Corollary 4.3.2] showed that any
unimodular Poisson structure is of the form

¹x; yº D
@�

@z
; ¹y; zº D

@�

@x
; ¹z; xº D

@�

@y
;

for some � 2 A (taking � to be cubic then the Poisson structure is quadratic); for A D
CŒx1; x2; x3; x4�, Pym [28, §3] showed that any unimodular quadratic Poisson bracket on
A may be written uniquely in the form

¹f; gº WD
df ^ dg ^ d˛

dx1 ^ dx2 ^ dx3 ^ dx4
; f; g 2 A;

where ˛ D
P4
iD1 ˛idxi 2 �

1.A/ such that ˛ ^ d˛ D 0, and ˛i ’s are homogeneous cubic
polynomials satisfying

P4
iD1 xi˛i D 0.

6. Calabi–Yau algebras

At the end of Section 1, we sketched some analogy between unimodular Poisson algebras
and Calabi–Yau algebras. In the following two sections, we study their relationships in
more detail.

6.1. Calabi–Yau algebras and the Batalin–Vilkovisky algebra structure

Definition 6.1 (Calabi–Yau algebra; Ginzburg [15]). Let A be an associative algebra over
k. A is called a Calabi–Yau algebra of dimension n if

(1) A is homologically smooth, that is, A, viewed as an Ae-module, has a bounded
resolution of finitely generated projective Ae-modules, and
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(2) there is an isomorphism

RHomAe .A;A˝ A/ Š †�nA (6.1)

in the derived category D.Ae/ of Ae-modules.

In the above definition, Ae is the enveloping algebra of A, namely, Ae WD A˝ Aop.
There are a lot of examples of Calabi–Yau algebras, such as the universal enveloping
algebra of semi-simple Lie algebras, the skew-product of complex polynomials with a
finite subgroup of SL.n;R/, the Yang–Mills algebras, etc.

We next study van den Bergh’s noncommutative Poincaré duality for Calabi–Yau alge-
bras [36]. To this end, we first recall the differential calculus structure for associative
algebras.

For a unital associative algebra A, let NA D A=k be its augmentation, and A! NA W

a 7! Na be the projection. Denote by . NC�.A/; ı/ and . NC�.A/; b/ the reduced Hochschild
cochain and chain complexes of A (the reader may refer to Loday [25] for notations).
Recall that the Gerstenhaber cup product and the Gerstenhaber bracket on NC�.A/ are
given as follows: for any f 2 NCn.A/ and g 2 NCm.A/,

f [ g. Na1; : : : ; NanCm/ WD .�1/
nmf . Na1; : : : ; Nan/g. NanC1; : : : ; NanCm/

and
¹f; gº WD f ı g � .�1/.jf jC1/.jgjC1/g ı f;

where

f ıg. Na1; : : : ; NanCm�1/

WD

n�1X
iD0

.�1/.jgjC1/if
�
Na1; : : : ; Nai ; g. NaiC1; : : : ; NaiCm/; NaiCmC1; : : : ; NanCm�1

�
:

Gerstenhaber proved in [13, Theorems 3–5] that [ and ¹�;�º are well-defined on the
cohomology level, and moreover, [ is graded commutative. Therefore, we obtain on the
Hochschild cohomology HH�.A/ a Gerstenhaber algebra structure.

Next, we consider the action of the Hochschild cochain complex on the Hochschild
chain complex. Given any homogeneous elements f 2 NCn.A/ and ˛ D .a0; Na1; : : : ; Nam/ 2
NCm.A/,

(1) the cap product \ W NCn.A/ � NCm.A/! NCm�n.A/ is given by

f \ ˛ WD

´ �
a0f . Na1; : : : ; Nan/; NanC1; : : : ; Nam

�
; if m � n;

0; otherwise:
(6.2)

If we denote by �f .�/ WD f \ � the contraction operator, then

�f �g D .�1/
jf jjgj�g[f D �f [g I
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(2) the Lie derivative L W NCn.A/ � NCm.A/! NCm�n.A/ is given as follows: for any
˛ D .a0; Na1; : : : ; Nam/ 2 NCm.A/, if n � mC 1, then

Lf .˛/ WD

m�nX
iD0

.�1/.nC1/i
�
a0; Na1 : : : ; Nai ; f . NaiC1; : : : ; NaiCn/; : : : ; Nam

�
C

mX
iDm�nC1

.�1/m.iC1/CnC1
�
f . NaiC1; : : : ; Nam; Na0; : : : ; Nan�mCi�1/;

Nan�mCi ; : : : ; Nai
�
;

where the second sum is taken over all cyclic permutations such that a0 is inside
of f , and otherwise if n > mC 1, Lf .˛/ D 0;

(3) the Connes operator B W NC�.A/! NC�C1.A/ is given by

B.˛/ WD

mX
iD0

.�1/mi .1; Nai ; : : : ; Nam; Na0; : : : ; Nai�1/:

The following two lemmas first appeared in the work of Daletskiı̆–Gelfand–Tsygan
[7], which we learned from Tamarkin–Tsygan in [31].

Lemma 6.2. Keep the notations as in the above definition. Then

(1) . NC�.A/; b;\/ is a DG module over . NC�.A/; ı;[/, that is,

�ıf D .�1/
jf jC1Œb; �f �; �f �g D �f [g ;

for any homogeneous elements f; g 2 NC�.A/;

(2) for any homogeneous elements f; g 2 NC�.A/,

ŒLf ; Lg � D L¹f;gº;

and in particular .�1/jf jC1Œb; Lf �C Lıf D 0.

Lemma 6.3 (Homotopy Cartan formulae). Suppose �, L, and B are given as above and
f; g 2 NC�.A/ are any homogeneous elements.

(1) Define an operation (cf. [31, Equ. (3.5)])

Sf .˛/ WD

m�nX
iD0

mX
jDiCn

.�1/�ij
�
1; NajC1; : : : ; Nam; Na0; : : : ; Nai ; f . NaiC1; : : : ; NaiCn/;

NaiCnC1; : : : ; Naj
�

for any ˛ D .a0; Na1; : : : ; Nam/ 2 NCm.AIA/ (the sum is taken over all cyclic per-
mutations and a0 always appears on the left of f ), where �ij WD .n C 1/m C

.m � j /mC .nC 1/.j � i/. Then one has

Lf D ŒB; �f �C Œb; Sf � � Sıf : (6.3)
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(2) Define

T .f; g/.˛/ WD

lX
iDl�nC2

nCi�l�2X
jD0

.�1/�ij
�
f
�
NaiC1; : : : ; Nal ; Na0; : : : ; Naj ;

g. NajC1; : : : ; NajCm/; : : : ; NanCmCi�l�2
�
; : : : ; Nai

�
for any ˛ D .a0; Na1; : : : ; Nal / 2 NCl .AIA/, where �ij D.mC1/.iCjCl/Cl.iC1/.
Then one has

ŒLf ; �g � � .�1/
jf jC1�¹f;gº D

�
b; T .f; g/

�
� T .ıf; g/ � T .f; ıg/: (6.4)

The above two lemmas say that Definitions 4.1 (2) and 4.1 (3) hold up homotopy on
the chain level. Together with Gerstenhaber’s theorem, we have the following.

Theorem 6.4 (Daletskiı̆–Gelfand–Tsygan [7]). Let A be an associative algebra. Then the
sextuple �

HH�.A/;HH�.A/;[; �; ¹�;�º; B
�

is a differential calculus.

In [8, Proposition 5.5], de Thanhoffer de Völcsey and van den Bergh proved that, for
a Calabi–Yau algebra A of dimension n, there exists a class � 2 HHn.A/ such that the
contraction

HH�.A/
�\�
���! HHn��.A/ (6.5)

is an isomorphism. This immediately implies the following.

Theorem 6.5 ([15, 21]). Suppose A is a Calabi–Yau algebra A of dimension n. Then�
HH�.A/;HH�.A/;[; �; ¹�;�º; B

�
is a differential calculus with duality and, in particular, .HH�.A/;[; �/ is a Batalin–
Vilkovisky algebra.

6.2. Symmetric Frobenius algebras and the Batalin–Vilkovisky algebra structure

We now recall a differential calculus structure on the Hochschild complexes of symmetric
Frobenius algebras.

First, for an associative algebra A, denote A� WD Hom.A;k/, which is an A-bimodule.
Denote by NC�.AIA�/ the reduced Hochschild cochain complex of A with values in A�.
Then under the identity

NC�.AIA�/ D
M
n�0

Hom. NA˝n; A�/ D
M
n�0

Hom.A˝ NA˝n; k/ D Hom
�
NC�.A/; k

�
; (6.6)

one may equip on NC�.AI A�/ the dual Connes differential, which is denoted by B�,
i.e., B�.g/ WD .�1/jgjg ı B for homogeneous g 2 NC�.AIA�/. B� commutes with the
Hochschild coboundary map ı and thus is well-defined on the homology level.
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Second, let

NC�.A/ � NC�.AIA�/
\�

��! NC�.AIA�/

.f; ˛/ 7�! ��f .˛/ WD .�1/
jf jj˛j˛ ı �f ;

(6.7)

for any homogeneous f 2 NC�.A/ and ˛ 2 NC�.AIA�/. We have the following.

Theorem 6.6. Let A be an associative algebra. Then�
HH�.A/;HH�.AIA�/;[; ��; ¹�;�º; B�

�
is a differential calculus.

Proof. By the definition of differential calculus, we only need to show the last two equal-
ities given in Definition 4.1.

(1) By the definition of �� and Lemma 6.2 (1), one has

��f �
�
g.˛/ D .�1/

jgjj˛j��f .˛ ı �g/ D .�1/
jgjj˛jCjf j.j˛jCjgj/.˛ ı �g/ ı �f

D .�1/jgjj˛jCjf j.j˛jCjgj/˛ ı .�g[f / D .�1/
jf jjgj��g[f ˛ D �

�
f [g.˛/;

for any homogenous elements f; g 2 HH�.A/ and ˛ 2 HH�.AIA�/. This means that the
cap product is a left module action.

(2) Given any homogenous elements f 2 HH�.A/ and ˛ 2 HH�.AIA�/, define

L�f .˛/ WD .�1/
jf jj˛jCj˛jC1˛ ı Lf

�
D ŒB�; ��f �.˛/

�
; (6.8)

and by Lemma 6.3 one has

ŒL�f ; �
�
g �.˛/ D

�
L�f �
�
g � .�1/

.jf jC1/jgj��gL
�
f

�
.˛/

D .�1/.jf jC1/.j˛jCjgj/Cjgjj˛jC1˛ ı .�gLf / � .�1/
.jf jCjgjC1/j˛jC1˛ ı .Lf �g/

D .�1/.jf jCjgjC1/j˛j˛ ı
�
ŒLf ; �g �

�
D .�1/.jf jCjgjC1/j˛j˛ ı

�
.�1/jf jC1�¹f;gº

�
D .�1/jf jC1��

¹f;gº.˛/:

This completes the proof.

Now suppose AŠ is a symmetric Frobenius algebra. Recall that the existence of the
degree n cyclic pairing is equivalent to an isomorphism

� W AŠ Š †�nA¡

as AŠ-bimodules. Such �may be viewed as an element in NC�n.AŠIA¡/, which is a cocycle,
and hence represents a cohomology class. By abuse of notation, this class is also denoted
by �. The following map:

� \
�� W NC�.AŠ/

D

M
q�0

Hom
�
. NAŠ/˝q; AŠ

� �ı�
���!

M
q�0

Hom
�
. NAŠ/˝q; †�nA¡�

D NC��n.AŠIA¡/; (6.9)
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where � ı � means composing with �, gives an isomorphism on the cohomology (due to
Tradler [33]). Thus we have the following.

Theorem 6.7 ([21, 33]). Suppose AŠ is a symmetric Frobenius algebra of degree n.�
HH�.A/;HH�.AIA�/;[; ��; ¹�;�º; B�

�
is a differential calculus with duality and, in particular, HH�.AŠ/ is a Batalin–Vilkovisky
algebra.

Remark 6.8. Suppose .H�;H�;[; �; ¹�;�º; B/ is a differential calculus, then � and the
Lie derivative L D Œ�; B� is nothing but saying that H� is a Gerstenhaber module over
H�. From this point of view, the two differential calculus structures given in Theorems
4.8 and 6.7 can be understood in the following way: since .HP�.AŠ/;HP�.AŠ// already
forms a differential calculus and HP�.AŠIA¡/ is the linear dual of HP�.AŠ/ (see (4.2)), the
Gerstenhaber module structure on HP�.AŠIA¡/ is exactly the dual (or say adjoint) of Ger-
stenhaber module structure on HP�.AŠ/. Analogously, by (6.6), HH�.AŠIA¡/ is the linear
dual of HH�.AŠ/, and thus the differential calculus structure on .HH�.AŠ/;HH�.AŠIA¡//

can also be understood from this point of view.

6.3. Koszul Calabi–Yau algebras and Rouquier’s conjecture

Analogously to the quadratic Poisson algebra case, the Koszul dual of a Koszul Calabi–
Yau algebra is symmetric Frobenius (chronologically this fact is discovered first), and we
have the following theorem due to van den Bergh (see [35, Theorem 9.2] or [6, Proposition
28] for a proof): SupposeA is a Koszul algebra and letAŠ be its Koszul dual algebra. Then
A is Calabi–Yau of dimension n if and only if AŠ is symmetric Frobenius of degree n.

It has been well-known that for a Koszul algebra, say A,

HH�.A/ Š HH�.AŠ/;

as Gerstenhaber algebras, and Rouquier conjectured (it is stated by Ginzburg [15]) that, for
a Koszul Calabi–Yau algebra, the above two Batalin–Vilkovisky algebras are isomorphic,
which turns out to be true (see [6, Theorem A] for a proof).

Theorem 6.9 (Rouquier’s conjecture). Suppose A is a Koszul Calabi–Yau algebra. De-
note by AŠ and by A¡ the Koszul dual algebra and coalgebra of A, respectively. Then�

HH�.A/;HH�.A/
�

and
�
HH�.AŠ/;HH�.AŠIA¡/

�
are isomorphic as differential calculi with duality. In particular, HH�.A/ and HH�.AŠ/
are isomorphic as Batalin–Vilkovisky algebras.

The key point of the proof is that, with the differentials properly assigned on A˝ AŠ

and A˝ A¡, respectively,

NC�.AIA/ ' A˝ AŠ ' NC�.AŠIAŠ/ and NC�.AIA/ ' A˝ A¡
' NC�.AŠIA¡/;
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and via these quasi-isomorphisms, the volume forms as well as the contractions given
by (6.2) and (6.7) are identical on the above middle terms (compare with the proof of
Theorem 1.2).

Example 6.10 (The polynomial case). Let A D RŒx1; x2; : : : ; xn�, which is n-Calabi–
Yau. Its Koszul dual algebra AŠ D ƒ.�1; �2; : : : ; �n/ is symmetric Frobenius. As in the
Poisson case, the volume classes on HH�.A/ and HH�.AŠIA¡/ are, via the above quasi-
isomorphisms, represented by 1˝ ��1 � � � �

�
n in A˝ A¡.

We would like to summarize some results of the previous two subsections in terms of
DG Lie algebras analogous to the ones given by (4.3) and (4.4).

For an n-Calabi–Yau algebra A with volume form �, .0;†�1�n�/ is a Maurer–Cartan
element of the following DG Lie algebra of semi-direct product:

D.A/# WD † NC�.A/ Ë†�1�nCC
�

� .A/: (6.10)

Let
D.A; �/ WDD.A/#

.0;†�1�n�/
;

then it is a DG Lie algebra, and it will be studied in the next section.
For a symmetric Frobenius algebra AŠ with volume form �Š, we similarly have the DG

Lie algebra
NDı.AŠ/# WD † NC�.AŠ/ Ë†�1�nCC

�
.AŠ/; (6.11)

and .0; †�1�n�Š/ is a Maurer–Cartan element. However, this is not exactly the DG Lie
algebra that we will discuss in the next section. In fact, let us first consider the Connes
cyclic cochain complex CC��.A

Š/, which is a cyclically invariant subcomplex of C�.AŠ/,
the linear dual of the Hochschild chain complex of A (recall that it is identified with
C�.AIA�/). It is then a direct check that CC��.A

Š/ is closed under the Lie derivative of
NC�.AŠ/, and hence

Dı.AŠ/# WD † NC�.AŠ/ Ë†�1�nCC��.A
Š/ (6.12)

is a DG Lie algebra. Since �Š is a cyclically invariant inner product ofAŠ, then .0;†�1�n�Š/
is a Maurer–Cartan element of this DG Lie algebra. Observing that CC

�
.AŠ/ is quasi-

isomorphic to the Connes cyclic cochain complex CC��.A
Š/ (see Loday [25, §2.4] for

more details), which is compatible with the Lie derivative actions, we thus have a quasi-
isomorphism of DG Lie algebras:

NDı.AŠ/# 'Dı.AŠ/#:

In the following, we write

D.A; �/ WDD.A/#
.0;†�1�n�/

and Dı.AŠ; �/ WDDı.AŠ/#
.0;†�1�n�Š/

: (6.13)

7. Deformation quantization

In this section, we take k to be a field containing R. Dolgushev [9, Theorem 3] proved that
for a Calabi–Yau algebra, if it is unimodular Poisson, then its deformation quantization is
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again Calabi–Yau. Analogously, Felder–Shoikhet in [12, Corollary 1] and Willwacher–
Calaque in [39, Theorem 37] proved that for a symmetric Frobenius algebra, if it is uni-
modular Frobenius Poisson, then its deformation quantization is again symmetric Frobe-
nius. We use their results to prove Theorems 1.4 and 1.5.

The following proposition is a rephrase of the results of Section 4 forAŒŒ„�� (see Propo-
sitions 4.6 and 4.9).

Proposition 7.1. (1) Let AD kŒx1; : : : ; xn� and „ be a formal variable. For the alge-
bra AŒŒ„�� over kŒŒ„�� together with a bivector

�„ WD „ � �0 C „
2
� �1 C � � � 2 „ � X

2
�
AŒŒ„��

�
and an n-form

�„ WD „ � �1 C „
2
� �2 C � � � 2 „ ��

n
�
AŒŒ„��

�
;

the pair .�„; �0C �„/ gives on AŒŒ„�� a unimodular Poisson structure if and only if
.†�„;†

�1�n�„/ is a Maurer–Cartan element of the DG Lie algebra P.AŒŒ„��;�0/.

(2) Suppose AŠ D ƒ.�1; : : : ; �n/ with a volume form �Š0. Then for a bivector � Š
„
2

„ � X�2.AŠŒŒ„��/ and an n-form �Š
„
2 „ � X�.AŠŒŒ„��IA¡ŒŒ„��/, the pair .� Š

„
; �Š0 C �

Š
„
/

gives a unimodular Frobenius Poisson structure on AŠŒŒ„�� if and only if .†� Š
„
;

†�1�n�Š
„
/ is a Maurer–Cartan element of the DG Lie algebra Pı.AŠŒŒ„��; �Š0/.

For Calabi–Yau algebras and symmetric Frobenius algebras, we have similar results
(see (6.10)–(6.13)), due to de Thanhoffer de Völcsey–van den Bergh [8] and Terilla–
Tradler [32], respectively (the interested reader may refer to these two works for proofs).

Proposition 7.2. (1) ([8, Theorem 8.1]) Suppose A is an n-Calabi–Yau algebra with
multiplication �0 and volume form �0. Then an element �„ 2 „ � NC�2.AŒŒ„��/ and
an n-form �„ 2 „ � CC

�

n .AŒŒ„��/ such that .�0 C �„; �0 C �„/ gives a Calabi–Yau
structure on AŒŒ„�� if and only if .†�„; †�1�n�„/ is a Maurer–Cartan element of
the DG Lie algebra D.AŒŒ„��; �0/.

(2) ([32, Theorem 3.7]) Suppose AŠ is a symmetric Frobenius algebra with volume n-
form �Š0. Then an element �Š

„
2 „ � NC2.AŠŒŒ„��/ and an n-form �Š

„
2 „ �CCn�.A

ŠŒŒ„��/

such that .�Š0 C �
Š
„
; �Š0 C �

Š
„
/ gives a symmetric Frobenius algebra structure on

AŠŒŒ„�� if and only if .†�Š
„
; †�1�n�Š

„
/ is a Maurer–Cartan element of the DG Lie

algebra Dı.AŠŒŒ„��; �Š0/.

In fact, in both works, the authors also showed that the DG Lie algebras appeared in
the above proposition are quasi-isomorphic, up to a degree shift, to the negative cyclic
chain complex and the cyclic cochain complex, respectively.

7.1. Deformation quantization of Calabi–Yau Poisson algebras

In this subsection, we prove Theorem 1.4 (1).
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Recall that for a Poisson algebra A with bracket ¹�;�º, its deformation quantization,
denoted by A„, is a kŒŒ„��-linear associative product (called the star-product) on AŒŒ„��

a � b D a � b C �1.a; b/„ C �2.a; b/„
2
C � � � ;

where „ is the formal parameter and �i are bilinear operators, satisfying

lim
„!0

1

„
.a � b � b � a/ D ¹a; bº; for all a; b 2 A:

In [19], Kontsevich constructed, for A being the algebra of smooth functions on a Poisson
manifold, an explicit L1-quasi-isomorphism from the space of polyvector fields to the
Hochschild cochain complex of A, and therefore there is a one-to-one correspondence
between the equivalence classes of star-products and the equivalence classes of Poisson
algebra structures on AŒŒ„��. Thus via Kontsevich’s map, the Poisson bivector „� on AŒŒ„��
gives a star-product on AŒŒ„��, which is called Kontsevich’s deformation quantization.

Note that��.A/ and NC�.A/ are modules over X�.A/ and over NC�.A/, respectively, and
in [34, Conjecture 5.3.2], Tsygan conjectured that Kontsevich’s deformation quantization
also gives an L1-quasi-isomorphism of L1-modules between NC�.A/ and ��.A/. This
is known as Tsygan’s Formality Conjecture for chains, and is proved by Shoikhet in [29,
Theorem 1.3.1]. Shoikhet also conjectured that such an L1-morphism is also compatible
with the cap product, which was later proved by Calaque and Rossi in [3, Theorem A].

Recall that on ��.A/ and NC�.A/, we have the de Rham differential operator and
the Connes boundary operator, respectively. One naturally expects that the L1-quasi-
isomorphism constructed above respects these two operators. This is known as the Cyclic
Formality Conjecture for chains, and is proved by Willwacher in [38, Theorem 1.3 and
Corollary 1.4].

With the above results, one obtains the following theorem, due to Dolgushev [9, The-
orem 3] (see also [8, equation (1.3)]), whose proof is therefore only sketched.

Theorem 7.3. Let A D kŒx1; : : : ; xn� be a Poisson algebra. Then the deformation quan-
tization of A is Calabi–Yau if and only if A is unimodular.

Sketch of proof. Denote by U and S the L1-quasi-isomorphisms of Kontsevich and
Willwacher, respectively. Then the works [19,38] are equivalent to saying that there exists
a roof of L1-quasi-isomorphisms

†X�.AŒŒ„��/ Ë†�1�nCC
�

� .AŒŒ„��/

id�S

vv

U�id

((

†X�.AŒŒ„��/ Ë†�1�n��.AŒŒ„��/ŒŒu�� †C
�
.AŒŒ„��/ Ë†�1�nCC

�

� .AŒŒ„��/

of DG Lie algebras (see [8, §11.3] for a proof).
Recall that from Example 6.10 the volume forms in the three DG Lie modules are

the same on the homology level. Twisting the differentials with the corresponding volume
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forms in each of the DG Lie algebra in the above roof we get a new roof of L1-quasi-
isomorphisms. This then implies that we have an L1-quasi-isomorphism of DG Lie
algebras:

P
�
AŒŒ„��; �0

� ' // D
�
AŒŒ„��; �0

�
;

where the dotted arrow means that the quasi-isomorphism is given by a sequence of (roofs
of) L1-morphisms.

As a corollary, the Maurer–Cartan elements of P.AŒŒ„��; �0/ (up to gauge equiva-
lence) are in one-to-one correspondence, via the above L1-quasi-isomorphisms, with the
Maurer–Cartan elements of D.AŒŒ„��;�0/. In particular, by Propositions 7.1 (1) and 7.2 (1),
if A is unimodular Poisson, then A„ is Calabi–Yau, and vice versa.

Proof of Theorem 1.4 (1). It is proved by Calaque and Rossi in [3, Theorem 6.1] that we
have a commutative diagram

X�.AŒŒ„��/ //

U'

��

��.AŒŒ„��/

NC�.AŒŒ„��/ // NC�.AŒŒ„��/;

S'

OO

(7.1)

where the horizontal curved arrows mean the cap product. Since A is unimodular Poisson,
A„ is Calabi–Yau, and S maps the volume form of AŒŒ„�� to the volume form of A„ under
the Hochschild–Kostant–Rosenberg map, then we thus obtain the commutative diagram

HP�.AŒŒ„��/ Š //

Š

��

HPn��.AŒŒ„��/

Š

��

HH�.A„/
Š // HHn��.A„/

by Theorem 4.7 and the noncommutative Poincaré duality (6.5).

7.2. Deformation quantization of Frobenius Poisson algebras

We first rephrase Kontsevich’s Cyclic Formality Conjecture for cochains, published by
Felder–Shoihket [12, §1], in the case k0jn. Note that, in this case, the space of functions
O.k0jn/ Š AŠ WD ƒ�.�1; : : : ; �n/.

Recall that, by Cattaneo and Felder [4, Appendix], Kontsevich’s L1-quasi-isomor-
phism holds for the supermanifold case. Denote this quasi-isomorphism again by U. The
following is stated by Felder–Shoikhet [12] and proved by Willwacher–Calaque [39, The-
orem 2] (see also [12] for some partial results).

Lemma 7.4 (Formality for cochains). For AŠ D O.k0jn/ Š ƒ�.�1; : : : ; �n/, there exists
an L1-quasi-isomorphism of Lie modules:

V W
�
X�
�
AŠŒŒ„��IA¡ŒŒ„��

�
ŒŒu��; ud�

� '
��!

�
CC��

�
AŠŒŒ„��

�
; ı
�
:
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In other words, there exists an L1-quasi-isomorphism of Lie algebras:

U �V W †X�
�
AŠŒŒ„��

�
Ë†�1�nX�

�
AŠŒŒ„��IA¡ŒŒ„��

�
ŒŒu��

'
��! † NC�

�
AŠŒŒ„��

�
Ë†�1�nCC��

�
AŠŒŒ„��

�
:

Again we recommend [8, §11] for the formulae of the (Taylor) expansion of
U � V. Also, we mention that the first term of the above L1-quasi-isomorphism V is
the Hochschild–Kostant–Rosenberg map, which then preserves the volume forms on each
side. Therefore, we get a quasi-isomorphism

Pı
�
AŠŒŒ„��; �Š0

�
'Dı

�
AŠŒŒ„��; �Š0

�
as DG Lie algebras. As a corollary, we have the following theorem, due to Felder–Shoikhet
[12, Corollary 1] and Willwacher–Calaque [39, Theorem 37].

Theorem 7.5. For AŠ D ƒ�.�1; : : : ; �n/, the deformation quantization of AŠ is symmetric
Frobenius if and only if AŠ is unimodular Frobenius.

Proof of Theorem 1.4 (2). Recall that ��.AŠŒŒ„��/ and NC�.AŠŒŒ„��/ are Lie modules over
X�.AŠŒŒ„��/ and NC�.AŠŒŒ„��/, respectively. Applying Calaque–Rossi’s result (7.1) to AŠŒŒ„��,
we have the commutative diagram

X�.AŠŒŒ„��/ //

U'

��

��.AŠŒŒ„��/

NC�.AŠŒŒ„��/ // NC�.AŠŒŒ„��/:

S'

OO

Now consider the adjoint actions of the Lie algebras to the linear dual spaces of the Lie
modules (see Remark 6.8), then we obtain the commutative diagram

X�.AŠŒŒ„��/ //

U'

��

X�.AŠŒŒ„��IA¡ŒŒ„��/

S�'

��

NC�.AŠŒŒ„��/ // NC�.AŠŒŒ„��IA¡ŒŒ„��/:

Taking the homology in the above commutative diagram and applying the Poincaré dual-
ity, whose existence is guaranteed by Theorem 7.5, we obtain the commutative diagram

HP�.AŠŒŒ„��/ Š //

Š

��

HP��n.AŠŒŒ„��IA¡ŒŒ„��/

Š

��

HH�.AŠ
„
/

Š // HH��n.AŠ
„
IA

¡
„
/:

This completes the proof.

Proof of Theorem 1.5. By Shoikhet [30, Theorem 0.3] (see also [2, Theorem 8.6]),A„ and
AŠ
„

are Koszul dual algebras over kŒŒ„��, and hence the theorem follows from a combination
of Theorems 1.3, 1.4, and 6.9.
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7.3. Twisted Poincaré duality for Poisson algebras

For a general associative algebra, say A, it may not be Calabi–Yau, and therefore there
may not exist any Poincaré duality between HH�.A/ and HH�.A/. In [1], Brown and
Zhang introduced the so-called “twisted Poincaré duality” for associative algebras. That
is, for such A, keeping its left A-module structure (the multiplication) as usual, the right
A-module structure ofA is the multiplication composed with an automorphism � WA!A.
Denote such A-bimodule by A� , then Brown and Zhang showed that for a lot of algebras,
there exists a twisted Poincaré duality HH�.A/ Š HHn��.AIA� / for some n 2 N (cf.
[1, Corollary 5.2]). In this case, A is called a twisted Calabi–Yau algebra of dimension n.

Such a phenomenon also occurs for Poisson algebras. Namely, not all Poisson alge-
bras are unimodular, and hence there may not exist an isomorphism between HP�.A/ and
HP�.A/. In [22, 27, 41, 42], the authors studied the so-called twisted Poincaré duality for
Poisson algebras, similarly to that of associative algebras. They also studied some compar-
isons with twisted Calabi–Yau algebras. However, it would be very interesting to study the
relationships between the deformation quantization of twisted unimodular Poisson alge-
bras and twisted Calabi–Yau algebras, and obtain a theorem similar to Theorem 1.5 in this
twisted case.
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