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C* exponential length of commutators unitaries
in AH-algebras

Chun Guang Li, Liangqing Li, and Ivan Velazquez Ruiz

Abstract. For each unital C *-algebra A, we denote celcy(A4) = sup{cel(u) : u € CU(A)}, where
cel(u) is the exponential length of u and CU(A) is the closure of the commutator subgroup of
Up(A). In this paper, we prove that celcy(A4) > 2z provided that A is an AH-algebra with slow
dimension growth whose real rank is not zero. On the other hand, we prove that celcy(4) < 2x
when A is an AH-algebra with ideal property and of no dimension growth (if we further assume that
A is not of real rank zero, we have celcy(A4) = 27).

1. Introduction

Let A be a unital C*-algebra and U(A) its unitary group. We denote by Uy(A) the con-
nected component of U(A) containing the identity. A unitary element ¥ € U(A) belongs
to Up(A) if and only if u has the form

n
U= l_[ exp(ih;),
j=1
where n is a positive integer and /; is self-adjoint for every 1 < j < n. For u € Up(A4),
the exponential rank of ¥ was defined by Phillips and Ringrose [45] and the exponential
length of u was defined by Ringrose [46]. Recall the definition of C* exponential length
as follows.

Definition 1.1. For u € Uy(A), the C* exponential length of u, denoted by cel(u), is
defined as

k k
cel(u) = inf{ D il cu = expling). hj = h;f}.
j=1 j=1
Define
cel(A) = sup {cel(u) Tu € UO(A)}.

From [46], cel(u) is exactly the infimum of the lengths of rectifiable paths from u to
14 in U(A). Equivalently, cel(u) is also the infimum of the lengths of smooth paths from
utoly.
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Exponential rank and exponential length have been studied extensively (see [33,41-43,
46,50,51]) and they have played important roles in the classification of C *-algebras (see
[11,17,32,34,35]).

Phillips [41] proved that the exponential rank of a unital purely infinite simple C*-
algebra is 1 + ¢ and its exponential length is 7. Lin [30] proved that for any unital C *-
algebra A of real rank zero, u € Uy(A), and & > 0, there exists a self-adjoint element & € A
with ||| = 7 such that

||u —exp(ih) ” <e.

This means that cel(u) < 7. Phillips [43] showed that when A does not have a real rank
zero, even for A = M, (C([0, 1])), cel(A) can be oo.

Definition 1.2. We denote by CU(A) the closure of the commutator subgroup of Uy (A4)
and define the C* exponential length of CU(A) to be

celcy(A) = sup {cel(u) ‘u € CU(A)}.

In the study of the classification of simple amenable C *-algebras, one often has to
calculate the exponential length of unitaries in CU(A). Pan and Wang [39] constructed a
simple Al algebra (inductive limit of M, (C([0, 1]))) A such that celcy(A) > 2. Apply-
ing Lin’s Lemma 4.5 in [36], one has that celcy(A) is exactly 2.

Definition 1.3. An AH-algebra A is the C*-algebra inductive limit of a sequence A =
Km(Ap, ¢nnt1) With Ay = @7 P jMy, j)(C(Xy, ) Paj, where [n, j] and 1, are
positive integers, X, ; are compact metrizable spaces, and P, ; € M[, ;1(C(X,,;)) are
projections. In this paper, we will only consider unital AH-algebras, and hence we will

always assume that all the maps ¢, ,+1 are unital.

At first look, the class of AH-algebras is a quite special class of C*-algebras, but
remarkably, many important C *-algebras arising from the study of foliation manifolds
and dynamical systems have been proved to be in the class of AH-algebras. These C *-
algebras include the foliation algebra of Kronecker foliation, two-dimensional and higher-
dimensional non-commutative tori (see [6,31]), and the cross product C *-algebras of a
minimal dynamical system over a finite-dimensional space provided that the image of
the Ko-group in the affine space of tracial state space is dense (see [38]). In fact, it is
a conjecture that all stably finite simple separable nuclear C*-algebras are the inductive
limits of sub-algebras of the above A,’s (see [13,37]). Let us point out that the class
of AH-algebras plays an important role in the classification programs (see [7-12, 14—17,
26-29,31]).

In [36], Lin has obtained the following two main theorems (we rephrase the theorems
in the language of AH-algebras).

Theorem A ([36, Theorem 4.6]). Suppose that A is a Z-stable simple C*-algebra such
that A @ UHF is an AH-algebra of slow dimension growth (this class includes all simple
AH-algebras of no dimension growth and the Jiang—Su algebra Z). Then celcy(A) < 2.
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Theorem B ([36, Theorem 5.11 and Corollary 5.12]). For any unital non-elementary
simple AH-algebra B (i.e., B is not isomorphic to M,(C)) of slow dimension growth,
there exists a unital simple AH-algebra A of no dimension growth such that

(Ko(A). Ko(A) 4. K1(4)) = (Ko(B). Ko(B)+. K1(B)) and celeu(A) > .

It is proved in [49] that the class of simple unital non-elementary AH-algebras with no
dimension growth and the class of simple unital non-elementary AH-algebras with slow
dimension growth are the same (see also [11,17,34]).

Our main theorem in this article is that, for all (not necessarily simple) AH-algebras
A with slow dimension growth, if A is not of real rank zero, then celcy(A4) > 2. This
theorem greatly generalizes and strengthens Lin’s Theorem B above. If we further assume
A to be simple, combining with Lin’s Theorem A above, then celcy(A4) = 2x. This gives
the complete calculation of celcy(A) for simple AH-algebras A of slow dimension growth
(note that for the real rank zero case, it is already known by [30] that cel(A4) = 7). We will
extend such a calculation of celcy(A4) of simple AH-algebras A to the AH-algebras of no
dimension growth with ideal property. We will also prove that celcy (M, (Z)) > 27 for the
Jiang—Su algebra Z. Combining with Lin’s Theorem A, we have celcy (M, (Z)) = 2.

In Section 2, we will introduce some notation and some known results for preparation.
In Section 3, we will prove our main theorem. In Section 4, we will deal with AH-algebras
with ideal property. In Section 5, we will calculate celcy (M, (2)).

2. Notation and some known results

First, we give some useful lemmas.

Proposition 2.1 ([39, Lemma 2.5]). Let u € C([0, 1]) be defined by u(t) = exp(i«(t)).
Then

cel(y) = min max |a(¢r) — 2kx]|.
( ) kGZtE[O,l]l () |

Proposition 2.2 ([39, Corollary 3.5]). Let H be a rectifiable path in U(M (C([0, 1]))).
For any ¢ > 0, there exists a piecewise smooth path Fy in U(My (C([0, 1]))) such that
(1) |Hs — Fs|loo < e forall s € [0,1];
(2) |length (Hy) — length (Fy)| < &;
(3) Fs(t) has no repeated eigenvalues for any (s,t) € [0, 1] x [0, 1].
Moreover, if for any t € [0, 1], Hy(t) has no repeated eigenvalues, then F can be chosen

to satisfy that Fy(t) = Hy(t) forallt € [0,1].

Remark 2.3. In Proposition 2.2, if Hg(0) and H(1) have no repeated eigenvalues, re-
spectively, then F' can be chosen to satisfy that F5(0) = H;(0) and F;(1) = Hs(1) for all
s €[0,1].
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Let Y be a compact metric space. Let P € My, (C(Y)) be a projection with rank(P) =
k < k. For each y, there exists a unitary u, € My, (C) (depending on y) such that

1

P(y):u; 0 Uy,

0

where there are k 1’s on the diagonal. If the unitary u, can be chosen to be continuous
in y, the projection P is called a trivial projection. It is well known that every projection
0 € My, (C(Y)) is locally trivial. That is, for each yo € Y, there exists an open set U,
containing yo such that one can choose the above u, to be continuous on Uy,. If P is a
trivial projection in My, (C(Y)), we have

PMy, (C(Y)) P =~ M (C(Y)).
Following the notations in [39], we give the following definitions.
Definition 2.4. Given a metric space (Y, d), we write

Y=Y xYx---xY.
N e’

k
We define an equivalent relation on Y* as follows: two elements (X1, X15 + -y XK),
(1. Y2. ..., yx) € Y* are equivalent if there exists a permutation o € S such that
Xg@) = i foreach 1 <i < k. Define
Py =Y¥) ~
with the metric
d([x1,x2, ..., %], V1, ¥2, .., yk]) = min max [x; — yo(j)l-

oS, 1<j<k

Let us further assume that ¥ is compact. Let F¥Y = Hom(C(Y), M (C));, the space
of all unital homomorphisms from C(Y) to My (C). Then for any ¢ € F¥Y, there are k-
points y1, y2,..., yr (with multiplicity) and a unitary u € My (C) such that

F )
¢(f) =u 02) . u* forall f € C(Y).

S ()

Define Sp(¢) to be the set {y1, y2,..., Yx} (counting multiplicity, see [17]). Considering
Sp(¢) as a k-tuple, (y1, y2, ..., V), it is not uniquely determined since the order of k-
tuple is up to a choice; but as an element in P*Y | it is unique. Therefore, we write Sp(¢) €
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P*Y . Then F¥Y 5 ¢ > Sp(¢) € PXY gives a continuous map I1: FKY — PKy . (Note
that F¥Y is endowed with the standard topology so that for any ¢1, ¢, ..., ¢n.... € FXY
and ¢ € FXY, ¢, — ¢ if and only if, for any f € C(Y), ¢n(f) = ¢(f).)

Proposition 2.5 ([39, Remark 3.9]). Let F; be a path in U(My (C([0, 1]))) such that F(t)
has no repeated eigenvalues for any (s,t) € [0,1] x [0,1]. Let A : [0,1] x [0, 1] — Pk 1
be the eigenvalue map of Fs(t), that is, A(s,t) = [x1(s,1), x2(s,1), ..., xr(s,1)], where
{x; (s, t)}f-‘=1 are eigenvalues of the matrix Fy(t). Then there are continuous functions
f1s f2ee ooy S 1 [0,1] x [0, 1] = S such that

A(S’t) = [f](S,Z), fZ(S’t)7 D) fk(S,l)].

For each (s,t) € [0, 1] x [0, 1], there exists a unitary Us(t) such that

Fy(t) = Ug(t) diag [ fi(s. 1), fa(s.1), ... fie(s.0)]Us ().

Fix 1 <i < n. For each (s,t) € [0, 1] x [0, 1], let p; (s, ) be the spectral projection
of Fs(t) € M,,(C) with respect to the eigenvalue f;(s,t) (of Fy(t)); this is a well-defined
rank one projection continuously depending on (s, ), since the continuous matrix-valued
function Fy(¢) has distinct eigenvalues. Hence Fg(z) = Zle fi(s, t)pi(s,t). Since all
projections in M, (C ([0, 1] x [0, 1])) are trivial, it is straightforward to prove that the uni-
tary U (¢) above can be chosen to depend on s and ¢ continuously.

Proposition 2.6 ([39, Lemma 3.11]). Let Fy be a path in U(M,(C([0, 1]))) and f,' (1),
SE(@), ..., fI1(¢t) be continuous functions such that

Fy(1) = Us(t) diag [ £, (1), (@), ... (O] Us(0)",

where U (t) are unitaries. Suppose that for any (s,t) € [0,1] x (0, 1), fi(t) # fsj @) if
i # j.Then
length, (Fy) > [max {length ()},
<i<n

where f} is regarded as a path in U(C([0, 1])).

Proof. If the unitary Fj satisfies the stronger condition that for any (s, ) € [0, 1] x [0, 1]
andi # j, fi(t) # fsj (1), then this is Lemma 3.11 of [39]. To prove the general case one
can apply Lemma 3.11 of [39] to Fil[o,1]x[s,1—5] (Whose length is at most length, (Fy))
and note that length, () = supg{length, (f{ |{0.1]x[5.1-6]) }- |

Definition 2.7 ([3, Definition 1.1]). Leta =a* € PM,,(C(X)) P, where X is a connected
compact metric space. For each x € X, the eigenvalues of a(x) € P(x)M,(C)P(x) =
M, ni(py(C) form a set of rank(P) real numbers (with multiplicity), which could be
regarded as an element of P*R, where k = rank(P), and we will denote this element
by Eg(a)(x). On the other hand, the topology on the space R is given by the linear order
on R which induces a natural continuous map from P¥R to R¥, by labeling the k-tuple in
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the increasing order. Namely, for any [x1, x2,...,X¢] € PKR withx; € R (for 1 <i <k),
define

a(fx1. x2, ..., xk]) = (Xo(1): X6(2): - - -+ Xo(k)) € RF,
where o is a permutation of {1,2,...,k} and x5(1) < Xg(2) < -+ < Xg (k). This « identifies

PR as a subset of R¥. The map x — Eg(a)(x) € P¥R c R¥ gives k continuous maps
from X to R. We will call these k continuous maps the eigenvalue list £ (a) of a. Namely,
the eigenvalue list of a is defined as

E(a)(x) = {h1(x), ha(x), ..., hg(x)}.

where &; (x) is the ith lowest eigenvalue of a(x), counted with multiplicity.
The variation of the eigenvalues of a is denoted by EV(a) and is defined as

EV(a) = max {max |h; (2) —h,-(s)|}.
1<i<n \t,seX
Here, when we use Eg(a) : X — P¥R and E(a) : X — R, we have E(a) =t 0 Eg(a),
where ¢ : PKR — R¥ is the natural inclusion.

Remark 2.8. (1) In this paper, we will often consider a € A with |la|| < 1. Then Sp(a) C
[0, 1]. This element a naturally defines a homomorphism ¢ : C([0, 1]) — A by ¢(h) = a,
where 4 : [0, 1] — [0, 1] is the identity function: h(t) = ¢. Let A = PM,(C(X))P as in
Definition 2.7. Then E(a) is a map from X to [0, 1]¥ (where k = rank(P)) and Eg(a) is
a map from X to P¥[0, 1].

(2) Let P, Q € M,(C(X)) be projections which satisfy P < Q. An element a €
(PM,(C(X))P)+ can also be regarded as an element in QM, (C(X))Q. The eigen-
value list Eppr, (c(x)y)p(a) of a as an element in PM,(C(X))P and the eigenvalue list
Eom,cx)o(a) of a as an element in QM,,(C(X))Q are related in the following way.
Suppose rank(P) = k and rank(Q) = [. If

Epm,cxyp(@) = {hi(x), ha(x), ... hg(x)},

then
EQMn(c(X))Q(a) = {0, ey 0, hl(x), hz(x), ey hk(x)}.
I-k

In particular, the eigenvalue variation of a positive element a € PM,(C(X))P C
OM,(C(X))OQ is independent of the choice of PM,,(C(X))P or QM,(C(X))Q. (This
is not true for general self-adjoint elements.) So when we discuss eigenvalue list or eigen-
value variation of a positive element @ in an upper left corner sub-algebra PM, (C(X)) P
of OM,,(C(X))Q, we do not need to specify in which algebra the calculations are made;
that is, we will omit those / — k constant O functions from our eigenvalue list.

(3) Let P, Q € M,(C(X)) be projections which satisfy P < Q. Suppose that a €
PM,(C(X))P C OM,(C(X))Q is a (not necessarily positive) self-adjoint element such
that none of the functions in the eigenvalue list £(a) of a (considered as in PM, (C(X))P)
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is crossing over point 0; that is, they are either non-positive functions or non-negative func-
tions. Then we can also ignore in which algebra (in the corner sub-algebra PM,(C(X))P
or in the algebra QM,,(C (X)) Q) the calculations are made when we calculate the eigen-
value list and the eigenvalue variation.

More precisely, if

Epm,coxyp (@) = {hi(x), ... hi(x), hip1(x), ... hi(x)}

with /1; (x) <0 < h;4+1(x) for all x € X, then

Eom,cxyo(@) = {hi(x),....hi(x),0,...,0,hit1(x), he(x)}.
I—k

In this case, we will also omit those / — k constant O functions from our eigenvalue list

for Egm,(cx)o(@)-
In general, for a self-adjoint elementa € PM,(C(X))P C OM,(C(X))Q, one has

EVeum,coxyyp (@) = EVou,cx)o(a).

Definition 2.9. If A = lim(4, = @f’;l P, j My 1(C(X0,7)) Pn,j, $n,m) is a (non-zero)
unital inductive limit system with simple limit, then the following slow dimension growth
condition was introduced by Blackadar et al. [4]:

{dim(Xn,j) + 1} —o

lim max
rank( Py, ;)

n—>oQ ]
For a general AH inductive limit system, we will use the following slow dimension growth
condition: for any summand Af, = Py M, i1(C(Xn,i)) Pn,; of afixed 4,,

A ) T gt 1, 0} =0
{rank (¢Il1’,]m(1A;’)) ) ¢n,m( Aﬁ,) 75 s

lim max
m—>00 i,j

where ¢;sz is the partial map of ¢y, from A’ to Aj,. This notion of slow dimension
growth condition is used in most literatures (see [5]). In particular, in this definition, it is
automatically true that lim, o rank(Py,, ;) = oo.

An inductive limit system A = lim(@f":l P, My, i1(C(Xn, ;) Pr,j. n,m) is called
of no dimension growth if sup,, ; dim(Xy,;) < 4o0. For a general non-simple inductive
limit system, no dimension growth does not imply slow dimension growth, as it does not
automatically imply that lim,_, 4 o rank( Py, ;) = oo.

We avoid to use the more general concept of slow dimension growth introduced by
Gong [15] which does not imply that lim, o rank(Py,, ;) = oo, since, in this case, our
main theorem is not true (see Proposition 3.11).

Notation 2.10. For inductive limit

b
A=1im (4, = @D A, $nm).
i=1
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where A%, = Py i My i)(C(Xn.i)) Pni, we will use q)ﬁ,jm Al — A}, to denote the partial
map 7; © $n,m| i, where ;1 Ay — A3, is the projection map from A4, to its jth block.

Let us also denote 77 © ¢p m by ¢, »7 which is the homomorphism from A4, to A{;,.

Proposition 2.11 ([5, Corollaries 1.3 and 1.4]). Let A = 1i_n)1(A,,, On.m) be a C*-algebra
inductive limit system. Assume that each Ay, is of the form

kn kn
An =P AL = B PuiMpi)(C(Xn)) Pri.
i=1 i=1
where ky, and [n,i] are positive integers, Xy, ; are connected compact Hausdorff spaces,
and My, ;1 are [n,i] x [n,i] matrices. If A has slow dimension growth (see [5, Corol-
lary 1.4]) or has no dimension growth (see [5, Corollary 1.3]), then the following are
equivalent:

(1) A has a real rank zero;

(2) for any a € (Ay)+ with ||la|| = 1 and & > 0O, there exists an m > n such that for
any block
Ay = PiMip j)(C(Xm ) Pj. 1 =) <k,
one has
EV (¢,74(a)) <.
In general, (1) implies (2) is always true. Predated [5], it was proved in [3] that if
dim X, x <2 for all n and k, then (2) implies (1).
The following proposition and remark are to discuss how the eigenvalue functions
behave under a homomorphism from a single block to a single block.

Proposition 2.12 ([8, Section 1.4]). Let ¢ : OM;, (C(X))Q — PMy, (C(Y))P be a uni-
tal homomorphism, where X, Y are connected compact metric spaces, and P, Q are
projections in M, (C(X)) and My, (C(Y)), respectively. Assume that rank(P) = k, which
is a multiple of rank(Q) = [. Then for each y € Y, ¢(f)(y) only depends on the value
of f € OM;, (C(X))Q at finite many points x1(y), x2(¥), ..., Xx/1(y), where x; (y) may
repeat. In fact, if one identifies Q(x;(y))M;, (C)Q(x;(y)) with M;(C), and still denotes
the image of f(x;(y)) in M;(C) by f(x;(y)), then there is a unitary U, € My, (C(Y))
such that

[ f 1 ()ix
S Oe2(¥))ixi

¢(f)(y) = P(»U, Sk 1())ixa Uy P().
0

- 0_

Obviously, U, depends on the identification of Q(x;(y))M;, (C)Q(x;(y)) and M;(C).
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We denote the set (possibly with multiplicity) {x1(y), x2(y),...,xk/1(y)} by Sp(¢]y).

Remark 2.13. One can regard Sp(¢|y) := [x1(y), x2(¥), ..., Xk/7(¥)] as an element in
P*/'X ThenY 5y Sp(¢ly) € P*/1X defines amap ¢* : Y — PK/IX.

Let X, Y, Z be connected compact metric spaces, and let« : ¥ — P*X and B:Z—
P'Y be two maps. Then « naturally induces amap & : P'Y — P*! X . We will call the map
@op:Z — Pk X the composition of o and 8 and denote it by o o 8. Namely, if a(y) =
[01 (7). 2(9), .. ok (y)] € PEX forall y € Y, and B(2) = [B1(2), B2(2),.... Bi(2)] €
P! Y, forall z € Z, then « o § is defined as follows:

aofB(z) = [ai(ﬁj(z)) 1 <i<k 1<y 5[] e PK'X forallz € Z.

We have the following facts.

(a)Let$: OM;, (C(X))Q — PMy, (C(Y)) P,y : PMy, (C(Y)) P — RMyn, (C(Z)R
be two unital homomorphisms. Then (¥ o ¢)* = ¢p* o y* : Z — P' X, with¢p* : ¥ —
PSX and ¥* : Z — P'Y, where s = rank(P)/ rank(Q) and ¢ = rank(R)/ rank(P).

(b)Letg: OM,,(C(X))Q — PM,,,(C(Y)) P (rank(Q) =k, rank(P) = k) be a unital
homomorphism and let f € (QM,(C(X))Q)s.q- Using the above notation, we have

Eg(¢(f)) =Eg(f)o¢*: ¥ — P¥R,

see Definition 2.7. Let us write the eigenvalue list E(f) : X — R¥ (of f)as

E(f)(x) = {h1(x) < ha(x) < -+ < hg(x)}

with /1; : X — R being continuous functions for all i. It follows that

Eg (4()) () = [(h1 0 $™) (), (h2 0 ¢™) (), - .., (hx 0 ¢™)(»)] € PFR.

For each 1 <i <k, we write the element (; 0 ¢*)(y) € P'R as element (8i1(¥).8i2(»),

. 8i1(y) € R’ in increasing order (gi,;(y) < gi,j+1(»)). Then g; ; : Y — [0, 1] are
continuous functions with rang(g;, ;) C rang(h;). Also we have Eg(¢(f))(y) = [gi,; (V);
1 <i <k, 1<j <I]. (Note that, in this calculation, we did not get a precise order of all
the eigenfunctions g; ;, so we use Eg(¢(f))(y) instead of E(¢(f))(»).)

3. Main theorem

First we give some useful results.
. . .
Lemma 3.1. [f a unitary u satisfies |[u — 14| < & < 2, then cel(u) < Ze.

Proof. For a € (0, ), a direct calculation shows that | exp(ia) — 1| = 2sin(5) and
{exp(if) : 0 € [~a,a]} = {z € S': |z —1] <|exp(ia) —1|}. By |lu — 14| <& <2,
we have u = exp(ih) with & = h* and ||h|| < 2arcsin(5). Since arcsin(x) < Zx for
0<x< % it follows that cel(u) < 2arcsin(5) < Ze. L]
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Corollary 3.2. Ifu,v € Uy(A) and |[u —v|| < & < 2, then | cel(u) — cel(v)| < Fe.

Proof. Tt is easy to see that | cel(u) — cel(v)| < cel(u*v) and ||[u*v — 14| = ||lu — V|| <
& < 2. Then the conclusion follows from Lemma 3.1. ]

Theorem 3.3. Suppose that u € Uy(M,(C([0, 1]))) has distinct eigenvalues a1 (1), a2 (t),
o0y (1), where ay, o, . .., 0y 1 [0,1] > S are continuous and regarded as elements in
Uo(C([0, 1])). Then
cel(u) > max cel(o;).
1<j=n

Proof. Let H(-) be a unitary path from u to 1. Applying Proposition 2.2, for any ¢ > 0,
we may assume that there exists a piecewise smooth path Fy(-) such that

(1) ||Hs — Fsl|loo < & foralls € [0, 1];
(2) |length(H) — length (Fy)| < ¢;
(3) Fs(¢) has no repeated eigenvalues for any (s,¢) € [0, 1] x [0, 1];

@) A(F1(t)) = [a1(t), a2(2), ..., an(t)], where A(-) denotes the eigenvalue list of
an n X n matrix.

By Proposition 2.5, there exist continuous functions 81 (-, ), B2(-,*), ..., Ba(:, ) such that
A(Fs(@)) = [B1(s. 1), Ba(s,1), .., Bu(s, )]
Then
A(Fi(1)) = [a1(t).a(t), ...,an(®)] = [B1(1.2), B2(1,0). ..., Bu(L.1)]

and
A(FO(Z)) = [ﬁl(O’ t)v ﬂZ(O»t)v D) ﬂn(o’ Z)]

Foreach 1 < j < n, we have
[B;0.0) =1 = max [8;0.0) = 1] = [Fi() = Hs()] <.
<j<n
By Lemma 3.1, we have
cel (B;(0,4) < %8, 1<j=<n

Hence,
cel (Bj(1,-)) < cel (B;(0,")) + lengthy (B (s,-)), 1=<j <n.

By Proposition 2.6, we have
length, (Fy) = max {lengthy (B (s,7)}.
It follows that

b T
length, (Fs) > Joax {cel (B;(1,7)} — &= max cel(erj) — 5& n
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Applying the above theorem, we will prove the following result.

Theorem 3.4. Let u € M, (C([0, 1])) with u(t) = exp(iH(t)), where the eigenvalue list
of H,
E(H)(t) = {h1(t),h2(1), ... . ha (1)},

satisfies that
a <hi(t) <hy(t) <--<hy(t) <a+2m

for some o € R. Then

1 > 1 ihi(- = i hi(t) —2km]|.
cel(u) = max cel (exp (if(-))) = max min max |h; (1)~ 2kx|

Proof. By [47, Corollary 1.3], without loss of generality, we may assume that
H(t) = diag [hl(t), ha(t), ... ,h,,(t)].
Denote a := min;efo,1] 71 (t).
Case 1. ¢ < a. Forany 0 < ¢ < min{a — «, 1}, choose ¢;,1 = 1,2,...,n, satisfying that
—e<EI <& <<y <O

Then
a<a—e<hi(t)+e < - <hy(t)+e, <21 +a.

Letg;(t) = h;(t) + ¢j, G(t) = diag[g(¢), g2(¢), ..., gn(?)], and v(¢) = exp(iG(¢)). It
is obvious that

| diag [exp (ig1(0)) — exp (i1 (1)), ... exp (ign (1)) — exp (i (0))]|
max {H exp (ig;(t)) —exp (ih (1)) H}

1<j=<n

= max {|exp(ig;)— 1|}

1<j=n

. &j
= max {2|sin| =
1<j<n 2

max. {lejl} <e < 1.

[v(r) —u(@)]

A

By Corollary 3.2, we have

|cel (v(+)) —cel (u(-))| <

o

E.

Notice that

|hj(t)+8j—271k|zihj(l)—zﬂk|—|8j|
> }h;(l)—an’—e foralll <j <n, k € Z.
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It follows from Theorem 3.3 and Lemma 2.1 that

cel (v()) > lrsnjaé(n cel (exp (igj (t))) = 121;1;; }Cnel% trer%(a)lﬁ] \hj ) +¢& — 2nk|

v

max min max ‘hj(t)—2nk} —e.
1<j<n keZ t€[0,1]

Hence we have

M4
1(u() = i hi(6) —2mk| — e — Ze.
e (u( ))_lglja;(nllgleHthIel%(z)lﬁ]} i T { ¢ 28

Case2.a =a. Fixe € (0,1). Forany 1 < j <n,set g;(t) = max{h;(¢),« + ¢}. Define
G(t) = diag[g1(t),...,gn()] and v(¢) = exp(i G(2)). It follows that

a<a+e<g(t)<---<gyt)<2m+a forallte][0,1].
By the proof of Case 1, we have
1(v(-)) > 1 igi()))-
ce (v( )) > 1??;1(:6 (exp (lg]( )))

Since |g;j(t) — hj(t)] < e < 1forall t € [0, 1], we also have [Jv(-) —u(:)|| <e < L
Applying Corollary 3.2, we have

|cel (exp (ig_/(-))) —cel(exp (ihj(-)))| < %5, foralll < j <mn,

and

| cel (v(+)) —cel (u(-))] =

E.

YR

This means that
cel (exp (igj(-))) > cel (exp (ihj(-))) — %8, foralll < j <n,
and
cel (u(+)) = cel (v(+)) — %s.
Hence

cel (u()) > max cel (exp (ihj(-))) — e

1<)

= max min max |h,~(t) —2nk| — me. |
1<j<nkeZ te[0,1]

Corollary 3.5. Let X be a connected compact metric space. Let P € M,,(C(X)) be a
projection with rank(P) = n and let u € PM,,(C(X)) P be with u(x) = exp(iH(x)),
where the eigenvalue list of H,

E(H)(x) = {h(x), hz(x). ... hu(x)},

satisfies
o <hi(x) <hy(x)<---<hy(x) <a+2m

for some o € R. Then

1(u) > i hj(x) —2km|.
eel) 2 max, pug g Iy () =2k
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Proof. Fix j € {1,2,...,n},andlet xo € X and x; € X be a minimum point and a max-
imum point of {/;(x)}xex, respectively. Choose an embedding ¢ : [0, 1] — X satisfying
that ¢(0) = x¢ and ¢(1) = x;. Then

i hj(x) —2km| = mi hi(u(t)) — 2km|.

i ma [y () — 2k = in ma [By (1)) — 2er
Note that cel(u) > cel(t*(u)), where * : PM,,(C(X)) P — P |jo,11Mm (C([0,1])) P |[0,1] =
M, (C([0,1])) is given by ¢*(f)(t) = f(¢(z)). (Note that any projection in M,,(C ([0, 1]))
is trivial, s0 Pljo.11Mn(C (0. 1)) Plio,1) = Mu(C([0. 11)).) Applying Theorem 3.4, we
get the corollary. ]

We shall use the following lemma and its corollary.

Lemma 3.6. Let f1, f>,..., fu be a set of continuous functions from X to [0, 1], where X
is a connected compact metric space. Let [c,d] C [0, 1] be a non-degenerated subinterval.
Suppose that there exists no 1 < j < n such that [c,d] C rang(f;). Let hy(x) be the kth
lowest value of { f1(x), f2(x),..., fu(x)} forany 1 <k <n and any x € X. Then there
does not exist 1 <k < n such that [c,d] C rang(hy).

Proof. If there exists some 1 < k < n such that [c,d] C rang(hy), we can choose x,y € X
suchthat hg(x) =cand hg(y) =d.Let A= {j : f;(x) <c}, B={i: fi(y) = d}. Since
hi(x) = c, we have |A| > k. Similarly, from A (y) = d, we have |B| > n —k + 1. But
|A U B| < n. There existsa p € AN B. Thatis, f,(x) < c and f,(y) > d. Since f, is
continuous, we have [c, d] C rang( f,), a contradiction. [

Corollary 3.7. (a) Let ¢ : PM,,(C(X))P — QM,,(C(Y))Q be a unital homomorphism,
where X, Y are connected compact metric spaces, and let a € PM,,(C(X))P be a self-
adjoint element such that E(a) = (hy, ha, ..., hu(p)) and E(¢(a)) = (f1, f2. ...,
Jrank(0)) With h; : X — Roand fi : Y — [0, 1] being continuous functions. Let [c,d] C R
be an interval. Then if there is a k such that [c,d]| C rang( f), then there is an i, such that
[c,d] C rang(h;). Consequently, EV(¢(a)) < EV(a).

(b) Let p1, p» € PM,(C(X))P be two orthogonal projections and let a; €
pPiM,(C(X))p1, az € paM,(C(X))pa be two self-adjoint elements, where X is a con-
nected compact metric space. Then EV(a; + a;) < max{EV(a;),EV(as)}.

Proof. (a) By Remark 2.13 (b), there are continuous functions {g; ; : 1 <i <rank(P), 1 <

J <rank(Q)/rank(P)}, with g; ; : Y — R, such that for each y € Y, as elements in
Prank(Q)]R’

[f1, f25 s frank(o)] = [g,-,j :1 <i <rank(P), 1 <j < rank(Q)/rank(P)]

and such that rang(g;,;) C rang(h;). Then part (a) follows from Lemma 3.6.
(b) Part (b) also follows from Lemma 3.6. ]
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Lemma 3.8. Let A = h_r)n(An, ¢n,m) be a C*-algebra inductive limit system. Assume that
each Ay, is of the form

kn

kn
Ay = @ Al = @ Pr i My 1) (C(Xn,i)) Pri.
i=1

i=1

where k, and [n,i] are positive integers, X, ; are connected compact metric spaces, and
My, ;1 are [n,i] X [n,i] matrices. Suppose condition (2) of Proposition 2.11 does not
hold for the inductive limit system (in the case of slow dimension growth or no dimension
growth, this is equivalent to the condition that A is not of real rank zero). There exists an
interval [c,d] C [0, 1], a positive integer n, and x € (Ay)+ with ||x| = 1 such that for
any m > n, ¢p m(x) admits the following representation:

km

Snm () = PN, € Am = €D Ponk Mim ) (C(Xn 1) P 3.1
k=1

and there exist 1 < k(m) < k,y and 1 < i(m) < rank(Py, x(m)) such that

[c.d] C rang (hf((r;"))),

where hf(m) (2) is the jth lowest eigenvalue of y,’c"(m) (), for 1 < j < rank(Pp k(m)), and
rang(h) is the range of function h.

Proof. Since condition (2) of Proposition 2.11 does not hold, there exist ¢ > 0, a positive
integer n, and x € (A4,)+ with ||x|| = 1 such that for any m > n and ¢, ,,(x) admit-
ting representation (3.1), there exist 1 < k(m) < ky,, 1 < i(m) < rank(Pp, k(m)), and
ti(m)»> Si(m) € Xm,k such that

k
|hi((r:zn))(ti(m)) hl((m))(si(m))| Z &,

where hl.c(m)(t) is the i th lowest eigenvalue of yl’c"( )(t) for 1 <i <rank(P, k(m)) Form >

n, we denote by I ( ) the closed interval with end points hl(m) (Si(m)) and hl(m) (tiom))-
k(m)

We also denote by J the closed interval satisfying

k(m) k(rn)

k(m) Ik(m) &
| i(m) -2

and |J

middle point of J i(m)

= middle point of I

Choose a positive integer N such that % < &. We denote a, = ﬁ for0 < p <N.

Since |J]E,(n”;)| > s and Jllzr(n")l) C [0, 1] for all m > n, then there exista0 < p < N and a

subsequence m; such that

k(mj) .
Jl(m’) forall j > 1.
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Denote I = [a, — §.ap] and J = [ap,ap + %], then I C Il.k(f:;;) orJ C Il.k(fn";g) for each

j > 1. Without loss of generality, we assume that I C Iﬁ%_g) for each j > 1. Otherwise,
we shall choose a subsequence of {m; }f’il.

We have proved that the conclusion holds for m; for each j > 1. For m > n, there
exists j > 1 such thatm;_; <m < m;(mo = n). We consider

Lk(m;
¢m,r£tr:l]) 2 Pt My 1 (C (X)) Pt = P kmp) Mim; de(m )1 (C (X k() P km))
the homomorphism which is the composition of the restriction of ¢y, on the /th block
of A, and the quotient map from A,,; to the k(m;)th block of Ay; .
We claim that there exist 1 < k(m) < k, and 1 < i(m) < rank(Py, x(n)) such that

I C rang (hf((;ln))),

where hf(m)(t) is the i th lowest eigenvalue of y,’c”(m)(t). Otherwise, for each 1 < k < ky,

and 1 <i < rank(Pp, ), rang(hf.‘) does not contain the interval /. By Corollary 3.7, we
conclude that there existsno 1 < k <k, yand 1 <i < rank(ij,k) such that

I C rang(gf‘),
where g{‘ (2) is the ith lowest eigenvalue of y,’:j (), a contradiction. |

In the proof of the following theorem, we will use, from Notation 2.10, ¢; ,i, =
7j © Pn,m, Which is the homomorphism from 4, to Aj,, where 7w Am —> A} is the
projection map to the jth block.

Theorem 3.9. Let A be a unital AH-algebra with slow dimension growth condition which
is not of real rank zero. Then
celcy(A) > 2m.

Proof. Let A = lim(A,, ¢n n+1) be an AH-algebra with

th
An = @D P, j M, 1 (C (X)) P,
j=1

By [2], without loss of generality, one may assume that X, ; are finite simplicial com-
plexes (see also [10, Theorem 2.1]). Furthermore, we can assume that each X, ; is con-
nected.

Since A4 is unital, there is a ko such that for all k > ko, ¢g k+1(14,) = 14,,, and
@k 00(1a,) = 14. Without loss of generality, we assume ko = 1. For any ¢ > 0, choose
an integer L such that ZT” < ¢e. Since A has slow dimension growth, it follows from a
standard argument by using the stability property of vector bundles (see [23, Chapter 9,

Theorem 1.2]) that there exist a positive integer # and a full projection p € A, such that

Llp] < [la,] < L1[p] (3.2
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for some positive integer L;. Note that A is not of real rank zero. We know that
On,00(P) X APn o(p) is stably isomorphic to 4, and hence

®n,00(P)APn,00(p) = lim (¢n,m (p)Am¢n,m(p)a€$m,m’)

is also not of real rank zero, where ¢, » denotes the restriction map

¢m,m’|¢n,m(p)Am¢n,m(p) D Onm (D) AmPnm(P) = Gnm (D) Amy Gnme (D),

for m’ > m > n. That is, condition (1) of Proposition 2.11 — the limit algebra to be of real
rank zero — does not hold for the inductive system (¢n 1 (p) Am®n,m(p), Jm,m/). By the
equivalence in Proposition 2.11, condition (2) of the proposition also does not hold. By
Lemma 3.8, there exist an interval [c,d] C [0, 1], an integer n; > n, and a positive element
X € (Pnn,(P)An, Pn.n, (P))+ with || x|| = 1 such that for every m > ny, ‘an,m (x) has the
following representation:

km
By () = (V7 5 ) € ED b (P) A (P)-

i=1
There exist 1 < k(m) <kpand1 <i(m) < rank(qb;,’,ﬁ(m)(p)) such that

k
[c,d] C rang (hl.((;l"))),
where hf(m) (1) is the ith lowest eigenvalue of y,’c”(m) (t)forl <i < rank(qﬁn_,’,ﬁ(m) (p))-
Since p is a full projection in A, and L[p] < [l4,], there exists a set of mutually
orthogonal rank one projections pi, p2, ..., pr € A, such that p; = p, p; ~ pj ~ p and
ZiL=1 pi <1y,.Let
L
q= Z pi-
i=1

It is easy to see that ¢ A, g and My, (p Ay, p) are isomorphic. So we can identify My (pA, p)

with gA,q C A, and identify M, (¢n,n1 (p)Am Onn, (p)) with Pnny (Q)Anl Pnny (q) CAm .
‘We define the continuous functions

0, t €10,c],
x:[0,1] = [0,1], x@) = ﬁ(r—c), t €lc,d],
1, t €ld, 1],

1 1
11 :00,1] — [o, Z]’ ) = Tt

and

y2:00,1] — [—1+%,o], ya2(t) = (—1+%)t.
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Set
eZm'x;_ox(x) 0 v 0
0 e2mixiox(x) 0
h=| — : € $nny () Any Gy (@),
0 0 0 e2mixiox(x)

LxL

where y(x) € ¢nn, (D) An@n.ny (p) and xi © x(x) € bpny (P)An,bnny (P), 1 = 1,2, are
functional calculus of positive element x. We also identify

Gnny (@) AnyPnny (@) = ML (¢n,n1 (P)An, nn, (P))

Let u = h & (14,, — Pnn (). It is easy to check that det(u(z)) = 1 for all z €
Sp(A4,,) and u € Uy(Ap,). It follows from [44] that u € CU(4,,).

We shall show that cel(¢y, (1)) > 2 — ¢ for all m > n;. For a fixed m > n;, we
have ¢, m(h) = exp(2miH), where

XzOX(fznl,m(x)) 0 0
. 0 X1 ox(?m,m(x)) - 0
0 0 0 X1°X($n1,m(x)) LxL
It follows that

anl,m(x) € ¢n,m(p)Am¢n,m(p)

and hence H € M1 (hnm(P)Am®nm(P)) = ¢n.m(q) Ambn.m(q) - Amg ]
Note that ¢n\ m(x) = (y{", ¥3". ..., ¥ ) with each y7* € Snim (D) Apndn.im (D). There
exist 1 <k(m) <kpandl <i(m) < rank(¢,,_,’,],§(m) (p)) such that

[c.d] C rang (hf 7).

where hf(m) (¢) is the ith lowest eigenvalue of y,’{”(m) (t) for 1 <i < rank(¢,, ’,If,(m) (p))-
Again notice that

120 1 (Gnym (X))

km
= (20 xOM. 220 X3 120 XOR)) € D b (P) AL (P)

i=1

and

X1°0 X(anl,m(x))

-
= (X1 0O 210X  x1 0 X)) € €D i (P) ALy (D).
i=1
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Write H = (Hy, Ha, ..., Hy,)) € @ ¢nit (@) AL ¢ (q). Tt follows that

K20 x(yi") 0 0

0 xrox(yi"y - 0

H; = . . . .
0 0 0 X1 OX(ylm) LxL

This means that
Gnym(h) = expQriH) = (expuiH,),exp(2miHy), ... exp(2miHy,,)),

and hence
cel (@n,,m(h)) > cel (exp(2miHy)) foralll <k < kp.

In particular, we have cel(¢y, . (h)) > cel(exp(2mi Hp(m))) and
cel (@n,,m(u)) > cel (exp(2miHy,,) & (IA'fn('") — 67k ().

Let rank(¢,, ’,],‘L(m) (p)) = K. The eigenvalue list of Hy ) satisfies that

1
_1+ZSXzOXOh’;((m)szOXOh’;((L"I)S...SXZOXOhllc(m)

SXlOXOh’f(m)SXlOXOh’f(m)S"‘leoXohllc(m)
L-1

<10y < yio o kK << yy o g0 hE
L—-1

S.

< q1oxoh < yioyo k™ <. < g0 gonkm
L—-1

!
~L

That is, ¢, ’k,,(,m)(h) = exp(2miHy(m)) satisfies the condition of Corollary 3.5. Note that

1
each function in the above list is either non-negative (with range [0, %]) or non-positive

(with range [—1 + % 0]) — none of the functions is crossing over point zero. Applying (3)
of Remark 2.8, we know that ¢n_1”k,,(lm)(u) = exp(27iHi(m)) & (1 kom — (1),,_,’5('") (g)) also

satisfies the condition of Corollary 3.5. By the corollary, we have

—,k(m) . k(m) .
cel (™ (0) Z min  max  2x|x2 0 10 Mgy () = il

k(m)
i(m)

Noting that [c, d] C rang(h;, ) C [0, 1], by the definitions of y and y,, we have

1
rang (Xz oy ohf((;”))) = [— 1+ Z,O]
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and hence

%iélyér)?rif(m) 2r|x20 x o hf.c((;l"))(y) —Jj| = (1 - %)Zn >2m —e. n
Remark 3.10. Evidently, our proof also works for the case of no dimension growth pro-
vided that limy,_, o, min; {rank(1 Al )} = oco. Note that we use the slow dimension growth
in two places: one is to get (3.2); the other is to get the implication from that the algebra
is not of real rank zero to that condition (2) of Proposition 2.11 does not hold. For the
above case, both can be done without the above-mentioned slow dimension growth condi-
tion but with slow dimension condition in [15] (which includes all non-dimension growth
inductive limits) and lim,_, o, min; {rank(1 Al )} = oo.

Forall k > 1 and u € CU(M (C(]0, 1]))), Lin [36] proved that cel(u) < 2. In fact, it
will be proved that cel(u) < 1%1271 in the following proposition. This proposition shows
that the slow dimension growth condition used in this article cannot be replaced by Gong’s
slow dimension growth condition in [15], which does not imply that

nlerolo min {rank(lAz)} = oo0.

Proposition 3.11. celcy(Mi(C([0,1]))) = 5127,

Proof. From the construction in [39], we know that celcy (Mg (C(]0, 1]))) > ’%Zn. The
following proof of celcy (Mg (C([0, 1]))) < %271 is inspired by [21, Section 3] (see also
[36, proof of Lemma 4.2]). Let u € CU(M(C([0, 1]))) and & > 0. Using the proof of
Lemma 4.2 in [36], one can find v € CU(M (C([0, 1]))) satisfying the following condi-
tions:

(1) v(2) =Z§€:1 exp(2mih;j(t)) p;(t), where hj(t) € C([0,1])s.q and {p1. p2...., Pk}
is a set of mutually orthogonal rank one projections;

(2) Yk_ 1 hj(t) = 0forall s € [0, 1], which implies that det(v(r)) = 0 forall 7 € [0, 1]
and hence v € CU(M(C([0, 1])));

(3) hj(t)—h;(t) ¢ Z forany t € [0, 1] when j 7 [. This implies that v(¢) has distinct
eigenvalues. Furthermore, one can require that

lrﬁnjagk hj(0) — 1rsnjlrslk hj(0) <1,

which implies 0 < max;<;<x h;(t) —minj<;j<x h;(t) <1 for all ¢ € [0, 1], by
continuity of the functions /;;

4) |hj(t)] < 1forallt €[0,1]and 1 < j < k;
S) lu—v|| <e.
We shall show that b1
Al < = foralll < j <k.
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By condition (3), without loss of generality, we can assume that

hi(t) > ha(t) > --- > hi(t) and hy(t) —hi(t) <1 forallz € [0, 1].

For fixed 1 < k¢ <k and ¢ € [0, 1], we have

0="h1@t)+ha(t) + -+ hgy () + -+ + he (1)
> kohi,y (1) + (k — ko)hi (t)
> kohi, (t) + (k — ko) (hy(t) — 1)
> kohiy (1) + (k — ko) (o (1) — 1)
= khy,(t) —k + ko.

Hence

k—k
hi (1) < — 2.
On the other hand,
0="hi(t) + ha(t) + oo+ hgy () + -+ 4+ g (1)
< (ko — Dhy(t) + (k — ko + Dhy,(2)
< (ko — 1)(1 + hk(l)) + (k—ko + 1)hk0(t)
< (ko = (1 + by (1)) + (k — Ko + Vg (1)
<khy,(t) + ko — 1.
Hence L .
iy (1) > ————.
It follows that k1
il < =
Let
k
vg(t) = Zexp (2mishj(1))p;j(t) foralls € [0,1],7 € [0, 1].
j=1

Then v; is a path with vo(¢) = v(¢) and vy (¢) = 1. Furthermore,

dvg

’r ds

1
length (vs) =/0 H
k
2ihj(t) exp (2mish; (1)) p; (1)

/1
0 ji=1

1
:271/ max ||hj|lds
0 1=j=k

<2 k-1
T—
k

ds

860
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By condition (5) and Corollary 3.2, it follows that

k—1
cel(u) < cel(v) + zs < length (vs) + zs <2m— + Z&
2 2 k 2
Since ¢ can be arbitrarily small, we have cel(u) < 27rk%1. [

4. Exponential length in AH-algebras with ideal property

Definition 4.1. We say that a C*-algebra A has the ideal property if every closed two-
sided ideal of A is generated as ideals by the projections inside the ideal.

It is easy to see that all simple AH-algebras and all real rank zero C *-algebras have
the ideal property. In this part, we shall show that celcy(A) < 27 for all AH-algebras with
the ideal property of no dimension growth.

As in [8], we denote by Ty x the two-dimensional connected simplicial complex with
HY(Ti1x) = 0 and H*(Ty; ) = Z/kZ, and also, we denote by I the subalgebra of
M (C(]J0, 1])) = C([0, 1], My (C)), consisting of functions f satisfying f(0) € C1; and
f(1) € Clg. I is called Elliott dimension drop interval algebra. As in [18], we denote
by H D the class of algebras of direct sums of building blocks of forms M; () and
PM,(C(X))P, with X being one of the spaces {pz}, [0, 1], S!, and Tysx, and with
P € M,(C(X)) being a projection. A C*-algebra is called an AH D algebra if it is an
inductive limit of algebras in JD. In [19,20,24], it is proved that all AH-algebras with
ideal property of no dimension growth are AJ D algebras.

Lemma 4.2 ([39, Corollary 3.2]). Let Z = {u € UM, (C)) : u has repeated eigenvalues}.
Then Z is the union of finitely many submanifolds of U(M,(C)) of codimensions at least
three.

Since dim(7y; k) = 2, the following lemma follows from Lemma 4.2 and a standard
transversal argument.

Lemma 4.3. Let u € U(PM,(C(T11%))P), where P is a projection in My (C(Ty1x)).
For any € > 0, there exists v € U(PM,(C(Tr1x))P) such that
M fu—vl <e&

(2) Sp(w(y)) = {B1(¥). B2(¥). . ... Bk (y)}, where k = rank(P) and B (y) # B;(y)
foralli # jandy € Ty k.

Let FkS§1 :oHom(C(Sl), Mi(C)); and IT : F¥S1 — PkS1 be defined as in Def-
initig)n 2.4. Let F¥S! be the set of homomorphism with distinct spectrum and P¥S! =
[I(FkSY).

Lemma 4.4. 7, (P¥S') = Z is torsion free.
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Proof. Note that F¥S! is homeomorphic to Uy (C) = U(k) and F¥S! corresponds to
the set of all unitaries u € U(k) with distinct spectrum, which is a union of finitely many
sub-manifolds of U(k) of codimensions at least three. Hence 14 (ngSl) =m(Uk)) =Z.

Consider the fibration map IT| ¢, ¢, : FkS! — PkS1 whose fiber is the simply con-
nected flag manifold U(k)/ U(1) x U(1) x --- x U(1); hence we get the desired result. m

k

Lemma4.5. Let F : Trjx — PkS be a continuous function. Suppose

F(1) = [x1(0). x2(0), ..., xx (1))

and for all t € Trrx, x;(t) # x;(t) for i # j. Then there are continuous functions
Si. oo S Trr g — S such that

F(t) = [fi(0), /o), ..., fi(@)] forallt € Typg.

Proof. Note that the restriction of the map 7 : (S1)¥ — P¥S' on 77! (ngSl) is a cover-
ing map and 71 (Ty7 ) = Z/kZ is a torsion group. The lemma follows from Lemma 4.4
and the lifting Proposition 1.33 in [22]. ]

Theorem 4.6. Let u € CU(PM,(C(Ty1k))P), then, for any e > 0, there exists a self-
adjoint element h € PM, (C(Tr1x)) P with |h| < 1 such that |u — exp(nih)| < e. In
particular, cel(u) < 2.

Proof. The proof is inspired by the proof of Lemma 4.2 of [36] (see also Remark 3.13
of [21]). By Lemma 4.3, for any ¢ > 0, there exists v € CU(PM, (C(Tr1 %)) P) such that
v(y) has distinct eigenvalues for all y € Tyy x and |lu — v|| < &. By Lemma 4.5, one can
write

Sp (v(») = {B1(»). B2(¥).- ... Bg(»)}
for continuous functions B; : Trpx — SY, j =1,2,...,q, where ¢ = rank(P) and
Bi(») # B;(y) forall | # j and y € Ty .

Fix a base point yo € Ty . We can choose some b; € C (T k)s.a. such that B;(y) =
exp(2mib;(y)), where b; (yo) € (—%, %] j=L12,...,q.SinceveCU(PM,(C(Tr; x))P).
one obtains det(v(y)) = 1 forall y € Ty k. Then Z?Zl b;(yo) = m for some integer m.
Since b; (yo) € (0, 1], we have —g < m < q.

If m > 1, without loss of generality, we can assume that by (yg) > ba(yo) > --- >
by (o). It follows that b, (yg) > 0. Define a;(y) = b;(y) — 1, for j = 1,2,....m, y €
Trrk.and aj(y) = bj(y),for j >m,y € Ty .

Then

q
> aj(yo) =0 and |a;(yo)| <1 forallj =1.2.... 4. 4.1)
j=1
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Also, since b; (yo) > —%, we have min; a; (yo) = bm(yo) — 1. Note that max; a; (yo) <
bm(y0), we have
max a; (yo) — n}inaj (o) < 1. 4.2)

If m < —1, we directly assume that by (yo) < ba2(yo) < -+ < bg(¥o). It follows that
bm(yo) <0.Definea;(y) =bj(y) + 1,for j =1,2,...,m,y € Trjx,anda;(y) = b; (y),
for j > m, y € Ty . Then (4.1) and (4.2) also hold.

Hence, B;(t) = exp(2mib;(y)) = exp(2mwia;(y)) foreach 1 < j < q. Since

det(v(y)) =1 forally € Typk,

we have
q
Zaj(yo) €Z forally e Tryg.
Jj=1
By the continuity of the functions a; and the connectedness of Ty, we know that
Z?:l aj(y) is a constant function of y € Tyj . By (4.1), we have

q
Y aj(y)=0 forally € Typy. (4.3)
j=1

Since B;(y) # B;(y) forany / # j and y € Ty, we have

aj(y)—aj(y)¢Z forally € Tyjx, | # J.

Again, by the continuity of the functions a; and the connectedness of 771, and also
by (4.2), we have

0 <maxa;(y) —ming;(y) <1 forally € Try. “4.4)
J J

For each fixed y, by (4.3), either a;(y) = 0 for all 1 < j < ¢, which is impossible
since a;(y) # a;(y) when j # [, ora;(y) < 0 for some j and a;(y) > O for some other
[. By (4.4), we have

|aj(y)| <1 forally € Ty.

Fix j €{1,2,....q}. Forany y € Ty, let p;(y) be the spectrum projection of v(y)
with respect to the spectrum exp(2mia;(y)), which is rank one projection continuously
depending on y. Then v(y) = Zj{:l exp(2miaj(y))p; ().

Let h € (PM,(C(Tr1k))P)s.q be defined by h(y) = Z;?:l aj(y)pj(y). Then v =
exp(2mih). Furthermore, || 2| = max;, , |a;j(y)| < 1. Consequently, |u —exp(2mih)| =
lu —v| <e. L]

Using a similar method, we can get the following result.
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Theorem 4.7. Letu € CU(PM, (C(X))P), where X is one of the spaces {pt}, [0, 1], and
S, and P is a projection in M,(C(X)). Then for any & > 0, there exists a self-adjoint
element h € PM,(C(X))P with ||h|| <1 such that |lu —exp(2rih)| < e. In particular,
cel(u) < 2m.

Proof. The theorem for the cases of {pt} and [0, 1] is trivial and can be proved in a way
similar to, but simpler than, the proof of the theorem for the case 77y i . For the case of § 1
we can do it as follows. First one perturbs u € My (C(S!)) to an element v € My (C(S!))
such that v(z) has a distinct spectrum for any z € S!. Then z > Sp(v(z)) defines a map,
Sp(v): St — PkS! Note that this map defines the zero element in 77, (ngS 1) = Z, since
[v] = 0 € K{(C(S")). Hence the map Sp(v) can be lifted to a map from S! to (S1)* as
in Lemma 4.5. Then the other part of the proof of the theorem for the case of Ty (see
Lemma 4.3 and Theorem 4.6) can be applied here. ]

Now we are going to prove the following result. Its proof is similar to that of Lemma
3.14in [21] (see also [21, Lemma 3.12]).

Theorem 4.8. Letu € CU(M;(I1)). Then for any € > 0, there exists a self-adjoint element
h e My(I) with ||h] < 1 such that |u — exp(2rih)| < e. In particular, cel(u) < 2.

Proof. By [21, Lemma 3.10], a unitary w € M;(Ix) is in CU(M;(Ix)) if and only if
for any irreducible representation ¥ : M;(I;) — Me(C) (where @ = [ or lk), ¥ (w) €
CU(M,.(C)), which is equivalent to det(y (w)) = 1.

By [21, Lemma 3.10], one can write u(0) = ap ® 1x € M;(C) ® 1 and u(l) =
a1 ® 1 € M;(C) ® 1, where a; € CU(M;(C)) fori = 1, 2. After a small perturbation
of the unitary u inside CU(M; (1)), one can assume that both ag € M;(C) and a; €
M;(C) have [ distinct spectra. This can be done as follows. Let n > 0 and § > 0 be
fixed. Choose a, € CU(M;(C)) and a; € CU(M;(C)), both with distinct spectra, such
that ||ay — aoll < nand |la} — ai|| < n. Define two paths & : [-§, 0] — CU(M;(C)) and
§1:[1.1+ 8] - CU(M;(C)) such that o (—8) = ay, §0(0) = ao, §1(1) = a1, &1(1 +6) =
ay, lI§o(t) — aoll < n for t € [-6,0], and ||§1(¢) —ai|| < n for ¢ € [1, 1 + §]. Define
i:[-6,1+ 8] - CUM;;(C)) by

Eo(1) ® 1, t €[-8,0],
u(t) = q u(), t €0,1],
ELt)® 1, te[l,1+48].

Reparametrising # so as to shrink the interval of definition of # from [—§, 1 4+ §] to [0, 1]
proportionally, we obtain u’ € CU(M;(I)) with u'(0) = ay ® 1x and u'(1) = a] ® 1.
Evidently, ||u’ — u|| can be made arbitrarily small provided that n and § are small enough.
By [21, Lemma 3.10], u’ € CU(M;(I})). Without loss of generality, we simply assume
that ag (for u(0) = ag ® 1) and a; (for u(1) = a; ® 1;) have distinct spectra.

It is easy to prove (see (4.1) and (4.2) and the corresponding paragraphs in the proof
of Theorem 4.6) that there exists —1 < A; < Ay <--- < A; < 1 with Zj‘:] A; = 0 (note
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that by [21, Lemma 3.10], det(ag) = 1) and A; — A < 1, such that
Sp(ag) = {exp(Zni)Ll),exp(Zni/lz), .. ,exp(Zm’)Ll)}.

Similarly, there exist —1 < A} <A, <--- < )L} < 1 with Zj‘:l /\} = 0and /\} —-A <1,
such that
Sp(ar) = {exp(2miA}),exp(2miAy), ... exp(2wiA))}.

One can find two self-adjoint elements by, by € M;(C) with
Sp(bo) = {A1,A2,.... A1} and  Sp(by) = {A}, A%, ... A}

such that ap = exp(27ibg) and a; = exp(27iby). In fact, since max; A; — min; A; =
A1 — A1 < 1, one can choose a branch of logarithm function log which takes exp(2miA;)
to 2ri A; and define by = 2—71” log(ag) (the element b; can be defined similarly).

By [21, Lemma 3.12], there exist mutually orthogonal rank one projections, { p; }flzl C

My (C[0, 1]), and continuous functions, /; : [0, 1] — R, such that the unitary

Ik

V= Zexp(Znihj)pj € Mlk(c[o’ 1])
j=1

satisfies the following:
(1) v(0) = u(0), v(1) = u(1), and, consequently, v € M;(Iz);
(2) v(t) has distinct spectra for any ¢ € (0, 1);
(3) v € CU(My;(C][0,1])) (combining with (1), v € CU(M;(1})));
@) flv—ul <e.

Since Zjl;l exp(2mih;(0)) p;(0) = v(0) = u(0) = exp(2mwiby) ® 1, there exist inte-
gers nj € Z such that

{]’11(0)—l’ll,l’lz(O)—nz,...,hkl(O)—l’lkl} ...,)\1,)&2,...,Az,...,xl,...,kl}
—_— ———

= {11,

——

k k k
as sets with multiplicity. Replacing each function /; by the function 4; — n; for any
j €{1,2,...,kl}, we can assume that Zfl:(, hj(0)p;(0) = by ® 1 (in fact, both of them
are the logarithm functions (of the same branch) of the unitary #(0) = v(0), multiplying
by 51-).

Leth = Zl-kzo hjp; € My;(CI0,1]). Then we have v = exp(27ih). We need to prove
that h € M;(Iy) and ||h|| < 1.

By [21, Lemma 3.10], det(v(¢)) = 0 for all ¢ € [0, 1]. And note that v(¢) has distinct
spectra for any ¢ € (0, 1). The following argument is used in Remark 3.13 and the proof of
Lemma 3.14 in [21] (we refer to [21] for details). From -4 h;(0) =k - (Xh_, A7) =0,
we get ijzl hj(t) =0forallt € [0, 1); and from max; < <k; /;(0) — miny < j<x; h; (0) =
A — A1 <1, we get maxy<j<k; #j(t) —miny<j<x; hj(t) < 1forall ¢ € [0, 1). Further-
more, one gets —1 < h;(t) < 1forallz € [0, 1] and hence ||k] < 1.
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We still need to prove that i € M (Iy). Since h(0) = by ® 1) € M;(C) ® 1y, it suffices
to prove that (1) € M;(C) ® 1. Let us prove that (1) = b; @ 1. Fromexp(2rwih(1)) =
v(1) = u(l) = exp(2riby) ® 1y, one gets

(1), ha(1), o hg (D) = X, A A A A A mod Z.
—— N— — ———
k k k
From
k ki
dYoA=0. > hy() =0,
j=1 j=1

max A; — min A; <1, max h;i(l1)— min h;(1) <1,
1<j< ) =i’ 1<) <kl (1) 1<) <kl iD=

itis easy to prove that /1; (1) € {A},A},..., A}} forall j € {1,2,...,kl}. In fact, for each
J, there is a unique m; € Z and i(j) € {1,2,...,/} such that ; (1) = A;(}.) +mj. We
claim that all m; = 0. If one of them is positive, say m;, > 0, then there is j, such that
mj, < 0. Therefore,

hy (D) = hjp (1) = (A +mjn) = (K, +mj)
= (mjy =mp) + (A = Aigp) > 2+ (D =1,
which is a contradiction. Hence 4(1) = b; ® 1x (again both of them are the logarithm

functions (of the same branch) of the unitary u(1) = v(1), multiplying by sz‘)' Thus we
get that h € M (1), as desired. |

Now we get the following result.

Theorem 4.9. Let A be an AH-algebra with the ideal property and with no dimension
growth. Then for any ¢ > 0 and any u € CU(A), there exists a self-adjoint element h in A
with ||h|| < 1 such that ||u — exp(2rih)|| < &. In particular, celcy(A) < 27

Proof. We assume that A = lim(A4,, @n n+1), Where A, € H D for each n > 1. Using
Theorems 4.6, 4.7, and 4.8, for any u € CU(A,) we have cel(¢y m (1)) <2mx forallm > n.
Noting that cel(¢n,00(4)) = infy>p cel(Pn,m(u)) < 27, hence cel(Py,00(u)) < 2m. |

The above theorem generalizes Theorem 4.6 of [36] (see Theorem A in the introduc-
tion) for the case of simple AH-algebra.

The following theorem is the main theorem of this section. This theorem is not quite a
consequence of Theorem 3.9 and Theorem 4.9 since it does not assume that

lim rank(P, ;) = oco.
n—>0o0
But we assume that A has the ideal property.

Theorem 4.10. Let A be an AH-algebra with the ideal property and with no dimension
growth. If we further assume that A is not of real rank zero, then celcy(A) = 2.
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To prove the above result, we need the following Pasinicu dichotomy lemma.

Proposition 4.11 ([40, Lemma 2.11]). Let

tn
A= 11_11)1 (An = @ Pn,iM[n,i](C(Xn,i))Pn,i’ ¢n,m)

i=1

be an AH-algebra with the ideal property and with no dimension growth condition. Then
for any n, any finite subset F! C PuiMpy i)(C(Xpni)) Py C An, any € > 0, and any
positive integer N, there exists mo > n such that each partial map ¢,l,m with m > my
satisfies either:

(1) rank(@yhn (Py)) = N(dim X, ; 4 1) or

(2) there is a homomorphism
Ut * A = Sy (Pri) Ay by (Pi)
with a finite-dimensional image such that ||¢,'1m f) —w,il’,,'n (f)|<eforall feFL.

Remark 4.12. Let X, Y be connected finite simplicial complexes. Let f € PM,(C(X))P
be a self-adjoint element and ¢, ¥ : PM,(C(X))P — OM,,(C(Y))Q be two unital
homomorphisms with ¥ factoring through a finite-dimensional algebra such that ||¢ (f) —
¥ (f)|l < e. Then all functions in the eigenvalue list of {( f) are constant functions and,
consequently, EV(¥( f)) = 0. Also by Weyl’s inequality in [48], EV(¢(f)) < e.

Proof of Theorem 4.10. Since A is not of real rank zero, by Proposition 2.11 (for the case
of no dimension growth), there exist 69 > 0, N, x € (Ax)+, with || x|| = 1, and a subse-
quence {A,, }}zo:z with n, > N such that for any k > 2, there is a block A , With

EV (g2, (X)) = bo. 4.5)

To save notations, we can directly assume that N = 1 and n; = k for every k > 2.
Forany ¢ > O and L > 27”, by Proposition 4.11 and Remark 4.12, there exists mgy > 1
such that for any m > mg and Ay, = P, j M, j)(C(Xm,;)) Pm,j, either
rank(Pp,, ;) > L(dim X, ; + 1)

or _
EV (¢15(x)) < .
We denote

A= {1 < J S tmy t1ank(Ppy, ;) > L(dim Xy, 7 + 1)}.
Let P = @;cp Pmojs R = @®jga Pmo.j-and x7 = ¢ (x). Set

x1=@x) = Pprm(x)P and x; =P x/ = Rpym,(X)R.

JEA JEA
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Then EV(xj)_ < g for j ¢ A. By Corollary 3.7, for any m > mg and any j € {1,2,...,t,},
we have _¢,;;){m(x2) < do. By (4.5), for any m > my, there isa j € {1,2,...,tm} such
that ¢1_n11 (x) > 8o. Note that ¢1_”]l (%) = dmilm(x1) + bm m(xz) By Corollary 3.7 (b),

EV (¢l (x1)) = bo.
Hence by Proposition 2.11,

Bmg,00(P)APmg,00(P) = lim (¢mo,m(P)Am¢mo,m(P)7¢m,m’)

is not of real rank zero.
By [23, Theorem 1. 2 p 112] foreach j € A, there exists a set of mutually orthogonal

rank one projections p1 ,p2 ,...,pij) with p < Pp,,; and p(] ~ Dy @) for each

1<l <L.Lletqg= @jeA pij). There exists an integer W € N such that
P < Wlq].

It follows that ¢yg,00 () APmy,00(q) is stably isomorphic to @pg,00 (P)APmy,00(P) and

hence ¢g,00(9) APmg,00(q) = UM (Prmg,m (q) AmPmg,m(q), dm,m’) is not of real rank zero.
By Lemma 3.8, there exist an interval [c, d] C [0, 1], an integer m; > myg, and y €

(Pmo,m1 (@) Amy Pmo,m, (@) + with ||y || = 1 with the following property. For any m > m,
WIIting ¢, ,m = ¢ml9m|¢m0,ml(q)Am1¢m0,m1(q) and writing ¢, () as

km
Gmym(Y) = (27252 ) € D b DAL b il (D) = g (@) AmGmg.m (@)

j=1
then there exist 1 < k(m) <k, and 1 <i(m) < rank(d)mo,(m)(q)) such that

[c.d] C rang (hf((;l")))

where £; k(M) i the ith lowest eigenvalue of yk( ) for I <i < rank(¢dp, k,(,,m) (9))-

Let Q = lel Djen pl’) Then QApm, O =~ M. (qAm,q). Hence one can identify
M1 (qAm,q) as a subalgebra of A, and ML (Pmy.m(q) AmPme.m(q)) as a subalgebra of
Amp.

Repeating the proof in Theorem 3.9, one can prove that there is a u € CU(A) such that

1
cel(u) > 271(1 - Z) > 27 — €.
Consequently, celcy(A4) > 27. [

5. Exponential length in the Jiang—Su algebra

We shall show that there exists a unitary u € CU(Z) such that cel(u) > 2. First, we
review the construction of the Jiang—Su algebra Z. We refer the readers to [25] for details.
Denote by I [mg, m, m1] the dimension drop algebra

{f € C([Ov 1]7Mm) : f(O) € Mmo ® 1m/mo’ f(l) € 1m/m1 ® Mml},
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where mg, m1, and m are positive integers with m divisible by both mq and m . If mo and
m are relatively prime and m = momy, then I [mg, m,m1] is called a prime dimension
drop algebra.

The Jiang—Su algebra is constructed as below. Let A = I[2, 6, 3]. Suppose that a
prime dimension drop algebra A, = I[pm, dm, gm] is chosen for some m > 1. We con-
struct A, 41 and @ 41 : Am — Am1 as follows.

Choose kém) and kim) to be the first two prime numbers that are greater than 2d,,.
Then

kP > 2pme k> 2Gm K" k" ) = 1.
Let
Pt =k Dms Gt =k Gmy it = Pt 1gmers
and
Am+1 = I[pm+1. dm+1, gm+1]-
Obviously, A4+ is a prime dimension drop algebra. Denote k™ = k(()m) kgm) . Choose
r{™ such that

0< rém) <{qm+1 and qm+1|(k(m) _ rém)).

Choose rl(m) such that

0<r™ < ppi1 and  ppyg| (KT —r™).

Define

o= j=r",

é‘;m)(x) = %, rém) <j< km — rl(m),

L << e,

It follows that
£ (0) = {? o v
5. To <] <k,

and

1<j<km —rl(’")

b

1
£ (1) = { 3

Obviously, we have

k) —rl(m) <j <k,

r(gm)CIm =k™gq,, = k(()m)an+l =0 (mod gm+1).

It follows that ¢y, +1 |r(§m)qm. Notice that g1 | (k™ — rém)). There exists a unitary ug €
Mg, such that

£( fm)(())) 0 0
0 f( é’")(())) 0

Up € MPm+1 ® 16]m+1 - Mpm+1 ®M‘1m+l

0 0 fERO)
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forall f € A,,. Define the morphism pg : Ay, > Mp,, , ® 14,,,, C Mp,.., @ Mg, ., by
po(f) = uy diag [ £ (£ (). £ (E(0))..... £ (£ (©))]uo. forall f € Ap.

On the other hand, we have

Ponttlr s Pt [(R7 — (™).

There exists a unitary u; € My, ,, such that

fEP®) 0 0
0 £ é’”)(1)) 0
231 . . . up € 1Pm+1 ®MQm+1 C MPm-H ®qu+]
0 0 SEGD)

forall f € A,,. Define the morphism p; : Ay, = 1,,,, @ My,,, CM,,., @ Mg, ., by

p1(f) = i diag[ £ (£ (). £(ED)..... f(EGHD)]ur  forall f € Ay

Let u be any continuous path of unitaries in My, ,, connecting uo and u; and let
®m,m+1 be given as follows:

foé-‘fm) 0 0
(m)
foé
mm1(f) = u* 2 u forall f € Ay.
0 0 o fo IE’('Q)

Theorem 5.1 ([25, Proposition 2.5]). The Jiang—Su algebra Z can be written as the limit
Z = lim, (An, Pn.n+1), such that each connecting map ¢mn = ¢n © Pp—1 00 P41 ©
Gm has the form

foer 0 0
0 fobk - 0
puaH=v"| 7 U
0 0 o fok

where U is a continuous path in U(My,), k = kD) e t=1 gpg

f1<& ==k

In fact, each &; can be chosen from the following list:

, wherel €Z,0<1] < 2" ™,

) = 5
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or
t+1 _
E@) = ., wherel €Z,0<] < 2" ™,
2nfm
In particular, among the above functions £;, the smallest function &;(z) = 2,,;_,,, and
the largest function &,(¢) = H'(ZZZ—::_I), where e = k. (For convenience, when we quote

this theorem, we will use &, for &, so k can be used for another purpose.)

Remark 5.2. We shall use x~* to denote X, X,...,x (k times) for the notation of set with

multiplicity. For example, {x~2, y~3} = {x,x, y,y, y}. As in the construction of Z, we
have

|~y
N O P

=0
where g, |j; forall0 < <2"7™ — 1, and

| T
(B E (D). .. &) = { } ,

2n—m
where p,|s; forall 1 <[ <2"7™,

Lemma 5.3. Let Z = lim(An, Pn n+1) be the Jiang—Su algebra defined above. If v € A,
is a unitary and us is a smooth path of unitaries connecting v and 14,, then for any € > 0,
there exists another smooth path vy € A, of unitaries such that
(1) s —usl <&
(2) |length(vs) — length(uy)| < &;
(3) vs(0) = exp(2mi Z]I.Jil hja;) ® 14,, where {a; }f;l is a set of mutually orthogo-
nal rank one projections in C([0, 1], My, ) and hj € C([0, 1])s.., with

exp (2m'hj(s)) # exp (Zm'hk(s)) forj #kands €0,1];

@) vs(1) = exp(2mi Z?":1 g;bj) ® 1,,, where {b; }?":1 is a set of mutually orthogo-
nal rank one projections in C([0, 1], My,) and gj € C([0, 1])s.., with

exp (2mig;(s)) # exp (2migk(s)) for j # k and s € [0, 1].

Proof. For any 0 < & < 1, there is a number § > 0 such that [|us(#1) — us(%2)[| < 5 and
148 (1) — Ls (1,)[| < £ forany s € [0, 1] and 11,75 € [0, 1] with |t; — 12| < 6.

Since us € Ay, one can write 1 (0) as 1;(0) = y©(s) ® 1,4,, where y©@ is a unitary
in C([0, 1], M,,). By [36, Lemma 4.1], there exist a set of mutually orthogonal rank one
projections {a; }fll in C([0, 1], M,,) and self-adjoint elements /s; € C([0, 1])s,. with
exp(2mih;(s)) # exp(2rwihy(s)) for j # k and s € [0, 1] such that

&

dy©(s) _d7*(s) PE
s 3’

©) (o) _ —(0)
[y (s) =y (S)I|<6 75 7

and H

(1 + maxgeqo, 1) | 242 )

for all s € [0, 1], where 7(0)(s) = exp(27i Zfil hjaj).
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On the other hand, u(1) can be written as us(1) = yM(s) ® 1,,, where yM s a
unitary in C([0, 1], M, ). By [36, Lemma 4.1], there exist a set of mutually orthogonal
rank one projections {b; }q” ,in C([0,1], M,,) and g; € C([0,1]);.,. withexp(2mig; (s)) #
exp(2migi(s)) for j # k and s € [0, 1] such that

) (1)
£ o - dedls(S)_dy (S)H<§

Iy ) =7Vl <
6(1 + maxge[o, 1] \
for all s € [0, 1], where 7V (s) = exp(27i Z 2, 8ibj).
Write v(@ (s) = y(o)(s) ®1,, and v (s) = y(l)(s) ®1,,. Then
€

©) oy i — 0) (o) _ 50 1
L T EOT

and
g

@y ] _ My 5 1
[0 ) —us (D] = [P ) =7Vs) ® 1, 6(1 + maeon [550])

for all s € [0, 1]. Furthermore,

e s R S B

Since

2 @0 @) =14, | = [006) —us)] < £ < L

6

there exists H € Mg, (C([0,1]))s.o. with || H || < 1 such that u} 0@ (s) =expriH(s)).
Also, there exists G € My, (C([0, 1]))s.o. with ||G|| < 1 such that

uf (D (s) = exp (27iG(s)).

In fact, H(s) =
We denote

s log(ui (0)v©@(s)) and G(s) = 51 log(u} (v (s)).

us(0)exp 2mi 5 H(s)), —8 =<t <0,
w(s, 1) = | us(t), 0<tr<1,
us(1) exp (2711 G(s)) l<t<1+6.
Let vs () = w(s, (1 + 28)t — &) for (s,¢) € [0, 1] x [0, 1]. Then vy is a path in A, and

it satisfies conditions (3) and (4).
For ¢ € [0, lfw), by the choice of §, we have

[0s) s )] = [us @ exp (221 =2 1)) 0
< Jus@exp (2 T2 1) s 001+ s @) — 0




C™ exponential length of commutators unitaries in AH-algebras

= H exp (2ni(s_(18—+2(g)tH(s)> — 1y,

+ s (0) —us (1)

+ s (0) —us (1)

< ” exp (27tiH(s)) —1y,

e,
6 2
_ 2
=3
Fort e [1+28 11:288] we have |(1 4 28)t —§ —t| < § and hence

o) = s} = us ((1 4280 = 8) —us )] < 5

Fort € (% 1], by the choice of §, we have

873

1+258°
[0s) s = [us vy exp (227 2RI G5)) w0
o)t —§
< Jusyexp (2 “”fg—tlc(s))—us(l)\)+||us(1)—us<r)||
= H exp (Zn (1 + 28 - lG(s)) —14,| — ||us(1) - us(t)H
)

= [ exp@iG(s)) g, | s (1) 50|

& &
572

2¢e
=3
It follows that ||vs — us| < &.
Fort € [0, H‘_gw), a direct calculation shows that

1511
= | o Jus©ew (2n “T”‘”IH( )ori = (18+25>de§$)
= 2 Jrs s o (ITHWH( - “; S
- |5 e (ani = ) - S5
< 2 42 aH ) [+ sup [44e© _ du)

se[o 1] ” ds
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i e
<[ -uoo )d”S(O) 200 (s) + u <o>d”;°i(” | +3
+ H d"js(o) H |14, — exp 27iH(s)) |
A S 1
s
=s.
Similarly,

1% 1-1%

1
‘<e forallt € —+8,1.
1+ 26

Fort € [1-5_28’ 1481 we have |(1 4 28)f — § — t| < § and hence

1425
H‘ dvg(t) H H dug(t) ‘H _ ” dus((1 4+ 28)t —6) dus(t) H
ds
It follows that |||%|| — ||%||| < gforall s € [0, 1]. Therefore,
|length (vs) — length, (us)| = dvs ds —/ H dus ds| < e. |

Remark 5.4. Notice that

exp (27n'hj (s)) # exp (Znhk (s)), exp (Znigj (s)) # exp(2migy (s))

forany j # k and s € [0, 1]. In Lemma 5.3, one can choose the initial values /;(0) of /;
to satisfy
h1(0) < h2(0) <--- < hp,(0) and hp, (0) —hy1(0) < 1.

Using the fact that /1; (s) — hi (s) ¢ Z (i.e., exp(2mwihj(s)) # exp(2why (s))), it is easy to
prove that (see [21, proof of Lemma 3.14])

hi(s) < ha(s) <--- <hp,(s) and hp,(s) —hi(s) <1
for all s € [0, 1]. Similarly, in Lemma 5.3, we can also assume that
g1(s) < g2(s) <+~ < gg,(s) and gg,(s) —g1(s) <1

forall s € [0, 1].
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Lemma 5.5. Let Z = lim(Ay, ¢ n+1) be the Jiang—Su algebra defined above. If v € A,
is a unitary and uy is a path of unitaries connecting v and 14,,, then for any & > 0, there
exists another path vy € A, of unitaries such that

(1) s —us| <&

(2) |length(vs) — length(uys)| < &;

(3) vs(t) = exp(RriHs(t)), Hs(t) = Zf”zl Aj(s,t)pj(s,t), where {pj};-i”=1 is a set
of mutually orthogonal rank one projections in C([0, 1] x [0, 1], Mg,) and A €
C([0,1] x [0, 1] 5.0, with A1 (s,1) < Ap(s.1) <---<Ag,(s,t) forall (s,t) € [0, 1] x
(0,1)and Ag, (s, t) — A1(s,t) < 1 forall (s,t) € [0,1] x [0, 1].

Proof. For any 0 < n < 1, since uy(t) is uniformly continuous on [0, 1] x [0, 1], there
exists §; > 0 such that

sty = uste2) ]| < 7

forall s[0, 1] and #;, £, €[0, 1] with |t; — 2| <46;. Since u;(0), us(1) e C([0,1]) ® Mg, ,
there are continuous functions f;,g; : [0,1] > C,i =1,2,...,dy, such that { f1(s), f2(s),
..., fa,(s)} are the eigenvalues for u;(0) and {g;(s), g2(5), ..., g4, (s)} are the eigenval-
ues for u; (1), respectively. By Lemma 5.3, without loss of generality, we may assume that
us(0) and u4(1) can be written in the following forms:

exp (Zm’fl (s))
us(0) = UV (s) P (@rif) (UOw)"
exp (2ify, (s))
6D
for all s € [0, 1] and
exp (2mig1(s))
uy(1) = UD(s) xp (2rigl0) | V)"
exp (Znigdn (s))
5.2)

for all s € [0, 1], where U©, UM are unitaries in C([0, 1]) ® Mg, . By Remark 5.4, we
can assume that

f1(8) = fals) = -+ < fa,(s) and  fg,(s5) = fi(s) <1 (5.3)

forall s € [0, 1] (note that d,, = p,q, and each function A for j =1,2,..., p,, in Remark
5.4 (also see Lemma 5.3), repeats ¢, times in the list of f; above). Similarly, we also have

g1(s) = g2(s) =--- = ga,(s) and gq,(s) —g1(s) <1 (54

for all s € [0, 1].
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Let 0 < § < §; be such that % < 87. One can choose hy, hs, ..., hg, € C([0, 1])s.a.
such that
hi(s) < ha(s) <---<hg,(s) and hg, (s)—hi(s) <1, (5.5)

for s € [0, 1] and such that || exp(2ih;(s)) — exp(2mifj(s))|| < 7 for 1 < j < d, and
s €[0,1].

Also we can choose k1,kz, ..., kg, € C([0, 1])s... such that

ki(s) <ka(s) <:---<kg,(s) and kg, (s)—ki(s) <1 (5.6)
for s € [0, 1] and such that
|| exp (Znikj(s)) — exp (Znigj (s))“ < g forl < j <d,ands € |0,1].

We define a new path iy as follows:

U (s) diag [exp (2711' ((gs;tfj(s) + %]’l}' (s)))]jnzl (U(O)(s))*,

t €[0,8],
U©(s) diag [exp (2711' (%f}(é‘) + 2 ))]j:l (U(O)(s))*,
1 € (8,28],
7,() = us(%), [ e (28,1 —26],
UM (s) diag [exp (27{1'(#/( (s )+ g gj (S)))] ! (U(l)(s))*,

te(l—28,1-4],

U (s) diag [exp (Zm'(%g] () + Ly (s)))] ! (U(l)(s))*,
fe(l—6 1]

As in the construction, it is easy to see that  is a path of unitaries in A,,.
For ¢ € (0, d], it follows from (5.3) and (5.5) that

TR+ Eh6) < A6 + Fha) << T 06+ Fha, )

and that

(g(g;tfdn(s) + %hdn(s)) - (8 g[fl(s) + §h1(5)> <1

Hence, i, () has no repeated eigenvalues for any (s, ¢) € [0, 1] x (0, §]. Similarly, by (5.4)
and (5.6), i (¢) has no repeated eigenvalues for any (s, ) € [0, 1] x [1 —§, 1). Moreover,
when ¢ € [0, §], we have

\ﬁs(t)_us(t” |1’7s(t)_17s(0)| + |ﬁs(0)_us(t)|
exp (22121 (5) = £59))) = 1] + s 0) = s 1)

IA

IA

max
1<j<dy
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§1max |exp(2m(h (s)—f,(s)))—l|+—
<j=<dn

= max |exp (2mif;j(s)) —exp (27ih;(s))| + -
<j<

IA
l\)'ld

For ¢t € (8, 26], we have

|ﬁs(t) - Ms(t)i

IA

|t (1) — 15 (8)] + |17s(3) — 5(28)| + [i5(28) — us (1)

(56 = 1) =1+ 4 s — s )

1
4

< max
1<j<dy

exp <2m

< max |exp(2mi(fj(s) — hj(s)))—]’—i‘z—i‘

]<J<

= max|exp (2ify5)) - exp (i 5)) | + 3

1<j<

<3
=4

In the same way, we have

|1'Zs(t) — us(t)| < %Tn forallt € (1 —26,1].

Furthermore, for ¢ € [28, 1 — 24], it is easy to see that

t—268 )_’4t8—28 - 26
1— 48 Tl 1—48 1—48

<81.

Hence

|75(1) — us(1)| = us(%) ()] < g

- 3
llots — us|| < Tn forall s € [0, 1].

It follows that

In the construction of iy, it is easy to see that the lengths of iy and u; are close if 1 is
small enough.

As we mentioned before, the unitaries |5y € Mg, (C([0, 1] x {§})) and is|{1—sy €
Mg, (C([0, 1] x {1 — §})), as the boundaries of iis|(s,1—5) € Mg, (C([0, 1] x [8, 1 —5])),
both have distinct eigenvalues. By Proposition 2.2 and Remark 2.3, there exists another
unitary, L:ts e U(M4,(C([0, 1] x [8, 1 — 8]))), such that

I iy — s |[5,1-5] | < g
‘lengths (173) — length, (ﬁs|[5,1_3])} <,
i has distinct eigenvalues for any (s, ¢) € [0, 1] x [8,1 — §], and

1s5(8) = 15(8), iis(1—8) = its(1 —5). (5.7)
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Define the path vs € C([0, 1], A,) by

ug(t), 0<t<é,
vs(t) = fig(t), S§<t<1-38,
(), 1—-8<t<1.

Note that the initial value vg(0) = 5(0) = uz(0) is in the form of (5.1) with the
function f; described in (5.3). One can choose the functions 4; : [0, 1] x [0, 1] — R with
Aj(s,0) = fi(s)and Ay(s,t) < Ax(s,t) <--- < Ag4,(s,1) such that

Sp (v5(1)) = {exp (2iA; (5. 0)} 12,

Since v, (1) has distinct eigenvalues for any (s, ¢) € [0, 1] x (0, 1), by (5.3), we can prove
that

A(s, 1) <Aa(s,t) <---<Ag,(s.1), Ag,(s,t)—A1(s,t)<1 forany (s,7)€[0,1]x][0,1).

To see this, by (5.3)
Adn(svo) - A](S,O) <1

Since exp(2miAg, (s, 1)) # exp(2mwiAi(s,t)) forany (s, ¢t) € [0, 1] x (0, 1), we have
Ad,(s,1) —Ai(s,t) & Z.

Notice that A4, (-,-) and A (-, -) are continuous. We have

Ag,(s,t) —A1(s,t) <1 forall (s,2) €[0,1] x [0, 1).
Furthermore, there exist a permutation o € Sy, and d,, integers {m; }7’;1 such that
Ai(s,1) = go(h(s) +m; foralll < j <d,.

It is easy to check that

Ag,(s,t) —Ai(s,t) <1 forany (s,¢) € [0,1] x [0, 1].

For (s,t) € [0,1] x (0, 1), let p; (s, t) be the spectral projection of the unitary v (t)
corresponding to the eigenvalue exp(27i A (s, t)), which is a rank one projection and con-
tinuously depends on (s, ¢) € [0, 1] x (0, 1). From the definition of v, () (see the definition
of iis(t)) for t € [0, 8], we know that A; (s, ¢) = 88;’f1 (s) + %hl(s) and that

pi(s,t) = U (s)diag[0,...,0,1,0,...,0]U@(s) for (s,2) € [0, 1] x (0,8],

SN—— S——
Jj—1 dn—Jj
which are constant projection valued functions with respect to ¢ € (0, §]. Similarly,
pi(s.t) = UW(s)diag[0,...,0,1,0,...,0]UD(s) for (s,1) € [0,1] x [1 =8, 1),
S—— S—

j_l dn_j
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which are also constant projection valued functions with respect to r € [1 — &, 1). Hence,
the projection valued function p; can be continuously extended to [0, 1] x [0, 1]. Let
H(t) = Zf"zl Aj(s,t)p;(s,t). Then vs(t) = exp(2wiH,(¢)) holds for all (s, ¢) € [0, 1] x
(0, 1), and, therefore, it holds for all (s,#) € [0, 1] x [0, 1] by continuity. |

Theorem 5.6. Let Z be the Jiang—Su algebra. Then celcy(Z) > 2.

Proof. Let Z = lim,, A,, be the Jiang—Su algebra. Fix « € (0, 1) such that 1 — a(> 0) is
very small (it will be specified later about how small it should be). For each m > 1, we
define a unitary u € A,, as follows:

exp (Zﬂihl(f))
u(t) = " ’
exp (2mihg,, (1)) dmxdm

where h; (1) = q’;;lat foreach 1 <i < py,, hi(t) = —quoct for each p;, +1 <1 < d,.
(Here we identify 1, ® M, 3 1® (aj)gnxqn With (a;;1p,) € My, 4...) It follows from
[21, Lemma 3.10] that u € CU(A,,). It is easy to calculate that

mqm

Sp(u) C {exp(Zni/l) : —qia <A<Im” la}. (5.8)

m dm

For any fixed n > m, denote v = ¢, »(4). Let us(f) be a unitary path in A, with uo(t) =

v(t)and u (¢) = 1g4,.
1

Forany 0 < ¢ < 57 - }w;:, by Lemma 5.5, there exists another piecewise smooth
unitary path v, (¢) such that
(D) vs —usll < 5
(2) |lengthg(vy) — length (us)| < 5;
3)
exp (2nif1 (s, t))

2mi ,
0 () =Us ) P EHRC) Uy,

. exp (27ifq, (s, 1))

where each f;(s,t) : [0,1] x[0, 1] =R is continuous and f1(s,t) < f2(s,t) <--- <
fa,(s,t) forall (s,¢) € [0,1] x (0,1) and fg,(s,1) — fi(s,t) < 1forall (s,t) €
[0, 1] x [0, 1].

In particular, we have

exp (2if; (s, 1)) # exp (2mwifi(s.1)) for j # k and (s,1) € [0,1] x (0, 1).

By the construction of the Jiang—Su algebra, we have

uo(t) = v(t) = Gmn(u)(t)
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exp (2mip1(t)) 0 0
0 exp (2mwipa(t)) --- 0
- b* . ( . ) . b’
0 0 o exp (2mifng, (1))
where 1 {
— o= (1) < ) < < pa, (1) < (5.9
dm m

forall ¢ € [0, 1], and b is a unitary element in M4, (C([0, 1])).

Let
. qm — 1 e 1 &
Xy = r-exp(2nlk)e(C:reR+,< a+—)<k<1+(——a——) cC
dm 2w dm 2
and
1 -1
Ya={x+yieC:xeR,(——a—i>2n§y§(qm oz—i—i)Zn}C(C.
dm 2 m 2

Then Sp(vo), Sp(uo) C C \ X,. Consider the logarithm function log : C \ Xy — Y. Then
I % log(vg) — % log(uo)|| < 5=, since X, is a wedge shaped region with angle at 0 € C

of angle size

1 -1
1+(——a—i)—(qm a+i)=(1—oe)—£>2s
qm 2 dm 2w T

and ||vg — ug|| < &/2. By Weyl’s inequality in [48],
1£:(0.6) — s ()] < zi forall j € {1,2,....dy). (5.10)
g

From u; = ly4, and |Ju; — v1]| < §, by the version of Weyl’s inequality for unitaries
(see [1]), one gets

[ exp (2ify(1.0) =1 < 3.

Hence, for each j € {1,2,...,d,}, there is an integer /; such that

|50 =1 < o= 5.11)

By Proposition 2.6, we have length, (vs(-)) > length,(exp(27if; (s, ))) for each j.
Hence, by (5.10) and (5.11),

length, (exp (27if;(s,-))) = 27 H{S’i] i () = 1] = 2e.
t€|0,

From the construction of Jiang—Su algebra (see Theorem 5.1),

o 427" -1 —«
1) = —(&ell :——<O
=~ 60) = o s
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and

a0 = = (6 (0)

t+2"m — 1 -1 n—m — 1 —1
_ + __ . (gm ) > . (gm )Ot. (5.12)
2 qm 2 qm

We divide the discussion into the following cases.

Case 1. [;, > 2 for some 1 < jy < d,. Then

length, (eZ”if(fO(S”)) > 2 rr%ax] |jo (1) — Ly | — 26 = 27 — 2e.
1€[0,1

Case 2. [;, < —1 forsome 1 < j; < d,. Then

length, (ez”iffl ) > 27 rr;ax] | (0) = 1y | — 26 = 27 — 2e.
1€0,1

Case3. [; =0forall1 < j <d,. Then

length, (ezﬂifd" (S")) > 2 rr%ax] |1ka, (1) — 0| — 2e.
t€[0,1

It follows that

A C l)a) — 2. (5.13)

length, (eszd" (S”)) > 271( S .
m

Cased4. [; = 1foralll < j <d,. Then

length, (ez”if‘ (S”)) >2r nEax] ‘ul(t) — 1| —2& > 21 —2e.
t€[0,1

Case 5. All [; are either O or 1 (i.e., {1,2,....dp} ={j : [; =0y U{j : [; =1}) and
J:i=0y#0.{j:; =1} #0.

There exists 1 < K < dy suchthat/; =0foralll <j < Kand/; =1forall K +1<
J < dy,.Note that fz (s,1) — fi(s,t) < 1forall (s,¢) € [0, 1] x [0, 1]. By the boundary
condition of vy € A,, we have ¢, | K and p, | (d, — K). Since d,, = pnqn, we have
pn | K. It follows that K = 0 or K = d,,, a contradiction. This means that Case 5 will not
occur. [

Furthermore, we can obtain the following more general result with almost the same
proof.

Theorem 5.7. Let Z be the Jiang—Su algebra and k a positive integer. Then
celcy (Mk (Z)) > 2m.

(Combining with Lin’s result, one gets celcy(My(Z)) = 2x.)
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Proof (Sketch). Let Z = lim,, A,, be the Jiang—Su algebra. Write
M (Z) = hr{;n (Mk (Am)a ¢m,n)

We shall also use ¢, , to denote ¢y, »|4,, when we identify A4, as the upper left corner of
My (Ap). Fixm > 1.Let0 < f <« < 1besuchthat B < 1—« and that | — « is very
small. Define a unitary u' € 4, as follows:

eZnihl(t)

ul (l) - T . 3
o2l (1)
dmxdm

where h; (1) = q"”l—;l(ﬂ + (¢ — B)t) foreach 1 <i < p,, and h; (¢t) = —qu(,B + (¢ — B)t)
for each p,, + 1 <i < d,,. We denote

u = diaglu', u?, ..., u*] € My(4,),

where u’(t) = 14,, for each 2 <i < k. It follows that u € CU(M(Am)).

For any n > m + 1, suppose that u, is a path connecting ¢, (1) and 1y, (4, Fix
a positive number & < 2,,1 — - g Let vs be described in the proof of Theorem 5.6 with
properties (1), (2), and (3) there. In particular, we have

vs(t) = Us(t) diag [exp (2if1(s.1)). exp (27if2(s. 1)), . ... exp (27ifa,k(s.1)) |Us(1)*,
where each £;(s.) : [0, 1] x [0, 1] — R is continuous and
fi(s.0) < fals. 1) < -+ < fa,k(s.1) (5.14)
for all (s, ) € [0,1] x (0, 1) and
Jank(s.1) — fi(s.1) <1 (5.15)

for all (s,¢) € [0, 1] x [0, 1].
With our modified construction of u!, one gets

Sp (¢m,n(u1)) cSpul)c {exp(Zni)L) tAe [— La,—iﬁ] U [C]m — lﬁ, dm — loti|}
dm dm dm dm

which is stronger than (5.8) in the proof of Theorem 5.6. Denote wy = ¢, (u') and
W = ¢ »(1). Then for any ¢ € [0, 1], the eigenvalues of w; (f) can be written as

{exp (2mip; (t))};tl

such that

—Loc < pa(t) < pa@) <--- < pup(t)

m

" 1/3 < purL41(t)

m

1
=—B<0
qm
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gm—1

m

S pr42(t) <0 = g, (1) <

o

for some positive integer L < d, (compare with (5.9)). And the eigenvalues of w(¢) can
be listed as

{{ exp (2711'/1,- (t))}jL=1, exp(2ni0)~(k_1)d”, {exp (Zm'uj (t)) };.i”=L+l}.

Note that ||vg — w|| < &/2. One has
. 1 £ qm — 1 £
Sp(vg) C yexpRmid) : ——a— — <A < —a + — .
qm 2 qm 2
Hence the above f; can be chosen to satisfy

1 e

-1
qm 2 . 5

(Compare with (5.9).) Then similar to (5.10), one can get
[0 =10 < 5= forall j e {1.2.....L},
[£0.0~0] < 5= forall j € {L+1L+2,....dak— 1)+ L},
[ fante450.0 =y O] < 5 forall j €L+ 1L +2,..dn).

The ranges of functions f; (0, -) are in three mutually disjoint open intervals:

1 1
forl <j <L, fj(0,1)6<__a_i7__,3+i);
qm 27 gm 2
for L+1<j<dik—D+L,  f;0.0¢€( = +5—);
27 2w
-1 -1
fordy(k — 1)+ L+ 1< j <dwk, f(0.1) € (q’" g2 dm =y i).
qm 27 gm 2
Repeating the proof of Theorem 5.6, we can prove that
2" — 1 (gm — Da
length, (vs) 22n( =TI “ —2e. (5.16)
Note that
gm — 1
Ha, () = q—(ﬂ + (¢ = B)ée())
m
qm — 1 42" —1 277" — 1 (gm — D
:m_<ﬁ+(a_ﬂ) — )2< .l )
qm 2 2 qm

(Compare with (5.12).)
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We are not going to give all the details. Instead, we will briefly describe some steps of
the proof of the corresponding part of Theorem 5.6 (see (5.13) there) and point out only
the new issue involved in our new case which needs a slightly different treatment.

As in the proof of Theorem 5.6 (see (5.11) there), by |vs — us|| < &/2 and u; =
1as,(4,), foreach j € {1,2,...,d,k}, there is an integer /; such that

[00-1] <.

We will divide the proof of (5.16) into five cases according to the possible values of /;,
the same as what we did in the proof of (5.13) (see the proof of Theorem 5.6).

For Cases 1, 2, 3, and 4, the proofs are exactly the same. So we only need to deal with
Case 5: all /j areeither Oor 1, with {j : [; =0} #Qand {j : [; = 1} # 0.

Sowehave {1,2,...,dp,k} ={j :[; =0} U{j :[; =1}. By (5.14) and (5.15), there
exists 1 < K <dyk suchthat/; =0foralll1 <j < Kand/; =1forall K + 1< j <d,k.

If K <du(k—1), then, for j = d,(k — 1) + 1, we have || f;(0,?)| < 5= and

| fj(1,2) = 1|| < 5=. Then lengths(exp(2mif;(s,-))) > 2m — 2e. Consequently,zjzilé)
holds for this case. If K > d,,(k — 1), we shall show that K = d,k. Otherwise, we have
dy(k — 1) < K < duk. By (5.14) and (5.15), we have ¢g,|K and p,|(d,k — K). Since
qnld,, we have g, |[K — (k — 1)d,]. We denote s = W and [ = d"f,—n_K. Then

5,1 € N. Then we have
Pnl + gns = (dpk — K) + (K —dy(k — 1)) =d, = pPnqn-

Hence, we have p, | s and g, | [. We denote s’ = - and I" = an. Then I’ + 5" = 1.
This leads to a contradiction. So we have K = kd,. This means that /; = 0 for each
1 < j < d,k. This is contracted to the fact that {j : [; = 1} # 0. So “K > d,(k — 1)”
does not occur. It follows that (5.16) holds for any case.

Consequently, celcy(My (2)) > 27. ]

Funding. Research of the first author supported by NNSF of China (grant 11401088).
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