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An analog of the Krein–Milman theorem for
certain non-compact convex sets

George A. Elliott, Zhiqiang Li, and Xia Zhao

Abstract. We make a contribution towards extending the remarkable Krein–Milman analog result
of K. Thomsen and L. Li, in which a certain non-compact convex set is shown to be generated by
its extreme points.

1. Introduction

The classical Krein–Milman theorem states that any convex and compact subset of a
locally convex topological space is the closure of the convex hull of its extreme points.
The Krein–Milman theorem has many applications in different areas of mathematics, e.g.,
dynamical systems, operator algebras, etc. A strikingly new result resembling the Krein–
Milman theorem, but without the compactness, was obtained by K. Thomsen in [3] and
(in a stronger form) by L. Li in [1], for the convex set of unital positive linear maps on
C Œ0; 1�. These maps are also called Markov operators on C Œ0; 1�.

Although this set is closed in the topology of pointwise convergence (the strong oper-
ator topology), it is not compact. In spite of this, Thomsen and Li succeeded in showing
that this closed convex set is the closed convex hull of its extreme points. These are of
course the unital algebra homomorphisms.

In this paper, we study the possibility of extending this result. To be precise, we
investigate the approximation problem for a Markov operator on C Œ0; 1� leaving a cer-
tain subspace invariant, which corresponds to the space of continuous affine functions on
the cone of traces on a certain subhomogeneous C �-algebra. We want to use an aver-
age of homomorphisms on C Œ0; 1� to do an approximation, additionally requiring that the
average also leaves the subspace invariant.

In one case, we have succeeded in making these homomorphisms themselves leave the
subspace invariant—they are exactly extreme points. We present such an approximation
for the subspace of C Œ0; 1� arising from a Razak C �-algebra, namely, the following C �-
algebra (see [2]):

R.a; k/D

²
f 2C Œ0; 1�˝Mm j f .0/D

�
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�
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³
;
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where a, k, m, and n are non-zero natural numbers. Such a C �-algebra is non-unital
and stably projectionless. The space of continuous affine functions on the tracial cone of
R.a; k/ is isomorphic to the subspace C Œ0; 1�.a;k/ of C Œ0; 1� given by

C Œ0; 1�.a;k/ D

²
f 2 C Œ0; 1� j f .0/ D

a

aC k
f .1/

³
(see [2, Proposition 2.1]). Note that, for ease of notation, we consider complex-valued
functions.

The first main result of this paper is the following theorem (of Li type).

Theorem 1.1. Given any finite subset F � C Œ0; 1�.a;k/ and " > 0, there is an integer
N > 0 with the following property: for any unital positive linear map � on C Œ0; 1� which
preserves C Œ0; 1�.a;k/, there are N unital homomorphisms �1; �2; : : : ; �N from C Œ0; 1� to
C Œ0; 1� such that each �i leaves C Œ0; 1�.a;k/ invariant (and hence 1

N

PN
iD1 �i .f / will also

do the same job) and 




�.f / � 1

N

NX
iD1

�i .f /






 < "
for all f 2 F .

For the case of different subspaces C Œ0; 1�.a;k/ and C Œ0; 1�.b;k/, there is no unital
positive linear map on C Œ0;1�which sends C Œ0;1�.a;k/ to C Œ0;1�.b;k/ if b < a; see Remark
3.8. So, we only need to deal with the case b > a, and a theorem of Thomsen type is
obtained.

Theorem 1.2. Given any finite subset F � C Œ0; 1�.a;k/, " > 0, and any unital positive
linear map � on C Œ0; 1� which sends C Œ0; 1�.a;k/ to C Œ0; 1�.b;k/ with b > a, there are
N unital homomorphisms �1; �2; : : : ; �N W C Œ0; 1�! C Œ0; 1� such that 1

N

PN
iD1 �i .f /

belongs to C Œ0; 1�.b;k/ for all f 2 C Œ0; 1�.a;k/ and




�.f / � 1

N

NX
iD1

�i .f /






 < "
for all f 2 F .

To achieve these results, we keep tracking the approximation process of Li’s theorem
in [1] and Thomsen’s theorem in [3], and the crucial point is that we must argue if we
are able to choose proper eigenvalue maps to define homomorphisms such that their aver-
age preserves the subspace. The existence of such a choice relies on an analysis of the
measures induced by the point evaluations of a given Markov operator at 0 and 1.

The paper is organized as follows. Section 2 contains some preliminaries on Markov
operators and basic properties of the subspace C Œ0; 1�.a;k/ of C Œ0; 1�. In Section 3, con-
crete analyses of the measures induced by evaluations of a given Markov operator at 0 and
1 are given, and based on this the proofs of Theorems 1.1 and 1.2 are presented.
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2. Preliminaries

Definition 2.1. A Markov operator T from C.X/ to C.Y /, where X and Y are compact
Hausdorff spaces, is a unital positive linear map.

In S. Razak’s paper [2], he considered certain stably projectionless building blocks—
necessarily non-unital. The space of continuous affine functions on this building block’s
tracial cone is a non-unital subspace of C Œ0; 1�; see [2, Proposition 2.1]. Therefore, we
consider Markov operators on C Œ0; 1� which preserve this subspace. Fix a positive integer
a and a positive integer k, and denote by C Œ0; 1�.a;k/ the subspace of C Œ0; 1�:

C Œ0; 1�.a;k/ D

²
f 2 C Œ0; 1� j f .0/ D

a

aC k
f .1/

³
:

Next, we shall see some examples of Markov operators on C Œ0; 1� which preserve this
subspace.

� Example 1: let � W Œ0; 1�! Œ0:1� be a continuous function with �.0/D 0 and �.1/D 1,
and define a Markov operator T from C Œ0; 1� to C Œ0; 1� by T .f / D f ı �. Then, T
sends functions in C Œ0; 1�.a;k/ to C Œ0; 1�.a;k/.

� Example 2: let �1;�2 W Œ0; 1�! Œ0; 1� be two continuous functions such that �1.0/D 0,
�1.1/D 1, and �2.0/D 1, �2.1/D 0, and let k1; k2 be natural numbers with k1 > k2.
Define a Markov operator T on C Œ0; 1� as follows:

T .f / D
k1f ı �1 C k2f ı �2

k1 C k2
:

Then, T sends functions in C Œ0; 1�.a;k/ to C Œ0; 1�.b;k/, where b D k1aCk2aCk2k
k1�k2

� 0

(one can choose suitable k1; k2 to guarantee b being an integer).

� Example 3: in general, one has similar examples involving more points. With �1; �2
as above, as well as choosing �3 W Œ0; 1�! Œ0; 1� by �3.t/D 1=2, then, for any natural
numbers k1, k2, one can define a Markov operator T as follows:

T .f /.t/ D
k1f ı �1 C k2f ı �2 C s.t/f ı �3

k1 C k2 C s.t/
;

where s.t/ D . k1a
kCa
C k2/.1 � t /C .

k2a
kCa
C k1/t . One can verify that T sends func-

tions inC Œ0;1�.a;k/ toC Œ0;1�.b;k/ for some b > 0. This process can continue to involve
more points in Œ0; 1�.

The following direct sum decomposition holds.

Lemma 2.2. C Œ0; 1� D C Œ0; 1�.a;k/ ˚ C as vector space direct sums, where C denotes
the multiple of the constant function 1.

Proof. Suppose f 2 C Œ0; 1� and let � D ..a C k/f .0/ � af .1//=k; g.x/ D f .x/ � �.
Then, f .x/ D � C g.x/ and g.x/ 2 C Œ0; 1�.a;k/. Next, we show the decomposition is
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unique. Assume that f .x/D g1.x/C �1 D g2.x/C �2. Then, �1 � �2 D g1.x/� g2.x/
for any x 2 Œ0; 1�. It follows that �1 � �2 D g1.0/ � g2.0/ D g1.1/ � g2.1/ for any
x 2 Œ0; 1�. But g1.0/ � g2.0/ D a

aCk
.g1.1/ � g2.1//. Since a ¤ 0, we have �1 D �2

and g1.x/ D g2.x/.

Looking at things from the opposite point of view, one might consider positive linear
maps on these subspaces which can be extended to Markov operators on C Œ0; 1�. Based on
the direct sum decomposition, any positive linear map � from C Œ0; 1�.a;k/ to C Œ0; 1� can
be extended naturally to a unital linear map z� from C Œ0; 1� to C Œ0; 1�, given by z�.f / D
�C �.g/. Moreover, this algebraic extension needs to be positive.

Definition 2.3. A positive linear map � from C Œ0; 1�.a;k/ to C Œ0; 1� is called positively
extendible if z� is still positive.

It is not hard to see that if � is positively extendible, then it must be a contraction.
However, the converse is not true, even in the case that � is of norm one.

Remark 2.4. Fix an x0 2 .0; 1/ and define a map � from C Œ0; 1�.a;k/ to C Œ0; 1� as
�.g/.x/ D g.x0/

aCkx
aCk

for any g 2 C Œ0; 1�.a;k/. It is obvious that � is positive and linear.
Moreover, � has norm one. First, for any g2C Œ0;1�.a;k/, k�.g/kD supx2Œ0;1� j�.g/.x/jD
supx2Œ0;1� jg.x0/

aCkx
aCk
j � kgk. Next, we construct a function g1.x/ by

g1.x/ D

´
a
aCk
C

.1� a
aCk

/x

x0
; x 2 Œ0; x0�;

1; x 2 .x0; 1�I

then k�.g1/k D supx2Œ0;1� j�.g1/.x/j D supx2Œ0;1� jg1.x0/
aCkx
aCk
j D kg1k D 1. However,

the natural extension z� is not positive. Take

f .x/ D

´
0; x 2 Œ0; x0�;
k

1�x0
.x � 1/C k; x 2 .x0; 1�I

then f .x/ � 0. Consider its direct sum decomposition f D �C g, where

� D
.aC k/f .0/ � af .1/

k
D �a; g.x/ D

´
a; x 2 Œ0; x0�;
k

1�x0
.x � 1/C aC k; x 2 .x0; 1�:

Then, z�.f /.x/ D �C �.g/ D �aC a aCkx
aCk

D
ak.x�1/
aCk

� 0.

Definition 2.5. For each 1 � ı > 0, the lower test function eı 2 C Œ0; 1�.a;k/ is the con-
tinuous function which has value 1 on Œı; 1� and value a=.k C a/ at 0, and is linear on the
interval Œ0; ı�. Denote by L the set of all such lower test functions. For each 1 > � � 0,
the upper test function 
� 2 C Œ0; 1�.a;k/ is the continuous function which has value 1 on
Œ0; 1 � �� and value .a C k/=a at 1, and is linear on the interval Œ1 � �; 1�. Denote by S
the set of all such upper test functions.
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Proposition 2.6. Let there be given a positive linear map � from C Œ0; 1�.a;k/ to C Œ0; 1�.
Then, � is positively extendible if and only if the following inequalities hold:

inf

2S

®
�.
/

¯
� 1 � sup

e2L

®
�.e/

¯
:

Proof. First, suppose � is positively extendible; then z� is positive. For any 
 2 S , e 2 L,

 > 1> e, z�.
/� 1� z�.e/, then �.
/� 1� �.e/, and inf
2S¹�.
/º�1�supe2L¹�.e/º.

Conversely, suppose inf
2S¹�.
/º � 1 � supe2L¹�.e/º, and let us show that z�.f /D
�C �.g/ is positive. For any positive f 2 C Œ0; 1� with the decomposition f D �C g,
we need to show z�.f / D �C �.g/ � 0. Thus, we need to prove �.g/ � �� if g � ��.

Case I. If � D 0, then f 2 C Œ0; 1�.a;k/. We have z�.f / D �.f / � 0 since � is positive.

Case II. If � < 0, then �� > 0. Then, we can find a 
� 2 S such that .��/
� � g. Since
� is positive, one has �.g/ � �.��
� / D ���.
� / � ��.

Case III. If � > 0, then �� < 0. Then, we can find a eı 2 L such that g � ��eı . Since
sup0<ı�1 �.eı/ � 1, one has ���.eı/ � ��. Therefore, �.g/ � ���.eı/ � ��.

Hence, � is positively extendible.

3. Approximation results on Œ0; 1�

Given a Markov operator between C Œ0; 1� leaving the subspace C Œ0; 1�.a;k/ invariant, we
want to approximate it by an average of homomorphisms on C Œ0; 1� and additionally
require that the average also leaves the subspace invariant. Since the sub-homogeneity in
consideration arises at 0 and 1, we need to investigate the measures induced by the point
evaluations of a Markov operator at the endpoints 0 and 1.

Lemma 3.1. Let there be given a unital positive linear map � on C Œ0; 1� which preserves
C Œ0; 1�.a;k/. Then, the measures induced by the evaluations of � at 0 and 1 actually con-
centrate on 0 and 1, respectively. In other words, �.f /.0/ D f .0/ and �.f /.1/ D f .1/
for all f 2 C Œ0; 1�.

Proof. For any fixed y 2 Œ0; 1�, f 7! �.f /.y/ gives a positive Borel probability measure
on Œ0; 1�, say �y . Thus, �.f /.y/ D

R 1
0
f d�y .

Then, for all g 2 C Œ0; 1�.a;k/, �.g/.0/ D
R 1
0
g d�0, and �.g/.1/ D

R 1
0
g d�1, and

since �.g/.0/ D a
aCk

�.g/.1/, one hasZ 1

0

g d�0 D
a

aC k

Z 1

0

g d�1:

For any ı > 0, choose a finite ı-dense subset ¹x1; x2; : : : ; xnº � Œ0; 1� with x1 D 0,
xn D 1. Then, for every x 2 Œ0; 1�, there is an xi in the finite subset above such that
dist.x; xi / < ı. Then, there exists a partition of Œ0; 1�, denoted by ¹X1; X2; : : : ; Xnº, with
each Xi being a connected Borel set, satisfying the following conditions:

(1) xi 2 Xi , i D 1; 2; : : : ; n;
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(2) Œ0; 1� D
Sn
iD1Xi , Xi \Xj D ¿ if i ¤ j ;

(3) dist.x; xi / < ı if x 2 Xi .

For the above fixed partition ¹XiºniD1, there exists a ı0 > 0 such that Œ0; ı0� � X1. Choose
a function eı 2 C Œ0; 1�.a;k/ as follows:

eı0 D

8<: a
aCk
C

1� a
aCk

ı0
x; x 2 Œ0; ı0�;

1; x 2 .ı0; 1�:

Then,

�.eı0/.0/ D

Z 1

0

eı0 d�0 D

Z
X1

eı0 d�0 C �0.X2/C �0.X3/C � � � C �0.Xn/

D

Z
X1

eı0 d�0 C 1 � �0.X1/ D 1C

Z
X1

.eı0 � 1/ d�0;

�.eı0/.1/ D

Z 1

0

eı0 d�1 D

Z
X1

eı0 d�1 C �1.X2/C �1.X3/C � � � C �1.Xn/

D

Z
X1

eı0 d�1 C 1 � �1.X1/ D 1C

Z
X1

.eı0 � 1/ d�1:

Since
�.eı0/.0/ D

a

aC k
�.eı0/.1/;

one has

1C

Z
X1

.eı0 � 1/ d�0 D
a

aC k

�
1C

Z
X1

.eı0 � 1/ d�1

�
:

Then,
k

aC k
C

Z
X1

.eı0 � 1/ d�0 D
a

aC k

Z
X1

.eı0 � 1/ d�1: (3.1)

Since a=.aC k/ � eı0 � 1 and �0, �1 are positive measures, one has that �k=.aC k/ �R
X1
.eı0 � 1/ d�0 � 0 and �k=.aC k/ �

R
X1
.eı0 � 1/ d�1 � 0. Therefore,

0 �
k

aC k
C

Z
X1

.eı0 � 1/ d�0 �
k

aC k
:

Then, the left-hand side of equation (3.1) is � 0 and the right-hand side is � 0. Hence,

k

aC k
C

Z
X1

.eı0 � 1/ d�0 D
a

aC k

Z
X1

.eı0 � 1/ d�1 D 0:

Then, we have
R
X1
.1 � eı0/ d�0 D k=.a C k/ and 0 �

R
X1
.1 � eı0/ d�0 �

k=.a C k/�0.X1/. Hence, �0.X1/ � 1, and so �0.X1/ D 1. Since ı is arbitrary, this
shows that �0.¹0º/ D 1.
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In a similar way, for the partition above, there exists a ı1 such that Œı1; 1� � Xn. One
can choose a function 
ı1 2 C Œ0; 1�.a;k/ as follows:


ı1 D

8<: 1; x 2 Œ0; ı1/;

1C
aCk
a �1

1�ı1
.x � ı1/; x 2 .ı1; 1�:

Then,

�.
ı1/.0/ D

Z 1

0


ı1 d�0 D

Z
Xn


ı1 d�0 C �0.X1/C �0.X2/C � � � C �0.Xn�1/

D 1 � �0.Xn/C

Z
Xn


ı1 d�0 D 1C

Z
Xn

.
ı1 � 1/ d�0;

�.
ı1/.1/ D

Z 1

0


ı1 d�1 D

Z
Xn


ı1 d�1 C �1.X1/C �1.X2/C � � � C �1.Xn�1/

D 1 � �1.Xn/C

Z
Xn


ı1 d�1 D 1C

Z
Xn

.
ı1 � 1/ d�1:

Since
aC k

a
�.
ı1/.0/ D �.
ı1/.1/;

one has

aC k

a
.1C

Z
Xn

.
ı1 � 1/ d�0/ D 1C

Z
Xn

.
ı1 � 1/ d�1;

k

a
C
aC k

a

Z
Xn

.
ı1 � 1/ d�0 D

Z
Xn

.
ı1 � 1/ d�1: (3.2)

While 0 � 
ı1 � 1 � k=a and 0 �
R
Xn
.
ı1 � 1/d�0 � k=a, 0 �

R
Xn
.
ı1 � 1/d�1 � k=a,

the left-hand side of equation (3.2) is � k=a and the right-hand side is � k=a. Hence,

k

a
C
aC k

a

Z
Xn

.
ı1 � 1/ d�0 D

Z
Xn

.
ı1 � 1/ d�1 D
k

a
:

Then, we have
k

a
�

Z
Xn

.
ı1 � 1/ d�1 �
k

a
�1.Xn/I

then �1.Xn/ � 1, so �1.Xn/ D 1. Since ı is arbitrary, �1.¹1º/ D 1.
Hence, �.f /.0/ D f .0/ and �.f /.1/ D f .1/ for all f 2 C Œ0; 1�.

Corollary 3.2. Let � W C Œ0; 1�! C Œ0; 1� be a Markov operator which preserves the sub-
space C Œ0; 1�.a;k/, defined by �.f /D f ı � for some continuous � W Œ0; 1�! Œ0; 1�. Then,
�.0/ D 0 and �.1/ D 1.

Proof. Choose some injective function f and apply the lemma above.
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Next, we proceed to prove Theorem 1.1 (which is of Li type).

Proof of Theorem 1.1. The proof is inspired by Li’s proof in [1]; the thing is we need more
accurate analysis for the endpoints. We spell it out in full detail for the convenience of the
readers.

Step I. For all f 2 F and y 2 Œ0; 1�, we approximate �.f /.y/ by a finite sum of point
evaluations of f with continuous coefficients.

For any " > 0, there is a ı0 such that for any x1; x2 2 Œ0; 1�, if dist.x1; x2/ < ı0, thenˇ̌
f .x1/ � f .x2/

ˇ̌
<
"

4

for all f 2 F . Choose a finite subset ¹x1; x2; : : : ; xnº � Œ0; 1� which is ı0-dense in Œ0; 1�
with x1 D 0; xn D 1. Then, for every x 2 Œ0; 1�, there is an xi in the finite subset such that
dist.x; xi / < ı0. Choose a partition of Œ0; 1�, denoted by ¹X1; X2; : : : ; Xnº, with each Xi
being a connected Borel set, satisfying the following conditions:

(1) xi 2 Xi , i D 1; 2; : : : ; n;

(2) Œ0; 1� D
Sn
iD1Xi , Xi \Xj D ¿ for i ¤ j ;

(3) dist.x; xi / < ı0 if x 2 Xi .

Then, for any probability measure � on Œ0; 1�, there are non-negative numbers �1; �2; : : : ;
�n with

Pn
iD1 �i D 1 such thatˇ̌̌̌

ˇ�.f / � nX
iD1

�if .xi /

ˇ̌̌̌
ˇ < "

4
for all f 2 F:

Actually, we haveˇ̌̌̌
ˇ�.f / � nX

iD1

�.Xi /f .xi /

ˇ̌̌̌
ˇ <

ˇ̌̌̌
ˇ nX
iD1

Z
Xi

�
f .x/ � f .xi /

�
d�

ˇ̌̌̌
ˇ � nX

iD1

"

4
�.Xi / D

"

4
:

So one may choose �i D �.Xi /.
For any fixed y 2 Œ0; 1�, f 7! �.f /.y/ is a probability measure on [0,1], and thus

from above, there are non-negative numbers �1y ; �2y ; : : : ; �ny with
Pn
iD1 �iy D 1 such

that ˇ̌̌̌
ˇ�.f /.y/ � nX

iD1

�iyf .xi /

ˇ̌̌̌
ˇ < "

4
for all f 2 F:

By continuity of �.f /, this estimation holds in a neighborhood of y. Since Œ0; 1� is com-
pact, we can find a finite open cover ¹Vj W j D 1; 2; : : : ; Rº of Œ0; 1�, such that

(1) 0 2 V1, 0 …
SR
jD2 Vj , 1 2 VR, 1 …

SR�1
jD1 Vj ,

(2) yj 2 Vj , y1 D 0, yR D 1, j D 2; : : : ; R � 1.

Then, one has ˇ̌̌̌
ˇ�.f /.y/ � nX

iD1

�iyj f .xi /

ˇ̌̌̌
ˇ < "

4
for all y 2 Vj and f 2 F:
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Let ¹hj ºRjD1 be a partition of unity subordinate to ¹Vj ºRjD1. Define �i .y/ DPR
jD1 �iyj hj .y/. Then, �i 2 C Œ0; 1�; �i .0/D �i0 D �0.Xi /; �i .1/D �i1 D �1.Xi /, and

nX
iD1

�i .y/ D

nX
iD1

 
RX
jD1

�iyj hj .y/

!
D

RX
jD1

hj .y/ D 1:

Hence, ˇ̌̌̌
ˇ�.f /.y/ � nX

iD1

�i .y/f .xi /

ˇ̌̌̌
ˇ < "

4

for all y 2 Œ0; 1� and f 2 F .

Step II. We approximate the finite sum of point evaluations above by a linear map w on
C Œ0; 1� defined as an integral of the composition with some continuous function h.y; t/
from Œ0; 1� � Œ0; 1� to Œ0; 1�.

Let there be given a ı > 0 to be used later with 5nı supf 2F kf k < "=4.
First, we define continuous maps G0; G1; : : : ; Gn W Œ0; 1�! Œ0; 1� by

G0.y/ D 0; Gj .y/ D

jX
iD1

�i .y/; j D 1; 2; : : : ; n:

For each y 2 Œ0; 1�, these points ¹Gi .y/ºniD0 give rise to a partition of Œ0; 1�. Moreover, for
each j , we define

fj .y/ D min
²
Gj�1.y/C ıI

Gj�1.y/CGj .y/

2

³
and

gj .y/ D max
²
Gj .y/ � ıI

Gj�1.y/CGj .y/

2

³
:

To define h.y; t/, we only need to define h.y; t/ on each Œ0; 1�� ŒGj�1.y/;Gj .y/�; let
us denote by hj .y; t/ this restriction. For our purpose, we choose the following hj .y; t/:

hj .y; t/ D

8̂̂̂<̂
ˆ̂:
xj .t�Gj�1.y//

ı
; t 2 ŒGj�1.y/; fj .y/�;

min
�
xj ;

xj .Gj .y/�Gj�1.y//

2ı

�
; t 2

�
fj .y/; gj .y/

�
;

xj .Gj .y/�t/

ı
; t 2

�
gj .y/; Gj .y/

�
:

Then, hj .y; t/ satisfies that, for any y 2 Œ0; 1�,ˇ̌
hj .y; t1/ � hj .y; t2/

ˇ̌
�
xj jt1 � t2j

ı
;

and hj .y; t/ W Œ0; 1� � ŒGj�1.y/; Gj .y/� ! Œ0; 1� is continuous. Then, h.y; t/ W Œ0; 1� �
Œ0; 1�! Œ0; 1� is continuous andˇ̌

h.y; t1/ � h.y; t2/
ˇ̌
�
jt1 � t2j

ı
:
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Definew WC Œ0;1�!C Œ0;1� byw.f /.y/D
R 1
0
f .h.y; t//dt for f 2C Œ0;1�, y 2 Œ0;1�.

Then, for all f 2 F , one hasˇ̌̌̌
ˇ nX
iD1

�i .y/f .xi / � w.f /.y/

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ nX
iD1

Z Gi .y/

Gi�1.y/

f .xi /dt �

Z 1

0

f
�
h.y; t/

�
dt

ˇ̌̌̌
ˇ

�

nX
iD1

ˇ̌̌̌ Z Gi .y/

Gi�1.y/

f .xi / � f
�
h.y; t/

�
dt

ˇ̌̌̌
D

nX
iD1

ˇ̌̌̌� Z fi .y/

Gi�1.y/

C

Z gi .y/

fi .y/

C

Z Gi .y/

gi .y/

��
f .xi / � f

�
h.y; t/

��
dt

ˇ̌̌̌
�

nX
iD1

�
2ı sup
f 2F

kf k C 0C 2ı sup
f 2F

kf k
�

D 4nı sup
f 2F

kf k <
"

4
:

Step III. Finally, we shall choose N continuous maps on Œ0; 1� to define the homomor-
phisms. Such maps come from h.y; t/ by specifying N values of t . First, we shall choose
these maps such that their average approximates the map w above.

Choose an integer N1 > 0 with 1=N1 < ıı0, and choose specified values of t as tj D
j=N1 2 Œ0; 1�, j D 1; 2; : : : ; N1. Then, the linear map w can be approximated by the
average of the homomorphisms induced by h.y; tj /, j D 1; : : : ; N1.

This is shown as follows: set

w.f /.y/ D

N1X
jD1

Z tj

tj�1

f
�
h.y; t/

�
dt I

then ˇ̌̌̌
ˇw.f /.y/ � 1

N1

N1X
jD1

f
�
h.y; tj /

�ˇ̌̌̌ˇ D
ˇ̌̌̌
ˇ N1X
jD1

Z tj

tj�1

f
�
h.y; t/

�
� f

�
h.y; tj /

�
dt

ˇ̌̌̌
ˇ

<

N1X
jD1

Z tj

tj�1

"

4
D
"

4
:

for all f 2 F , where jf .h.y; t//� f .h.y; tj //j< "=4, since jh.y; t/� h.y; tj /j< ı0 (note
that jt � tj j � 1=N1 < ıı0).

Next, we make more delicate choices of maps to get new homomorphisms such that
each of them leaves the subspace invariant, and hence the average will also do the same
job.
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By Lemma 3.1, we know that, for �.f /.0/, the coefficients are

�1.0/ D 1; �2.0/ D � � � D �n.0/ D 0:

Similarly, for �.f /.1/, one has

�1.1/ D �2.1/ D � � � D �n�1.1/ D 0; �n.1/ D 1:

Therefore, h.0; t/ D 0 and

h.1; t/ D

8̂̂<̂
:̂
t
ı
; t 2 Œ0; ı�;

1; t 2 Œı; 1 � ı�;

1�t
ı
; t 2 Œ1 � ı; 1�:

If we can choose new tj such that h.0; tj / D 0 and h.1; tj / D 1, then the corresponding
homomorphisms will fit our purpose. Choose those j such that ı � j=N1 � 1 � ı; i.e.,
ıN1 � j � .1 � ı/N1. Denote by N the number of such j ; then N D b.1 � ı/N1c �
dıN1e C 1.

We are going to show that the average of these N homomorphisms can approximate
the average of the original N1 homomorphisms:ˇ̌̌̌

ˇ 1N1
N1X
jD1

f
�
h.y; tj /

�
�
1

N

b.1�ı/N1cX
jDdıN1e

f
�
h.y; tj /

�ˇ̌̌̌ˇ
D

1

N1

ˇ̌̌̌
ˇ N1X
jD1

f
�
h.y; tj /

�
�
N1

N

b.1�ı/N1cX
jDdıN1e

f
�
h.y; tj /

�ˇ̌̌̌ˇ
D

1

N1

ˇ̌̌̌
ˇ dN1ıe�1X

jD1

f
�
h.y; tj /

�
C

N1X
bN1.1�ı/cC1

f
�
h.y; tj /

�
C

�
1 �

N1

N

� bN1.1�ı/cX
jDdN1ıe

f
�
h.y; tj /

�ˇ̌̌̌ˇ
�

1

N1

�
N1ı sup

f 2F

kf k C .N1ı C 1/ sup
f 2F

kf k C .2N1ı C 1/ sup
f 2F

kf k
�

� 5ı sup
f 2F

kf k �
"

4
:

Note that the above estimation holds since

N1 �N D N1 �
�
b.1 � ı/N1c � dıN1e C 1

�
D N1 � 1 �

��
.1 � ı/N1

˘
� dıN1e

�
� N1 � 1 �

�
.1 � ı/N1 � 1 � .ıN1 C 1/

�
D 2ıN1 C 1:
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For those new j , let us define �j W C Œ0; 1�! C Œ0; 1� by �j .f .y// D f .h.y; tj //. Then,ˇ̌̌̌
ˇ�.f /.y/ � 1

N

b.1�ı/N1cX
jDdıN1e

�j .f /.y/

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ�.f /.y/ � 1

N

b.1�ı/N1cX
jDdıN1e

f
�
h.y; tj /

�ˇ̌̌̌ˇ
�

ˇ̌̌̌
ˇ�.f /.y/ � nX

iD1

�i .y/f .xi /

ˇ̌̌̌
ˇC

ˇ̌̌̌
ˇ nX
iD1

�i .y/f .xi / � w.f /.y/

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇw.f /.y/� 1

N1

N1X
jD1

f
�
h.y; tj /

�̌̌̌̌̌
C

ˇ̌̌̌
ˇ 1N1

N1X
jD1

f
�
h.y; tj /

�
�
1

N

b.1�ı/N1cX
jDdıN1e

f
�
h.y; tj /

�̌̌̌̌̌
�
"

4
C
"

4
C
"

4
C
"

4
� ":

Remark 3.3. From the proof above, one can see that, for any integer M1 � N1, there
are a corresponding integer M and M homomorphisms such that the average of these M
morphisms also meets the requirements.

Hence, under the assumption of Theorem 1.1, there is a sequence of positive integers
¹Lj º

1
jD1 with a large enough lower bound, and there are Lj corresponding morphisms for

each j , such that the average of these Lj morphisms meets the requirements.

Consider the C �-algebras

A D
®
f 2 C

�
Œ0; 1�;Mn

�
j f .0/ D diag.d ˝ ida; 0˝ idk/; f .1/ D d ˝ idaCk

¯
;

B D
®
f 2 C

�
Œ0; 1�;Mm

�
j f .0/ D diag.e ˝ ida; 0˝ idk/; f .1/ D e ˝ idaCk

¯
;

where d and e are matrices of the appropriate sizes. Theorem 1.1 can be used to build up
�-homomorphisms between certain C �-algebras.

Corollary 3.4. With A a C �-algebra as above, for any " > 0, and any finite subset F �
AffTA D C Œ0; 1�.a;k/, there is an integer N > 0 such that, for any C �-algebra B of the
form above, with generic fiber size N times the generic fiber size of A, and any unital
positive linear map � on C Œ0; 1� which preserves C Œ0; 1�.a;k/, there is a �-homomorphism
� from A to B such that 

�.f / � AffT�.f /



 < "
for all f 2 F .

Proof. We take N as in Theorem 1.1 and the corresponding N continuous maps h.y; t1/;
: : : ; h.y; tN / on Œ0; 1�. By the constructions of the function h.y; tj /, there are unitary
matrices U0 and U1 such that, for each g 2 A,

U0 diag
�
g
�
h.0; t1/

�
; : : : ; g

�
h.0; tN /

��
U �0 D diag.e ˝ ida; 0˝ idk/



An analog of the Krein–Milman theorem 1085

and
U1 diag

�
g
�
h.1; t1/

�
; : : : ; g

�
h.1; tN /

��
U �1 D e ˝ idaCk ;

for some matrix e. By choosing a continuous path of unitaries U.t/ connecting U0 and
U1, one can define � W A! B as

�.g/.y/ D U.y/ diag
�
g ı h.y; t1/; : : : ; g ı h.y; tN /

�
U �.y/:

Keep in mind the correspondence f D .t r ˝ ıt /.g/ (see [2, Proposition 2.1]), and, apply-
ing Theorem 1.1, one has that 

�.f / � AffT�.f /



 < "
for all f 2 F .

Now, we consider the case involving different subspaces.

Lemma 3.5. Let � be a Borel probability measure on Œ0; 1�. Then, for any x 2 Œ0; 1� and
" > 0, there is a ı > 0 such that �.B0.x; ı// < " (where B0.x; ı/ denotes the open ball
centered at x with radius ı, but excluding the center x).

Proof. Let Dk D .B.x; 1=k/ n B.x; 1=.1C k/// \ Œ0; 1�, where B.x; 1=k/ refers to the
open ball centered at x with radius 1=k. Set Sn D

Pn
kD1 �.Dk/, then Sn is increasing

and bounded above, so ¹Snº converges. Then, for any " > 0, there exists N > 0 such
that

P1
kDN �.Dk/ < ". Hence, there exists ı D 1=N such that �.B0.x; ı// < ", since

B0.x; ı/ D
S1
kDN Dk .

Examples in Section 2 show that the measures induced by evaluations of a Markov
operator at 0 and 1 actually could involve as many points as you want, so we investigate
the behavior of induced measures with respect to a given partition of Œ0; 1� coming from
an approximation.

Lemma 3.6. Given a unital positive linear map � from C Œ0; 1� to C Œ0; 1� which sends
C Œ0; 1�.a;k/ to C Œ0; 1�.b;k/, denote by �0 and �1 the measures induced by evaluations of
� at 0 and 1. Let there be given a partition ¹X1; X2; : : : ; Xnº of Œ0; 1�, where Xi is a
connected Borel set (i.e., an interval) and 0 2 X1, 1 2 Xn.

Then, one has the following distribution of �0 and �1 with respect to the partition:

�0.Xi / D
b

b C k
�1.Xi / .i D 2; : : : ; n � 1/; (3.3)

a

aC k
�0.X1/C �0.Xn/ D

b

b C k

�
a

aC k
�1.X1/C �1.Xn/

�
: (3.4)

Proof. The first relation is shown as follows. Choose a continuous function which is
almost supported on Xi (i D 2; : : : ; n � 1), and then apply �. Comparing the evaluations
at 0 and 1, one can get the relation.
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For fixed i D 2; : : : ; n � 1, set ai D sup¹x W x 2 Xiº, bi D inf¹x W x 2 Xiº. We only
spell it out in one case; a similar proof works for the other cases.

Let us focus on the case Xi D Œbi ; ai �. For all " > 0, by Lemma 3.5, there exists a
ı > 0 such that

�0
�
.bi � ı; bi /

�
< ";�1

�
.bi � ı; bi /

�
< "

and
�0
�
.ai ; ai C ı/

�
< ";�1

�
.ai ; ai C ı/

�
< ":

We choose a function gi .x/ as follows:

gi .x/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0; x 2 .bi � ı; ai C ı/
c ;

x�bi
ı
C 1; x 2 .bi � ı; bi /;

�
x�ai
ı
C 1; x 2 .ai ; ai C ı/;

1; x 2 Œbi ; ai �I

then

�.gi /.0/ D

Z
Œ0;1�

gi d�0 D �0.Xi /C

Z
.bi�ı;bi /

gi d�0 C

Z
.ai ;aiCı/

gi d�0

and

�.gi /.1/ D

Z
Œ0;1�

gi d�1 D �1.Xi /C

Z
.bi�ı;bi /

gi d�1 C

Z
.ai ;aiCı/

gi d�1:

Let us take
"i0 D

Z
.bi�ı;bi /

gi d�0 C

Z
.ai ;aiCı/

gi d�0

and
"i1 D

Z
.bi�ı;bi /

gi d�1 C

Z
.ai ;aiCı/

gi d�1I

then "i0 < 2"; "i1 < 2" and

�0.Xi /C "i0

�1.Xi /C "i1
D

b

b C k

(since �.gi / 2 C Œ0; 1�.b;k/).
Hence, ˇ̌̌̌

�0.Xi / �
b

b C k
�1.Xi /

ˇ̌̌̌
< 4";

and since " is arbitrary, one concludes that

�0.Xi / D
b

b C k
�1.Xi /; i D 2; : : : ; n � 1:
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Next, we prove the second relation. We use similar ideas; i.e., we choose a function
which is almost supported on X1 and Xn, apply �, and then compare the evaluations.

For i D 1 and i D n, we know that 0 D inf¹x W x 2 X1º, 1 D sup¹x W x 2 Xnº, and
suppose that a1 D sup¹x W x 2X1º, bn D inf¹x W x 2Xnº. Consider the caseX1 D Œ0; a1�,
Xn D Œbn; 1�. For all " > 0, by Lemma 3.5, there exists a ı > 0 such that

�0
�
.bn � ı; bn/

�
< "; �1

�
.bn � ı; bn/

�
< "

and
�0
�
.a1; a1 C ı/

�
< "; �1

�
.a1; a1 C ı/

�
< ":

We choose a function g.x/ as follows:

g.x/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

a
kCa

; x 2 Œ0; a1�;

�
a.x�a1/
ı.aCk/

C
a
aCk

; x 2 .a1; a1 C ı/;

0; x 2 Œa1 C ı; bn � ı�;

x�bn
ı
C 1; x 2 .bn � ı; bn/;

1; x 2 Œbn; 1�:

Then,

�.g/.0/D

Z
Œ0;1�

g d�0D�0.Xn/C
a

aC k
�0.X1/C

Z
.a1;a1Cı/

g d�0C

Z
.bn�ı;bn/

g d�0

and

�.g/.1/D

Z
Œ0;1�

gd�1D�1.Xn/C
a

aC k
�1.X1/C

Z
.a1;a1Cı/

gd�1C

Z
.bn�ı;bn/

gd�1:

Let us take
"0 D

Z
.a1;a1Cı/

g d�0 C

Z
.bn�ı;bn/

g d�0

and
"1 D

Z
.a1;a1Cı/

g d�1 C

Z
.bn�ı;bn/

g d�1:

Then,

"0 <
2aC k

aC k
"; "1 <

2aC k

aC k
":

Moreover, one has
�0.Xn/C

a

aC k
�0.X1/C "0

�1.Xn/C
a

aC k
�1.X1/C "1

D
b

b C k

(since �.g/ 2 C Œ0; 1�.b;k/).
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Then,ˇ̌̌̌
a

aC k
�0.X1/C �0.Xn/ �

b

b C k

�
a

aC k
�1.X1/C �1.Xn/

�ˇ̌̌̌
< r"

for some r , since " is arbitrary, one has

a

aC k
�0.X1/C �0.Xn/ D

b

b C k

�
a

aC k
�1.X1/C �1.Xn/

�
:

Similar proofs go through in the other cases.

Corollary 3.7. With the same assumption as above, one has

�0.X1/ D
b

b C k
�1.X1/C

aC k

b C k
; (3.5)

�0.Xn/ D
b

b C k
�1.Xn/ �

a

b C k
: (3.6)

Proof. By adding (3.3) over i D 2; : : : ; n � 1 and (3.4), we have

n�1X
iD2

�0.Xi /C
a

aC k
�0.X1/C �0.Xn/

D

n�1X
iD2

b

b C k
�1.Xi /C

b

b C k

�
a

aC k
�1.X1/C �1.Xn/

�
:

Then, we add �0.X1/ C b
bCk

�1.X1/ to both sides of the equation above, and since
�0.Œ0; 1�/ D 1, �1.Œ0; 1�/ D 1, we get

1C
a

aC k
�0.X1/C

b

b C k
�1.X1/ D

b

b C k
C �0.X1/C

b

b C k

a

aC k
�1.X1/:

Then, one can solve �0.X1/ to get (3.5). Equation (3.6) follows from (3.4) and (3.5).

Remark 3.8. By (3.5), we have

�0.X1/ D
b

b C k
�1.X1/C

aC k

b C k
�
aC k

b C k

and �0.X1/ � 1; thus b � a. In other words, if b < a, there is no unital positive linear
map on C Œ0; 1� which sends C Œ0; 1�.a;k/ to C Œ0; 1�.b;k/.

Lemma 3.9. Given �0.Xi / and �1.Xi / .i D 1; : : : ; n/ as above in Lemma 3.6, for any
� > 0, there exist rational numbers 0 � r1; : : : ; rn � 1 and 0 � s1; : : : ; sn � 1 which add
up to 1, respectively, such that

0 � jri � �0.Xi /j � �; 0 � jsi � �1.Xi /j � �; i D 1; 2; : : : ; n:
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Moreover, the relations among �0.Xi / and �1.Xi / hold for these ri and si ; i.e.,

ri D
b

b C k
si .i D 2; : : : ; n � 1/; (3.7)

a

aC k
r1 C rn D

b

b C k

�
a

aC k
s1 C sn

�
: (3.8)

Proof. For all � > 0, take a rational approximation sn for�1.Xn/with 0� sn ��1.Xn/�
�. Then, take rational approximations si for �1.Xi / with j�1.Xi / � si j � � for 1 � i �
n � 1, such that s1 C � � � C sn�1 D 1 � sn. Then, take corresponding ri D b

bCk
si for

2� i � n� 1; thus ri .2� i � n� 1/ approximates �0.Xi / based on the relation between
�0.Xi / and �1.Xi / .2 � i � n � 1/. Set

rn D
b

b C k
sn �

a

b C k
;

which is non-negative since sn � �1.Xn/� a=b, and then rn approximates �0.Xn/ based
on (3.6). Set

r1 D 1 � .r2 C � � � C rn�1/ � rnI

then based on (3.5) r1 approximates �0.X1/. Moreover, one can verify all of the data fit
in the requirement (3.8).

Corollary 3.10. For any positive integer N , any collection of N points ¹xi 2 .0; 1/ j 1 �
i � N º, and any integers k1; kn, m1; mn satisfying the relation (3.8), one has

k1f .0/C

NX
iD1

blif .xi /C knf .1/ D
b

b C k

 
m1f .0/C

NX
iD1

.b C k/lif .xi /Cmnf .1/

!
for all f 2 C Œ0; 1�.a;k/, where l1; : : : ; lN are arbitrarily chosen positive integers.

Proof. Since f 2 C Œ0; 1�.a;k/, one has f .0/ D a
aCk

f .1/. Then, the left-hand side of the
above equals . a

aCk
k1 C kn/f .1/ C

PN
iD1 blif .xi /. Hence, it coincides with the right-

hand side by the relation (3.8).

The rest of the paper will be devoted to the proof of Theorem 1.2; before we start, let
us make some explanations and comments.

Remark 3.11. (1) The basic strategy is the same as the proof of Theorem 1.1, which
consists of two essential issues. One is we define properly a continuous function h.y; t/ W
Œ0; 1�� Œ0; 1�! Œ0; 1� which provides necessary eigenvalue maps later by specifying some
values of the second parameter t at y D 0 and y D 1. The other one is we must specify
certain values of t (as many as possible) to meet two requirements; namely, h.0; tj / and
h.1; tj / together must guarantee that the average of corresponding homomorphisms fits
the compatibility of subspaces, as well as the purpose of approximation.
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(2) However, due to different sub-homogeneity, evaluations of a Markov operator at
endpoints lead to a more refined measure distribution, which causes some technical com-
plexity when we try to realize the two issues above. To be precise, when we define h.y; t/
on Œ0; 1�� Œ0; 1�, we take a partition of second interval Œ0; 1� which comes from the natural
measure representation, but, in this case, at endpoints 0 and 1, the non-degenerate �0.Xi /
and �1.Xi / are not equalized, which is very inconvenient for later analysis. We first make
some adjustments to equalize them somehow. The other trouble is to make right choices of
eigenvalue maps. We need to involve not only 0 and 1, but also the points xi from certain
approximation net. On one hand, to guarantee the compatibility of subspaces, we need to
choose those tj such that all chosen h.0; tj / and h.1; tj / satisfy the corresponding relation
coming from the measure distribution. To achieve this, we have to drop some h.0; t/ and
h.1; t/ in corresponding proportion such that the remaining ones satisfy the required rela-
tion. But we cannot drop too much; otherwise it will violate the approximation purpose,
which is controlled by taking some small enough parameter ı.

(3) Those technical arrangements we did are not complicated; the thing is to spell out
full detail costs expressions, which might cover the idea. So we put some figures during
the proof to demonstrate the idea and convince people.

Now we proceed to prove Theorem 1.2 (which is of Thomsen type).

Proof of Theorem 1.2. We have divided the proof into four steps.

Step I. The first step is exactly the same as the first step of the proof of Theorem 1.1.
To avoid redundancy, we skip this but still use the same notation there. In particular, take
those points xi 2 Œ0;1� and functions �i on Œ0;1� for all i D 1; : : : ;n. Recall that we already
have

nX
iD1

�i .y/ D 1 and
ˇ̌̌̌
�.f /.y/ �

nX
iD1

�i .y/f .xi /

ˇ̌̌̌
< "=4; 8y 2 Œ0; 1�; 8f 2 F:

Step II. In a similar way, we approximate the finite sum of point evaluations by a linear
map w on C Œ0; 1�, defined as the integral of the composition with some continuous func-
tion h.y; t/ from Œ0; 1� � Œ0; 1� to Œ0; 1�, and h.y; t/ is formulated based on a partition of
the second Œ0; 1�.

Recall in Step I that �i .0/ D �0.Xi / and �i .1/ D �1.Xi /, i D 1; : : : ; n. By Lemma
3.6 and Corollary 3.7, we know

�1.0/ D
b

b C k
�1.1/C

aC k

b C k
;

�n.0/ D
b

b C k
�n.1/ �

a

b C k
;

�i .0/ D
b

b C k
�i .1/; i D 2; : : : ; n � 1;

which imply that

�1.0/ > �1.1/; �i .0/ � �i .1/; i D 2; : : : ; n:
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x1

x2

x3

xn�1

xnD1

G0.0/„ ƒ‚ …
�1.0/

„ ƒ‚ …
�2.0/

„ ƒ‚ …
�3.0/

„ƒ‚…
�n�1.0/

„ ƒ‚ …
�n.0/

G1.0/ G2.0/ G3.0/
::::::

Gn�2.0/ Gn�1.0/ Gn.0/D1

x1

x2

x3

xn�1

xnD1

„ ƒ‚ …
�1.1/

„ ƒ‚ …
�2.1/

„ ƒ‚ …
�3.1/

„ ƒ‚ …
�n�1.1/

„ ƒ‚ …
�n.1/

G0.1/ G1.1/ G2.1/ G3.1/
::::::

Gn�2.1/ Gn�1.1/ Gn.1/D1

Figure 1. Naive choice of h.0; t/ and h.1; t/.

Later on, h.0; t/ and h.1; t/ are built up as some piecewise linear functions. All pieces of
domain form a partition of the second Œ0; 1�. If we still use the naive partition of the second
Œ0; 1� as before, namely, the successive intervals of length �i .0/ and �i .1/, i D 1; : : : ; n,
then we have the naive choice of h.0; t/ and h.1; t/ as in Figure 1 above. Such a choice is
not good for later analysis, instead we would better have somehow equalized pieces for the
domain of h.0; t/ and h.1; t/. To achieve this, we make some technical adjustments such
that the real choice of h.0; t/ and h.1; t/ looks like in Figure 2. Namely, in Figure 1, we
move the first interval of length �1.1/ to be the last one and equalize the other �i .0/ and
�i .1/ by borrowing an additional piece from �1.0/ to �1.1/. So we take the corresponding
partition of Œ0; 1� after the equalization; see Figure 2.

For y 2 .0; 1/, we try to do similar things for the domain of h.y; t/ and h.1; t/, but it
may happen that �1.y/ � �1.1/ or �i .1/ � �i .y/ for some i . Then, we do equalizations
of piecewise domains whenever it is possible and necessary and do nothing otherwise.

So, we define

l1.y/ D �2.y/;

l2.y/ D max
®
0;min

®
�1.y/ � �1.1/; �2.1/ � �2.y/

¯¯
;

:::

l2i�3.y/ D �i .y/; i D 2; : : : ; n;

l2i�2.y/ D max
®
0;min

®
�1.y/ � �1.1/ � l2.y/ � � � � � l2i�4.y/; �i .1/ � �i .y/

¯¯
;

i D 2; : : : ; n;:::

l2n�1.y/ D 1 �

2n�2X
jD1

lj .y/;

l2n.y/ D 0:
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x1D0 x1 x1 x1

x2

x3

xn�1

xn D 1

„ ƒ‚ …
�2.0/

„ ƒ‚ …
�3.0/

„ ƒ‚ …
�n�1.0/

„ ƒ‚ …
�n.0/

::::::

1

10

x1

x2

x3

xn�1 xn D 1

„ ƒ‚ …
�2.1/

„ ƒ‚ …
�3.1/

„ ƒ‚ …
�n�1.1/

„ ƒ‚ …
�n.1/

„ ƒ‚ …
�1.1/

:::::: 10

1

Figure 2. Real choice of h.0; t/ and h.1; t/.

Note that we have

nX
iD1

l2i .y/C l2n�1.y/ D 1 �

nX
jD2

l2j�3.y/ D 1 �

nX
jD2

�j .y/ D �1.y/; (3.9)

and we get what we expect for the piecewise domains of h.0; t/ and h.1; t/:

l1.0/ D �0.X2/; l1.1/ D �1.X2/;

l2.0/ D �1.X2/ � �0.X2/; l2.1/ D 0;
:::

l2n�3.0/ D �0.Xn/; l2n�3.1/ D �1.Xn/;

l2n�2.0/ D �1.Xn/ � �0.Xn/; l2n�2.1/ D 0;

l2n�1.0/ D �1.X1/; l2n�1.1/ D �1.X1/;

l2n.0/ D 0: l2n.1/ D 0:

Next define G1; : : : ; G2n W Œ0; 1�! Œ0; 1� by

Gj .y/ D

jX
iD1

li .y/; j D 1; 2; : : : ; 2n:

Then, for j D 2k, we have the consistency that

Gj .0/ D Gj .1/ D

kC1X
iD2

�1.Xi /:
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t0 Gj�1 fj
gj Gj

xj

t0 Gj�1fj D gj Gj

xj

xj .Gj�Gj�1/

2ı

Figure 3. Graph of hj .y; t/.

Let ı > 0 be a rational number. For each y 2 Œ0; 1�, the points ¹Gi .y/ºi , i D 1; : : : ; 2n,
give rise to a partition of Œ0; 1�. Moreover, for each j , we define

fj .y/ D min
²
Gj�1.y/C ı;

Gj�1.y/CGj .y/

2

³
and

gj .y/ D max
²
Gj .y/ � ı;

Gj�1.y/CGj .y/

2

³
:

To define h.y; t/, we only need to define h.y; t/ on each Œ0; 1�� ŒGj�1.y/;Gj .y/�. Let
us denote by hj .y; t/ this restriction. For our purpose, we choose the following hj .y; t/:

hj .y; t/ D

8̂̂̂<̂
ˆ̂:
zj .t�Gj�1.y//

ı
; t 2

�
Gj�1.y/; fj .y/

�
;

min
�
zj ;

zj .Gj .y/�Gj�1.y//

2ı

�
; t 2

�
fj .y/; gj .y/

�
;

zj .Gj .y/�t/

ı
; t 2

�
gj .y/; Gj .y/

�
;

where zj D xi if j D 2i � 3 .i D 2; : : : ; n/, zj D x1 D 0 if j D 2i .i D 1; : : : ; n� 1/, and
z2n�1 D x1 D 0. The graph of hj .y; t/ is shown in Figure 3 (depending on ı). Moreover,
we can choose ı being further small enough later such that the tent case does not appear
for h.0; t/ and h.1; t/; i.e., they really enjoy the shape shown in Figure 2.

Then, hj .y; t/ satisfies that, for any y 2 Œ0; 1�,ˇ̌
hj .y; t1/ � hj .y; t2/

ˇ̌
�
jt1 � t2j

ı
;

and hj .y; t/ W Œ0; 1� � ŒGj�1.y/; Gj .y/� ! Œ0; 1� is continuous. Then, h.y; t/ W Œ0; 1� �
Œ0; 1�! Œ0; 1� is continuous andˇ̌

h.y; t1/ � h.y; t2/
ˇ̌
�
jt1 � t2j

ı
:

Define w W C Œ0; 1�! C Œ0; 1� by

w.f /.y/ D

Z 1

0

f
�
h.y; t/

�
dt;

where f 2 C Œ0; 1�, y 2 Œ0; 1�.
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Then, for all f 2 F , due to calculations before (especially (3.9)), we haveˇ̌̌̌
ˇ nX
iD1

�i .y/f .xi / � w.f /.y/

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ 2nX
jD1

lj .y/f .zj / � w.f /.y/

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ 2nX
jD1

Z Gj .y/

Gj�1.y/

f .zj /dt �

Z 1

0

f
�
h.y; t/

�
dt

ˇ̌̌̌
ˇ

�

2nX
jD1

ˇ̌̌̌
ˇ Z Gj .y/

Gj�1.y/

f .zi / � f
�
h.y; t/

�
dt

ˇ̌̌̌
ˇ

D

2nX
jD1

ˇ̌̌̌
ˇ Z fj .y/

Gj�1.y/

C

Z gj .y/

fj .y/

C

Z Gj .y/

gj .y/

f .zj /�f
�
h.y; t/

�
dt

ˇ̌̌̌
ˇ

�

2nX
jD1

�
2ı sup
f 2F

kf k C 0C 2ı sup
f 2F

kf k
�

D 8nı sup
f 2F

kf k <
"

4
:

The last inequality holds because of the choice of ı to be made later.

Step III. We shall choose N1 continuous maps h.y; tj / on Œ0; 1� by specifying N1 values
of t so that the corresponding average of homomorphisms approximates the map w above
on F .

Among all Xi , i D 2; : : : ; n � 1 (keeping in mind that they are intervals), there might
be some ones degenerating, i.e., with �0-measure zero. Let � be the number of all non-
degenerating ones. Denote them by Xi1 ; : : : ;Xi� . Then, these ones also enjoy �1.Xi /¤ 0
by (3.3).

For some counting convenience later, we approximate these �0.Xi / and �1.Xi / by
rational numbers which still keep the relations among�0.Xi / and�1.Xi /. By Lemma 3.9,
for the tolerance ı=n, there exist rational numbers 0 � r1; ri1 ; : : : ; ri� ; rn � 1, and 0 �
s1; si1 ; : : : ; si� ; sn � 1 such that

r1 C

�X
iD1

ri� C rn D 1I 0 � jri � �0.Xi /j �
ı

n
.i D 1; i1; : : : ; i� ; n/;

s1 C

�X
iD1

si� C sn D 1I 0 � jsi � �1.Xi /j �
ı

n
.i D 1; i1; : : : ; i� ; n/;

ri�
si�
D

b

b C k
; � D 1; : : : ; �;

and
a

aC k
r1 C rn D

b

b C k

�
a

aC k
s1 C sn

�
:
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Choose an integerN1 > 0 such that 1=N1 < ıı0 andN1ı,N1si ,N1ri (i D 1; i1; : : : ; i� ; n)
are integers. Let tj D j=N1 2 Œ0; 1�, j D 1; 2; : : : ; N1.

To save notation, rewrite N1si , N1ri still as si , ri .i D 1; i1; : : : ; i� ; n/. Then,

�X
�D1

si� C sn C s1 D

�X
�D1

ri� C rn C r1 D N1

and

0 �
ˇ̌
ri � �0.Xi /N1

ˇ̌
� N1

ı

n
.i D 1; i1; : : : ; i� ; n/; (3.10)

0 �
ˇ̌
si � �1.Xi /N1

ˇ̌
� N1

ı

n
.i D 1; i1; : : : ; i� ; n/; (3.11)

ri�
si�
D

b

b C k
; � D 1; : : : ; �; (3.12)

and
a

aC k
r1 C rn D

b

b C k

�
a

aC k
s1 C sn

�
: (3.13)

Define �j W C Œ0; 1�! C Œ0; 1� by �j .f /.y/ D f .h.y; tj //. Then,

w.f /.y/ D

Z 1

0

f
�
h.y; t/

�
dt D

N1X
jD1

Z tj

tj�1

f
�
h.y; t/

�
dt

and ˇ̌̌̌
ˇw.f /.y/ � 1

N1

N1X
jD1

�j .f /.y/

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ N1X
jD1

Z tj

tj�1

f
�
h.y; t/

�
� f

�
h.y; tj /

�
dt

ˇ̌̌̌
ˇ

<

N1X
jD1

Z tj

tj�1

"

4
D
"

4

for all f 2 F , where jf .h.y; t// � f .h.y; tj //j < "=4, because jh.y; t/ � h.y; tj /j < ı0
(note that jt � tj j � 1=N1 < ıı0).

Step IV. We shall choose N new maps (as many as possible) from the N1 maps above
to guarantee that the corresponding average of homomorphisms fits the compatibility of
subspaces, and also the new average of these N guys approximates the average of the
original N1 homomorphisms. We have to involve points other than 0 and 1. By Corollary
3.10, to fit compatibility of subspaces, we must choose such points in proportion as well
as keep the proportion between the numbers of 0 and 1 chosen for values of h.0; t/ and
h.1; t/. Recall the graph of h.0; t/ and h.1; t/ shown in Figure 2; roughly speaking, we
will not choose those j=N1 whose function value lies in the slant part of the graph, instead
we choose as many as possible those j=N1 whose function value lies in the horizontal part.
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x2

„ ƒ‚ …
�2.0/

x2

„ ƒ‚ …
�2.1/

�‚…„ƒ �‚…„ƒ

4‚…„ƒ

Figure 4. A simple explanation of choosing/dropping h.0; tj / and h.1; tj / on one piece of domain.

0

1

N1
::::::

0

1

N1
::::::„ ƒ‚ …

�1.Xi1 /N1

„ ƒ‚ …
�1.Xi� /N1

„ ƒ‚ …
�1.Xn/N1

„ ƒ‚ …
�1.X1/N1

Figure 5. Process of choosing/dropping h.0; tj / and h.1; tj /.

The crucial point is that we must keep corresponding relations for our choices. This
can be done if we drop a little bit more than the slant part, which is explained for one
piece of domain of h.0; t/ and h.1; t/ as in Figure 4. Namely, we drop those j=N1 lying
in the two � parts and the 4 part simultaneously for h.0; t/ and h.1; t/ such that the
remaining j=N1 satisfy the required proportion b=.b C k/, which by a simple calculation
amount to a certain proportion of � and 4. Similarly corresponding operations can be
done for all pieces of domains of h.0; t/ and h.1; t/. Finally, the slant parts are controlled
by the parameter ı; i.e., if ı is small enough, then the slant parts will be small, and so are
� and 4. Hence, we can also meet the purpose of approximation. The global process of
choosing/dropping is shown in Figure 5. The idea is somehow straightforward, but the full
detail in the following might be tedious.
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Based on Step III, define new integers

Si0 D 0; Si
 D


X
�D1

si� .
 D 1; : : : ; �/; Sn D Si� C sn

and
Ri1 D ri1 ; Ri
 D Si
�1 C ri
 .
 D 1; : : : ; �/; Rn D Si� C rn:

Then,

0 �

ˇ̌̌̌
ˇSi
 �

"

X
�D1

�1.Xi�/

#
N1

ˇ̌̌̌
ˇ � N1ı .
 D 1; : : : ; �/;

0 �

ˇ̌̌̌
ˇSn �

"
�X
�D1

�1.Xi�/C �1.Xn/

#
N1

ˇ̌̌̌
ˇ � N1ı;

0 �

ˇ̌̌̌
ˇRi
 �

"

�1X
�D1

�1.Xi�/C �0.Xi
 /

#
N1

ˇ̌̌̌
ˇ � N1ı .
 D 1; : : : ; �/;

and

0 �

ˇ̌̌̌
ˇRn �

"
�X
�D1

�1.Xi�/C �0.Xn/

#
N1

ˇ̌̌̌
ˇ � N1ı:

To ensure the compatibility of subspaces, we drop some functions h.y; tj / for which
h.0; tj / ¤ xi� when j 2 .Si��1 ; Ri� �, h.1; tj / ¤ xi� when j 2 .Si��1 ; Si� � .� D 1; : : : ; �/,
h.0; tj / ¤ 1 when j 2 .Si� ; Rn�, and h.1; tj / ¤ 1 when j 2 .Si� ; Sn�.

Assume that we throw out mi� functions h.0; tj / for j 2 .Si��1 ; Ri� � .� D 1; : : : ; �/,
mn functions h.0; tj / for j 2 .Si� ; Rn�, and m1 functions h.0; tj / for the remaining j ;
zi� functions h.1; tj / for j 2 .Si��1 ; Si� � .� D 1; : : : ; �/, zn functions h.1; tj / for j 2
.Si� ; Sn�, and z1 functions h.1; tj / for j 2 .Sn; N1�.

By Corollary 3.10, to achieve our goal, we need to throw out functions in proportion
so that the remaining ones could satisfy the relations (3.12) and (3.13). So we need to
require

mi�
zi�
D

b

b C k
.� D 1; : : : ; �/; (3.14)

a

aC k
m1 Cmn D

b

b C k

�
a

aC k
z1 C zn

�
: (3.15)

It might happen that �0.Xn/ D 0 or �0.Xn/ ¤ 0; we exhibit our concrete choices in
both cases. We always choose the rational approximation sn � �1.Xn/ and s1 � �1.X1/,
which can be done by the proof of Lemma 3.9.

Case I: �0.Xn/ D 0. Of course, we take rn D 0 and sn D �1.Xn/ D a=b. Then, take
mn D 0. Let us assume

mi� D 4ıN1b; zi� D 4ıN1.b C k/ .� D 1; : : : ; �/;
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mn D 0; zn D t;

m1 D 4ıN1k� C t; z1 D 0:

By (3.15), we know that

a

aC k
.4ıN1k� C t / D

b

b C k
t;

so t D 4ıN1a�.bCk/
b�a

. Then, we take

mi� D 4ıN1.b � a/b; zi� D 4ıN1.b � a/.b C k/ .� D 1; : : : ; �/;

mn D 0; zn D 4ıN1a�.b C k/;

m1 D 4ıN1.aC k/�b; z1 D 0:

To ensure ri� > mi� , si� > zi� , � D 1; : : : ; � , and r1 > m1, sn > zn, as well as the purpose
of approximation, we require that ı satisfies

8nı.b C k/b sup
f 2F

kf k �
"

4
;

5ıb.b � a/ � �0.Xi�/ .� D 1; 2; : : : ; �/;

5ı.aC k/b� � �0.X1/;

and
5ı.b C k/a� � �1.Xn/:

By (3.10) and (3.11), we have

ri� > 4ıN1.b � a/b .� D 1; 2; : : : ; �/;

r1 > 4ıN1.aC k/b�;

si� > 4ıN1.b � a/.b C k/ .� D 1; 2; : : : ; �/;

and
sn > 4ıN1.b C k/a�:

Consider the set ƒ1 of integers j which belong to one of the following intervals:

Si
�1 C 2ıN1.b � a/b C 1 � j � Ri
 � 2ıN1.b � a/b .
 D 1; : : : ; �/;

Ri
 C 2ıN1.b � a/k C 1 � j � Si
 � 2ıN1.b � a/k .
 D 1; : : : ; �/;

Si� C 2ıN1.b C k/a� C 1 � j � Sn � 2ıN1.b C k/a�;

and
Sn C 1 � j � N1:

Set D1 D ¹
j
N1
j j 2 ƒ1º and N D jD1j. Then, by the construction of h.y; t/, point eval-

uations of h at the points in D1 have the following distributions:

h.0; tj / D h.1; tj / D xi
 ;

if Si
�1 C 2ıN1.b � a/b C 1 � j � Ri
 � 2ıN1.b � a/b .
 D 1; : : : ; �/;



An analog of the Krein–Milman theorem 1099

h.0; tj / D 0; h.1; tj / D xi
 ;

if Ri
 C 2ıN1.b � a/k C 1 � j � Si
 � 2ıN1.b � a/k .
 D 1; : : : ; �/;

h.0; tj / D 0; h.1; tj / D 1;

if Si� C 2ıN1.b C k/a� C 1 � j � Sn � 2ıN1.b C k/a�;

h.0; tj / D 0 D h.1; tj /;

if Sn C 1 � j � N1:

Note that N D N1.1 � 4ı�.b C k/b/ and that one has

1

N

NX
dD1

�d .f /.0/ D
1

N

NX
dD1

f
�
h.0; td /

�
D

1

N

 
�X
�D1

.ri� �mi�/f .xi�/C .r1 �m1/f .0/

!
and

1

N

NX
dD1

�d .f /.1/ D
1

N

NX
dD1

f
�
h.1; td /

�
D

1

N

 
�X
�D1

.si� � zi�/f .xi�/C .sn � zn/f .1/C s1f .0/

!
:

It follows from Corollary 3.10 that

1

N

NX
dD1

�d .f /.0/ D
b

b C k

1

N

NX
dD1

�d .f /.1/:

Next, we show that the average of these N homomorphisms approximates the average
of the original N1 homomorphisms:ˇ̌̌̌

ˇ 1N1
N1X
jD1

f
�
h.y; tj /

�
�
1

N

NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
D

1

N1

ˇ̌̌̌
ˇ N1X
jD1

f
�
h.y; tj /

�
�

1

.1 � 4ı�.b C k/b/

NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
D

1

N1

ˇ̌̌̌
ˇ X
d…D1

f
�
h.y; td /

�
C

�
1 �

1

1 � 4ı�.b C k/b

� NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
�

1

N1

�
N14ı�.b C k/b sup

f 2F

kf k CN14ı�.b C k/b sup
f 2F

kf k
�

D 8ı�.b C k/b sup
f 2F

kf k �
"

4
.since � � n � 2/:
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Case II: �0.Xn/ ¤ 0. In this case, we throw out mn D 4ıN1.b � a/b functions h.0; tj /,
and let us assume

mi� D 4ıN1.b � a/b; zi� D 4ıN1.b � a/.b C k/ .� D 1; : : : ; �/;

mn D 4ıN1.b � a/b; zn D 4ıN1.b � a/b C t;

m1 D 4ıN1k�.b � a/C t; z1 D 0:

By (3.11), we know that

a

aC k

�
4ıN1k�.b � a/C t

�
C 4ıN1.b � a/b D

b

b C k

�
4ıN1.b � a/b C t

�
;

so t D 4ıN1.a�.b C k/C b.aC k//. Then, we take

mi� D 4ıN1.b � a/b; zi� D 4ıN1.b � a/.b C k/ .� D 1; : : : ; �/;

mn D 4ıN1.b � a/b; zn D 4ıN1.a� C b/.b C k/;

m1 D 4ıN1.aC k/.aC �/b; z1 D 0:

Similarly, we require that ı satisfies

8ın.k C b/b sup
f 2F

kf k �
"

4
;

5ı.b � a/b < �0.Xi�/ .� D 1; 2; : : : ; �/;

5ı.b � a/b < �0.Xn/;

5ı.aC k/.b C b�/ < �0.X1/;

and
5ı.b C k/.a� C b/ < �1.Xn/:

By (3.10) and (3.11), we have

ri� > 4ıN1.b � a/b .� D 1; 2; : : : ; �/;

rn > 4ıN1.b � a/b;

r1 > 4ıN1.aC k/.1C �/b;

si� > 4ıN1.b � a/.b C k/ .� D 1; 2; : : : ; �/;

and
sn > 4ıN1.b C k/.a� C b/:

Consider the set ƒ2 of integers j which belong to one of the following intervals:

Si
�1 C 2ıN1.b � a/b C 1 � j � Ri
 � 2ıN1.b � a/b .
 D 1; : : : ; �/;

Ri
 C 2ıN1.b � a/k C 1 � j � Si
 � 2ıN1.b � a/k .
 D 1; : : : ; �/;

Si� C 2ıN1.b � a/b C 1 � j � Rn � 2ıN1.b � a/b;

Rn C 2ıN1.ab� C ak� C bk C ba/C 1 � j � Sn � 2ıN1.ab� C ak� C bk C ba/;
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and
Sn C 1 � j � N1:

Set D2 D ¹
j
N1
j j 2 ƒ2º and N D jD2j. Then, by the construction of h.y; t/, point eval-

uations of h at the points in D2 have the following distributions:

h.0; tj / D h.1; tj / D xi
 ;

if Si
�1 C 2ıN1.b � a/b C 1 � j � Ri
 � 2ıN1.b � a/b .
 D 1; : : : ; �/;

h.0; tj / D 0; h.1; tj / D xi
 ;

if Ri
 C 2ıN1.b � a/k C 1 � j � Si
 � 2ıN1.b � a/k .
 D 1; : : : ; �/;

h.0; tj / D h.1; tj / D 1;

if Si� C 2ıN1.b � a/b C 1 � j � Rn � 2ıN1.b � a/b;

h.0; tj / D 0; h.1; tj / D 1;

if RnC2ıN1.ab�Cak�CbkCba/C1 � j � Sn � 2ıN1.ab�Cak�CbkCba/;

h.0; tj / D 0 D h.1; tj /;

if Sn C 1 � j � N1:

Note that N D N1.1 � 4ı.1C �/.k C b/b/ and that one has

1

N

NX
dD1

�d .f /.0/ D
1

N

 
�X
�D1

.ri� �mi�/f .xi�/C .rn �mn/f .1/C .r1 �m1/f .0/

!
and

1

N

NX
dD1

�d .f /.1/ D
1

N

 
�X
�D1

.si� � zi�/f .xi�/C .sn � zn/f .1/C s1f .0/

!
:

It follows from Corollary 3.10 that

1

N

NX
dD1

�d .f /.0/ D
b

b C k

1

N

NX
dD1

�d .f /.1/:

Next, we show that the average of these N homomorphisms approximates the average
of the original N1 homomorphisms:ˇ̌̌̌

ˇ 1N1
N1X
jD1

f
�
h.y; tj /

�
�
1

N

NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
D

1

N1

ˇ̌̌̌
ˇ N1X
jD1

f
�
h.y; tj /

�
�

1

1 � 4ı.1C �/.k C b/b

NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
D

1

N1

ˇ̌̌̌
ˇ X
d…D2

f
�
h.y; td /

�
C

�
1 �

1

1 � 4ı.1C �/.k C b/b

� NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
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�
1

N1

�
N14ı.1C �/.k C b/b sup

f 2F

kf k CN14ı.1C �/.k C b/b sup
f 2F

kf k
�

D 8ı.1C �/.k C b/b sup
f 2F

kf k �
"

4
.since � � n � 2/:

In other words, no matter in which case, we can always find N functions h.y; td /,
d D 1; : : : ; N , as required.

Finally, let us define �d WC Œ0;1�!C Œ0;1� by �d .f .y//Df .h.y; td // .dD1; : : : ;N /.
Then,ˇ̌̌̌

ˇ�.f /.y/ � 1

N

NX
dD1

�j .f /.y/

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ�.f /.y/ � 1

N

NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
�

ˇ̌̌̌
ˇ�.f /.y/ � nX

iD1

�i .y/f .xi /

ˇ̌̌̌
ˇC

ˇ̌̌̌
ˇ nX
iD1

�i .y/f .xi / � w.f /.y/

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇw.f /.y/� 1

N1

N1X
jD1

f
�
h.y; tj /

�ˇ̌̌̌ˇC
ˇ̌̌̌
ˇ 1N1

N1X
jD1

f
�
h.y; tj /

�
�
1

N

NX
dD1

f
�
h.y; td /

�ˇ̌̌̌ˇ
�
"

4
C
"

4
C
"

4
C
"

4
� ":
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