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Covering-monopole map and higher degree
in non-commutative geometry

Tsuyoshi Kato

Abstract. We analyze the monopole map over the universal covering space of a compact four-
manifold. We induce the property of local properness of the covering-monopole map under the
condition of closedness of the Atiyah—Hitchin—Singer (AHS) complex. In particular, we construct
a higher degree of the covering-monopole map when the linearized equation is isomorphic. This
induces a homomorphism between the K-groups of the group C *-algebra. We apply a non-linear
analysis on the covering space, which is related to L? cohomology. We also obtain various Sobolev
estimates on the covering spaces.

By applying the Singer conjecture on L? cohomology, we propose a conjecture of an aspherical
version of the —-mequality. This is satisfied for a large class of four-manifolds, including some
complex surfaces of general type.
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1. Introduction

There has been a significant development in gauge theory on the study of smooth struc-
tures in four dimensions. It is based on the construction of a moduli space that is given by
a set of solutions to some non-linear elliptic partial differential equations modulo gauge
symmetry. It has been revealed that these moduli spaces contain deep information on the
topology of the underlying four-manifolds [11, 15].
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In relation to the Seiberg—Witten (SW) theory, Bauer and Furuta introduced a new
invariant [4]. To explain this invariant, we use the analogy of the finite-dimensional case.
Formally speaking, the SW moduli space is given by the zero set of a map between config-
uration spaces that are Hilbert manifolds. If the moduli space is zero-dimensional, then, by
definition, its algebraic number is the SW invariant. It is fundamental in differential topol-
ogy that, in a case when a map is given between finite-dimensional compact manifolds,
such an algebraic number can be recovered from the degree of the map through K-theory.
See [1] for the topological K-theory. One may say that Bauer—Furuta (BF) theory can be
considered an infinite-dimensional version of this degree theory based on the concept of
finite-dimensional approximation.

In this paper, we develop a covering version of the degree theory and study the mono-
pole map over the universal covering space of a compact four-manifold. In particular, it
is crucial to induce properness of the map in order to apply the framework of algebraic
topology to the map.

Later, we explain the motivation of such a construction, but first, we state our main
theorem. Let X be the universal covering space of a compact, oriented smooth four-
manifold M.

Theorem 1.1. Suppose the Atiyah—Hitchin—Singer (AHS) complex has closed range over
the Sobolev spaces on X. Then, the covering-monopole map is locally strongly proper.

We can apply a framework of algebraic topology constructed in [26].
Corollary 1.2. Suppose the AHS complex has closed range as above. Assume, moreover,
the following conditions:
o the Dirac operator over X is invertible;
o the second L? cohomology of the AHS complex vanishes.

Then, the covering-monopole map gives a I"-equivariant x-homomorphism
m*:SC(H) - SCu(H")

between certain C *-algebras, where T := w1 (M) is the fundamental group of M.
In particular, the map induces a homomorphism on K -theory:

B K*(C*(T)) > K*(SCgz(H') x T).

We shall present some examples of four-manifolds whose covering spaces satisfy these
conditions with respect to their spin structures.

We first describe our motivation for introducing such a covering version of BF theory
from some historical perspectives. Classical surgery theory has revealed that the funda-
mental group significantly impacts the smooth structure on a manifold. In high dimen-
sions, a smooth structure is reduced to the algebraic topology of the group ring. Non-
commutative geometry created a new framework that unifies the Atiyah—Singer index
theorem with coefficients and surgery theory, passing through representation theory [7].
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This topic led to the significant development of analysis over the universal covering space.
Atiyah-Singer index theory has been extensively developed over non-compact manifolds.
The construction by Gromov and Lawson is fundamental and revealed a deep relation to
the non-existence of positive scalar curvature metrics [20].

The study of smooth structures is a core aspect of both fields of non-commutative
geometry and gauge theory (see [24]). In gauge theory, the tangent space of a moduli
space is given by the index bundle of the family of elliptic operators parametrized by the
moduli space. Thus, the Atiyah—Singer index theorem is the fundamental object as the
local model of the moduli theory. Hence, using Atiyah—Singer index theory, both fields
led to important developments in differential topology.

It would be quite natural to try to combine both theories by introducing a system-
atic tool to analyze a smooth structure on a four-manifold from the perspective of the
fundamental group, and to construct a gauge theory over non-compact four-manifolds
in the framework of non-commutative geometry. This paper is the first step in tack-
ling this project by using SW theory and BF theory. It aims to construct an infinite-
dimensional degree theory in non-commutative geometry. This would also provide moti-
vation to develop analysis of L? cohomology theory, which appears naturally in a non-
linear analysis over non-compact spaces.

For a better understanding of our construction, we describe its finite-dimensional ver-
sion. Let ¢ : R” — R” be a proper map. We denote the set of continuous functions
vanishing at infinity as Co(X). Later, we will also use C.(X) to denote the set of continu-
ous functions with compact support. It induces a K-theory map ¢. : Kx(R"?) — K« (R")
via the composition of functions f € Co(R") as f o ¢ € Co(R"). This gives the degree
map in a standard sense. If a discrete group I" acts on R” and ¢ is I'-equivariant, then the
following equivariant degree map is induced on the equivariant K-theory:

¢« KF(R™) := Ko (R" xT) — K. (R" xT).

If I acts on R” freely, then we have the induced map ¢ : K«(R"/T) — K.(R"/T)
over the classifying space. The homotopy class of ¢ : R?/T" — R"”/T is determined
by the induced group homomorphism ¢, : I' — I', where I' = 7;(R”/T"). Note that
a straightforward analogue of the degree in an infinite-dimensional case does not exist,
because the infinite-dimensional unitary group is contractible.

Higson, Kasparov, and Trout constructed a C *-algebra, which is a kind of an infinite-
dimensional Clifford algebra, and induced an infinite-dimensional version of Bott period-
icity between Hilbert spaces in K-theory [22]. In this paper, we combine the constructions
of the BF degree theory with Higson—Kasparov—Trout Bott periodicity and introduce the
K-theoretic degree of the covering-monopole map. Our main aim here is to construct
a covering-monopole operator that is given by an equivariant x-homomorphism between
two Clifford C *-algebras, which we call the higher degree of the covering-monopole map.
It induces a homomorphism between the equivariant K-groups.

To achieve this, we require some analytic conditions. The first is the closedness of the
AHS complex which consists of a part of the linearized operator of the covering-monopole
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map. This type of property has been studied deeply with respect to L2 cohomology theory,
and we can find plenty of instances of four-manifolds whose covering spaces satisfy such
a property [18]. In this paper, we construct the higher degree when the linearized map is
isomorphic. We also present examples of four-manifolds satisfying this type of property.
General cases will be considered in other papers. We also include some basic analysis
on the covering-monopole map over general four-manifolds. Note that we do not assume
isomorphism of the linearized map until Section 6.

1.1. Review of SW theory and BF theory

Let us recall the construction of the SW moduli space. Let M be an oriented closed four-
manifold equipped with a spin® structure, and let S* and L be the associated rank-2
Hermitian bundles and their determinant bundle, respectively. The Clifford multiplication
T*M x S* — ST induces a linear map p : A2 — Endc(S*) whose kernel is the sub-
bundle of anti-self-dual (ASD) 2-forms and the image is the sub-bundle of trace-free skew-
Hermitian endomorphisms.

The configuration space for the SW map consists of the set of U(1) connections over
L and sections of positive spinors. The map associates as

F(A,¢) = (Da(@), F*(4) — 0 (9)),

where F1(A) is the self-dual part of the curvature of A4, and A induces a connection over
the spinor bundles, which gives the associated Dirac operator. Then, o (¢) is given as the
trace-free endomorphism

Lo oo,
¢ ® "~ Slolid.
which is regarded as a self-dual 2-form on M via p.
The gauge group acts on the configuration space, which is the set of automorphisms
on the principal spin® bundle that cover the identity on the frame bundle. It is given by a
map from M to the center S' of Spin©(4).

The SW map F is equivariant with respect to the U(1) gauge group actions & (L), and
its moduli space is given by the total set of solutions divided by the gauge group action:

M(M) := {(A, ¢): F(A,¢) =0} /&(L).

Now recall a basic differential topology. Let M and N be two compact oriented man-
ifolds, both with dimension 7, and consider a smooth map f : M — N. There are two
ways to extract the degree of f. The first is to count the algebraic number of the inverse
image of a generic point of f. The second is to use the multiplication number of the
pull-back f*: H*"(N :Z) — H™(M : Z). In general, both numbers coincide and the
value is called the degree of f. Let us consider the case when the SW moduli space has
zero dimension and apply the two different interpretations of the degree to the SW map.
The SW invariant corresponds to the first way. The degree construction of the map by
the algebro-topological method is the basic idea of BF theory, which corresponds to the
second way.
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One of the key differences from the finite-dimensional case is that the spaces are
Sobolev spaces which are locally non-compact. Hence, more functional analytic ideas
are required. Let us recall a part of the construction of BF theory, which is based on a
rather abstract formalism of homotopy theory on infinite-dimensional spaces by Schwarz
[32]. Let H', H be two separable Hilbert spaces and let F = [ + ¢ : H' — H be a Fred-
holm map between them such that the linearized map / is Fredholm and its non-linear part
¢ is compact on each bounded set. More precisely, ¢ maps a bounded set to a relatively
compact subset in H . Then, the restrictions of F on “large” finite-dimensional linear sub-
spaces V' C H’ composed with the projections to the image of / become “asymptotically
proper” in some sense as follows:

proF:V'NB, -V =1V,

where B, C H’ is the open ball with radius r for sufficiently large r > 1. This gives a
well-defined element in the stable cohomotopy group from F'.

BF theory applies the above framework to the monopole map, which is a modified
version of the SW map, since the SW map is not proper. The monopole map p is defined
for the quadruplet (A4, ¢, a, f), where A is a spin® connection, ¢ is a positive spinor
(section of ST), and @ and f are a 1-form and a locally constant function, respectively.
Let Conn be the set of spin®-connections. Then,

p:Connx (I'(ST) @ Q' (M) ® H(M))
— Conmn x (T(ST) & QT (M) & Q°(M) ® H'(M)),
(A’ ¢’av f) = (Av DA+!1¢’ FA++a —0(¢),d*(a) + fvaha.rm)a

where aham 1s the harmonic projection of a. The map u is equivariant with respect to the
action by the gauge group & = map(M, T).

The subspace A + ker(d) C Conn is invariant under the free action of the based gauge
group &y C &, where the based gauge group consists of all automorphisms of the bundle
whose values are the identity at a base point. Its quotient is isomorphic to the space of
equivalent classes of flat connections Pic(M) = H'(M:R)/H"'(M:Z). Let us consider
the quotient spaces

A = (A +ker(d)) xg, (['(ST) & Q' (M) & H'(M)),
€ := (A +ker(d)) xg, (TS ® QT (M) ®Q° (M) ® H' (M)).

The monopole map descends to the fibered map
w:A—GC

over Pic(M). In general, a Hilbert bundle over a compact space admits trivialization such
that the bundle isomorphisms ¥ =~ H’ x Pic(M) and € =~ H x Pic(M) hold by Kuiper’s
theorem. Let us consider the composition with the projection

prop: A — H.

Let b (M) be the dimension of the space of self-dual harmonic 2-forms.
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Theorem 1.3 ([4]). Let M be a compact oriented smooth four-manifold. The monopole
map over M defines an element in the stable cohomotopy group.

IfFbT (M) = bY (M) + 1, then the group admits a natural homomorphism to the group
of integers, and the image of the element coincides with the SW invariant.

In this paper, we use the Clifford C *-algebras SC(H ). We now state a special case of
our construction.

Proposition 1.4. Let M be as above with b (M) = 0. Suppose the Fredholm index of |
is zero. Then, | induces a x-homomorphism:

w*: SC(H) — SC(H).
Moreover, the induced map
p*:K(SCH)) =Z — K(SC(H)) =Z

is given by multiplication by the SW invariant.

Our aim is to extend the construction of the *-homomorphism over the universal cov-
ering space of a compact oriented smooth four-manifold equivariantly with respect to the
fundamental group action.

1.2. Covering-monopole map

Let M be a compact oriented smooth Riemannian four-manifold, and let X = M be its
universal covering space equipped with the lift of the metric. We denote the fundamen-
tal group 71 (M) by T'. Let us fix a spin® structure on M. We assume that there exists
a solution (A, ¥o) to the SW equatlons over M. Then, we denote their respective lifts
by Ao, I/fo over X. Note that both AO and Wo cannot be in L? if they are non-zero. Fur-
thermore, we have to choose a solution as a base point. Otherwise, any solution over the
universal covering space cannot be in L2. At this moment, it is not necessary to require
(ir)reducibility of the base point.

In this paper, we shall introduce the covering-monopole map i = fi4,,y, at the base

(Ao, ¥o) given by
f:Lp(X:StT oA ®iR) - L7 (X:5™ & (AL @ A%) ®iR) @ Hy(X),

where H (12) (X) is the first L? cohomology group with respect to the induced metric.

In general, the de Rham differential does not have closed range between the Sobolev
spaces over a non-compact manifold. This leads to two different cases of L? cohomology
theory, reduced or unreduced ones. If the AHS complex has closed range over X, then
these L2 cohomology groups coincide and they are uniquely defined. Hereinafter, we
assume the closedness of the AHS complex over X.

Let

G+1(L) = exp (L7, (X;iR))
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be the Sobolev gauge group. It is well known that this space admits a structure of a Hilbert
manifold and is a group for the pointwise multiplication for k > 2 (see [30, p. 59]). Later
on, we always assume k > 2 (see Section 2.3).

With respect to the gauge group action, we verify that the covering-monopole map
admits the I"-equivariant global slice

f:Lp(X:St® A" ®iR) NKerd* — L;_(X: 5~ @ A7 ® iR) @ Hp)(X).

The linearized operator of the covering-monopole map over X is I'-equivariant at the base
point, and Atiyah’s I'-index coincides with

dimr dfi = ind D — yaus(M) — dimr Hj)(X) = ind D —dimr H (X),
where yans(M) = bo(M) — b1 (M) + b (M).
Remark 1.5. Let us consider the kernel of
d:Li (X:A' ®iR)—> Ly(X : A*>®iR)
as a closed linear subspace Kerd C LiH(X :A' ®iR) and set Ag = Ao + Kerd. A
covering version of the BF formalism is the &% 41(L) x I equivariant monopole map
fi:Agx LE(X:ST @ A’ ®iR)
— Ao x [L_(X:5” & (A @ A3) ®iR) @ Hpy(X)].
The quotient space by the gauge group is fibered over the first L2 cohomology group:
2 . Qo+ 1 . ~ 1 2 .o+ 1 .
Ao X@ (L) Ly (X ST O A ®IR) = Hp) (X) x L(X; ST @A ®iR)

and the latter space is similar. By projecting to the fiber, we obtain the & (L) x T
equivariant monopole map

i Hy(X)x LA(X: ST @ A'®iR) — L7_ (X; 5™ @& (A° @ A2) ®iR) @ Hy, (X).
The I'-index of the liberalized map is given by
dimrdji =ind D — yaus(M),

which is a topological invariant of the base manifold M . However, we encounter difficulty
in analyzing this space, because it is not proper whenever H, (12) (X) does not vanishes. We
will not use this version of the map in the remainder of this paper.

Let F =1+ c¢: H — H be a smooth map between Hilbert spaces, where [ is its
linear part. We set W = [(W') C H for a finite-dimensional linear subspace W’ C H'.
Consider pro F : W — W, which is the restriction of F' composed with the orthogonal
projection to W. Then, we obtain the induced homomorphism

(pro F)* : Co(W) — Co(W')



T. Kato 1002

if it is proper. The basic idea is to regard this as an approximation of the original map
F : H' — H.When F is Fredholm, such a finite-dimensional restriction works effectively
if we choose a sufficiently large dimension of W.

In our case of the covering-monopole map, we must construct an “induced map”
between function spaces over infinite-dimensional linear spaces, by using a family of
approximations as above. Our approach is to use the infinite-dimensional Clifford C *-
algebras SC(H) [22], which are defined through a kind of limit of Co (W, CI(W)) over all
finite-dimensional linear subspaces W C H . To induce a x-homomorphism from SC(H),
we construct another C *-algebra SCr (H’). In the case of the monopole map over a com-
pact four-manifold, F* : SC(H) — SC(H’) is really constructed and S€ ¢ (H') is given
by the image F*(SC(H)).

Throughout this paper, a compact subset of a manifold refers to a compact submanifold
of codimension zero possibly with a smooth boundary. Let E — X be a vector bundle
and H' := Li(X ; E) the Sobolev space with the open r-ball denoted by B, C H'. For
a compact subset K € X, let L,zc(K; E)o be the closure of CX°(K; E) by the Sobolev
Li norm, where the latter is the set of smooth functions whose supports lie in the interior
of K.

Definition 1.1. Let F : H' — H be a smooth map between Hilbert spaces. It is strongly
proper if

(1) the preimage of a bounded set is contained in some bounded set, and
(2) the restriction of F' on any ball B, is proper.

Suppose the Hilbert spaces consist of Sobolev spaces over X. Then, the map F is
locally strongly proper if it is strongly proper over the restriction on Li (K; E) for any
compact subset K € X.

An important case of strongly proper map is given by the monopole map between
Sobolev spaces over a closed four-manifold. In our case, these two properties hold locally
since the base space is non-compact.

Let

F=l+c:H =L;(X;E)—>H:=L; (X:E)

be a ['-equivariant locally strongly proper map, where [/ is a first-order elliptic differential
operator and c is pointwise and locally compact on each bounded set (see Section 5.3.1).

In variation (B) below Definition 5.1, we introduce adaptedness for some finite-dimen-
sional approximation of a Sobolev space, which is a kind of compatibility condition with
respect to an exhaustion of X by compact subsets.

In the case when I" acts on X, we will introduce a weakly finite I"-approximation in
variation (A), which requires that the intersection of a weakly finite approximation with
its I'-translation also approximates the Sobolev space.

Proposition 1.6. Suppose [ is isomorphic. Then, there is an adapted family of finite-
dimensional linear subspaces {W/'}; which finitely I"-approximates F .
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This is verified in Corollary 6.7, and it follows from Proposition 6.12 that F' induces
a I'-equivariant *-homomorphism:

F*:SG(H) — SCr(H').

By applying the infinite-dimensional Bott periodicity by [22], F* induces a homomor-
phism on the K-theory of the full group C *-algebra:

F* 1 K(C*(I')) - K(SCr(H') xT).

This is a general framework. We obtain Corollary 1.2 by applying Proposition 1.6 to
Theorem 1.1.

Remark 1.7. (1) Asymptotic morphism is a notion between C *-algebras that is weaker
than the usual x-homomorphism [8], but still induces a homomorphism in K-theory. One
might expect that there is a way to construct a I"-equivariant asymptotic morphism t*
from SC(H) to SC(H’) over some classes of covering-monopole maps.

(2) So far, we have assumed the condition that the linearized operator gives an isomor-
phism. In general, non-zero kernel or co-kernel subspaces are both infinite-dimensional if
the fundamental group is infinite. To eliminate this condition, we must use some method
to stabilize these infinite-dimensional spaces, such as Kasparov’s K K -theory for a general
construction.

1.3. Higher %’ conjecture

Furuta verified the following constraint on the topology of smooth four-manifolds [16]. In
fact, a stronger estimate h%(M) > % |o(M)| + 2 is given there.

Theorem 1.8. Let M be a compact smooth spin four-manifold. Then, the inequality
10
bA(M) = [0 ()]

holds, where (M) is the signature of M.

The proof uses the type of finite-dimensional approximation described here, with
representation-theoretic observation over the H and R as Pin, modules. More specifi-
cally, the monopole map is reduced to a G := Piny-equivariant map u' : V' — V between
finite-dimensional Pin, modules V' and V. Then, the induced map on the equivariant
K-theory is computed as multiplication by the degree of the monopole map:

o= 2b+(M)+%_1(1 —c),

where ¢ is a part of a generating set of the representation ring R(G). Then, the above

. . Ce . M .
inequality follows from the positivity that b* (M) + % — 1 > 0 with some elementary

observation. Thus, computation of the induced map is a core part of the induction of the
inequality.
We propose a higher version of the %-inequality.
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Conjecture 1.9. Suppose M is a compact aspherical smooth spin four-manifold. Then,
the inequality

10
x(M) > g{U(M”
holds, where y(M) is the Euler characteristic of M.

Strategy. (1) We propose the covering version of the inequality. Let X = M be the uni-
versal covering space. Then, the covering %-inequality

10 10
bE(X) = —lor(X)] = < [o(M)]

holds, where b% (X) is the second L? Betti number and

or(X) = dimr Hg,(X) — dimr Hg)(X)

is the I"-signature, which is equal to the signature of M by Atiyah’s I'-index theorem.
(2) The Singer conjecture states that if M is aspherical of even dimension 2m, then
the L2 Betti numbers vanish except the middle dimension

LX)=0, i#m.

The Singer conjecture is known to be true for Kihler hyperbolic manifolds according to
Gromov [18]. This is a stronger version of the Hopf conjecture, which states that, under
the same conditions, the non-negativity

(=D"x(M) =0

holds. The Hopf conjecture is true for four-dimensional hyperbolic manifolds according
to Chern [6]. This supports the Singer conjecture in four-dimensions.

Suppose the Singer conjecture is true for an aspherical four-manifold M. Then, we
have the equalities

x(M) = yr(X) = bR(X) — bp(X) + bE(X) — bR(X) + bE(X) = bE(X).

(3) We have the inequality in Conjecture 1.9 if we combine (1) and (2) above. To verify
(1), we compute the “degree” of the covering-monopole map.

Let us check that, in the case of non-positive signature values, the above inequality
x(M) > % |o(M)| follows from another inequality,

tans(M) > —%o(M),

where yaus(M) = b®(M) — b (M) + b (M). Assume that o (M) < 0 is non-positive.
Then, the equalities

10
x(M) + §U(M)

=b°(M) —b (M) +b2(M) —b>(M) +b*(M) +b +—b~ (M) + %G(M)
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=2(b°(M) —b" (M) + bH(M)) + %O'(M)
= 2ans(M) + 3o (M)

hold, according to the Poincaré duality.

1.3.1. Concrete cases. So far, we have obtained various affirmative estimates that sup-
port the conjecture.

Lemma 1.10. (1) If M is an ashperical surface bundle, then the inequality y(M) >
2|o (M) holds [28].

(2) Suppose the intersection form of M is even, and its fundamental group is amenable
or realized by 11 of a closed hyperbolic manifold of dim > 3. Then, the inequality y(M) >
Lo (M)| holds [5].

In (1), one can replace 2 with 3 if, moreover, M admits a complex structure. The proof
is rather different from our approach. Note that M is aspherical if both the base and the
fiber surfaces have their genus values > 1.

Example 1.11. Atiyah constructed complex algebraic surfaces Z, with non-zero signa-
tures [2]. They admit the structure of fiber bundles whose base and fiber spaces are both
Riemann surfaces of genus > 3 and, hence, they are aspherical. It is well known that the
total space of a fiber bundle is aspherical if the base and the fiber spaces are both aspheri-
cal. One can check this by using the standard homotopy exact sequence of the fibration.

Their signatures and Euler characteristics are, respectively, given by o(Zg) =
(g — 1228t and y(Zg) = (g — 1)22612(2g + 1). Then, surely the inequality

1
1(Zg) =208 + DJo(Z)| > 5 lo(Zy)|
holds.

For (2), Bohr developed a very interesting argument that replies on some group-
theoretic properties. In Bohr’s case, M is not necessarily assumed to be aspherical.

Lemma 1.12. Suppose M is a complex surface of general type with cf > 0. Then, the
inequality y(M) > 12|o(M)| holds.

The condition of c% > 0 holds if it is minimal, otherwise cf = 3¢, holds (see [3]). The
latter case is given by the unit ball in C? divided by a discrete group action by Yau.

Proof. Recall the formulas o (M) = %(cf — 2¢;) with y(M) = ¢;(M). Moreover, posi-
tivity ¢, > 0 holds.
We consider two cases and suppose ¢ > 0 holds. Then, the strict inequality

101

10 10 10
—loM)| = —=(c} —2¢) < —co = —x(M
8|0( )| 83(01 C2)_2462 24)(( )

holds according to the Miyaoka—Yau inequality ¢ < 3c».
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Suppose (M) < 0 holds. Then,

101

_| (M)| = ——(262—61) < £62 = —X( )

holds by non-negativity of the Chern number. ]

Proposition 1.13. The covering %-inequality
10
bR(X) = = [o(M))|

holds for spin four-manifolds with a residually finite fundamental group.

Proof. LetT" D Ty D I', D --- be the tower by normal subgroups of finite indices with
(; Ti = 1. Let M; be T'/T; spin coverings of M with 1 (M;) =T and let X = M be
the universal covering of M with 7y (M) = T.

Note that any covering space of a spin manifold is also spin. By Furuta, the inequalities
hold:

10
ba(M;) > g{U(Mi)} +2.
Denote m; = |I"/ I';| and divide both sides by m; as

ba(Mi) _
m; - 8

Olo(M)| 2

mi mi

First, the equality Z--* "(M’)

covering. It follows that

= 0(M) holds because the signature is multiplicative under finite

. ba(M;
lim :

: i

b7(X)

converges to the L?2-Betti number (see [29, Theorem 13.49]). Then, the conclusion holds
because m% — 0. (The argument was suggested by Yosuke Kubota.) ]

It is believed that most word hyperbolic groups are residually finite. For example, the
fundamental groups of hyperbolic manifolds are residually finite.

Corollary 1.14. Suppose a four-manifold M is aspherical and spin. Moreover, assume
that 7wy (M) is residually finite and Kdihler-hyperbolic.
Then, the aspherical % conjecture holds.

Example 1.15. (1) A Kihler manifold is Kéhler hyperbolic if it is homotopy equivalent
to a manifold which admits a metric of negative curvature.

A Kihler manifold M is Kihler hyperbolic if 7w (M) is word-hyperbolic and 77, (M) =
0 holds. In particular, an aspherical Kihler manifold M is Kéhler hyperbolic if 71 (M) is
word-hyperbolic [18] (see also [29]).

(2) An irreducible symmetric Hermitian space of non-compact type G/K is Kihler
hyperbolic, where G is a connected non-compact simple adjoint Lie group and K is a
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maximal connected and compact Lie subgroup of G with the center S! [34]. A complex
manifold is Kéhler hyperbolic if it is biholomorphic to a bounded symmetric domain in
the complex plane [18].

(3) The product space of two Kihler hyperbolic manifolds is also Kihler hyperbolic.

In particular, a compact manifold is Kihler hyperbolic if its universal covering space
is a symmetric Hermitian space of non-compact type. In fact, it is a product of irreducible
symmetric Hermitian spaces of non-compact type.

(4) A finitely generated linear group I is residually finite. Let G/K be the case of
(2). If M := T'\G/K is a compact Kihler manifold, then M or product spaces of M are
all Kéhler hyperbolic such that 71 (M) is residually finite, where I' C G is a co-compact
discrete subgroup.

One of the approaches to attack the aspherical %-inequality is to seek for spin four-
manifolds with two conditions of Kihler hyperbolicity and residual finiteness of the fun-
damental group. The aspherical %—inequality has been verified for such a class based on
using a family of normal coverings of finite index. Our ultimate goal to is to eliminate the
second condition of residual finiteness and to present a more straight method by develop-

ing the analysis on the universal covering spaces of compact spin four-manifolds.

Remark 1.16. It is known that an oriented and definite four-manifold must have a diag-
onal and, hence, odd-type intersection form [9, 10] (see also [4]). An aspherical four-
manifold with a definite form is not expected to satisfy the inequality in Conjecture 1.9 if
it exists. In fact, in that case, the inequality is given by

10
20 =by) + by > gbz,

which is equivalent to 8(1 — b;) > b, > 0. Then, we have a contradiction to the above
inequality if 5y > 1 holds. Thus, the b; = 1 (and hence b, = 0) and b; = 0 cases might
survive. Both cases seem rare for aspherical four-manifolds.

2. Monopole map

In Section 2, we briefly review the SW and BF theories over compact four-manifolds.
Then, we extend their constructions over universal covering spaces of compact four-
manifolds. The L? cohomology of their fundamental groups plays an important role in
their extensions.

The setting of Sobolev spaces over the covering space X is explained in Section 3.

2.1. Clifford algebras

Let V be a real four-dimensional Euclidean space and consider the Z,-graded Clifford
algebra CI(V) = Clo(V) & Cl1 (V).
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Let S be the unique complex four-dimensional irreducible representation of CI1(V').
The complex involution is defined by

wC = —e€1€2€3€4,

where {e; }; is any orthonormal basis. The involution decomposes S into its eigen bundles
as S = ST @ S~ and induces the eigenspace decomposition

Clo(V) ® C = (Clo(V) @ C) " @ (Clo(V) © C)~ @.1)
via left multiplication. It turns out that the following isomorphisms hold:
(Clp(V) ® C)* = Endc(S%).

Passing through the vector space isomorphism Clo(V) == A° & A? @ A4, the first com-
ponent of the right-hand side of (2.1) corresponds as

1 4+ oc
2

(Cl(V)®C)" gc( )@(Ai(V)@(C),
where the self-dual form corresponds to the trace-free part. Then, for any vector v € S,
v ® v* € End(S™) can be regarded as an element of a self-dual 2-form:

v|?. 2 .
de A2(V)®QiR,

. * 1V
o(v):=v®v 21

if its trace part is extracted.

2.2. Sobolev spaces

In this subsection, we include some basic materials on Sobolev spaces over a complete
Riemannian manifold. Let (X; g) be an n-dimensional complete Riemannian manifold
of bounded geometry in the sense that the injectivity radius is uniformly positive at any
point, and the C*¥-norm of the curvature is uniformly bounded at any point for any k > 0.
Then, (X; g) admits a uniform local chart ¢, : D — X with ¢(0) = x, where D C R”"
is the unit disk. A family of smooth functions {a;}; on D is called uniformly bounded if
they admit uniformly bounded C¥-norms:

sup llaillcr(py < o0
1

for any k > 0.
Let E be a Euclidean vector bundle on X and take a connection Ag on E. One may
assume that there is a trivialization

Vx : Elgx(D) = ¢x(D) x R™
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for each x € X. One may further assume that x preserves their metrics, when we equip
with the standard inner product on R™. Then, we can obtain ¥ : E|px(D) = D x R™
via ¢, . By pulling back Ag on S by using ¢y, it can be expressed as

90;(140) =d +ay,

where a is a matrix-valued 1-form on D. One can choose A such that the family {ax}xex
is uniformly bounded as above. We call such a connection also uniformly bounded. Let
xi be a partition of unity subordinate to a covering B; := ¢, (D) C X for some x; € X.
Then, we write

Vao(8) = Y97 (d (Vi (x:i9))).

where V; := ¥y, . Note that d(¥; (x;s)) € QL(D,R™).

There are many other connections that are uniformly bounded. In fact, for any uni-
formly bounded element a € Q'(X, End E), the sum A4 := Ay + a is also uniformly
bounded, where End £ := P Xo() o(n) and P is the frame bundle.

The Levi—Civita connection induces a connection V on the tensor power ®2!(X).
Then, the pair (V4,, V) gives a connection on Q*(X, End E), which we also denote by
V4,- One can operate V4, successively on a section s € Q°(X, End E) and then obtain

Vi, (s) € Q' (X.End E).

Definition 2.1. The Sobolev space of E is given by completion of Q(X, End E) by the
norm

k
51172 =D V4, (9)*(x) vol .
i=0

One can verify straightforwardly that the equivalent class of the norms is independent
of the choice of Ay and g in the sense that, for two choices of such pairs, the corresponding
Sobolev norms || ||’, || || are equivalent as

-1
= <ellf

for some constant ¢ > 0. The equivalent class of the norm is independent if we use any
uniformly bounded elliptic operators instead of a uniformly bounded connection, where
the former means that the coefficients of the differential operator are uniformly bounded.

2.3. Monopole map over compact four-manifolds

Let M be an oriented compact Riemannian four-manifold equipped with a spin® structure.
Let ST and L be the Hermitian rank-2 bundles and the determinant bundle, respectively.

Let Ag be a smooth U(1) connection on L. With a Riemannian metric on M, Ag
induces a spin® connection and the associated Dirac operator D4, on S + We set a large
k > 2 and consider the configuration space

D={(Ado+a.y):ae Ly(M:A' ®iR), ¢ € L;(M;ST)}.
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Then, we have the SW map
F:®—L; (M;S”®A% ®iR)
(Ao +a.¥) = (Dagra(¥). Ef 1o — o ().

Note that the space of connections is independent of the choice of Ay as long as M is
compact.

There is symmetry & := L (M;S"), that acts on D by the group of based auto-
morphisms with the identity at x* € M on the spin bundle. The action of the gauge group
g on the spinors is the standard one and on 1-form is given by

ara+ g ldg.

It is trivial for both 0 and self-dual 2-forms.
It follows that F' is equivariant with respect to the gauge group action and, hence, the
gauge group acts on the zero set

M = {(Ado+a,¥) € D: F(Ag +a,y) = 0)}.
Moreover, the quotient space B := D /&, is Hausdorff.
Definition 2.2. The based SW moduli space is given by the quotient space
Mm=M/G,.

Any connection Ag + a with a € Li(M : A' ® iR) can be assumed to satisfy
Ker d*(a) = 0 after gauge transform. Such a gauge group element is unique, since it
is based. Therefore, locally constant functions cannot appear. The slice map is given by
the restriction

SW :L}(M;S1) @ (Ao + Kerd*) — Li_(M;S™ & A% ®iR)
whose zero set consists of the based moduli space equipped with a natural S action,
M/G = SWL0) C (Ao + Kerd*) & L2(M;SH).

We now list some of the remarkable properties of the SW moduli space.

(1) The infinitesimal model of the moduli space is given by the elliptic complex

0—L; (M;iR) > Ly(M;A'@iRe& ST)
> Li_(M:AL ®iR®S™) — 0,

where the first map is given by a — (2da, —ar) and the second is given by
dt —Do(¥)

1
— D
21/f A
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at (A, ¥), where Do () is the differential of o at v. Thus, the formal dimension
is given by
indSW = —yans +1ind Dy,,

where the right-hand side is the sum of the negative Euler characteristic of the
AHS complex and the index of the Dirac operator.

(2) The moduli space consists of only the trivial solution when M admits a positive
scalar curvature.

(3) The moduli space is always compact or empty.
(4) A part of the linearized map
0—>Li (M)— Ly(M:A") > L;_(M:A%) -0
is called the AHS complex. Let us compute the first cohomology group.
Lemma 2.1. Let M be a closed four-manifold. The first cohomology of the AHS complex
HY(M) =Kerd " /imd
is isomorphic to the 1st de Rham cohomology.

Proof. There is a canonical linear map Hj,(M) — H'(M).
Suppose d T (a) = 0 holds. We verify that d(a) = 0 also holds. By the Stokes’ theorem,
we have the equalities

0=/j‘ud(a)/\d(a)=/Md“'(a)/\d“L(a)+/Md_(a)/\d_(a)
_ _ SN =2
_/Md (@) A d~(@) = —|d~@)]2..

Therefore, the inverse linear map H'(M) — H; (M) exists. ]
The monopole map is given by
p:Conn x [[(SH) & Q'(M) ®iR & H(M;iR)]
— Comn x [T(ST) @ (QT (M) ® Q°(M)) ® iR & H'(M:iR)]
(A, ¢.a, f) = (A, Datat, Fyyy —0(¢).d™ (@) + f. anam),

where Conn is the space of spin®-connections and p is equivariant with respect to the
gauge group action. The subspace A + ker(d) C Conn is invariant under the free action
of the based gauge group, and its quotient is isomorphic to the isomorphism classes of the
flat bundles

Pic(M) = H'(M:R)/H (M ;Z).

Now, we define the quotient spaces
A := (A +ker(d)) xg, [T(SH B Q' (M)® iR H'(M;iR)],
€ := (A +ker(d)) xg, [T(ST) @ (T (M) @ Q°(M)) ® iR & H'(M:iR)].
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Then, the monopole map descends to the fibered map

over Pic(M). For a fixed k, consider the fiberwise Li Sobolev completion and denote
it as . Similarly, we define Cx_1. Then, the monopole map extends to a smooth map
A — Cr_q1 over Pic(M). It is a well-known fact that a Hilbert bundle over a com-
pact space admits trivialization, which follows from a fact that the unitary group of an
infinite-dimensional separable Hilbert space is contractible. Given a trivialization €;_; =
Pic(M) x Hy_, one gets that the monopole map can be obtained by composition with
the projection
w:Wg = €y =Pic(M) x Hy_1 — Hy_q.

There is a finite-dimensional reduction of a strongly proper map in our sense, which
allows us to define degree. BF theory verifies that the monopole map w : Ax — Hi_y
is strongly proper when the underlying four-manifold is compact. Thus, we can define a
degree as an element in the S' equivariant stable co-homotopy group. There is a natural
homomorphism from the S! equivariant stably co-homotopy group to integer. The image
of the degree coincides with the SW invariant if b* > b + 1 holds [4].

2.4. SW map on the universal covering space

Let (M, g) be a smooth and closed Riemannian four-manifold equipped with a spin®
structure. Denote its universal covering space and fundamental group by X = M and
I' = 71 (M), respectively. We equip with the lift of the metric on X. The spinor bundle
S =St @S over M isalso lifted as S = St & S~ over X, which are all I'-invariant.

Later on, we will assume that a universal covering space X is non-compact (and hence
its fundamental group is infinite).

Remark 2.2. Among various classes of non-compact manifolds, gauge theory has been
intensively developed over cylindrical four-manifolds. For cylindrical four-manifolds, a
standard analytical approach has been established, which works both for SW theory and
Yang-Mills theory (for example, [33]). A striking analytic property of gauge theory over a
cylindrical four-manifold is the exponential decay phenomenon for solutions under a mild
condition on the slice three-manifold. It follows from this property that the L2 norm of its
curvature is integral in the case of an instanton. On the other hand, for more general classes
of non-compact four-manifolds such as the hyperbolic four-plane, it is not so difficult to
have an instanton whose L2 norm of the curvature takes a non-integral value. As a result,
it cannot satisfy the exponential decay estimate. It seems impossible to obtain a gauge
theoretic method of analysis that can work for a general class of complete Riemannian
non-compact four-manifolds.

Recall Sobolev spaces in Section 2.2. Let us fix a connection over M and lift it on X
such that it is I'-invariant. It is uniformly bounded on X in the sense defined in Section 2.2,
so it can be used with the lifted metric to introduce Sobolev spaces L,zc (X). Their norms
are also I'-invariant. For a Euclidean bundle E — M, we consider its lift E > X. Then,
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we obtain the Sobolev spaces Li (X, E) with the coefficient. These are also equipped with
I"-invariant metrics. Later on, we assume this property.

Let Ao be a spin® connection over M, and let (Ag, ¥o) be a smooth solution to the
SW equations such that the following equalities hold:

{ D, (o) = 0,
FAJ(F] —a(yYo) =0.

Later on, we will assume that there exists a solution (Ag, ¥¢) over M as above. This is, of
course, a non-trivial condition.
Let us denote its lift by (Ao, ¥o) over X and put

Dy 5.(.a) =Dz (Fo+ ) — Dz (%) =a(o+ )+ Dz (V).
o (0. V) := (Yo + V) — o (Vo)
Lemma 2.3. For k > 1, they extend to the continuous maps
Dy g Li((X.2): ST @A ®iR) > L} ((X.2):57),
o(Wo. )t LE((X.£):8%) - L2_ (X, 2): A% ®iR).
If k > 3, then the second map defines the continuous map
o(Yo. ) : Lp((X.9):57) — LF((X.2): A} ®iR).
Proof. Note the equality
o(Wo.¥) = Vo @Y + ¥ @ Y5 — (Yo ¥)id + o (¥).

Since Y9 € C®(M; S™) is smooth, there is a constant C such that the following estimates
hold:

lo@o. w2, = ClWlez , + o] -
Let us consider the last term. Note the estimate
V'@ @ ¥)] 12 = |Zarp=1 V@) @ VW) | 12 < Basp=t | VW) @ V@) 12

with [ < k — 1. It follows from Lemma 3.2 (1) below that

[V¥@) @ VP W) [2x) = Srer [ V¥ & VPG 12,010

Syer [V a6 VP ) a0
< CZyer| V“(l//)”i%(y(m) |V (W*)”i%(y(m)
= ClV Nz xy,

IA

where K C X is a fundamental domain of the covering.
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In particular, we obtain the estimate | ()]l 2 = C ||1p||i2 and, hence, we obtain
the estimate ¢

lo@o. )z, = CUWli, +1WIE,).

This implies that oV, ) is continuous from LitoL; .
The estimate for D 7. 7o is obtained in the same way.

Now, suppose k > 3 and consider V¥ () ® VA (y*) with o + 8 = [ < k. Suppose
both @ and f are less than or equal to k — 1. Then, by the same argument as above, the
L? norm is bounded by C ||w||22(X). Next, suppose & = k > 3 and hence 8 = 0. Then,

k

there is a constant C with ||/ || co¢y (k) < C ¥ ”Li(V(K)) by Lemma 3.2 (2) below. So we
obtain the estimates

k 2 k 2
[VEW) @ v || 2y = Syer [ VEW) @ V7| 2k
Zyerlll/fﬂii(y(m)||W*||2c0(y(1<))
2 *12 4
= CIVILz oy IV Iz gy = CIV Iz .

IA

Later, we will choose a large k > 1, unless otherwise stated.
Definition 2.3. The covering-SW map at the base (Ao, ¥o) is given by
Frg0 Li((X.2:ST @ A' ®iR) > L;_,((X,2):5~ & AL ®iR)
W.a) = (D 1., (Do +¥). FL . —o(o+)) =(D g, 5,(¥.a).d ¥ (@)~0 (o ).

The fundamental group I" acts equivariantly on the covering-SW map.
The gauge group &1 over the spin® bundle is defined by

Grt1 = exp (Li,, (X:iR)),

which is based at infinity, and admits the structure of a Hilbert commutative Lie group for
k > 3 (see Corollary 3.3 (a) below). The action is given by

(A, 9) > ((detg)*(4). g7 ¥)

for g € &4 1. Note the equality deto = o2 foro : X — S! C C. These two groups are
combined into &% q x I, and the covering-SW map is equivariant with respect to this
new group. Here, the homomorphism I' — Aut(&} 4 1) is given by the pull-back via deck
transformations.

Lemma 2.4. The gauge group acts equivariantly on the covering-SW map at the base

(Ao, Yo).

Proof. We must verify that a gauge-transformed connection has to be in Ay + Li. Let
g =exp(f) with f € L12c+1 (X;iR). Then, the conclusion follows from the equality

(det £)*(Ao) — Ap = 2df € LE(X;A' ® iR). .
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2.4.1. Reducible case. The covering-SW map becomes simpler if we use a reducible
solution (Ay, 0) as the base, in which case A satisfies the ASD equation F A"('] = 0. Then,
the map is given by

Fz, L3((X.2):ST @ A' ®iR) - L?_((X.2):5~ & A2 ®iR)
W.a) > (D400 d (@) — o ().

Note that the moduli space of U(1) ASD connections consists of the space of harmonic
ASD 2-forms on M whose cohomology class coincides with the first Chern class of the
U(1) bundle.

2.4.2. Equivariant gauge fixing. Let us say that AHS complex is closed if the differen-
tials
0—> Ly (X)—> Li(X:AY) > L _[(X;:A3) =0

have closed range (see [23]).

Lemma 2.5. Suppose the AHS complex is closed. Then, the first cohomology group
HY(X) = Kerd™/imd is isomorphic to the L? first de Rham cohomology.

Proof. This follows by the same argument as Lemma 2.1. ]

Remark 2.6. Later, we see several classes of universal covering spaces whose AHS com-
plexes are closed. In many cases, this property depends only on the large-scale analytic
property of their fundamental groups.

Suppose the AHS complex is closed and consider the space of L? harmonic one-forms:
S' =Ker[d*®d™ : LF((X.g): A' ®iR) — L;_,((X.g);: (A’ ® AL) ® iR)].

Forany a € Li ((X,g): A' ® iR), consider the orthogonal decompositiona = a; @ a, €
Sle (551)J-. We denote a; by dham € Sl
Let us state the equivariant gauge fixing.

Proposition 2.7. Suppose the AHS complex is closed. Then, there is a global and T"-equi-
variant gauge fixing such that the covering-SW map is restricted to the slice

F~

150t LAXSH @ LAX: AT ®@iR) NKerd* — L_((X.2): 5~ @ A2 ®iR).

More strongly, the following holds. For any A = Ay + a witha € L,Zc (X; A ®iR),
there is 0 € G4 such that (deto)*(A) := Ao + a’ satisfies the equality d*(a’) = 0 with
the estimate

||a/||L,§(X) < C(|d*(a) ”Li_l(x) + llanamll)

for some constant C independent of Ay.

Compare this with [30, Lemma 5.3.1].
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Proof. We have divided the proof into three steps.

Step 1. Take two elements A := Ay + a and A’ := Ay + @’ withd*a = d*a’ = 0. Suppose
A" = (deto)*(A) could hold for some o = exp(f) € & 1. Then, the equality

a =a+2df
should hold. Applying d* on both sides, we obtain d *df = 0. Then,
0= (d*df, )2 = lldf |IZ-.

which gives df = 0 and the equality A = A’. Moreover, f = 0 holds, because X is
non-compact.
This implies that the quotient map

L2(X;8T) @ L2(X; A'®iR) NKerd* — L2(X;§T) @ L2(X; A ® iR) /G yy
is injective.
Step 2. Note that when one finds such a constant for some Ay, then it holds for any choice
of the base, since the SW moduli space is compact over the base compact manifold M

(see Section 2.3).
It follows from the assumption that there is a bounded linear map

ATV d*(Ly(X A ®iR)) —> L (X:iR)
that inverts the Laplacian. Let us set
S0 = —%A‘l(d*(a)) € Li,(X:iR)
and 09 = exp(so) € &y1. Fora’ = a + 204 'dog, we have
det(og)*A = Ag + d’
with the equality d*(a”) = 0.
Step 3. Let us consider
d*@dt  Ly(X;A'®iR) —» L (X;A°® A%) ®iR.

Its kernel is the space of harmonic 1-forms. We decompose a’ = h + b, where h = ay . is
the harmonic form and b lies in the orthogonal subspace. Then, it follows from closedness
that there is a bound

s = @@y, + Ol ) =l o),
Moreover, d T (b) = F — F;T: = d*(a’) holds. Thus, we obtain
”a/”ii < C(|d* () ||L]zH + ahamll)-

Since both the equalities d*(a’) = d*(a) and af,,, = aham hold, this concludes the
proof. ]
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2.4.3. Covering-SW moduli space. Let us consider the closed subset
M(Ao, o) := F7'5 (0) C LE(X: ST @ L2(X;A' ® iR) NKerd*.

It is non-empty since [(0, 0)] is an element in it. If F .7, as a regular value at 0 such
that its differential is surjective on M (Ag, ¥p), then it is a regular manifold equipped with
the induced I" action. Its I'-dimension is equal to

ind D4, — xaHs»

where ind Dy, is the index of D4, and yans is the AHS-Euler characteristic on M.

Note that if an element g € T' is infinite cyclic, then the g-action is free except at the
origin [(0, 0)].

Choose any x, y € FAIOI’% (0) and consider its differential

d(Fg, 5% LE(X:S) @ LE(X: A" ®iR) NKerd* — L, ((X.£): 5~ @ A% ®iR).
We denote d(F 50,1/70) x by d F for brevity.
Lemma 2.8. (1) For x = (, a), the following formula holds:
dFy(c.§) = (Dg, o) +cWo+v¥).dT(c) = (Yo + ¥) ®E —£® (Yo + ¥)*).
(2) Let k > 3. The difference d Fx — dF, is compact.
Proof. We have

d ~ ~
de(C, E) = E(D,IO_H;_HC(WO + W + [S)v d+(a + [C) - U(WO» W + ts))t:()
= (Dgy1a® +cWo +¥).d7 () = o+ V) ®E —£® (Jo + ¥)7).
Let x = (Y,a) and y = (b, ¢). Their difference is given by

(dFx —dFy)(c.§) = ((a =D +c(¥y —¢).~(V =) ®E" £ (¥ —¢)").

Since all a, b, c, ¢, ¥, £ € L2, their products all lie in L,zC by Corollary 3.3. If a, b, ¥, ¢
all have compact support, then compactness follows from the Sobolev multiplication with
Rellich’s lemma. In general, they can be approximated by compactly supported smooth
functions as the space of compact operators is a closed set in the space of bounded opera-
tors. Hence, the difference is still compact. [

2.5. Covering-monopole map

Let M be a compact oriented four-manifold equipped with a spin® structure, and let X =

M be its universal covering space with 7y (M) = I'. Let H (12) (X)(H (12) (X)) be the first

(reduced) L? cohomology group. The L? cohomology groups coincide with each other,

that is, H (*2) (X)=H (*2) (X) when the AHS complex is closed.

Let (Ao, Vo) be a solution to the SW equations over M and denote its lift by (Ao, Vo)
over X.
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Definition 2.4. The covering-monopole map at the base (Ag, ¥o) is the & 41 x I equiv-
ariant map given by

L ((X.9:ST@A ®iR) > Li_((X.2):5 @& (AT ® A°) ®iR) & Hb)(X)
(¢.a) = (Fz, 5, (¢.a).d"(a), [d]),
where [ ] is the orthogonal projection to the reduced cohomology group.

Remark 2.9. Even if the first de Rham cohomology group H‘} g(X;R) = 0 vanishes, the
first reduced cohomology group may survive. For an element in the latter cohomology,
there associates a “gauge-group action” that can eliminate it. Clearly such an action does
not lie in the L? Sobolev space. Its behavior at infinity appears complicated such that they
will “move” quite “slowly” at infinity.

Suppose the AHS complex is closed. Then, the covering-monopole map restricts on
the slice

fiiL2((X,g:ST) @ L2((X,g):A' ®iR) NKerd*
— L} ((X.9):5” @ A3 ®iR) & Hy(X)
(¢.a) > (Fy, 5.(¢.).[a))
which is a I"-equivariant map (see Proposition 2.7).
Lemma 2.10. The I'-index of the linearized map is given by
dimr dfi = ind D — (bo(M) — by(M) + by (M)) — dimr H(X)
= ind D —dimr H; (X),
where ind D is the index of the Dirac operator over M.

Proof. This follows from Atiyah’s I"-index theorem. ]

Remark 2.11. The I'-dimension is a topological invariant of the base manifold M when
one of H(lz)(X) =0or H(;)(X) = 0 holds.

If M is compact and aspherical, then the Singer conjecture states that the L2 cohomol-
ogy should vanish except for the middle dimension, where in our case of four-manifolds,
only the second L? cohomology is able to survive and H (12) (X) should vanish. This result
has been verified for many classes of compact aspherical manifolds whose fundamental

groups have a “hyperbolic” structure [18].

3. L? analysis and estimates on Sobolev spaces

3.1. Sobolev spaces over covering spaces

Let E’, E be vector bundles over a compact Riemannian manifold M, and let
[:C®°(M;E")Y— C®(M:;E)

be a first-order elliptic differential operator.
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Let us lift them over the universal covering space X = M and introduce the lift of the
L? inner product

(u, v) =/};(u(x),v(x))vol

over X, which is I"-invariant. Let /* be the formal adjoint operator over X. We will use
the Sobolev norms on sections of E/ — X by

(u,v)p2 = (u,v) + (1), (v)),
(w.v)z = (u,v) + (). L)) + ("1 (u). "1 (v)).

whose spaces are given by taking the closure of C2°(X; E’). In other words, the inner
products can be written as

k
Z (*1) (). v

Similarly on £ — X, we equip with the Sobolev norms by use of

(w,x) 2 = (w,x) + (1" (), " (x)),
(w,x);2 = (w, x) + (1" (w), I*(x)) + (1 1*(w). [1*(x)),

Lemma 3.1. {/(v), w>Li = (v,l*(w))Li holds for all k > 0.
Proof. 1t holds for k = 0. Suppose it holds up to k — 1. Since the equalities
(l(u),w)Lz = (lu), w) + (I*1 (). I* (w)), »

k—1

= (u,I*(w)) + (l(u),ll*(w))leﬁ = (u,l*(w))L]zC

1

hold by induction, the conclusion also holds for k. ]

In the case when / : L]% (X) = Li_l (X) gives a linear isomorphism, we can replace
the norms by

(u, v)Lz = (*Dku,v),,

Then, [ : Li(X ) =~ L,%_l (X) is unitary with respect to this particular norm. These norms
are equivalent:

—1 4
Mz =Wz = €Lz

to the above Sobolev norms for some C > 1. This follows from the fact that there is a
positive § > 0 with the bound

Sllullre = [1a)| o0 Sllwlze = [I* )] ..

where § is independent of u and w.
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For convenience, we recall the local Sobolev estimates over four-dimensional mani-
folds. By local compactness we mean that it is compact on Li (K)o that is a restriction of
the Sobolev spaces with support on K. Here K is a closure of an open and bounded subset
in X. More precisely, L},zC (K)o is a Sobolev closure of C2°(int K).

Hereinafter, we assume that a compact subset K is a compact smooth submanifold of
codimension zero so it should have a smooth boundary in X if X is non-compact.

Lemma 3.2. (1) The continuous embeddings L,f C L;I hold locally if both k > | and
k—4/p >1—4/q hold. They are also locally compact if the stronger inequalities k > 1
andk —4/p > 1 —4/q hold.

(2) The continuous embeddings L,f c C! hold locally ifk — 4/ p > [ holds.

In particular, it is convenient for us to check the embeddings Li - Lz_l.

Proof. We refer to [13,14] for the proof. We also refer to [17] for a more detailed analysis
of Sobolev spaces. ]

Corollary 3.3. The following local multiplications are continuous locally:
(@) Ly x Ly — LZ fork >3 and
(b) Ly x Ly — L7 | fork >1.

Proof. Letus take u, v € Li. For k' <k,
V)= )" v*)Vvi(v)
a+b=k’

holds. If 0 < k’ < k, then the estimates

[VeavP @) = [V a0l

loc

VP s = CIV)] g3,

loc

Vb (U) || (L%)loc

hold by Lemma 3.2 (1). Thus, we obtain

”uv ||(L1%/)loc S C ||u ”(Li)loc ” v ”(Li)loc'

This verifies (b).
Let us verify (a). Suppose 3 < k’ = k. Then, we obtain the estimate

[V 0] (12, = Cllvlicoliul s, oy

by Lemma 3.2 (1). Combining this result with (3.1), we have verified (a). ]

3.2. L? cohomology

Let (X, g) be a complete Riemannian manifold. For p > 1, let L,’c’ (X; A™) be the Banach
space of L,f differential m-forms on X, and let d be the exterior differential whose domain
is CZ°(X; A™).
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Let us recall the following notions (see [19]).

(1) The (unreduced) L? cohomology H™?(X)y is given by
Ker{d : LY(X,A™) — L} (X, A"*1)}/

im{d : LY, (X, A""") > LE(X.A™)}.

(2) The reduced L? cohomology H™P(X)y is given by

Ker{d : LE(X,A™) — LY (X,A"™*")}/
im {d : L,f_H(X, Am—l) — Lﬁ(X, A’")},

where im is the closure of the image.

There is a canonical surjection H™?(X)x — H™P?(X)y, and its kernel
"7 := Ker {H™”(X) — H™?(X)x}

is called the torsion of L? cohomology. The differential d has closed range if and only if
the torsion T;"¥ = 0 vanishes (see [25]).

Definition 3.1. The space ™7 (X) of L? harmonic m-forms is given by
Ker{(d ®@d*): L{(X,A™) — L? (X, A™' @ A™ 1)}

Note that $™-?(X) is independent of the choice of k. It is well known that the space
H'™2(X)y is isomorphic to L? harmonic m-forms which are independent of k.

For our case of the AHS complex, the second cohomology involves d * rather than d.
Letdim X = 4.

Lemma 3.4. Supposed : L3(X;A") — L2 (X; A"*Y) have closed range for any k > 1
andi = 0, 1. Then, the composition with the self-dual projection

dY i LE(X : AY) —» L7 (X : A%)
also has closed range for any k > 1.

Proof. The proof consists of three steps.

Step 1. Let H be a Hilbert space and W C H a closed linear subspace. If a sequence
w; € W weakly converges to some w € H, then w € W.In fact, (w, h) = lim; (w;,h) =0
forany h € W+.

Let H; and H» be both Hilbert spaces and W C H; @& H; a closed linear subspace.
Let us consider the projection P : H; & H, — H; and take a sequence w; = vl.1 + vl.2 €
W C Hy & H,. Suppose the sequence P(w;) = vi1 € H; converges to some vy € H;
and the weak limit of w; does not lie on W. Then, |[v?|| — oo must hold. In fact, if [|v} |
could be bounded, then vi2 weakly converges to some v, € H,. In particular, w; weakly

converges to v; + v, which should lie in W as we have verified.
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Step 2. Let us verify the conclusion for k = 1. It follows from Stokes’ theorem that, for
a € L3(X;AY),

0= /Xd(a)Ad(a) = d* @], - |d~@)];..

Thus, we have the equality ||d+(ot)||i2 = ||d_(ot)||iz.

Suppose a sequence o; € L3(X; A') converges asd " (a;) - a4 € L*(X; Ai). Then,
{d(a;)}; is a bounded sequence in L2, since the equality ||d(ot,~)||i2 = ||al+(ozi)||]":2 +
lld _(ai)||iz holds. Hence, the bounded sequence has a weak limit w-lim; d(¢;) — a €
L?(X; A?) such that the self-dual part of a coincides with a.

Let us apply Step 1 to W := imd(L}(X: A")), v} :=d T () € Hy := L*(X; AY),
and v} := d " (a;) € Hy :== L*>(X; A7). Then,a = d(xx) € W for some o € L3(X; A');
otherwise, d ~(e;) should diverge in the L? norm. In particular, a4 = d ™ (e) holds and,
hence, d T has closed range.

Step 3. Letus verify k = 2 case and assume thato; € L3(X; A!) satisfies the convergence
d*(aj) —>a € L3(X:A%). Then, there is some o € L3(X; A') withd * (a) = a by Step 2.
We may assume d*(a) = Osince d : L7, (X) — LZ(X; A") has closed range. Then,
the elliptic estimate tells o € L%(X ; A1) and, hence, the k = 2 case follows.
We can proceed by induction such that the conclusion holds. ]

3.3. Examples of zero-torsion L? cohomology

There are several instances of zero-torsion L? cohomology. See [31] for the p # 2 case.
Let us consider the case p = 2. Using the Hilbert space structure, there have been
many examples with zero torsion discovered, some of which we present below.

3.3.1. Kihler hyperbolic manifolds. Let (M, ) be a compact Kihler manifold and
assume that the lift of the Kéhler form @ over the universal covering space X repre-
sents zero in the second de Rham cohomology H?(X;R) such that it can be given as
@ = d(n) for some n € C®(X; A'). Note that 5 cannot be I' = 7 (M) invariant, since
then w would be an exact form on M.

Lemma 3.5 ([18]). Suppose ||n||Le(x) < 0o is finite. Then, the L? de Rham differentials
have closed range.
Moreover, (M, w) satisfies the Singer conjecture.

See Section 1.3 and also Remark 2.11 on the Singer conjecture.

3.3.2. Zero torsion with positive scalar curvature. Let us present four-manifolds with
positive scalar curvature whose universal covering spaces have zero torsion.

Lemma 3.6. Let X and Y be complete Riemannian manifolds of dimension 2, where X
is non-compact and Y is compact. Suppose the de Rham differentials have closed range
on X. Then, the AHS complex over X x Y also has closed range.
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The following argument is quite straightforward and can be applied to more general
cases.

Proof. The proof consists of three steps.

Step 1. It follows from Lemma 3.4 that d T also has closed range if d is the case on
1-forms. Thus, it is enough to verify closedness of d on both 0- and 1-forms.

Note that C2°(X x Y) C L?>(X x Y) is dense and L?(X x Y) = L*(X) ® L*(Y)
holds, where the right-hand side is the Hilbert space tensor product.

Let { f3} and {u; }, be the spectral decompositions of the Laplacian on the L? forms
of degrees 0 and 1 over Y, respectively, where both f3 and u; have the eigenvalues A2

Step 2. Let A = d* o d be the Laplacian acting on the space of L? functions on X . Then,
by the open mapping theorem, its spectrum is contained in [e, 00) for some positive & > 0,
because the de Rham differential has closed range over X, and X admits no non-zero L2
harmonic function. Note that X is assumed to be non-compact. This implies that there is
a positive constant C > 0 such that the uniform lower bound || dg|| L2 >Cllgll L2, holds

for any g. In fact, ||alg||i2 = (Ag,g)12 > 8||g||]2d2 holds. Hence,
IIgIIi% = llgl7> + lldgl7> = (1 + e Hldgll7-
holds. Then, we have
IIgIIi}z,+1 = IIdgllijz +lglz> < IIdgllijz, +e ! ldgll7. = (1 + 8_l)lla’gllijz,-

Step 3. Let us consider the case of 0-forms. Suppose o« = d(F) € L,zC (X x Y;A') lies in
the image

d(LiH(X xY)) C (d (L12c+1(X)) ® L,2€+1(Y)) ® (Li+1(X) ® d(LiH(Y)))’
where the right-hand side is the Hilbert space tensor product, which is defined as both
d(L;‘i+1 (X)) and al(L,%_H (Y)) are closed in L]%.

Decompose F = )", g1 ® f;. Note that ||a’f;t||i2 = )Lz||f,1||iz. Moreover, there is a
positive constant C > 0 such that the uniform lower bound ||dg; ;2 > C|lgall L2, holds

J J

by Step 3.

Then, we have the equalities

k
_ des |12 2 2 1 (12 )
N (A A PR

2
Li A j=0

IM%=%Z&®&
A

By using the spectral weights for the Sobolev spaces, it is equal to

k
YD M (ldga IIi]z, /0172 + lga lli]z, ldfallZ2)

A j=0

k
=22 2 (gl 1 Al 7 + A galza 1 )
A j=0 ! ’
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k
=3 > (Ml a2, +lgalZa 02 ).
A J k—j J k—j+1

J=0

Then, it is bounded by the followings

k k
CY oD lealze 1N+ D2 el iz,

A j=0 A#0j=0
k+1
SN AT P DI N
A j=0 - A

for another positive constant C’ > 0. This verifies that d has closed range on 0-forms over
X xY.

Step 4. Let us verify a general fact. Letd : H — W = W; @& W, be a linear map between
Hilbert spaces and suppose that both compositions with the projections d; : H — W; have
closed range for i = 1,2. Then, we claim that d itself has closed range.

To see this, we replace both W; and W, with the images d;(H) and d»(H), respec-
tively, because the image of f is contained in d;(H) & d>(H). Hence, d; and d, can be
assumed to be surjective.

Let V :=kerd; Nkerd, C H be the intersection of their kernels. Then, we can restrict
on the orthogonal complement V- C H. Note that there is a positive constant C > 0 such
that any element

U=1u;+u, € (Vl Nkerd;) @ (Vl Nkerd,)

admits a lower bound ||d(u)|| > C|lu|| for some positive constant C > 0, since d(u) =
d(uy) 4+ d(uz) with ||dy(u2)|| = C|luz|| and ||d2(u1)| = C|lu1]||. Hence, we obtain the
bound

|dan)|? = |di)| + | da@1)|® = € (Ilual® + 11 [12) = Cllul|?.

This implies that any element u € VL also admits a lower bound ||d(u)||?> > C|ju||? for
some positive constant C > 0. This verifies that d has closed range.

Step 5. Let us consider the case of 1-forms. To check closedness of the differential, we
may assume that u € d (L,zc X xY ))* by using the inner product in Lemma 3.1 for
l=de@dh)*

Let us take an element u € LZ(X x Y; A% @& Ay). We decompose

U= e ®ui=y g ® @@ +d ),
P P

where «, is a closed 1-form.

Sublemma 3.7. «, is a harmonic form.
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Proof. In fact, the inner product
0= <u,d(g ® oz))L]2€ ={d*u, g ® ot)lec

= (82 ®d"un).g @)z =Y {ga.g)pz - (d*(wa). )y
A A

= (e gz - ([d*(@n).a)
A

vanishes for any g ® «. Hence, d * (o)) = 0 vanishes. |
Then,
du = "dg; ®u;
A
+Y g ®duy € L (X x YAy ® AY) @ L3 (X x YA ® A})
A

= ng,x & oy + ngA ®d*wy + Zg;t ®dd*wy.
A A A
It is sufficient to check closedness of the differential on each term above from Step 4.
Let us consider the projection of the differential to the first term:
d':u= Zg,x@ou eLZ(X xY;AY ® A})
A

—du = ng;L ®ay€Li (X xY;Ay ® Ay).
A

Let #1(Y) be the space of harmonic 1-forms on Y. Note that the restriction

AV L2(X) @ HN(Y) > L2 (X;Ap) @ H(Y)
has closed range, because #!(Y) is finite-dimensional and the de Rham differential on X
is assumed to have closed range.

Step 6. Let us verify closedness of the differential on the remaining case:
d?:u =) g ®d*w, e LA (X xY:AY®A})
A
— d*u ::Z(dg;t ®d*wr+gr®dd*wy) € L (X xY; Ay @ Ay & A} ® A).
A
Note the equalities
ldd*w; )2, = (dd*wy, dd*w;) = (d*dd*wy, d*w;) = A2 d*wy ]2,
Then, we have the estimates
2
Idul,

k—1 k—1

=22 P Dldgilald walz + 30 Y AT galZ, Idd n 7
A j=0 ’ A j=0 ’
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— k—1
=ZZ PEDdgs ol oalfz + 30 3224 galFa ld sl
A j=0 A j=0
k—
> CZZW—‘—”ugu@ Nld*on 22 +ZZA2<" “Z||gu|L2||d w2,
A j=0 A j=0

2
= C'Jul?,

for some positive constants C, C’ > 0.

Step 7. Let us consider the case

u—ZvA@)fAeL (X xY: AL @ AD).

Let us decompose vy, = ), + d*w; with day = 0.

By a similar argument as Step 5, o, is a harmonic form. Moreover, we may assume
ag = 0, since fo = 1 is the constant function and, hence, d(xp ® fp) = 0 holds.

By the assumption, there is a positive constant C > 0 such that the estimate

* > *
ldd* ol = Clld*ol2,,

holds. Then,
2
ldul7, =
Lt Lo

=Y lldd* oy ® filj, +lva®dfil,
A

= ZZ ldd*oali7; 1 fal5,  +loalg - Mdfil,
A j=0 /

>CZZ|Id*wxlle NAIE +ZZA2<" Dlvals - 14072

A j=0 B A0 =0

> C”Z”A@’fA”Lz —Cllull
A

Step 8. Let us consider the final case as follows, which is a linear combination of Steps 5,
6, and 7:

U= v ®fi+gi®ureLp(X xY;A}y ® Ay & Ay ® Ay).
Py

Again, we obtain closedness of the differential by checking the property for each degree
of the differential forms on A*(X) ® A*(Y) by Step 4. The only remaining case to be
checked is closedness of the image in A1 (X) ® AL(Y).
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Let us consider the differential

d'iu=) (B +d w) ® fi+ 81 ® (e +d 1)
A

= Y (Bt d*wi) ® dfy + dga ® (ax + d* ),
A

where both ) and 8 are harmonic 1-forms. Then, it follows from the equalities

(ﬂx,d*wx)LJz = (Br.dgi)2 = (d*wx,dgx)sz_ =0,
(aA,d*MA)sz = {an.dfi) = (df/x,d*M)sz =0

that

Idtully | = SN +d o) @ il + s @ s+ d oy

holds. The first term is bounded as

Yol +dron®dnili, =Y |Br+d o) ® fil;
A A

for some positive constant C > 0 by Step 7. The second term is bounded as

XA: |dgr ® (en + d”‘m)”i;f1 =C XA: |g2 ® (o + d*M)”zi

for some positive constant C > 0 by Steps 5 and 6.
Since the equality

Sl +d o @ fill: + Y e ® @ +d*wl;:
A A
= XA: || Br+d*w)® fr+ g1 ® (x + d*ﬂx)”ii = ”u”ii

holds, this completes the proof for all cases. ]

The universal covering space of X, for g > 2 is the upper half plane H? equipped
with the hyperbolic metric. It is well known that the differential d on H? has closed
range on any degree [12]. Then, by Lemma 3.6, g x S 2 satisfies two conditions that the
AHS complex over their universal covering space has closed range. Moreover, the Dirac
operator is invertible, because S? admits a metric of positive scalar curvature.

Let us compute the I'-index of the AHS complex over H2 x §2 with ' = 71 (Z,) ac-
tions. We denote by Hf(Zg x S?) the L? cohomology group H(*z) (H? x S?) equipped
with I' = 71 (X ) action.

Lemma 3.8. Forany g > 2, the L? cohomology group HE (g x S2) is zero for * = 0,2
and satisfies dimp Hll(Eg x §2) =2g—2.
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Proof. The proof consists of two steps.

Step 1. Any L? harmonic function over a complete non-compact manifold is zero and,
hence, Hg(Z ¢) = 0. By the Hodge duality, any L2 harmonic 2-forms on H? are also
zero. It follows from Atiyah’s I'-index theorem that

dimr HE(Zg) = 2g — 2.
Since H 11 (Z,) is isomorphic to the space of L? harmonic 1-forms, we have the estimate
dimp HE(Zg x §%) > 2g — 2.

Step 2. We claim that the above estimate is actually equal. Let & € L?(H? x S2; A!) be
an L2 harmonic 1-form, and decompose

a=0a;+ o

with respect to Ap, or = A, ® A, @ AD, ® Ag,. Note that each component lies in

o; € L(H? x §%; A") for any k > 0. It follows from d(«) = d(«) + d»(cr) = O that
0=di(a) € L(H? x S AZ, ® A°) and 0= da(ax) € L7(H? x S% A%, ® A?)

hold, where d; and d, are the differentials with respect to H? and S ?-coordinates, respec-
tively.
Note the isomorphism
L*(H? x S%; A, ® AY,) = L*(H?) ® L*(S*; AY).

Let { f3}, be the spectral decomposition of L2(S5?), as in the proof of Lemma 3.6 with
Y = S2. We can decompose it as

0y = Zk)\ ®d> fi
A

since H'(S?) = 0 holds.

Next, we decompose o] as o] = ZA a, ® f, where each a, € L2(H?; AY). Since
dy (1) = 0 vanishes, we also have dya) = 0. Thus, we can write ay = h) + d; g;, where
h;, is an L? harmonic 1-form. Then, we have

ar =Y (ha+digy) ® fi.
A
It follows from dpo; + dioy = O that
D A-hi—digi+ dika} @ da fi = 0. (32)
A

We claim that the equality

{=hy—diga+dik)} ®dafy =0 (3.3)
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holds. In fact, by applying ¢ on both sides of (3.2), we obtain

0= {~hy—digi + dikz} ® d}d> [y
P

= {—hy—digy + dik} ® - fi.
A

Since { f3}, consists of an orthonormal basis of L2(S?), we obtain the equality (3.3).
This implies ), = 0 and d;(g) — k;) = 0 for A # 0. Hence, we can assume g, = k,
in the expression of «;.
For the A = 0 case, fj is clearly constant. Hence, « has the form

a=(h+dig)®1+> dg,® f).
A

where /i is an L? harmonic 1-form.
Since « is harmonic, both the equalities

dig =0 and Zd(gk®fA)ZngA®fA:0
2 2

should hold. This implies that any L2 harmonic 1-form on H? x S? can be given by
tensoring an L2 harmonic 1-form on H? with a constant on S2. ]
3.4. Some estimates over non-compact four-manifolds

In order to apply L? estimates over non-compact spaces, let us induce some basic inequal-
ities. Let M be a compact four-manifold and let X = M be the universal covering space
with ' = 1 (M).

Lemma 3.9. For p > 2, the global Sobolev embeddings hold:

L? (X) C LI (X).

Proof. Let K C X be a fundamental domain. Then, the local Sobolev estimate gives the
embedding Ll+1(K) - LiZP(K) in Lemma 3.2 (1).
Now, we take a € Lip t1 (X). Then, we have the estimate
lla "Lfﬂ(y(K)) > clla ”L?p(y(K))’

where ¢ is independent of y € I". Thus, we have the estimates

la < cSyerally

[ LP(x) Tyerllall? LY (y(K)) — L2 (v(K)
2
S C(EVEF||a||LiP+1(y(K))) = C”a”LP (X)

See [14, Chapter 1, Theorem 3.4]. [
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Corollary 3.10. Let p =2/ > 2.
(1) The embeddings hold:
H™P(X) D 9™ (X),

between the LP and L? harmonic m-forms.
Proof. Let p = 2! 1t follows from Lemma 3.8 that the embeddings hold:
L2, (X)C L%, ,(X)C - C LP(X).
Then, the conclusion holds since L? harmonic forms have finite Sobolev norms in all
LI’{’ . [

Remark 3.11. One may consider the converse embedding. So far, there has not been
significant development of analysis, even though it is a quite basic subject.

3.5. L? closedness

We assume that the de Rham differential has closed range on L? such that it admits the
L? harmonic projection.

Let us take a € Li (X; A1) for some large k > 1. It follows from Lemma 3.9 that
a€L?(X;:AY)N L3 (X:A") for p = 2! with [ < k — 1. Suppose the conditions

M llallrxy = €.

(2 llallzrxy = €0, and

(3) d*(a) =0,
hold for some constants C and gy > 0, and a compact subset K C X. Let us denote the
L? harmonic projection of @ by anam € $'? and its L2 norm by ||a |harm-
Lemma 3.12. (o) Assume the above three conditions (1), (2), and (3). Then, at least one
of the following criteria holds:

e thefollowing estimates hold: ||a ||sz(X) < c(||d+a||sz(X) ~+ ||la||harm ), for some ¢ >0
1
independent of a, or

e there is a sequence {a;}; as above that they weakly converge in Lf N L%p to a non-
zero element in $Y? N HSY2P | but not in H2.

(B) Assume the above condition (3). Then, the estimate holds:
lall2r xy < c(max{lld allz2rx). llall Lz} + lallnam)-

Proof. Let us verify (o). Assume that a family {a;}; with the above conditions satisfies
the property
”ai”pr(X) = 8i_1(||d+(ai)”L2P(X) + ”a”harm)

for some §; — 0.
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Let us divide this situation into two cases.
(a) Suppose ||a; ||, 2» (x) are uniformly bounded. Then, {a; }; weakly converges to some
1

a e L3 (X;AY) N L?(X; A") by condition (1) and the standard local elliptic estimate.
Moreover, the equalities d *(a) = 0, apam = 0, and d *(a) = 0 hold by condition (3) since
both the convergences ||d T (a;)|| r2r(x) and ||@; ||narm — 0 hold. Note that L? spaces are
reflective for 1 < p < oo.

The restriction a; | K strongly converges to a|K in L?. It follows from condition (2)
above that a is non-zero and, hence, gives a non-trivial element in $7 N $27, but not
in $12 since the L? harmonic part of a is zero.

(b) Assume ||a; || 127 (x) ™ O° Then, the following estimates hold:

laill 20y = e([d7 @) apxy + laillLee )
< c{Sillaill 2oy, + laill 2}

where the first inequality comes from the elliptic estimate. In particular, the following
inequality holds:
il 20 xy < Nl

It follows from Lemma 3.9 that the estimate
laill 2 gy = ¢ Naillzor < " Naillzg-

must hold. The left-hand side diverges while ||, || Lr are uniformly bounded by condi-
tion (1). Therefore, case (b) does not happen.

Next, we consider (). If the former conclusion of («) holds, then we are done. Oth-
erwise, we can take a decreasing sequence §; — 0 as in the above proof. Then, the same
estimates as above give the inequality

laill 2rxy = llaill -
The conclusion is just a combination of these cases. ]

Remark 3.13. For the purpose of our analysis of the covering-monopole map in Section
4, any p > 2 suffices, but the p = 2 case is not sufficient. Hereinafter, we will use 8 only.

3.6. Multiplication estimates

Let X = M be the universal covering space of a compact four-manifold M with 71 (M) =
I", and let K C X be a fundamental domain.

Lemma 3.14. The multiplication
LY(X)® LY(X) > L,(X)

is bounded for m < k, withk > 3, orm <k, withk > 1.
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Proof. For the proof, we refer to [14, Chapter 1, Theorem 3.12]. We include the proof for

convenience.
Let us take a,b € L,zc(X) where a = ZyeI‘ a, with a, € Li(y(K)). By Corollary
3.3, the local Sobolev multiplication gives the estimates

layby iz, < Cllayll2 1byl.2.

where C is independent of y € 71 (M ). Therefore,

2 2 2 2
labliZs ) = D llaybyli7; < € 3 llayliz; lbylI7,
Y )4

> ||ay||Li)2(Z ||by||Li)2

= |la ]

2 2
”LIZC(X)”b”Li(X)

Lemma 3.15. Let m > 2 and choose 0 < ¢ < 1. Then, there is a constant C = Ck indepen-
dent of € > 0 such that if two elements a,b € L3, (X) with ||a||L§ x) = ||b||L% x) =1
satisfy uniform estimates

||a||L§m(yK)» ||b||L§m(yK) <é&

forall y € T, then the following estimate holds:
lablizz, x) < Ce-

Proof. 1t follows from the local Sobolev embedding L%m <> C™ in Lemma 3.2 (2) that
the estimates hold for all y € T":

lallcm@xys 1Bllcmx) < Ce.

This implies the global estimates ||la||c»(x), [|b]lcm(x) < Ce.
Consider the absolute values of the derivatives:

V! (ab)| = S |V* @[V~ ()]

for [ < 2m, where each component of the right-hand side satisfies the property that one of
s or [ — s is less than or equal to m. Suppose s < m holds. Then,

VS @[V b)) < 22| VI )| < €22 (VS @] + [V ) ).

By the same argument, we can obtain the same estimate when / — s < m holds. Therefore,
in any case, the following estimate holds:

IV @b)|> < C'&?SL_o(|V @] + [V B)[?).
Now, we obtain the estimate by integration:

labllz x) < Celllallz, x) + ||b||L§m(X))- u
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Corollary 3.16. There is a constant C = Ck such that, for two elements b € L2 (X) and
ace L%m (X), if a satisfies the uniformly small estimate

||a||L§m(yK) <é&

forall y € T, then the following estimate holds:

lablirz,x) < CellbllLz x)-
Proof. Consider the absolute values of the derivatives:
V! (@b)| = i |V° @)| [V )]
for I < m. Then, the same argument as above gives the estimate
IV!(ab)[> < C'2EL_o [V ()|
Hence, we obtain
labll 2, cx) < Cellbllza o .
Remark 3.17. Let K C X be a fundamental domain and choose a finite set
V ={V1,.- -, Ym} Cmi(M) =T.

For a positive constant ¢ > 0, let us set
H'(e,7):={w e Ly(X;E)=H': lwlizzgr) <& v ¢ 7).

(1) For any r and the open ball B, C H’ of radius r, there is some m such that the
embedding B, C H'(e,m) := Uycrm H'(e, 7) holds.
(2) By Lemma 3.15, there is a constant C such that the covering-SW map restricts:

F:H'(e,y) — H(Ce,yp).

3.7. Locality of linear operators

Let K C X be a compact subset. Recall the local Sobolev space Li (K)o of Definition
1.1. Suppose / : Li (X) —> Li_l (X) is a first-order differential operator and consider its
restriction

1:L2(K)o — L}_ (K)o

between the Sobolev spaces on a compact subset K. Let us take an element
wel(Ly(X))NL;_ (K)o

and ask when w lies in the image / (L]% (K)o). In general, this is not always the case. Later,
when we consider properness of the covering-monopole map, we shall use projections to
the Sobolev spaces on compact subsets. Here let us observe a general analytic property.
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Let us introduce a K-spill e(w) € [0, 00) by

e(w; K) = inf V|lr2/%ey s L(V) = w!.
WKy = inf (ol 10) = w}

k

Let Ko € K1 € K, C --- C X be exhaustion.

Lemma 3.18. Suppose [ : Li (X) — Li_l(X) is injective with closed range. Choose
w; € lec_l(Ki)O N l(Li(X)), which converge to w € Li_l(X).
Then, the spills go to zero as

e(w,-; Ki) — 0.

Proof. By the assumption, there are v; € Li (X) that converge to v € Li(X) with [(v;) =
w; and /(v) = w. For small ¢ > 0, there is iy such that |w — w; ”Li_l(X) < ¢ holds for
i > ip. Hence, the estimates ||v — v; ||L%(X) < Ce¢ hold for a constant C.

Suppose there exists § > 0 with e(w;; K;) > §. Then, we have

Iollz2 &gy = Mvill2 ey = v = vill L2 (key =28 = Ce >0

for all sufficiently large i, which cannot happen since the Li—norm of v is finite on X.
Then, its Li—norms on the complements of K; should go to zero because {Kj;}; exhausts
X. ]

3.8. More Sobolev estimates

Here, we verify the Sobolev estimate, which improves the original version to the most
general way. Note that the estimate will not be used in later sections.

Lemma 3.19. Suppose
(D k—% zl—gwithkzl,and

@ p=q
Then, the embeddings L,’; (X) C L? (X)) hold over the universal covering space X = M
of a compact four-manifold.

Proof. For the proof, we refer to [14, Chapter 1, Theorem 3.4]. We include the proof for
convenience.

It follows from the assumption (1) that the local Sobolev embedding (L% )ioc C (L{)1oc
holds by Lemma 3.2 (1).

Take a € LY (X). Then, we obtain

xR
SR

q
(lallzrx)) Z(Eyel“||“”€;;(y(1<))) 2C(E”EF”a”i;’(y(K)))

We want to verify the inequality

P b 4
(ZyerlalZy g )” = Zrerlalig )

The following sublemma completes the proof of the lemma.
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Sublemma 3.20. Let {a;}72 , be a non-negative sequence. Then, the estimates

t
Zai < (Zafl)
i i
hold fort > 1.

This elementary fact follows from the sub-additivity of the function x > x . ]

4. Properness of the monopole map

A metrically proper map between Hilbert spaces is defined by the property that the pre-
image of a bounded set is also bounded. The method of constructing a finite-dimensional
approximation requires, in addition, the property that the restriction on any bounded set is
proper.

It is a characteristic of infinite dimensionality that there exists a metrically proper map
which is not proper on each bounded set. For example, for an infinite-dimensional Hilbert
space H, the distance function d : H — R by x — ||x|| is metrically proper but is not
proper on each bounded set, because the restriction d : D — [0, 1] on the unitdisk D C H
is not proper.

A map is called strongly proper if it satisfies these two properties (see Definition 1.1).
Both properties are satisfied for the monopole map over a compact four-manifold, because
it is Fredholm.

In our case, the base space is non-compact, and we will verify the locally strong
properness under the assumption of closedness of the AHS complex. This also works
for the construction of a finite-dimensional approximation method.

In Section 4, we assume k > 3 whenever we write Li. Moreover, we continue to
assume that a compact subset K C X is a compact smooth submanifold of codimension
zero, possibly with smooth boundary.

Let M be a compact oriented smooth four-manifold and let X = M be the universal
covering space with m; (M) = T.

Let us fix a spin® structure on M and choose a solution (Ag, V) to the SW equations
over M. Note that the pair (Ag, ¥o) is smooth after gauge transform (see [30, Theo-
rem 5.3.6]). Hereinafter, we always assume that the base solution (Ag, ¥¢) is smooth. We
take their lift (;fo, Jo) over X as a base point of the covering-monopole map.

In this section, we verify the following property.

Theorem 4.1. Suppose the AHS complex has closed range over X. Then, the covering-
monopole map is locally strongly proper in the sense that the map

f:LE(K; ST ® L2(X;A' ® iR) NKerd*
— Li_((K:857)o @ Li_{(X: A] ®iR) & Hj)(X)
(.a) > (D g, o¥.d" (@) —o(Yo. V). [a))

is strongly proper for any compact subset K C X.
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If the linearized operator of the covering-monopole map gives an isomorphism, then
the AHS complex has closed range. Hence, in such a case, the conclusion holds. The
stronger condition is required when the construction of Clifford C *-algebra is involved.

Remark 4.2. The statement involves a mixture of spaces X and its subset K. This is
because one can control the analytic behavior of differential forms by assuming closedness
of the differentials, however there is no way to control it for the spinors. This is the reason
why we have to be content with the restriction of the compactly supported spinors.

Proof of Theorem 4.1. The proof consists of three steps.

Step 1. Let us consider the properness on the restriction on bounded sets. The non-linear
term is given by

¢ (Y.a) — (ay,o(¥)).

We claim that this is a compact mapping such that it maps a bounded set into a relatively
compact subset.

Let us take another compact subset K € K’ and let ¢ : K’ — [0, 1] be a smooth cut-off
function with ¢|K = 1 that vanishes near the boundary of K’. Then, the multiplication by
@ satisfies the inclusion

@ -Kerd* C LE(K'; A' ® iR),o.
Then, ¢ factors through the multiplication
(id, @) : L2(K;ST)o @ Kerd* — L2(K;S1)o @ LE(K'; A' ®iR), (%)
¢ LEK; ST @ L2(K; A ' ®iR)g — L} (K;ST)o® L2 (K'; A2 ®iR)o. (¥%)
The former map (*) is linear and bounded. The second map (**) is compact as it fac-

tors through the inclusion L?(K")g <> L?_,(K')o by Lemma 3.14, and the last map is
compact.

Step 2. To confirm properness of [t on the restriction on a bounded set, it is sufficient to
confirm the metrical properness of its linear term, because the non-linear term is compact
on the restriction of a bounded set by Step 1. The linear term is given by

(W, a) = (D/IO!”» d+(a) - O-/({/;Ov ‘//)» [a])7
where o’ (Yo, ¥) = o' (Y0, ¥) — o (¥).

It follows from the closedness of d* that a +— (d T (a), [a]) is injective and metri-
cally proper (see the last paragraph of Step 2 in the proof of Lemma 4.8). Since the term
o’ ({Z;O, ) does not involve a, it is sufficient to confirm the properness of D i,V Proper-
ness surely holds on any bounded sets over K as D 7 is an elliptic operator.

Step 3. Let us consider metrically properness. This follows from the combination of
Lemma 4.8 and Proposition 4.10 with Lemma 4.11 which is a version of Lemma 4.5.
These are all verified later in this section. ]
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We verify the globally strong properness for a particular class, which is stronger than
locally strong properness.

Proposition 4.3. Suppose the AHS complex has closed range over X = M whose second
L? cohomology H (42') (X) = 0 vanishes.

If the metric on M has a positive scalar curvature, then the covering-monopole map
is metrically proper and locally proper on each bounded set.

We present examples that satisfy the above conditions. Note that S? x X, are the cases
forall g > 2.

We have already seen the latter property above and, hence, need only to verify the
metrically properness.

Our strategy is as follows. Assume that the AHS complex has closed range. Then, we
verify the following:

(o) metrical properness for k = 1 under the assumption of existence of a metric of
positive scalar curvature (Lemma 4.5),

(B) local metric properness for k = 1 (Lemma 4.11) under the assumption of (local)
L bound,

(y) (local) metric properness for k > 1 under the additional two assumptions of (local)
L bound and (locally) metrical properness for k = 1 (Lemma 4.8), and

(8) local L°° bound (Proposition 4.10).

Remark 4.4. Let B C M be a small open ball. There exists a Riemannian metric g whose
scalar curvature is positive except B [27]. One may assume that the lift B C X satisfies
y(ByN B = ¢ forall y #id € I' := m;(M). Let us set B := Uyer y(B). Assume that
[ could be metrically non-proper and choose ji(x;) = y; such that ||y;|| < ¢ < oo while
|| x;|| = oc. Let ¢ be a cut-off function with ¢| B = 1 and zero outside a small neighbor-
hood of B. Both two families fi|[{(1 — ¢)x; }; and [i|{¢x; }; must be proper (see Lemma 4.5
below) and, hence, {x; }; should be unbounded near the boundary of some y(B) and y € I'.

4.1. Positive scalar curvature metric

Let us verify the metric properness of the covering-monopole map, in the case when the
base manifold M admits a metric of positive scalar curvature and the AHS complex over
X = M is closed.

Let us fix a reducible solution (Ag, 0) to the SW equations over M and choose the pair
as the base point of the covering-monopole map.

Lemma 4.5. Suppose the AHS complex has closed range over X = M. If M admits a
Riemannian metric of positive scalar curvature, then the covering-monopole map

fi: L3((X.2):8" @ A' ® iR) NKerd* — L*((X.£): S~ ® A2 ® iR) @ H)(X)
(¢.a) > (Fz, o(¢.a).[a])

is metrically proper, where H (12) (X) is the first L* cohomology group.
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Proof. Let us set fi(¢,a) = (¢, b, h) and denote A = Ay + a.

Step 1. We have the pointwise equalities

4
(Fa.9) = (7 6.9) = (Ff —0@)g +0@)6.9) = (bs.9) + "2

since Fq¢p = FA+¢> holds.
Suppose M admits a Riemannian metric of positive scalar curvature. Then, from the
Weitzenbock formula

F,
D3(@) = ViVa(@) + 56 + 50

it follows that the estimates

2 1 1
|DA@)| ;2 + 1bll2 @174 = Sll¢ll7- + ZII¢II}f4 > ZII¢|I24

hold for some positive 6 > 0. In particular, there is ¢ = c(||¢| 2, ||P||z2) such that the
bound

¢llLs < c

holds. Using another estimate

loliZ2 + 10129174 = 811172 + %I|¢Il}f4 > 8]lI7-.
we obtain the L? estimate
lpllze < ¢"(lelz2, 1B L2, ).
Step 2. From the equality d T (a) = b + o (¢), it follows that
lallz2 < e(ld* @2 + lanamllzz) < c(bllz + ¢ 1Zs + 171 L2)-
Combining this with Step 1, we obtain
lall2 < c(lgllzz. 18122, IAllL2. 6).-
Step 3. It follows from the embedding L3 C L* in Lemma 3.9 that

laglizz < llallzsliglize < c(lgllze, 1Bl 1] L2, 6).

Then,
1Dz, @) 2 < [ Da(@)] 2 + lagllL> < oc.

It follows from the elliptic estimate that in L2, we have the bound

gl < c(lleliz. 1bllz2. 7] L2, 8). u
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Remark 4.6. To induce higher Sobolev estimates, it is sufficient to obtain the estimate of
lag| L2 Certainly, we can obtain the estimate

ladllzz < Cillally: 1912

for k > 3, but it is not applied at k = 1. This forces us to use L°° estimates later, which
leads to L? analysis.

Example 4.7. Immediate examples of closed four-manifolds with positive scalar curva-
ture metrics will be S* or £, x S? with their metrics & + eg with small ¢ > 0, where
h and g are both the standard metrics. For the latter case, the AHS complex over their
universal covering spaces has closed range by Lemma 3.6.

4.2. Regularity under L bounds

Let us take a solution (Ay, ¥) to the SW equations over M. One may assume that the
solution is smooth. We consider the covering-monopole map with their lift (Zo, \Zo) as the
base point.

Assume that the AHS complex has closed range and consider the monopole map

B:L3((X,):ST@ A" ®iR)NKerd* — L2_((X,g);:S™ @ A2 ®iR) @ H'(X)
(¢.a) = (Fz, 5, a),[d]).

It follows from Lemma 4.8, Proposition 4.10, and Lemma 4.11 below that i is metrically
proper, under the conditions of k£ > 3 and closedness of the AHS complex.

Lemma 4.8. Suppose that for any positive numbers s, r > 0, there is
c=c(s,r,K, Ag,¥o) >0

such that for any k > 3 and an element (¢, a) € Li((X, 2):St® A" ®iR)NKerd*
withr := || ji(a, ¢)||le(71, the following conditions hold:

5= 4.0 0 <00 |@.0)]2 =c.

Then, there is a positive constant c = cy (s, r, K, Ag, ¥o) such that the estimate
||(¢,a)||Li < ¢k holds.

Proof.

Step 1. Let us set [i(¢p,a) = (¢, b, h). We check that the multiplication a - ¢ is in L3(X)
and bounded by 3sc. First, a - ¢ € L?(X) holds by the L® bound

la-ll2 < llalLel@llLz < sc.

Note the equality V(a - ¢) = V(a)¢ + aV(¢). Then,

[V@d)|| . < 19l V@)] 2 + llallz= | V@) . < 2sc.
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Hence, we have ||a - ¢ || 2 = 3sc. Since g is smooth over M which is compact, we have
la - JOHL% < C(lﬂo)”a”L% < C(Yo)c. Then, Dy (¢) € L2(X) holds, because the left-
hand side of

¢ =Da@)+a-Yo=Dg (@) +a-¢+a-Vo
has an Li_l (X) norm less than r. Hence, the bound
lpllzz < C(r+ C(Yo)c +3sc +¢) =1 ¢)
holds by the elliptic estimate ||¢||L% =C(|Dg, (¢)||L% + ||¢||L%).

Step 2. Then, ¢ € L}(X) holds, because the embedding L3(X) C L}(X) holds by Lemma
3.9. Let us denote o (Yo, ) =: 6 (¢p) + (Yo, ¢) (see Lemma 2.3). We obtain the estimates

lo@] - = lI¢lZs < 17z <

and B
[{(o.)| > < CWo)llgllL2 < C(Wo)e.

For the derivatives, we have

IVo@ . = [V@) | aldlls < lIgllLalidllze < Cliglzlll2 < Cese,
Vi@, )||,. < CWo)(Igllz + IVSllL2) < CW)lIbllL2 < CWo)e.

Hence, we have ||0(1Z0, ¢)||L% < C(yro)cc). Then, the estimate
ld* @220y < 7+ CWo)ecs

holds, because b = d (a) — o (Yo, ¢) has Li_l(X) norm that is less than r. Because the
AHS complex has closed range, it follows from the open mapping theorem that there is a
positive constant C > 0 such that the bound

lallz = C(1d* @Iz + lalllzz)
holds for any a € L3(X) N Kerd*. Thus, the estimate holds:
lallzz < C(r+ C(Wo)cch +r) =: ca.
Step 3. Letus verifya - ¢ € L%(X ). Note the equality
V2(a-¢) = V2(a) - +2V(a) - V(@) +a - V().

The L2 norms of the first and last terms on the right-hand side are both bounded as
1V2(@@a) - |12, |la - V*(¢)|| 2 < sc. For the middle term, we have the estimates

V@ V@) < [V@[ V@ = CIV@] [V 2

2
= Clalzzl¢llzz = Ces.
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where we used Lemma 3.9. Hence, we have
la - llz < lla-@llz + | V2@ )|, < 3sc +2se2 + Ce3.

The remainder of the argument is parallel to Step 1. We have || D i @)l 2=r+
Ca(Yo)ca + 3sc + 2sc2 + Cc%. Then, the estimate holds:

I¢llz < C([ Dz, @) 12 + 1]L2)
< C3(r + Ca(Yo)ea + 3sc + 2s¢2 + Ccj + ¢b) =: ¢

By applying similar estimates in Step 2, we have o (Yo, ¢) € L3(X) and, then, we obtain
d*(a) € L3(X). Then, we have lall 2y < ca.

Step 4. We have verified a, ¢ € L%(X ). Now, we can use a simpler argument that the
multiplication
L3(X) x L3(X) — L3(X)

is continuous in Lemma 3.14 such that we can see the inclusion a - ¢ € L3(X) immediately
by the estimates

2 2 2 2
”a : ¢||L§(X) = C||a||L§(X)”¢”L§(X) =c3.

Then, we repeat the latter part of Step 1 and Step 2. Then, we obtain the inclusions ¢ €
L3(X)anda € L3(X).

The remainder of the argument is parallel and we obtain the L,zC bound of (a, ¢) by a
constant cg. ]

Remark 4.9. The above proof also verifies that one can restrict the functional spaces to
L3(K;ST)o® L3(X;A' ® iR)o N Kerd* and still obtain the same conclusion such that
regularity on local metric properness holds.

4.3. L estimates

Let us take a solution (Ag, ¥o) to the SW equations over M and consider the covering-
monopole map with the base (Ag, ¥).
We take an element:

(¢.a) € Li((K'.2):ST) & L((X,2): A' ® iR) N Kerd*,
and set [t(¢,a) = (¢, b, h) and r = | (e, b,h)||Li71, where K’ C X is a compact subset.

Proposition 4.10. Suppose the AHS complex has closed range. Then, one has the L™
estimate (¢,a) € L™ in terms of r = ||(¢, b, h)||L]%71 and K’ as

” (¢7 a) ”Loo(X) S C(r* K/)
for some constant (r, K') that depends only on r and K'.

Proof. We verify the conclusion when the base solution is reducible (A4, 0) at Step 2. The
general case is verified at Step 3.



T. Kato 1042

Step 1. We claim that the uniform estimate
lalls < C(ld* @llLrxy + 1)

holds for at least one of p = 2,4 or 8.
It follows from Lemma 3.12 (B) that the inequality:

lallzsx) < ¢(max {||d " al| s x). IIaIIL;t(X)} + [l llnarm)-
By the same lemma again, we have another inequality:
lallzsxy < c(max {ld*allLsx). IIaIILf(X)} + lla [Inarm)
< C(max {||d ¥ alpsx). 14T (@)ll2} + llallnam)-

where we have used the assumption of closedness of the AHS complex for k = 1 at the
second inequality. Thus, we verify the claim by combining these two estimates.

Step 2. It follows from Step 1 with the Sobolev estimate that the uniform estimate
lallzee < cllallzs < C(Ild ™ @ llzrcey + lanaml + )

holds for at least one of p = 2,4 or 8.
The Weitzenbock formula gives

11
DiD4=V;V4+ yila §F+,

where s is the scalar curvature.
Now, suppose the base point is reducible (Ag, 0) over M. Let A be the Laplacian on
the functions. We have the pointwise estimate

AP < (2D — 59— (b + 0 (9)9.9)
(see [4, p. 12]). Then,

s 1 "
Alp? + J11” + S1o1* = (2DF 0. ¢) + (2a0.4) — (b, ¢)
<2(ID%, ¢l + lalizellolie)lgl + 1bllL|¢]*
holds by use of the equality o (¢)¢p = @d).

By the assumption, there is a compact subset K’ C X such that ¢ has a compact
support inside K’. Note that an a priori estimate:

Ipllircy = #lerkny = Cll¢lleoxy = Clidlle),

holds for some constant C = Cgs. Combining this estimate with the equality d ta =
b 4+ o(¢), we obtain

lallzee < ¢(lanamll + 16llLr + l¢lFe0 + 1)
< c(llanamll + 16112 + 161170 + 1)
< c(llanamll + 161l2_ + ¢1Z +7)
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by Lemma 3.9. For ¢, we have the estimates

lellze < Cliellsx) = Cllellzxy = Clellz )

again by Lemma 3.9. At the maximum of |¢|?, the value of A|¢|? is non-negative and,
hence, we obtain

1911700 < c(lanamll. 10122 Nellzz ) (10l + @170 + [D1170)-
Thus, we have L estimates of the pair (¢, a) by (||<p||L]2€71, ”b”Liq’ 121]).

Step 3. Let us induce the L° bound for the case of general base [Ag, ¥o]. We will follow
Steps 1 and 2.
It follows from Step 1 that the uniform estimates

lallze < cllallzs < c(lld T alLe + llanumll + )

hold for at least one of p = 2,4 or 8.
We set ¢g := Y9 + ¢. We note that the bound

— + ¢l < ligollze < ¢ + [[@llLe

holds since 1/70 is ['-invariant. The Weitzenbock formula gives the pointwise estimate
s
Algo|> < (2D Dagpo — §¢o — (b + 0(¢0)) 0. bo)
s
= (2D}(p) — 5450 — (b + o (¢0)) 0. do)-

Now, we have the estimates

[9ol*

S
Algol® + §|<i50|2 + >

< 2[Da(9)|l¢o| + |(bo, o)

<2(|Dz,@) | 1 + lallizell@lze)lol + I1b]lzs ol
= 2(| Dz, @] 15 + lallzer) gl + rigol?

< 2r(c + llallz=)lgol + ridol?.

where we have used the estimates ||b||p~ < c||b||L§< < c||b||L§ < r and the elliptic esti-
mate.

By the assumption, there is a compact subset K’ C X and a constant C = Cg such
that ¢ has a compact support inside K'. Note the estimates ||¢||zr(x) < C||¢|lL=(x) and

lo@Wo. ®)llLr < C(¢llLr + 91725) < C(Ipllzeo + PlI7o)-
Combining Step 1 with the equality d ta = b + 0(1;0, ¢), we obtain

lallzee < c(1bllze + ¢l + I¢ll7e +7)
< c(Ibllgz + gl + 917 + 1)
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<c(Ibllz_, + gl + 191z + 1)
< (gl + 197 + 1)
< (Ilgolle + ol + 7 +1).

We now combine the above estimates. At the maximum of |¢g |2, the value of A|¢pg|?
is non-negative, so we obtain

pollzee < 4r{(c + llallze)ligollze + ligollZoo }
= 4r(c + [Igollre=)ligollze + llallzellgollze
< {4r(c+ lgoll=) + ¢'(llgollLe + llgollzo + 7+ 1)}lIgpoll Lo
< {4rllgollz + ¢'(IollL + ligollzoe + 7 + 1)} liholl oo
Therefore, we obtain the L°° estimate of the pair (¢, @) in terms of (||<p||Li_l, ”b”Li_l’

I17211).- =

4.4. Lf bounds

Let (A, Yo) be a smooth solution to the SW equations over M. Let [t be the covering-
monopole map with the base (A4, ¥¢). Recall the notation that Ay and ¥ are both the lift
on the universal covering space X = M.

Lemma 4.11. Suppose the AHS complex has closed range over X and consider the
restriction of the monopole map

I L2(K: 8@ L3(X: AY) NKerd* — L*(K:857)o @ L2(X: A2: X) @ H'(X)
(¢.a) = (Dg, 3,(a.¢).d" (@) — (Yo, ). [a])

for a compact subset K C X, where H (12) (X) is the first L? cohomology group.
For any positive numbers s,r > 0, there is a positive constant C = C(r,s, K, Ao, Vo) >
0 such that if an element (a, ¢) in the domain satisfies the estimates

ala. Pz =r. i@ d)lre <s,
then the estimate ||(a, ¢)|| 12 = C holds.

Proof. We follow the argument in Lemma 4.5. Let us denote ji(¢,a) = (¢, b, h) by ¢ €
L3 (K)o.
Note the local Sobolev estimates

lollzx)y, < CxllPllLsxyy < Cxll@llLak),-

Step 1. First, we suppose the base point is reducible (Ag, 0). Following Step 1 in Lemma
4.5, we have the estimates

2 1
[ DA k) + 18Nz 1914k, = =811 20k + 7191 E ek

1
> —CEOIO s + ;181 ecx
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In particular, there is ¢ = c(||¢ ||z, |b]|z2, 8, K) such that the bound ||¢ || z4(k), < ¢ holds
and, hence, [¢||r2(x), < ¢’

The rest of the argument is the same as Steps 2 and 3 in Lemma 4.5 for this case.

Step 2. Let us consider the general case and choose a solution (Ag, ¥o) to the SW equa-
tions over M. The L norm of the lift || /o |z < c is finite, because ¥ is smooth and M
is compact. Let us consider the equality d *(a) = b + o(o, ¢). Recall that the support
of ¢ is contained in K and, hence, the equality d *(a) = b holds on K¢.

Let us consider the equality d *(a) = b + 0(1}0, ¢). We have the estimates

“d+(“)”12:2(X) = [d"(a) ”22(1() + ||d+(“)“22(1<c)
= b+ 0(Wo. 9125 + 15122 (ke
< (b2 + oo ) 12x))” + 16122 k0
< 4(1b 122k + |0 Wo. D) 720)) + 16172k,
< 4161225y + Cx |0 Fo. ) 3o )

< 4||b||i2(X) + Cz’g(ll@ollioollwlioo(g) + 1117 0 x))
< C(r,s,K, o).

Hence, we obtain the L% bound
lall 2y < c(ld* @z + lalham) < (5. K. o).

For ¢, we have the estimates

D5, @[] < 4| Da@)|]2 + 4lla- 122 = 4llg — aPoll 2, + 41pl1 3 llall?

< 16(llgl2> + 1Yol llall?2) + 4llp Lo a2
< C(r,s, K, ¥o)

(see the equalities above Lemma 2.3). By combining the elliptic estimate

I¢llL2 < Caox (Il + 11Dz, (#)22)
with the bound ||¢[|z2(x) < Ck||¢ ||, we obtain the L2 bound

||¢||L% S C(r7S7K7 w()sAO)- | ]

Remark 4.12. (1) The proof in Step 1 implies that the map [t above is metrically proper
without the L°° condition if we use a reducible base solution.

(2) Note that we have restricted that spinors in the domain of the map are compactly
supported on K. We compare this condition with Lemma 4.5, where we have not required
such a condition, but, instead, we have assumed that the scalar curvature is positive.
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4.5. Effect on smallness of local norms on 1-forms

We now consider the effect of local Sobolev norms effect on the global norm. It is a
characteristic of non-compactness that a situation can happen where the local norm is
small, but the total norm is quite large. Below, we induce a bound on the Sobolev norm
under smallness of local norms on 1-forms.

Let K C X be a fundamental domain. We take an element (¢, a) and set ji(¢,a) =
(¢, b, h). Recall that we have assumed k > 3 (see the third paragraph of Section 4).

Lemma 4.13. Let k > 4. Let us choose a reducible base solution (Ag,0) over M. Suppose
the AHS complex has closed range and the Dirac operator is invertible. Then, there is a
small g9 > 0 and a positive constant C > 0 such that if the local bound ||a ”Li_l(y(K)) <&
holds for any y € T, then the pair (¢, a) satisfies the bound

2
”(‘P’a)“L,%(X) = Cr+r7),

where r := ||(¢vb’h)||Li_1(X)'

Proof. Let us denote A = Ao + a. Let us check that the estimate

la- bl x) = CeollpllLz_ x)

holds. It follows from Lemma 3.14 that the estimate ||a '¢”L12{_1(1’(K)) <Cla ”Li_l(l’(K)) .
ol L2 (r(K)) holds for some positive constant C > 0. Hence, the following estimate
holds:

2 _ 2
la-@lZ; =2 la-@lZ2 oy

yel
2 2 2
=€) lalg: oy 181%: o
yel
22 2 2.2 2
<C%5 Y NelZ2 oy = CoedlelZz oxy:
yel

Then, we obtain the estimates

||¢||Li(x) = C/||D/1‘0(¢)||Li_l(x) = C/(HDA(fP)”L%_I(X) + |la '¢||L]%71(X))
<C'(r+ C50||¢||L,2671(X))'
In particular, if &9 > 0 is sufficiently small, then we have
pllL20x) < C"r.

Next, it follows from Lemma 3.9 that

’ 2 2
||U(¢) ||Li—1(X) = C ”¢”L2_1(X) = C”(P”Li(x)
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Hence, we obtain
+ 2 2
”d (a)HLIZc—l(X) <r+ ||0(¢) “Li—l(X) <r+ C”¢”L]2€(X) <r+Cr
as dt(a) + o(¢) has the lec_l norm lower than r. It follows from the assumption that

lallzz o) = C(”d+(a)"Li_](X) + l[@namll) < Cr(1 4 7). n

5. Approximation by finite-dimensional spaces

5.1. Fredholm map

Let H' and H be two Hilbert spaces and consider a Fredholm map:
F=Il+c:H — H,

whose linear part / is Fredholm and where ¢ is compact on each bounded set. For our
purpose later, we restrict the domain by the Sobolev space. A method of finite-dimensional
approximation has been developed for a metrically proper and Fredholm map [4,32]. It is
applied to the monopole map when the underlying space X is a compact four-manifold.

Below, we introduce an equivariant version of this type of approximation on a non-
linear map over the covering space X = M of a compact four-manifold with the action of
the fundamental group I' = 71 (M).

Let E — X be a vector bundle. Let us say that a smoothmap ¢ : H' = L,zc (X;E)—-H
is locally compact on each bounded set if its restriction c|Li (K, E)o N D is compact,
where K C X is a compact subset and D C H' is a bounded set.

5.2. Technical estimates

We apply the results in this subsection to construct a finite-dimensional approximation
method in the next subsection. In particular, Lemma 5.1 below is applied to the Dirac
operator in the case of the covering-monopole map.
Let
D:L}(X;E)— L} | (X:E)
be a first-order elliptic differential operator that is I'-invariant. Let K C X be a compact
subset and consider the restriction

D:LY(K;E)y — L?_(K;F)o.

Lemma 5.1. Suppose D : Li(X; E") — Li_l(X; E) has closed range. Then, D is sur-
Jjective if and only if D* : Li (X :E)— Li_l(X . E') is injective with closed range.

Proof. The proof consists of two steps.
Step 1. Let us check that the formal adjoint
D*:L{}(X:E)— L;_,(X;E)

is injective with closed range.
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Ifwe Li (X; E) with D*(w) = 0 holds, then

(D*(w), u)Li_l = (w, D(u))lec_ =0

1
follows for all u € Li (X : E’). This implies w = 0 by the surjectivity of D.
Forany w € L7, there is u’ € L, such that w = D(u’) holds. Then
2
| D* )7z = (D (w), D*(w),2
— 2 2
= (D*D(u’),D*D(u’))Li_l > C||u/||L]2€H > C||D(u’)||Li

2
= Cllwl;.

Hence, D* also has closed range.

Step 2. Conversely suppose D : L?(X; E') — L7 _ (X; E) has closed range but is not
surjective. Then, there is 0 # u € L7 _ (X E) with

(D(w)! u)Li—l = (w, D*(u))L2 =0

k—1

for any w € Li (X; E’). This implies u € Li(X; E) with D*(u) = 0 as D* is elliptic.
Combining this with Step 1, it follows under the closedness of D that D is surjective
if and only if D* is injective. (]

Remark 5.2. In general, D : L,% (K;E"o — L,ZC_l (K; E)g is not necessarily surjective,
evenif D : lec (X;E') > L,ZC_1 (X; E) is surjective. Later, we will verify that it is asymp-
totically surjective in some sense.

Lemma 5.3 below tells us that, under some condition, the vectors w; distribute in some
high spectral region in the co-kernel of D.

Lemma 5.3. Suppose D : L,ZC(K; E"o — Li_l(K; E)o has closed range. Moreover,

assume that a sequence w; € Li(X; E) with |w; ||L/2c = 1 satisfies the condition

lim  sup |(w,~,v)Lz |=O,
=00 ye BNim D k=1

where B C Li_l (X; E) is the unit ball. Then, w; — Po(w;) converges to 0 in lec—l’ where
Py is the spectral projection to the harmonic space of DD*.
In particular, w; — 0 holds in Li_l if D is surjective with closed range.

Proof. The proof consists of three steps.

Step 1. Assume that there is a sequence w; € Li (X; E) with ||w; ”Li = 1 and

sup \(wi,v)Li 1| <ég — 0.
veBNim D -
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Then, any f € Li (X; E) with ||D(f)||L]§71 = 1 satisfies the bounds

(D*(w,-), f)L]%_l = (w,-, D(f))Li—l <¢g
by Lemma 3.1.

Step 2. Let P be the spectral projection of DD* on L?(X; E). We claim that it is suffi-
cient to confirm the convergence

Jim. | Poz iz <& >0 (5.1)

for any 0 < A < u. Then, it follows from the equality ||D*w||i2 = (w, DD*w)Li 1
k-1 -

that the estimate
2 2 2 2 2 2
lwlZ, = 1D* w2, + s = w2 lwl?, + vl (52)

holds for any element w € im P2 . This implies that the L,zc_1 norm of the projection
to high spectra of w; must be small if |Jwj; || 2= 1 holds. Then, combining this with the
two properties (5.1) and (5.2), we obtain the convergence

lim || Ppzcoy(wi)||;2 <& —0 (5.3)
i—00 k-1
for any A > 0. By the diagonal method, there is a decreasing sequence 0 < A; — 0 such

that convergence holds:
Aim | Pz ooy (i) 2| = 0. 5.4

Noting that DD* has a gap in its spectrum around zero, we choose A2 > 0 in this gap.
Then, P[Aiz,oo) (w;) = w; — Py(w;) and, hence, its Li_l—norm goes to zero by (5.3). This
implies the conclusion.

Step 3. Let us verify the claim in Step 2. We suppose the contrary and assume that there
is a constant with the uniform bound

Jim [ Ppe oy wi) 2 = g0 > 0.
We set f = D* Ppy2 ,21(w;). Then, we have the bound
IDf Iz

2
< .
2 < il

< 12 ||lw; < 2
2 =W willgz = 7

Then, we have the estimates
(w,-, Df)leci1 = (w,-, DD*PMz,Mz](u)i))L}L1 = (P[Az,u;](wi), DD*P[AZallvz](wi))Li71
2
= 22| P oy (wi) |2 | = A0,

This contradicts to the assumption. Thus, combined with Step 2, we obtain the first state-
ment.
The last statement follows by Lemma 5.1. ]

Let us consider the restriction

D:LY(K;E')y — LI_,(K;E)o
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and set
ok 1= D(L2(K; E')o)" N L}_,(K; E)o.

Lemma 5.4. Suppose D : LZ(X; E')— L7 _ (X; E) is surjective. Assume that a sequence
u; € L,zc(K; E")o with ||u; ”Li = 1 satisfies

| Px (i) — u; HLI%—I — 0,

where P : L,ZC_I(K; E)o — 0k is the orthogonal projection. Then, |u; ”LI%—I — 0 holds.
Moreover,
1 Pro.ayuill 2 — 0

holds for any A > 0, where P 3] is in Lemma 5.3.

Proof. Take any v € L,% (K; E)g. Then, we have the estimate

[(v.D*ui)2 | =[(Dv,ui)z | = |(Dv. (1~ PK)ui)Li_l|

< | = Px)u; ||L]2H [vllL2 — 0.

Hence, D*u; weakly converges to zero.

Assume that a subsequence of {||u; || Li—l} is uniformly bounded from below. For
simplicity of notation, we assume | u; || L &> 0. Then, from Rellich’s lemma a sub-
sequence of {u; }; converges to a non-zero element u € L,zc_1 (K; E)o with D*u = 0. This
cannot happen by Lemma 5.1 since D is assumed to be surjective. Hence, ||u; || L., 0
holds.

Then, one must see the property || Pjo,A1u; || = 0 for any A > 0, since we have the
estimates || P[o ju: ”Li < Al Proajui ||le(_1 — 0. ]

5.3. Finite-dimensional approximations

To apply a method of finite-dimensional approximation, we need to induce a kind of
properness on the image of the projection.

Let F = [ + ¢ : H — H be a metrically proper map between Hilbert spaces. Then,
there is a proper and increasing function g : [0, o0) — [0, 00) such that the following lower
bound holds:

g([Fm)]) = lIm]. (5.5)

Later, we analyze a family of maps of the form F; : Wi’ — W;, where Wi’ and W; are
both finite-dimensional linear spaces. We also say that the family of maps is metrically
proper, in the sense that there are positive numbers r;, s; — oo such that the inclusion

FY(Bs;, N\ W;) C B, N W/

holds, where By, , B, are the open balls with radii s; and r;, respectively.
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Lemma5.5. Let F =1 + ¢ : H' — H be a metrically proper map. Suppose [ is surjective
and ¢ is compact on each bounded set. Then, for any r > 0 and 8y > 0, there is a finite-
dimensional linear subspace Wy C H' such that for any linear subspace Wy C W' C H',

proF:B.NW — W

also satisfies the bound
f(lpro Fam)])) = f1m|

foranym € B, N W', where W = I[(W'), pr is the orthogonal projectionto W, f(x) :=
g(x + 8p), and g is in (5.5).
Moreover, the following estimate holds:

sup | F(m)—pro Fm)| < .
meB,NW'
Proof. Take any positive constant §o > 0. Let C C H be the closure of the image c¢(By),
which is compact. Then, there is a finite number of points wy, ..., w, € ¢(B;) such that
their §¢ neighborhoods cover C. Choose wl{ € H’ such that l(wl/-) =w; holdfor1 <i <m,
and let W be the linear span of these w;.

The restriction pro F : B, N W — W, satisfies the equality

proF =[l+proc,

where Wy = [(Wj). Notice the equalities pr o F(w]) = F(w;) for 1 <i < m. Then,
for any m € B, N W, there is some w; with [c(m) — c(w})|| < 8o, and the estimate
| F(m) — pro F(m)| < 8o holds.

Since g is increasing, we obtain the estimates

g([|pro Fm)|| + 80) = g(|F(m)|) = l|m]l.

The function f(x) = g(x + Jo) satisfies the desired property.
For any other linear subspace Wy C W’ C H’, the same property holds for pro F :
B N W' — W with W = [(W'). [

Remark 5.6. Note that if / is not injective, then / (W) is already infinite-dimensional,
in the case of infinite covering-monopole map, because the kernel is infinite-dimensional.

Remark 5.7. In the case of the covering-monopole map we analyzed, the domain is not
the full Sobolev space, but its closed linear subspace L7 (K; St L7 (X:A')NKerd*.
Moreover, the target space is the sum of the Sobolev space with the first L2 cohomology
group. Nevertheless, the content in Section 5 works for this case, as the linearized map
splits into the sum of the Dirac operator with d* and the harmonic projection.

5.3.1. Compactly supported Sobolev space. Let

F=l+c:Li(X;E)—> L;_|(X;E)
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be a smooth map between Sobolev spaces, where [ is a first-order differential operator and
¢ is pointwise and locally compact on each bounded set.

Local compactness on each bounded set means that the restriction on Li (K;E"oNB
is compact, where B C Li (X; E’) is abounded set and K C X is a compact subset.

In Section 5.3.1, we assume that / has closed range and that the restriction

F:L2(K;E)o — L?_(K;E)o

is metrically proper.
Consider the splitting

L_,(K; E)o = I(LE(K: E')o) @ Ok,
where dg is the orthogonal complement of / (L]% (K; E’)o). We denote by
prg i Lz (K; E)g — [ (LZ(K; E)o)

the orthogonal projection. For any closed linear subspace W C lec_l(K ; E)o, we also
denote by
pry : Ly_(K;E)o > W

the orthogonal projection.
Let S C L,2€(K ; E")o be the unit sphere and consider the closure of the image as

¢(8) CI(LY(K:E')o) ® 0k = L}_ (K: E),.

We say that ¢ is quadratic if ¢(av) = a*c(v) holds forany a € R and v € LZ(K: E')o.

Lemma 5.8. Assume, moreover, that ¢ is quadratic. If the wy # 0 component in
l(L,zc(K; E’)o) is non-zero for any element w = (w1, w2) € ¢(S), then the composition

prg o F : LE(K: E')g — [(LR(K: E')o) C L;_,(K;E)o
is metrically proper.
Proof. Since ¢(S) is compact,

r=inf_Jwi >0
wec(S)

is positive. Then, for any u € Li(K; E’)o, the estimate ||prg (c(u))| > r||u||ii holds

because ¢ is quadratic. On the other hand, ||l(u)||LI%71 < C”“”Li holds for some C.
Hence, we obtain the lower bound

2
Iprg o Follzz | = rlul?, = Clullz.

The conclusion follows. [
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Of course, it is unrealistic to expect that such assumption could happen. Therefore, we
state a modified version.

Let B, C Li (K; E")o be the open ball with radius r. Take a finite-dimensional linear
subspace U, C dx and denote the orthogonal projection by

PriLi_((K;E)o — [(LZ(K;E")o) @ Ur C Ly_(K; E)o.

Lemma 5.9. Suppose F is locally metrically proper. Moreover, suppose that | has closed
range and c is locally compact on each bounded set. Then, for each r > 0, there is a
finite-dimensional linear subspace U, C 0k such that the composition

ProF :B, —> I(L}(K; E")) ® Uy
is still metrically proper.

Proof. The proof is very much in the same spirit as Lemma 5.5. We fix § > 0, which
is independent of r > 0. Then, for this § > 0 and r > 0, we take a sufficiently many
but finite set of points {p1, ..., pm} C B, and denote the finite-dimensional linear sub-
space spanned by c(p;) as W, . Then, we can assume that W, C lec_l (K; E)g satisfies the
bound d (W, ¢(By)) < § as c is locally compact on each bounded set. Hence, any element
w € pry, (c(By)) is at most § away from U, := pry, (W,), where pry is the orthogonal
projection to dg.
Let us consider the linear plane

Ly = 1(L3(K; E")o) + W, = [(LZ(K: E')o) ® Uy
Then, we obtain the bound

§ > sup |F(m)—pry, o F(m)|, (5.6)

meB,

where the right-hand side depends on r > 0, but § is independent of it. Hence, the conclu-
sion follows from the estimate (5.6) with metric properness of F. ]

Corollary 5.10. Suppose F, [, and c satisfy the conditions in Lemma 5.9. There are finite-
dimensional linear subspaces W] C Li (K; E)o and U, C 0k with a linear map

I': LE(K; E")o — I(LZ(K; E")o) & Uy

such that the following hold.

(a) The composition of I’ with the projection prg to the first component coincides
with [l as
I =prgol : W — I(W)).

(b) Let pry, : L,%_l(K, F)o — W, :=1l'(W,) be the orthogonal projection. Then,
pry, o F: W/ N B, — W,

is proper (see Lemma 5.5).
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(o) Ifl: L,ZC (X, E) — L,zc_1 (X; F) is injective, then the estimates

[t = @) = 3]
hold for any v € Li (K; E)o.
The same properties hold if one takes a larger but still finite-dimensional linear sub-
space W/ with W) C W/ C L3(K: E')o.
Proof. Let{p1,..., pm} C B, and U, be as in the proof of Lemma 5.9 such that F(p;) €

I(L7(K: E")o) & U, holds. Let W/ C L7 (K; E')o be the finite-dimensional linear sub-
space spanned by {p1,..., pm}. One may assume the estimate

d(prg (c(Br)). L(W))) <8 5.7

by adding extra points, if necessarily.
Let us introduce a linear map as follows. Let f : [0, 00)? — [0, 00) be a smooth map
with
s r=>s,

2r 2r <s.

Then, we define I’ : W — Z(LIZC (K; E")o) @ U, by the linear extension of the map

.

We require a slightly complicated formula for the second term because the norm
lprg o c(pi)| can grow more than linearly. Clearly, both (a) and (c) are satisfied.
There is a proper increasing map g : [0, c0) — [0, 00) independent of 7 such that

pry, o c(pi)
1 + |[pry, o c(pi)l

U'(pi) = 1(pi) + f(||1(p0)

pry, o c(pi)|)

max ([lprg © F0) 2z Ipro, o c@)lz2 ) = g(lvll2)

holds for v € D, N W/, since F is metrically proper. Hence, (b) follows by combination
with (5.7). [

5.3.2. Asymptotic surjection. In this section, we assume the restriction F |L,2c (K; E)ois
metrically proper on any compact subset, / : Li (X5 E) — Li_l (X; F) is surjective, and
¢ is locally compact on each bounded set.

One can obtain a finite-dimensional approximation of F as Corollary 5.10, but the
linear map [’ may be quite different from /. In this subsection, we will use a larger compact
subset K C L in the target space such that [’ surely approximates /.

We want to use P, o F : W/ N B, — [(L7(K; E)o) ® U, in Lemma 5.9 as an asymp-
totic approximation of F instead of using F itself. As above, we have to use a pair of
compact subsets to approximate its linearized operator. Note that the choice of these lin-
ear subspaces W, or U, heavily depends on the compact subset K C X. Thus, we denote
PX instead of P, above.

Let us consider two compact subsets K C L C X and let 0 C lec_l (L; E)o be the
orthogonal complement of / (L,2c (L, E)p).
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Lemma 5.11. We fix K. Then, for any € > 0, there is another compact subset L D K such
that the orthogonal projection

P:L; (K;E)— 0L

satisfies the estimate
[P <e.

Proof. Letus choose a compact subset L C X such that it admits a smooth cut-off function
¢ : L — [0, 1] with the following properties:

(1) ¢lK =1,
(2) ¢|L¢ =0, and
3) ”v(‘p)”Li,l < §, where § > 0 is sufficiently small.

There is a constant C such that for any u € L_ (K; E)o, there is v € [7!(u) C
L3 (X: E') with lolle < Cllullzz_ -
It follows from the equality

u=olv) =1l(pv) —[I.pJv
that the estimates
[Pal; = Uelol,e = 8lvlz < Collulyg,
hold. ]
Let L be a compact subset and apply Corollary 5.10 to L as
I': L2(L; E"Yo — 1(L3(L; E')o) ® UF
with W/ C Li (L; E)o and a proper map
pry, o F : W/ N B, - W, C L{_ (L. E)o.

Corollary 5.12. We fix K. Then, for any ¢ > 0, there is another compact subset L. O K
such that the operator norm of the restriction satisfies the estimate

[ =) LR(K, E')o| <& (5.8)
Moreover, the restriction
pry, o F : W/ N B, N LE(K; E')g — W, CI(LZ(L; E')o) ® UF
satisfies the estimate

sup Herr o F(m) — F(m)||L2 <e. (5.9)
meW/NB,NL}(K;E")o k=1
The same properties hold if one takes a larger but still finite-dimensional linear sub-
space L3 (L, E")o D W/ D> W,

Proof. The first estimate (5.8) follows from Corollary 5.10 with Lemma 5.11. Moreover,
through combination with Lemma 5.5, we can obtain the second estimate (5.9). ]
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5.4. Finitely approximable maps

So far, we have fixed a compact subset K C X . Our final aim is to approximate a non-linear
map between Sobolev spaces over X by a family of maps between finite-dimensional
linear subspaces that are included in exhausting compactly supported functional spaces.

Consideramap F =1 +c¢: L>(X; E') — Li_l(X; E). Throughout 5.4, we assume
that / : L,% (X, E') =~ Li_l(X, E) is a linear isomorphism and ¢ is pointwise and locally
compact on each bounded set. We also assume that F is locally metrically proper. Note that
these conditions satisfy the properties we have assumed in Subsections 5.3.1 and 5.3.2.

Recall the locally strong properness of a map in Definition 1.1. Note that the above
properties are satisfied if F is locally strongly proper, / is isomorphic, and c¢ is pointwise
and locally compact on each bounded set.

In particular, it follows from Theorem 4.1 that the covering-monopole map satisfies
the above properties if the AHS complex has closed range and 1 is isomorphic. This is
equivalent to the two properties that, if the AHS complex has closed range and the Dirac
operator is invertible, then a reducible solution exists and the fundamental group of X is
infinite.

Let us consider a family of maps:

FiZVVi/—>I/Vi,

where W/ C H' and W; C H are both finite-dimensional linear subspaces whose respec-
tive unions

o0 o0

Uw/icH. \JWwicH

i=0 i=0
are dense. We denote by B;l_ C Wi’ and Bs, C W; the open balls with radii r; and s;,
respectively.

Let us say that the family {F;}; is asymprtotically proper on H’ if there are two
sequences sg < §; <---—>ooand rg <r; < ---— 0o such that the following embeddings
hold:

F'(By) C By..

To obtain a better approximation as in Corollary 5.12, we can take a larger compact subset.
Let us apply this notionto H' = LZ(X: E')and H = L7 (X; E). Let

F=l+c:Li(X;E)—> L;_(X;E)

be a locally strongly proper map, where [ is a first-order elliptic differential operator and ¢
is pointwise and locally compact on each bounded set. Suppose / is an isomorphism. Let
us restate Corollary 5.12 in terms of a family of maps.

Corollary 5.13. There exists an exhaustion | ); K; = X by compact subsets and families
of finite-dimensional linear subspaces:

W/ C LZ(Ki; E')o and W; C Li_ (Ki; E)o
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such that the following holds. For any compact subset K C X, the limit of the operator
norms of the restriction

lim [ =)W/ 0 LE(K, o] = 0
1—>00
holds. Moreover, the restriction approximates F as

lim sup | Fi(m) — F(m)||,» =0,
=00 1 ew/NB,, L2 (K,E")o !

where F; = pry, o F : W/ — W is an asymptotically proper family with linear isomor-
phisms [; : W/ = W; and prw, : H — W is the orthogonal projection.

Let Ky € --- € K; € Kj+1 C X be an exhaustion of X by compact subsets and
E’, E — X be vector bundles over X. Then, we have an increasing family of Sobolev

Spaces:
L2(Ki; E')o C L2(Kit1:E')o C -+ C L3A(X: E').

Let F=[+c:L*X;E')— Li_l(X; E) be a smooth map, where [ is a first-order
differential operator and c is the non-linear term which is a pointwise operator.

Let F; and pry, Li_l (X; E) — W, be in Corollary 5.13, which considers a situation
in which a compact subset K is fixed. Now, we use whole families of such approximations
over K; and select well-approximated maps as below.

First, let us state a weaker version of the approximation.

Lemma 5.14. Let W/ be as in Corollary 5.13. For any v’ € Li (X; E'), there is an approx-
imation v] € W with v, — v’ in LZ(X: E") such that the convergence

lim || F; (v]) = FQ) [, =0

holds, where F; = pry, o F : W/ — W,.

Proof. Let v} € LZ(K;: E')o be any approximation with v, — v’. By Corollary 5.13,
lim; || F; (v])) — F(vl/-o)||Li_1 = 0 holds for each iy. Since F' is continuous, for any ¢ > 0,
there is io such that the estimate || F(v] ) — F(v')|| < & holds.

Note that we can regard vl’.0 € W/ fori > iy. Then, we replace the approximation of
v’ such that we obtain the desired estimate by applying the triangle inequality. ]

Let B, C W/ and B;; C W; be the open balls with radii r; and s;, respectively.

Definition 5.1 ([26]). Let F = [ 4+ ¢ : H' — H be a smooth map, where [ is the linear
part and c is its non-linear term.

We say that F is weakly finitely approximable, if there is an increasing family of
finite-dimensional linear subspaces Wy C W/ C --- C W/ C --- C H’, an asymptotically
proper family {F;};, and linear isomorphisms /; : W/ = W; such that

(1) their union ( J;»o W/ C H' is dense;
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(2) the inclusion Fi_l(Bsi) - B;l_ holds, where
Fii=pryo F: W — Wi = [;(W;)

and pr; : H — W; is the orthogonal projection;
(3) for each iy, the norm converges:
lim  sup “F(m) — F;(m) ||L2 = 0;
l—)()()mE ’ k—1

Tig

(4) the operator norm of the restriction converges:
lim | =)W, | = 0;
1—>00

(5) the uniform bounds C~!||/|| < ||I/;|| < C||/| hold on their norms, where C is
independent of i.

Later, we will introduce a finite approximability, below Definition 6.1.

Let us introduce two variations:

(A) Suppose both H’ and H admit linear isometric actions by a group I" and assume
that F is I'-equivariant. Then, we say that F is weakly finitely I"-approximable if, more-
over, for the above family {W/'};, the union

JrwhHnw/} c 1
i
isdense forany y € I'.
Note that the above family { F;}; satisfies convergence for any y € I':

lim sup H yF;(m) — F;(ym) || =0

1= meB Ny=1(B},)
because the following estimate holds:

|yFi(m) — Fi(ym)|| < |yF(m) —yF;(m)| + ||yF(m) — F;(ym)||
= | F(m) — Fi(m)| + | F(ym) — F;(ym)||.

Let us take y € I and consider the y shift of the weakly finite approximation data
YW, y*(F), v

This shift gives another weakly finite approximation of F'.
(B) Suppose F =1 + ¢ : Li (X;E')—> Li_l (X; E) consists of a first-order differen-
tial operator and c is the non-linear term by some pointwise operation.
Let us say that a weakly finite approximation of F is adapted if there is an exhaustion
K, C---CK; CKjy1 C--- C X by compact subsets such that the following inclusions
both hold:
W/ C LY (Ki: ENo, Wi C L_,(Ki; E)o.



Covering-monopole map and higher degree in non-commutative geometry 1059

Hereinafter, we always assume that any weakly finite approximation of F is adapted
whenever F is a map between Sobolev spaces. Note that if a group I acts on X, then the
I’ orbit I'(K;) = X coincides with X for all sufficiently large i. Hereinafter, we assume
this property for any i.

Proposition 5.15. Let
F=l+c:H =Ly(X;E)> H=L;_(X;E)

be a T'-equivariant locally strongly proper map, where | is a first-order elliptic differen-
tial operator and c is pointwise and locally compact on each bounded set. Suppose [ is
isomorphic.

Then, there is an adapted family of finite-dimensional linear subspaces {W/}; that
weakly finitely I"-approximates F.

Proof. Take an exhaustion of X by compact subsets K; C --- C K; C K;j4+1 C X. It
follows from Corollary 5.13 that there are finite-dimensional linear subspaces W, C
L,% (K;; E")gand W; C L12<—1 (K;; E)o with positive numbers s;, r; > 0 such that the family
of maps:

F; :=erioF:B;i - W,

is asymptotically proper and satisfies the inclusion Fi_l (By;) C B;i . Moreover, the restric-
tions satisfy the convergences

lim |F; — Fllpz =0 and lim ||(1—1,-)|Wl.;|| =0.
1—00 o 1—>00

These properties also hold if W/ is replaced by any other finite-dimensional linear
subspace Wi’ that contains Wi’ . Thus, we assume that the union

W/ c Ly(x:E)

i>1

is dense and, hence, Ui W; C Li_l (X; E) is also dense because [ is assumed to be iso-
morphic.

Let us consider the I action. Let us replace W, by the span of I'(W/) N L7 (K;; E')o
and denote it by W;”. Note that W, contains W, and is also finite-dimensional. Moreover,
the corresponding F; and /; still give the weakly finite approximation data.

Take any y and i. Then, there is some j > i such that y~'(W/) C L7 (K;; E)o. So
y~'(W/) C W/ Hence, the inclusion

V(I/Vj”) N I/Vj” > VV/

holds. This implies that the union of the left-hand side with respect to j is dense in
Li (X; E’). This gives a weakly I'-finite approximation of F. ]
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Remark 5.16. The above argument implies that by adding more linear planes if neces-
sarily, one may assume I'-invariance of the union

V(LiJVVi)ZL;JVVi

forany y € T.
In other words, for any y and i, there is some i’ > i such that the inclusion y(W;) C W;/
holds.

5.5. Sliding end phenomena

In general, F;|B,, N W/ may not converge to F' in operator topology if there is a difference
between the images of pro ¢(L2(K; E')g) C L7_,(K: E)g and [(LZ (K E')o).
Example 5.17. Let us give a simple example. Let H' = H = [?(Z) and consider F =
[ +c:H — H,wherel({a;};) ={ai—1}; is the shiftand c({a; }) = {b; }; with b; = f(a;).

Weset Viyn ={{ai}i :a; =0fori <morn <i}. Then,!: Vi, n = Vipt1,n+1 and the
restrictionpro F — F : Vi, y — Viy n1 satisfy (pro F — F)({a; }i) = — f(am). Therefore,
pr o F pushes bubbling f(a,,) off as m — —oco.

Let us introduce a sliding end quantity. Let K1 € --- € K; € K;4+1 € X be an exhaus-
tion of X by compact subsets and let

pr; i Ly (Kis E)o — (LR (Ki; E)o)

be the orthogonal projections.
We introduce a sliding end quantity b(F) € [0, Cyp] given by

b(F) := inf lim b(F);,

{Kj}i 1—>00

where

b(F)i= sup {[(1—pr)(c@)] : Ivllz2 (& = 1}.
UELIZC(KI')O k=1

6. Infinite-dimensional Bott periodicity

Let H be a Hilbert space. Higson, Kasparov, and Trout constructed the Clifford C*-
algebra S€(H) of H and verified Bott periodicity B : K(Co(R)) =~ K(SC(H)) by use
of approximations by finite-dimensional linear subspaces. If a discrete group I" acts on H
linearly and isometrically, then its construction induces the equivariant Bott periodicity:

B:K(Co(RxT)) = K(SE(H)xT),

where the crossed product is full.
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Remark 6.1. Even though the C *-algebra in the right-hand side is generally quite “huge”,
its K-theory has the same size as K«(C *I"). In non-commutative geometry, it is conjec-
tured (the Baum—Connes conjecture) and actually verified for many classes of groups that
the K-theory of the reduced group C*-algebra C;T" is isomorphic to the K-homology
of the classifying space BT if T is torsion free. In particular, K, (C*T') is isomorphic
to K«(BT) if T is a torsion-free amenable group [21]. Notice that K, (X) is rationally
isomorphic to H«(X; Q) for a CW complex X.

6.1. Asymptotic unitary maps
Let/ : H' =~ H be a linear isomorphism between Hilbert spaces.

Definition 6.1 ([26]). Let H' and H be Hilbert spaces and let / : H' =~ H be a linear iso-
morphism. Then, / is asymptotically unitary if, for any & > 0, there is a finite-dimensional
linear subspace V' C H’ such that the restriction

1Vt ~it
satisfies the estimate
I =Div+<e
on its operator norm, where [ is the unitary of the polar decompositionof [ : H' =~ H.

Let F =/ 4 c: H' — H be weakly finitely approximable with F; : W/ — W; (see
Definition 5.1). In [26], we have introduced finite approximability on F.

Definition 6.2. (1) F is finitely approximable if, moreover, / is asymptotically unitary.
(2) F is strongly finitely approximable if it is finitely approximable with the same
l; = [ and ¢; = pr; o ¢ such that

lim sup ||(1—pr;)oc(m)|=0

l—)OOmEB;i

holds, where pr; : H — W; is the orthogonal projection.
(3) F is asymptotically finitely approximable if there is a stratification by infinite-
dimensional Hilbert subspaces:

Hi CH,C---CH'
with W/ C H] such that the restriction of the linear part /|H; on H/ is asymptotically
unitary for each i.

Remark 6.2. In (3) above, when we consider the I" action, we do not generally require
I"-invariance on each H/. Note that, by definition, the union | J; H C H’ is dense.

Suppose H’ and H are the Sobolev spaces such that [ : L,zc (X; E') ~ lec—l(X; E)
is an elliptic operator that gives an isomorphism. Recall the Sobolev norm introduced in
Section 3. We denote by P the spectral projection of [* o [, where [ is regarded as an
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unbounded operator on L2(X; E’) and [* is the formal adjoint operator. We mostly regard
[ as a bounded operator between Sobolev spaces and, hence, [* is the adjoint operator
between them, unless otherwise stated.

The following lemma 6.3 is a key to inducing asymptotic unitarity for an elliptic oper-
ator.

Lemma 6.3. Let [ be as above. Then, the operator | : H' =~ H satisfies the property that,
for any € > 0, there is Ao > 1 such that the operator norm of the restriction of [* ol on
P[Ao, 00) C H' satisfies the estimate

| = DI P[ro.00)| <e, 6.1)

where " is the unitary of the polar decomposition.
In particular, the self-adjoint operator

U:=[*ol=+1*:H ~H

satisfies the estimate
(U —id)| P[Ao, 0| < &. (6.2)

Proof. The latter statement (6.2) follows from the former (6.1).
Let us verify the former property (6.1). We set

N —1

Py(c) = 1

for ¢ > 1. Notice the equalities cPy—1(c) + 1 = Py (c).
If u is an eigenvector vector with /*/(u) = A2u, then the formulas

IIMIIii = P |ulZ,
hold for all k > 0. We can check this by induction as
(M,M)Li = (l(u)’l(u))Li_l + (l’t’u)L2

= (l*l(u),r,t)lek1 + (u,u)p2
A

2 2
)z + 2

In particular, if u € Li (X; E') with ||u ”Li = 1 lies in the image of the spectral pro-
jection to [A2, 00) on [* o[, then ||u||;2 is sufficiently small for large A¢ >> 1. Then,
from

<U, u)Li = (l(u)v l(u))lec—l + (M, u)sz

it follows that / is close to preserve the norms. ]
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Let!/: Li (X; E') =~ lec—l(X; E) be as above and let K C X be a compact subset.
Consider the restriction

[:L¥(K;E")o — Li_,(K; E)o.

Proposition 6.4. [ : LY (K; E')o — Li_,(K; E)o is asymptotically unitary. In particular,
U := 17! o[ is an asymptotic identity.

Proof. The proof consists of three steps.

Step 1. We restate that, for any ¢ > 0, there is a finite-dimensional linear subspace V C
L?(K; E')g such that the restriction

1:VENLE(K;Eo — LE_ (K E)o

satisfies
|@ =DV LEK ENo| <e.

In particular, we obtain the estimate
|(U —id)|[VE N LE(K; E')ol| <e.

We will verify this in Steps 2 and 3.
Note that an eigenvalue can have infinite multiplicity on L?(X), when X is non-
compact. For such cases, the above estimate does not hold.

Step 2. Let P[0,A] : L>(X; E") — L?(X: E’) be the spectral projection of /* o [ and let
Bk C L7(K: E')o be the unit ball.

We claim that P[0, A](Bg) C Li (X; E’) is relatively compact for every A > 0.

In fact, the inclusion L | (X: E’) — L (X: E') is compact by Rellich’s lemma.

Since the bounded map P[0, A] : L7 (X; E') — L7 (X; E’) extends to a bounded map
P[0, A] : L,% (X;E') — LiH (X; E'), the former map factors through the last one. Then,
the composition is relatively compact. This verifies the claim.

Step 3. Let us take an orthonormal basis {u;}; C Li (K; E')o and set uil = P[0, A](u;)
with ui2 =u; — ul-l € P(A, 00)(Bk). It follows from Step 2 that a subsequence of {u}};
converges in L,zc. In particular, for any & > 0, there is a finite-dimensional vector space V’
spanned by {u/ ,...,u} }forsome {i1,...,in} such that

| — pryu} “Li <e

holds for all i.
LetV C L,2( (K; E')¢ be a finite-dimensional vector space spanned by {u;,, ..., u;, }.
Then, the inclusion
V V' & P[A, o)

holds. Moreover, for any i, there is u € L,% (X; E) with [lu} — (u})! ”Li < ¢ such that
u; € V' @ P[A, 00)

holds. Then, the conclusion follows by Lemma 6.3. [
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In particular, if we apply Proposition 6.4 to the monopole map over a compact four-
manifold, we obtain the following.

Corollary 6.5. Let F = [ + ¢ : H' — H be the monopole map over a compact oriented
four-manifold M with b (M) = 0, such that the Fredholm index of | is zero. Then, F is
strongly finitely approximable.

Proof. This follows from [4] with Proposition 6.4. [
Remark 6.6. (1) In the case of the covering-monopole map:
B L2((X,2):ST) @ L2((X,g); A' ® iR) N Kerd*
— L} ((X.9):5” @ AL ®iR) & Hy(X)
(¢.a) = (Fz, 5,V ). [a]),

the target space is the sum of the Sobolev space with H(lz), where the latter space is
infinite-dimensional if not zero.

By Hodge theory, Ker d* decomposes as d*(L12c+1 (X; Aﬁ_)) &) H(lz) (X) and, hence,

U d* (L7 1 (Kii A%)o) @ Hiyy(X)
i
is dense in Kerd *.

The restriction of the linearized map on the harmonic part is, in fact, isometry. Hence,
the covering-monopole map is also asymptotically unitary over compactly supported
Sobolev spaces.

(2) In the case when [ : Li (X) =~ Li_l(X ) gives a linear isomorphism, we can use
the Sobolev norms by

()2 = ((*DFu,v),».

Then, [ : Li (X) = Li_l(X ) is unitary with respect to this particular norm. (See the
paragraph below the proof of Lemma 3.1.)

Now consider the case of a covering-monopole map.

Corollary 6.7. Assume the conditions in Proposition 5.15. Then, F can admit an asymp-
totic I"-approximation.

Proof. Let us take an exhaustion by compact subsets (_J; K; = X. It follows from Propo-
sition 5.15 that there is a family of finite-dimensional linear subspaces W, C L*(K;, E')
that satisfies the conditions in Definition 5.1. We may assume that it is adapted such that
W/ C L7 (K;, E')o.

To obtain an asymptotically I'-finite approximation, we set H; := LIZC(K,-; E’)o with
H' := L{(X: E’) in Definition 6.2. Then, from Proposition 6.4, the restriction

1:Ly(K;E"o — Li_(K;E)o

is asymptotically unitary on each compact subset K C X. |
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Remark 6.8. Let us describe some functional analytic aspect of a differential operator
acting on Sobolev spaces. Let [; : Li(Ki; Ey — Li_l(K,-; E)o be the restriction of

l:L2(X;E") — L2_,(X; E) such that the equality [}]; = PrL2(K;)o © iy 1li++1 holds on

L]% (K;; E")o, where il* : Li_l(K,-; Eo — lec(Ki; E)o is the adjoint operator between
these Hilbert spaces.
We claim that the restrictions of the self-adjoint operators below satisfy the equality

Tx7 / T 7 ’ : :
[P W, = 1 Ly | W, forip <.

Note that / is assumed to be a first-order differential operator. Let ¢; € C2°(K; 1) be a
cut-off function with ¢; | K;, = 1 and ¢; | K{ = 0. Consider the equalities among the inner
product values as

(ii*+1ii+1(v)» V) = ([i+l(v)»l~i+l(v/)> = ([z (v), [i((piv/))
= (IF i), i) = (@il T (), V')
for any unit vectors v € W, C L%(Kjy: E')o and v’ € L3 (Ki41; E')o. Hence, the equality
I 1li+1 = @il l; holds on Wt:) In particular,
(T liv1(),0") =0

vanishes for any v” € Li(K,-; E’)(J)- N Li(KH_l; E’)g. Thus, if we decompose v/ = u +
v’ e Li(KH_l; E")o withu € Li(K,-; E")o, then the equality

(Tl ). 0) = (I e ). u) = (1 (v). )

holds, which verifies the claim.
The above argument implies the inclusion

IFI (L (Ki—1: E")o) C LE(Ki; E')o
forany j >i.

6.2. Induced Clifford C *-algebras

We recall the construction of the induced Clifford C *-algebras in [26]. Assume that F =
[ 4+ c: H — H is finitely approximable as in Definition 6.2 with respect to the data
Wy C--- C W/ C---C H' with open disks B; C W/ and By, C Wj,and F; = 1; +¢; :
W) — W;.

Let S, := Co(—r,r) C S be the set of continuous functions on (—r, r) vanishing at
infinity and consider the following C *-subalgebras:

S, C(B;,) = Sri®C0(B;i,Cl(Wi’)).
Since the inclusion F;"!(By;) C By, holds, it induces a *-homomorphism:

F : S5,6(By,) — S, 6(B,)
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given by F*(h)(v') := l_l-_l (h(F;(v"))). Denote its image by
Sri(SFi (B;,) = Fi* (SSiG-:(BSi))a

which is a C*-subalgebra with the norm || || SrCr -
Let us say that a family of elements o; € S, CF, (By,) is F-compatible if there is an
element u;, € Ssl.0 6(3%) such that

o = Fi*(ui) €S,Ck (B;,-)

holds for any i > io, where u; = B(u;,) € Sy, €(By,;) with the standard Bott map f intro-
duced in [22]. For an F-compatible sequence o = {«; }i>i,, the limit

[{eudi] == lim lim Jlos|B], |
J—>00i—00

exists because both F; and /; converge weakly. Moreover, both F;* and 8 are *-homomor-
phisms between C *-algebras and, hence, both are norm-decreasing.

Definition 6.3. Let F be finitely approximable. The induced Clifford C *-algebra is given
by

S€p(H') = {{o;}i: F-compatible sequences},

which is obtained by the norm closure of all F-compatible sequences, where the norm is
the one above.

6.3. Induced maps on Clifford C* algebras
When H = E is finite-dimensional, S€(FE) is given by

Co(R)&®Co(E,CI(E)),

where CI(E) is the complex Clifford algebra of E. Let E and E be two finite-dimensional
Euclidean spaces and let
F=l+c.:E - E

be a proper map, where / is its linear part. Assume that/ : E’ ~ E is an isomorphism and

let/ :=1/1*] - : E’ =~ FE be the unitary corresponding to /. There is a natural pull-back
F*:SC(E) — SC(E’) which is induced from

F*: Co(E.CI(E)) — Co(E',CI(E"))

by u — v’ — [*(u(F(v'))), where [ : CI(E’) = CI(E) is the canonical extension of [
between the Clifford algebras. When F = [ 4+ ¢ : H' — H is a map between infinite-
dimensional Hilbert spaces, we typically cannot obtain such a general induced map as F'*
between SC(H ), in general.
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Lemma 6.9 ([26]). Let F =1 + ¢ : H — H be a strongly finitely approximable map.
Then, it induces a x-homomorphism:

F*:SC(H) — SC(H').
Let us apply K-theory. The above F* induces a homomorphism:
F*:7 = K(SC(H)) > K(SC(H")) = Z.
It is given by the multiplication of an integer that we call the degree of F as follows:
F*=deg Fx:Z — (deg F)Z.

Remark 6.10. We can replace the condition of linear isomorphism of / with a zero Fred-
holm index [26, Remark 5.4].

For finitely approximable F', we constructed a variant SCg(H) of SC(H) in [26].
In fact, its construction can be straightforwardly generalized to apply and obtain the C *-
algebra.

Lemma 6.11. Let F be asymptotically finitely approximable as in Definition 6.2. Then,
there is a C*-algebra SCp(H').

If H = E’ and H = E are both finite-dimensional, then an asymptotically finitely
approximable map is finitely approximable, and S€r (E’) is given by the image of the
induced map

F*:SG(E) = SCp(E') = F*(SC(E)) C SC(E")

in the standard sense in basic algebraic topology.

The following property has been verified for the class of finitely approximable maps
in [26]. However, the proof is parallel to the case for a broader class of asymptotically
finitely approximable maps.

Proposition 6.12. Let F =1 + ¢ : H' — H be a finitely approximable map. Then, F in-
duces a *-homomorphism:

F*:SG(H) — SCr(H').

If a discrete group T acts on both H' and H linearly and isometrically, then F* is
I-equivariant.

In particular, F' induces a homomorphism
F* : K«(SC(H) % T) = Kuy1 (C*(I')) — K(SCp(H') xT),

where the isomorphism above is given by [22].

For convenience, we now quickly describe how to construct the induced *-homomor-
phism. Take an element v € SC(H) and its approximation v = lim;_,», v; With v; €
S5; €(Bs,) = Co(—si,5:)®Co(Bs;, CL(W;)).
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Consider the induced *-homomorphism
F* : S,C(Bs,) — Srl.G(B;i)

and denote its image by Sy, CF, (B;,) := F;*(S5; C(By,)).

Let u; = B(v;)) € S;;€(By;) be the image of the standard Bott map for some iy.
Then, the family {F;*(u;)}i>i, determines an element in SCr(H'), which gives a
*-homomorphism

F*:S

C(By ) — SCr(H')

Sig Sig
since both F;* and B are *-homomorphisms. Note that the composition of the two

*-homomorphisms,
B F* ,
SsiOG(BS,.O) — SS,-(;G:(BS,-(]) —> SCr(H),

coincides with F'* : S5, €(By, ) > SCF(H').

Take two sufficiently large iy > ip >> 1 such that the estimate ||B(v;,) — v;0|| <e
holds for a small & > 0. Set u} = ﬁ(vié) € S;,C(By;) for i > ijy. Since F* is norm-
decreasing, the estimate || F;* (u;) — F;*(u})|| < & holds for any i > i). Hence, the estimate
| F*(vig) — F* (v} )|l < ¢ holds.

Thus, we obtain the assignment v — lim;,— o0 F *(vj,), which gives a I"-equivariant
x-homomorphism:

F*:SC(H)— SCr(H),

where {v; }; is any approximation of v.

7. K -theoretic higher degree

Let H’ and H be two Hilbert spaces on which T acts linearly and isometrically, and let
F =1+c:H — Hbeal equivariant smooth map such that / : H" == H gives a linear
isomorphism.

Assume that F' is asymptotically I'-finitely approximable such that there is a family of
finite-dimensional linear subspaces Wy C W] C --- C W/ C --- C H’ with dense union,
F; : W/ — W; = [;(W/) with the inclusions F;"!(By,) C By, and two convergences to
both F and [ (see Definition 6.2 and Definition 5.1).

Our basic idea is to pull back functions on W; = [;(W/) by F; and combine them.
Consider the induced *-homomorphism F;* : SC(W;) — SE(W}) by

FrX(f®h)(v) = f&I7 (h(F;(v))).

where SC(W;) = Co(R)&Co(W;, CL(W;)).
We shall give the equivariant degree of the covering-monopole map as a homomor-
phism between K -groups of the C *-algebras.
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Theorem 7.1. Let F =1 + ¢ : H' — H be the covering-monopole map. Assume that
the linearized operator is an isomorphism. Furthermore, assume that the AHS complex
has closed range over the universal covering space. Then, F induces the equivariant
x-homomorphism

F*:SC(H) — SCr(H').

In particular, it induces a map on K-theory as
F*: Ky (C*(T)) > K«(SCp(H') % T).
We call this as the higher degree of the covering-monopole map.

Proof. 1t follows from Theorem 4.1 that the covering-monopole map is locally strongly
proper.

Then, by Proposition 5.15, it is weakly I'-finitely approximable. By Corollary 6.7,
F is actually asymptotically I'-finitely approximable.

Then, the conclusion follows from Proposition 6.12. [

Finally, we describe the case of the monopole map over a compact manifold.

Proposition 7.2. Let F : H' — H be the monopole map over a compact oriented four-
manifold M with bY(M) = 0 and bT (M) > 1. Then, F induces a *-homomorphism

F*:SC(H) - SC(H').
Moreover, the induced map
F*:K(SC(H))=Z — K(SC(H") = Z
is given by multiplication by the degree O SW invariant.

Proof. Suppose the index is non-zero. Then, we simply put the map as zero.

Suppose the index is equal to zero. If [ is linearly isomorphic, then the conclusion
follows from Corollary 6.5 with Lemma 6.9. If the Fredholm index of / is zero, then the
same conclusion follows from Remark 6.10. The K-theoretic degree of F' coincides with
the degree 0 SW invariant by a theorem in [4]. ]
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