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On localized signature and higher rho invariant of
fibered manifolds

Liu Hongzhi and Wang Jinmin

Abstract. The higher index of the signature operator is a far-reaching generalization of the signature
of a closed oriented manifold. When two closed oriented manifolds are homotopy equivalent, one
can define a secondary invariant of the relative signature operator, called higher rho invariant. The
higher rho invariant detects the topological nonrigidity of a manifold. In this paper, we prove product
formulas for the higher index and the higher rho invariant of the signature operator on a fibered
manifold. Our result implies the classical product formula for the numerical signature of a fibered
manifold obtained by Chern, Hirzebruch, and Serre (1957). We also give a new proof of the product
formula for the higher rho invariant of the signature operator on a product manifold, which is parallel
to the product formula for the higher rho invariant of Dirac operator on a product manifold obtained
by Xie and Yu (2014) and Zeidler (2016).

1. Introduction

The signature of a 4k-dimensional manifold is defined to be the signature of the cup prod-
uct as a nondegenerate symmetric bilinear form on the vector space of 2k-cohomology
classes. In [1], Chern, Hirzebruch, and Serre established a product formula for the signa-
ture of a fibered manifold. More precisely, let F ! E ! B be a fibered manifold with
base manifold B and fiber manifold F . If �1.B/ acts trivially on H�

dR
.F /, the de Rham

cohomology of F , we have the following product formula:

sgn.B/ � sgn.F / D sgn.E/: (1.1)

The signature of a manifold is also equal to the Fredholm index of the signature oper-
ator. By taking into account the fundamental group of the manifold, one can introduce
higher invariants of the signature operator, which lie in the K-theory of certain geomet-
ric C �-algebras. Let M be an m-dimensional closed manifold with fundamental group
�1.M/ D G and universal covering space zM . Let Dsgn

M be the signature operator on M .
The higher index of Dsgn

M , Ind.Dsgn
M /, is a generalization of the Fredholm index and is

defined to be an element inKm.C �. zM/G/, whereC �. zM/G is the equivariant Roe algebra
of zM and is Morita equivalent to the reduced group C �-algebra C �r .G/. The higher index
of the signature operator is invariant under homotopy equivalence and oriented cobordism
and plays a fundamental role in the study of classification of manifolds. On the other hand,
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D
sgn
M defines a K-homology class ŒDsgn

M � in Km.C �L. zM/G/, the K-theory of the equivari-
ant localization algebra. See Sections 2 and 3 for the explicit definitions of the equivariant
geometric C �-algebras, the higher index, and theK-homology class of the signature oper-
ator.

Furthermore, if f W M 0 ! M is an orientation-preserving homotopy equivalence of
closed manifolds, then there exists a concrete homotopy that realizes the equality

Ind
�
D

sgn
M 0

�
D Ind

�
D

sgn
M

�
2 Km

�
C �. zM/G

�
;

where m is the dimension of M and M 0. This homotopy allows one to define a secondary
invariant of the signature operator associated to the homotopy equivalence f , called higher
rho invariant, in the K-theory of the equivariant obstruction algebra C �L;0. zM/G . The
higher rho invariant of the signature operator associated to a homotopy equivalence plays
a central role in estimating the topological nonrigidity of a manifold (cf. [5, 8, 9, 15, 21]).

Inspired by Chern, Hirzebruch, and Serre’s product formula, we prove a product for-
mula for the higher index and the higher rho invariant of the signature operator on a fibered
manifold. More precisely, consider a closed fibered manifoldF !E!B with base space
B and fiber F . Denote the fundamental group of E by G and the fundamental group of
B by H . Let zE and zB be the universal covering spaces of E and B , respectively. Set
n D dim F and m D dimB . We first define a family localization algebra C �L. zEI zB/

G

and a family obstruction algebra C �L;0. zEI zB/
G . We show that there are naturally defined

product maps:

� W Km
�
C �L.
zB/H

�
˝Kn

�
C �L.
zE; zB/G

�
! KmCn

�
C �L.
zE/G

�
;

�0 W Km
�
C �L.
zB/H

�
˝Kn

�
C �L;0.

zE; zB/G
�
! KmCn

�
C �L;0.

zE/G
�
:

Taking advantage of the fiberwise signature operator, we introduce a family K-homology
class of the family signature operator along F in Kn.C �L. zEI zB/

G/, denoted by ŒDsgn
E;B �,

and a family higher rho invariant �.f IB/ in Kn.C �L;0. zE; zB/
G/, associated to a fiberwise

homotopy equivalence f WE 0!E. The following theorem is a product formula for theK-
homology class of the signature operator on a fibered manifold, which implies the product
formula for the higher index of the signature operator.

Theorem 1.1. Let F ! E ! B be a fibered manifold with base space B and fiber F .
Denote the fundamental group of E by G and the fundamental group of B by H . Let zE
and zB be the universal covering spaces of E and B , respectively. Write dimF D n and
dimB D m. Let ŒDsgn

E;B � be the family K-homology class of the family signature operator
in Kn.C �L. zE; zB/

G/. One has the following product formula for the family K-homology
class of the family signature operator

kmn � �
�
ŒD

sgn
B �˝ ŒD

sgn
E;B �

�
D ŒD

sgn
E �;

where kmn D 1 when mn is even and kmn D 2 otherwise; and � is the product map

� W Km
�
C �L.
zB/H

�
˝Kn

�
C �L.
zE; zB/G

�
! KmCn

�
C �L.
zE/G

�
:
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We also obtain the following product formula for the higher rho invariant of the sig-
nature operator on a fibered manifold.

Theorem 1.2. Let F ! E ! B and F 0 ! E 0 ! B be two fibered manifolds with base
space B and fiber F and F 0, respectively. Let f WE 0!E be a fiberwise homotopy equiv-
alence. Denote the fundamental group of E and E 0 by G and the fundamental group of B
by H . Let zE, zE 0, and zB be the universal covering spaces of E, E 0, and B , respectively.
Write dimF D n and dimB D m. Let �.f IB/ be the family higher rho invariant associ-
ated to the fiberwise homotopy equivalence f defined in Kn.C �L;0. zE; zB/

G/. One has the
following product formula for the higher rho invariant:

kmn � �0
�
ŒD

sgn
B �˝ �.f IB/

�
D �.f /;

where kmn D 1 when mn is even and kmn D 2 otherwise, and �0 is the product map

�0 W Km
�
C �L.
zB/H

�
˝Kn

�
C �L;0.

zE; zB/G
�
! KmCn

�
C �L;0.

zE/G
�
:

As an application of Theorem 1.1, we give an alternative proof of the product formula
of Chern, Hirzebruch, and Serre (cf. [1]). Also, the product formula for the higher rho
invariant stated in Theorem 1.2 can be applied to study the behavior of the higher rho map
in [15] under fibration and thus can be applied to study the topological nonrigidity of a
fibered manifold.

We mention that the product formula for the higher index of the signature operator
(Proposition 4.1) has been obtained by Wahl in [13, Theorem 5.7]. In this paper, we give
a new proof of Wahl’s product formula. On the other hand, the product formula for the
higher rho invariant of a positive scalar curvature metric on a product manifold has been
proved by Siegel in his thesis [11], by Xie and Yu in [17], and by Zeidler in [20]. Their
results and Theorems 6.8 and 6.9 in [15] inspire us to study the product formula for the
higher rho invariant of the signature operator.

The paper is organized as follows. In Section 2, we briefly recall some definitions of
geometric C �-algebras that we use throughout the paper. In Section 3, we revisit the con-
struction of several higher invariants associated to the signature operator. Next, in Section
4, we prove the product formulas for the higher index and the higher rho invariant of the
signature operator on a product manifold. In Section 5, we generalize the product formu-
las to fibered manifolds and prove Theorems 1.1 and 1.2. We shall define an auxiliary
C �-algebra consisting of operators that can be localized along the base manifold and use
Mayer–Vietoris arguments to prove the product formula on a fibered manifold.

2. Preliminary

The aim of this section is to briefly recall some basic definitions of geometric C �-algebras
used throughout the paper. For more details, we refer the readers to [15].

Let X be a proper metric space and G a finitely presented discrete group. Suppose
that G acts on X properly by isometries. For simplicity, we assume that the G-action is
free. Let C0.X/ be the C �-algebra consisting of all complex-valued continuous functions
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on X that vanish at infinity. An X -module is a separable Hilbert space HX equipped
with a �-representation of C0.X/. It is called “nondegenerate” if the �-representation is
nondegenerate and “standard” if no nonzero function in C0.X/ acts as a compact operator.
Additionally, we assume that HX is equipped with a unitary representation of G which is
compatible with the C0.X/-representation; that is,

8f 2 C0.X/; g 2 G; �.g/�.f / D �.g � f /�.g/;

where � (resp. �) is the C0.X/ (resp. G)-representation onHX and g � f .x/D f .g�1x/.
Now, let us recall the definitions of propagation and local compactness of operators.

Definition 2.1. Under the above assumptions, let T be a bounded linear operator acting
on HX .

(1) The propagation of T is defined by

prop.T / D sup
®
d.x; y/ j .x; y/ 2 Supp.T /

¯
; (2.1)

where Supp.T / is the complement (in X �X ) of the set of points .x; y/ 2 X �X
such that there exist f1; f2 2 C0.X/ such that f1Tf2 D 0 and f1.x/f2.y/ ¤ 0.

(2) T is said to be locally compact if both f T and Tf are compact for all f 2C0.X/.

In the following, we recall the definitions of the equivariant Roe algebra, localization
algebra, and obstruction algebra.

Definition 2.2. Let HX be a standard nondegenerate X -module and B.HX / the set of all
bounded linear operators on HX .

(1) The G-equivariant Roe algebra of X , denoted by C �.X/G , is the C �-algebra
generated by all G-equivariant locally compact operators with finite propagation
in B.HX /.

(2) The G-equivariant localization algebra C �L.X/
G is the C �-algebra generated

by all uniformly norm-bounded and uniformly norm-continuous functions f W
Œ1;1/! C �.X/G such that

8t 2 Œ1;1/; prop
�
f .t/

�
<1 and prop

�
f .t/

�
! 0 as t !1:

(3) The G-equivariant obstruction algebra C �L;0.X/
G is defined to be the kernel of

the following evaluation map:

ev W C �L.X/
G
! C �.X/G

f 7! f .1/:

In particular, C �L;0.X/
G is an ideal of C �L.X/

G .

(4) Let U�.X/G be the C �-algebra generated by all G-equivariant operators with
finite propagation in B.HX /. Similarly, we define U�L.X/

G and U�L;0.X/
G . It is

easy to see that C �.X/G , C �L.X/
G , and C �L;0.X/

G are two-sided closed ideals of
U�.X/G , U�L.X/

G , and U�L;0.X/
G , respectively.
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Remark 2.3. Up to isomorphism, C �.X/G does not depend on the choice of the standard
nondegenerate X -module. The same holds for C �L.X/

G and C �L;0.X/
G (cf. [16, Part II],

[17, Remark 2.7]).

WhenX is a GaloisG-covering of a closed Riemannian manifold,L2.X/ is a standard
nondegenerate X -module. In this case, there is an equivalent definition of the equivariant
Roe algebra.

Definition 2.4. Let X be a Galois G-covering of a closed Riemannian manifold. Set
CŒX�G as a �-algebra consisting of integral operators given by

f 7!

Z
X

k.x; y/f .y/ dy; 8f 2 L2.X/;

where k W X �X ! C is uniformly continuous, uniformly bounded on X �X , has finite
propagation, i.e.,

9ı > 0; s.t. k.x; y/ D 0; if d.x; y/ > ı;

and is G-equivariant, i.e., k.gx; gy/ D k.x; y/ for any g 2 G. The G-equivariant Roe
algebra is the operator norm completion of CŒX�G .

Remark 2.5. As we have assumed that the base manifold is closed, the G-action on X is
cocompact. If we remove the cocompactness, the C �-algebra given in Definition 2.4 will
not coincide with the equivariant Roe algebra given in Definition 2.2.

Suppose that T 2 CŒX�G has a corresponding Schwartz kernel k.x; y/. The support
of T defined in Definition 2.2 is simply given by

Supp.T / D
®
.x; y/ 2 X �X W k.x; y/ ¤ 0

¯
: (2.2)

Similarly, we define the G-equivariant localization algebra C �L.X/
G to be the com-

pletion of all paths on t 2 Œ1;C1/ with value in CŒX�G , which are uniformly continuous
and uniformly bounded with respect to the operator norm and have propagation going to
zero as t goes to infinity.

Definition 2.4 can be easily generalized to the case where L2.X/ is replaced by L2-
section of a Hermitian vector bundle over X on which G acts by isometries. The above
definitions coincide with Definition 2.2, as those C �-algebras are independent of the
choice of the standard nondegenerate X -module.

Now, we consider the product of two manifolds. Let M;N be two closed Riemannian
manifolds and zM , zN their GaloisG,H -covering spaces, respectively. For any pair of inte-
gral operators in CŒ zM�G and CŒ zN�H , their tensor product is well-defined as an operator
in CŒ zM � zN�G�H . Thus, the following homomorphisms are naturally defined:

 W Km
�
C �. zM/G

�
˝Kn

�
C �. zN/H

�
! KmCn

�
C �. zM � zN/G�H

�
;

 L W Km
�
C �L.
zM/G

�
˝Kn

�
C �L.
zN/H

�
! KmCn

�
C �L.
zM � zN/G�H

�
;

 L;0 W Km
�
C �L.
zM/G

�
˝Kn

�
C �L;0.

zN/H
�
! KmCn

�
C �L;0.

zM � zN/G�H
�
:

(2.3)
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More precisely,

 W Km
�
C �. zM/G

�
˝Kn

�
C �. zN/H

�
! KmCn

�
C �. zM � zN/G�H

�
is defined to be the following composition of maps:

Km
�
C �. zM/G

�
˝Kn

�
C �. zN/H

� ˝K
��! KmCn

�
C �. zM/G ˝ C �. zN/H

�
��! KmCn

�
C �. zM � zN/G�H

�
:

The maps  L and  L;0 are defined similarly.

3. Higher invariants associated to signature operator
In this section, we recall a formula of the higher index of the signature operator, which
was obtained by Higson and Roe in [3, 4]. After that, we will give the construction of K-
homology class of the signature operator, which was originally introduced by Weinberger,
Xie, and Yu in [15]. Finally, we give the definition of the higher rho invariant associated
to a controlled homotopy equivalence of manifolds.

In this section, all manifolds mentioned are not assumed to be compact or connected
unless otherwise noted.

3.1. Higher index of signature operator

LetM be a Riemannian manifold of dimensionm. Let zM be a GaloisG-covering space of
M , where G is a finitely presented discrete group. Denote by ƒp. zM/ the L2-completion
of compactly supported smooth differential p-forms on zM . Let d zM be the de Rham dif-
ferential on zM , which is an unbounded operator from ƒp. zM/ to ƒpC1. zM/. We will
writeƒeven. zM/D

L
kƒ

2k. zM/,ƒodd. zM/D
L
kƒ

2kC1. zM/, andƒ. zM/Dƒeven. zM/˚

ƒodd. zM/.
Let D zM be the Hodge–de Rham operator; i.e., D zM D d zM C d

�
zM

. Let � be the Hodge

�-operator of ƒ�. zM/. Define the Poincaré duality operator S zM by

S zM W ƒ
p. zM/! ƒn�p. zM/;

! 7! ip.p�1/CŒ
n
2 � � !:

Remark 3.1. Here, S zM is a special case of the Poincaré duality operator defined in [3,
Definition 3.1]. We see that the square of S zM is equal to 1, but, in general, we do not need
this fact to define the higher signature. We will pay special attention to this distinction in
Section 4 when proving the product formulas, especially for the product formula for the
higher rho invariants.

We now recall the representative of the higher index of the signature operator accord-
ing to the parity of m.

Odd case. When m is odd, the signature operator Dsgn
M is given by

iD zMS zM W ƒ
even. zM/! ƒeven. zM/:
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The following is shown in [3, 4].

(1) D zM ˙ S zM are both invertible.

(2) The invertible operator�
D zM C S zM

��
D zM � S zM

��1
W ƒeven. zM/! ƒeven. zM/

belongs to .C �. zM/G/C and thus defines a class in K1.C �. zM/G/ denoted by
Ind.Dsgn

M /.

(3) The higher index of the signature operator (cf. [4, Section 5.2.2]) is equal to
Ind.Dsgn

M /.

Even case. The even case is parallel. In this case, the signature operator Dsgn
M is the

Hodge–de Rham operator D zM under the grading given by the Poincaré duality S zM .
The following is shown in [3, 4].

(1) D zM ˙ S zM are both invertible.

(2) Let PC.D zM ˙ S zM / be the positive spectral projections of invertible operators
D zM ˙ S zM , respectively. Then, we have PC.D zM ˙ S zM / 2 U�. zM/G and

PC
�
D zM C S zM

�
� PC

�
D zM � S zM

�
2 C �. zM/G :

Thus, the formal difference�
PC
�
D zM C S zM

��
�
�
PC
�
D zM � S zM

��
determines a K-theory class in K0.C �. zM/G/ denoted by Ind.Dsgn

M /.

(3) The higher index of the signature operator (for definition, see [10, Section 4.3] or
[4, Section 5.2.1]) is equal to Ind.Dsgn

M /.

3.2. K -homology class of signature operator

In this subsection, we recall the definition of the K-homology class of the signature oper-
ator.

LetM be anm-dimensional closed oriented Riemannian manifold. We use the rescal-
ing trick to define the K-homology class of the signature operator, which lies in the
K-theory of the localization algebra C �L. zM/G .

LetMt be the Riemannian manifold equipped with the metric gMt D t2gM , where gM

is the Riemannian metric ofM . LetD zMt
and S zMt

be the Hodge–de Rham operator and the
Poincaré duality operator on zMt , respectively. As in the previous subsection, we construct
the higher index of the signature operator on zMt using the specific representatives�

D zMt
C S zMt

��
D zMt

� S zMt

��1
W ƒeven� zMt

�
! ƒeven� zMt

�
and

PC
�
D zMt

C S zMt

�
� PC

�
D zMt

� S zMt

�
W ƒ
�
zMt

�
! ƒ

�
zMt

�
when m is odd and even, respectively.
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The Hilbert spaceƒ. zMt / is naturally isomorphic toƒ. zM/. Thus, the above operators
are also viewed as acting onƒeven. zM/ orƒ. zM/ by conjugation. We will still use the same
notations to denote the corresponding operator acting on zM .

Lemma 3.2. (a) When m is odd, the path

t 7!
��
D zMt

C S zMt

��
D zMt

� S zMt

��1
W ƒeven. zM/! ƒeven. zM/

�
; t 2 Œ1;C1/;

lies in the localization algebra C �L. zM/G .

(b) When m is even, the paths

t 7!
�
PC
�
D zMt

˙ S zMt

�
W ƒ. zM/! ƒ. zM/

�
; t 2 Œ1;C1/;

lie in U�L.
zM/G . Moreover, the difference

t 7!
�
PC
�
D zMt

C S zMt

�
� PC

�
D zMt

� S zMt

��
lies in the localization algebra C �L. zM/G .

Assuming Lemma 3.2 for a while, we are able to define the K-homology class of the
signature operator as follows.

Definition 3.3. The K-homology class of the signature operator on M , which will be
denoted by ŒDsgn

M �, is defined, respectively, by

� the K-theory class in K1.C �L. zM/G/ represented by the invertible element

t 7!
��
D zMt

C S zMt

��
D zMt

� S zMt

��1
W ƒeven. zM/! ƒeven. zM/

�
; t 2 Œ1;C1/;

when m is odd;

� the K-theory class in K0.C �L. zM/G/ represented by the formal difference of the pro-
jections �

t 7! PC
�
D zMt

C S zMt

��
�
�
t 7! PC

�
D zMt

� S zMt

��
;

when m is even.

Now, we are going to prove Lemma 3.2. We will only give the proof of part (a). The
proof of the other part is parallel.

We first give a proof of Lemma 3.2 using the fact S2eM D 1, and then give an alter-
native proof without this fact for further generalization. Denote by Tt the restriction of
.D zMt

C S zMt
/.D zMt

� S zMt
/�1 to ƒeven. zM/. It is easy to give a concrete formula of Tt by

Tt D
�
D zMt

C S zMt

��
D zMt

� S zMt

�
D

�
D zM
t
C S zM

��
D zM
t
� S zM

�
D

iD zMS zM
t
C i

iD zMS zM
t
� i

: (3.1)
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The second equality follows from direct computations, and the last equality follows from
the fact that S2

zM
D 1. Note that

iD zMS zM
t
C i

iD zMS zM
t
� i

is the Cayley transform of iD zMS zM . Now, the standard propagation speed argument shows
that Tt 2 C �L. zM/G .

Remark 3.4. Recall that iD zMS zM W ƒ
even. zM/! ƒodd. zM/ is the usual signature oper-

ator on the odd dimensional manifold zM (cf. [4, Section 5.2]). Equation (3.1) actually
shows that Tt agrees with the standard construction of the representative element of the
K-homology class of the elliptic differential operator iD zMS zM W ƒ

even. zM/! ƒodd. zM/

in [16, Chapter 8].

However, for further generalization, we give an alternative proof of Lemma 3.2 based
only on the followings:

(i) D zMt
is a first-order self-adjoint elliptic differential operator on zMt ;

(ii) the norm of the principal symbol of D zMt
is uniformly bounded in t 2 Œ1;1/;

(iii) D zMt
C S zMt

and D zMt
� S zMt

are invertible, and their quotient�
D zMt

C S zMt

��
D zMt

� S zMt

��1
is uniformly bounded in t with respect to the operator norm;

(iv) S zMt
is self-adjoint and uniformly bounded and anti-commutes with D zMt

;

(v) S zMt
has zero propagation.

Proof of Lemma 3.2. This proof is in spirit from [15, Appendix A]. We prove part (a) in
detail only. The proof of part (b) is similar.

It is sufficient to prove that Tt can be approximated by a path of operators of which the
propagation goes to zero as t goes to infinity. Here, the approximation should be uniformly
in t 2 Œ1;1/ with respect to the operator norm.

Let CM be M � RC equipped with a conic metric dt2 C t2.gM /2: When restricted
to a slice M � ¹tº, the Riemannian metric tensor agrees with the one on Mt constructed
above.

We first prove the case when t 2 NC. Let
`
nMn be the disjoint union of Mn, n D

1; 2; 3; : : : : This is a Riemannian manifold, of which the Riemannian metric tensor is
defined piecewise. We may also equip

`
nMn with the metric induced by the inclusiona

n

Mn ŠM � ¹1; 2; 3; : : :º � CM;

which agrees with the metric induced by the Riemannian metric tensor on each piece. See
Figure 1.
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M1 M2 M3
Mt

MnCM

Figure 1.
`
nMn in CM .

Similarly, we define
`
n
zMn and the following invertible operator:

T D
�
D`

n
zMn
C S`

n
zMn

��
D`

n
zMn
� S`

n
zMn

��1
W ƒeven

�a
n

zMn

�
! ƒeven

�a
n

zMn

�
:

Since every component of
`
n
zMn does not interact with others, T actually agrees with

Tn when restricted to zMn.
We claim that, for every " > 0, there exists an operator T 0 acting on ƒeven.

`
n
zMn/

such that kT � T 0k < " with respect to the operator norm, and T 0 has finite propagation
with respect to the metric on

`
n
zMn. Let T 0n be the restriction of T 0 to zMn. If our claim

holds, then the propagation of T 0n goes to zero as n!1 with respect to the metric on zM .
The local compactness of operators on zMn only concerns finitely many components.

Thus, it is equivalent to prove our claim by showing that T � 1 lies in C �.
`
n
zMn/

G , the
equivariant Roe algebra defined in Definition 2.2.

Now, we prove our claim above. SinceD`
n
zMn

is self-adjoint, .D`
n
zMn
C i/ is invert-

ible. Observe that

T D
�
D`

n
zMn
C S`

n
zMn

��
D`

n
zMn
� S`

n
zMn

��1
D 1C 2S`

n
zMn

�
D`

n
zMn
� S`

n
zMn

��1
D 1C 2S`

n
zMn

�
D`

n
zMn
C i

��1�
1 �

�
S`

n
zMn
C i

��
D`

n
zMn
C i

��1��1
:

Furthermore, by the formula of the Fourier transformation, we have that

1

D`
n
zMn
C i
D �i

Z 0

�1

e�jxje
�ixD`

n
zMn dx:

Although
`
n
zMn is noncompact, the principal symbol of D`

n
zMn

is uniformly bounded
on
`
n
zMn. Therefore, the wave operator e�ixD

`
n
zMn has finite propagation C jxj for some

constant C > 0 on
`
n
zMn (cf. [16, Chapter 8] and [2, Chapter 10]). Define

XN D �i

Z 0

�N

e�jxje
�ixD`

n
zMn dx:
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Then, XN ! .D`
n
zMn
C i/�1 with respect to the operator norm as N !1, and XN has

finite propagation on
`
n
zMn. This shows that�
D`

n
zMn
C i

��1
2 C �

�a
n

zMn

�G
:

Besides, the Poincaré duality operator S`
n
zMn

is defined pointwise so that it has zero
propagation on

`
n
zMn.

Now, we apply the above argument verbatim to
`
n
zMnCs for all s 2 Œ0; 1�. This com-

pletes the proof.

3.3. Controlled homotopy equivalence and higher rho invariant

In this subsection, we recall the construction of the higher rho invariant of the signature
operator associated to a homotopy equivalence.

The higher rho invariant associated to a smooth homotopy equivalence was first intro-
duced by Higson and Roe in [3–5]. Later, in [9], Piazza and Schick gave an index theoretic
definition of the higher rho invariant of the signature operator. In [21], Zenobi extended
these definitions to a notion of higher rho invariant associated to a topological homotopy
equivalence.

In [15], Weinberger, Xie, and Yu constructed the higher rho invariant of the signature
operator associated to a homotopy equivalence by a piecewise-linear approach. In this
paper, we adapt their construction to give a differential geometric approach to the defini-
tion of the higher rho invariant. It is not hard to see that our construction here is equivalent
to the one given in [18, Section 8].

Definition 3.5. Let M 0 and M be two Riemannian manifolds. Let f W M 0 ! M be a
smooth homotopy equivalence with smooth inverse g WM !M 0. Denote by h0t , t 2 Œ0; 1�,
(resp. ht , t 2 Œ0; 1�) the smooth homotopy between fg and idM 0 (resp. gf and idM ). We
say that f is a controlled homotopy equivalence if there exists a positive constant C such
that

(1) the diameter of the set ¹h0t .a/ W 0 � t � 1º � M
0 is bounded by C uniformly for

all a 2M 0;

(2) the diameter of the set ¹ht .b/ W 0 � t � 1º � M is bounded by C uniformly for
all b 2M .

Remark 3.6. If M 0 and M are closed manifolds, then any homotopy equivalence f W
M 0 ! M is automatically controlled. Furthermore, the lift of f to their Galois covering
is also controlled.

Let f W M 0 ! M be a controlled homotopy equivalence. Suppose that zM; zM 0 are
Galois G-covering spaces of M;M 0, respectively. Write

D D D zM 0 ˚D zM and S D
�
S zM 0

�S zM

�
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acting onƒ�. zM 0/˝ƒ�. zM/. The controlled homotopy equivalence f WM 0!M induces
a map from ƒp. zM/ to ƒp. zM 0/, which we will still denote by f . In general, the induced
map is not a bounded operator. However, we may apply the Hilsum–Skandalis submersion
(cf. [7, p. 74], [14, p. 157], and [18, p. 34]) to construct a bounded operator Tf out of f .
Without loss of generality, we might as well assume that f is a bounded operator.

Now, let us recall the definition of the higher rho invariant associated to the controlled
homotopy equivalence f according to the parity of dimM . We mention here that the
construction is due to Higson and Roe (cf. [3, 5]) and Weinberger, Xie, and Yu (cf. [15]).

Odd case. We first assume that both M 0 and M are odd dimensional. Via conjugating
by f on the first summand ƒ�. zM 0/, we may identify D and S with their corresponding
operators acting on ƒ�. zM/ ˚ ƒ�. zM/. Under this identification, the invertible element
defined by

.D C S/.D � S/�1jƒeven. zM 0/˚ƒeven. zM/ 2M2

�
C �L.
zM/G

�C
represents the K-theory element f� Ind.Dsgn

M 0/ � Ind.Dsgn
M / 2 K1.C

�. zM/G/. The con-
struction in Definition 3.3 gives rise to an invertible element

.Dt C St /.Dt � St /
�1
jƒeven. zM 0/˚ƒeven. zM/ 2M2

�
C �L.
zM/G;C

�
:

In particular, we haveD1DD and S1D S . Since f is a controlled homotopy equivalence,
it gives rise to a canonical path that connects .D C S/.D � S/�1 to the identity operator
as shown by Higson and Roe in [3, Theorem 4.3]. The path is constructed out of the
following path Sf .t/ connecting S with �S :

Sf .t/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

 
.1 � t /S zM 0 C tf

�S zMf 0

0 �S zM

!
; t 2 Œ0; 1�;0B@cos

��
2
.t � 1/

�
f �S zMf sin

��
2
.t � 1/

�
f �S zM

sin
��
2
.t � 1/

�
S zMf � cos

��
2
.t � 1/

�
S zM

1CA ; t 2 Œ1; 2�; 
0 ei�.t�2/S zMf

e�i�.t�2/f �S zM 0

!
; t 2 Œ2; 3�;

�

 
0 ei�.4�t/S zMf

e�i�.4�t/f �S zM 0

!
; t 2 Œ3; 4�;

�

0B@cos
��
2
.5 � t /

�
f �S zMf sin

��
2
.5 � t /

�
f �S zM

sin
��
2
.5 � t /

�
S zMf � cos

��
2
.5 � t /

�
S zM

1CA ; t 2 Œ4; 5�;

�

 
.t � 5/S zM 0 C .6 � t /f

�S zMf 0

0 �S zM

!
; t 2 Œ5; 6�:

(3.2)

For any t 2 Œ0; 6�, Sf .t/ satisfies the following conditions:
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(1) D ˙ Sf .t/ are both invertible;

(2) the invertible operator

.D C S/
�
D � Sf .t/

��1
W ƒeven. zM/˚ƒeven. zM 0/! ƒeven. zM/˚ƒeven. zM 0/

belongs to M2.C
�. zM/G/C.

Definition 3.7. The higher rho invariant �.f / is the class in K1.C �L;0. zM/G/ represented
by the following invertible element:´

.D C S/
�
D C Sf .t � 1/

��1
jƒeven. zM 0/˚ƒeven. zM/; t 2 Œ1; 7�;

.Dt�6 C St�6/.Dt�6 � St�6/
�1jƒeven. zM 0/˚ƒeven. zM/; t > 7:

(3.3)

Even case. The even dimensional case is parallel to the odd case above. The construction
in Definition 3.3 gives rise to a path of differences of projections

PC.Dt C St / � PC.Dt � St / 2M2

�
C �L.
zM/G

�
;

with
PC.D1 C S1/ � PC.D1 � S1/ D PC.D C S/ � PC.D � S/:

Let Sf .t/ be as above. Similarly, for any fixed t , we have that

(1) D � Sf .t/ is invertible,

(2) PC.D � Sf .t// belongs to M2.U
�. zM/G/, and

PC.D C S/ � PC
�
D � Sf .t/

�
2M2

�
C �. zM/G

�
:

The higher rho invariant associated to a controlled homotopy equivalence f is defined
as follows.

Definition 3.8. Write

‚f;C.t/ D

´
PC.D C S/; t 2 Œ1; 7�;

PC.Dt�6 C St�6/; t > 7;

‚f;�.t/ D

´
PC
�
D C Sf .t � 1/

�
; t 2 Œ1; 7�;

PC.Dt�6 � St�6/; t > 7:

(3.4)

Since‚f;˙ are projections inM2.U
�
L;0.
zM/G/ and their difference lies inM2.C

�
L;0.
zM/G/,

the formal difference
Œ‚f;C� � Œ‚f;��

defines a K-theoretic class �.f / in K0.C �L;0. zM/G/, called higher rho invariant.



L. Hongzhi and W. Jinmin 932

4. Product formula

In this section, we will prove the product formula for the higher rho invariant of the signa-
ture operator associated to a homotopy equivalence. We only consider the case of product
manifolds for now. The general case of fibered manifolds will be discussed in the next
section.

Proposition 4.1. Let M , N be two manifolds with dimensions m, n and fundamental
groups G, H , respectively. Under the product map

 W Km
�
C �. zM/G

�
˝Kn

�
C �. zN/H

�
! KmCn

�
C �. zM � zN/G�H

�
;

one has
kmn �  

�
Ind

�
D

sgn
M

�
˝ Ind

�
D

sgn
N

��
D Ind

�
D

sgn
M�N

�
;

where

kmn D

´
1; mn is even;

2; mn is odd:

Proof. In the following, we omit the mention of  for simplicity. We avoid using the
fact that the Poincaré duality operator S2

zM
squares 1 on zM , in order to allow the proof to

be generalized later. We consider four cases according to the parity of both dimM and
dimN .

Even times odd. We first suppose that dimM is even and dimN is odd.
Write B zM˙ D D zM ˙ S zM for short. On the product manifold zM � zN , the de Rham

differential d zM� zN is given by

d zM� zN D d zM Ő 1C 1 Ő d zN D d zM ˝ 1CE zM ˝ d zN ;

where E zM is the even-odd grading operator for ƒ. zM/. Therefore, the Hodge–de Rham
operator on zM � zN is given by

D zM� zN D D zM ˝ 1CE zM ˝D zN :

Now, we decompose ƒeven. zM � zN/ into the direct sum of ƒeven. zM/˝ƒeven. zN/ and
ƒodd. zM/ ˝ ƒodd. zN/. As dimN is odd, the Hodge �-operator as well as the Poincaré
duality operator S zN reverses the parity of ƒ. zN/. Note that S2

zN
W ƒp. zN/! ƒp. zN/ is a

multiple of identity. Therefore, we identify ƒ. zM/˝ƒodd. zN/ as ƒ. zM/˝ƒeven. zN/ via
1˝ S zN . Under this identification and by [4, Section 5.2.2], the higher index of the signa-
ture operator Dsgn

zM� zN
is represented by the following invertible operator:�

BC
zM
˝ 1C 1˝ S zND zN

��
B�
zM
˝ 1C 1˝ S zND zN

��1
W

ƒ. zM/˝ƒeven. zN/! ƒ. zM/˝ƒeven. zN/:
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Since BC
zM

is invertible, we define a path of bounded operators

WC;s D
BC
zM

jBC
zM
js
˝ 1C 1˝ S zND zN :

For the invertible operator B˙
zM

, we denote by PC.B˙
zM
/ (resp. P�.B˙

zM
/) the spectral

projection of the positive (resp. negative) part of B˙
zM

. We see that

WC;0 D B
C

zM
˝ 1C 1˝ S zND zN ;

WC;1 D
�
PC

�
BC
zM

�
� P�

�
BC
zM

��
˝ 1C 1˝ S zND zN :

Since D zN anti-commutes with S zN , we have

W �C;sWC;s D
�
BC
zM

�2.1�s/
˝ 1C 1˝D2

zN
> 0:

Thus, WC;s is a path of invertible operators for every s in Œ0; 1�.
Similarly, we define a path of invertible operator W�;s . Thus, via the homotopy

WC;s.W�;s/
�1, the higher index of the signature operator on M � N is also represented

by the invertible operator

WC;1.W�;1/
�1
W ƒ. zM/˝ƒeven. zN/! ƒ. zM/˝ƒeven. zN/:

We rewrite the expression above using 1 D PC.B˙
zM
/C P�.B˙

zM
/.�

WC;1.W�;1/
�1
�
D
�
PC

�
BC
zM

�
˝ .S zND zN C 1/.S zND zN � 1/

�1
C P�

�
BC
zM

�
˝ 1

�
�
�
PC

�
B�
zM

�
˝ .S zND zN C 1/

�
S zND zN � 1

��1
C P�

�
B�
zM

�
˝ 1

�
D
��
PC

�
BC
zM

��
�
�
PC

�
B�
zM

���
�
�
.D zN C S zN /.D zN � S zN /

�1
�

D Ind
�
D

sgn
M

�
� Ind

�
D

sgn
N

�
:

The last two equalities follow from the definition of product of K-groups and the formula
for the higher index of the signature operator in Section 3.1.

Odd times even. Suppose thatM is odd dimensional andN is even dimensional. Straight-
forward computation shows that

� S zM� zN D S zM ˝ S zN on ƒ. zM/˝ƒeven. zN/,

� S zM� zN D �S zM ˝ S zN on ƒ. zM/˝ƒodd. zN/,

and

� d zM� zN D d zM ˝ 1C 1˝ d zN on ƒ. zM/odd ˝ƒ. zN/,

� d zM� zN D d zM ˝ 1 � 1˝ d zN on ƒ. zM/even ˝ƒ. zN/.
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Let ƒ˙. zN/ be the˙1 eigenspace of S zN . We make the following identifications.

� Under the decompositions

ƒodd. zM/˝ƒ. zN/ D

ƒodd. zM/˝ƒodd
C . zN/

˚

ƒodd. zM/˝ƒodd
� . zN/

˚

ƒodd. zM/˝ƒeven
C . zN/

˚

ƒodd. zM/˝ƒeven
� . zN/

and

ƒodd. zM � zN/ D

ƒeven. zM/˝ƒodd
C . zN/

˚

ƒeven. zM/˝ƒodd
� . zN/

˚

ƒodd. zM/˝ƒeven
C . zN/

˚

ƒodd. zM/˝ƒeven
� . zN/;

we identify ƒodd. zM/˝ƒ. zN/ with ƒodd. zM � zN/ by0BB@
�B zMC ˝ 1

B zM� ˝ 1

1˝ 1

1˝ 1

1CCA W ƒodd. zM/˝ƒ. zN/! ƒodd. zM � zN/:

� Under the decompositions

ƒeven. zM � zN/ D

ƒeven. zM/˝ƒeven
C . zN/

˚

ƒeven. zM/˝ƒeven
� . zN/

˚

ƒodd. zM/˝ƒodd
C . zN/

˚

ƒodd. zM/˝ƒodd
� . zN/
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and

ƒeven. zM/˝ƒ. zN/ D

ƒeven. zM/˝ƒeven
C . zN/

˚

ƒeven. zM/˝ƒeven
� . zN/

˚

ƒeven. zM/˝ƒodd
C . zN/

˚

ƒeven. zM/˝ƒodd
� . zN/;

we identify ƒeven. zM � zN/ with ƒeven. zM/˝ƒ. zN/ by0BB@
1˝ 1

�1˝ 1

�B zM� ˝ 1

�B zMC ˝ 1

1CCA Wƒeven. zM � zN/!ƒeven. zM/˝ƒ. zN/:

With these identifications, we have

d zM� zN C d
�
zM� zN
C S zM� zN

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
B zMC ˝ 1C B zMC ˝D zN on ƒodd. zM/˝ƒeven

C . zN/;

B2
zM�
B zMC ˝ 1C B zMC ˝D zN on ƒodd. zM/˝ƒodd

C . zN/;

�B zM� ˝ 1C B zM� ˝D zN on ƒodd. zM/˝ƒeven
� . zN/;

�B2
zMC
B zM� ˝ 1C B zM� ˝D zN on ƒodd. zM/˝ƒodd

C . zN/:

Note that B2
zM˙

are positive invertible operators. It follows that d zM� zN C d
�
zM� zN
C S zM� zN

is homotopic to�
B zMC 0

0 B zM�

�
S zN C

�
B zM� 0

0 B zMC

�
D zN W ƒ

odd. zM/˝ƒ. zN/! ƒeven. zM/˝ƒ. zN/;

where the matrix form is written with respect to the decomposition

ƒ. zN/ D ƒC. zN/˚ƒ�. zN/:

Since D zN is off-diagonal, d zM� zN C d
�
zM� zN
C S zM� zN is in turn homotopic to

V D

�
B zMC 0

0 B zM�

�
S zNf .D zN /C

�
B zM� 0

0 B zMC

�
g.D zN /;

where g.x/D xp
1Cx2

and f .x/D 1p
1Cx2

. In the meantime, d zM� zN C d
�
zM� zN
� S zM� zN is

homotopic to

U D

�
B zM� 0

0 B zMC

�
S zNf .D zN /C

�
B zM� 0

0 B zMC

�
g.D zN /:
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It follows that

V U�1 W ƒeven. zM � zN/! ƒeven. zM � zN/

V U�1 D
��
d zM C d

�
zM

�
˝ 1C S zM ˝ S2S1S2

�  B�1
zM�

B�1
zMC

!
;

where
S1 D S zN and S2 D g.D zN /C S zNf .D zN /:

Note that S2S1S2 is a symmetry; i.e., S2S1S2 can be approximated by finite propaga-
tion operators, and .S2S1S2/2 � 1 belongs to C �. zN/H . We define

P D
S2S1S2 C 1

2
:

Now, one can see that the higher index of Dsgn
M�N is actually represented by

��
d zM C d

�
zM

�
˝ 1C S zM ˝ S2S1S2

�  B�1
zM�

0

0 B�1
zMC

!

D
�
B zMC ˝ P C B zM� ˝ .1 � P /

�  B�1
zM�

0

0 0

!
C

 
0 0

0 B�1
zMC

!!

D

 
B zMCB

�1
zM�

0

0 1

!
˝ P C

 
1 0

0 B zM�B
�1
zMC

!
˝ .1 � P /

D

  
B zMCB

�1
zM�

0

0 B zMCB
�1
zM�

!
˝ P C

�
1 0

0 1

�
˝ .1 � P /

!
�

 
1 0

0 B zM�B
�1
zMC

!
˝ 1:

This represents the K-theoretic class

�
B zMCB

�1
zM�

�
˝

�
ŒP � �

��
0 0

0 1

���
in K1.C �. zM � zN/G�H /. As shown in [4, Section 5.2.1], we have that

ŒP � �

��
0 0

0 1

��
D
�
PC.D zN C S zN /

�
�
�
PC.D zN � S zN /

�
:

This completes the proof for the case of odd times even.

Even times even. Suppose that both M and N are even dimensional. In [15], it is shown
that

Ind
�
D

sgn
N

�
˝ Ind

�
D

sgn
R

�
D Ind

�
D

sgn
N�R

�
;

Ind
�
D

sgn
M�N

�
˝ Ind

�
D

sgn
R

�
D Ind

�
D

sgn
M�N�R

�
:
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Note that Ind.Dsgn
R / is the generator of

K1
�
C �.R/

�
Š K1

�
C �L.R/

�
Š Z:

Now, we have, by the even times odd case,

Ind
�
D

sgn
M

�
˝ Ind

�
D

sgn
N

�
˝ Ind

�
D

sgn
R

�
D Ind

�
D

sgn
M

�
˝ Ind

�
D

sgn
N�R

�
D Ind

�
D

sgn
M�N�R

�
D Ind

�
D

sgn
M�N

�
˝ Ind

�
D

sgn
R

�
:

It follows that
Ind

�
D

sgn
M

�
˝ Ind

�
D

sgn
N

�
D Ind

�
D

sgn
M�N

�
:

Odd times odd. LetM andN be both odd dimensional manifolds. In this case, as shown
in [15], we have

2 Ind
�
D

sgn
N

�
˝ Ind

�
D

sgn
R

�
D Ind

�
D

sgn
N�R

�
;

Ind
�
D

sgn
M�N

�
˝ Ind

�
D

sgn
R

�
D Ind

�
D

sgn
M�N�R

�
:

Now, we have, by the odd times even case,

2 Ind
�
D

sgn
M

�
˝ Ind

�
D

sgn
N

�
˝ Ind

�
D

sgn
R

�
D Ind

�
D

sgn
M

�
˝ Ind

�
D

sgn
N�R

�
D Ind

�
D

sgn
M�N�R

�
D Ind

�
D

sgn
M�N

�
˝ Ind

�
D

sgn
R

�
:

It follows that
2 Ind

�
D

sgn
M

�
˝ Ind

�
D

sgn
N

�
D Ind

�
D

sgn
M�N

�
:

Note that, in the proof of Proposition of 4.1, we actually do not require that S2
zM
D 1.

Therefore, the argument above can be easily generalized to show the following proposition
and theorem.

Proposition 4.2. With the same notations, under the product map

 L W Km
�
C �L.
zM/G

�
˝Kn

�
C �L.
zN/H

�
! KmCn

�
C �L.
zM � zN/G�H

�
;

one has
kmn �  L

��
D

sgn
M

�
˝
�
D

sgn
N

��
D
�
D

sgn
M�N

�
;

where

kmn D

´
1; mn is even;

2; mn is odd:
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Theorem 4.3. Suppose that M 0; M are two closed oriented Riemannian manifolds and
f W M 0 ! M is a homotopy equivalence. Write m D dimM 0 D dimM . Let zM 0, zM be
their Galois G-covering spaces, respectively. Under the product map

 L;0 W Km
�
C �L.
zM/G

�
˝Kn

�
C �L;0.

zN/H
�
! KmCn

�
C �L;0.

zM � zN/G�H
�
;

we have
kmn �  L;0

�
�.f /˝

�
D

sgn
N

��
D �.f � IN /;

where IN W N ! N is the identity map and

kmn D

´
1; mn is even;

2; mn is odd:

5. Product formula for fibered manifolds

In this section, we generalize the product formula given in the previous section to fibered
manifolds. We will first introduce a series of family geometric C �-algebras with respect
to the fibration. Next, we define a family version of K-homology class and higher rho
invariant of the fiberwise signature operator in theK-theory of these C �-algebras. Finally,
we prove Theorems 1.1 and 1.2.

5.1. Family algebras

In this subsection, we introduce family geometric C �-algebras associated to a fibered
manifold.

Let � WE!B be a fibration with fiber F and base spaceB . Assume thatE, F , andB
are closed connected oriented Riemannian manifolds. The fibration induces a long exact
sequence of homotopy groups

� � � ! �2.B/
@
�! �1.F /! �1.E/

��
��! �1.B/! 0:

Denote by zE and zB the universal covering of E and B . From the exactness of the above
sequence, we see that @.�2.B// is a normal subgroup of �1.F /. Write

� D �1.F /=@
�
�2.B/

�
:

The above exact sequence shows that zE is also a fibration on zB with fiber projection
z� W zE ! zB and fiber zF , the Galois �-covering of F .

From now on, we will write G D �1.E/ and H D �1.B/ for short. Recall that the
equivariant Roe algebra C �. zE/G is defined to be the completion ofG-equivariant, locally
compact operators with finite propagation as in Definition 2.2. Now, let us define the
equivariant family Roe algebra.
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First, we construct an equivariant Roe algebra bundle over B . View the fiber bundle
E over B as gluing many pieces of local trivialization by a series of diffeomorphisms of
F . More precisely, there exists an open cover ¹V˛º of B and continuous maps '˛ˇ W V˛ \
Vˇ !Diff.F / such that the fiber bundleE is equivalent to the tuple .V˛ �F;'˛ˇ /; that is,
every continuous section s of E is equivalent to a series of continuous maps s˛ W V˛ ! F

satisfying the cocycle condition, '˛ˇ .x/s˛.x/ D sˇ .x/ for any x 2 V˛ \ Vˇ .
By our previous arguments, when turning to the universal covering space, zE is also

an zF -bundle over zB . Assume that the open set V˛ is small enough so that its lifting to
zB can be written as the disjoint union of open sets

`

 U˛;
 with each U˛;
 diffeomor-

phic to V˛ . We renumber the open cover ¹U˛;
º of zB by ¹Uj º. Therefore, we obtain a
�1.B/-equivariant open cover ¹Uj º of zB , each open set of which is diffeomorphic to
the Euclidean space and trivializes zE. Also, the transition maps lift to ¹ ij º with  ij W
Ui \ Uj ! Diff. zF /. Recall the subspace CŒ zF �� of the equivariant Roe algebra C �. zF /�

as in Definition 2.4. For any x 2 Ui \ Uj ,  ij .x/ induces an automorphism  ij;�.x/ of
C �. zF /� by conjugation (i.e., for any T 2C �. zF /� ; ij;�.x/T D ij .x/T  �1ij .x/), which
maps CŒ zF �� to itself. This induces the following fiber bundle.

Definition 5.1 (Equivariant family Roe algebra). Recall thatGD �1.E/ and � D �1.F /=
@.�2.B//. A continuous section of the fiber bundle given by .¹Uiº; ¹ ij;�º/ is defined by
a series of norm-continuous maps si W Ui ! C �. zF /� satisfying the cocycle condition,
 ij;�.x/si .x/ D sj .x/ for any x 2 Ui \ Uj . Let CŒ zE; zB�G be the collection of uniformly
norm-bounded and uniformly norm-continuous sections that are invariant under �1.B/-
action and have uniformly finite propagation on zB . The norm of such a section ¹sj º is
defined to be supj supx2Uj ksj .x/k. Denote the completion of CŒ zE; zB�G by C �. zE; zB/G .

We mention that Definition 5.1 is related to the “Groupoid Roe algebra” given in
[12, Definition 3.6] by Tang, Willett, and Yao.

It is easy to verify that the above definition is independent of the local trivialization.
Similarly, we define the corresponding equivariant family localization algebra.

Definition 5.2 (Equivariant family localization algebra and obstruction algebra). The
equivariant family localization algebra C �L. zE; zB/

G is the completion of uniformly norm-
bounded and uniformly norm-continuous paths s W Œ1;C1/! C �. zE; zB/G such that the
propagation of s.t/ goes to zero as t goes to infinity uniformly on zB , where the norm
of s.t/ is defined to be supt2Œ1;C1/ jjs.t/jj. The equivariant family obstruction algebra
C �L;0.

zE; zB/G is then defined to be the kernel of the family assembly map:

ev W C �L. zE; zB/
G
! C �. zE; zB/G

s 7! s.1/:

5.2. Product map of K -theory

In this subsection, we construct the product map on the family C �-algebras.
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Theorem 5.3. Recall that G D �1.E/ and H D �1.B/. There are product maps

� W Km
�
C �L.
zB/H

�
˝Kn

�
C �L.
zE; zB/G

�
! KmCn

�
C �L.
zE/G

�
;

�0 W Km
�
C �L.
zB/H

�
˝Kn

�
C �L;0.

zE; zB/G
�
! KmCn

�
C �L;0.

zE/G
�

that generalize the maps defined in (2.3).

Proof. Without loss of generality, we assume that both m and n are even. We will only
give in detail the construction of

�0 W K0
�
C �L.
zB/H

�
˝K0

�
C �L;0.

zE; zB/G
�
! K0

�
C �L;0.

zE/G
�
:

Suppose that ft 2 .C �L. zB/
H /C represents a K0-class, which has finite propagation that

goes to zero as t goes to infinity and is a 1=10-projection; i.e., f �t D ft and kf 2t � ftk <
1=10. Similarly, we suppose that gt 2 .C �L;0. zE; zB/

G/C is a 1=10-projection, has finite
propagation that goes to zero uniformly as t goes to infinity, and satisfies that g1 D 1.
Furthermore, we assume that ft � 1 and gt � 1 are given by kernel operators acting on
L2-sections as in Definition 2.4.

Choose r > 0 small enough such that, for any x 2 B , the restriction of the fiber bundle
E to the r-ball near x is trivial. Since ft and ftCM are homotopic for any M > 0, we
may assume that the propagation of ft is smaller than r . By the local triviality, we define

�
�
Œft �˝ Œgt �

�
D
�
.ft � 1/˝ .gt � 1/C 1

�
;

where .ft � 1/˝ .gt � 1/C 1 2 .C �L;0. zE/
G/C is given by��

.ft � 1/˝ .gt � 1/
�
h
�
.x; y/

D

Z
zB

Z
zF

.ft � 1/.x; x
0/˝ .gt � 1/x0.y; y

0/h.x0; y0/ dy0 dx0; (5.1)

with h 2 L2. zE/. The above expression makes sense as the propagation of ft is small
enough. It is easy to verify that .ft � 1/ ˝ .gt � 1/ C 1 is at most a 3=10-projection,
which gives rise to a K0-class.

Now, passing to the matrix algebra and the Grothendieck group, we obtain the product
map.

5.3. Family higher invariants

In this subsection, we introduce the family version of higher invariants of the signature
operator on a fibered manifold and prove Theorems 1.1 and 1.2.

On a fibered manifold E, the vertical differentials and Poincaré duality are well-
defined as they are compatible with the transition maps. Thus, the family K-homology
class of the vertical signature operator ŒDsgn

E;B � 2 KdimF .C
�
L.
zE; zB/G/ is defined similarly

to Definition 3.3.
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Theorem 5.4 (Theorem 1.1). One has the following product formula for the family K-
homology class of the family signature operator along F :

kB;F � �
��
D

sgn
B

�
˝
�
D

sgn
E;B

��
D
�
D

sgn
E

�
;

where kB;F D 1 when dimB � dimF is even and kB;F D 2 otherwise, and � is the product
map

� W KdimB
�
C �L.
zB/H

�
˝KdimF

�
C �L.
zE; zB/G

�
! KdimE

�
C �L.
zE/G

�
:

We shall also define a family higher rho invariant associated to a fiberwise homotopy
equivalence. Suppose we have two fibrations over the same base space B ,

F 0 ! E 0
� 0

��! B and F ! E
�
�! B:

Let f W E 0 ! E be a fiberwise homotopy equivalence; that is, the following diagram
commutes:

E 0
f

//

� 0
  

E

�
��

B

as well as replacing f with its homotopy inverse and the corresponding homotopy. Using
the vertical differential and the Poincaré duality operator, we obtain a family higher rho
invariant �.f IB/ 2 KdimF .C

�
L;0.
zE; zB/G/ as in Definition 3.7.

Theorem 5.5 (Theorem 1.2). With the same notation as above, one has the following
product formula for the family higher rho invariant associated to a fiberwise homotopy
equivalence:

kB;F �
��
D

sgn
B

�
˝ �.f IB/

�
D �.f /;

where kB;F D 1when dimB � dimF is even and kB;F D 2 otherwise, and �0 is the product
map

�0 W KdimB
�
C �L.
zB/Hr

�
˝KdimF

�
C �L;0.

zE; zB/G
�
! KdimE

�
C �L;0.

zE/G
�
:

In the following, we only prove Theorem 5.5 in detail. The proof for Theorem 5.4 is
similar.

We need some definitions to prepare for the proof of Theorem 5.5.

Definition 5.6. For any element T 2 C �. zE/G , we define the propagation of T along the
base space zB by

prop zB.T / D sup
®
d
�
z�.x/; z�.y/

�
W .x; y/ 2 Supp.T /

¯
;

where z� is the lift of the fiber projection � W E ! B and d is distance on zB .
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This is an analogue of the first part of Definition 2.1. It is obvious that every operator
in C �. zE/G with finite propagation has finite propagation along zB .

We need the following C �-algebra generated by elements in C �L;0. zE/
G that can be

localized horizontally.

Definition 5.7. Define C �
zB;L;0

. zE/G to be the C �-algebra generated by paths

f W Œ1;C1/! C �L;0.
zE/G

s 7! f .s/

such that

(1) f is uniformly norm-continuous and uniformly norm-bounded;

(2) for any s 2 Œ1;C1/ and t 2 Œ1;C1/, f .s/.t/ has finite propagation along zB as
an element in C �. zE/G ;

(3) for any s 2 Œ1;C1/, supt2Œ1;C1/ prop zB.f .s/.t// <1 and

lim
s!C1

sup
t2Œ1;C1/

prop zB
�
f .s/.t/

�
D 0:

The norm of f 2 C �
zB;L;0

. zE/G is given by the supremum over s of the norm of f .s/ in

C �L;0.
zE/G ; that is, kf k D sups>1 kf .s/k.

There is an evaluation map

ev W C �
zB;L;0

. zE/G ! C �L;0.
zE/G ;

which induces a K-theoretic map denoted by ev�.
If X is a closed Riemannian manifold, the equivariant localization algebra C �L. zX/

�1X

admits a Mayer–Vietoris sequence for a partition of X . More precisely, if U1; U2 are two
open sets on X and zU1; zU2 are their lifts to zX , then we have the following six-term exact
sequence (cf. [19, Proposition 3.11]):

K0
�
C �L
�
zU1
T
zU2
��1X� //

K0
�
C �L
�
zU1
��1X�

˚

K0
�
C �L
�
zU2
��1X� // K0

�
C �L
�
zU1
S
zU2
��1X�

��

K1
�
C �L
�
zU1
S
zU2
��1X�

OO

K1
�
C �L
�
zU1
��1X�

˚

K1
�
C �L
�
zU2
��1X�oo K1

�
C �L
�
zU1
T
zU2
��1X�

:oo

As the C �-algebra C �
zB;L;0

. zE/G is generated by elements that can be localized along B , it
also admits a Mayer–Vietoris sequence as above for two open sets on the base space.
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Proposition 5.8. Let U1; U2 be two open sets on B and zU1; zU2 their lifts to zB . Let zE zU1
and zE zU2 be the restrictions of zE to zU1 and zU2, respectively. One has the following six-
term exact sequence:

K0
�
C �
zB;L;0

�
zE zU1

T
zE zU2

�G� //

K0
�
C �
zB;L;0

�
zE zU1

�G�
˚

K0
�
C �
zB;L;0

�
zE zU2

�G� // K0
�
C �
zB;L;0

�
zE zU1

S
zE zU2

�G�

��

K1
�
C �
zB;L;0

�
zE zU1

S
zE zU2

�G�

OO

K1
�
C �
zB;L;0

�
zE zU1

�G�
˚

K1
�
C �
zB;L;0

�
zE zU2

�G�oo K1
�
C �
zB;L;0

�
zE zU1

T
zE zU2

�G�
:oo

Proof. The proof of Proposition 5.8 is essentially the same as the proof of Proposition 3.11
in [19]. For any open subset Y of B , we define .C �

zB;L;0
. zE/G/Y to be the C �-subalgebra

of C �
zB;L;0

. zE/G generated by all paths f W Œ1;1/! C �L;0.
zE/G such that, for any s; t 2

Œ1;1/, prop.f .s; t// <1 as an operator in CŒ zE�G and, for any " > 0, there exists S > 0
such that, for any s > S and t 2 Œ1;1/, Supp.f .s; t// lies in the "-neighborhood of
zE zY �

zE zY , where zE zY is the restriction of zE to Y .
There is a natural inclusion

i W C �
zB;L;0

. zE zY /
G
! .C �

zB;L;0
. zE/G/Y :

For any f 2 .C �
zB;L;0

. zE/G/Y , we have a homotopy

H W Œ0; 1�!
�
C �
zB;L;0

. zE/G
�
Y

� 7!
�
s 7! f .s C �s0/

�
;

connecting f and fs0 W s 7! f .s C s0/, whose support is closed to zE zY � zE zY . This shows
that, for any ı > 0, any K-theory element of .C �

zB;L;0
. zE/G/Y admits a representative

whose support lies in zE zYı �
zE zYı

, where Yı is the ı-neighborhood of Y . As an analogue
of [19, Proposition 3.7], we see that C �

zB;L;0
. zE zY /

G and C �
zB;L;0

. zE zYı
/G are isomorphic on

K-theoretic level for small ı. This shows that the K-theoretic map i� is surjective. The
injectivity of i� goes similarly.

Note that .C �
zB;L;0

. zE/G/U1 and .C �
zB;L;0

. zE/G/U2 are closed ideals of C �
zB;L;0

. zE/G .
And we also have that�

C �
zB;L;0

. zE/G
�
U1
C
�
C �
zB;L;0

. zE/G
�
U2
D C �

zB;L;0
. zE/G :
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Now, the proposition follows from the K-theoretic six-term exact sequence (cf. [6,
Lemma 3.1]).

In the following Lemma, we show that there exists a natural map

�L;0 W Km
�
C �L.
zB/H

�
˝Kn

�
C �L;0.

zE; zB/G
�
! KmCn

�
C �
zB;L;0

. zE/G
�

compatible with �0 defined in Theorem 5.3.

Lemma 5.9. The product map �0 defined in Theorem 5.3 factors through the evaluation
map

ev� W K�
�
C �
zB;L;0

. zE/G
�
! K�

�
C �L;0.

zE/G
�
:

That is, for any m; n 2 ¹0; 1º, there exists a map

�L;0 W Km
�
C �L.
zB/H

�
˝Kn.C

�
L;0

�
zE; zB/G

�
! KmCn

�
C �
zB;L;0

. zE/G
�

such that the following diagram commutes:

Km
�
C �L.
zB/H

�
˝Kn

�
C �L;0.

zE; zB/G
� �L;0

//

�0

((

KmCn
�
C �
zB;L;0

. zE/G
�

ev�

��

KmCn
�
C �L;0.

zE/G
�
:

Proof. Without loss of generality, we assume that both m and n are zero. With the same
notations as in the proof of Theorem 5.3, we define �L;0 by

�
�
Œft �˝ Œgt �

�
D
�
.ftCs�1 � 1/˝ .gt � 1/C 1

�
;

where .ftCs�1 � 1/˝ .gt � 1/C 1 2 .C �L;0. zE/
G/C is given by��

.ftCs�1 � 1/˝ .gt � 1/
�
h
�
.x; y/

D

Z
zB

Z
zF

.ftCs�1 � 1/.x; x
0/˝

�
gt � 1

�
x0
.y; y0/h.x0; y0/ dy0 dx0; (5.2)

with h 2 L2. zE/. Here, t 2 Œ1;C1/ is the parameter in C �L;0. zE/
G and s 2 Œ1;C1/

is the extra parameter in C �
zB;L;0

. zE/G . The expression makes sense as we may assume
that the propagation of ft is small enough. After passing to the matrix algebra and the
Grothendieck group, we obtain the map �L;0. The commuting diagram follows directly
from the definition.

Lemma 5.10. With the same notations, for the fiberwise homotopy equivalence f , there
exists a K-theory class �L.f / 2 KdimE .C

�
zB;L;0

. zE/G/ such that ev�.�L.f // D �.f / 2
KdimE .C

�
L;0.
zE/G/.
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Proof. The construction of �L.f / is an analogy of Definition 3.3. Denote by gB , gE
0

,
and gE the metric on B , E 0, and E, respectively. For s 2 Œ1;1/, let Bs , E 0s , and Es
be the Riemannian manifolds equipped with metric tensor gBs D s2gB , gE

0
s D gE

0

C

s2.� 0/�gB , and gEs D gE C s2��gB . Now, we have the following fibrations:

F 0 ! E 0s
� 0

��! Bs and F ! Es
�
�! Bs;

as well as the homotopy equivalence f WE 0s!Es . These data define a family of elements
in C �L;0. zEs/

G parameterized by s 2 Œ1;1/ which represents the higher rho invariant in
KdimE .C

�
L;0.
zEs/

G/ as in Definitions 3.7 and 3.8. As C �L;0. zEs/
G is naturally isomorphic

to C �L;0. zE/
G , the above construction gives rise to a path in C �L;0. zE/

G parameterized by
s 2 Œ1;1/.

It remains to show that the above path is an element in C �
zB;L;0

. zE/G . We will prove
this using the proof of Lemma 3.2. Note that the Hodge–de Rham operator on Es and E 0s
and the Poincaré duality operator Sf defined by (3.2) satisfy all conditions but the last one
listed before the proof of Lemma 3.2. For the last condition (v), although in general Sf
does not have zero propagation on the total space of the fibration, it has zero propagation
along zBs as f is a fiberwise map. Therefore, a similar proof shows that the path lies in
C �
zB;L;0

. zE/G and defines a K-theoretic element �L.f / in KdimE .C
�
zB;L;0

. zE/G/ according
to the parity of dimE.

When s D 1, the above definition gives exactly the higher rho invariant

�.f / 2 KdimE
�
C �L;0.

zE/G
�
:

Therefore, we have

ev�.�L.f // D �.f / 2 KdimE
�
C �L;0.

zE/G
�
:

Now, we are ready to prove Theorem 5.5. We will go through the proof in detail only
for the case where the dimensions of B and F are both even. The other cases are totally
similar.

Proof of Theorem 5.5. Let �L.f / 2 KdimE .C
�
zB;L;0

. zE/G/ be the K-theoretic class con-
structed in the proof of Lemma 5.10. We shall show that

�L;0
�
ŒD

sgn
B �˝ �.f IB/

�
D �L.f / 2 K0

�
C �
zB;L;0

. zE/G
�

(5.3)

by Mayer–Vietoris arguments. And the theorem follows from Lemmas 5.9 and 5.10.
We first assume a special case where E D F �B , a trivial fiber bundle over B . In this

case, the family algebra C �L;0. zE; zB/
G is isomorphic to C.B/˝ C �L;0. zF /

� . The product
map �L;0 and the localized higher rho invariant �L.f / are constructed in Lemmas 5.9 and
5.10, respectively. Using the same construction as in Section 4, we will obtain line (5.3)
for this trivial case.

Now, we turn to the general situation. For simplicity, we assume that the base space
B admits a triangulation that makes it a simplicial complex. Assume that the diameter
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of every simplex on B is small enough so that the restriction of E on every simplex is
trivial. Let B.k/ be a small open neighborhood of the k-skeleton of B , which contains the
k-skeleton of B as a deformation retraction. In particular, B.k/ D B when k is dimB .
Denote the lift of B.k/ to zB by zB.k/ and the restriction of zE to zB.k/ by zE zB.k/ .

For any K-theory element in K�.C �zB;L;0.
zE/G/, its restriction to zE zB.k/ is well defined

by multiplying the element by the characteristic function of zE zB.k/ on both sides. Similarly,
forK�.C �L. zB/

H / andK�.C �L. zE; zB/
G/, we will prove that line (5.3) holds when restricted

to zE zB.k/ by induction on k.
When k is zero, B.0/ is a disjoint union of small balls in B , to which the restriction

of E is trivial. Therefore, line (5.3) holds on zE zB.0/ . Now, we assume that line (5.3) holds
on zE zB.k/ . Let � be the disjoint union of the interior of every .k C 1/-simplex in B.kC1/.
Denote the lift of � to zB by z� and the restriction of zE to z� by zEz�. Note that B.kC1/ D
� [ B.k/. By Proposition 5.8, we have the following six-term exact sequence:

K0
�
C �
zB;L;0

�
zE zB.k/

T
zEz�
�G� //

K0
�
C �
zB;L;0

�
zE zB.k/

�G�
˚

K0
�
C �
zB;L;0

�
zEz�
�G� // K0

�
C �
zB;L;0

�
zE zB.kC1/

�G�

��

K1
�
C �
zB;L;0

�
zE zB.kC1/

�G�

OO

K1
�
C �
zB;L;0

�
zE zB.k/

�G�
˚

K1
�
C �
zB;L;0

�
zEz�
�G�oo K1

�
C �
zB;L;0

�
zE zB.k/

T
zEz�
�G�

:oo

From the assumption that the diameter of each simplex of B is small, the restriction of
E to � or � \ B.k/ is a disjoint union of trivial bundles. Direct computations show that

@
�
�L;0

��
D

sgn
B

�
˝ �.f IB/

�
� �L.f /

�
is trivial in K1.C �zB;L;0.

zE zB.k/
T
zEz�/

G/; thus, it lies in the image of the map

K0
�
C �
zB;L;0

�
zE zB.k/

�G�
˚

K0
�
C �
zB;L;0

�
zEz�
�G� ! K0

�
C �
zB;L;0

�
zE zB.kC1/

�G�
:

Then, along with the inductive hypothesis, the K-theory classes represented by

�L;0
��
D

sgn
B

�
˝ �.f IB/

�
� �L.f /

restricted to zEz�, zE zB.k/ vanishes, which shows that

�L;0
��
D

sgn
B

�
˝ �.f IB/

�
� �L.f /

is the image of trivial class. Now, line (5.3) follows when k D dimB .
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6. For a special fiber bundle

In this section, we show that Theorem 5.4 implies the product formula for the numerical
signature on a fibered manifold given by Chern, Hirzebruch, and Serre in [1].

Consider the fiber bundle � W E ! B with fiber F , with all those spaces being 4k-
dimensional oriented closed Riemannian manifolds. Assume that �1.B/ acts trivially on
H�
dR
.F /, the de Rham cohomology of F . We would like to use our product formula to

prove the original formula introduced by Chern, Hirzebruch, and Serre in [1]; namely,

sgn.B/ � sgn.F / D sgn.E/:

Consider the K-theoretic index map

IndE W K0
�
C �L.
zE/�1.E/

�
! K0.C

�
L.pt// Š Z

induced by the map that crushes the whole space to a point and forgets the group action.
Under this, the localized index of the signature operator will be mapped to its graded
Fredholm index, i.e., sgn.E/. Besides, we replace E by the base space B and obtain

IndB W K0
�
C �L.
zB/�1.B/

�
! K0.C

�
L.pt// Š Z:

Recall that the equivariant family localization algebra C �L. zE; zB/
�1.E/ is the collection

of some sections of a C*-bundle over B . Any element s.t/ 2 C �L. zE; zB/
�1.E/ is viewed as

a family of operators s.t/x 2 C �L. zF /
� for x 2 zB . Thus, we define a family index map

IndE;B W K0
�
C �L.
zE; zB/�1.E/

�
! K0

�
C. zB/�1.B/

�
Š K0

�
C.B/

�
by taking indices along the fiber.

Moreover, we have the following classical pairing of K-homology and K-theory:

h�; �i W K0
�
C �L.
zB/�1.B/

�
�K0

�
C.B/

�
! Z:

From the construction above, we see that the following diagram commutes:

K0
�
C �L.
zB/�1.B/

�
˝K0.C

�
L.
zE; zB/�1.E//

�
//

1˝IndE;B

��

K0.C
�
L.
zE/�1.E//

IndE

��

K0.C
�
L.
zB/�1.B//˝K0.C.B//

h�;�i
// Z

Therefore, we have the identity

sgn.E/ D
˝
ŒDB �; IndE;B

�
ŒDE;B �

�˛
:

Since F is even dimensional, the family index IndE;B.ŒDE;B �/ living in K0.C.B//
can be viewed as a virtual vector bundle over B . The local picture of such a vector
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bundle is Œker.DF /� � Œcoker.DF /�. As we have assumed that �1.B/ acts on H�
dR
.E/

trivially, the virtual bundle is indeed a trivial bundle; i.e., it comes from the inclusion
Z Š K0.C.pt// ! K0.C.B//. Moreover, the preimage of IndE;B.ŒDE;B �/ under the
inclusion is actually

dim ker.DF / � dim coker.DF / D sgn.F /:

Thus, the pairing map h�; �i is simplified as follows:˝
ŒDB �; IndE;B

�
ŒDE;B �

�˛
D
˝
ŒDB �; sgn.F /

˛
D IndB

�
ŒDB �

�
� sgn.F /D sgn.B/� sgn.F /:

From this, we obtain the classical product formula for the numerical signature given by
Chern, Hirzebruch, and Serre.
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