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Equivalences of (co)module algebra structures over
Hopf algebras

Ana Agore, Alexey Gordienko, and Joost Vercruysse

Abstract. We introduce the notion of support equivalence for (co)ymodule algebras (over Hopf alge-
bras), which generalizes in a natural way (weak) an equivalence of gradings. We show that for each
equivalence class of (co)module algebra structures on a given algebra A, there exists a unique uni-
versal Hopf algebra H together with an H -(co)module structure on A such that any other equivalent
(co)module algebra structure on A factors through the action of H. We study support equivalence
and the universal Hopf algebras mentioned above for group gradings, Hopf—Galois extensions,
actions of algebraic groups, and cocommutative Hopf algebras. We show how the notion of support
equivalence can be used to reduce the classification problem of Hopf algebra (co)actions. We apply
support equivalence in the study of the asymptotic behavior of codimensions of H -identities and,
in particular, to the analogue (formulated by Yu. A. Bahturin) of Amitsur’s conjecture, which was
originally concerned with ordinary polynomial identities. As an example, we prove this analogue
for all unital H-module structures on the algebra F[x]/(x2) of dual numbers.

1. Introduction

Module and comodule algebras over Hopf algebras (see the definitions in Sections 4.1
and 5.1) appear in many areas of mathematics and physics. These notions allow a unified
approach to algebras with various kinds of an additional structure: group gradings, group
actions by automorphisms, (skew) derivations, etc. Another important class of examples
arises from (affine) algebraic geometry: if G is an affine algebraic group G acting mor-
phically on an affine algebraic variety X, then the algebra A of regular functions on X is
an H-comodule algebra, where H is the algebra of regular functions on G. At the same
time, A is a U(g)-module algebra, where U(g) is the universal enveloping algebra of the
Lie algebra g of the algebraic group G (see, e.g., [1] and Section 6.1). Taking this into
account, one may view a (not necessarily commutative) (co)module algebra as an action
of a quantum group on a non-commutative space.

The above point of view is also advocated in [29], where the notion of a universal
coacting Hopf algebra aut(A4) on an algebra A was introduced (see also [39]), which
plays the role of a symmetry group in non-commutative geometry. In order to classify
all (co)module algebra structures on a given algebra A, one therefore should understand
the Manin—Hopf algebra aut(A), as well as its quotients. For particular cases, a description
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of aut(A) has been obtained in, for example, [33,34]. However, finding an explicit descrip-
tion of aut(A) seems to be a very wild problem. Furthermore, for this universal coacting
Hopf algebra of an algebra A to exist, one needs to impose a finiteness condition on the
algebra A: it needs to be finite dimensional (see [31, Proposition 1.3.8, Remark 2.6.4]) or
at least a rigid object in a suitable monoidal category. An example of the latter is a graded
algebra for which each homogeneous component is finite dimensional, which was the set-
ting of [29]. Without such a finiteness condition, one can indeed see that aut(A4) does not
always exist (see [3] for an explicit example). Therefore, we propose here a refinement
of Manin’s construction by studying comodule algebras up to support equivalence and
show that a Hopf algebra coacting universally up to support equivalence exists for a given
comodule algebra A without any finiteness assumption on A.

Inspiration for our approach comes from the theory of group graded algebras. In this
context, two gradings are called equivalent if there exists an algebra isomorphism between
the graded algebras that maps each homogeneous component onto a homogeneous compo-
nent (see Section 3.1). Remark that no group (iso)morphism between the grading groups
is required, but only a bijection between their supports (the support of a grading group
is the set of all group elements for which the corresponding homogeneous component is
nonzero). It turns out that when one studies the structure of a graded algebra (e.g., graded
ideals, graded subspaces, radicals, etc.) or graded polynomial identities of graded alge-
bras, the grading group itself does not play an important role, but can be replaced by any
other group that realizes the same decomposition of the algebra into graded components.
Using this approach, fine gradings on exceptional simple Lie algebras have been classified
up to equivalence [13, Chapter 6]. In [16], the authors studied the possibility of regrading
finite dimensional algebras by finite groups.

In Theorem 3.7, we give a criterion for the equivalence of gradings in terms of oper-
ators from the dual of the corresponding group algebra. As group graded algebras are
exactly comodule algebras over a group algebra, we propose a generalization of the above
notions of equivalence for arbitrary comodule algebras, which we call support equivalence
for comodule algebras. Using the correspondence between H *-actions and H -coactions
for finite dimensional Hopf algebras H, we also define support equivalence for mod-
ule algebra structures and, in particular, for group actions. Despite the formal duality, in
Proposition 6.6 we show that equivalent actions of infinite dimensional Hopf algebras are
in general not as close to each other as equivalent coactions.

Among all groups that realize a given grading there is a distinguished one called the
universal group of the grading (see [13, Definition 1.17], [32] and Definition 3.4 below).
It is easy to see that a similar universal group exists for group actions too (Remark 3.12).
Generalizing these constructions, we show in Theorems 4.8 and 5.5 that for a given
(co)module algebra A not necessarily finite dimensional, there exists a unique Hopf alge-
bra H with a (co)action on A, which is universal among all Hopf algebras that admit a
support equivalent (co)action on A. As mentioned before, our universal Hopf algebra pro-
vides a refinement of the Manin—Hopf algebra which is universal among all coactions on
A (not only those that are support equivalent).
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We study in particular equivalences of actions of algebraic groups and their asso-
ciated Lie algebras. More precisely, for a connected affine algebraic group G over an
algebraically closed field F of a characteristic 0 and its associated Lie algebra g, we show
that the U(g)- and the F G-module structures on a finite dimensional algebra with a ratio-
nal action are support equivalent (see Theorem 6.2).

Although the universal Manin—Hopf algebra of an algebra is in general very difficult
to calculate, there are several interesting classes of actions for which the universal Hopf
algebra defined here can be computed explicitly. Firstly, in case the (co)action defines a
Hopf-Galois extension, the universal Hopf algebra is precisely the original Hopf algebra
(see Theorems 4.16 and 5.9). Similarly, the universal Hopf algebra for the standard action
of a Hopf algebra H on the algebra H* is precisely H itself (Theorem 5.8). Further-
more, it turns out that the universal Hopf algebra of a comodule structure corresponding
to a grading is just the group algebra of the universal group of this grading (Theorem
4.11). Quite surprisingly, the same result does no longer hold in the case of group actions.
Indeed, in Proposition 6.6, we show that the universal Hopf algebra of a group action can
contain non-trivial primitive elements. More generally, we prove that the universal Hopf
algebra of an action of a cocommutative Hopf algebra is not necessarily cocommutative
(see Example 6.5). Therefore, we also consider the universal cocommutative Hopf alge-
bras of actions. We prove their existence and describe them explicitly in the case of an
algebraically closed base field of a characteristic 0, thanks to the Milnor—-Moore decom-
position (see Theorem 6.3). In some cases, the universal Hopf algebra coincides with the
cocommutative one and, hence, can be described completely. This is the case, for instance,
if one can prove that the universal Hopf algebra is cocommutative too; see Proposition 6.6.

Finally, we apply our results to polynomial identities and show that the codimensions
of polynomial H;- and H,-identities for an algebra with support equivalent H;- and
Hj,-module structures coincide and their polynomial H;- and H,-non-identities can be
identified in a natural way (Lemma 6.11). This allows us to prove that the analog of Amit-
sur’s conjecture holds for polynomial H -identities of the algebra F[x]/(x?) (see Theorem
6.12).

The paper is organized as follows.

In Section 3.1, we recall the definitions of an isomorphism and an equivalence of
gradings as well as of the universal group of a grading and give a criterion for two gradings
to be equivalent in terms of the algebras of linear endomorphisms of the corresponding
graded algebras (Theorem 3.7). In Section 3.2, we introduce the corresponding notion of
equivalence of group actions and calculate the universal group of an action.

In Section 4.1, we give a definition of support equivalence of comodule structures as
well as a criterion for such an equivalence in terms of comodule maps. In Section 4.2,
we introduce universal Hopf algebras of comodule structures and prove their existence.
In addition, we show that in the case of a group grading the universal Hopf algebra of
the corresponding comodule structure is just the group algebra of the universal group of
the grading (Theorem 4.11) and any coaction which is support equivalent to a grading
can be always reduced to a grading (see the precise statement in Theorem 4.12). Also we
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show that the universal Hopf algebra can be viewed as a functor from the preorder of all
comodule structures on a given algebra (with the respect to the relation “finer/coarser”)
to the category of Hopf algebras. In Section 4.3, we consider comodule Hopf-Galois
extensions and show that the corresponding universal Hopf algebra is the original coacting
Hopf algebra.

In Section 5.1, we give a definition of support equivalence of module structures. We
introduce universal Hopf algebras of module structures and prove their existence in Sec-
tion 5.2. In Section 5.3, we consider module Hopf—Galois extensions and show that the
corresponding universal Hopf algebra is the original acting Hopf algebra.

In Section 6.1, we consider the classical correspondence between connected affine
algebraic groups G over an algebraically closed field of a characteristic 0 and their Lie
algebras g. Namely, we prove that F G-actions and U(g)-actions are support equivalent
(Theorem 6.2). Section 6.2 deals with universal cocommutative Hopf algebras. The notion
of a universal cocommutative Hopf algebra is then used to calculate the universal Hopf
algebra (Proposition 6.6). In Section 6.4, we show how support equivalences of module
structures can be applied to classify module structures on a given algebra and to polyno-
mial H -identities.

2. Preliminaries

Throughout this paper, F denotes a field and, unless specified otherwise, all vector spaces,
tensor products, homomorphisms, (co)algebras, and Hopf algebras are over F'. For a coal-
gebra C, we use the Sweedler X-notation: A(c) = ¢(1) ® c(z), for all ¢ € C, with a
suppressed summation sign.

Our notation for the standard categories is as follows: Algy (algebras over F'), Coalg
(coalgebras over F'), and Hopfy (Hopf algebras over F'). Recall that there exists a left
adjoint functor L: Coalgr — Hopfy for the forgetful functor U: Hopfy — Coalgy (see
[38]) and we denote by 7:idcoalg, = UL the unit of this adjunction. Moreover, there exists
aright adjoint functor R: Algr — Hopf for the forgetful functor U:Hopfy — Algy (see
[2, 11]). The counit of this adjunction will be denoted by u: UR = idajg, . Remark that
although we use the same character U for both forgetful functors, it will be clear from the
context which forgetful functor is meant.

Given a bialgebra (or a Hopf algebra) H, a (not necessarily associative) algebra A is
called an H -comodule algebra if it admits a right H-comodule structure p: A — A ® H
which is an algebra homomorphism (4 ® H has the usual tensor product algebra struc-
ture). Furthermore, A is called a unital H-comodule algebra if there exists an identity
element 14 € A such that p(14) = 14 ® 1g. The map p is called a comodule algebra
structure on A and will be written in Sweedler notation as p(a) = a) ® aq), for all
a € A, again with a suppressed summation sign. Explicitly, the fact that p is an algebra
homomorphism reads, for all a, b € A,

(ab) (o) ® (ab)y = ayb) ® awybq)-
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Note that any H -comodule algebra map p: A — A ® H gives rise to an algebra homomor-
phism {: H* — Endr (A) defined by {(h*)a = h*(aqy)ay) foralla € Aand h* € H*.
Here H* is the vector space dual to H, endowed with the structure of the algebra dual to
the coalgebra H . Recall that if H is finite dimensional, then H* is a Hopf algebra too.

A (not necessarily associative) algebra A is called an H -module algebra if it admits a
left H-module structure such that

h(ab) = (hqya)(hb) foralla,b e A, he H. 2.1

We denote by ¢ the homomorphism of algebras H — End g (A) defined by ¢ (h)a = ha, for
allh € H and a € A, and we call it a module algebra structure on A. An H-module algebra
A will be called unital if there exists an identity element 14 € A such that hl4 = e(h)1y4
forallh € H.

3. Equivalences of group gradings and group actions

3.1. Group gradings

When studying graded algebras, one has to determine when two graded algebras can be
considered “the same” or equivalent.

Recall that I': 4 = @geG A® is a grading on a (not necessarily associative) algebra
Abyagroup G if A®AM < A€M forall g,h € G. Then G is called the grading group
of I'. The algebra A is called graded by G.

Let

Mi:d= P AP and Tdy = P AP 3.1)
g€G g€Gy
be two gradings, where G and G are groups and A; and A, are algebras.
The most restrictive case is when we require that both grading groups coincide.

Definition 3.1 (e.g., [13, Definition 1.15]). Gradings (3.1) are isomorphic if Gy = G,
and there exists an isomorphism ¢: A; = A, of algebras such that (p(A(lg )) = Agg) for all
g € Gl.

In this case, we say that A; and A, are graded isomorphic.

If one studies the graded structure of a graded algebra or its graded polynomial iden-
tities [5,6,9, 14,21], then it is not really important by elements of which group the graded
components are indexed. A replacement of the grading group leaves both graded sub-
spaces and graded ideals graded. In the case of graded polynomial identities, reindexing
the graded components leads only to renaming the variables. Here we come naturally to
the notion of (weak) equivalence of gradings.

Definition 3.2. We say that gradings (3.1) are (weakly) equivalent if there exists an iso-
morphism ¢: A; = A, of algebras such that for every g; € G with Agg 1 # 0 there exists
g2 € G5 such that <p(A§g')) = A;gZ).



A. Agore, A. Gordienko, and J. Vercruysse 956

Obviously, if gradings are isomorphic, then they are equivalent. It is important to
notice that the converse is not true.

However, if gradings (3.1) are equivalent and ¢: A; = A, is the corresponding isomor-
phism of algebras, then I'3: A = @ger <p_1(Agg)) is a G,-grading on A; isomorphic
to I'; and the grading I'3 is obtained from I'; just by reindexing the homogeneous com-
ponents. Therefore, when gradings (3.1) are equivalent, we say that I'; can be regraded
by Gz.

If Ay = A, and ¢ in Definition 3.2 is the identity map, we say that I'y and T', are
realizations of the same grading on A as, respectively, G- and G,-gradings.

For a grading I": A = @geG A® we denote by supp " := {g € G | A®) £ 0} its
support.

Remark 3.3. Each equivalence between gradings I'1, I'» induces a bijection supp 'y =
supp I's.

Each group grading on an algebra can be realized as a G-grading for many different
groups G, however it turns out that there is one distinguished group among them; see
[13, Definition 1.17], [32].

Definition 3.4. Let I" be a group grading on an algebra A. Suppose that I admits a real-
ization as a Gr-grading for some group Gr. Denote by xr the corresponding embedding
supp ' = Gr. We say that (Gr, xr) is the universal group of the grading T if for any
realization of I" as a grading by a group G with :supp I' < G there exists a unique
homomorphism ¢: Gr — G such that the following diagram is commutative:

supp I" LN Gr

|
| ®
N

G

Remarks 3.5. (a) For each grading I', one can define a category Cr, where the objects
are all pairs (G, ¥) such that G is a group and I" can be realized as a G-grading with
Y:supp ' — G being the embedding of the support. In this category, the set of morphisms
between (G1, ¥1) and (G2, ¥») consists of all group homomorphisms f: G; — G5 such
that the following diagram is commutative:

supp I" L) G

RN

G,

Then (Gr, xr) is the initial object of €r.
(b) It is easy to see that if T': A = € gesuppT A®) is a group grading, then the uni-
versal group Gr of the grading I is isomorphic to F[gpp /N, Where Flgppr is the free
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group on the set [supp '] :={[g] | g € supp '} and N is the normal closure of the words
[g][h][¢]~" for pairs g, € supp I such that 4@ 4®) =£ 0, where ¢ € supp I" is defined by
A@) 4h) C AW

(c) Of course, from the linguistic point of view, it would be more logic to say in our
definition “finer or equivalent” instead of just “finer” and “coarser or equivalent” instead
of just “coarser”; however throughout this paper we drop the words “or equivalent” for
brevity.

LetI':A= D e A® and Ty: A = @,y AP be two gradings on the same algebra
A. If for every g € G there exists h € H such that A® - A(h), then we say that Iy is finer
than I'; and T is coarser than I';. It is easy to see that this relation is a preorder and I'; is
both finer and coarser than I', if and only if id4 is an equivalence of I'; and I'». Moreover,
the universal group of the grading is the functor from this preorder to the category of
groups: if I'y is finer than I',, the functor assigns the homomorphism Gr, — Gr, defined
by [g] — [h] for A®) c AP,

Now, in order to make it possible to transfer the relation of support equivalence and
the relation “coarser/finer” to (co)module algebra structures, we translate these relations
into the language of linear operators.

If an algebra A = @geG A'®) is graded by a group G, then we have an (FG)*-
action on A, where (FG)* is the algebra dual to the group coalgebra FG, i.e., (FG)*
is the algebra of all functions G — F with pointwise operations: ha = h(g)a if g € G,
aeA® andh € (FG)*.

Lemma 3.6. Let (3.1) be two group gradings and let ¢: Ay = A, be an isomorphism
of algebras. Denote by ;: (FG;)* — Endp(A;) the homomorphism from (FG;)* to
the algebra End g (A;) of F-linear operators on A; induced by the (FG;)*-action, i =
1,2, and denote by ¢ the isomorphism Endp (A1) = Endg (A,) defined by ¢(¥)(a) =
o(W (9~ Ya))) for v € Endr (A1) and a € A,. Then the inclusion

(81 ((FG1)¥)) 2 &L((FG2)Y) 3.2)
holds if and only if for every g1 € G there exists g, € G, such that go(A&g‘)) C AggZ),

Proof. If for every g; € G there exists g» € G, such that go(A§g 1)) - AggZ), then each
A;gZ) is a direct sum of some of (p(Agg 1) since

D ¢(4F”) = o(d) = 42 = P 457

£1€G 226G,

Note that the set &; ((F G;)*) consists of all the linear operators that act by a scalar operator
on each homogeneous component Al(g"), gi € G;. Hence ¢(£1((FG1)*)) consists of all

the linear operators on A, that act on each ¢(¢1(A (lg l))) by a scalar operator. Since each
A;gZ) is a direct sum of some of (p(A(lgl)), all the operators from ¢, ((FG2)*) act by a
scalar operator on each of go(A(lgl)) too. Therefore, (3.2) holds.
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Conversely, suppose (3.2) holds. Denote by pg,, where g» € supp I'», the projection
h) .
on A¥? along DPrcauppTs, h2gs AP e,

{a ifa e A%,
Pgrd = . ()
0 ifae @hEsupprz,h#gz A2 .

Then (3.2) implies that pg, € ¢({1((FG1)*)) for all g, € supp I'2. In particular, pg,
is acting as a scalar operator on all the components (,o(Ag‘g ) ), where g € supp I'y. Since
péz = pg,, forevery g € supp I'; either pgzqo(Agg)) =0or pg,a =aforalla € <p(A§g)).

Hence AégZ) = im(pyg,) is a direct sum of some of go(A(lg)), where g € supp I';. Since

@ QO(A(lgl)) — @ Aggz)’

gi€supp I’y g2€supp I
for every g1 € G there exists g € G5 such that (p(Agg')) c AggZ). [

From Lemma 3.6, we immediately deduce the criteria that are crucial to transfer the
notion of equivalence and the relation “finer/coarser” from gradings to (co)module struc-
tures.

Theorem 3.7. Let (3.1) be two group gradings. Then an isomorphism ¢: A1 = Az of
algebras defines an equivalence of gradings if and only if

(L1 ((FGDY)) = L((FG2)Y),

where Ci: (FG;)* — Endp(A;) is the homomorphism from (FG;)* to the algebra
Endr (A;) of F-linear operators on A; induced by the (FG;)*-action, i = 1,2, and
the isomorphism ¢:Endp (A1) = Endfr (A,) is defined by ¢(v)(a) = (¥ (¢~ (a))) for
Y € Endr (A1) and a € A,.

Proof. We apply Lemma 3.6 to ¢ and ¢~ 1. ]

Theorem 3.8. LetT'1:A =D, cq, A® andTy: A = D, ea, A®) be two gradings on the
same algebra A and let §;: (FG;)* — Endfr (A) be the corresponding homomorphisms.
Then T'y is finer than Ty if and only if (i ((FG1)*) 2 L((FGa)™).

Proof. We apply Lemma 3.6to A = A; = A, and ¢ = id4. ]

3.2. Group actions

Suppose we have a dual situation: for i = 1,2 a group G; is acting on an algebra A; by
automorphisms, where {;: G; — Aut(4;) are the corresponding group homomorphisms.
Inspired by Theorem 3.7, we introduce the following definition.

Definition 3.9. We say that actions {; and ¢, are equivalent via an isomorphism ¢ if
@: A1 = A, is an isomorphism of algebras such that

¢((61(GD)p) = (£2(G2)) s
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where the F-linear span (-) g is taken in the corresponding End(4;) and the isomorphism
$:Endr(41) 5 Endr (A2) is defined by ¢(y)(@) = ¢(¥ (¢~ (a))) for ¥ € Endr (4;)
and a € A,.

Ifl: A= @g <G A®) is a grading on an algebra A by a group G, then there exists a
standard Hom(G, F*)-action on A by automorphisms:

xa := y(g)a for y € Hom(G, F*), a € A®, geaq. (3.3)

Extend each y € Hom(G, F*) by linearity to a map FG — F. Then this Hom(G, F*)-
action becomes just the restriction of the map ¢: (FG)* —Endg (A) corresponding to T'.

In the case when F is algebraically closed of a characteristic 0 and G is finite abelian,
the group Hom(G, F*) is usually denoted by G and called the Pontryagin dual group.
The classical theorem on the structure of finitely generated abelian groups implies then
G =~ G. Moreover, (3.3) defines a one-to-one correspondence between G-gradings and
G -actions. (See the details, e.g., in [15, Section 3.2].) The following proposition shows
that in this case equivalent G-gradings correspond to equivalent G -actions.

Proposition 3.10. Let (3.1) be two group gradings by finite abelian groups G and G,
and let {; be the corresponding (FG;)*-actions, i = 1, 2. Suppose that the base field F
is algebraically closed of a characteristic 0. Then I'y and 'y are equivalent as group
gradings if and only if {; |51 and §2|/G\2 are equivalent as group actions.

Proof. The orthogonality relations for characters imply that the elements of G; form a
basis in (FG;)*. Hence ; ((FG;)*) = (i (G;)), fori = 1,2, and the proposition follows
from Theorem 3.7. u

Return now to the case of arbitrary groups G and G, and an arbitrary field F. As in
the case of gradings, we can identify A; and A, via ¢. Then the equivalence of ¢; and
{» means that the images of G; and G, generate the same subalgebra in the algebra of
F-linear operators on A1 = A».

Definition 3.11. Let {: G — Aut(A) be an action of a group G on an algebra A and let
x¢: Gy — Aut(A) be an action of a group G¢ equivalent to { via the identity isomorphism
idq. We say that the pair (G¢, x¢) is a universal group of the action ¢ if for any other
action {;: G; — Aut(A) equivalent to { via id4 there exists a unique group homomorphism
¢: G1 — G¢ such that the following diagram is commutative:

Aut(4) = G
/l\

(K%

G,

Remark 3.12. Consider the group U({{(G))r) N Aut(A), where U((¢(G))F) is the
group of invertible elements of the algebra (¢(G))r < Endf(A). Since for every Gq, as
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above, the image of G; in Aut(A4) belongs to U({(¢1(G1))F) N Aut(4) = U{L(G))F) N
Aut(A), the universal group of the action { is (up to an isomorphism) the couple (G¢, x¢),
where

Ge := U((C(G))F) N Aut(A)

and x; is the natural embedding G; C Aut(A4).

Let {;: G; — Aut(A), i = 1,2, be two group actions on A by automorphisms. We say
that ¢q is finer than ¢, and &5 is coarser than ¢y if ((2(G))fF C (¢1(G))F. Again, it is
easy to see that this relation is a preorder and ¢; is both finer and coarser than ¢, if and
only if id4 is an equivalence of {; and ¢,. Moreover, the universal group of the action is
the functor from this preorder to the category of groups: if {1 is finer than (5, the functor
assigns the embedding U((¢(G2))r) N Aut(4) € U{L(G1))F) N Aut(A).

Proposition 3.13. Let (3.1) be two group gradings by finite abelian groups G and G,
and let {; be the corresponding (FG;)*-actions, i = 1, 2. Suppose that the base field F
is algebraically closed of a characteristic 0. Then T’y is finer than Ty if and only if {; |61
is finer than §2|/G\2.

Proof. Again, the orthogonality relations for characters imply that the elements of 61»
form a basis in (FG;)*. Hence {; (FG;)*) = (¢ (G;)), fori = 1,2, and the proposition
follows from Theorem 3.8. ]

4. Comodule algebras

4.1. Support equivalence of comodule structures on algebras
Inspired by Theorem 3.7, we give the following definition.
Definition 4.1. Let A; be (not necessarily associative) H;-comodule algebras for Hopf

algebras H;,i = 1,2. We say that comodule structures on A and A, are support equiva-
lent via the algebra isomorphism ¢: 47 = A, if

P(C1(HY)) = ta(Hy), 4.1)

where {; is the algebra homomorphism H;* — Endr (4;) induced by the comodule alge-
bra structure on A; and the isomorphism @: Endg (A1) = Endfg (A5) is defined by

5@ = ¢(¥(¢7'(@)) fory € Endr(4;) anda € As.

As the only equivalences we will consider in the sequel are support equivalences, we
will just use the term equivalence.

It is easy to see that each support equivalence of comodule algebras maps H;-subco-
modules to H,-subcomodules.

As in the case of gradings, we can restrict our consideration to the case when A1 = A,
and ¢ is an identity map.
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Let A be an H-comodule algebra with a comodule map p: A — A ® H and the corre-
sponding homomorphism of algebras {: H* — Endf (A). Choose a basis (aq ), in 4 and
let p(aq) =D g ap ® hga, where hgy € H. Denote by C(p) the F-linear span of all such
heg. Now since (p ® idg)p = (idg ® Ag)p and (idg ®e)p = idy, our definition of /4g
implies

Ahap =) hay @ hyp.  e(hep) =
Y

{0 fa b rala.p. @2

1 ifa=4,
In particular, C(p) is a subcoalgebra of H. It is easy to see that
ker{ = C(p)* :={A € H* | A(C(p)) = 0}

and {(H*) = C(p)*. In other words, C(p) is the minimal subcoalgebra C € H such that
pA) S ABC.

Definition 4.2. Given an H -comodule algebra A with coaction p: A — A ® H, call the
coalgebra C(p) constructed above the support coalgebra of the coaction p.

Remark 4.3. The support coalgebra was introduced by J. A. Green in [25] under the name
“coefficient space”. We prefer to use here the name “support coalgebra” as in the case of
a grading it is exactly the linear span of the support of the grading.

Proposition 4.4. Let A; be H;-comodule algebras for Hopf algebras H;, i = 1,2. Then
an isomorphism ¢: A1 = A, of algebras is an equivalence of comodule algebra structures
0i:Ai > A; ® Hy, i = 1,2, if and only if there exists an isomorphism t: C(p1) = C(p2)
of coalgebras such that the following diagram is commutative:

Ay —2 4y ® C(py)

lw lmr @3)

Ay —25 4, ® C(py).

i.e., two comodule algebras are support equivalent if and only if they have isomorphic
support coalgebras and they are isomorphic as comodules over their support coalgebra.

Proof. Suppose ¢ is a support equivalence of p; and p,. Choose as above some basis
(aq)q in Ay. Let ay, := ¢(aq), p1(aq) = Zﬂ ag ® hpe, and p2(ag) = Zﬂ a:g ® h/ﬁw
where hg, € Hi, h}m € H,.

Assume that Za,ﬁ tgahpe = 0 for some tg, € F, where only a finite number of 74
are nonzero. Define linear functions to: A — F by 14(ag) = tgq. Then for any A € H*
we have

Z Ta(él(k)aa) = Ztﬂak(hﬂa) =0.
o a.B
Hence

Zta(<p_1(¢(§1(/1))a&)) =0 forallAe H{.

o
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Now (4.1) implies
Y (e (B@)ay) =0
o
and
> igad'(hpy) =0 forall X' € H}.
o,p

As a consequence, Za, B [ﬂah;g « = 0. Applying the same argument for ¢!, we obtain that

if 3y g tpahp, = 0 forsome gy € F,then ), 5 igahpa = 0. Hence there are the same
linear dependencies among /4 and among h;ﬁ. Taking into account that C(p1) = (figg |
o,B)Fand C(pp) = (hfxﬂ | @, B) F, we can correctly define a linear map 7: C(p1) — C(p2)
by t(hap) = I, forall o, f and the reverse map 1= 1:C(ps) = C(p1) by t7! (h5) = hap
for all &, B. In particular, the map 7 is a bijection. By (4.2) the map t is a homomorphism
of coalgebras. Finally, (4.3) holds.

Conversely, suppose (4.3) holds. Then {;(A) for A € H;* is determined by the values
of A on C(p;). Now (4.3) implies (4.1). |

Remark 4.5. The proof of Proposition 4.4 makes in fact no use of the algebra structures
of A; and H;, nor of the coalgebra structures of H;. In fact, it is possible to define a notion
of support equivalence for arbitrary linear maps 4 — B ® Q, where A, B, and Q are just
vector spaces, and in such a setting Proposition 4.4 remains valid mutatis mutandis (see
[4, Proposition 2.6]).

4.2. Universal Hopf algebra of a comodule algebra structure

Analogously to the universal group of a grading, we would like to introduce the universal
Hopf algebra of a given comodule algebra structure. It will be the initial object of the
category ‘Cf defined below.

Let A be an H-comodule algebra for a Hopf algebra H and let ¢: H* — Endp (A) be

the corresponding algebra homomorphism. Consider the category €, where

(1) the objects are H;-comodule algebra structures on the algebra A for arbitrary Hopf
algebras H; over F such that {; (H{) = {(H™), where {;: H" — Endr(A) is the
algebra homomorphism corresponding to the H;-comodule algebra structure on
A;

(2) the morphisms from an H;-comodule algebra structure on A with the correspond-
ing homomorphism ¢; to an H,-comodule algebra structure with the correspond-
ing homomorphism ¢, are all Hopf algebra homomorphisms t: H; — H; such
that the following diagram is commutative:

Endp (4) 2 H}

k l’* (4.4)
H;
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Remark 4.6. The commutative diagram (4.4) means that

L(h™) (@) = &i(e* (h))(a),
h*(ap)age) = 1™ (z(aq)))ao)
for all h* € H; and a € A, where pi(a) = aq) ® a) and p2(a) = ap) ® apy) are the
H,- and H,-comodule maps on A, respectively. Hence
ap) ® ap) = a) ® tlaw)

for all @ € A and (4.4) is equivalent to the diagram

A" A0 H,

id
X L 4 ®T

A® H,

Now we are going to show that ‘Gf possesses an initial object (which is always unique
up to an isomorphism).

Recall that by L we denote the left adjoint functor to the forgetful functor U: Hopfp —
Coalgp.Let p: A — A ® H be the map defining a right H -comodule structure on A. Since
C(p) € H is an embedding, n¢c(p): C(p) — L(C(p)) is an embedding too. Hence for our
choice of C(p) the algebra A is a right C(p)-comodule and therefore a right L(C(p))-
comodule. Now we will factor L(C(p)) by a specific Hopf ideal I to turn A into an
L(C(p))/I-comodule algebra.

Choose a basis (aq)q in A and hgyg as in the previous section.

Lemma4.7. Letagag =), kgﬂav for some structure constants kzﬂ € F and denote by
I the ideal of L(C(p)) generated by

Z k;)*,q Nc(p) (hroz)nC(p) (hqﬂ) - Z kZ,g Nc(p) (hyu) 4.5)

r.q u

for all possible choices of indices a, B,y. Then Iy is a coideal.

Proof. First of all, note that for every «, 8, y we have
8( Y klancw (hra)ic (hap) = Y kignice (hyu)) = kop —kag =0
r.q u
and therefore £(/y) = 0. Moreover, a direct computation using (4.2) gives

A (Z qunC(p) (hroc)nC(p) (hqﬂ) - Z kZﬁ nc(p) (hyu))

r.,q u

4.2)
= 2 kl/q Nc(p) (hra)nC(p) (hqb) Q Nc(p) (haa)nC(p) (hbﬂ)
r.q,a.b

- Z kap 1c(o) (hyv) ® nc (o) (hou)

u,v
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= Z(Z kX nc (hra)ncy (hgp) = Y kZbHC(p)(hyv)) ® ncp) (haa)nc (o) (hpp)

ab “1.4q v

Y (nap) (hy) ® (Z K2nce Gaadnco (og) — 3 Ky nee (hw)))

a,b u

and obviously the underlined terms belong to Iy, as desired. ]

Now define 7 to be the ideal generated by spaces S” 1y for all n € N, where S is
the antipode of L(C(p)). Obviously, I is a Hopf ideal and H? := L(C(p))/I is a Hopf
algebra.

Denote by 7: C(p) — L(C(p))/1 the map induced by nc(,) and define an H °-comod-
ule algebra structure x” on A by %”(aq) 1= ) p ap @ N(hpe). The relations (4.5) ensure
that A indeed becomes an H ”-comodule algebra.

Theorem 4.8. The pair (H”, xP) is the initial object of the category ‘C’f .

Proof. We first notice that the embedding C(p) < H induces a homomorphism of Hopf
algebras ¢: L(C(p)) — H such that the diagram

C(p) —25 L(C(p)

L

H

is commutative. Since A is an H-comodule algebra, the generators (4.5) of I belong to
the kernel of ¢ and there exists a homomorphism of Hopf algebras ¢: L(C(p))/I — H
such that the diagram

Clo) —1 L(C(p)/1

UL

H

is commutative. Hence the map 7 is injective and therefore #: C(p) — 7(C(p)) is a coal-
gebra isomorphism. Since 7(C(p)) is the support coalgebra of »*, Proposition 4.4 implies
that the structure of an H”-comodule algebra on A defined by »” belongs to € f .

Suppose now that 4 is an Hj-comodule algebra for some other Hopf algebra H; and
the corresponding comodule structure p;: A; — A; ® Hj is equivalent to p. Then by
Proposition 4.4 there exists an isomorphism to: C(p) = C(p1) such that the following
diagram is commutative:

A—L 5 A0 Cp)

x lidA Q19

A® C(p1)
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Let i; be the embedding C(p1) € Hj. Then i1 t9 = t17¢(p) for a unique homomor-
phism of Hopf algebras 7;: L(C(p)) — H;. Note that since A is an H;-comodule algebra,
again all generators (4.5) of the ideal I are in the kernel. Hence we get a homomorphism
of Hopf algebras 7: L(C(p))/I — H; providing the desired arrow in ‘6}3 . This arrow
is unique since, by Takeuchi’s construction of the functor L (see [38]), L(C(p))/I is
generated as an algebra by 7)(/4,g) and their images under S. |

We call the pair (H?”, x”) the universal Hopf algebra of p.

Remark 4.9. If p: A — A ® H is aright H-comodule algebra structure on A such that
C(p) is a pointed coalgebra, then the corresponding universal Hopf algebra of p is pointed
as well. Indeed, it follows from [40, Proposition 3.3] that L(C(p)) is pointed and its
coradical is given by L(C(p))o = F T, where T = Fg(c(y)) is the free group generated
by the set G(C(p)) of group-like elements of C(p). Now since the canonical projection
. L(C(p)) = L(C(p))/I is a surjective coalgebra homomorphism, it follows from [12,
Exercise 5.5.2] or [30, Corollary 5.3.5] that L(C(p))/I is pointed and its coradical is
7 (FT).

Theorem 4.10. Suppose A is a unital H-comodule algebra. Then A is a unital HP-
comodule coalgebra too. As a consequence, unital comodule structures can be equivalent
only to unital comodule structures.

Proof. We can include 14 into a basis, say, a; := 14. We have
0 ifa#1,
hal = .
lg ifa=1

and

1r ifa:ﬂ

for all &, 8. Moreover, e(h11) = 1 and Ahy; = h1; ® hy1. Now (4.5) for « = 1 implies

n(h11)n(hyp) = 1n(hyp) and for f = 1 implies 7(rye)(h11) = N(hyq).
Note that

0 ifa#p,
i, ={

S(i(h1)n(h11) = 7(h11)S (7(h11)) = 1ae
since An(hi1) = n(h11) ® n(h11).
Using induction on k (the base k = 0 has been already proven), we get
S*(7ihyg))i(h11) = S (1) S (7hyg)))i(h11)
= S*(fi(hyp)) S (7h10)) (k1) = S*(7i(hyp)).

The equality ﬁ(hll)Sk(ﬁ(hyﬁ)) = Sk(ﬁ(h,,ﬂ)) is proven analogously. In other words,
n(h11) is the identity element of H” and A is a unital H”-comodule algebra. |

Theorem 4.11 below shows that in the case of gradings the construction above yields
the group algebra of the universal group of the corresponding grading.
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Theorem 4.11. Let I': A = @geG A® be a grading on an algebra A by a group G.
Denote by p: A - A ® FG the corresponding comodule map. Let Gt be the univer-
sal group of T and let pr: A — A @ FGr be the corresponding comodule map. Then
(FGr, pr) is the universal Hopf algebra of the comodule structure p.

Proof. If H is the group algebra F'G for some group G, i.e., A is G-graded, then we
can choose (aq)q to be a homogeneous basis in A. In this case, hqg = 0 for o # B and
each hy, is the group element corresponding to the homogeneous component of ay. The
generators (4.5) defining I now correspond to the relations defining the universal group
of the grading. From Takeuchi’s construction [38] it follows that L(C(p)) is the group
algebra of the free group generated by the support of the grading and H” = L(C(p))/]
is the group algebra of the universal group of the grading. ]

Theorem 4.12. If p: A— A ® H is an H-comodule structure equivalent to a group grad-
ing, then there exists a Hopf subalgebra Hy C H, isomorphic to a group Hopf algebra,
such that p(A) € A ® H;.

Proof. In order to deduce this from Theorem 4.11, it is sufficient to consider the homo-
morphic image H; of L(C(p))/I and use the fact that any homomorphism of Hopf
algebras maps group-like elements to group-like elements. ]

Next we prove that taking the universal Hopf algebra of a comodule algebra yields a
functor. To start with, given an algebra A, we define the category €4 as follows:

(1) the objects are pairs (H, p), where H is a Hopf algebraand p: 4 - A ® H isa
right H-comodule algebra structure on A;

(2) the morphisms between two objects (H1, p1) and (H3, pp) are coalgebra homo-
morphisms 7: C(p;) — C(p2) such that the following diagram is commutative:

A—2% 4@ C(py)
JidA ®1 (4.6)
A® C(p2)

P2

Theorem 4.13. If p;: A — A® H;, i = 1,2, are comodule structures on A and §;: H* —
Endr (A) are the corresponding H -actions, then in €4 there exists at most one morphism
from (Hy, p1) to (H>, p2). Furthermore, this morphism exists if and only if {,(H;) €
C1(HY). In particular, €4 is a preorder (in the sense of [28, Chapter I, Section 2])".

Proof. As before, choose a basis (ay)y in A and let p;(ay) = Zﬂ ag @ hgy, where
hpe € Hy and pa(ay) = ZB ag ® h%a, where hba € H,.

The proof of Proposition 4.4 implies that if (> (H}) € {1 (H{), then if among /g, there
exists some linear dependence, the same linear dependence holds among hgg «- Therefore,

!Or, in another terminology, a thin category.
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there exists a linear map t: C(p1) — C(p2) such that t(hgy) = h:ga, making (4.6) com-
mutative. By (4.2) t is a coalgebra homomorphism.
Conversely, suppose (4.6) is commutative for some coalgebra homomorphism

:C(p1) = C(p2).

Then t(hgy) = h;ga for all @ and B. Since C(p) is the F-linear span of all s, such T is
unique and there exists at most one morphism from (Hy, p1) to (H», p2), which is always
surjective. For every f € {»(H;), there exists o € C(p2)* such that we have

fa = (idg ®a)pz(a) foralla € A.

The commutativity of (4.6) implies fa = (id4 ®t*(«))p1(a) = t*(a)a, where T*(a) €
C(p1)*. In other words, f € {1(H{) and {>(Hy) C Ci(HY). L]

If ¢, (HY) € &i(HY), we say that p; is finer than p, and p; is coarser than p;. Note
that Theorem 3.8 implies that this definition agrees with the one for gradings. Again, idy4 is
an equivalence of p; and p, if and only if p; is both finer and coarser than p,. Furthermore,
the proof of Theorem 4.8 implies that the universal Hopf algebra of a comodule structure p
is universal not only among the structures equivalent to p, but also among all the structures
that are coarser than p.

We claim that any morphism t: (Hy, p1) — (H3, p2) in €4 induces a Hopf alge-
bra homomorphism between the corresponding universal Hopf algebras L(C(p;))/I; and
L(C(p2))/ 12, respectively.

To this end, consider (ay) to be a basis of A over F and let C(p;), C(p2) be the F-
spans of all g, respectively t,8, where p1(aq) = Zﬁ ag @ hgy and p2(aq) = Zﬂ ag ®
tgq. Then, the coalgebra homomorphism 7: C(p1) — C(p2) determines a unique Hopf
algebra homomorphism ¢: L(C(p;)) = L(C(p2)) such that the following diagram is
commutative:

nC(py)

C(p1) — L(C(p1))

rJ/ lfﬂ

Cp2) 5~ L(C(p2)). i onc(o) = NC(o)T-
Let r1: L(C(p1)) = L(C(p1))/I1 and m2: L(C(p2)) — L(C(p2))/I2 be the canonical
projections. Now notice that by the commutativity of (4.6), we obtain T(hgq) = g, for all
o, B which together with the commutativity of the above diagram implies by a straightfor-

ward computation that all generators (4.5) of I; belong to the kernel of m,¢. Therefore,
there exists a unique Hopf algebra homomorphism

T:L(C(p1))/ 11 = L(C(p2))/I2
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such that the following diagram is commutative:

L(C(,ol)) e, L(C(pz))/lz, ie., Tm = mae.

[

L(C(p1))/1h

We have in fact defined a functor from €4 to the category of Hopf algebras in the
following theorem.

Theorem 4.14. There exists a functor F: €4 — Hopfg given as follows:
F(H,p)=L(C(p))/I and F(r)=T.

Proof. We only need to show that F' respects composition of morphisms. Indeed, consider
71: (H, p) = (H1,p1) and 15: (Hy, p1) = (H2, p2) two morphisms in €4. We obtain two
unique Hopf algebra homomorphisms ¢;: L(C(p)) — L(C(p1)) and ¢5: L(C(p1)) —
L(C(p2)) such that

11C(p) = NC(p1)T1s (4.8)
©21C(p1) = NC(p2) T2- (4.9)
Furthermore, we have unique Hopf algebra homomorphisms
71: L(C(p))/I — L(C(p1))/1y and T3:L(C(p1))/I1 — L(C(p2))/I2
such that

7T = T1¢1, (4.10)

‘L'_27T1 = 2¢>. (411)

Similarly, there exist two unique Hopf algebra homomorphisms : L(C(p)) — L(C(p2))
and 7271: L(C(p))/1 — L(C(p2))/I> such that

Y NC(p) = NC(p2)T271> (4.12)
Tnun = my. 4.13)

The proof will be finished once we show that 7,7, = 7, 7;. First we prove that ¥ = ¢, ¢;.
Indeed, using (4.8) and (4.9) we obtain

P2 91NC(p) = P2NC (1) TL = NC(p2) T271-

As v is the unique Hopf algebra homomorphism for which (4.12) holds, we obtain ¥ =
@2¢1. Furthermore, using (4.11) and (4.10) yields

@21 = Tam1@1 = T2 T L.

Finally, the uniqueness of the Hopf algebra homomorphism for which (4.13) holds implies
TpT1 = 13 11, as desired. [
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Remark 4.15. At this point, we should recall that there is another construction in the
literature related to the universal Hopf algebra of a comodule algebra, namely Manin’s
universal coacting Hopf algebra (see, for instance, [31, Proposition 1.3.8, Remark 2.6.4]).
However, the latter construction is different from the one introduced in the present paper
as, roughly speaking, it involves all possible coactions on a certain algebra not only those
equivalent to a given one. More precisely, if A is a given algebra, it can be easily seen
that the universal coacting Hopf algebra of A is precisely the initial object in the category
whose objects are all comodule algebra structures on A and the morphisms between two
such objects (H1, p1) and (Hs, p2) are Hopf algebra homomorphisms f : H; — H, such
that the following diagram commutes:

A5 A H

X‘ lidA ®f

A® H,

In other words, our construction can be considered as a refinement of Manin’s as we get
more information on each class of equivalent coactions. Furthermore, note that Manin’s
universal coacting Hopf algebra was shown to exist only for finite dimensional algebras
while our construction can be performed for any arbitrary algebra.

4.3. H-comodule Hopf-Galois extensions

Let H be a Hopf algebra, let A be a nonzero unital H-comodule algebra, and let p: 4 —
A® H be its comodule map. Denote by A°° I the subalgebra of coinvariants, i.e., A< :=
{a € A| p(a) =a ® lg}. Recall that A is called a Hopf-Galois extension of A if the
linear map can: 4 @ o A — A @ H defined below is bijective:

can(a @ b) := ab(y) ® b(y).

Our next result computes the universal Hopf algebra of a Hopf—Galois extension.

Theorem 4.16. Let A/A°H be a Hopf-Galois extension. Then (H, p) is the universal
Hopf algebra of p.

Proof. Note that the surjectivity of can implies C(p) = H. Hence for every Hopf alge-
bra H; and every Hj-comodule structure p; on A equivalent to p, there exists a unique
coalgebra homomorphism t: H — H; such that

A—L Ao H

idg ®
N

A® H;

The only thing left to prove now is that t is a Hopf algebra homomorphism.
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First, since by Theorem 4.10 unital comodule structures can be equivalent only to
unital comodule structures, p;(l4) = 14 ® 1g,. At the same time, we have p;(14) =
(id4a ®7)p(14) = 14 ® 7(1g). Hence t(1g) = 1H,.

Second, for every a,b € A we have

ayb) ® t(amybay) = p1(ab) = p1(a)p1(b) = awybo) ® t(aw))t(ba)). (4.14)
We claim that
aby @ t(hbqy) = abpy @ t(h)t(by)) fora,be A, he H. (4.15)

Choose a basis (hq)q in H and fix some basis element /1 g. The surjectivity of can implies
that there exist a;, b; € A such that a ® hg = Y, aibi) ® bi1). Note that p(b;) =
Y o bia ® hy for some b;y € A, where for each i only a finite number of b;4 is nonzero.
Hencea ® hg = Zi,a aibiy ® hy and

> aibig = {a fa=F. (4.16)
- 0 ifa# 8.

Thus

aby ® T(hg)T(b1)) = Y _ aibiabo) ® T(he)T(b(1))
“L) S  dibiabio) ® T(habiy) ‘2 abey ® T(hpbay)-

i,0

In other words, we have proved (4.15) in the case & = hg. Since B was an arbitrary index
and both sides of (4.15) are linear in £, (4.15) is proved for arbitrary /.

Fix now arbitrary 7 € H and some basis element /,,. Again the surjectivity of can
implies that there exists ¢;, d; € A suchthat 14 @ hy, = Y, ¢;d;(0) ® di(1). We can rewrite
o(di) = Yy dig ® ho for some diy € A. Then 14 @ hy = Y, , ¢idig ® ho and

1 ifa =y,
Zcidia = 4 e ¥ 4.17)
- 0 ifa#y.
Then
(4.15) “.17)
L ® t)t(hy) = Y cidia ® t)t(he) 2" cidia ® tlhhe) 2 14 ® (hhy).
i, i,

Hence t(hh,) = t(h)t(hy). Since y was an arbitrary index, t is a bialgebra homomor-
phism and therefore a Hopf algebra homomorphism. Thus (H, p) is the universal Hopf
algebra of p. ]

Remark 4.17. In the proof of Theorem 4.16 we have used only the surjectivity of can.
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If we consider the standard G-grading on the group algebra FG of a group G, then
the universal group of this grading is isomorphic to G. In the case of a comodule structure
we can obtain a similar result.

Corollary 4.18. Let H be a Hopf algebra. Then the universal Hopf algebra of the H -
comodule algebra structure on H defined by the comultiplication A: H — H ® H is
again (H, A).

Proof. We have H®H ~ F and H/F is a Hopf-Galois extension by [12, Examples
6.4.8 (1)]. The desired conclusion now follows from Theorem 4.16. [

Example 4.19. Let H be a Hopf algebra and let A be a unital H-module algebra. We
denote by A#H the corresponding smash product, i.e., A#H = A ® H as a vector space
with multiplication given as follows:

(a#h)(b#g) = a(hq)yb)#h) g,

where we denote the element a @ h € A ® H by a#h. Then, we have an H -comodule
algebra structure on A#H given by

p: A#H — (A#H) @ H, p(a#h) = a#hg) @ h).

Then (A#H ) > A and A#H /A is a Hopf-Galois extension by [12, Examples 6.4.8 (2)].
Now Theorem 4.16 implies that the universal Hopf algebra of p is (H,id4 ® A).

5. Module structures on algebras

5.1. Support equivalence of module structures on algebras

Analogously, we can introduce the notion of equivalence of module structures on algebras.

Definition 5.1. Let A; be H;-module algebras for Hopf algebras H;, i = 1,2. We say
that an isomorphism ¢: A1 = A, of algebras is a support equivalence of module algebra
structures on A1 and A, if

¢(¢1(HY)) = L2(Hy), 3.1

where ¢; is the module algebra structure on A4; and the isomorphism @: Endr(4;) =
EndFr (A) is defined by the conjugation by ¢. In this case, we call module algebra struc-
tures on A and Ay support equivalent via the isomorphism ¢ and, as in the comodule
algebra case, we will say just equivalent for short.

It is easy to see that each equivalence of module algebra structures maps H-submod-
ules to H,-submodules. In Lemma 6.11 below, we show that one can identify the corre-
sponding relatively free H;- and H,-module algebras and that codimensions of polyno-
mial H -identities for equivalent algebras coincide.

As in the previous sections, we can restrict our consideration to the case when A = A,
and ¢ is an identity map.
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Let A be a left H-module algebra and {: H — Endfr (A) the corresponding module
map. Denote by X the image of x € H in H/ker¢.
Then the map ¢: H/ ker{ — Endf (A), where

L) = L(x)

for all x € H, defines on A a structure of an H/ ker {-module. Notice that E is obviously
injective and, moreover, we have ((H) = § (H/ ker ¢). Proposition 5.2 is an analog of
Proposition 4.4 for module algebras.

Proposition 5.2. Let A; be H;-module algebras for Hopf algebras H;, i = 1,2. Then
an isomorphism @: A1 = A, of algebras is an equivalence of module algebra structures
¢t Hi — Endp (A;), i = 1,2, if and only if there exists an isomorphism A : Hy/ker{; =
H, / ker {, of algebras such that the following diagram is commutative:

Hy/kert; —— Endp(4;)

Al lrﬁ 5.2)

H,/ker{, —— Endp (4,)
&)

Proof. Suppose there exists an isomorphism A : Hy /ker{; = H,/ker{, of algebras such
that diagram (5.2) is commutative. Hence, as A is in particular surjective, we obtain

@(c1(H1)) = ¢(Ci(Hi/ker 1)) = & (A(Hy/ ker§1)) = &a(Ha/ ker &) = L (Ho),

as desired. Therefore, the module algebra structures on A; and A, are equivalent via the
isomorphism g.

Conversely, assume now that the isomorphism of algebras ¢: A; = A, is an equiv-
alence of module algebra structures on A; and A,. Then if we identify H;/ker {; with
C1(Hy) and H,/ ker {, with {(H>), we can take A to be the restriction of ¢ on {1 (Hy).
In other words, A(X) = yx, where y, € H, such that <p(§1(x)) = Cz(yx) Then A is a
well-defined algebra isomorphism which makes diagram (5.2) commutative. ]

Note that if an H-module algebra A is unital, then the identity element 14 is a common
eigenvector for all operators from H and it retains this property for all equivalent module
algebra structures. The following proposition implies that if the original module algebra
structure is unital, then all module algebra structures equivalent to it are unital too.

Proposition 5.3. Let A be an H-module algebra for some Hopf algebra H. Suppose there
exists the identity element 14 € A such that 14 is a common eigenvector for all operators
from H. Then A is a unital H-module algebra.

Proof. Denote by A € H* the linear function such that hl4 = A(h)14. Since A is an
H-module algebra, we have A(h1h2) = A(h1)A(h2) and A(h) = A(hq))A(h)) for all
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h,hy,hy € H. Moreover, A(1y) = 1. Hence

A(h) = A(hqy)e(h@)A(LH) = A(ha)A(ha)A(Sh))
= A(ha)A(Sh(z)) = A(ha)(Sh2)) = e(WA(1g) = &(h)

and A is a unital H-module algebra. ]

It is well known that if H is a finite dimensional Hopf algebra, then H* is a Hopf
algebra too and the notions of an H-module and H *-comodule algebras coincide [12,
Proposition 6.2.4].

Proposition 5.4. Let p1: A — AQ Hy and p: A — A ® H; be two comodule structures
on an algebra A, where H and H are finite dimensional Hopf algebras. Let §;: HY —
Endfg (A), i = 1,2, be the corresponding homomorphisms of algebras. Then py and p, are
equivalent comodule structures if and only if {1 and {, are equivalent module structures.

Proof. Follows directly from the definitions. ]

5.2. Universal Hopf algebra of a module algebra structure

Analogously to the case of comodule algebras, if A is an H-module algebra for a Hopf
algebra H and {: H — Endp (A) is the corresponding algebra homomorphism, one can
consider the category €4 where

(1) the objects are H{-module algebra structures on the algebra A for arbitrary Hopf
algebras Hy over F such that {;(Hy) = ((H), where {1: H] — Endfp(A), is the
algebra homomorphism corresponding to the H;-module algebra structure on A;

(2) the morphisms from an H;-module algebra structure on A with the correspond-
ing homomorphism ¢; to an H,-module algebra structure with the corresponding
homomorphism ¢, are all Hopf algebra homomorphisms t: H; — H; such that
the following diagram is commutative:

Endy (A) «—" H,
T I
H,

Recall that by R: Algr — Hopfr we denote the right adjoint functor for the forgetful
functor U: Hopfp — Algp. The counit of this adjunction is denoted by p: UR = idajg,, .

Suppose ¢1: H; — End g (A) is a structure of an H;-module algebra on A that is equiv-
alent to ¢. Then ¢y (Hy) = {(H) and there exists a unique Hopf algebra homomorphism
¢1: Hi — R(¢(H)) such that the following diagram commutes:

Hy —2— R(¢(H))

T b

¢(H)

where we denote ft = ¢ (m).
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Now consider a subalgebra H; of R({(H)) generated by ¢ (H;) for all such struc-
tures 1. Obviously, H¢ is a Hopf algebra. Let Yz := fi|n,

Theorem 5.5. The homomorphism ¢ defines on A a structure of an H¢-module algebra
which is the terminal object in f€4.

Proof. An arbitrary element hg of H; can be presented as a linear combination of ele-
ments ¢1(h1)---@n(hy), where n € N, h; € H;, H; are Hopf algebras, ¢;: H; — R({(H))
are homomorphisms of Hopf algebras, and each homomorphism fi¢g; defines on A a struc-
ture of an H;-module algebra equivalent to {. Hence

ho(ab) = @1(h1) - @u(hn)(@b) = hy(ha(---hp(ab)---))
= (hwhaq - haa) (i@h2@) -+ hn@)b)
= (e1(h11))@2(ha1)) - @ (hu))a) (@1(h12) @2 (h22) - - @ (hn(2))D)
= ((e1(h1) - @un(hn)) y@) ((01(h1) - @u(hn)) (pyb) foralla.b € A.

Note that the comultiplication in the middle is calculated each time in the corresponding
Hopf algebra H;. Also we have used that each ¢; is, in particular, a homomorphism of
coalgebras. Therefore, A is an H;-module algebra.

Now the choice of H; € R({(H)) implies that (H¢, ¥¢) is the terminal object of
H€A- |

We call (H¢, Y¢) the universal Hopf algebra of {.

If &1 and ¢, are two module structures on A and {,(H3) € {1 (H1), we say that ¢ is
finer than &, and &5 is coarser than ¢;. Again, id4 is an equivalence of {; and ¢, if and
only if {; is both finer and coarser than {,. Note that we could define H; as a subalgebra
of R(¢(H)) generated by the images of all Hopf algebras whose action is coarser than
¢. Then the action of H; would still be equivalent to {, but the proof of Theorem 5.5
would imply that H¢ is universal not only among module structures equivalent to ¢, but
also among all the module structures coarser than {. The uniqueness of H; implies that the
original H satisfies this property too, i.e., H; is universal among all the module structures
coarser than .

As in the case of comodule algebra structures, we will see that taking the universal
Hopf algebra of a module algebra yields a functor. Indeed, given an algebra A we define
the category 4 € as follows:

(1) the objects are pairs (H, ), where H is a Hopf algebra and {: H — Endfg(A) is
a left H-module algebra structure on A4;

(2) the morphisms between two objects (H, ¢) and (H’, {’) are algebra homomor-
phisms A: {(H) — ¢'(H') such that the following diagram is commutative:

C(H) ;> Endfr(A)

A
(")

(Here 5 and f " are natural embeddings.)
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Note that the existence of an arrow from (H, ¢) to (H’, {’) just means that ¢ is coarser
than ¢’ and 4 € is just the preorder of all module structures on A with respect to the relation
“coarser/finer”.

Moreover, any morphism A: {(H) — {'(H’) in 4€ induces a unique Hopf algebra
homomorphism A: R(¢(H)) — R(¢'(H'’)) such that the following diagram commutes:

He(H)

R(S(H)) ¢(H)

]| |

(C(H))WC(H)

We claim that I‘ v € H ;’,. Indeed, the existence of the arrow A implies that ¢’ is
coarser than ¢. Hence, if an Hj-module structure ¢ is coarser than ¢, then {; is coarser
than ¢’ too and A maps the image of H; in R(¢(H)) to H),.

We can now define the desired functor.

Theorem 5.6. There exists a functor G: 4 € — Hopfp given as follows:
G(H.{)=H; and G(A) =Ag,.

Proof. We only need to prove that G respects composition of morphisms. To this end, let
(H,$), (H','), and (H", ") be objects in 4€ and A1 : {(H) — §'(H'), A2 : {'(H') —
¢"(H") two morphisms in 4€. Then G(1;) = Alch and G(A,) = A2|H/ where A, and
A, are the unique Hopf algebra homomorphisms such that the f0110w1ng diagrams com-
mute:

He(H) He/(H')

R(5(H)) C(H)  R(S(H) §'(H')

/lll J{Al AZJ, l/lz (5.3)

R({'(H") ————{'(H")  R({"(H")) ¢"(H")

,u; (H) /"{'”(H”)

Moreover, G(Az11) = AzAq Hy> where A1 is the unique Hopf algebra homomorphism
which makes the following diagram commutative:

R(E(H) —=2 ¢(H)
Azlll J/A2Al
R(¢"(H")) —m §(H")

Using (5.3) one can easily check that A, A makes the above diagram commutative as well
and therefore we obtain G(A241) = G(A2)G(A1). This finishes the proof. |
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Remark 5.7. Inspired by Manin’s universal coacting Hopf algebra of an algebra, we can
construct the universal acting Hopf algebra of an algebra. More precisely, any given alge-
bra A can be endowed with an M (A, A)-module algebra structure 6, where M (A, A) is
the universal measuring bialgebra of A (see [37, Chapter VII]). By [11, Theorem 3.1],
there exists a Hopf algebra H.(M (A, A)) together with a bialgebra homomorphism

B: Ho(M(A, A)) — M(A, A)

such that for any other bialgebra homomorphism f: H — M(A, A) from a Hopf algebra
H to M(A, A) there exists a unique Hopf algebra homomorphism g: H — H.(M(A, A))
which makes the following diagram commutative:

Ho(M(A, 4)) —2— M(A. 4)

H

Thus (H«(M (A, A)), (B ® 14)) is the terminal object in the category whose objects are
all module algebra structures on A and the morphisms between two such objects (Hy, V1)
and (H;, ¥,) are Hopf algebra homomorphisms f: H; — H; such that the following
diagram is commutative:

Hi@A-" 4

f‘m{ %

H,® A

We call (H«(M(A, A)),0(B ® 14)) the universal acting Hopf algebra of the algebra A.
For further details as well as the construction of the (co)universal acting Hopf algebra of
a coalgebra we refer to [3].

Theorem 5.8 below provides an analog of Corollary 4.18 for module structures.

Theorem 5.8. Let H be a Hopf algebra. Denote by {: H — Endp (H™*) the homomor-
phism defined by (C(h)A)(t) := A(th) for all h,t € H, A € H*. Then ¢ is a unital
H -module structure on the algebra H™* and the universal Hopf algebra of ¢ is again

(H,%).
Proof. Indeed, if A, u € H*, we have
(EMA) @) = A (th) = Atayhay) nlt@yho)

= (hayA) (1)) (heym) (1))
= ((h@yM(h@yw) ()

for all h,t € H and he = e(h)e. Hence ( is a unital H-module structure on the algebra
H*.
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Consider an H;-module structure {;: H1 — Endp(H*) such that {1 (H;) = ¢(H).
Then Proposition 5.3 implies that ; is a unital module structure. Note that ¢ is an embed-
ding. Hence if we restrict the codomain Endg (H*) of ¢ and ¢y to &y (Hy) = ((H), the
map ¢ becomes an isomorphism between H and ¢(H ) and there exists exactly one unital
homomorphism t: H; — H of algebras such that the following diagram is commutative:

Endp (H*) «— H,

N

H

This map 7 satisfies the following equality:

(&1(MA) (1) = A(tT(h)) (5.4)

forallh € Hy,t € H,and A € H*. In order to show that t is a homomorphism of Hopf
algebras, it is enough to show that 7 is a homomorphism of coalgebras. Substituting in
(54 t=1pgand A =ep,wegetegy (v(h)) = (C1(W)en)(1n) =en, (Wen (10) = en, (h).
Considering arbitrary A1, A, € H™* and using (5.4) once again, we obtain

A (t(hay))Az2(t(h)) = (&1 (ha)A) Aa) (&1 (he))r2)(1a)
= (&i(hay) A1 ® Li(he))A2)(1a ® 1g)
(61 (rap A1) (G1h@)A2)) (1a)
(E1(h)(A142)) (1) = (A1 A2)(z(h))
A1 (z(h) 1)) A2(z(h) ).
Since A1, A2 € H* were arbitrary, we get t(h)) ® t(h@)) = t(h)q) ® t(h)(2) for all

h € H and 7 is indeed a homomorphism of coalgebras. Therefore, (H, ¢) is the universal
Hopf algebra of ¢. |

5.3. H-module Hopf-Galois extensions

In the sequel, we prove a result analogous to Theorem 4.16 for H-module algebras. Let
A be a nonzero unital H-module algebra for a Hopf algebra H and consider {: H —
Endr (A) to be the corresponding H -action on A. Denote by A its subalgebra of invari-
ants, i.e., A :={a € A| ha = e(h)a forall h € H}. The algebra A is a Hopf-Galois
extension of AH if the linear map can: A ®,u# A — Homp (H, A), defined by

can(a ® b)(h) := a(hb),

is injective and has a dense image in the finite topology (i.e., the compact-open topology
on Homp (H, A) defined for the discrete topologies on H and A).

Theorem 5.9. Let A/A™ be a Hopf-Galois extension. Then (H, () is the universal Hopf
algebra of €.
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Proof. The density of the image of can implies that for every & # 0 there exist a,b € A
such that a(hb) # 0. In other words, ker ¢ = 0. Hence for every Hopf algebra H; and
every Hq-module structure ¢; on A equivalent to { via idy, there exists a unique algebra
homomorphism t: H; — H such that the following diagram is commutative:

H—* s Endp(A)

|

H,

The only thing we need to prove now is that 7 is a Hopf algebra homomorphism.

First, since A is a unital H-module algebra, by Proposition 5.3, A is a unital H-
module algebra too. Hence ¢(h)14 = hly = t(h)14 = e(t(h))14 for all h € H;. There-
fore, e(h) = e(z(h)).

Let (hq)o be a basis in H. We claim that for every A48 € F such that only a finite
number of them is nonzero, the condition

> Aap(haa)(hgb) =0 foralla.b € A (5.5)
a,B
implies Aqg = 0 for all o, B.

Indeed, suppose (5.5) holds. Let A be a finite set of indices such that A,g = 0 unless
«, B € A. The density of the image of can implies that for every y there exist a,;,b,; € A

such that
14 ifa=y,
ayi(hgby) =
Xi: yilhabyi) {O ifaa #yanda € A.

Then by (5.5) for every b € A and every y we have

> Ayphgb = > Aapayi(habyi)(hgb) = 0.
BeA a,BEA,

Now ker ¢ = 0 implies ) 5 A,phpg = 0and 1,5 = 0 forall B, y.
In virtue of (2.1), forevery h € H; and a,b € A we have

(z(h@y)a)(z(h@)b) = (haya)(hz)b)
— h(ab) = t(h)(ab)

= (t(wa)(t(@b)-
By (5.5) we obtain A(z(h)) = (t ® t)A(h) forall # € H; and 7 is a Hopf algebra homo-
morphism. Thus (H, ¢) is indeed the universal Hopf algebra of . |

Remark 5.10. In the proof of Theorem 5.9 we have used only the density of the image of
can.
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6. Applications

6.1. Rational actions of affine algebraic groups

Let G be an affine algebraic group over an algebraically closed field F' and let O(G) be
the algebra of regular functions on G. Then @ (G) is a Hopf algebra, where the comultipli-
cation A and the antipode S are induced by, respectively, the multiplication and taking the
inverse element in G, and where the counit € of O (G) is just the calculation of the value
at 1g. (See the details, e.g., in [1, Chapter 4].) Suppose G is acting rationally by automor-
phisms on a finite dimensional algebra A, i.e., for a given basis ay, . . ., a, in A there exist
wij € O(G), where | <i,j <n,suchthatga; = >, w;j(g)a; forall1 < j <n and
g € G. This implies that A is an O (G)-comodule algebra, where p(a;) := Y 71—, ai ® w;;
for 1 < j < n. At the same time, A4 is an @(G)°-module algebra, where O(G)° is the
finite dual of O(G): f*a; = >/, f*(wij)a; forall 1 < j <nand f* € O(G)°. The
Lie algebra g of G is the subspace consisting of all primitive elements of O(G)°, i.e.,
f*e€e@(G)°suchthat A(f*) = f*® 1+ 1® f*, and the g-action on A by derivations
is just the restriction of the 9 (G)°-action. At the same time, the group G itself can be
identified with the group of group-like elements of O(G)°, i.e., f* € O(G)° such that
A(f*) = f*® f*and f* #0.

Hence three Hopf algebras are acting on A: O(G)°, FG, and U(g) (the universal
enveloping algebra of the Lie algebra g). In Theorem 6.2 below, we prove that all three
actions are equivalent in the case when G is connected. In order to show this, we need an
auxiliary lemma, that is a generalization of [23, Lemma 3].

Lemma 6.1. Let V be a comodule over a coalgebra C with a coactionmap p:V — V &
C. Suppose that there exists a finite dimensional subcoalgebra D C C such that p(V) C
V ® D (e.g., V is finite dimensional itself). Let {: C* — Endfr (V) be the corresponding
action of the algebra C* on 'V defined by c*v := c¢*(v(y))v() forc* e C* andv € V. Let
A C C* be a dense subalgebra, i.e., A+ :={c € C | a(c) =0foralla € Ay = 0. Then
¢(A4) = L(C).

Proof. Tt is sufficient to show that the restriction of both C* and A to D coincides with
D*. The first one is obvious since every linear function on D can be extended to a linear
function on the whole C. The second is proved as follows. The elements of A viewed as
linear functions on D form a subspace W in D*. If W # D*, the finite dimensionality
of D implies that there exists d € D, d # 0, such that w(d) =0 forall w € W. As a
consequence, d € AL and we get a contradiction to the density of A in C*. Therefore,
the restriction of A to D coincides with D*, and we have {(c*) = ¢(a) for any a € A,
¢* € C* such that ¢*|p = a|p which finally implies {(A) = {(C*). L]

Now we are ready to prove the theorem.

Theorem 6.2. Let G be a connected affine algebraic group over an algebraically closed
field F of a characteristic 0 acting rationally by automorphisms on a finite dimensional
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algebra A. Let g be the Lie algebra of G. Then the corresponding F G-action, U(g)-
action, and O(G)°-action on A are equivalent.

Proof. By Lemma 6.1, it is sufficient to prove that the images of F G, U(g), and O(G)°
are dense in @(G)*. For FG this follows from the definition of @(G). If we show that
U(g) is dense in O(G)*, we will get automatically that @ (G)° is dense too, since U(g) C
o0(G)°.

Let I := ker e, the set of all polynomial functions from @ (G) that take zero at 1g. By
[30, Proposition 9.2.5],

U(g) = {a € O(G)° | a(I") = 0 for some n € N} = O(G),

where @ (G)’ is the irreducible component of ¢ in @ (G)° (see [30, Definition 5.6.1]). By
[26, Chapter II, Section 7.3] the connectedness of G implies that G is irreducible as a
variety. Hence by a corollary of Krull’s theorem [7, Corollary 10.18] we have (1,5, I" =
0 and [30, Proposition 9.2.10] implies that U(g) = O(G)’ is dense in O(G)*. Hence
O(G)° is dense in O (G)* too and the F G-action, the U(g)-action, and the @ (G )°-action
on A are equivalent. |

6.2. Actions of cocommutative Hopf algebras

If we restrict our consideration to actions of cocommutative Hopf algebras, we can define
the notion of a universal cocommutative Hopf algebra of a given action, i.e., such a Hopf
algebra whose action is universal among all actions of cocommutative Hopf algebras
equivalent to a given one. Besides its own interest, the universal cocommutative Hopf
algebra can help calculating the Hopf algebra H that is universal among equivalent actions
of all Hopf algebras, not necessarily cocommutative ones, if one manages to prove that H
is cocommutative too, as we do in Proposition 6.6 below.

Analogously to the case of arbitrary Hopf algebras, if A is an H-module algebra for
a cocommutative Hopf algebra H and {: H — Endp(A) is the corresponding algebra
homomorphism, one can consider the category  €5°° where

(1) the objects are H{-module algebra structures on the algebra A for cocommutative
Hopf algebras H; over F such that {;(H;) = ¢(H), where {1: H; — Endp (A)
is the algebra homomorphism corresponding to the H;-module algebra structure
on A;

(2) the morphisms from an H;-module algebra structure on A with the correspond-
ing homomorphism ¢; to an H,-module algebra structure with the corresponding
homomorphism ¢, are all Hopf algebra homomorphisms z: H; — H, such that
the following diagram is commutative:

Endy (A) «—" H,

BN

H>
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Suppose ¢1: H; — Endfp (A) is a structure of an H-module algebra on A that is equiv-
alent to ¢. Then ¢y (Hy) = {(H) and there exists a unique Hopf algebra homomorphism
¢1: Hi — R(¢(H)) such that the following diagram commutes:

Hy —2— R(¢(H))

N

¢(H)

where we denote ¢ = He(H)-

Now consider a subalgebra Hg™ of R({(H)) generated by ¢, (H}) for all such struc-
tures 1, where H; is a cocommutative Hopf algebra. Obviously, H g“ is a Hopf algebra.
Let Y 1= Elge.

The same argument as in Theorem 5.5 shows that (H §C°°, 1/f§°°) is a terminal object in
€5 We call this terminal object the universal cocommutative Hopf algebra of §.

In the case of an algebraically closed field of a characteristic 0, the Cartier—Gabriel—
Kostant theorem (see, e.g., [30, Corollary 5.6.4 and Theorem 5.6.5]) allows us to give a
concrete description of the universal cocommutative Hopf algebra, using a similar tech-
nique as in [24].

Theorem 6.3. Let A be an H-module algebra for a cocommutative Hopf algebra H over
an algebraically closed field F of a characteristic 0 and let {: H — Endfg (A) be the
corresponding algebra homomorphism. Let

Go := U(S(H)) NAut(A) and Lo := Der(4) N{(H),

where U(L(H)) is the group of invertible elements of the algebra ¢(H) and Der(A) is
the Lie algebra of derivations of A viewed as a subspace of Endg (A). Define Hy to be
the Hopf algebra which as a coalgebra is just U(Lg) ® F Gy, as an algebra is the smash
product U(Lg) # F Gy (the Gg-action on Ly is the standard one by conjugations) and the
antipode is defined by

SwH#g):=0#g H(Sw#1)

forallw € U(Lg) and g € Gy. Then (Hy, {o) is the terminal object in g €. (Here {y is
the Hy-action on A induced by the G- and L-actions on A.)

Proof. By the Cartier—Gabriel-Kostant theorem, H =~ U(L) # F G, where G is the group
of group-like elements of H and L is the Lie algebra of primitive elements of H. Since
(G) € Gy, (L) € Lo, and G and L generate H as an algebra, Gy and Lo generate
C(H) and we have o (Hp) = ¢(H), i.e., {o is equivalent to .

Let £1: Hy — Endfp(A) be an action of another cocommutative Hopf algebra H,
equivalent to {. Again, by the Cartier—Gabriel-Kostant theorem, Hy = U(L;) # F G,
where G is the group of group-like elements of H; and L is the Lie algebra of primitive
elements of H;. We have to show that there exists a unique Hopf algebra homomorphism
7: Hy — Hy such that ot = (3.
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It is not difficult to see (using, say, the techniques of [30, Proposition 5.5.3 (2)]) that
the Lie algebra of primitive elements of Hy = U(L¢) # F Gy coincides with Ly ® 1,
which we identify with Lg, while the group of group-like elements of H, coincides with
1 ® Gy, which we identify with Gy. Since 7 (if it indeed exists) maps group-like elements
to group-like ones and primitive elements to primitive ones, we must have 7(G1) € G¢ and
7(L1) € Ly. Note that {o|g, = idg, and {o|z, = idr,. Hence 7|g, and |z, are uniquely
determined by {1|g,: G1 = Go and 1|, L1 — L. Since H; is generated as an algebra
by G; and L, there exists at most one Hopf algebra homomorphism t: H; — Hj such
that {7 = ¢;. Now we define t to be the Hopf algebra homomorphism induced by ¢ |g,
and El |L1 : n

Below we provide a criterion for universal cocommutative and universal Hopf algebras
to coincide.

Theorem 6.4. Let A be an H-module algebra for a cocommutative Hopf algebra H over
an algebraically closed field F of a characteristic 0 and let {: H — Endfp (A) be the
corresponding algebra homomorphism. Then the universal cocommutative Hopf algebra
(H g"c, wg"c) of C is its universal Hopf algebra if and only if every Hopf algebra action
C1: Hi — Endf (A) equivalent to ¢ factors through some cocommutative Hopf algebra
Hj, i.e., there exist a Hopf algebra action ¢ Hy — Endr (A) and a Hopf algebra homo-
morphism 6 making the following diagram commutative:

Hy — Endp(A)
|

%
16
4

H>

Proof. The “only if” part follows immediately from the definition of the universal Hopf
algebra of an action.

Suppose that every Hopf algebra action equivalent to ¢ factors through some cocom-
mutative Hopf algebra H,. Without loss of generality, we may assume that the correspond-
ing homomorphism 6 is surjective and therefore the H-action is equivalent to £. Since
every such H; is cocommutative, this implies that every Hopf algebra action equivalent
to ¢ factors through 1/f§°°. Consider now the universal Hopf algebra (H¢, y¢) of . The
universal property of ¢ and the fact that y; factors through wg"c too imply that there
exist Hopf algebra homomorphisms 61, 8, making the following diagram commutative:

coc

HE* —— Endp(A)

™ Y
02|61
N

He
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Now the uniqueness of the comparison maps in the definitions of both ¢ and w;oc
implies that 616, = idy, and 6,6, = idggec. In particular, we may identify (He, ¥¢) with
(HEOC WEOC . d ™

Now we give an example of an action of a cocommutative Hopf algebra with a non-
cocommutative universal Hopf algebra. This will show that the universal cocommutative
Hopf algebra does not always coincide with the universal Hopf algebra. In fact, it is suffi-
cient to present an algebra A with an H -action equivalent to an action of a cocommutative
Hopf algebra such that (h(ya)(h(2)b) # (hzya)(hayb) forsome h € H,a,b € A. Then
such an H -action can never factor through a cocommutative algebra. Let us present an
example of this situation.

Example 6.5. Let F be afield,let A = Fly & Fa & Fb & Fab be the F-algebra, where
a?> = b? = ba = 0, and let S3 be the 3rd symmetric group. Consider the equivalent S3-
and the Z/47-gradings on A defined by

A = 4O = F1, 40D = 4O .
ACY = 4@ =y, 42D = 4O = Fap,

Since the gradings are equivalent, by Theorem 3.7 the corresponding (FS3)*- and
(F(Z/4Z))*-actions are equivalent too, while (F(Z/4Z))* is commutative cocommu-
tative and (FS3)* is commutative non-cocommutative. In view of the above, to prove that
the universal Hopf algebra of these actions is not cocommutative, it suffices to show that
there exists an element s € (FS3)* such that (hya)(h@)b) # (hzya)(hi)b). Recall that
if G is a finite group and (hg)geg is the basis of (FG)* dual to the basis (g)geg of FG,
the comultiplication on (FG)* is given by Ah, = Zst=g hs ® hy. Hence

((ha23) @) ((ha23)@b) = Y (hea)(hpb) = ab #

op=(123)

((ha23) @@ ((ha2z)mb) = Y (hpa)(hob) = 0.
op=(123)

Therefore, the dual base element /(1,3) in (F.S3)* satisfies the needed property and hence
the universal Hopf algebra is not cocommutative.

Recall that Theorem 4.11 asserts that the universal Hopf algebra of a coaction that
corresponds to a group grading is just the group algebra of the universal group of the
grading. In Proposition 6.6 below, we show that the analogous result for group actions
does not hold, i.e., the universal Hopf algebra of a group action is not necessarily a group
algebra. In addition, here we demonstrate how the notion of the universal cocommutative
Hopf algebra can be used to calculate the universal Hopf algebra.

Proposition 6.6. Let A = F[x]/(x?), where F is an algebraically closed field, char F =
0. Consider G to be the cyclic group of order 2 with the generator c. Define a G-action
on A by cx = —X. Then the universal Hopf algebra of the corresponding F G-action
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lo: FG — Endfp (A) equals (H, ), where H = F[y] ® FF* as an algebra and a coal-
gebra where the coalgebra structure on F[y] is defined by A(y) =1® y +y ® 1 and
e(y) = 0. The antipode S of H and the action {: H — Endf (A) are defined by

SOF@1) =Dy @A™ and ((F @)X =1

fork € Z4 and A € F*. In particular, H is not a group algebra since it contains non-
trivial primitive elements.

Proof. To this end, we first identify End g (A) with the algebra M5 (F) of 2 x 2 matrices
by fixing the basis 1, ¥ in A. Then o(1) = ((1) (1’) and o(c) = ((1) _01 ) Since {o(FG) is
the linear span of {o(1) and {o(c), we get that {o(F G) is the subalgebra of all diagonal
matrices in M, (F'). Moreover,

Aut(4) ={(39) 1A € F*} and Der(A) ={(3) | A€ F}.

Hence U(Lo(FG)) N Aut(A) = Aut(A) = F* and ¢o(FG) N Der(A) is a one-dimensional
Lie algebra whose universal enveloping algebra is isomorphic to F[y]. Now Theorem 6.3
implies that the universal cocommutative Hopf algebra of ¢y is indeed (H, ¢).

By Theorem 6.4, in order to show that (H, ¢) is universal as a not necessarily cocom-
mutative Hopf algebra, it is sufficient to show that any other Hopf algebra action {1: H; —
EndF (A), equivalent to {g, factors through a cocommutative Hopf algebra.

Suppose ¢1: H; — Endfp (A) is an Hj-module structure on A equivalent to {o. Then
¢1(H4) is the algebra of all diagonal 2 x 2 matrices. In particular, X is a common eigenvec-
tor of operators from H;. Define ¢ € H}" by hX = ¢(h)x forallh € Hy. Then ¢: H; — F
is a unital algebra homomorphism and therefore a group-like element of the Hopf algebra
H°. At the same time Proposition 5.3 implies 211 = g(h)1 for all h € H;.

The powers ¢¥, k € Z, of the element ¢ in the group G (H °) of the group-like elements
of H° are defined by the formula

e(hy) - .- @(hw)) ifk>1,
ok (h) = { e(h) ifk =0,
o(Sh@y) ... o(Shgy) ifk < -1

forevery h € Hy. Let
I := ﬂ ker((pk).

keZ

Since all ¢¥: H, — F are unital algebra homomorphisms, / is an ideal. Moreover, as we
include in the definition of / the negative powers of ¢ too, we have S7 C .
We claim that 7 is a coideal too, i.e., A(/) € Hy ® I + I ® H;. We first notice that

Hi®l+1®H = [ ker(p* ® ¢"). 6.1)
kALeZ
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The inclusion
Hy®I+1®H C () ker(¢" ® o")
kLeZ

is obvious. In order to prove the converse inclusion, we choose a basis (dq)aea,uA, I
H, that contains a basis (aq)gea, 0f 1. Suppose

w = Z Yop Ao @ ag € ﬂ ker((pk ® (pﬁ)’
a,BeEA]UA, kLeZ

where only a finite number of coefficients y,g € F are nonzero. From the definition of /
we obtain

Z Vaﬂ(pk(aa)aﬁ €l foreveryk € Z.
a,BEAIUA,

The properties of a,, imply that for all 8 € A,
Z Yap (pk (aq) =0,

a€A1UA,

Z Yapla € 1.

aeA1UA,
Hence y,g = 0 for all o, B € A,. Therefore, w € H; ® I + I ® H; and (6.1) follows.
Since for every k, £ € Z and h € I we have

@* ® oY) (hy ® hay) = *T4(h) =0,

the S-invariant ideal I is a coideal and therefore a Hopf ideal.
Recall that I C kere N ker ¢. Hence the homomorphism ¢ factors through the Hopf
algebra H,/1, i.e., the following diagram is commutative:

H, —— H,/I
|
|
& <
Endfr(A)

where 7: Hy — Hj /1 is the natural surjective homomorphism.
In order to show that H; /1 is cocommutative, it is sufficient to prove that

hay®hpy—he@hqye HH® 1 +1® Hy foreveryh € Hy.
By (6.1) it is sufficient to check that
(" ® ") (ha) ® hy —h) ® hay) = 0.
Indeed,
(" ® ¢ (h) ® he) —he) ® hay) = ¢*H(h) — ¢ (h) = 0.

Therefore, Hy/I is cocommutative, as desired. [
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6.3. Unital module structures on F [x]/(x?)

In this section, we classify all unital module structures on F[x]/(x?). Throughout, H,
denotes the Sweedler Hopf algebra. Recall that Hy is generated as an algebra by two ele-
ments ¢ and v subject to the relations 2 =1,v2 =0, and ve = —cwv, while the coalgebra
structure and the antipode are given as follows:

Alc)=c®c, AW)=c®@v+v®l, SC)=c, Sv) =—cv.

Theorem 6.7. Let {: H — Endp (A) be a unital H-module structure on A = F[x]/(x?),
where H is a Hopf algebra, char F # 2. Then { is equivalent to one of the following
module structures on A:

(1) the action of F on A by the multiplication by scalars;
(2) the FG-action, where G = (c),, defined by cx = —X;
(3) the Hy-action defined by c1 = 1, c¥ = —X, vl = 0, vx¥ = 1.
Proof. Again, fix the basis 1, X and identify Endr (A) with M, (F). Since ¢ is unital, there

exist o, B € H* such that {(h) = (E(;') ggz;) forevery h € H.
Note that (2.1) implies

0 =h(x?) = (ha)%)(h@X) = (Bha)1 + a(ha))x)(B(ho)1 + a(h@)X)
= B(ha)Bh)1 + (a(h@)B(h@)) + Blhaye(he))x

and

B(hy)B(hz)) =0, (6.2)
a(h@wy)Bh@)) + Bha)a(hp) =0 6.3)

forallh € H.

We have dim ¢ (H ) = dim{«, B, &) F.

If dim ¢ (H) = 3, then ¢ (H) is the subalgebra of all upper triangular matrices and ¢ is
equivalent to (3).

Suppose dim ¢ (H) < 2. If « and ¢ are linearly dependent, then £ # 0 implies « = ye¢
for some y € F. Therefore, 1 = a(ly) = ye(lyg) = y and « = ¢. By (6.3), 28(h) = 0
and B = 0. Then {(H) is the algebra of all scalar matrices and ¢ is equivalent to (1).

Suppose dim ¢(H) < 2, but @ and ¢ are linearly independent. Then f = Ae + ya
for some A,y € F. Applying both sides of this equality to 1z, we get 0 = A + y since
{(lp) = ((1) (1’) Therefore, 8 = A(e — &) and (6.2) and (6.3) imply

A% (e(h) = 2a(h) + a(haye(he)) =0, (6.4)
2/\(0((/1) - O((h(l))ot(h(z))) =0 (6.5)

for all A € H. Suppose A # 0. Since char F # 2, (6.5) implies

a(hy)a(hz)) = alh).
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Then from (6.4) we get
a(h) = e(h)

which contradicts with the linear independence of « and ¢. Therefore, A = 0 and § = 0.
Thus ¢ (H) is the subalgebra of all diagonal matrices and ¢ is equivalent to (2). |

6.4. Polynomial H -identities

In this section, we will show that the module algebras classified in the previous section all
satisfy the analog of Amitsur’s conjecture for polynomial H -identities.

We begin with a quick introduction into the theory of polynomial H -identities (see
also [8, 10,22]). All algebras in this section are associative, but not necessarily unital.

We denote by F(X) the free non-unital associative algebra on the countable set

= {x1, X2, X3, ...}, i.e., the algebra of all polynomials without a constant term in non-
commuting variables x1, X3, X3, .. . with coefficients from F. Then

&

n=1

where F (X )™ is the linear span of monomials of total degree .
Let H be a Hopf algebra. Then the free non-unital associative H-module algebra on
X is
o0
F(X|H) =P F(x)” @ H®",
n=1

where
hv@h ® - ®hyi=v®huyh1 & -+ & hmhn forve F(X)™ andh; € H

and (v1 ® w1)(v2 @ W2) = V1V ® w1 ® wy forvy € F(X)® vy e F(X)O w, € H®¥,
wy € H® k. £ € N. We use the notationxf’l1 .- xfi =Xiy X, QM1 @My ® -+ ® hy.

Let (hy)aen be a basis in H. Then F(X|H) is isomorphic as an algebra to the free
non-unital associative algebra on the set {x,}f"‘ |neN, aeA}

Now we identify X with the subset {x} | n € N} C F(X|H). Denote by ¢: X —
F({X|H) the corresponding embedding. Then F (X |H) satisfies the following universal
property: for any map ¢: X — B, where B is an H-module algebra, there exists a unique
homomorphism of algebras and H-modules ¢: F(X|H) — B such that the following

diagram commutes:
X —— F(X|H)

RN

B

On the generators, ¢ is defined as follows:

(/-)(xihll o 'xt,, ) (hl(p(xll)) T (hn(p(xin))~
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Remark 6.8. Note that in a similar way one can define the free H-module algebra on
any set. Then F(—|H) becomes the left adjoint functor to the forgetful functor from the
category of not necessarily unital associative H -module algebras to the category of sets.

The elements of F (X |H ) are called H -polynomials. For a given H-module algebra A
the intersection I (4) of the kernels of all possible H-module algebra homomorphisms
F(X|H) — A is called the set of polynomial H -identities. Taking into account the uni-
versal property of F(X|H), it is easy to see that Id” (A) consists of all H -polynomials
that vanish under all substitutions of elements of A for their variables. In addition, Id7 (4)
is an H -invariant ideal of F (X |H) invariant under all endomorphisms of F (X |H) as an
H -module algebra.

The algebra F(X|H)/1d® (A) is called the relatively free H-module algebra of the
variety of H-module algebras generated by A. Indeed, it is easy to see that F(X|H)/
Id7 (A) satisfies the same universal property as F (X |H) except that we consider only
H -module algebras B satisfying 1d? (A) C 1d? (B).

In some polynomial H -identities below we use other variables such as x, y, . . ., always
assuming that in fact these variables coincide with some of the variables x1, x5, .. ..

Example 6.9. Consider the 7 /27Z-grading on M»(F) defined by M,(F)@ = {(%2)}
and M (F)™ = {(%%)} and the corresponding (F(Z/2Z))*-action. Then

xhoyho _ yhoxho e [dF @ /22))* (Mz(F)),

where ho € (F(Z/2Z))* is defined by h(0) = 1 and o (1) = 0.

The classification of all varieties of algebras with respect to their ideals of polynomial
identities seems to be a wild problem. This is the reason why numeric characteristics of
polynomial identities are studied. One of the most important numeric characteristics is the
codimension sequence.

Let

H . h h hn
P = (xoh)ngz)---xo(n) |0 € Su. hi € H),, C F(X|H),

where S, is the nth symmetric group and n € N. The elements of PnH are called multilin-
ear H -polynomials and the elements of PnH N 1d¥ (A) are called multilinear polynomial
H -identities of A.

Using the linearization process [15, Section 1.3], it is not difficult to see that over
a field of a characteristic 0 every polynomial H -identity of an H-module algebra A is
equivalent to a finite set of multilinear polynomial H -identities of A. Therefore, the spaces
PnH N 1d? (A), where n € N, contain all the information of polynomial H -identities of

A. For a given H-module algebra 4 the number ¢ (4) := dim (P,F+5H(A))’ neN,is
called the nth codimension of polynomial H -identities of A.

In the case when H = F, we obtain ordinary polynomial identities and their codimen-
sions. In the case when H = (FG)* for some finite group G, every H-module algebra A

is just a G-graded algebra. Here one can introduce graded polynomial identities and their
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codimensions ¢ "' (A4), however it turns out that ¢ '(4) = ¢\F 9" (4) foreveryn € N
[17, Lemma 1].

In the 1980’s, a conjecture concerning the asymptotic behavior of codimensions of
ordinary polynomial identities was made by S. A. Amitsur [15, Conjecture 6.1.3]. This
conjecture was proved in 1999 by A. Giambruno and M. V. Zaicev [15, Theorem 6.5.2].
For polynomial H -identities the analog of Amitsur’s conjecture can be formulated in the
following form, which belongs to Yu. A. Bahturin.

Conjecture 6.10. Let A be a finite dimensional associative H-module algebra for a Hopf
algebra H over a field of a characteristic 0. Then there exists an integer Plexp® (4) :=

limy 00 v/cH (A).

Conjecture 6.10 was proved in [17, Theorem 3] in case H is a finite dimensional
semisimple Hopf algebra (this result was later generalized by Ya. Karasik [27] for the
case when A is a not necessarily finite dimensional PI-algebra) and in [18, Theorem 1]
for H-module algebras A such that the Jacobson radical J(A) is an H-submodule (the
requirement that A/J(A) is a direct sum of H -simple algebras is satisfied by [35, Theo-
rem 1.1], [36, Lemma 4.2]). In the case when J(A) is not an H -submodule, the conjecture
was proved only for Hopf algebras H that are iterated Ore extensions of finite dimensional
semisimple Hopf algebras [22, Corollary 7.4].

The notion of equivalence of module structures reduces drastically the number of cases
one has to consider in order to prove Conjecture 6.10.

Lemma 6.11. Let ¢;: Hy — Endp(A;) and & Hy — Endp (Ay) be equivalent module
structures on algebras Ay and A,. Then there exists an algebra isomorphism

F(X|Hy)/1d™ (A1) 5 F(X|H2)/1d"2(42)
that, for every n € N, restricts to an isomorphism

PnH 1 _ PnH 2

— .
P N1 4) PP n1dP2(4,)

In particular, ¢F' (Ay) = ¢[2(A,).

Proof. Let ¢: Ay = A, be an equivalence of H;- and H,-module structures and let
@:Endp (A1) = Endp(A>) be the corresponding isomorphism of algebras of linear oper-
ators. We have ¢(¢1(H1)) = {>(H>). Hence there exist F-linear maps &: H; — H, and
0: H, — H; (which are not necessary homomorphisms) such that the following diagram
commutes in both ways:

£
H —————H,

L)

Endr(A;) —— Endg (4s)
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Then
E(h)p(a) = p(ha) foreveryh € Hy anda € A, (6.6)

and
(p(@(h)a) = he(a) foreveryh € Hyanda € A;. 6.7)

Now we define the algebra homomorphisms
£ F(X|Hy) - F(X|H,) and 6:F(X|H,) — F(X|H,)
by
Exfyi=x" forhe Hi, keN and 0(x)):=x'" forhe H,, keN.
Equations (6.6) and (6.7) imply that
E(1a(41)) C1dH2(A4,) and  6(1dH2(A,)) € 1d71(4y).

Hence § and 6 induce homomorphisms &: F(X|H;)/1d¥1(4,) — F(X|H,)/1d2(4,)
and 0: F (X |H,)/1d"2(4,) — F(X|H;)/1d"1(A,). Note that (6.6) and (6.7) also imply
0(E(h))a = haforalla € Ay andh € Hy and £(6(h))a = ha foralla € Ay and h € H,.
Hence x" — x?E®) ¢ 1d1(4;) and x* — x§@®) ¢ 1d#2(A,). As a consequence,

08 =idp (x|m,) /0 4y ad §0 =idp iy m,) 102 (4,)

i.e., we get the desired isomorphism.
Comparing degrees of H -polynomials, we get

5( pH ) c pi é( pl ) c p

P n1af (4))) ~ P2 n1dM2(4,) PH2N1d"2(4,)) — PH N1dM (4y)

for every n € N. ]
Now we can prove Conjecture 6.10 for any unital Hopf algebra action on F[x]/(x?).

Theorem 6.12. Suppose F[x]/(x?) is a unital H-module algebra for some Hopf algebra
H over a field F of a characteristic 0. Denote by d the dimension of the maximal H -
invariant nilpotent ideal in F|[x]/(x?). Then there exist C;,C, > 0 and ry, 1, € R such
that

Cin" (2 —d)" < (F[x]/(x?)) < Con™ (2 —d)" (6.8)

foralln € N.
In particular, the analog of Amitsur’s conjecture holds for polynomial H -identities of

FIx]/(x?).

Proof. Lemma 6.11 implies that it is sufficient to prove (6.8) for module structures de-
scribed in Theorem 6.7. In the first two cases the Jacobson radical of F[x]/(x?), which
equals FXx, is H-invariant, i.e., d = 1 and (6.8) follows from [18, Theorem 1]. In the last
case F[x]/(x?) is an Hy-simple algebra (see [19,20]), i.e., d = 0 and (6.8) follows from
[22, Theorem 7.1, Corollary 7.4]. [
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