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Kernels for noncommutative projective schemes

Matthew Ballard and Blake Farman

Abstract. We give a noncommutative geometric description of the internal Hom dg-category in the
homotopy category of dg-categories between two noncommutative projective schemes in the style
of Artin–Zhang. As an immediate application, we give a noncommutative projective derived Morita
statement along the lines of Rickard and Orlov.

1. Introduction

Derived categories in algebraic geometry have proven themselves to be an enormously
useful tool in studying birational geometry [7,10,13] and moduli theory [14,28,29]. They
have relations to other fields like representation theory of finite-dimensional algebra [8,18]
and symplectic geometry [33, 34], through mirror symmetry [24].

At the same time, as conceived by Artin and Zhang [4] under the name of noncom-
mutative projective schemes, using tools of category theory and (commutative) algebraic
geometry to understand the landscape of noncommutative graded rings has proven itself
fruitful as well. Indeed, moduli spaces of point modules form the key technical tool in the
classification of noncommutative P2’s [2, 3, 36, 37]. Furthermore, a natural conjecture of
Artin classifies the noncommutative surfaces up to birational classification of noncommu-
tative surfaces [1].

If one is seriously interested in using algebro-geometric techniques to study noncom-
mutative graded rings, then focusing on and exploiting derived categories of noncommu-
tative projective schemes is an obvious and seemingly fertile avenue. The structure of
noncommutative projective schemes is shaped by moduli theory and birational geometry,
almost the exact areas where derived categories realize their full power in (commutative)
algebraic geometry. Additionally, Calabi–Yau noncommutative projective schemes can
provide geometric interpretations for some non-geometric N D 2 superconformal field
theories compactifying IIB strings [5]. Some hints of this are already in the literature.
Two glimpses of this are, for example, the work of Li and Zhao [25] that shows how
Bridgeland stability for noncommutative P2’s provides access to the minimal model pro-
gram for commutative deformations of Hilbert schemes of points and the work of Harder
and Katzarkov [19] that describes the homological mirror symmetry for four-dimensional
quadratic Sklyanin algebras.
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In a first course on derived categories in algebraic geometry, one learns that the power
and influence of derived categories lies in the geometric notion of a kernel. Consider
the derived categories of quasi-coherent sheaves, D.X/ and D.Y /, for two varieties X
and Y . For a general exact functor F W D.X/! D.Y /, one has almost no control; it is
pure abstract smoke. However, in the vast majority of problems, we are lucky to not be
interested in such a general functor, but in one of a specific provenance. From an object
K 2 D.X � Y /, we can construct an exact functor,

ˆK W D.X/! D.Y /

E 7! q�.K ˝ p
�E/;

called an integral transform, in an obvious analogy with analysis, where p W X � Y ! X

and q W X � Y ! Y are the projections. Continuing the analogy, we call K the kernel of
the integral transform. Kernels and integral transforms categorify the notion of correspon-
dences between varieties and they naturally arise in moduli theory as universal objects and
in birational geometry as objects on resolutions of rational maps.

Moreover, if we work with dg-enhancements, then, thanks to a theorem of Töen [38],
we know that integral transforms are all we need to study. Precisely, in his seminal work
[38], Töen showed that

(1) (existence of internal Hom) the localization of the category of dg-categories at
quasi-equivalences admits an internal Hom, RHom, and

(2) (geometric recognition) the subcategory of the Hom between the dg-enhance-
ments of D.X/ and D.Y / consisting of quasi-functors commuting with coproducts
is isomorphic in Ho.dgcat/ to the enhancement of the derived category of the prod-
uct X � Y ,

RHomc.D.X/;D.Y // Š D.X � Y /:

It is important to not confuse the two issues, knowing that (1) in no way helps with estab-
lishing (2). However, if we know that the functor in which we happen to be interested
admits a lift to a dg quasi-functor, then by (2) it must be an integral transform and it must
be geometric.

Predating Töen’s result, Orlov had showed that any equivalence F W Db.cohX/ !
Db.cohY / between smooth and projective varieties is actually isomorphic toˆK for some
kernel K [30]. Being revisionist, we can say that, for varieties, equivalences lift to quasi-
equivalences at the differential graded level. That is to say, if there is an exact equivalence
of triangulated categories of homotopy categories, then there is a quasi-equivalence of the
dg-categories. Post-Töen, Lunts and Orlov exhibited this lifting in vastly more generality
for exact equivalences between derived categories of abelian categories [26].

If we are to study derived categories of noncommutative projective schemes, we are
then at the intersection of Artin–Zhang and Kontsevich-style noncommutative geometry.
The most basic issue is to know what the kernels and integral transforms are, and whether
the pleasant results in the context of (commutative) algebraic geometry persist in this
noncommutative setting.
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We can ask, for example, if we have an analogue of Orlov’s result on the geometric
nature of equivalences. Combining Töen’s and Lunts–Orlov’s results, one immediately
concludes that if X and Y are noncommutative projective schemes and one has an equiv-
alence F W D.X/! D.Y /, then in fact one has a quasi-equivalence F W D.X/! D.Y /.

This is great; however, we are still stuck staring at the abstract smoke. To reap the
benefits, we need to know that F is (noncommutative) geometric. That is, we need the
noncommutative projective analogue of Töen’s geometric recognition. Existence of the
internal Hom and/or uniqueness of enhancements provides no guidance towards geometric
recognition in any context. As such, we encounter the following basic questions.

Question. For noncommutative projective schemes X and Y , what noncommutative pro-
jective scheme is X � Y ? Does geometric recognition hold for X and Y (and X � Y )?

An intermediate issue is to provide a definition of integral transform in noncommuta-
tive projective geometry, which is entirely separate from the differential graded structure.
No such creature has been observed in the literature. Encouragingly, one notes that geo-
metric recognition holds in other settings beyond schemes:

� for higher derived stacks (using machinery of Lurie in place of Töen) in [9] and

� for various versions of matrix factorizations [6, 16, 32].

However, a look at the simpler question of graded Morita theory shows that answers for
noncommutative projective schemes are already more complicated [43]. For commutative
graded rings, Morita equivalence is the same thing as isomorphism.

Fortunately, there is really only one noncommutative projective scheme that deserves
to be called X � Y , the Segre product of X and Y . However, the answer to geometric
recognition is clearly only positive with some homological restrictions on X and Y . It
does not hold in general. Let us now state a version of the main result of this article.

Let A and B be connected graded k-algebras. We say that A and B form a delightful
couple if they are both Ext-finite in the sense of [40], both are left and right Noether-
ian, and both satisfy �ı.R/ for R D A; Aop for A, and R D B; Bop for B [4]. One can
think of this requirement as Serre vanishing for the twisting sheaves plus some finite di-
mensionality over k. Let X and Y be the associated noncommutative projective schemes,
which we also say form a delightful couple.

Theorem 1.1. Let X and Y be noncommutative projective schemes associated to a de-
lightful couple, A and B , over a field k. Assume that A and B are both generated in
degree one. Then, geometric recognition holds for X and Y . That is, there exists a quasi-
equivalence

RHomc

�
D.X/;D.Y /

�
Š D.X � Y /:

For a general delightful couple, geometric recognition holds, however, one must step
slightly outside the realm of noncommutative projective schemes, without losing the (non-
commutative) geometry, to get the correct product. See Theorem 4.15 for the precise
statement of the general result.
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As an immediate corollary to Theorem 1.1, we get the following statement which is a
geometricity of equivalences statement along the lines of Orlov or Rickard.

Theorem 1.2. Let X and Y be noncommutative projective schemes associated to a de-
lightful couple over a field k, both of which are generated in degree one. If there is an
exact equivalence F W D.X/! D.Y /, then there exists an object K of D.X � Y / whose
associated integral transform ˆK is an equivalence. That is, X and Y are Fourier–Mukai
partners.

Recall thatˆK is introduced in this paper. For this, see the statement of Theorem 4.15.
Note that this statement makes no reference to dg-categories and by restricting to commu-
tative projective varieties it recovers the analogous result there.

1.1. Conventions

We let k denote a field. Often, for ease of notation, C.X; Y / will be used to refer to the
morphisms, HomC .X; Y /, between objects X and Y of a category C . We shall also use
an undecorated Hom again depending on the complexity of the notation. Whenever C

has a natural enrichment over a category, V , we will denote by C.X; Y / the V -object
of morphisms. For example, the category of complexes of k-vector spaces, C.k/, can be
endowed with the structure of a C.k/-enriched category using the Hom total complex,
C.k/.C;D/ WD C.k/.C;D/, which has in degree n the k-vector space

C.k/.C;D/n D
Y
m2Z

Mod k.Cm;DmCn/

and differential
d.f / D dD ı f C .�1/

nC1f ı dC :

It should be noted that Z0.C.k/.C;D// D C.k/.C;D/.

2. Background on dg-categories

Recall that a dg-category, A, over k is a category enriched over the category of cochain
complexes, C.k/; a dg-functor F WA ! B is a C.k/-enriched functor; a morphism of
dg-functors of degree n, �WF ! G, is a C.k/-enriched natural transformation such that
�.A/ 2 B.FA; GA/n for all objects A of A; and a morphism of dg-functors is a degree
zero, closed morphism of dg-functors. We will denote by dgcatk the 2-category of small
C.k/-enriched categories and by dgcat

k
.A;B/ the dg-category of dg-functors from A

to B.
Recall also that for A and B small dg-categories, we may define a dg-category A˝B

with objects ob.A/ � ob.B/ and morphisms

.A˝B/
�
.X; Y /; .X 0; Y 0/

�
D A.X;X 0/˝k B.Y; Y 0/:
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It is well known that there is an isomorphism

dgcatk.A˝B;C/ Š dgcatk
�
A; dgcat

k
.B;C/

�
;

endowing dgcatk with the structure of a symmetric monoidal closed category.
For any dg-category, A, we denote by Z0.A/ the category with objects those of A

and morphisms
Z0.A/.A1; A2/ WD Z

0
�
A.A1; A2/

�
:

By H 0.A/ we denote the category with objects those of A and morphisms

H 0.A/.A1; A2/ WD H
0
�
A.A1; A2/

�
:

Following [15], we say that two objects A1, A2 of a dg-category, A, are dg-isomorphic
(respectively, homotopy equivalent) if there is a morphism f 2 Z0.A/.A1; A2/ such that
f (respectively, the image of f in H 0.A/.A1; A2/) is an isomorphism. In such a case,
we say that f is a dg-isomorphism (respectively, homotopy equivalence).

2.1. The homotopy category of dg-categories

We collect here some basic results on the model structure for dgcatk . For any dg-functor
F WA! B, we say that F is

(i) quasi-fully faithful if for any two objects A1, A2 of A the morphism

F.A1; A2/WA.A1;A2/! B.FA1; FA2/

is a quasi-isomorphism of chain complexes,

(ii) quasi-essentially surjective if the induced functor

H 0.F /WH 0.A/! H 0.B/

is essentially surjective,

(iii) a quasi-equivalence if F is quasi-fully faithful and quasi-essentially surjective.

The localization of dgcatk at the class of quasi-equivalences is the homotopy category,
Ho.dgcatk/. We will denote by ŒA;B� the morphisms of Ho.dgcatk/.

2.2. dg-modules

For any small dg-category, A, denote by dgMod.A/ the dg-category of dg-functors
dgcat

k
.Aop; C.k//, where C.k/ denotes the dg-category of chain complexes equipped

with the internal Hom from its symmetric monoidal closed structure. The objects of
dgMod.A/ will be called dg A modules. Since one may view the dg Aop modules as what
should reasonably be called left dg A modules, the terms right and left will be dropped in
favor of dg A modules and dg Aop modules, respectively. We note here that the somewhat
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vexing choice of terminology is such that we can view objects of A as dg A modules by
way of the enriched Yoneda embedding

YAWA! dgMod.A/:

As a special case, we define for any two small dg-categories, A and B, the category of
dg A-B-bimodules to be dgMod.Aop ˝B/. We note here that the symmetric monoidal
closed structure on dgcatk allows us to view bimodules as morphisms of dg-categories by
the isomorphism

dgMod.Aop
˝B/ D dgcat

k

�
A˝Bop;C.k/

�
Š dgcat

k

�
A; dgcat

k

�
Bop;C.k/

��
D dgcat

k

�
A; dgMod.B/

�
:

The image of a dg A-B-bimodule, E, is the dg-functor ˆE .A/ D E.A;�/.

2.2.1. h-projective dg-modules. We say that a dg A module, N , is acyclic if N.A/ is an
acyclic chain complex for all objects A of A. A dg A moduleM is said to be h-projective
if

H 0
�
dgMod.A/

�
.M;N / WD H 0

�
dgMod.A/.M;N /

�
D 0

for every acyclic dg A module, N . The full dg-subcategory of dgMod.A/ consisting of
h-projectives will be called h-Proj.A/.

We always have a special class of h-projectives given by the representables, hA D
A.�; A/ for if M is acyclic, then from the enriched Yoneda lemma we have

H 0
�

dgMod.A/
�
.hA;M/ WD H 0

�
dgMod.A/.hA;M/

�
Š H 0

�
M.A/

�
D 0:

Noting that the Yoneda lemma applied to H 0.dgMod.A// immediately implies that
h-Proj.A/ is closed under homotopy equivalence, we denote the full dg-subcategory of
h-Proj.A/ consisting of the dg A modules homotopy equivalent to representables by A.

An h-projective dg A-B-bimodule, E, is right quasi-representable if for every object
A of A the dg B moduleˆE .A/ is an object of B, and we will denote the full subcategory
of h-Proj.Aop ˝B/ consisting of all right quasi-representables by h-Proj.Aop ˝B/rqr.

The dual notion, h-injective, is defined by reversing all the relevant arrows.

2.2.2. The derived category of a dg-category. By definition, a degree zero closed mor-
phism

� 2 Z0
�

dgMod.A/
�
.M;N /

satisfies
�.A/ 2 Z0

�
C.k/

�
M.A/;N.A/

��
D C.k/

�
M.A/;N.A/

�
for all objects A of A. Hence, we are justified in the following definitions:

(i) � is a quasi-isomorphism if �.A/ is a quasi-isomorphism of chain complexes for
all objects A of A, and
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(ii) � is a fibration if �.A/ is a degree-wise surjective morphism of complexes for
all objects A of A.

Equipping C.k/ with the standard projective model structure (see [21, Section 2.3]), these
definitions endowZ0.dgMod.A//with the structure of a particularly nice cofibrantly gen-
erated model category (see [38, Section 3]). In analogy with the definition of the derived
category of modules for a ring A, the derived category of A is defined to be the homotopy
category

D.A/ D Ho
�
Z0
�

dgMod.A/
��
D Z0

�
dgMod.A/

�
ŒW�1�

that is obtained by localizing Z0.dgMod.A// at the class, W , of quasi-isomorphisms.
It can be shown (see [23, Section 3.5]) that for every dg A module, M , there exist

an h-projective, N , and a quasi-isomorphism, N ! M , which one calls an h-projective
resolution of M . Moreover, it is not difficult to see that any quasi-isomorphism between h-
projective objects is in fact a homotopy equivalence. It follows that there is an equivalence
of categories between H 0.h-Proj.A// and D.A/ for any small dg-category, A.

It should be noted that this generalizes the notion of derived categories of modules over
a commutative ring. Indeed, for a commutative ring, A, one associates to A the ringoid,
A, with one object, �, and morphisms, A.�; �/, the complex with A in degree zero. One
identifies the chain complexes of A modules enriched by the Hom total complex with
dgMod.A/, which is simply the full dg-subcategory of Fun.A; C.k// comprised of all
dg-functors. From this viewpoint, it is easy to recognize the categories Z0.dgMod.A//,
H 0.dgMod.A//, and D.A/ as the categories C.A/,K.A/, the usual category up to homo-
topy, and the derived category of ModA, respectively. In the language of [26], we say that
h-Proj.A/ is a dg-enhancement of D.ModA/.

2.3. Tensor products of dg-modules

Let M be a dg A module, let N be a dg Aop module, and let A, B be objects of A. For
ease of notation, we drop the functor notation M.A/ in favor of MA and write AA;B for
the morphisms A.A;B/. We have structure morphisms

MA;B 2 C.k/
�
AA;B ;C.k/.MB ;MA/

�
Š C.k/.MB ˝k AA;B ;MA/

and
NA;B 2 C.k/

�
AA;B ;C.k/.NA; NB/

�
Š C.k/.AA;B ˝k NA; NB/;

which give rise to a unique morphism

MB ˝k AA;B ˝k NA !MA ˝k NA ˚MB ˝k NB ;

induced by the universal properties of the biproduct. The two collections of morphisms
given by projecting onto each factor induce morphisms

„1; „2W
M

A;B2Ob.A/

MB ˝k AA;B ˝k NA !
M

C2Ob.A/

MC ˝k NC ;
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and we define the tensor product of M and N to be the coequalizer in C.k/,M
.i;j /2Z2

Mj ˝k AA;B ˝k NA
„1
�
„2

M
`2Z

M` ˝k N` !M ˝A N:

It is routine to check that a morphism M ! M 0 of right dg A modules induces by the
universal property for coequalizers a unique morphism

M ˝A N !M 0 ˝A N

yielding a functor
�˝A N W dgMod.A/! C.k/:

One extends this construction to bimodules as follows. Given objects E of
dgMod.A˝B/ and F of dgMod.Bop ˝ C/, we recall that we have associated to each a
dg-functor

ˆE WA
op
! dgMod.B/ and ˆF WC

op
! dgMod.Bop/

by the symmetric monoidal closed structure on dgcatk . For each pair of objects A of A

and C of C , we obtain dg-modules

ˆE .A/ D E.A;�/WB
op
! C.k/ and ˆF .C / D F.�; C /WB ! C.k/

and, hence, one may define the object E ˝B F of dgMod.A˝ C/ by

.E ˝B F /.A;C / D ˆE .A/˝B ˆF .C /:

One can show, by a similar argument to the original, that a morphism E ! E 0 of
dgMod.A ˝ B/ induces a morphism E ˝B F ! E 0 ˝B F of dgMod.A ˝ C/ and a
morphism F ! F 0 of dgMod.Bop ˝ C/ induces a morphism E ˝B F ! E ˝B F 0 of
dgMod.A˝ C/.

Remark 2.1. Denote by K the dg-category with one object, �, and morphisms given by
the chain complex

K.�;�/n D

´
k n D 0;

0 n ¤ 0

with zero differential. This category serves as the unit of the symmetric monoidal structure
on dgcatk , so for small dg-categories, A and C , we can always identify A with A˝K

and C with Kop ˝ C . With this identification in hand, we obtain from taking B D K in
the latter construction a special case: Given a dg Aop module, E, and a dg C module, F ,
we have a dg A-C -bimodule defined by the tensor product

.E ˝ F /.A;C / WD .E ˝K F /.A;C / D E.A/˝k F.C/:
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2.4. Extensions of morphisms associated to bimodules

Let E be a dg A-B-bimodule. Following [15, Section 3], we can extend the associated
functor ˆE to a dg-functor

b̂
E W dgMod.A/! dgMod.B/

defined by b̂E .M/DM ˝A E. Similarly, we have a dg-functor in the opposite direction,

ê
E W dgMod.B/! dgMod.A/;

defined by ê
E .N / D dgMod.B/.ˆE .�/; N /.

For any dg-functor GWA! B, we denote by IndG the extension of the dg-functor

A! B
YB
���! dgMod.B/

and its right adjoint by ResG . By way of the enriched Yoneda lemma, we see that for any
object A of A and any dg B module, N ,

ResG.N /.A/ D dgMod.B/.hGA; N / Š N.GA/:

We record here some useful propositions regarding extensions of dg-functors.

Proposition 2.2 ([15, Proposition 3.2]). Let A and B be small dg-categories. Let F WA!
dgMod.B/ and GWA! B be dg-functors.

(i) yF is left adjoint to eF .

(ii) yF ı YA is dg-isomorphic to F and H 0. yF / is continuous.

(iii) yF .h-Proj.A// � h-Proj.B/ if and only if F.A/ � h-Proj.B/.

(iv) ResG.h-Proj.B// � h-Proj.A/ if and only if ResG. NB/ � h-Proj.A/; moreover,
H 0.ResG/ is always continuous.

(v) IndG Wh-Proj.A/!h-Proj.B/ is a quasi-equivalence ifG is a quasi-equivalence.

Remark 2.3. (1) We note that for dg A- and Aop modules,M andN , part (i) implies that
the dg-functors

�˝A N W dgMod.A/! C.k/

and
M ˝A �W dgMod.Aop/! C.k/

have right adjointseN.C/ D C.k/
�
N.�/; C

�
and fM.C/ D C.k/

�
M.�/; C

�
;

respectively. As an immediate consequence of the enriched Yoneda lemma,

hA ˝A N Š N.A/ and M ˝A h
A
ŠM.A/

hold for any object A of A.
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(2) Let �A denote the dg A-A-bimodule corresponding to the Yoneda embedding,
YA, under the isomorphism

dgMod.Aop
˝A/ Š dgcat

k

�
A; dgMod.A/

�
:

It is clear that we have a dg-functor

�A ˝A �W dgMod.Aop
˝A/! dgMod.Aop

˝A/

and for any dg A-A-bimodule, E, we see that

.�A ˝A E/.A;A
0/ D hA ˝A E.�; A

0/ Š E.A;A0/

implies that �A ˝A E Š E.

When starting with an h-projective, we have a very nice extension of dg-functors.

Proposition 2.4 ([15, Lemma 3.4]). If E is any h-projective dg A-B-bimodule, then the
associated functor

ˆE WA! dgMod.B/

factors through h-Proj.B/.

As a direct consequence of the penultimate proposition, this means that we can view
the extension of ˆE as a dg-functor

b̂
E D �˝A EW h-Proj.A/! h-Proj.B/:

Putting it in another way, tensoring with an h-projective A-B-bimodule preserves h-
projectives.

One essential result about dgcatk comes from Töen’s result on the existence, and
description, of the internal Hom in its homotopy category.

Theorem 2.5 ([38, Theorem 1.1], [15, Section 4.1]). Let A, B, and C be objects of
dgcatk . There exists a natural bijection

ŒA;C �
1W1
 ! Iso

�
H 0

�
h-Proj.Aop

˝ C/rqr��:
Moreover, the dg-category RHom.B;C/ WD h-Proj.Bop˝ C/rqr yields a natural bijection

ŒA˝B;C �
1W1
 !

�
A;RHom.B;C/

�
;

proving that the symmetric monoidal category Ho.dgcatk/ is closed.

Corollary 2.6 ([38, Section 7.2], [15, Corollary 4.2]). Given two dg-categories A and B,
RHom.A; h-Proj.B// and h-Proj.Aop ˝ B/ are isomorphic in Ho.dgcatk/. Moreover,
there exists a quasi-equivalence

RHomc

�
h-Proj.A/; h-Proj.B/

�
! RHom

�
A; h-Proj.B/

�
:
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To get a sense of the value of this result, let us recall one application from [38, Sec-
tion 8.3]. Let X and Y be quasi-compact and separated schemes over Spec k. Recall
that the dg model for D.QcohX/, Lqcoh.X/, is the C.k/-enriched subcategory of fibrant-
cofibrant objects in the injective model structure on C.QcohX/.

Theorem 2.7 ([38, Theorem 8.3]). Let X and Y be quasi-compact, quasi-separated
schemes over k. There exists an isomorphism in Ho.dgcatk/

RHomc.LqcohX;LqcohY / Š Lqcoh.X �k Y /

which takes a complexE 2Lqcoh.X �k Y / to the exact functor on the homotopy categories

ˆE W D.QcohX/! D.QcohY /

M 7! R�2�
�
E

L
˝ L��1M

�
:

Proof. The first part of the statement is exactly as in [38]. The second part is implicit.

3. Details on noncommutative projective schemes

3.1. Recollections and conditions

Noncommutative projective schemes were introduced by Artin and Zhang in [4]. We recall
the definition.

Definition 3.1. Let N be a finitely-generated abelian group. We say that a k-algebra A is
N -graded if there exists a decomposition as k modules

A D
M
n2N

An;

with AnAm � AnCm. One says that A is connected graded if it is Z-graded with A0 D k
and An D 0 for n < 0.

For algebraic geometers, the most common example is the homogeneous coordinate
ring of a projective scheme. These are of course commutative. One has a plenitude of
noncommutative examples.

Example 3.2. Let us take k D C and consider the following quotient of the free algebra:

Aq WD Chx0; : : : ; xni=.xixj � qijxjxi /;

for qij 2 C� with qij D q�1ji . These give noncommutative deformations of Pn.

Example 3.3. Building off of Example 3.2, we recall the following class of noncommu-
tative algebras of Kanazawa [22]. Pick � 2 C and qij according to [22, Theorem 2.1] withQn
iD1 qij D 1 for all j . And set

A�q WD Aq

, 
nX
iD0

xnC1i � �.nC 1/.x0 � � � xn/

!
:
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This is the noncommutative version of the homogeneous coordinate rings of the Hesse (or
Dwork) pencil of Calabi–Yau hypersurfaces in Pn.

Definition 3.4. Let M be a graded A module. We say that M has right limited grading if
there exists a d such thatMd 0 D 0 for d 0 � d . We define left limited grading analogously.

In general, good behavior requires some homological assumptions on the ring A. We
recall two common such ones.

Definition 3.5. Let A be a connected graded k-algebra. Following Van den Bergh [40],
we say thatA is Ext-finite if for each n�0 the ungraded Ext-groups are finite dimensional:

dimk ExtnA.k; k/ <1:

Remark 3.6. The Ext’s are taken in the category of left A modules, a priori.

Definition 3.7. Following Artin and Zhang [4], given a graded left module M , we say A
satisfies �ı.M/ if ExtnA.k;M/ has right limited grading for each n � 0.

We recall some basic results on Ext-finiteness, essentially from [40, Section 4].

Proposition 3.8. Assume that A and B are Ext-finite. Then,

(1) the ring A˝k B is Ext-finite,

(2) the ring Aop is Ext-finite.

Furthermore, if A is Ext-finite, then A is finitely presented as a k-algebra.

Proof. See [40, Lemma 4.2] and the discussion preceding it. For the final statement, see
the opening paragraphs of [11, Section 4.1].

For a connected graded k-algebra, A, one has the two-sided ideal

A�` WD
M
n�`

An:

Definition 3.9. Let A be a finitely generated connected graded algebra. Recall that an
element, m, of a module, M , is torsion if there is an n such that

A�nm D 0:

We let � denote the functor that takes a module,M , to its torsion submodule. The module
M is torsion if �M DM .

The functor � is right adjoint to the inclusion functor and we denote the counit by
�W � ! 1GrA.

The following is likely well known (under the assumption of a Noetherian ring, the
conclusion is contained in [4]). However, the authors were unable to locate a convenient
reference under the assumption of finite generation, so we include the following.
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Proposition 3.10. Let A be a connected graded k-algebra. If A is generated as a k-
algebra by a finite set of elements of positive degree, then for each ` 2 Z, the tails A�`
are finitely generated A modules.

Proof. Let S D ¹xiº
g
iD1 be a set of generators for A as a k-algebra and let di D deg.xi /.

By possibly relabeling, we may assume that 1 � d1 � d2 � � � � � dg .
Fix `. First, we show that A�` is generated by the sum

`Cdg�1M
rD`

Ar :

Take a 2 An with ` � n. We induct on n. If n � `C dg � 1, then a is generated by

`Cdg�1M
rD`

Ar :

If n > `C dg � 1, then we can write

a D
X

aibi

with n > deg.ai /; deg.bi / > 0. So a is generated by

n�1M
rDn�dg

Ar :

By the induction hypothesis, we can generate any element of Ar for n � dg � r � n � 1
using

`Cdg�1M
rD`

Ar :

It suffices to show that
`Cdg�1M
rD`

Ar

is a finite-dimensional k-vector space. Hence, it is enough to show that Ar is a finite-
dimensional k-vector space for each r . Consider the free algebra khSi as a graded algebra.
By assumption, there is a surjection

khSi ! A;

so it suffices to show that there are only finitely many words of degree r in khSi.
Consider a word w of length N . We can write

w D ˛X1 � � �Xn;
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where Xi 2 S and ˛ 2 k, so

Nd1 � deg.w/ � Ndg :

If r=d1 < N , then w 62 khSir . This implies®
w j deg.w/ D r

¯
�
®
w j 0 � len.w/ � r=d1

¯
:

The latter has only finitely many elements since S has only finitely many elements. Hence,
khSir is a finite-dimensional vector space.

Proposition 3.11. Let A be a connected graded k-algebra. Denote by TorsA the full
subcategory of GrA consisting of all torsion modules. If A is finitely generated in positive
degree, then TorsA is a Serre subcategory.

Proof. Consider a short exact sequence

0!M 0 !M
p
�!M 00 ! 0:

It is clear that if M is an object of TorsA, then so are M 0 and M 00. Hence, it suffices to
show that if M 0 and M 00 are both objects of TorsA, then so is M .

Fix an element m 2 M . Since M 00 is an object of TorsA, there exists some n such
that A�np.m/ D 0 and hence A�nm 2 M 0. By Proposition 3.10, the latter is finitely
generated and so we can choose generators m01; : : : ; m

0
t and integers n1; : : : ; nt such that

A�nim
0
i D 0, for i D 1; : : : ; t . Take nm D maxiD1;:::;t¹nC niº so that A�nmm D 0, as

desired.

As such, we can form the quotient.

Definition 3.12. Let A be connected graded and finitely generated as a k-algebra. Then,
denote the quotient of the category of graded A modules by the subcategory of torsion
modules as

QGrA WD GrA=TorsA:

Let
� W GrA! QGrA

denote the quotient functor. By Proposition 3.11 and [17, Corollaire 1, III.3], � admits a
fully faithful right adjoint which we denote by

! W QGrA! GrA:

Finally, we denote the composition Q WD !� and the unit of adjunction "W 1GrA ! Q.
The category QGrA is defined to be the quasi-coherent sheaves on the noncommuta-

tive projective scheme X .

Remark 3.13. Note that, traditionally speaking, X is not a space, in general. In the case
A is commutative and finitely generated by elements of degree 1, then a famous result of
Serre says that there is an equivalence between QcohX and QGrA, so thatX is effectively
ProjA.
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One can give more explicit descriptions of Q and � .

Proposition 3.14. Let A be a connected graded k-algebra and let M be a graded A
module. If A is finitely generated, then

�M D colimn GrA.A=A�n;M/;

QM D colimn GrA.A�n;M/;

and ".M/.m/ 2 Q.M/ is the class of the morphism

'mWA!M

a 7! a �m:

Proof. This is a standard localization theory; see [35].

3.2. Noncommutative bi-projective schemes

In studying questions of kernels and bimodules, we will have to move outside the realm of
Z-gradings. While one can generally treat N -graded k-algebras in our analysis, we limit
the scope a bit and only consider Z2-gradings of the following form.

Definition 3.15. Let A and B be connected graded k-algebras. The tensor product A˝k
B will be equipped with its natural bi-grading

.A˝k B/n1;n2 D An1 ˝k Bn2 :

A bi-bi module for the pair .A;B/ is a Z2-graded A˝k B module.

From bi-bi modules, we can produce A or B modules by taking slices of the gradings.
For fixed v 2 Z we have a functor

.�/�;vWGr.A˝k B/! GrA

P 7!
M
m2Z

Pm;v

and for fixed u 2 Z a functor

.�/u;�WGr.A˝k B/! GrB

P 7!
M
n2Z

Pu;n:

In the case that A D B , there is a particular bi-bi module of interest.

Definition 3.16. For A, a finitely generated, connected graded k-algebra, we define �A
to be the A-A bi-bi module with

.�A/i;j D AiCj

and the natural left and rightA actions. If the context is clear, we will often simply write�.
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Notice that the forgetful functor UAWGr.A˝k B/! GrA sends a bi-bi module P to
the Z-graded sum

UA.P / D
M
u2Z

Pu;�

and, similarly, the forgetful functor UB WGr.A˝k B/! GrB . Allowing for some repeti-
tion of notation, we define for any bi-bi module

QA.P / WD QA ı UA.P / and QB.P / WD QB ı UB.P /

and also
�A.P / WD �A ı UA.P / and �B.P / WD �B ı UB.P /:

In general, these will no longer be bi-bi modules, although under mild assumptions we
can guarantee they will.

If A is finitely generated as a k-algebra, then we have a functor

Q0AWGr.A˝k B/! Gr.A˝k B/

that takes a bi-bi module P to the bi-bi module
L
v2ZQA.P�;v/, where the Z2 grading is

given by
Q0A.P /u;v WD QA.P�;v/u:

The two constructions are naturally isomorphic.

Lemma 3.17. Assume A is finitely generated as a k-algebra. Let P be a bi-bi module.
The natural map Q0A.P /! QA.P / is an isomorphism and thus QA.P / is also a bi-bi
module. Similarly, �A.P / is also a bi-bi module.

Symmetrically, if B is finitely generated as a k-algebra, then the natural map
Q0B.P /! QB.P / is an isomorphism and thus QB.P / is also a bi-bi module. Similarly,
�B.P / is also a bi-bi module.

Proof. By the universal property for coproducts, we have a morphism

Q0A.P / D
M
v2Z

QA.P�;v/! QA

�M
v2Z

P�;v

�
D QA.P /;

so it suffices to check that QA commutes with coproducts. Since coproducts commute
with colimits, it suffices to check that the natural morphismM

v2Z

GrA.A�n; P�;v/! GrA
�
A�n;

M
v2Z

P�;v

�
is an isomorphism. This holds provided that A�n is finitely generated as a module, but
this follows from the assumption that A is finitely generated as an algebra. This is Propo-
sition 3.10. A similar argument works for �A.

There are a couple of notions of torsion for a bi-bi module that one can dream up. We
use the following.
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Definition 3.18. Let A and B be finitely generated, connected graded k-algebras and
let M be a bi-bi A-B module. We say that M is torsion if it lies in the smallest Serre
subcategory containing A-torsion bi-bi modules and B-torsion bi-bi modules.

Lemma 3.19. Let A and B be finitely generated, connected graded k-algebras. A bi-bi
module P is torsion if and only if there exists a pair of integers, n1, n2, such that

.A˝ B/�n1;�n2p D 0 (3.1)

for all p 2 P .
Furthermore,

�A˝kB.P / D colimn1;n2 Gr.A˝k B/
�
.A˝k B/=.A�n1 ˝k B�n2/; P

�
:

Proof. For ease of notation, denote by T the full subcategory of bi-bi modules satisfying
equation (3.1). Assume that the bi-bi modules P 0 and P 00 both belong to T and that we
have a short exact sequence of bi-bi modules

0! P 0 ! P ! P 00 ! 0:

Since P 00 belongs to T , we may choose for any p 2 P integers `1 and `2 such that

.A˝k B/�`1;�`2p � P
0;

which is finitely generated by Proposition 3.10 by, say, p1; p2; : : : ; pk . As elements of P 0,
there exist for each i integers ni1 and ni2 such that

.A˝k B/�ni1;�n
i
2
pi D 0:

Taking n1 D maxi¹ni1º and n2 D maxi¹ni2º implies that P belongs to T , and thus T is a
Serre subcategory.

If P is either A-torsion, in which case .A˝ B/�n;�0p D 0 for some n, or B-torsion,
in which case .A˝ B/�0;�np D 0 for some n, then P belongs to T . By minimality, T

necessarily contains Tors.A˝k B/ and so it suffices to show that if

.A˝ B/�n1;�n2p D 0; 8p 2 P;

then P lies in Tors.A˝k B/. Denote by �BP the B-torsion submodule of P and observe
from the short exact sequence of bi-bi modules

0! �BP ! P ! P=�BP ! 0

that it suffices to show that P=�BP belongs to Tors.A˝k B/. For every p 2 P , there is
some n1 such that A�n1p is B-torsion. Hence, A�n1p D 0 and p is A-torsion. Conse-
quently, P=�BP is itself a torsion A module and, therefore, belongs to Tors.A˝k B/, as
desired.

The final statement now follows immediately.
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We can compare our notion, �A˝kB , of torsion to the torsion of [40],

�VdB
A˝kB

.P / D colimm;n Gr.A˝k B/.A=A�m ˝k B=B�n; P /:

Lemma 3.20. There exists a natural inclusion

�VdB
A˝kB

.P /
�P
��! �A˝kB.P /:

Proof. The surjections A! A=A�m and B ! B=B�n induce morphisms

A˝k B=A�m ˝k B�n ! A=A�m ˝k B=B�n

which in turn induce �P .

Remark 3.21. In general, this inclusion is strict. For example, take P D A=A�m ˝k N .
One has

�A˝kB.A=A�m ˝k N/ D A=A�m ˝k N

while
�VdB
A˝kB

.A=A�m ˝k N/ D A=A�m ˝k �BN:

One can form the quotient category

QGr.A˝k B/ WD Gr.A˝k B/=Tors.A˝k B/:

Lemma 3.22. The quotient functor

� W Gr.A˝k B/! QGr.A˝k B/

has a fully faithful right adjoint

! W QGr.A˝k B/! Gr.A˝k B/

with
QM WD !�M D colimn1;n2 Gr.A˝k B/.A�n1 ˝k B�n2 ;M/:

Proof. This is just an application of [17, Corollaire 1, III.3].

For a given bi-bi module, a natural question one might ask is howQA,QB , andQA˝kB
relate, as well as how �A, �B , and �A˝kB relate.

Lemma 3.23. Let A and B be finitely generated, connected graded k-algebras. For any
complex of bi-bi modules, P , there exist natural morphisms of complexes

˛`P W QAP ! QA˝kBP;

˛rP W QBP ! QA˝kBP:
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Moreover, the diagram

P P P

QAP QA˝kBP QBP

"A.P /

1P

"A.P / "A˝kB .P /

1P

"B .P /

˛`P ˛rP

commutes.

Proof. We handle the case of ˛` and note that ˛r follows from the same argument, mutatis
mutandis.

First, observe that it suffices to prove the result for P simply a bi-bi module and apply
the result in each degree, for then all faces of the cube

P n P n

P nC1 P nC1

QA.P
n/ QA˝kB.P

n/

QA.P
nC1/ QA˝kB.P

nC1/

dn

1nP

"nA.P /

dnP

"nA.P /1nC1P

"nC1A .P / "nC1A˝kB
.P /

˛`
Pn

dn
QA.P/

dnQA˝kB
.P /

˛`
PnC1

obviously commute for all n. Hence, we assume that P is a bi-bi module.
Now, fix an integer m and observe that GrA.A�m; P / is a graded bi-bi module with

Z2 grading given by

GrA.A�m; P /u;v D GrA
�
A�m; P�;v.u/

�
:

We have

'mu;vWGrA.A�m; P /u;v ! Gr.A˝k B/.A�m ˝k B;P /u;v
f 7!

®
a˝ b 7! f .a/ � b WD .1˝ b/f .a/

¯
since f .a/ 2 P�;v.u/r D PrCu;v for any a 2 Ar and, hence,

f .a/ � b 2 PrCu;vCs D P.u; v/r;s

for any b 2 Bs . Since the choice ofm was arbitrary, we have by the universal property for
colimits the commutative diagram

GrA.A�m; P / Gr.A˝k B/.A�m ˝k B;P /u;v

QA.P / QA˝kB.P /:

'm

9Š˛`P
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For naturality, it suffices to show that

P1 GrA.A�m; P1/ QA.P1/ QA˝kB.P1/

P2 QA.P2/ QA˝kB.P2/

f

˛`P1

QA.f / QA˝kB .f /

˛`P2

commutes for all m. It is clear from the colimit definition that QA.f / applied to the class
of a morphism 'WA�m! P1 is the class of the composition, Œf ı '�, which is mapped by
˛`P2 to the class of the morphism

a˝ b 7! f ı '.a/ � b:

Along the other side of the square, we see that ˛`P1 maps Œ'� to the class of

a˝ b 7! 1˝ '.a/ � b

whose image under QA˝kB.f / is the class of the morphism

a˝ b 7! f
�
'.a/ � b

�
D f ı '.a/ � b

since f is a morphism of bi-bi modules.
By identifying P with GrA.A;P /, we can see that image of an element p of P under

the unit of adjunction "AW 1GrA ! QA is the class of the morphism 'p.a/ D a � p in
QA.P /. Similarly, the unit of adjunction "A˝kB.P / takes an element p of P to the class
of the morphism

 p.a˝ b/ D a˝ b � p

inQA˝kB.P /. From this observation, it is clear that the result of applying ˛`P to the image
of p in QA.P / is the class of the morphism

a˝ b 7! 'p.a/ � b D .a � p/ � b D a˝ b � p D  p.a˝ b/:

As a result, we see that ˛`P factors the unit of adjunction

"A˝kB D ˛
`
P ı "A:

Lemma 3.24. Let A and B be finitely generated, connected graded k-algebras. There
exist natural isomorphisms

QA˝kBP

QB ıQA.P / QA ıQB.P /
`P

rP
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making the diagram

QAP QA˝kBP QBP

QB ıQA.P / QA ıQB.P /

˛`P

"B .QAP/ `P
rP

˛rP

"A.QBP/

commute.

Proof. We handle the left case and note that the other is symmetric. Since the tails, B�n,
of B are all finitely generated, the natural map

 lP WD colimn;m Gr.A˝k B/.A�m ˝k B�n; P /

! colimn GrB
�
B�n; colimm GrA.A�m; P /

�
induced by the isomorphisms

Gr.A˝k B/.A�m ˝k B�n; P /! GrB
�
B�n;GrA.A�m; P /

�
' 7!

�
b 7! '.�˝ b/

�
is also an isomorphism.

For an element x ofQA.P /, we can always choose a representative  WA�n! P . The
image of x under ˛`P is represented by the morphism

a˝ b 7!  .a/ � b

and its image under `P is represented by

b 7! ˛lP .�˝ b/ D  .�/ � b:

The image of x under "A.QAP / is represented by the morphism

b 7!  .�/ � b

and the diagram commutes.

Lemma 3.25. Let A and B be finitely generated, connected graded k-algebras. There
exists a commutative diagram

�AP �VdB
A˝kB

P �BP

�B ı �A.P / �A ı �B.P /

�rP�`P

�B .�AP/ �`P
�A.�BP/�rP

with �`P and �rP being natural isomorphisms.

Proof. See [40, Lemma 4.5].
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3.3. Derived functors

For a general Grothendieck category, we equip the category of chain complexes with the
injective model structure. We compute the total right derived functors of a left exact func-
tor, F , on an object, M , by applying F to the fibrant replacement, RM ,

RF.M/ D F.RM/:

When necessary to distinguish between multiple fibrant replacement functors, we will
decorate with the relevant ring, e.g., RF.M/ D F.RAM/.

Many of the relevant statements, e.g., checking that a morphism is a quasi-isomor-
phism, can be verified by passing to the level of the homotopy category, i.e., the derived
category.

Definition 3.26. We say J is an F -acyclic if the natural morphism

F.J /! RF.J /

is a quasi-isomorphism.

A special class of F -acyclics are the h-injectives, which are all homotopy equivalent to
a fibrant object. As such, one can use h-injective resolutions to compute derived functors
when convenient.

We say that RF commutes with coproducts if the natural mapM
2�

F.RX /! FR
�M
2�

X

�
is a quasi-isomorphism for any coproduct.

Lemma 3.27. Let C and D be abelian categories and let F WC ! D be left exact. If C
is Grothendieck, then RF commutes with coproducts if and only if

(1) F commutes with arbitrary coproducts of objects in C and

(2) arbitrary coproducts of F -acyclics are F -acyclic.

Proof. First assume that RF commutes with coproducts. Since F is left exact,

H 0
�
RF.A/

�
Š F.A/

for any object of C . So (1) is satisfied. Now assume that J are F -acyclic. Then, we have
the commutative diagram L

 F.J /
L
 RF.J /

F.
L
 J / RF.

L
 J /
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with vertical arrows quasi-isomorphisms. The upper horizontal arrow is a coproduct of
quasi-isomorphisms and so is also a quasi-isomorphism. Consequently, the lower hori-
zontal arrow is a quasi-isomorphism and thus

L
J is F -acyclic.

Conversely, assume that (1) and (2) hold. Given a collection ¹Xº of objects of C , the
map M



X !
M


RX

is a quasi-isomorphism and
L
 RX is F -acyclic. We can factor the natural mapL

 F.RX / FR.
L
 X /

F.
L
 RX /

Condition (1) says that the downward arrow is a quasi-isomorphism while condition (2)
says that the upward arrow comes from applying F to a map of F -acyclic objects. As the
F Š RF on F -acyclic objects, F preserves quasi-isomorphisms between acyclic objects.
Thus, the upward arrow is also a quasi-isomorphism. Consequently, the horizontal arrow
is a quasi-isomorphism and RF commutes with coproducts.

For a given complex of bi-bi modules, P , the complex RQAP will not generally be
a bi-bi module due to the fact that RA does not commute with coproducts. However, the
assumption that RQA commutes with coproducts says exactly thatM

v

QARA.P�;v/! RQAP

is a quasi-isomorphism and the source is a complex of bi-bi modules. We therefore set

R0QAP WD
M
v

QARA.P�;v/:

Lemma 3.28. If I is an h-injective complex of bi-bi modules, then I�;v is an h-injective
complex of A modules for any v 2 Z.

Proof. We observe from the isomorphism of A modules

I�;v Š GrB
�
B.�v/; I

�
that one just needs to check that applying GrB.B.�v/;�/ in each degree preserves h-
injectivity. For the complex I�;v of A modules to be h-injective, we only need to show
that

K.GrA/.D; I�;v/ D 0

holds for all acyclic A modules, D. This follows from the tensor-hom adjunction

K.GrA/.D; I�;v/ Š K.GrA/
�
D;GrB

�
B.�v/; I

��
Š K

�
Gr.A˝k B/

��
D ˝k B.�v/; I

�
D 0

because I is an h-injective bi-bi module and D ˝k B.�v/ is acyclic.
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Lemma 3.29. The functor

! W h-Inj.QGrA/! h-Inj.GrA/

is well defined. Moreover, H 0.!/ is an equivalence with its essential image.

Proof. For the first statement, we just need to check that ! takes h-injective complexes
to h-injective complexes. This is clear from the fact that ! is right adjoint to � , which is
exact.

To see that this is fully faithful, we recall that �! Š Id, so

h-Inj.GrA/.!M;!N/ Š h-Inj.QGrA/.�!M;N/

Š h-Inj.QGrA/.M;N/:

Remark 3.30. Using Lemma 3.29, we can either use h-Inj.QGrA/ or its image under !
in h-Inj.GrA/ as an enhancement of D.QGrA/.

Corollary 3.31. Let A and B be finitely generated, connected graded k-algebras. If RQA
and RQB both commute with coproducts, then, for a bi-bi module P , RQA˝kBP is nat-
urally quasi-isomorphic to R0QA.R0QBP / and R0QB.R0QAP /.

Proof. We handle the quasi-isomorphism between the first two. The remaining part is
analogous.

Let P be an object of C.Gr.A˝k B//. First, observe that we have

RQA˝kB.P / D QA˝kB.RA˝kBP / Š QA ıQB.RA˝kBP /

via  rRA˝kBP
. Note that we have two homotopy equivalences:

QBRBPv;� ! QBRB.RA˝kBP /v;�  QB.RA˝kBP /v;�;

which induce a quasi-isomorphism between R0QBP and QBRA˝kBP . Applying RQA
preserves quasi-isomorphisms. Since R0QA is naturally quasi-isomorphic to RQA, there is
an induced natural quasi-isomorphism between R0QA.R0QBP / and R0QA.QBRA˝kBP /.

Therefore, it suffices to show that

QAQBI ! R0QA.QBI /

is a quasi-isomorphism for any h-injective, I . Since R0QA and RQA are naturally quasi-
isomorphic, we can instead show that

QAQBI ! RQA.QBI /

is a quasi-isomorphism, which is another way of saying that QBI is QA-acyclic. Note
that there is a short exact sequence of complexes

0!
M
n

Gr.B/.B�n; I /!
M
n

Gr.B/.B�n; I /! QBI ! 0
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which induces an exact triangle in the derived category. Because the tails A�m are finitely
generated, any map

A�m ! QBI

lifts to a map
A�m ! Gr.B/.B�n; I /:

This says that the sequence

0!
M
n

QAGr.B/.B�n; I /!
M
n

QAGr.B/.B�n; I /! QAQBI ! 0

remains exact. Using the fact that RQA commutes with coproducts, we get a map of
triangles L

nQAGr.B/.B�n; I /
L
nQAGr.B/.B�n; I / QAQBI

L
n RQAGr.B/.B�n; I /

L
n RQAGr.B/.B�n; I / RQA.QBI /;

where the first displayed vertical maps are quasi-isomorphisms since each Gr.B/.B�n; I /
is h-injective for all n. Consequently, the map

QAQBI ! RQA.QBI /

is also a quasi-isomorphism for any h-injective I .

We can strengthen the previous statement if we assume some finite dimensionality
on R� .

Proposition 3.32. Assume thatA is Ext-finite and there exists a fixedN such that Rn�A D
0 for all n � N . Then, the natural maps

R�A.R�AM/! R�AM;
RQA.M/! RQA.QAM/

are quasi-isomorphisms for any complex of graded A modules, M . Moreover, both
R�A.RQAM/ and RQA.R�AM/ are acyclic.

Proof. It suffices to show that, for a cofibrant M , the object �AM is �A-acyclic. [11,
Lemma 4.1.3] implies this for injective graded modules. An appeal to the spectral se-
quence whose E1-page is Rp�A.�AM q/ plus the assumption that R�pA vanishes for suffi-
ciently large p gives the acyclicity in general. A similar argument demonstrates the second
quasi-isomorphism.

Remark 3.33. It seems like the assumption of finite dimensionality of R�A is unneces-
sary.
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Definition 3.34. We say an object M of C.GrA/ is R�A torsion-free if R�AM is acyclic.

We also have the following standard triangles of derived functors.

Lemma 3.35. Let A and B be finitely generated connected graded algebras. Then, one
has natural transformations

R�A ! R! RQA

which when applied to any graded A module gives an exact triangle in the derived cate-
gory. Analogous statements hold for graded B modules and bi-graded A˝k B modules.

Proof. The natural transformations are � ıR and " ıR. For the case of graded Amodules
(or graded B modules), this is well known; see [11, Property 4.6]. For a bi-bi module, P ,
the sequence

0! �A˝kBP ! P ! QA˝kBP

is exact. It suffices to prove that if P D I is injective, then the whole sequence is actually
exact. Here, one can use the system of exact sequences

0! A�n1 ˝k B�n2 ! A˝k B ! .A˝k B/=A�n1 ˝k B�n2 ! 0

and exactness of Gr.A˝k B/.�; I / plus Lemmas 3.19 and 3.22 to get exactness.

Proposition 3.36. Assume that A is Ext-finite. Then, R�A and RQA both commute with
coproducts.

Proof. See [40, Lemma 4.3] for R�A. Since coproducts are exact, using the triangle

R�AM ! RM ! RQAM;

we see that R�A commutes with coproducts if and only if RQA commutes with coproducts.

Corollary 3.37. Assume that A and B are left Noetherian and that RQA and RQB both
commute with coproducts. There exist natural diagrams of complexes of bimodules

R0QAP QARA˝kBP

R0QA.RA˝BP / RQA˝kBP

� �
˛`RA˝kB

P

and
R0QBP QBRA˝kBP

R0QB.RA˝BP / RQA˝kBP

� �
˛rRA˝kB

P

where the arrows labeled with � are quasi-isomorphisms.
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Proof. Because the canonical morphism A! A˝k B is flat, the associated adjunction
is Quillen by [20, Proposition 2.13], and hence the fibrant replacement RA˝kBP is also
fibrant when regarded as an object of C.GrA/. Since fibrancy is closed under retracts,
.RA˝kBP /�;v is also fibrant for any v.

Therefore, the map

.RA˝kBP /�;v ! RA.RA˝kBP /�;v

is a homotopy equivalence and remains as such after application of QA. Consequently,

QARA˝kBP
L
vQA.RA˝kBP /�;v

L
vQARA.RA˝kBP /�;v R0QARA˝kBP

�

is a quasi-isomorphism. Similarly, the map

RAP�;v ! RA.RA˝kBP�;v/

is a homotopy equivalence and the map

R0QAP ! R0QARA˝kBP

is a quasi-isomorphism.

Remark 3.38. We will denote the maps in the derived category resulting from the dia-
grams in Corollary 3.37 as

ˇ`P W R
0QAP ! RQA˝kBP;

ˇrP W R
0QBP ! RQA˝kBP:

We have an analogous definition for � ,

R0�AP WD
M
v

�ARAP�;v;

and an analogous result to Corollary 3.37.

Corollary 3.39. Assume that A and B are left Noetherian and that R�A and R�B both
commute with coproducts. There exist natural diagrams of complexes of bimodules

R�VdB
A˝kB

P R0�AP

R0�ARA˝kBP

�
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and
R�VdB
A˝kB

P R0�BP

R0�BRA˝kBP

�

where the arrows labeled with � are quasi-isomorphisms.

Proof. Establishing the quasi-isomorphism is completely analogous to the previous corol-
lary. The only ambiguity is the map

R�VdB
A˝kB

P ! R0�ARA˝kBP:

This comes from the composition of �rRA˝kBP
and the natural map

�ARA˝kBP
L
v �A.RA˝kBP /�;v

L
v �ARA.RA˝kBP /�;v R0�ARA˝kBP:

�

Remark 3.40. We denote the resulting maps in the derived category as

�`P W R�
VdB
A˝BP ! R0�AP;

�rP W R�
VdB
A˝BP ! R0�BP:

Proposition 3.41. Assume thatA andB are left Noetherian and Ext-finite. Assume further
that R�A and R�B are finite dimensional. Then, one has natural isomorphisms in the
derived category:

ı`P W R
0QB

�
R0QAP

�
! RQA˝kBP;

ırP W R
0QA

�
R0QBP

�
! RQA˝kBP:

Consequently, ˇ`P (respectively, ˇrP ) is an isomorphism if and only if RQAP (respectively,
RQBP ) is R�B (respectively, R�A) torsion-free.

Proof. Applying R0QA to the diagram from Corollary 3.37 gives

R0QAR0QBP R0QAQBRA˝kBP

R0QAR0QB.RA˝BP / R0QARQA˝kBP

�
�

R0QA.˛rRA˝kBP
/

SinceQA˝kB DQA ıQB , an argument analogous to the proof of Proposition 3.32 shows
that the natural map

�`P W RQA˝kB.P /! R0QA
�
RQA˝kB.P /

�
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is a quasi-isomorphism. We set

ı`P WD .�
`
P /
�1R0QA.ˇ`P /:

Now, we check that R0QA.˛rRA˝kBP
/ is a quasi-isomorphism. By acyclicity, this reduces

to checking that the natural map

QAQB.RA˝kBP /! QA.QA˝kBRA˝kBP / Š QA
�
QA

�
QB.RA˝kBP /

��
is a quasi-isomorphism. But the natural map

QA ! QA ıQA

is always an isomorphism.
Assuming that

R0QAP ! R0QB.R0QAP /

is a quasi-isomorphism, that is, assuming that R0QAP is R�B torsion-free, we immedi-
ately get that the original map ˇ`P is a quasi-isomorphism.

By using the standard homological assumptions above, one has better statements for
P D �.

Proposition 3.42. Let A be left and right Noetherian and assume that the conditions
�ı.A/ hold as left and right A modules. Furthermore, assume that R�A and R�Aop are
finite-dimensional. Then, the maps

R0QA� R0QB�

RQA˝kB�

ˇ`� ˇ r�

are quasi-isomorphisms.
Furthermore, the maps

R�VdB
A˝kA

op�

R0�A� R0�Aop�

�`� �r�

are also quasi-isomorphisms.

Proof. We have a triangle in D.Gr.A˝k Aop//:

R0�Aop
�
R0QA�

�
! R0QA�! R0QAop

�
R0QA�

�
! R0�Aop

�
R0QA�

�
Œ1�:

By Proposition 3.41, R0QAop.R0QA�/ŠR0QA˝kAop�, so it suffices to show that we have
R0�Aop.R0QA�/ D 0.
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First, we note that for any bi-bi module, P , the natural morphism

R0�AopP ! P

is a quasi-isomorphism if and only if the natural morphism

R�AopPx;� ! Px;�

is a quasi-isomorphism for each x 2 Z. Moreover, for a right A module, M , if H j .M/

is right limited for each j , then R�AopM ! M is a quasi-isomorphism. So it suffices to
show that .Rj �A�/x;� has right-limited grading for each x and j . We have

.Rj �A�/x;y Š .Rj �A��;y/x Š
�
Rj �AA.y/

�
x
:

By [4, Corollary 3.6 (3)], we have .Rj �AA.y//x D 0 for sufficiently large y and, hence,
it is right limited. This implies that

R�Aop
�
.R�A�/x;�

�
! .R�A�/x;�

is a quasi-isomorphism, as desired. As this sits in a triangle,

R0�Aop.R0�A�/! R0�A�! R0QAop.R0�A�/! R0�Aop.R0�A�/Œ1�;

we see that R0�Aop.R0QA�/ is acyclic, as desired.

Hypotheses similar to those of Proposition 3.42 will appear often, so we attach a name
to them.

Definition 3.43. Let A and B be connected graded k-algebras. If A is Ext-finite, left
and right Noetherian, satisfies �ı.A/ and �ı.Aop/, and has both R�A and R�Aop finite
dimensional, then we say that A is delightful. If A and B are both delightful, then we say
that A and B form a delightful couple.

3.4. Segre products

Definition 3.44. Let A and B be connected graded k-algebras. The Segre product of A
and B is the graded k-algebra

A �k B D
M
i2Z

Ai ˝k Bi :

Proposition 3.45. IfA andB are connected graded k-algebras that are finitely generated
in degree one, then A �k B is finitely generated in degree one.

Proof. If ¹xiºriD1 � A1 and ¹yiºsiD1 � B1 are generators for A and B , respectively, then
A˝k B is finitely generated by ¹xi ˝ yj ºi;j .

As a nice corollary, we can relax the conditions on [42, Theorem 2.4] to avoid the
Noetherian conditions on the Segre and tensor products.
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Theorem 3.46 ([42, Theorem 2.4]). Let A and B be finitely generated, connected graded
k-algebras, and let S D A �k B , T D A˝k B . If A and B are both generated in degree
one, then there is an equivalence of categories

V WQGrS ! QGrT

E 7! �T .T ˝S !SE/:

Proof. As noted in Van Rompay’s comments preceding the theorem, the hypothesis is nec-
essary only to ensure that QGrS and QGrT are well defined. Thanks to Proposition 3.11
and Lemma 3.19, the equivalence follows by running the same argument.

3.5. A comparison with the commutative situation

To provide a touchstone for the reader, we interpret the definitions and results when
A and B are commutative and finitely generated by elements of weight 1. Then, A D
kŒx1; : : : ; xn�=IA and B D kŒy1; : : : ; ym�=IB for some homogeneous ideals IA; IB . So
SpecA is a closed Gm-stable subscheme of affine space An and similarly for SpecB . Let
X and Y be the associated projective schemes. Then,

SpecA˝k B � AnCm

is G2
m-stable. The category Gr.A˝k B/ is equivalent to the G2

m-equivariant quasi-coher-
ent sheaves on SpecA˝k B with Tors.A˝k B/ being those modules supported on the
subscheme corresponding to

.x1; : : : ; xn/.y1; : : : ; ym/:

Descent then gives that
QGr.A˝k B/ Š Qcoh.X � Y /:

The quotient Gr.A˝k B/=Tors.A˝k B/ is equivalent to QcohG2m.U � V / for the quasi-
affines U D SpecA n 0 and V D SpecB n 0. Since U � V is a G2

m torsor over X � Y , we
have QcohG2m.U � V / Š Qcoh.X � Y /.

3.6. Graded Morita theory

This section demonstrates how the tools of dg-categories yield a nice perspective on
derived graded Morita theory. One can compare with the well-known graded Morita state-
ment in [43].

In order to utilize the machinery of dg-categories, we must first translate chain com-
plexes of graded modules into dg-categories. While one can naïvely regard this category
as a dg-category by way of an enriched Hom entirely analogous to the ungraded situation,
the relevant statements of [38] are better suited to the perspective of functor categories.
As such, we adapt the association of a ringoid with one object to a ring from Section 2.2
to the graded situation, considering instead a ringoid with multiple objects. This notion is
standard; see e.g. [41].



M. Ballard and B. Farman 1160

Throughout this section, we will let G D .G;C/ be an abelian group and let A and B
be not necessarily commutativeG-graded algebras over k. We will generally be concerned
with the groups Z and Z2. In the sequel, there will be many instances where there are two
simultaneous gradings on an object: homological degree and homogeneous degree. We
avoid the latter term, preferring weight, and use degree solely when referring to homolog-
ical degree.

For clarity, consider the example of a complex of G-graded left A modules, M . The
degree n piece ofM is theG-graded left AmoduleM n. The weight g piece of the graded
module M n is the A0 module of homogeneous elements of (graded) degree g, M n

g . Note
that, in this terminology, the usual morphisms of graded modules are the weight zero
morphisms.

Definition 3.47. Denote by C.GrA/ the dg-category with objects chain complexes of
G-graded left A modules and morphisms defined as follows.

We say that a morphism f WM ! N of degree p is a collection of morphisms
f nWM n ! N nCp of weight zero. We denote by C.GrA/.M; N/p the collection of all
such morphisms, which we equip with the differential

d.f / D dN ı f C .�1/
pC1f ı dM

and define C.GrA/.M; N/ to be the resulting chain complex. Composition is the usual
composition of graded morphisms.

We denote by C
�

Gr.Aop/
�

the same construction with G-graded right A modules,
which are equivalently left modules over the opposite ring, Aop.

Remark 3.48. One should note that the closed morphisms are precisely the morphisms
of complexes M ! NŒp� and that, in particular, the closed degree-zero morphisms are
precisely the usual morphisms of complexes.

Definition 3.49. Associate to each G-graded k-algebra, A, the category A with objects
the group G and morphisms given by

A.g1; g2/ D Ag2�g1

and composition defined by the multiplication Ag2�g1Ag3�g2 � Ag3�g1 .
We regard A as a dg-category by considering the k module of morphisms, A.g1; g2/,

as the complex with Ag2�g1 in degree 0 and zero differential.

Lemma 3.50. Let G be an abelian group. If A is a G-graded algebra over k and A is the
associated dg-category, then there is an isomorphism of dg-categories

C.GrA/ Š dgMod.A/:

Proof. We first construct a dg-functor F WC.GrA/! dgMod.A/. For each g 2 G, denote
by A.g/Œ0� the complex with A.g/ in degree zero and consider the full subcategory of
C.GrA/ of all such complexes. We see that a morphism

f 2 C.GrA/
�
A.g/Œ0�;M

�n
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is just the data of a morphism f 0WA.g/!M n which gives

C.GrA/
�
A.g/Œ0�;M

�n
Š GrA

�
A.g/;M n

�
ŠM n

�g

and, hence, M�g WD C.GrA/.A.g/Œ0�;M/ is the complex with M n
�g in degree n. In par-

ticular, when M D A.h/Œ0�, we have

C.GrA/
�
A.g/Œ0�; A.h/Œ0�

�
WD A.h/Œ0��g D A.g; h/;

which allows us to identify this subcategory with A via the Yoneda embedding, A.h/Œ0�
corresponding to the representable functor A.�; h/. Using this identification, we can
define the image of M in dgMod.A/ to be the dg-functor that takes an object g 2 G to

M�g D C.GrA/
�
A.g/Œ0�;M

�
with structure morphism

A.g; h/ Š C.GrA/
�
A.g/Œ0�; A.h/Œ0�

�
! C.k/.M�h;M�g/

induced by the representable functor C.GrA/.�; M/. The image of a morphism f 2

C.Gr A/.M; N/ is defined to be the natural transformation given by the collection of
morphisms

hA.�g/Œ0�.f /WC.GrA/
�
A.�g/Œ0�;M

�
! C.GrA/

�
A.�g/Œ0�; N

�
indexed by G.

Conversely, we note that the data of a functorM WAop! C.k/ is a collection of chain
complexes, Mg WDM.g/, indexed by G and morphisms of complexes

� � � Ag�h 0 � � �

� � � C.k/.Mg ;Mh/
0 C.k/.Mg ;Mh/

1 � � �

The non-zero arrow factors through Z0.C.k/.Mg ; Mh//, so the structure morphism is
equivalent to giving a morphism

Ag�h ! C.k/.Mg ;Mh/

and thus M determines a complex of graded A modulesfM DM
g2G

M�g :

A morphism �WM ! N is simply a collection of natural transformations �p such that for
each g 2 G, we have �p.g/ 2 C.k/.Mg ; Ng/

p and the naturality implies that �p.g/ is
A-linear. The natural transformation �p thus determines a morphismM

g2G

�p.�g/ 2 C.GrA/.fM; eN/p
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and, hence, � determines a morphism in C.GrA/
�fM; eN �, which is the collection of all

such homogeneous components. This defines a dg-functor dgMod.A/! C.GrA/ which
is clearly the inverse of F .

Remark 3.51. (1) It is worth noting that it is natural from the ringoid perspective to
reverse the weighting on the opposite ring in that, formally,

Aop
g D Aop.0; g/ D A.g; 0/ D A�g

so that Aop.�; h/DA.h;�/ is the representable functor corresponding to the left module
Aop.h/ byM

g2G

Aop.�g; h/ D
M
g2G

A.h;�g/ D
M
g2G

A�.gCh/ D
M
g2G

A
op
gCh
D Aop.h/:

With this convention, when considering right modules, one can dispense with the formal-
ity of the opposite ring by constructing from a complex, M , the dg-functor A! C.k/

mapping g to Mg WD C
�

Gr.Aop/
�
.A.�g/Œ0�;M/.

(2) For A being the category associated to the k-algebraA,M being an object of GrA,
and N being an object of Gr.Aop/, the k-vector space

N ˝A M

is usually called the Z-algebra tensor product. See [12, Section 4].

WhenG D Z2 and A, B are Z-graded algebras over k, we denote by C.GrAop˝k B/

the dg-category of chain complexes ofG-graded B-A-bimodules. We associate to the Z2-
graded k-algebra Aop ˝k B the tensor product of the associated dg-categories, Aop ˝B.
Note that in the identification

C
�

Gr.Aop
˝k B/

�
Š dgMod.Aop

˝B/

the weighting coming from the A module structure is reversed, as in Remark 3.51 above.
From this construction, we have a dg-enhancement, h-Proj.A/, of the derived category

of graded modules, D.GrA/. Passing through the machinery of Corollary 2.6, we have an
isomorphism in Ho.dgcatk/

RHomc

�
h-Proj.A/; h-Proj.B/

�
Š h-Proj.Aop

˝B/:

This allows us to identify an object,

F 2 RHomc

�
h-Proj.A/; h-Proj.B/

�
with a dg A-B-bimodule, P , which in turn corresponds to a morphism ˆP W A !

h-Proj.B/ by way of the symmetric monoidal closed structure on dgcatk .
Following [15, Section 3.3], we identify the homotopy equivalence class, ŒP �Iso, of P

with ŒˆP � 2 ŒA; h-Proj.B/�. The extension of ˆP ,

P ˝A � D
b̂
P W h-Proj.A/! h-Proj.B/;
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descends to a morphism Œb̂P � 2 Œh-Proj.A/;h-Proj.B/� and induces a triangulated functor
that commutes with coproducts

H 0.b̂P /WD.GrA/! D.GrB/

M 7! P
L
˝A M:

In particular, given an equivalence f WD.GrA/! D.GrB/, we obtain from [26] a quasi-
equivalence

F W h-Proj.A/! h-Proj.B/:

Tracing through the remarks above, we obtain an object

P 2 h-Proj.Aop
˝B/;

providing an equivalence

H 0.b̂P /WD.GrA/! D.GrB/:

4. Derived Morita theory for noncommutative projective schemes

LetA and B be left Noetherian, connected graded k-algebras. We want to extend the ideas
from Section 3.6 to cover dg-enhancements of D.QGrA/.

4.1. Repeated triangulated justifications

We recall a particularly nice type of property of objects in the setting of compactly gen-
erated triangulated categories. Many important properties are of this type, so we name
it.

Definition 4.1. Let T be a compactly generated triangulated category. Let P be a property
of objects of T . We say that P is RTJ if it satisfies the following three conditions.

� Whenever A! B ! C is a triangle in T and P holds for A and B , then P holds for
C .

� If P holds for A, then P holds for the translate AŒ1�.

� Let I be a set and let Ai be objects of T for each i 2 I . If P holds for each Ai , then P
holds for

L
i2I Ai .

We say that P is rtj if it satisfies the following three conditions.

� Whenever A! B ! C is a triangle in T and P holds for A and B , then P holds for
C .

� If P holds for A, then P holds for the translate AŒ1�.

� Let I be a finite set and let Ai be objects of T for each i 2 I . If P holds for each Ai ,
then P holds for

L
i2I Ai .
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Proposition 4.2. Let P be an (rtj) RTJ property that holds for a set of compact generators
of T . Then, P holds for all objects of (T c) T .

Proof. Let P be the full triangulated subcategory of objects for which P holds. Then, P

� contains a set of compact generators,

� is triangulated, and

� is closed under the formation of (finite) coproducts.

Thus, P is all of (T c) T .

4.2. Vanishing of a tensor product

Recall from Section 2.3 that the tensor product of M , N over A is the truncation of the
standard bar complex�

M
L
˝A N

�
`
DM ˝k A˝k � � � ˝k A„ ƒ‚ …

l

˝kN:

As k is a field, everything is k-flat. As a consequence,
L
˝A preserves quasi-isomorphisms

in each entry. This justifies the notation and gives a particular model for the derived tensor
product. In particular, for an h-projective E, the natural map

�
L
˝A E ! �˝A E

is a quasi-isomorphism.

Definition 4.3. Let M be a complex of graded left A modules and let N be a complex of
graded right A modules. We say that the pair satisfiesF.M;N / if the tensor product

R�AopN
L
˝A RQAM

is acyclic. IfF.M;N / holds for all M and N , then we say that A satisfiesF.

Proposition 4.4. Fix a finitely generated connected graded k-algebra, A. Assume that
R�A and R�Aop commute with coproducts. Then,A satisfiesF if and only ifF.A.u/;A.v//
holds for each u; v 2 Z.

Proof. The necessity is clear, so assume that F.A.u/; A.v// holds for each u; v 2 Z.
Note that F.M; A.v// holds for all v is an RTJ property of M that holds for the set
of compact generators A.u/, u 2 Z. Thus, by Proposition 4.2, F.M; A.v// holds for
all v holds for all M in D.GrA/. Similarly, we can consider that the property of N in
D.Gr.Aop//:F.M;N / holds for all objectsM of D.GrA/. This is also RTJ, soF.M;N /
holds for all M and N .

There are also analogs of the projection formula in (commutative) algebraic geometry.
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Proposition 4.5. Fix a finitely generated connected graded k-algebra, A. Let P be a
complex of bi-bi A modules and let M be a complex of graded left A modules. Assume
that R�A commutes with coproducts. There is natural quasi-isomorphism

.R0�AP /
L
˝A M ! R�A

�
P

L
˝A M

�
:

Similarly, assume that RQA commutes with coproducts. There is a natural quasi-isomor-
phism

.R0QAP /
L
˝A M ! RQA

�
P

L
˝A M

�
:

Proof. We treat the Q projection formula. The � projection formula is analogous. Level-
wise, we have the natural map

QAP ˝k A˝k � � � ˝k M ! QP .P ˝k A˝k � � � ˝k M/

which comes from the following. For any k module N , given

 ˝k N 2 GrA.A=A�m; P /˝k N;

we naturally get e W A=A�m ! P ˝k N

a 7!  .a/˝ n:

Taking the colimit gives the natural transformation. Note that this also gives a natural map

QAP ˝A M ! QA.P ˝A M/:

Since QA commutes with coproducts if P is QA-acyclic, then so is P ˝k N D
P˚ dimk N , where we interpret dimk N as a set. Furthermore, the levelwise map is an
isomorphism since, again, QA commutes with coproducts.

For the hypothesis, recall Definition 3.43.

Proposition 4.6. Assume that A is delightful. Then,F holds for A.

Proof. By Proposition 4.4, it suffices to checkF.M;A.v// for each v, which is equivalent
to checking F.M;

L
v A.v// because R�Aop and �

L
˝A� both commute with coprod-

ucts. While computing F.M;
L
v A.v// depends only on the right A module structure

of
L
v A.v/ if we recognize that �, with its natural bi-bi structureM

v

A.v/ D
M
v

�M
u

AuCv

�
D

M
u;v

AuCv D �;

restricts to
L
v A.v/ as a right A module, then it is equivalent to check F.M;�/. This

observation provides the advantage of being able to utilize the projection formulas as
follows.
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Apply �˝L
A

RQAM to the diagram of Proposition 3.42 to obtain a diagram

R�VdB
A˝kA

op�
L
˝A RQAM

R0�A�˝L
A

RQA.M/ R0�Aop�˝L
A

RQA.M/

with all arrows quasi-isomorphisms. We may now apply Proposition 4.5 to the left-hand
side, because � is a bi-bi module, to obtain the quasi-isomorphism

R0�A�
L
˝A RQAM Š R�A

�
�

L
˝A RQAM

�
Š R�A.RQAM/ D 0;

as desired.

4.3. Duality

One can regard the complex of bi-bi modules RQA˝kAop� as a sum of complexes of A
modules

RQA˝kAop� D
M
x

.RQA˝kAop�/�;x

and define for any object, M , of C.GrA/ the object

RHomA.M;RQA˝kAop�/ D
M
x

R HomA.M;RQA˝kAop��;x/

of C
�

Gr.Aop/
�
. Consider the functor

.�/_ W C.GrA/op
! C

�
Gr.Aop/

�
M 7! RHomA.M;RQA˝kAop�/:

Note that evaluation provides a natural transformation

� W Id! .�/__:

We also have the usual duality between left and right modules

.�/� W C.GrA/op
! C

�
Gr.Aop/

�
M 7! RHomA.M;�/

with the associated natural transformation

� W Id! .�/��:

It is easy to see that .A.x//� is A.�x/.
For any bi-bi module P , Hom-tensor adjunction gives a natural isomorphism

HomAop
�
A�n;HomA.M;P /

�
! HomA

�
M;HomAop.A�n; P /

�
:



Kernels for noncommutative projective schemes 1167

Passing to the colimit, we get the natural map

QAop
�
HomA.M;P /

�
! HomA.M;QAopP /

and, therefore, the natural map

P W RQAop
�
RHomA.M;P /

�
! RHomA.M;R

0QAopP /:

Note that the map P is a quasi-isomorphism if we assume that M is compact.

Proposition 4.7. The following diagram is commutative:

RQAM

RQARHomAop

�
RHomA.M;�/;�

�

RHomAop

�
RHomA.M;�/;R0QA�

�

RHomAop

�
RQAop RHomA.M;�/;R0QAop R0QA�

�

RHomAop

�
RQAop RHomA.M;�/;RQA˝Aop�

�

RHomAop

�
RHomA.M;R0QAop�/;RQA˝Aop�

�

RHomAop

�
RHomA.RQAM;R0QAR0QAop�/;RQA˝kAop�

�
:

RHomAop

�
RHomA.RQAM;RQA˝kAop�/;RQA˝kAop�

�

�RQAM

RQA.�M /

�

RQAop.�/

ı� ı �

� ı �

� ı RQA.�/
RHom.RQAM; ı�/_

Proof. The existence of this diagram follows from the existence of the underived version.
The underived version is straightforward to verify. We suppress most of the details but
note that the image of a map � W A�n1 !M from QAM is the map

HomAop.A�n2 ;M
�/! HomA˝Aop.A�n1 ˝ A�n2 ; �/

 7!
�
a1 ˝ a2 7!  .a2/

�
�.a1/

��
:

For clarity, the latter is the evaluation of  .a2/ at �.a1/.

Lemma 4.8. Assume that A is delightful and M is a compact object of D.Gr.A//. Then,
�RQAM is a quasi-isomorphism.

Proof. We check that all the other maps in the diagram of Proposition 4.7 are quasi-
isomorphisms.
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First, since M is compact, �M is a quasi-isomorphism and RQA preserves quasi-
isomorphisms. Hence, RQA�M is also a quasi-isomorphism.

Next, since M is compact, so is M �. Thus, � is a quasi-isomorphism.
Since A is delightful, we know that R0QA� is R�Aop torsion-free. Thus, applying

RQAop to maps from any object to R0QA� yields a quasi-isomorphism of morphism
spaces.

The map ı� is a quasi-isomorphism by Proposition 3.41. Derived morphism spaces
preserve quasi-isomorphisms, so it follows that ı� ı � is a quasi-isomorphism.

SinceM is compact, � is a quasi-isomorphism and so is the composition with it since
derived morphism spaces preserve quasi-isomorphisms.

We again appeal toA being delightful to know that R0QAop� is R�A torsion-free. Thus,
RQA acting on morphism spaces from anything to R0QAop� yields a quasi-isomorphism.
Again, composition with it remains a quasi-isomorphism.

Finally, the maps .�/_ and RHom.RQAM; �/ preserve quasi-isomorphisms so
RHom.RQAM; ı�/_ is also a quasi-isomorphism.

Lemma 4.9. Assume that A is delightful. Then, there is a natural quasi-isomorphism
between RQAopA.�x/ and .RQAA.x//_.

Proof. We have the following sequence of maps:

RQAop RHomA
�
A.x/;�

�
RHomA

�
A.x/;R0QAop�

�
RHomA

�
RQAA.x/;R0QAR0QAop�

�
:

�

RQA.�/

The former is a quasi-isomorphism because A.x/ is compact. The latter is a quasi-isomor-
phism because A is delightful and so R0QAop� is R�A torsion-free.

Using Proposition 3.41 gives a quasi-isomorphism

RHomA
�
RQAA.x/;R0QAR0QAop�

�
Š RHomA

�
RQAA.x/;RQA˝Aop�

�
D
�
RQAA.x/

�_
:

On the other side, we have

A.�x/ Š HomA
�
A.x/;�

�
Š RHomA

�
A.x/;�

�
:

Applying RQAop gives the final quasi-isomorphisms.

Definition 4.10. Let QA be the full dg-subcategory of C.GrA/ with objects given by

R!A�A.x/ WD !ARQGrA�AA.x/

for all x 2 Z. Here, RQGrA is the fibrant replacement functor in C.QGrA/.
Note that since !A�A Š Id, all objects of QA satisfy the condition that "M W M !

QAM is an isomorphism of complexes. Similarly, since !A has an exact left adjoint, !A
preserves fibrations. Hence, each R!A�A.x/ is fibrant as a complex of gradedAmodules.
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Lemma 4.11. There exists a map of chain complexes

RQAA.x/! R!A�AA.x/;

which is a quasi-isomorphism.

Proof. Consider the diagram

�AM RQGrA�AM

�ARGrAM 0:

Since �A is exact, the map �AM ! �ARGrAM is a trivial cofibration. Hence, there exists
a lift

�AM RQGrA�AM

�ARGrAM 0

which must also be a quasi-isomorphism.

Corollary 4.12. Assume that A is delightful. There is a quasi-equivalence between
.QA/op and Q.Aop/ which is isomorphic to .�/_ at the level of derived categories.

Proof. We can choose h-injective complex bi-bi modules I such that there is a homotopy
equivalence RQA˝Aop�! I and the natural maps I ! QAopI and I ! QAI are iso-
morphisms. This comes from taking a cofibrant replacement of �A˝Aop RQA˝Aop� and
applying !A˝Aop . Then, we have a homotopy equivalence

RHomA.M;RQA˝Aop�/! HomA.M; I /

and we may replace .�/_ by HomA.M; I /. We do so but we keep the same notation. Note
the image of .�/_ now consists of h-injective graded Aop modules.

From Lemma 4.8, we see .�/_ is quasi-fully faithful on QA and from Lemma 4.9
we see there is a quasi-isomorphism between .RQAA.x//_ and RQAopA.�x/. It follows
that R!Aop�AopA.�x/ and .R!A�AA.x//_ are quasi-isomorphic h-injective complexes.
Hence, they are homotopy equivalent. Therefore, dg-functor

„ W .QA/op
! dgMod.QAop/

M 7! Hom.�;M_/

has image homotopy equivalent to representable modules. Consequently, „ is quasi-fully
faithful overall. Its image consists of an h-projective set of generators.

We get an induced functor

„ W .QA/op ! h-ProjQAop:
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The property that „.M/ is h-projective is rtj in M , as is the property that „.M/ is com-
pact. Applying Proposition 4.2 shows that „ lands in QAop.

The property that „ is quasi-fully faithful on Hom.M;N / for all N is rtj in M . Thus,
it suffices to prove that „ is quasi-fully faithful on Hom.C;N / for all N and some set of
compact generators C . But since C is compact, the condition that„ is quasi-fully faithful
on Hom.C;N / is rtj for N . Thus, we can reduce to checking quasi-fully faithfulness on a
set of compact generators. But we already saw that „ is quasi-fully faithful on QA.

Finally, the condition that L is homotopy equivalent to „.M/ for some M is rtj in L
and is true for a compact set of generators. Again Proposition 4.2 allows us to conclude
that „ is quasi-essentially surjective and hence a quasi-equivalence.

We have a natural map,

M_
L
˝A N ! RHomA

�
M;RQA˝kAop�

L
˝A N

�
� ˝ n 7!

�
m 7! �.m/˝ n

�
:

Lemma 4.13. Assume thatA is delightful, the mapN !RQAN is a quasi-isomorphism,
and M is quasi-isomorphic to RQAM 0 for compact M 0. Then, both natural maps in the
diagram

M_
L
˝A N RHomA

�
M;RQA˝kAop�

L
˝A N

�
RHomA.M;N /

are quasi-isomorphisms.

Proof. The vertical map comes from the map �! RQA˝kAop�. We have a triangle,

R�A˝kAop�
L
˝A N ! �

L
˝A N ! RQA˝kAop�

L
˝A N:

Using Proposition 4.6 and the assumption that N ! RQAN is a quasi-isomorphism, we
have quasi-isomorphisms

R�A˝kAop�
L
˝A N Š R�A˝kAop�

L
˝A RQAN Š R�Aop�

L
˝A RQAN Š 0:

Thus, the map

N Š �
L
˝A N ! RQA˝kAop�

L
˝A N

is a quasi-isomorphism. So the map

RHomA.M;N /! RHomA
�
M;RQA˝kAop�

L
˝A N

�
is also a quasi-isomorphism.
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The property that the map

M_
L
˝A N ! RHomA

�
M;RQA˝kAop�

L
˝A N

�
is a quasi-isomorphism is rtj. Thus, we may reduce to checking the case M D RQAA.x/
by Proposition 4.2. We have a commutative diagram,

RHomA
�
RQAA.x/;RQA˝kAop�

� L
˝A N RHomA

�
RQAA.x/;RQA˝kAop�

L
˝A N

�

RHomA
�
A.x/;RQA˝kAop�

� L
˝A N RHomA

�
A.x/;RQA˝kAop�

L
˝A N

�
coming from the map A.x/! RQAA.x/. Since

RQA˝kAop�
L
˝A N and RQA˝Aop�

are R�A torsion-free, the vertical maps are quasi-isomorphisms. Since A.x/ is compact,
then RHomA.A.x/; �/ Š HomA.A.x/; �/ commutes with coproducts. Consequently,
HomA.A.x/;�/ commutes with˝k and, hence,

HomA
�
A.x/; P

� L
˝A N ! HomA

�
A.x/; P

L
˝A N

�
is an isomorphism levelwise for any complex of bi-bi modules P .

4.4. Products

The following allows to re-express the tensor up to quasi-equivalence.

Proposition 4.14. If A and B are both Ext-finite, left Noetherian, right Noetherian, and
R�A and R�B have finite dimensions, then the dg-functor

‡ W h-Inj.QGrA˝k B/! h-Proj.QA˝k QB/

I 7! HomC.GrA˝kB/
�
RA˝kB.�� �/; !A˝kB.I /

�
is well defined and is a quasi-equivalence.

Proof. Note here that M �k N is simply M ˝k N as a complex of bi-bimodules.
We first reduce to the images of � and !A˝kB inside C.Gr.A ˝k B//. Similar to

Lemma 3.29, !A˝kB is quasi-fully faithful.
Next, we check that �k is quasi-fully faithful. For general M;M 0 2 C.GrA/ and

N;N 0 2 C.GrB/, we have a commutative diagram of natural maps,

Hom.M;M 0/˝k Hom.N;N 0/ Hom.M ˝k M 0; N ˝k N 0/

Hom
�
M;M 0 ˝k Hom.N;N 0/

�
Hom

�
M;Hom.N;M 0 ˝k N 0/

�
;

�

(4.1)
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where the right vertical map is an isomorphism coming from Hom-˝ adjunction. If M
and N are compact objects, then the other maps are quasi-isomorphisms. Since

Hom.RQAM;RQAM 00/! Hom.M;RQAM 00/;
Hom.RQBN;RQBN 00/! Hom.N;RQBN 00/

are quasi-isomorphisms and all objects in the previous diagram are R� torsion-free, it
suffices to know thatM is quasi-isomorphic to RQA QM for some compact QM and similarly
forN . So if we restrict attention to the objects RQAA.x/ and RQBB.y/, then all the maps
in Diagram 4.1 are quasi-isomorphisms and� is quasi-fully faithful.

Next, we check that the fibrant replacement

R WD RGrA˝kB W QA˝k QB ! R.QA˝k QB/

is a quasi-equivalence, where R.QA˝k QB/ denotes the essential image. For general
complexes M , M 0 of graded A modules and N , N 0 of graded B modules, we have the
commutative diagram

Hom.M ˝k N;M 0 ˝k N 0/

Hom
�
R.M ˝k N/;R.M

0 ˝k N
0/
�

Hom
�
M ˝k N;R.M

0 ˝k N
0/
�

R

The bottom diagonal map is a quasi-isomorphism since R.M 0 ˝k N 0/ is fibrant and the
natural mapM ˝k N !R.M ˝k N/ is a quasi-isomorphism. The previous computation
shows that, when M and N are compact, the tensor product of h-injective complexes is
acyclic for Hom.M ˝k N;�/ while R.M 0 ˝k N 0/ is fibrant and hence acyclic. Thus,
takingM ,M 0 fromQA and N;N 0 fromQB, we see that the left vertical map is a quasi-
isomorphism as it comes from applying a functor to a quasi-isomorphism between acyclic
objects. Consequently,R is quasi-fully faithful. By definition of the image, it is essentially
surjective and therefore is a quasi-equivalence.

Using morphisms in C.GrA˝k B/, for an object I of h-Inj.QGrA˝k B/, we have
a dg-module,

R.QA˝k QB/op
! C.k/

M 7! Hom
�
M;!.I /

�
;

which induces a dg-functor,

h-Inj.QGrA˝k B/! dgModR.QA˝k QB/:

We want to check that this induces an equivalence with h-ProjR.QA ˝k QB/. If so,
since ‡ is a composition of this functor and R, which was already shown to be a quasi-
equivalence, we get the desired conclusion.
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Note first that ‡ commutes with coproducts, up to quasi-isomorphism. Indeed, we
have a sequence of quasi-isomorphisms: the map

Hom
�
R
�
R!A�AA.x/˝k R!B�BB.y/

�
; !A˝kBI

�
Hom

�
R!A�AA.x/˝k R!B�BB.y/; !A˝kBI

�
since P ! RP is a quasi-isomorphism and !A˝kBI is h-injective. Using adjunction, we
have an isomorphism,

HomGrA˝kB
�
R!A�AA.x/˝k R!B�BB.y/; !A˝kBI

�
Š HomQGrA˝kB

�
RQGrA�AA.x/˝k RQGrB�BB.y/; I

�
:

Again, since I is h-injective and ˝k preserves quasi-isomorphisms since k is a field, we
get a quasi-isomorphism,

Hom
�
RQGrA�AA.x/˝k RQGrB�BB.y/; I

�
Hom

�
�AA.x/˝k �BB.y/; I

�
:

Using adjunction again, we have an isomorphism,

HomQGr A˝kB
�
�AA.x/˝k �BB.y/; I

�
Š HomGrA˝kB

�
A.x/˝k B.y/; !A˝kBI

�
:

The end of these chains of quasi-isomorphisms commutes with coproducts since R!A˝kB
commutes with coproducts with both A and B Ext-finite by Proposition 3.36.

Next, we note that

‡
�
R
�
�AA.x/˝ �BB.y/

��
D Hom

�
�;R!A˝kB�AA.x/˝k �BB.y/

�
and R!A˝kB.�AA.x/˝k �BB.y// and R.R!A�AA.x/˝ R!B�BB.y// are quasi-iso-
morphic. Since both objects are h-injective, they are homotopy equivalent. Thus,

‡
�
R
�
�AA.x/˝ �BB.y/

��
is homotopy equivalent to a representable functor. Consequently, ‡ is quasi-fully faithful
on the full subcategory consisting of the R.�AA.x/ ˝ �BB.y//. Moreover, the images
of these complexes are h-projective dg-modules since h-projectivity is preserved under
homotopy equivalence and representable modules are h-projective.

The property that‡.I / is h-projective is RTJ in I since‡ commutes with coproducts.
Thus, by Proposition 4.2, we see that ‡ has an image in h-ProjR.QA˝QB/.

Similarly, the property that ‡ is quasi-fully faithful on Hom.M;N / for all N is RTJ.
By Proposition 4.2, we just need to check that

RA˝kB
�
�AA.x/˝ �BB.y/

�
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has this property. But, the property that ‡ is quasi-fully faithful on

Hom
�
RA˝kB

�
�AA.x/˝ �BB.y/

�
;M

�
is RTJ in M . This is due to the quasi-isomorphism

HomQGrA˝kB
�
R�AA.x/˝ �BB.y/; I

�
HomGrA˝kB

�
A.x/˝k B.y/; !A˝kBI

�
plus the facts that !A˝kB commutes with coproducts and A.x/˝k B.y/ are compact.

Thus, we just need to check that ‡ is quasi-fully faithful on the full subcategory con-
sisting of the RA˝kB.�AA.x/˝ �BB.y// which we have seen. We can conclude that ‡
is quasi-fully faithful overall.

The property that J Š ‡.I / in the homotopy category is RTJ in J and is satisfied
by a compact set of generators. Thus, ‡ is quasi-essentially surjective. Hence, ‡ is a
quasi-equivalence.

4.5. The quasi-equivalence

Now, we turn to the main result.

Theorem 4.15. Let k be a field. Let A and B be connected graded k-algebras. If A and
B form a delightful couple, then there is a natural quasi-equivalence,

F W h-Inj
�

QGr.Aop
˝k B/

�
! RHomc

�
h-Inj.QGrA/; h-Inj.QGrB/

�
;

such that for P 2 D.QGr.Aop ˝k B//, the exact functor H 0.F.P // is isomorphic to

ˆP .M/ WD �B
�
R!Aop˝kBP

L
˝A R!AM

�
:

Proof. Appealing to Proposition 4.14, we have quasi-equivalences

h-Inj.QGrA/ Š h-Proj.QA/; h-Inj.QGrB/ Š h-Proj.QB/:

As RHomc.�;�/ preserves quasi-equivalences, it suffices to construct a quasi-equiva-
lence between RHomc.h-ProjQA; h-ProjQB/ and h-Inj.QGrA˝k B/.

Applying Corollary 2.6, it then suffices to provide a quasi-equivalence.

h-Inj
�

QGr.Aop
˝k B/

�
Š h-Proj

�
.QA/op

˝QB
�

In general, the inclusion C ! C induces a quasi-equivalence,

h-Proj.C ˝D/ Š h-Proj.C ˝D/;

for two small dg-categories C and D .
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Using Corollary 4.12, we have a quasi-equivalence,

h-Proj
�
.QA/op ˝QB

�
Š h-Proj.QAop ˝QB/;

and, thus, a quasi-equivalence,

h-Proj
�
.QA/op

˝QB
�
Š h-Proj.QAop

˝QB/:

From Proposition 4.14, we have the quasi-equivalence

‡ W h-Inj.QGrAop
˝k B/! h-Proj.QAop

˝k QB/:

Combining these gives the desired quasi-equivalence.
Tracing out the quasi-equivalences, one just needs to note that

Hom
�
RQAA.x/_ ˝k RQBB.y/; P

�
Š Hom

�
RQBB.y/;Hom

�
RQAA.x/_;R!Aop˝kBP

��
Š Hom

�
RQBB.y/;R!Aop˝kBP

L
˝A RQAA.x/

�
using Proposition 4.6 and Lemma 4.13. This says that the induced continuous functor is

M 7! �B
�
R!Aop˝kBP

L
˝A R!AM

�
:

The following statement is now a simple application of Theorem 4.15 and results of
[26].

Corollary 4.16. Let k be a field. Let A and B be a delightful couple of connected graded
k-algebras. Assume that there exists an equivalence

f W D.QGrA/! D.QGrB/:

Then, there exists an object P 2 D.QGr.Aop ˝k B// such that

ˆP W D.QGrA/! D.QGrB/

is an equivalence.

Proof. Applying [26, Theorem 1], we know that there is a quasi-equivalence between the
unique enhancements, i.e., there is an

F 2
�

h-Inj.QGrA/; h-Inj.QGrB/
�

giving an equivalence

H 0
�

h-Inj.QGrA/
�

D.QGrA/

H 0
�

h-Inj.QGrB/
�

D.QGrB/:

H0.F /

Then, by Theorem 4.15, there exists a P 2D.QGr.Aop˝k B// such thatˆPDH 0.F /.
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Remark 4.17. In particular, one can ask what the kernel associated to the identity functor
on D.QGrA/ is. In this case, it is easy to see that

ˆ�A˝kAop� Š IdD.QGrA/;

justifying the notation.

One also has a statement for a bounded and finitely generated category which is analo-
gous to Orlov’s theorem for equivalences between bounded derived categories of coherent
sheaves on smooth and projective varieties.

Corollary 4.18. Let A and B be a delightful couple of connected graded k-algebras
with k being a field. Assume that the enhancements of Db.qgrA/ and Db.qgrB/ are both
smooth and proper as dg-categories. If there exists an equivalence,

f W Db.qgrA/! Db.qgrB/;

then there exists an object P 2 Db.qgrAop ˝k B/ such that

ˆP W Db.qgrA/! Db.qgrB/

is an equivalence.

Proof. Since any generator of a smooth and proper dg-category must be a strong gen-
erator, both QGrA and QGrB necessarily have finite cohomological dimensions. From
[11, Lemma 3.4.2], we know that the compact objects in D.QGrA/ are exactly Db.qgrA/.
Using Corollary 4.12, we see that the enhancement of Db.qgrAop/ is smooth and proper
and that

D.QGrAop/c Š Db.qgrAop/:

Applying [26, Theorem 2.8], we know that there is a quasi-equivalence between the
unique enhancements, i.e., there is an

F 2
�

h-Inj.QGrA/c ; h-Inj.QGrB/c
�

giving an equivalence,

H 0
�

h-Inj.QGrA/c
�

Db.qgrA/

H 0
�

h-Inj.QGrB/c
�

Db.qgrB/:

H0.F /

There is then an induced quasi-equivalence between the two big categories, h-Inj.QGrA/
and h-Inj.QGr B/, and, hence, this quasi-equivalence corresponds to an object in
D.QGrAop ˝k B/ by Theorem 4.15. Since the induced functor takes compact objects
to compact objects and h-Inj.QGrA/c (an enhancement of Db.qgrA/) is smooth as a dg-
category, [39, Lemma 2.8] says that the corresponding object of D.QGrAop ˝k B/ is a
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compact object. As Db.qgrAop ˝k B/ is also smooth and proper, the same arguments
of [11] give that

D.QGrAop
˝k B/

c
Š Db.qgrAop

˝k B/:

We wish to identify the kernels as objects of the derived category of an honest non-
commutative projective scheme. In general, one can only hope that kernels, obtained as
above, are objects of the derived category of a noncommutative (bi)projective scheme.
However, we have the following special case in which we can collapse the Z2-grading to
a Z-grading.

Corollary 4.19. Let A and B be a delightful couple of connected graded k-algebras with
k being a field and both generated in degree one. Assume that there exists an equivalence,

f W D.QGrA/! D.QGrB/:

Then, there exists an object P 2 D.QGr.Aop �k B// that induces an equivalence,

D.QGrA/! D.QGrB/

M 7! �B
�
V .P /˝L R!AM

�
:

Proof. The equivalence V of Theorem 3.46 extends naturally to a quasi-equivalence,

V W h-Inj.QGrS/! h-Inj.QGrT /:

Now, choose P such that V .P / is homotopy equivalent to the kernel obtained by an
application of Corollary 4.16, so the desired equivalence is ˆV .P /.

Coming back to Example 3.3, we ask the following question.

Question 4.20. Fix qij 2 C. Then, two noncommutative projective schemes A�q and A�
0

q

are isomorphic if and only if they are derived equivalent.

In the commutative case, this is a derived Torelli statement which one can understand
via matrix factorizations [31] and the Mather–Yau theorem [27].
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