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Strict quantization of coadjoint orbits

Philipp Schmitt

Abstract. For every semisimple coadjoint orbit yO of a complex connected semisimple Lie group yG,
we obtain a family of yG-invariant products O�„ on the space of holomorphic functions on yO. For
every semisimple coadjoint orbit O of a real connected semisimple Lie group G, we obtain a family
ofG-invariant products �„ on a space A.O/ of certain analytic functions on O by restriction. A.O/,
endowed with one of the products �„, is a G-Fréchet algebra, and the formal expansion of the
products around „ D 0 determines a formal deformation quantization of O, which is of Wick type
if G is compact. Our construction relies on an explicit computation of the canonical element of
the Shapovalov pairing between generalized Verma modules and complex analytic results on the
extension of holomorphic functions.
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1. Introduction

The quantization problem in physics asks how to associate a quantum system to a classical
mechanical system such that the classical system can be recovered from the quantum sys-
tem in a classical limit. Since both systems can be studied by their observable algebras, a
first step is to quantize the classical observable algebra. This algebra is usually the Poisson
algebra C1.M/ of smooth functions on a Poisson manifold M . The observable algebra
of a quantum mechanical system is some non-commutative �-algebra A, which in many
cases is obtained from a C �-algebra. In a second step, the states of the quantum mechani-
cal system can be obtained as normalized positive linear functionals on A. To define their
superposition, one has to represent A on a (pre-)Hilbert space so that the superposition of
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two vector states can be defined as the vector state corresponding to the sum of the two
vectors.

Formal deformation quantization, as introduced in [2], has proven to be a fruitful
theory for studying some aspects of the quantization problem. One views Planck’s con-
stant „ as a formal parameter „ and tries to find the so-called formal star products ?
on A D C1.M/ŒŒ„��, which may be thought of as the infinite jet of a full solution to
the quantization problem at „ D 0. These star products are associative CŒŒ„��-bilinear
products for which 1 2 C1.M/ is a unit and which satisfy the correct classical limit.
To be more precise, if f; g 2 C1.M/ and f ? g D

P1
rD0 „

rCr .f; g/ with operators
Cr WC1.M/ � C1.M/! C1.M/, then one requires C0 to be the pointwise multipli-
cation, C0.f; g/ D fg, and the quantization to be in the direction of the Poisson bracket,
C1.f; g/� C1.g; f / D i¹f; gº. Usually one also requires the Cr to be bidifferential oper-
ators so that ? is local and can be restricted to open subsets of M . Using formal power
series means on the one hand that we cannot substitute „ with the real value of Planck’s
constant as required for direct physical applications, but on the other hand that we can
transfer the quantization problem to algebra by neglecting analytic aspects, such as con-
vergence of the power series. Consequently, many powerful tools become available for its
study, and existence and classification results were obtained in [5,13,17,33] for symplec-
tic manifolds, whereas in the more general case of Poisson manifolds they follow from
Kontsevich’s formality theorem [27]. One can also study formal star products that are
equivariant with respect to the action of a Lie group, where the classification follows for
example from [14].

A complete solution of the quantization problem consists of a Hilbert spaceH together
with a quantization map that associates a quantum observable, usually a self-adjoint opera-
tor onH , to any classical observable. This motivates the definition of a strict quantization
[29, 31, 32, 37], which is some field of “nice” �-algebras A„ (over C) depending “nicely”
on a parameter „ ranging over some subset of C, with A0 being a completion of the
classical observable algebra and the deformation being in the direction of the Poisson
bracket. However, strict quantizations are much harder to understand than formal deforma-
tion quantizations. There are many examples of strict quantizations in different contexts,
and therefore there are several ways to formalize the above definition, i.e., specifying the
parameter set and what “nice” actually means. No general existence results are known,
and a classification seems completely hopeless due to the increased complexity.

There are two prominent constructions of strict quantizations. The first is due to Rieffel
[37] who, using oscillatory integrals, deforms the product on a Fréchet algebra endowed
with an isometric action of Rd . If the original algebra is a C �-algebra, then Rieffel con-
structs a C �-algebraic quantization. A generalization to negatively curved Kählerian Lie
groups can be found in [6]. The second construction, due to Natsume, Nest, and Peter
[32], essentially glues convergent versions of the Weyl product on charts to obtain a C �-
algebraic quantization. However, both methods work only for some symplectic manifolds
and fail for example for the 2-sphere with its SO.3/-invariant symplectic structure [38].
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They also make a crucial use of the finite dimensionality of the classical mechanical sys-
tem, so it remains unclear how to apply them to quantum field theories, despite such field
theories fitting into the framework of formal deformation quantization.

Another approach to strict quantization was proposed by Beiser and Waldmann in [3,
4, 40]. They start with formal deformation quantizations, which are well understood, and
try to find subalgebras on which the formal power series converge. Such subalgebras are
usually defined using additional geometric structures and can be completed with respect
to a topology in which the product is continuous. This approach was carried out explicitly
for star products of exponential type on possibly infinite-dimensional vector spaces [39],
for the linear Poisson structure on the dual of a Lie algebra [16], and for the hyperbolic
disc Dn using an invariant star product obtained via phase space reduction [28]. See also
[41] for a survey. In this paper, we extend this approach to semisimple coadjoint orbits
of connected semisimple Lie groups, which gives a much larger class of geometrically
interesting examples.

Coadjoint orbits play an important role in different areas of mathematics. In the rep-
resentation theory of unitary Lie groups they appear, e.g., in the Kirillov orbit method
[26], while in symplectic geometry they are related to momentum maps. Basic examples
of coadjoint orbits are hyperbolic discs and complex projective spaces, including the 2-
sphere. Any coadjoint orbit O of a Lie group G has a canonical G-invariant symplectic
form, and if O is semisimple and G is compact, connected, and semisimple, then there is
a unique compatible G-invariant complex structure that makes O a Kähler manifold.

Constructions of star products on coadjoint orbits are due to many authors [1,8–10,18,
24,25,36]. In this article, we focus on semisimple coadjoint orbits of connected semisim-
ple Lie groups and the algebraic construction of Alekseev–Lachowska [1]. The canonical
element F� of the Shapovalov pairing between certain generalized Verma modules satis-
fies an associativity equation generalizing that of a Drinfel’d twist. This twist induces a
formal product for holomorphic functions on a complex orbit and a formal star product
for smooth functions on a real orbit, and those products are compatible by restriction. It is
very convenient that we can pass from one setting to the other: we will mainly work in the
complex setting, which is more convenient for obtaining continuity estimates, and restrict
to the real setting only in the very end.

Our first result uses methods developed by Ostapenko [35] to obtain an explicit for-
mula for the canonical element of the Shapovalov pairing for a semisimple Lie algebra g.

Main Theorem I. The Shapovalov pairing h � ; � i�
�
WU . QnC/ � U . Qn�/ ! C is non-

degenerate if � 2 zƒ, and in this case its canonical element F� 2 U . QnC/ y̋ U . Qn�/ is
given by

F� D
X
w2 zW

pw� .˛w/
�1
z�C
�
.Xw/˝ z�

�
� .Yw/: (1.1)

The notation is explained in detail in Section 3. For now, it suffices to mention that the
Shapovalov pairing is a pairing between the universal enveloping algebras of two nilpotent
Lie subalgebras Qn˙ of g, depending on a parameter � 2 g�. The sum is over a set of words
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zW related to the root system of g, the pw
�
.˛w/ are non-zero coefficients which are defined

by an explicit formula, Xw and Yw are elements of U g, and z�˙
�

maps these elements to
U . Qn˙/. The element F„, which induces the star product, is obtained by rescaling �, and
doing so the coefficients pwi�=„.˛w/

�1 will depend rationally on „, with a countable set of
poles P that accumulate only at 0. It seems as if explicit formulas for deformation quan-
tizations received special attention by various authors, and (1.1) provides such a formula
that works in great generality.

As mentioned above, the formal expansion of F„ induces formal products in complex
and real settings. Furthermore, we also obtain a family of actual (non-formal) products
for holomorphic polynomial functions in the complex setting and for polynomial func-
tions in the real setting, parametrized by C n P , since only finitely many elements of the
infinite sum defining F„ are non-zero on polynomials. All these products are G-invariant,
and under some conditions on the Cartan subalgebra used in the construction they are also
Hermitian, meaning that f �„ g D xg �x„ xf . In the real setting and for a compact semisim-
ple connected Lie group G, the formal star product is of Wick type [23] with respect to
the Kähler complex structure on the coadjoint orbit, meaning that it derives the first argu-
ment only in holomorphic directions and the second argument only in antiholomorphic
directions.

The next major step after constructing the star product is to use the explicit formulas to
prove its continuity in the complex setting with respect to the topology of locally uniform
convergence. This topology is locally convex and we can extend the product to a con-
tinuous product on the completion of the holomorphic polynomials. Using methods from
analytic geometry, we identify this completion with the space of holomorphic functions.

Main Theorem II. For any semisimple coadjoint orbit yO of a connected semisimple
complex Lie group G, there is a family of products O�„WHol. yO/ � Hol. yO/! Hol. yO/ for
„ 2 C n P , where every product O�„ is G-invariant and continuous with respect to the
topology of locally uniform convergence. The dependence of O�„ on „ is holomorphic.

This result is certainly interesting in its own right. However, as mentioned above, we
can also restrict it to real coadjoint orbits O � yO. Denote by A.O/ the class of functions
on O that extend to holomorphic functions on yO (if a function extends, its extension
is unique), which contains the polynomials. We define the topology of extended locally
uniform convergence on A.O/ by saying that a sequence of functions in A.O/ converges
if the corresponding sequence of extensions converges locally uniformly so that A.O/ is
homeomorphic to Hol. yO/.

Main Theorem III. For any semisimple coadjoint orbit O of a connected semisimple
real Lie group G, there is a family of products �„WA.O/ � A.O/ ! A.O/ for „ 2
C n P , where every product �„ is G-invariant and continuous with respect to the topol-
ogy of extended locally uniform convergence. The dependence of �„ on „ is holomorphic.
The formal expansion of �„ around 0 is a formal star product deforming the G-invariant
symplectic form of O.
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For the hyperbolic disc, the quantum algebra .A.Dn/; �„/ agrees with the algebra
obtained in [28] while, for the 2-sphere, .A.S2/;�„/ is the algebra considered in [15].

Since we constructed a quantization of the holomorphic functions on a complex coad-
joint orbit and the restriction Hol. yO/! A.O/ is an isomorphism, the quantizations of
different real orbits with the same complexification are related.

Main Theorem IV. If O and O0 are coadjoint orbits of real semisimple connected Lie
groups with the same complexification and through one common semisimple element, then
the algebras .A.O/;�„/ and .A.O0/;�0

„
/ are isomorphic.

This isomorphism generalizes the classical Wick rotation, which can be interpreted
as an isomorphism between the polynomial algebras Pol.CPn/ and Pol.Dn/. However,
this isomorphism does not necessarily respect the star involutions with which the algebras
A.O/ are equipped. In other words, the algebras A.O/ and A.O0/ are isomorphic as
algebras, but not necessarily as �-algebras.

In order to apply our quantization to physics, we should represent the Fréchet algebras
.A.O/;�„/ on a Hilbert space. Given a positive linear functional, we can use the GNS rep-
resentation to do so. For a formal star product of Wick type all point evaluation functionals
are formally positive. However, formal positivity means only that the first non-vanishing
order is positive and therefore, as in this case, might not survive the passage to strict prod-
ucts (where the contribution of higher orders can dominate the contribution of the first
order). For certain coadjoint orbits we will prove that point evaluations stay positive.

One aspect that we do not discuss in this work is the relation to geometric or Berezin–
Toeplitz quantization [8–10,36]. These theories construct a quantization by studying holo-
morphic sections of a quantizing line bundle over the manifold M . This line bundle
needs to satisfy some integrality condition, which for compact M means that only count-
ably many values of „, accumulating at 0, are allowed. The algebra C1.M/ is, in the
limit „ ! 0, approximated by finite dimensional matrix algebras. The construction of
Alekseev–Lachowska coincides with another more geometric construction of star prod-
ucts on semisimple coadjoint orbits by Karabegov [15, 25] if „ is not a pole. However,
Karabegov’s construction still makes sense at the poles, where it coincides with (a variant
of) the Berezin–Toeplitz quantization [25]. In this sense, our infinite dimensional Fréchet
algebras .A.O/;�„/ interpolate between the finite dimensional Berezin–Toeplitz algebras.
It could be very interesting to study this in greater detail.

Contents

In Section 2, we recall some well-known facts about coadjoint orbits. This includes the
realizability of coadjoint orbits as orbits of matrix Lie groups and a characterization of
invariant multidifferential operators on homogeneous spaces. In Section 3, we introduce
the Shapovalov pairing of (generalized) Verma modules and derive an explicit formula
for its canonical element. From this, we obtain a product for holomorphic polynomials
on complex coadjoint orbits. In Section 4, we show that this product is continuous with
respect to the topology of locally uniform convergence so that we can extend it to the com-
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pletion, which consists of all holomorphic functions on the orbit. Finally, we restrict our
results to real coadjoint orbits in Section 5. We will determine additional properties of the
star products obtained in this way (e.g., being of Wick type or of standard ordered type),
study positive linear functionals, and investigate isomorphisms of the algebras obtained
for different real forms of the same complex coadjoint orbit. In Appendix A, we give
some remaining proofs and more details on complex structures.

Notation

In the whole paper,G is either a real or complex Lie group, g denotes the Lie algebra ofG,
and U g denotes the universal enveloping algebra of g. In Sections 3 and 4, G is always
complex. In Section 5, G refers to a real Lie group and yG refers to a complexification
of G. K denotes a compact real Lie group. Coadjoint orbits through � 2 g� are denoted
by O�.

We write C1.M/ for the smooth complex-valued functions on a manifoldM . IfM is
a real manifold, TM denotes its (real) tangent bundle (so sections of TM are derivations
of the algebra of real-valued smooth functions on M ). The complexification of TM is
denoted by TCM (so sections of TCM are derivations of C1.M/). If M is a complex
manifold, then the holomorphic tangent bundle is denoted by T.1;0/M .

2. Preliminaries

In this section, we summarize some results that are needed in the rest of this article: we
review the definition of coadjoint orbits and their realizability as orbits of matrix Lie
groups in Section 2.1. In Section 2.2, we introduce invariant multidifferential operators on
homogeneous spaces.

2.1. Coadjoint orbits

Let G be a real or complex Lie group with Lie algebra g. We denote the adjoint action
of G on g by AdWG ! End.g/. For any g 2 G, Adg WD Ad.g/ is the tangent map of the
conjugation G 3 x 7! gxg�1 2 G by g. Its differential adW g! end.g/ is given by the
Lie bracket, adX .Y / D ŒX; Y �. The coadjoint action Ad�WG! End.g�/ of G on the dual
g� of g is defined by Ad�g � D � ı Adg�1 for � 2 g�.

The coadjoint orbit O� of G through an element � 2 g� is defined as

O� D ¹� 2 g� j � D Ad�g � for some g 2 Gº: (2.1)

It is well known that O� Š G=G� , where � 2 O� is any point on the coadjoint orbit and
G� D ¹g 2 G j Ad�g � D �º is the stabilizer subgroup of �. If G is a real (complex) Lie
group, there is a unique smooth (complex) manifold structure on G=G� that makes the
projection � WG ! G=G� a smooth (holomorphic) submersion, and we use it to define
the structure of a smooth (complex) manifold on O�. It does not depend on the choice of
� 2 O�.
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Fix a basis e1; : : : ; en of g and let C kij be the structure constants with respect to
this basis, i.e., Œei ; ej � D

Pn
kD1 C

k
ij ek . In this case, ¹f; gº.�/ D

Pn
i;j;kD1 C

k
ij �.ek/

@f
@ei

@g
@ej

defines a linear Poisson structure on g�, where f; g 2 C1.g�/ and the ei are viewed
as global linear coordinates on g�. The following proposition is well known; see, e.g.,
[11, Example 1.1.3].

Proposition 2.1. If the Lie group G is connected, then the coadjoint orbits of G are
precisely the symplectic leaves of this linear Poisson structure. In particular, all connected
Lie groups with the same Lie algebra have the same coadjoint orbits.

Corollary 2.2. If the Lie group G is semisimple and connected, then G and its image
under AdWG ! End.g/ have the same coadjoint orbits.

Proof. Since g is semisimple, it has trivial center and therefore adW g! end.g/ is injec-
tive. Consequently, G and its image in End.g/ have the same Lie algebra. Since both are
connected, the result follows by applying the previous proposition.

It is easy to show that not only G and its image under Ad have the same coadjoint
orbits, but also AdWG ! End.g/ intertwines the actions of G and its image on the coad-
joint orbits. Since the image of G under Ad is a matrix Lie group, we can therefore, when
studying coadjoint orbits of connected semisimple Lie groups, assume without loss of
generality that such a Lie group is a matrix Lie group. Using the argument provided in
[19, Theorem 9], we can even assume that G is a closed matrix Lie group.

For X 2 g, denote the fundamental vector field of X for the coadjoint action by
XO� j� WD

d
dt jtD0 Ad�exp.�tX/ �, where � 2 O�. Note that the map g=g� ! T�O�, X 7!

XO� j� is an isomorphism, where g� denotes the Lie algebra of G� . Consequently,

!KKS.XO� ; YO�/j� D �
�
ŒX; Y �

�
(2.2)

determines a well-defined 2-form on O�, which is called the Kirillov–Kostant–Souriau
form. One can show that !KKS is symplectic and G-invariant. By symplectic we mean
that !KKS is closed and that !KKSj� WT�O� � T�O� ! k is k-bilinear, antisymmetric, and
non-degenerate for all � 2 O�, where k is either R or C, depending on whether G is real
or complex.

For a semisimple Lie algebra g, the Killing form BWg� g! k is non-degenerate, giv-
ing an isomorphism [Wg! g�, X 7! X [ WD B.X; � /. We denote its inverse by ]Wg�! g.
In the complex case, we say that � 2 g� is semisimple if ad�] 2 end.g/ is diagonalisable
and in the real case � 2 g� is semisimple if the complex linear extension of � to the com-
plexification of g is semisimple. A coadjoint orbit O� is semisimple if � is semisimple.

Proposition 2.3. Let G be a complex connected semisimple Lie group and let � 2 g� be
semisimple. Then G� is connected.

Proof. The Lie algebra spanned by �] integrates to a connected commutative Lie sub-
group T 0 of G, and since �] is semisimple, all elements of T 0 are diagonalisable in the
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adjoint representation. There is a smallest closed complex Lie group T containing T 0, that
can be obtained as follows: take the closure of T 0 (which is a real Lie group), take the
Lie algebra of this closure (which is a real Lie subalgebra of g), take the complex Lie
algebra spanned by it, integrate this Lie algebra to a connected Lie subgroup of G, and
possibly repeat these steps. T is still connected and commutative, and all its elements are
diagonalisable in the adjoint representation, so T is a complex torus in G. Its centralizer
is exactly G�, and centralizers of tori are connected.

Note that the statement is also true for a real compact connected semisimple Lie group
K, but might fail if the compactness assumption is dropped.

We denote the smooth functions onG that are invariant under the action ofG� from the
right by C1.G/G� . That is, f 2C1.G/G� if and only if f 2C1.G/ and f .gg0/D f .g/
for all g 2 G and g0 2 G�. There is an algebra isomorphism

��WC1.G=G�/! C1.G/G� ; f 7! ��f WD f ı � (2.3)

and, for a complex Lie group, this isomorphism restricts to an isomorphism on holomor-
phic functions. We denote the inverse by ��WC1.G/G� ! C1.G=G�/.

Remark 2.4. This article is written mainly from a differential geometric perspective.
Note, however, that any complex connected semisimple Lie group G has a unique struc-
ture of an algebraic group; see [34, Theorem 6.3 and the preceding corollary in Chapter 1].
Any holomorphic representation of G is polynomial. Consequently, if G is realized as a
subgroup of GLN .C/, it is automatically closed. The coadjoint action G � g� ! g� is a
morphism of algebraic varieties, and coadjoint orbits of G are smooth subvarieties of g�.
A coadjoint orbit of G is closed in the Zariski topology if and only if it is semisimple;
see [12, Theorem 5.4]. In particular, semisimple coadjoint orbits of complex connected
semisimple Lie groups are affine algebraic varieties.

Note that this is not necessarily true for real connected semisimple Lie groups (not
even if they are linear). It is still true that real connected semisimple linear Lie groups and
their coadjoint orbits are connected components (with respect to the usual topology) of
affine algebraic varieties.

2.2. Invariant holomorphic k-differential operators

In the whole subsection, G is a complex Lie group, H is a closed complex Lie sub-
group of G, and k � 1 is an integer. We present some results on holomorphic G-invariant
k-differential operators on the homogeneous space G=H ; in particular, we construct a
bijection between the set ..U g=U g � h/˝k/H and the set of such operators. The results
seem to be well known, but proofs are hard to find in the literature.

A k-differential operator D (see Appendix A.1 for a short review of the definition)
on a manifold M endowed with an action of a Lie group G is said to be invariant under
G if ��g.D Ef / D D..�

�
g/
�k Ef / for all Ef 2 C1.M/k and all g 2 G. Here �g WM ! M

is the diffeomorphism of M given by the action of a fixed element g 2 G, and the upper
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star denotes the pullback. We write k-DiffOpGH .M/ for the space of holomorphic G-
invariant k-differential operators on a complex manifold M . A k-differential operator on
G is said to be left-invariant if it is invariant with respect to the left action LWG �G! G,
.g; g0/ 7! gg0 DW Lg.g0/.

Let M be a complex manifold with complex structure I W TM ! TM . For a vector
field V 2 �1.TM/ its holomorphic part is V .1;0/ D 1

2
.V � iIV / 2 �1.T.1;0/M/. Let g

be the Lie algebra of G. For any X 2 g define the left-invariant vector field

X left
ˇ̌
g
WD

d
dt

ˇ̌̌
tD0
g exp.tX/ 2 �1.TG/: (2.4)

Its holomorphic part X left;.1;0/ D 1
2
.X left � i.iX/left/ 2 �1.T.1;0/G/ induces a holomor-

phic left-invariant 1-differential operator f 7! X left;.1;0/f on G. Since . � /left;.1;0/W g!

�1.T.1;0/G/ is a Lie algebra homomorphism, it induces an algebra homomorphism
. � /left;.1;0/WU g! DiffOpGH .G/.

In the following, we extend various maps to k-fold products and still denote them by
the same symbol,

Adg W .U g/˝k ! .U g/˝k ;

u1 ˝ � � � ˝ uk 7! Adg u1 ˝ � � � ˝ Adg uk ; (2.5a)

��WC1.G=H/k !
�
C1.G/H

�k
;

.f1; : : : ; fk/ 7! .��f1; : : : ; �
�fk/; (2.5b)

. � /left;.1;0/
W .U g/˝k ! k-DiffOpGH .G/;

u1 ˝ � � � ˝ uk 7!
�
.f1; : : : ; fk/ 7! u

left;.1;0/
1 f1 � � � � � u

left;.1;0/
k

fk
�
: (2.5c)

Proposition 2.5. The map . � /left;.1;0/W .U g/˝k ! k-DiffOpGH .G/ is an isomorphism.

Proof. See Appendix A.1.

Next, we want to describe holomorphic G-invariant k-differential operators on the
homogeneous space G=H . Let H be a closed Lie subgroup of G with Lie algebra h, and
let U g � h�U g be the left ideal generated by h. Note that .U g=U g � h/˝k is isomorphic
to .U g/˝k=I , where I D I1 C � � � C Ik and Ii D .U g/˝.i�1/ ˝ U g � h˝ .U g/˝.k�i/

is a left ideal in .U g/˝k . Introduce the set

Uinv D
®
Eu 2 .U g/˝k j ŒEu� 2 .U g=U g � h/˝k is H -invariant

¯
D
®
Eu 2 .U g/˝k j Adh Eu � Eu 2 I for all h 2 H

¯
: (2.6)

Here the action of H on .U g/˝k is the diagonal action defined in (2.5a).

Lemma 2.6. Let Eu 2 Uinv, Ev 2 I , and Ef 2 .C1.G/H /k . Then

Evleft;.1;0/ Ef D 0 and Euleft;.1;0/ Ef 2 C1.G/H : (2.7)
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Proof. Let Y 2 h and f 2 C1.G/H . Then we compute

.Y leftf /.g/ D
d
dt

ˇ̌̌
tD0
f
�
g exp.tY /

�
D

d
dt

ˇ̌̌
tD0
f .g/ D 0:

Using that Y left;.1;0/ D 1
2
.Y left � i.iY /left/, this implies that Y left;.1;0/f D 0, and therefore

also Evleft;.1;0/ Ef D 0 for all Ev 2 I and Ef 2 .C1.G/H /k . If X 2 g, then

.X leftf /.gh/ D
d
dt

ˇ̌̌
tD0
f
�
gh exp.tX/

�
D

d
dt

ˇ̌̌
tD0
f
�
g exp.t AdhX/

�
D
�
.AdhX/leftf

�
.g/

for all f 2 C1.G/H , g 2 G, and h 2 H . Consequently, we obtain .X left;.1;0/f /.gh/ D

..Adh X/left;.1;0/f /.g/, and extending to the universal enveloping algebra and to tensor
products yields .Euleft;.1;0/ Ef /.gh/ D ..Adh Eu/left;.1;0/ Ef /.g/ for all Eu 2 .U g/˝k and Ef 2
.C1.G/H /k . If Eu 2 Uinv, then together with the first part we obtain�

Euleft;.1;0/ Ef
�
.gh/ D

�
.Adh Eu/left;.1;0/ Ef

�
.g/

D
�
Euleft;.1;0/ Ef

�
.g/C

�
.Adh Eu � Eu/left;.1;0/ Ef

�
.g/

D
�
Euleft;.1;0/ Ef

�
.g/:

Because of this lemma we can define

z‰WUinv ! Map
�
C1.G=H/k ;C1.G=H/

�
; z‰.Eu/ Ef D ��

�
Euleft;.1;0/.�� Ef /

�
:

Since �� and �� are algebra homomorphisms, it follows that z‰.Eu/ and Euleft;.1;0/ satisfy
essentially the same commutation relations with the operator that multiplies a compo-
nent by a smooth function. Consequently z‰.Eu/ is k-differential and of the same order as
Euleft;.1;0/ (see the definition of k-differential operators given in Definition A.1). Moreover,
z‰.Eu/ is G-invariant, because �� and �� are G-equivariant and Euleft;.1;0/ is G-invariant.
Since � WG ! G=H is a holomorphic map, it follows that z‰.Eu/ is holomorphic, and z‰
really maps into k-DiffOpGH .G=H/. The map z‰ descends to a map

‰W
�
.U g=U g � h/˝k

�H
! k-DiffOpGH .G=H/ (2.8)

because z‰.I / D 0 according to the previous lemma.

Proposition 2.7. The map ‰ defined in (2.8) is an isomorphism.

Proof. The proof is given in Appendix A.1.

The last result of this subsection gives a description of the k-differential operator
‰.ŒEu�/ on the coadjoint orbit without using extensions to G. Let S be the antipode of
U g and extend the Lie algebra homomorphism g 3 X 7! XO� 2 �

1.TO�/ defined just
before (2.2) to an algebra homomorphism U g! DiffOp.O�/.
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Proposition 2.8. Let O� Š G=G� be a coadjoint orbit. If Eu D u1 ˝ � � � ˝ uk 2 Uinv and
Ef D .f1; : : : ; fk/ 2 C1.O�/

k , then

‰
�
ŒEu�
�
Ef .Ad�g �/

D
�
S.Adg u1/

�.1;0/
O�

f1.Ad�g �/ � � � � �
�
S.Adg uk/

�.1;0/
O�

fk.Ad�g �/: (2.9)

Proof. Defining the Lie algebra homomorphism . � /rightWg! �1.TG/, X 7! X right with
X rightjg WD

d
dt jtD0 exp.�tX/g and extending to U g as before, one checks that

uleftf .g/ D X left
1 � � �X

left
j f .g/

D
d

dt1

ˇ̌̌
t1D0
� � �

d
dtj

ˇ̌̌
tjD0

f
�
g exp.t1X1/ � � � exp.tjXj /

�
D

d
dt1

ˇ̌̌
t1D0
� � �

d
dtj

ˇ̌̌
tjD0

f
�
exp.t1 Adg X1/ � � � exp.tj Adg Xj /g

�
D .�Adg Xj /right

� � � .�Adg X1/rightf .g/ D
�
S.Adg u/

�right
f .g/

for u D X1 � � �Xj 2 U g. Similarly, uleft;.1;0/f .g/ D .S.Adg u//right;.1;0/f .g/. Further-
more, we have

X right.��f /.g/ D
d
dt

ˇ̌̌
tD0
��f

�
exp.�tX/g

�
D

d
dt

ˇ̌̌
tD0
f
�

Ad�exp.�tX/ Ad�g �
�

D XO�f .Ad�g �/ D �
�.XO�f /.g/

for all X 2 g, implying that X right;.1;0/ ı �� D �� ıX
.1;0/

O�
and therefore that uright;.1;0/ ı

�� D �� ı u
.1;0/

O�
for all u 2 U g. Finally,

‰
�
ŒEu�
�
Ef .Ad�g �/

D
�
Euleft;.1;0/�� Ef

�
.g/

D u
left;.1;0/
1 .��f1/.g/ � � � � � u

left;.1;0/
k

.��fk/.g/

D
�
S.Adg u1/

�right;.1;0/
.��f1/.g/ � � � � �

�
S.Adg uk/

�right;.1;0/
.��fk/.g/

D
�
S.Adg u1/

�.1;0/
O�

f1.Ad�g �/ � � � � �
�
S.Adg uk/

�.1;0/
O�

fk.Ad�g �/:

3. Quantizing complex coadjoint orbits

In this section, we construct a formal associative product for holomorphic functions on a
semisimple coadjoint orbit of a complex connected semisimple Lie group and a strict
associative product for polynomials. These products are induced by a twist, which is
constructed using the Shapovalov pairing between generalized Verma modules. For the
convenience of the reader, we first consider the special case of regular semisimple orbits
in Section 3.1, where we introduce the Shapovalov pairing between Verma modules and
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compute its canonical element. In Section 3.2, we generalize these results to non-regular
semisimple orbits. In Section 3.3, we describe the induced formal and strict products in
detail. We consider an example in Section 3.4.

Later, in Section 5, we will use the results of this section to obtain star products on
semisimple coadjoint orbits of real connected semisimple Lie groups. From the example
considered in this section, we will then obtain strict quantizations of the hyperbolic disc
and the complex projective space.

3.1. Verma modules and the Shapovalov pairing

In this subsection, we introduce the Shapovalov pairing between Verma modules. In case
this pairing is non-degenerate, we derive an explicit formula for its canonical element,
following [35]. A similar formula in the more general setting of quantum groups was
obtained recently in [30]. The results allow us to quantize regular orbits.

Let g be a complex semisimple Lie algebra with Cartan subalgebra h. Recall that a root
is a non-zero element ˛ 2 h� such that g˛ WD ¹X 2 g j adH X D ˛.H/X for all H 2 hº

contains a non-zero element. Denote the set of roots by � and choose an ordering (i.e.,
a subset �C of positive roots such that, setting �� WD ��C, we have �C [ �� D �,
�C \ �� D ;, and such that if the sum of positive roots is a root, then it is positive).
Denote the simple roots (i.e., elements of �C that cannot be written as a sum of two
elements of�C) by†. Let nC and n� be the nilpotent Lie subalgebras of g spanned by the
positive and negative root spaces, respectively, and define bC WD h˚nC and b� WD h˚n�

(the direct sum is as vector spaces, the Lie algebra structure on b˙ � g is obtained by
restriction from g).

Note that 0 is not a root. However, it is convenient to introduce the notation g0 WD h.
Then g is .� [ ¹0º/-graded, in the sense that g D

L
˛2�[¹0º g˛ and Œg˛; gˇ � � g˛Cˇ

for any ˛; ˇ 2 �[ ¹0º. Consequently, the tensor algebra Tg is Z�-graded, where the so-
called root lattice Z� is the set of linear combinations of roots. The two-sided ideal gen-
erated by elements of the form X ˝ Y � Y ˝ X � ŒX; Y � with X;Y 2 g is homogeneous
and therefore the universal enveloping algebra U g D Tg=hX ˝ Y � Y ˝ X � ŒX; Y �i is
also Z�-graded. Denote the degree of a homogeneous element w 2 U g by d.w/ 2 Z�.

Given a linear functional � 2 h�, the formula H F z D �.H/z makes C a left h-
module and, since h is commutative, also a right h-module. We can extend this to a left
or right b˙-module by noting that b˙ D h˚ n˙ and letting n˙ act trivially. Denote the
corresponding left U .b˙/-module by C˙

�
and the right U .b�/-module by C�

�
. Define

the Verma modules

M� WDU g˝U .bC/ CC
�
; M�� WDU g˝U .b�/ C�

��; M �� WDC�� ˝U .b�/ U g: (3.1)

Note that M� and M�
�

are left U g-modules, whereas M �
�

is a right U g-module. M� is
the most general left U g-module of highest weight �, meaning that any other left U g-
module of highest weight � can be obtained as a quotient of M�. M�

�
is the most general

left U g-module of lowest weight ��.
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There are canonical isomorphisms M �
�
˝U g M� Š C�

�
˝U .b�/ U g˝U .bC/ C� Š

C�
�
˝U h C� Š C since the left and right h-module structures on C coincide.

Definition 3.1. The pairing h � ; � i0
�
WM �

�
�M� ! C defined by .x; y/ 7! x ˝U g y is

called the Shapovalov pairing between M �
�

and M�.

In the following, it will be convenient to have alternative descriptions ofM�,M�
�

, and
M �
�

. Let ¹X1; : : : ; Xkº be a basis of nC, ¹Y1; : : : ; Ykº a basis of n�, and ¹H1; : : : ; Hrº
a basis of h. Since g D nC ˚ h ˚ n� (as vector spaces), the Poincaré–Birkhoff–Witt
theorem implies that®

Y IHJXK j I;K 2 Nk
0 ; J 2 Nr

0

¯
and

®
XKHJY I j I;K 2 Nk

0 ; J 2 Nr
0

¯
are bases for U g. Here we use the multi-index notation Y I WD Y I11 � � �Y

Ik
k

(and similarly
for H and X ). Define maps

��� WU g! U .n�/;

��� .Y
IHJXK/ WD �.H1/

J1 � � ��.Hr /
JrY I ıK;0; (3.2a)

�C
�
WU g! U .nC/;

�C
�
.XKHJY I / WD

�
� �.H1/

�J1
� � �
�
� �.Hr /

�Jr
XKıI;0; (3.2b)

��� WU g! U .nC/;

���.Y
IHJXK/ WD �.H1/

J1 � � ��.Hr /
JrXKıI;0; (3.2c)

where ıK;0 is 1 ifK D .0; : : : ; 0/ and is 0 otherwise. Note that �˙
�

and ��
�

are independent
of the choice of bases. Fix non-zero vectors 1 2 C˙

�
and 1 2 C�

�
(thinking of C as a vector

space, this choice is not canonical).

Lemma 3.2. The maps � ˝ 1WU .n�/!M�, v 7! v˝ 1 and � ˝ 1WU .nC/!M�
�

, u 7!
u˝ 1 define isomorphisms of left U .n�/-modules and U .nC/-modules, respectively. The
map 1˝ � WU .nC/!M �

�
, u 7! 1˝ u defines an isomorphism of right U .nC/-modules.

The U g-module structures on U .n˙/ obtained by transferring the module structures on
the Verma modules with these isomorphisms are given explicitly by

F
�
� WU g �U .n�/! U .n�/; .w; v/ 7! w F�� v WD �

�
� .wv/; (3.3a)

F
C

�
WU g �U .nC/! U .nC/; .w; u/ 7! w FC

�
u WD �C

�
.wu/; (3.3b)

G
�
�WU .nC/ �U g! U .nC/; .u; w/ 7! u G�� w WD �

�
�.uw/: (3.3c)

Furthermore, S.w FC
�
u/ D S.u/ G�

�
S.w/, where S denotes the antipode of U g. Or, in

other words, S WU .nC/!U .nC/ is an isomorphism from the left U g-module .U .nC/;

F
C

�
/ to the right U g-module .U .nC/;G�

�
/ over the map S WU g! U g.

Proof. One checks easily that the mapsM�!U .n�/, w˝ z1 7! z � ��
�
.w/ andM�

�
!

U .nC/,w˝ z1 7! z � �C
�
.w/ as well asM �

�
!U .nC/, z1˝ w 7! z ���

�
.w/ are all well

defined and inverses of the maps in the statement of the lemma. Consequently, we have
w F�

�
v D . � ˝ 1/�1.wv˝ 1/D ��

�
.wv/, and (3.3b) and (3.3c) follow similarly. Finally,
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��
�
ı S D S ı �C

�
, so S.w FC

�
u/ D S ı �C

�
.wu/ D ��

�
ı S.wu/ D ��

�
.S.u/S.w// D

S.u/ G�
�
S.w/.

The pairing of the left U g-modules .U .n˙/;F˙
�
/ obtained from the Shapovalov pair-

ing by composing with the isomorphisms .U .n�/;F�
�
/
�˝1
���! M� and .U .nC/;FC

�
/
S
�!

.U .nC/;G�
�
/
1˝�
���!M �

�
of the previous lemma is

h � ; � i�WU .nC/ �U .n�/! C; .u; v/ 7! hu; vi� WD
˝
1˝ S.u/; v ˝ 1

˛0
�
: (3.4)

In order to compute hu; vi� for u 2 U .nC/ and v 2 U .n�/, one needs to write S.u/v 2
U g in the form

P
i v
0
ih
0
iu
0
i with u0i 2 U .nC/, v0i 2 U .n�/, and h0i 2 U h. The pairing is

then given by summing �.h0i / for those summands that have v0i D u
0
i D 1. This is made

more precise in the next lemma. Define �� WD ��� ı �
�
�
D ��

�
ı ��

�
WU g! C, where C

is identified with C1 �U .n˙/ and we have implicitly used the inclusion U .n˙/!U g

when composing the maps.

Lemma 3.3. For u 2 U .nC/ and v 2 U .n�/, the pairing h � ; � i� defined in (3.4) can
be computed as

hu; vi� D ��
�
S.u/v

�
: (3.5)

It is U g-invariant, in the sense that hw FC
�
u; vi� D hu; S.w/ F

�
�
vi� for u 2 U .nC/,

v 2 U .n�/, and w 2 U g. The pairing respects the degree d defined in the beginning
of this section, meaning that hu; vi� D 0 for homogeneous elements u 2 U .nC/ and
v 2 U .n�/ with d.u/ ¤ �d.v/. Furthermore, if d.u/ D �d.v/, then

hu; vi�1U .n�/ D S.u/ F
�
� v and hu; vi�1U .nC/ D S.v/ F

C

�
u: (3.6)

Proof. By definition hu; vi� D 1˝U .b�/ S.u/v˝U .bC/ 1. So to prove (3.5) it suffices to
check that 1˝U .b�/ w ˝U .bC/ 1 D ��.w/ for all w 2 U g, which one can easily verify
on the basis ¹Y IHJXK j I; K 2 Nk

0 ; J 2 Nr
0º. The U g-invariance follows by noting

that h � ; � i0
�

is U g-invariant, meaning hxw; yi0
�
D hx; wyi0

�
for x 2 M �

�
and y 2 M�,

and using the isomorphisms of the previous lemma. For homogeneous u2U .nC/ and v 2
U .n�/ with d.u/ ¤ �d.v/, it follows that S.u/v is also homogeneous of degree d.u/C
d.v/¤ 0 and therefore ��.S.u/v/D 0. Finally, if d.u/D�d.v/, then d.S.u/v/D 0 and
hu; vi�1U .n�/ D ��.S.u/v/1U .n�/ D �

�
�
.S.u/v/D S.u/ F�

�
v, implying the first equal-

ity of (3.6). The second one follows from applying S on both sides of hu; vi�1U .nC/ D

��.S.u/v/1U .nC/ D �
�
�
.S.u/v/D S.�C

�
.S.v/u//D S.S.v/ FC

�
u/.

If the pairing h � ; � i� is non-degenerate, we can pick bases ¹uiºi2N of U .nC/ and
¹vj ºj2N of U .n�/ consisting of homogeneous elements with respect to d and satis-
fying hui ; vj i� D ıij . Then the element F� WD

P1
iD1 ui ˝ vi 2 U .nC/ y̋ U .n�/ is

called the canonical element of the pairing. It is independent of the choice of bases. By
U .nC/ y̋ U .n�/ we mean the completion of the tensor product with respect to the Z�-
grading d defined in the beginning of this subsection, which is needed to make sense of the
infinite sum. The following lemma is a standard statement when working with canonical
elements.
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Lemma 3.4. Assume that h � ; � i� is non-degenerate, and let F� D
P1
iD1 ui ˝ vi 2

U .nC/ y̋ U .n�/ be its canonical element. Then

1X
iD1

ui hu; vi i� D u and
1X
iD1

vi hui ; vi� D v (3.7)

hold for all u 2 U .nC/ and all v 2 U .n�/, and F� is uniquely determined by this prop-
erty.

Note that hu; vi i and hui ; vi are non-zero for only finitely many indices i so that the
sums in (3.7) are both finite. The pairing h � ; � i� is non-degenerate precisely when the
Verma modules are irreducible, but we will not need this below. In order to determine F�
explicitly, we need to introduce some more notation.

Denote the Killing form of g by B . Since g is semisimple, B is non-degenerate on g.
Extending linear functionals on h by 0 on the root spaces g˛ , we may view h� as a sub-
space of g�. Since B restricts to zero on h � g˛ for any ˛ 2 �, it follows that B is
non-degenerate on h and that the maps [W g! g� and ]W g� ! g defined in Section 2.1
restrict to mutually inverse isomorphisms [W h ! h� and ]W h� ! h. For ˛; ˇ 2 h�, let
.˛; ˇ/ WD B.˛]; ˇ]/.

Denote the positive roots by ˛1; : : : ; ˛k . For every positive root ˛i 2 �C choose ele-
ments Xi WD X˛i 2 g˛i and Yi WD Y˛i D X�˛i 2 g�˛i such that B.Xi ; Yi / D 1. Then we
have ŒXi ; Yi � D ˛

]
i since, for all H 2 h,

B
�
ŒXi ; Yi �;H

�
D B

�
Xi ; ŒYi ;H �

�
D ˛i .H/B.Xi ; Yi / D ˛i .H/ D B.˛

]
i ;H/

and B is non-degenerate on h. Note that Œ˛]i ; Xi � D ˛i .˛
]
i /Xi D .˛i ; ˛i /Xi and similarly

Œ˛
]
i ; Yi � D �.˛i ; ˛i /Yi , so X 0i D 2.˛i ; ˛i /

�1Xi , Y 0i D Yi , andH 0i D 2.˛i ; ˛i /
�1˛

]
i satisfy

the commutation relations ŒX 0i ; Y
0
i � D H

0
i , ŒH

0
i ; X

0
i � D 2X

0
i , and ŒH 0i ; Y

0
i � D �2Y

0
i of the

usual generators of sl2.C/, the special linear Lie algebra in 2 dimensions.
Let �D 1

2

P
˛2�C ˛ be the half-sum of all positive roots. Denote non-negative integral

linear combinations of positive roots by N0�
C. For � 2 h� fixed and � 2 h� define the

number
p�.�/ WD

1

2
.�; �/ � .�; �/ � .�; �/: (3.8)

Recall that for a representation %Wg! V and � 2 h� we define V � WD ¹v 2 V j %.H/v D
�.H/v for all H 2 hº. If V � ¤ ¹0º, then we call � a weight and any v 2 V � is called
a weight vector of weight �. V is called a weight module if V D

L
�2h� V

�. A highest
weight module is a weight module generated by a vector v 2 V satisfying X˛v D 0 for all
˛ 2 �C. It is said to be of highest weight � if v 2 V �.

Lemma 3.5 (Ostapenko [35]). Let V be a highest weight module of highest weight �,
assume that � 2 N0�

C, and let v 2 V ���. Then

� p�.�/v D
X
˛2�C

Y˛X˛v: (3.9)
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Proof. Choose an orthonormal basis ¹H1; : : : ; Hrº of h with respect to the Killing form.
The Casimir element

c D
X
˛2�C

.X˛Y˛ C Y˛X˛/C

rX
iD1

HiHi D
X
˛2�C

.2Y˛X˛ C ˛
]/C

rX
iD1

HiHi

acts as a scalar on V because V is generated by a highest weight vector and c is central
in U g. Evaluating it on a highest weight vector, the Y˛X˛-part vanishes and we obtain
that c acts as multiplication by

P
˛2�C.˛; �/C

Pr
iD1 �.Hi /�.Hi / D .2�; �/C .�; �/.

Therefore

.2�; �/v C .�; �/v D 2
X
˛2�C

Y˛X˛v C .2�; � � �/v C .� � �; � � �/v

holds for any v 2 V ���, and rearranging this equation proves the lemma.

LetW be the set of words with letters from ¹1; : : : ; kº. For any w D .w1; : : : ; wjwj/ 2
W , we define wopp WD .wjwj; : : : ; w1/, wi ���j WD .wi ; : : : ; wj /, Xw WD Xw1 � � �Xwjwj 2

U .nC/, Yw WD Yw1 � � �Ywjwj 2 U .n�/, and ˛w WD ˛w1 C � � � C ˛wjwj . We use wi ���j WD ;
if j < i , X; WD 1, Y; WD 1, and ˛; WD 0. Furthermore, let

pw� .�/ WD

jwj�1Y
iD0

p�.� � ˛w1���i /: (3.10)

We call a set T of words a tree if w D .w1; : : : ; wjwj/ 2 T implies that w1���i 2 T for all
i D 0; : : : ; jwj � 1 and .w1; w2; : : : ; wjwj�1; x/ 2 T for all x 2 ¹1; : : : ; kº. See Figure 1
for a visualization of a tree. For a tree T we denote by max T the set of elements w 2 T
such that w ¤ w01���i for any w0 2 T and any i 2 ¹0; : : : ; jw0j � 1º. Finally, a tree is said to
be �-admissible if p�.�� ˛w/ ¤ 0 for all w 2 T nmaxT , or equivalently if pw

�
.�/ ¤ 0

for all w 2 T .

Lemma 3.6 (Ostapenko [35]). Let V be a highest weight module of highest weight �,
assume that � 2 N0�

C, and let v 2 V ���. Then

v D
X

w2maxT

.�1/jwjpw� .�/
�1YwXwoppv (3.11)

holds for every �-admissible tree T .

Proof. Apply the previous lemma repeatedly.

Lemma 3.7. Let V be a lowest weight module of lowest weight ��, assume that � 2
N0�

C, and let v 2 V ��C�. Then
P
˛2�C X˛Y˛v D �p�.�/v, and

v D
X

w2maxT

.�1/jwjpw� .�/
�1XwYwoppv (3.12)

holds for every �-admissible tree T .
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Figure 1. Left: The roots of sl3.C/. The Cartan subalgebra h of sl3.C/ is 2-dimensional and there
are six 1-dimensional root spaces. The picture shows the real subspace of h� spanned by the roots.
The positive roots are denoted by ˛1, ˛2, and ˛3 and drawn in green; negative roots are drawn in red.
Middle: The weights in a highest weight module of highest weight �. The picture shows again the
real subspace of h� spanned by the roots. Weights are indicated by black dots, and �D 3˛1 C 2˛3.
Note that since � is a highest weight, the spaces V �C˛1 , V �C˛2 , and V �C˛3 must all be trivial.
Right: Visualization of the tree T D ¹;; 1; 2; 3; 11; 12; 13; 21; 22; 23; 131; 132; 133º. The elements
of maxT D ¹3; 11; 12; 21; 22; 23; 131; 132; 133º are indicated by black dots. Words starting with a
1 are colored red, words starting with a 2 blue, and words starting with a 3 green.

Proof. Similar to the proof of Lemmas 3.5 and 3.6.

Define the set

ƒ WD
®
� 2 h� j p�.�/ ¤ 0 8� 2 N0�

C
n ¹0º

¯
: (3.13)

Proposition 3.8. The Shapovalov pairing h � ; � i�WU .nC/�U .n�/!C is non-degener-
ate for � 2 ƒ, and in this case its canonical element F� 2 U .nC/ y̋ U .n�/ is given by

F� D
X
w2W

pw� .˛w/
�1Xw ˝ Yw D

X
w2W

jwjY
iD1

p�
�
˛wi ���jwj

��1
Xw ˝ Yw : (3.14)

Proof. We check that F� satisfies the property given in Lemma 3.4. We decompose v 2
U .n�/ as v D

P
�2N0�C

v��, where v�� is homogeneous of degree �� with respect to
the Z�-grading. For � 2 N0�

C let W� be the set of words w 2 W satisfying ˛w D �.
ThenX
w2W

pw� .˛w/
�1YwhXw ; vi� D

X
w2W

pw� .˛w/
�1Yw F

�
� S.Xw/ F

�
� v�˛w

D

X
�2N0�C

X
w2W�

.�1/jwjpw� .˛w/
�1Yw F

�
� Xwopp F

�
� v��

D

X
�2N0�C

v�� D v:

The first equality holds because YwhXw ; vi� D Yw F
�
�
.hXw ; v�˛w i�1U .n�// D

Yw F
�
�
S.Xw/ F

�
�
v�˛w by Lemma 3.3. The second equality is true by basic manipula-
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˛1

˛2

˛3

:::

: : :

:::

�

� � �

Figure 2. The tree T used in the proof of Proposition 3.8 for g D sl3.C/ and � D 2˛1 C ˛3.
Elements of the tree starting with 1, 2 and 3 are colored red, blue, and green, respectively. Note
that all weight spaces of maximal elements of this tree are trivial, except for V �. All non-maximal
weight spaces are non-trivial.

tions. The third equality follows from Lemma 3.6 because we can rewrite the sum over all
w 2 W� as a sum over maxT for a �-admissible tree T (see Figure 2) as follows: define

T WD ¹;º [ ¹w 2 W j 9w0 2 W� and 0 � i � jw0j � 1 s.t. w1���jwj�1 D w01���iº;

which is the smallest tree containing W�. Since � 2 ƒ, this tree is �-admissible, and
clearlyW� � maxT . Let w 2 maxT . Then either ˛w D �, so that w 2W�, or there does
not exist w0 2 W� and i 2 ¹0; : : : ; jw0jº with w D w01���i , so that � � ˛w … N0�

C, and
therefore Xwopp F�

�
v�� D 0.

Similarly, for u D
P
�2N0�C

u� 2 U .nC/ with d.u�/ D � we compute thatX
w2W

pw� .�/
�1Xwhu; Ywi� D

X
w2W

pw� .�/
�1Xw F

C

�
S.Yw/ F

C

�
u˛w

D

X
�2N0�C

X
w2W�

.�1/jwjpw� .�/
�1Xw F

C

�
Ywopp F

C

�
u�

D

X
�2N0�C

u� D u;

using Xwhu; Ywi� D Xw FC� .hu˛w ; Ywi�1U .nC// D Xw F
C

�
S.Yw/ F

C

�
u˛w and that the

sum overw 2W� can be rewritten as a sum over maximal elements of a tree T in a similar
way as before.

Using the inclusion U .nC/ y̋ U .n�/! .U g/
y̋ 2 and passing to the quotient, we can

map the element F� from (3.14) to .U g=U g � h/
y̋ 2. Note that U g � h is a homogeneous

ideal in U g with respect to the degree d , so the quotient U g=U g � h is still graded.
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The completed tensor product is defined with respect to this grading. The action of h on
.U g/˝2 given byH F .w˝ w0/D adH w˝ w0 Cw˝ adH w0 withH 2 h and w;w0 2
U g stays well defined on the quotient and preserves the degree, so it extends uniquely to
a continuous action on the completed tensor product. Denote the coproduct of the Hopf
algebra U g by�. It is defined by extending the assignment g 3 X 7! X ˝ 1C 1˝ X 2

U g˝ U g to an algebra homomorphism �WU g! U g˝ U g.

Proposition 3.9 (Alekseev–Lachowska [1]). Let � 2 ƒ. Then F� 2 .U g=U g � h/
y̋ 2 is

h-invariant and satisfies�
.id˝ �/F�

�
1˝ F� D

�
.�˝ id/F�

�
F� ˝ 1 (3.15)

in .U g=U g � h/
y̋ 3.

Proof. See the proof of Theorem 3.23.

Using the results of Section 2.2, elements of ..U g=U g � h/˝2/H determine bidif-
ferential operators on a complex coadjoint orbit for which g� D h. Such orbits are of
maximal dimension among all coadjoint orbits and called regular. Note that H is auto-
matically connected by Proposition 2.3, so h-invariance of F� implies H -invariance, but
F� is only an element of the completed tensor product. So applying the construction from
Section 2.2 naively gives a sum of bidifferential operators of increasing orders. To make
sense of this sum, we can either introduce a formal parameter „ in the construction in such
a way that we obtain a formal power series of bidifferential operators, or we can restrict
ourselves to applying these operators to some class of polynomials, for which only finitely
many of the bidifferential operators appearing in the sum give a non-zero contribution.

We will now proceed as follows: in Section 3.2, we generalize the construction of F�
to work for arbitrary stabilizers g� (and not just h). In Section 3.3, we will give details
on how to construct bidifferential operators out of F�, both in the formal and polynomial
settings mentioned above.

3.2. Generalization to non-regular orbits

The aim of this subsection is to generalize the results of the last subsection to non-regular
semisimple coadjoint orbits. To achieve this, we need to replace h by a possibly larger
stabilizer g� and define a generalization of the Shapovalov pairing. When this pairing is
non-degenerate, we derive an explicit formula for its canonical element, which satisfies
(3.15).

Let g be a complex semisimple Lie algebra acting under the coadjoint action, i.e., the
action dual to the adjoint action, on its dual g�. We assume that � 2 g� is semisimple (as
defined in Section 2.1) with stabilizer g� WD ¹X 2 g j ad�X �D 0º. Fix a Cartan subalgebra h

containing �] (which is possible since � is semisimple) and denote the corresponding root
system by �. Since any H 2 h commutes with �], it follows that ad�H � D �.Œ�H; � �/ D
�B.�]; ŒH; � �/ D �B.Œ�];H �; � / D 0, so h � g�. We let

�0 WD
®
˛ 2 � j .˛; �/ D 0

¯
and y� WD

®
˛ 2 � j .˛; �/ ¤ 0

¯
D � n�0:
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� �

�0

�

�0

Figure 3. Invariant and non-invariant orderings. As in the left picture of Figure 1, the roots of sl3.C/
are shown. Simple roots are encircled. Roots in�0 are drawn with blue dashed lines. Roots in y� are
drawn in green if they are positive, and in red if they are negative. The fundamental Weyl chamber
has a light green background. A regular orbit of SL3.C/ is shown on the left; the other two pictures
are of non-regular orbits. In the right picture, the ordering on � is not invariant, since adding the
negative root in �0 (the lower blue dashed line) to one of the positive roots (a green arrow) gives a
negative root (a red arrow). The ordering in the middle picture is invariant and standard, the ordering
in the left picture is invariant, but not standard. It would be standard if � was in the fundamental
Weyl chamber.

One checks easily that g� D h ˚
L
˛2�0 g

˛ . Given an ordering on � with �˙ being
the set of positive resp. negative roots, define y�˙ D �˙ \ y� and .�0/˙ D �˙ \ �0.
Furthermore, let Qn˙ WD

L
˛2y�˙

g˛ and Qb˙ WD g� ˚ Qn
˙.

Definition 3.10. An ordering of� is called invariant if, for any ˛ 2 y�C and ˇ 2 �0 such
that ˛ C ˇ is again a root, this root ˛ C ˇ is in y�C.

Note that since the sum of two roots in �0 is again in �0 (if it is a root), it is automatic
that ˛ C ˇ 2 y�. The important part of the previous definition is that ˛ C ˇ should again
be positive. See Figure 3 for an example of invariant and non-invariant orderings.

Lemma 3.11. An ordering of � is invariant if and only if ˛ C ˇ 2 y�C holds for any
˛; ˇ 2 �C with ˛ C ˇ 2 �.

In the condition of the lemma, it is automatic that ˛ C ˇ is positive and the important
part is that it lies in y�.

Proof. Assume the condition of the lemma is false, i.e., ˛;ˇ 2 y�C and ˛C ˇ 2 � n y�C.
Since ˛C ˇ is positive, we must then have ˛C ˇ 2�0. Consequently, ˛C .�.˛C ˇ//D
�ˇ … y�C, so the ordering is not invariant.

Conversely, if the ordering is not invariant, then we can find ˛ 2 y�C and ˇ 2 �0 such
that ˛ C ˇ 2 � n y�C. Then we must have ˛ C ˇ 2 y�� and therefore ˛ C .�.˛ C ˇ// D
�ˇ … y�C, so the condition of the lemma is not fulfilled.

Intuitively the invariance of an ordering means that roots in �0 are close to being
simple or more precisely that they are linear combinations of simple roots in �0. Indeed,
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if ˛ 2 .�0/C, then ˛ is a non-negative linear combination of simple roots. By the lemma
at least one of those simple roots, say � , must be in �0, so ˛ D � or ˛ � � 2 .�0/C and
we can apply induction.

Corollary 3.12. If the ordering of � is invariant, then Qn˙ and Qb˙ are both Lie subalge-
bras of g. Moreover, Œg�; Qn˙� � Qn˙ and Œg�; Qb˙� � Qb˙.

Proof. The condition in the previous lemma says precisely that Œ Qn˙; Qn˙� � Qn˙, i.e., that
Qn˙ is a Lie subalgebra of g. The defining property of an invariant ordering means that
Œg�; Qn

˙� � Qn˙. The statements for Qb˙ are then clear.

Definition 3.13. We say an ordering is standard if there is a set S �C n ¹0º, closed under
addition and satisfying S \ .�S/ D ;, S [ .�S/ D C n ¹0º such that ˛ 2 y� is positive
if and only if .˛; �/ 2 S .

Standard invariant orderings exist always since we can construct them as follows. First,
take any ordering on the set �0 (meaning a subset .�0/C such that if the sum of two
elements of .�0/C is in�0, then it is in .�0/C and such that for .�0/� WD �.�0/C we have
.�0/C [ .�0/� D �0 and .�0/C \ .�0/� D ;). Then choose a set S that is closed under
addition and satisfies S \ .�S/ D ; and S [ .�S/ D C n ¹0º, e.g., S D ¹z 2 C n ¹0º j
Re.z/ > 0 or z 2 iRCº. Let ˛ 2 � be positive if ˛ 2 .�0/C or .˛; �/ 2 S .

For real coadjoint orbits standard invariant orderings are the ones which induce star
products of pseudo Wick type (under some further assumptions, see Proposition 5.21)
and therefore the orderings we are mainly interested in. However, the construction below
works also for other (possibly non-standard) invariant orderings.

Before generalizing the results of the last subsection, we would like to mention the
following technical lemma for later use.

Lemma 3.14. Let g be a semisimple Lie algebra, let � 2 g� be semisimple, and let h be a
Cartan subalgebra of g containing �]. Assume that we have chosen an invariant ordering
defining sets �C, y�, and �0 as above. Then there is a constant M 2 N such that for any
m 2 N the sum of m positive roots in y�C and at least Mm positive roots in .�0/C is not
in N0

y�C.

Proof. Label the simple roots by �1; : : : ; �r such that the first r 0 simple roots �1; : : : ; �r 0
are in �0 and the remaining simple roots are in y�. Label all roots in y�C by ˛1; : : : ; ˛ Qk .
Then there are unique non-negative integers cij 2N0 such that j̨ D

Pr
iD1 c

i
j�i . SetM 0 D

max
j2¹1;:::; Qkº

Pr 0

iD1 c
i
j , M 00 D max

j2¹1;:::; Qkº

Pr
iDr 0C1 c

i
j , and M DM 0M 00 C 1.

Since j̨ 2 y�
C, we have

Pr
iDr 0C1 c

i
j � 1 for any j 2 ¹1; : : : ; Qkº, and

Pr 0

iD1c
i
j �

M 0 � M 0
Pr
iDr 0C1 c

i
j . Note that any element ˇ 2 N0

y�C can be written uniquely as
ˇ D

Pr
iD1 ˇ

i�i with ˇi 2 N0, and the coefficients satisfy the same inequality

r 0X
iD1

ˇi �M 0
rX

iDr 0C1

ˇi :
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Recall that any root in .�0/C is a linear combination of simple roots in .�0/C. So
if
Pr
iD1 d

i�i 2 .�
0/C, then d i D 0 for all i D r 0 C 1; : : : ; r . Therefore, if  is the

sum of m roots from y�C and at least Mm roots from .�0/C, and  D
Pr
iD1 

i�i , then
M 0

Pr
iDr 0C1 

i �M 0M 00m < Mm �
Pr 0

iD1 
i , so  cannot be in N0

y�C.

For a regular coadjoint orbit we have�0D;. Consequently, y�D�, g�D h, QnCDnC,
and Qn� D n�. In this case, every ordering is invariant, and the generalized Shapovalov
pairing, that we will introduce now, coincides with the Shapovalov pairing introduced in
the last subsection. Since g� D h when�0 D ;, we usually denote an element of g� byH .

Let � 2 g�
�

be the restriction of � 2 g� to g�. Then �.ŒH 0; H �/ D ad�H �.H
0/ D 0

for all H;H 0 2 g�, so H F z D �.H/z makes C a left or right g�-module. Extending
trivially along Qn˙ gives a left or right Qb˙-module, and we denote the corresponding left
U . Qb˙/-module by zC˙

�
and the right U . Qb�/-module by zC�

�
. Define the generalized Verma

modules
zM� D U g˝U .QbC/

zCC
�
;

zM�� D U g˝U .Qb�/
zC�
��;

zM �� D
zC�� ˝U .Qb�/

U g;

(3.16)

where zM� and zM�
�

are left U g-modules and zM �
�

is a right U g-module. Most of the
results of the previous subsection have obvious analogues in this setting.

Let ¹X1; : : : ; X Qkº be a basis of QnC, ¹Y1; : : : ; Y Qkº a basis of Qn�, and ¹H1; : : : ; HQrº a
basis of g�. Since g D QnC ˚ g� ˚ Qn

�, the Poincaré–Birkhoff–Witt theorem implies that®
Y IHJXK j I;K 2 N

Qk
0 ; J 2 N Qr0

¯
and

®
XKHJY I j I;K 2 N

Qk
0 ; J 2 N Qr0

¯
are bases for U g. Define maps

z��� WU g! U . Qn�/;

z��� .Y
IHJXK/ WD �.H1/

J1 � � ��.HQr /
JQrY I ıK;0; (3.17a)

z�C
�
WU g! U . QnC/;

z�C
�
.XKHJY I / WD

�
� �.H1/

�J1
� � �
�
� �.HQr /

�JQrXKıI;0; (3.17b)

z��� WU g! U . QnC/;

z���.Y
IHJXK/ WD �.H1/

J1 � � ��.HQr /
JQrXKıI;0: (3.17c)

Note that they are compatible with the maps ��
�

, �C
�

, and ��
�

in the sense that z��
�
ı ��

�
D

z��
�

, z�C
�
ı �C

�
D z�C

�
, and z��

�
ı ��

�
D z��

�
. On the left-hand sides, we are implicitly using

the inclusion U .n˙/! U g. Note that this inclusion is not a U g-module map.

Lemma 3.15. The maps � ˝ 1WU . Qn�/! zM�, v 7! v ˝ 1 and � ˝ 1WU . QnC/! zM�
�

,
u 7! u ˝ 1 define isomorphisms of left U . Qn�/-modules and U . QnC/-modules, respec-
tively. The map 1˝ � WU . QnC/! M �

�
, u 7! 1˝ u is an isomorphism of right U . QnC/-

modules. The U g-module structures on U . Qn˙/ obtained by transferring the module
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structures on the generalized Verma modules with these isomorphisms are given explic-
itly by

zF
�

� WU g �U . Qn�/! U . Qn�/; .w; v/ 7! w zF
�

� v WD z�
�
� .wv/; (3.18a)

zF
C

� WU g �U . QnC/! U . QnC/; .w; u/ 7! w zF
C

� u WD z�
C

�
.wu/; (3.18b)

zG
�

�WU . QnC/ �U g! U . QnC/; .u; w/ 7! u zG
�

� w WD z�
�
�.uw/: (3.18c)

Furthermore, S.w zFC� u/ D S.u/ zG
�

� S.w/, where S denotes the antipode of U g.

Proof. Similar to the proof of Lemma 3.2.

Note that since U . Qn˙/ is a U g-module, we must have

z�˙�
�
wz�˙� .w

0/
�
D w zF

˙

� .w
0 zF
˙

� 1/ D .ww
0/ zF
˙

� 1 D z�
˙
� .ww

0/ (3.19)

and
z���
�
z���.w/w

0
�
D z���.ww

0/ (3.20)

for all w; w0 2 U g. This implies that the map z�˙
�
jU .n˙/WU .n˙/! U . Qn˙/ is a U g-

module homomorphism (with respect to the module structures given by F˙
�

and zF˙� ).
Indeed, for the plus case we have

z�C
�
.w FC

�
u/ D z�C

�
�C
�
.wu/ D z�C

�
.wu/ D z�C

�
.wz�C

�
u/ D w zF

C

� z�
C

�
u

for allw2U g and u2U .nC/ and the minus case is similar. Define g˙
�
WD
L
˛2.�0/˙ g˛D

g� \ n˙. Note that U g � g˙
�
D ¹w F˙

�
X j w 2 U g; X 2 g˙

�
º is a U g-submodule of

U .n˙/. Since z�˙
�

is a map of U g-modules and vanishes on g˙
�

, U g � g˙
�

is in its kernel.

Lemma 3.16. The induced maps z�˙
�
WU .n˙/=U g � g˙

�
! U . Qn˙/ are isomorphisms of

U g-modules.

Proof. It is easy to check that the quotient map induced by the inclusion U . Qn˙/ !

U .n˙/ defines an inverse.

As before, there are isomorphisms zM �
�
˝U g

zM� Š
zC�
�
˝U .Qb�/

U g˝U .QbC/
zC� Š

zC�
�
˝U .g�/

zC� Š C, which we use to define the Shapovalov pairings h � ; � i�
�
0
W zM �

�
�

zM� ! C, .x; y/ 7! hx; yi�
�
0
WD x ˝ y and

h � ; � i�� WU . QnC/ �U . Qn�/! C;

hu; vi�� D
˝
1˝ S.u/; v ˝ 1

˛�
�

0
D 1˝ S.u/v ˝ 1: (3.21)

In the same way as in Lemma 3.3, one proves that this pairing can be computed by

hu; vi�� D ��
�
S.u/v

�
: (3.22)

Note that z��
�
ı z��

�
D z��

�
ı z��

�
D ��

�
ı ��

�
D ��, so there is no need to introduce a z��.
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Lemma 3.17. Let u 2 U .nC/ and v 2 U .n�/. Then hz�C
�
u; z��vi

�
�
D hu; vi�. In partic-

ular, h � ; � i�jU .nC/�U g�g�
�
D h � ; � i�jU g�gC

�
�U .n�/ D 0.

Proof. Using (3.19) twice, we compute

hz�C
�
u; z��� vi

�
� D ��

�
S.z�C

�
u/z��� v

�
D z��� ı z�

�
�

�
z���.Su/z�

�
� v
�

D z��� ı z�
�
�

�
z���.Su/v

�
D z��� ı z�

�
�

�
z���.Su/v

�
D z��� ı z�

�
�

�
S.u/v

�
D ��

�
S.u/v

�
D hu; vi�:

Define the set

zƒ D
®
� 2 h� j p�.�/ ¤ 0 8� 2 N0

y�C n ¹0º
¯
: (3.23)

Furthermore, let zW be the set of words w 2 W such that ˛wi ���jwj 2 N0
y�C for all i D

1; : : : ; jwj. Since z�C
�
.Xw/ D 0 and z��

�
.Yw/ D 0 for w 2 W n zW , the following theorem

is not surprising.

Theorem 3.18. Let � 2 zƒ. Then the Shapovalov pairing h � ; � i�
�
WU . QnC/�U . Qn�/!C

is non-degenerate. Its canonical element F� 2 U . QnC/ y̋ U . Qn�/ is given by

F� D
X
w2 zW

pw� .˛w/
�1
z�C
�
.Xw/˝ z�

�
� .Yw/

D

X
w2 zW

jwjY
iD1

p�.˛wi ���jwj/
�1
z�C
�
.Xw/˝ z�

�
� .Yw/: (3.24)

Proof. It suffices to prove that
P
w2 zW pw

�
.˛w/

�1z��
�
.Yw/hz�

C

�
.Xw/; Qvi

�
�
D Qv for all Qv 2

U . Qn�/ and that
P
w2 zW pw

�
.˛w/

�1z�C
�
.Xw/h Qu; z�

�
�
.Yw/i

�
�
D Qu for all Qu 2 U . QnC/ by

using an analogue of Lemma 3.4. Let v 2 U .n�/ be the image of Qv under the inclusion
U . Qn�/ ! U .n�/ so that z��

�
.v/ D Qv. Assume that v D

P
�2N0

y�C
v�� is the weight

decomposition of v. ThenX
w2 zW

pw� .˛w/
�1
z��� .Yw/

˝
z�C
�
.Xw/; Qv

˛�
�

D

X
w2 zW

pw� .˛w/
�1
z��� .Yw/hXw ; vi�

D z���

 X
w2 zW

pw� .˛w/
�1YwhXw ; v�˛w i�

!

D z��ƒ

 X
�2N0

y�C

X
w2 zW�

.�1/jwjpw� .˛w/
�1Yw F

�
� Xwopp F

�
� v��

!
;



Strict quantization of coadjoint orbits 25

˛1

˛2

˛3�

�0

:::

: : :

:::

�

� � �

Figure 4. The tree T used in the proof of Theorem 3.18 for g D sl3.C/ and � D 2˛1 C ˛3.
Compare this with Figure 2. Elements of the tree starting with 1, 2, and 3 are colored red, blue, and
green, respectively. Only the weight spaces marked with filled dots are non-trivial (but might have a
different dimension than in the case where �0 D ;), and all weight spaces marked with circles only
contain 0. In particular, the weight spaces at maximal elements of the tree are trivial, except for V �.
All non-maximal weight spaces are non-trivial.

where zW� D ¹w 2 zW j ˛w D �º. We claim that there is an admissible tree T and v0 2
U g � g�

�
such thatX

w2 zW�

.�1/jwjpw� .˛w/
�1Yw F

�
� Xwopp F

�
� v��

D v0 C
X

w2maxT

.�1/jwjpw� .˛w/
�1Yw F

�
� Xwopp F

�
� v��;

which would finish the proof by using Lemma 3.6. Indeed, let

T D ¹;º [ ¹w 2 W j 9w0 2 zW� and 0 � i � jw0j � 1 s.t. w1���jwj�1 D w01���iº

be the smallest tree containing zW� (see Figure 4). Since � 2 zƒ, this tree is admissible. Fur-
thermore, zW� � maxT and any element w 2 maxT satisfies exactly one of the following
two conditions. Either ˛w D � so that w 2 zW� appears in the sum on the left-hand side
of the above equation or � � ˛w … N0

y�C so that Xwoppv�� would have to be of weight
˛w � � … �N0

y�C and does therefore either vanish or lie in U g � g�
�

. The statement for
Qu is proven similarly.

Using the inclusions U . Qn˙/!U g and the projection U g!U g=U g � g�, we map
F� to .U g=U g � g�/

y̋ 2. Note that, as before, U g � g� is a homogeneous ideal in U g, so
the grading of U g stays well defined on the quotient. The action of g� on .U g/˝2 also
passes to the quotient and extends to a continuous action on the completed tensor product.
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Theorem 3.19 (Alekseev–Lachowska [1]). Let � 2 zƒ. Then F� 2 .U g=U g � g�/
y̋ 2 is

g�-invariant and satisfies�
.id˝ �/F�

�
1˝ F� D

�
.�˝ id/F�

�
F� ˝ 1 (3.25)

in .U g=U g � g�/
y̋ 3.

Proof. The g-invariance of the Shapovalov pairing (proven similarly as in Lemma 3.3)
implies that F� 2 U . QnC/ y̋ U . Qn�/ is also g-invariant. Then F� 2 .U g=U g � g�/

y̋ 2

is g�-invariant since the map U . QnC/ �U . Qn�/! .U g=U g � g�/
y̋ 2 is g�-equivariant.

Equation (3.25) is proven in [1, Section 4].

It will be convenient in the following to write F� as a sum of elements that are all
invariant under g�.

Lemma 3.20. Let � 2 zƒ. Then there is a partition of zW into finite subsets zW`, ` 2 N0

such that
F�;` WD

X
w2 zW`

pw� .˛w/
�1
z�C
�
.Xw/˝ z�

�
� .Yw/ (3.26)

is g�-invariant.

Proof. It will be convenient to introduce a different grading d 0 on g, for which g� is of
degree 0. To this end, let h and the root spaces of simple roots in �0 be of degree 0, and
let the root spaces of simple roots in y� be of degree 1. Since any root is a unique linear
combination of simple roots, this assignment extends to a grading on g. More explicitly,
if �1; : : : ; �r 2 � are the simple roots, with �1; : : : ; �r 0 2 �0, then the root space of a
root ˛ D

Pr
iD1 c

i�i is of degree d 0.˛/ D
Pr
iDr 0C1 c

i . Since g� is spanned by h and the
root spaces of roots in �0, and since the invariance of the ordering implies that any root
in �0 is a linear combination of simple roots in �0, it follows that every element of g�
is homogeneous of degree 0. This grading is coarser than the grading given by d , in the
sense that the graded components with respect to the new grading d 0 are direct sums of
the graded components with respect to d . The restrictions of the maps z�˙

�
to U .n˙/ are

homogeneous of degree 0with respect to (the restriction of) the Z-grading on U g induced
by d 0.

For w 2 W set d 0.w/ WD d 0.˛w1/ C � � � C d
0.˛wjwj/, and define zW` WD ¹w 2 zW j

d 0.w/ D `º. It follows from Lemma 3.14 that zW` is finite for every `. The elements F�;`
defined from zW ` as in (3.26) have a nice description in terms of the grading d 0. Since all
graded components of QnC resp. Qn� are of degree � 1 resp. � �1, d 0 induces a grading
of U . QnC/˝ U . Qn�/ by N0 � .�N0/. Using the homogeneity of z�˙

�
, it follows directly

from the definition of zW` that F�;` is precisely the component of F� of degree .`;�`/
with respect to this grading. Since g� is of degree 0, the action of g� on U . QnC/˝U . Qn�/

preserves the graded components, and the g�-invariance of F� implies that all the graded
components F�;` must also be g�-invariant.
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3.3. The induced formal and strict products

In this subsection, we construct associative products from the element F� obtained at the
end of the last subsection. We will rescale � in order to introduce a parameter playing
the role of Planck’s constant in the construction. Then we would like to use the results of
Section 2.2 to obtain bidifferential operators from (the rescaled) F�. However, since F�
is only in the completed tensor product, applying these results naively would give a sum
of bidifferential operators of increasing orders and we have to deal with its convergence.
There are essentially two solutions to this problem: firstly, we can take a formal expan-
sion in the parameter „, which will give us a well-defined power series of bidifferential
operators of increasing order. Secondly, we can restrict ourselves to applying these opera-
tors only to some polynomial functions, for which only finitely many terms of the infinite
sum give a non-zero contribution. We discuss both approaches in detail, starting with the
formal one.

Let us first introduce the rescaling. Define the set

P� D ¹0º [
®
„ 2 C n ¹0º j i�=„ … zƒ

¯
; (3.27)

and for „ 2 C n P� set F„ WD Fi�=„ and F„;` WD Fi�=„;`, where Fi�=„ was computed in
Theorem 3.19 and Fi�=„;` was defined in Lemma 3.20. Note that gi�=„ D g�, so F„ 2
..U g=U g � g�/

y̋ 2/g� holds for all „2C nP�. Furthermore, the projections z�˙i�=„jU .n˙/W

U .n˙/!U . Qn˙/ are independent of „, which one can easily see from their definition in
(3.17).

Proposition 3.21. Let g be a complex semisimple Lie algebra, h a Cartan subalgebra
of g, and � 2 h�. Fix an invariant ordering on �, and assume that .�; �/ ¤ 0 for all
� 2 N0

y�C satisfying 1
2
.�; �/ D .�; �/. Then the set P� is countable and accumulates

only at zero.

Proof. From the definition of P� we obtain

P� D ¹0º [
®
„ 2 C n ¹0º j pi�=„.�/ D 0 for some � 2 N0

y�C n ¹0º
¯
:

Under our assumptions, the function „ 7! pi�=„.�/ D
1
2
.�; �/ � .�; �/ � i

„
.�; �/ has

the only root i.�; �/=.1
2
.�; �/ � .�; �// if 1

2
.�; �/ � .�; �/ ¤ 0 and no root otherwise.

Therefore P� is countable since N0
y�C n ¹0º is countable. Furthermore, P� accumulates

only at zero sinceˇ̌̌̌
i.�; �/

1
2
.�; �/ � .�; �/

ˇ̌̌̌
�

k�kk�k
1
2
k�k2 � k�kk�k

D
k�k

1
2
k�k � k�k

if k�k > 2k�k. Note that there are only finitely many elements � 2 N0
y�C with k�k �

2k�k.

Remark 3.22. If the ordering in the previous proposition is standard, then any element
� 2 N0

y�C automatically satisfies .�; �/ ¤ 0: for all ˛ 2 y�C we have .�; ˛/ 2 S and
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since S is closed under addition this implies .�; �/ 2 S for all � 2 N0
y�C. Note that

0 … S , so in particular .�; �/ ¤ 0.
Note also that 1

2
.�;�/D .�;�/ implies k�k� 2k�k, so there can only be finitely many

elements � 2 N0� satisfying 1
2
.�;�/D .�;�/. Among those are all simple roots and the

element 2�. However, simple roots which are in N0
y� are by definition not orthogonal to

�. An example of an element that is not a simple root and not 2� in the case of gD sl3.C/
with root system as in Figure 1 is � D ˛1 C ˛2.

We say that F„ depends rationally on „ if all the F„;` depend rationally on „. This
makes sense since F„;` takes values in a finite dimensional subspace of .U g=U g � g�/

˝2

that is independent of „.

Theorem 3.23 (Alekseev–Lachowska [1]). Let � 2 h� and assume that P� is countable.
Then F„ depends rationally on „, with no pole at zero. In particular, the Taylor series
expansion of F„ around 0makes sense, and it gives an element F 2 .U g=U g � g�/

˝2ŒŒ„��,
where the tensor product is the usual (not completed) tensor product. Furthermore, F
satisfies (3.25) in .U g=U g � g�/

˝3ŒŒ„�� and is g�-invariant.

Proof. As mentioned before, gi�=„ and z�˙i�=„jU .n˙/WU .n˙/! U . Qn˙/ are independent
of „, so only the coefficients pwi�=„.˛w/

�1 in the formula for Fi�=„ obtained in Theo-
rem 3.18 depend on „. Since they are products of elements of the form

pi�=„.�/
�1
D

�
1

2
.�; �/ � .�; �/ �

�
i�
„
; �

���1
D

„�
1
2
.�; �/ � .�; �/

�
„ � .i�;�/

with � 2 N0
y�C n ¹0º, their dependence on „ is rational without a pole at zero. (Observe

that 1
2
.�;�/� .�;�/ and .i�;�/ cannot vanish simultaneously since P� is assumed to be

countable.) Consequently, we may take the Taylor expansion of Fi�=„ around „ D 0. To
see that this yields an element in the usual tensor product, note that the formal expansion
of pi�=„.�/

�1 is a multiple of „ unless .�; �/ D 0. Now

pwi�=„.˛w/
�1
D

jwjY
iD1

pi�=„.˛wi ���jwj/
�1;

and if the formal expansions of both pi�=„.˛wi ���jwj/
�1 and pi�=„.˛wiC1���jwj/

�1 are not mul-
tiples of „, then .�;˛wi /D 0, i.e., ˛wi 2�

0. However, Lemma 3.14 ensures that this cannot
happen too often: ifM is the constant obtained in that lemma, then at least djwj=.M C 1/e
many elements in the formal expansion of pwi�=„.˛w/

�1 are multiples of „, so this expan-
sion is of order at least „djwj=.MC1/e. Consequently, only finitely many words contribute
to a given order in „ so that we do not need to complete the tensor product. Since every
F„ satisfies (3.25) and is g�-invariant, this is also true for the formal expansion F .

Let us now apply this theorem to quantize complex coadjoint orbits. Let G be a
complex connected semisimple Lie group with coadjoint orbit O� through a semisimple
element � 2 g�. Pick a Cartan subalgebra h containing �]. Choose an invariant ordering
for which P� is countable (e.g., a standard invariant ordering).
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By Proposition 2.3 we know that G� is connected. Therefore the g�-invariance of the
elements F and F„ constructed previously implies their G�-invariance. Consequently, we
can apply the results of Section 2.2 in order to obtain holomorphic G-invariant bidifferen-
tial operators on O� Š G=G�. Define the formal product

?WC1.O�/ŒŒ„�� � C1.O�/ŒŒ„��! C1.O�/ŒŒ„��; .f; g/ 7! f ? g WD ‰.F /.f; g/;

(3.28)
and note that this product is well defined since the previous theorem asserts that F 2
.U g=U g � g�/

˝2ŒŒ„��.

Proposition 3.24. The product ? is associative and restricts to a product

?WHol.O�/ŒŒ„�� � Hol.O�/ŒŒ„��! Hol.O�/ŒŒ„�� (3.29)

on power series of holomorphic functions. Moreover, ? is G-invariant, in the sense that
.g F f1/ ? .g F f2/ D g F .f1 ? f2/ holds for all g 2 G and f1; f2 2 C1.O�/ŒŒ„��.

Proof. It is a standard argument that the twist condition (3.25) translates into associativity
of the induced product. That ? restricts to power series of holomorphic functions and
is G-invariant is immediate since the image of ‰ consists of holomorphic G-invariant
bidifferential operators.

In order to define strict star products from F„ directly, i.e., without taking a formal
power series expansion, we need to ensure that ‰.F„/ is well defined. To do that we
introduce polynomials on the coadjoint orbit. It will turn out that only finitely many ele-
ments of the infinite sum defining F„ contribute non-trivially when ‰.F„/ is applied to
polynomials.

Recall from Section 2.1 that we may assume without loss of generality that G is a
closed complex Lie subgroup of GLN .C/. We fix a way to realize G as such a matrix Lie
group once and for all. In particular, the Lie algebra g of G is realized as a complex Lie
subalgebra of glN .C/.

Definition 3.25 (Polynomials on O�). Let O� � g� be a complex coadjoint orbit. Then

Pol.O�/

D ¹p W O� ! C j p D P jO� for some holomorphic polynomial P on g�º (3.30)

is called the algebra of polynomials on O�.

Recall that the symmetric algebra Sg of g is isomorphic (as an algebra) to the algebra
Pol.g�/ of polynomials on g�. The isomorphism sends an element X1 _ � � � _ Xj 2 Sjg

to � 7! �.X1/ � � � �.Xj /.

Definition 3.26 (Polynomials on G). For a complex linear Lie group G, the algebra of
polynomials Pol.G/ is the unital complex subalgebra of C1.G/ generated by the func-
tions Pij WG ! C, g 7! gij .
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Polynomials on a complex Lie group G are holomorphic. In the case of semisimple
connected Lie groups, both the Lie group itself and the coadjoint orbit are affine algebraic
varieties (see Remark 2.4) and our definition of polynomials coincides with the definition
of regular functions on algebraic varieties. If G is connected and semisimple, then the
definition of polynomials on G is independent of the way in which G is realized as a
linear group, which can be proven as outlined in Appendix A.2.

Proposition 3.27. Assume that the complex linear Lie group G is semisimple and con-
nected. Then ��WHol.O�/ Š Hol.G=G�/! Hol.G/G� restricts to an isomorphism

��WPol.O�/! Pol.G/G� :

Proof. Since the Lie algebra g is semisimple, we have g D Œg; g�, i.e., every element of
g can be written as a sum of commutators. Consequently, the trace of any element of g

is zero. Therefore any element in a sufficiently small neighborhood of the identity of G
must have determinant 1, and consequently G is a Lie subgroup of SLN .C/.

Let Eij 2 glN .C/ be the matrix that is 1 at position .i; j / and 0 otherwise. Extend �
to a linear functional z� 2 glN .C/

�. For an element X 2 gD S1g, which we identify with
a polynomial on g�, we compute

��
�
X
ˇ̌
O�

�
.g/ D X

ˇ̌
O�
.�.g// D X

ˇ̌
O�

�
Ad�g �

�
D X

ˇ̌
O�

�
�.g�1 � g/

�
D �

�
g�1Xg

�
D

X
i;j

z�
�
.g�1Xg/ijEij

�
D

X
i;j;k;`

.g�1/ikg j̀Xk`z�.Eij /:

Since detgD 1, we can write .g�1/ik as a polynomial in the entries of g so that ��.X jO�/
itself is a polynomial in the entries of g. Since Pol.O�/ is generated by X jO� and �� is
an algebra homomorphism, it follows that ��p 2 Pol.G/ for any p 2 Pol.O�/. Injec-
tivity of �� is immediate. Surjectivity is harder to prove. One can either use methods
from algebraic geometry (making use of Remark 2.4; see for example [22, Chapter 12])
or work in a more differential geometric setting using G-finite functions as outlined in
Appendix A.2.

Recall the degree d 0 introduced in the proof of Lemma 3.20.

Lemma 3.28. For any polynomial p 2 Pol.GLN .C//, there is a constant Np 2 N such
that uleft;.1;0/p D vleft;.1;0/p D 0 holds for any u 2U . QnC/�U .glN .C// of degree d 0

greater than Np and any v 2U . Qn�/� U .glN .C// of degree d 0 smaller than �Np .

Proof. Using the Leibniz rule, we may assume that p D Pk` in the notation of Defini-
tion 3.26. Let Eij 2 glN .C/ be the matrix that is 1 at position .i; j / and 0 otherwise. It is
easy to check that E left

ij Pk` D ıj`Pki and therefore

X leftPk` D

�X
i;j

XijEij

�left

Pk` D
X
i

Xi`Pki for all X 2 glN .C/:
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Since Pk` is holomorphic, this implies that also X left;.1;0/Pk` D X
leftPk` D

P
i Xi`Pki .

Consequently, if u D u1 � � �uM 2 U .glN .C// with u1; : : : ; uM 2 glN .C/, then

uleft;.1;0/Pk` D
X
iM

.u1 � � �uM�1/
left;.1;0/.uM /iM `PkiM

D

X
iM�1;iM

.u1 � � �uM�2/
left;.1;0/.uM�1/iM�1iM .uM /iM `PkiM�1 D � � �

D

X
i1;:::;iM

.u1/i1i2 � � � .uM�1/iM�1iM .uM /iM `Pki1 D
X
i

.u1 � � �uM /i`Pki :

Since adX is nilpotent for any X 2 QnC, it follows that 0D .adX/s D ad.Xs/ for X 2 QnC,
where the index s stands for the semisimple part of the Jordan decomposition. Since g is
semisimple, this implies Xs D 0, so every X 2 QnC is realized by a nilpotent matrix. It
follows from Engel’s theorem that any matrix Lie algebra consisting of nilpotent matrices
is nilpotent as an algebra, so there exists a constant M 2 N such that products of M or
more elements of QnC vanish. Therefore, if u is a product of at least M elements of QnC,
the above calculation shows that uleftPk` D 0. If M 0 is an upper bound for the degree d 0

of elements of QnC, then we can set NPk` WD MM
0. It is easy to check that this constant

also works for Qn�.

Corollary 3.29. For all p; q 2 Pol.O�/ and all „ 2 C nP�, the sum
P1
`D0‰.F„;`/.p; q/

is finite, and
P1
`D0‰.F„;`/.p; q/ 2 Pol.O�/.

Proof. Proposition 3.27 implies that ��p and ��q are polynomials. By Lemma 3.20 the
components F„;` are of degree .`;�`/, and Lemma 3.28 implies that only finitely many
summands of

P1
`D0 F

left;.1;0/
„;`

.��p; ��q/ are non-zero. Its proof shows that

1X
`D0

F
left;.1;0/
„;`

.��p; ��q/

is again a polynomial. The components F„;` are g�-invariant and therefore, since G� is
connected by Proposition 2.3, also G�-invariant. Applying Lemma 2.6, we obtain thatP1
`D0 F

left;.1;0/
„;`

.��p; ��q/ is G�-invariant. Then Proposition 3.27 yields that

1X
`D0

‰.F„;`/.p; q/ D

1X
`D0

��
�
F

left;.1;0/
„;`

.��p; ��q/
�

is a polynomial.

Corollary 3.30. Let O� be a semisimple coadjoint orbit of a complex connected semisim-
ple Lie groupG with Lie algebra g. Assume that h is a Cartan subalgebra of g containing
�] and that one has chosen an invariant ordering. Then for any „ 2 C n P�,

�„WPol.O�/ � Pol.O�/! Pol.O�/; .p; q/ 7! p �„ q WD

1X
`D0

‰.F„;`/.p; q/ (3.31)
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defines an associative andG-invariant product (whereG-invariant means that .g F p/ �„
.g F q/ D g F .p �„ q/ holds for any g 2 G and p; q 2 Pol.O�/). For p; q 2 Pol.O�/,
p �„ q depends rationally on „, and the formal expansion of �„ around „ D 0 coincides
with the formal product ?.

Proof. As in the formal case, it is a standard argument to show that (3.25) implies the
associativity of �„. Since the codomain of ‰ consists of G-invariant bidifferential opera-
tors, it is clear that �„ is G-invariant. Since the dependence of F„ on „ is rational without
pole at 0, it follows that �„ also depends rationally on „ without pole at 0, and since ?
was constructed from the formal expansion of F„, it coincides with the formal expansion
of �„.

Remark 3.31. When considering ‰.F„;`/, we may leave out the projections z�˙
�

in the
formula for F„;` from Lemma 3.20 to obtain the same result. Indeed, by Lemma 3.16 the
difference of F„;` and

F 0
„;` WD

X
w2 zW`

pwi�=„.˛w/
�1Xw ˝ Yw 2 U .nC/˝ U .n�/ (3.32)

is an element in the ideal U g � g� ˝ U gC U g˝ U g � g� and therefore contained in
the kernel of ‰ by Lemma 2.6.

Recall that we obtained a condition forP� being countable in Proposition 3.21 and that
this condition is satisfied in particular when the ordering is standard; see Remark 3.22.

Proposition 3.32. Assume that P� is countable. Then the first order commutator of ?
coincides with the Poisson bracket induced by the KKS form !KKS defined in (2.2).

Proof. Note that the formal expansion of

pi�=„.�/
�1
D

�
1

2
.�; �/ � .�; �/ �

i
„
.�; �/

��1
D i„

�
i„
2
.�; �/ � i„.�; �/C .�; �/

��1
is of order „ if .�;�/ ¤ 0. It follows from Theorem 3.18 that the element F is the formal
expansion ofX

w2 zW
jwj�1

pwi�=„.˛w/
�1
z�C
�
.Xw/˝ z�

�
� .Yw/C

X
w2 zW
jwj�2

pwi�=„.˛w/
�1
z�C
�
.Xw/˝ z�

�
� .Yw/:

Using that the words w 2 zW with jwj � 1 are precisely the empty word and the one-
letter words .`/ with ˛` 2 y�C, i.e., .�; ˛`/ ¤ 0, it follows that the first sum expands to
1C i„

P
˛2y�C

.�; ˛/�1X˛ ˝ Y˛ C O.„2/. Let us argue why the formal expansion of the
second sum is of order „2. By definition pwi�=„.˛w/

�1 D
Qjwj
iD1 pi�=„.˛wi ���jwj/

�1. Since,
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by definition of zW , we have ˛wjwj 2 y�
C, it is clear that the formal expansions of all sum-

mands with .�; ˛wjwj�1 C ˛wjwj/¤ 0 are of order „2 (because both pi�=„.˛.wjwj�1;wjwj//
�1

and pi�=„.˛wjwj/
�1 are of order „). So assume that .�;˛wjwj�1 C ˛wjwj/D 0, in which case

˛wjwj�1 2
y�C and, by invariance of the ordering, ˛wjwj�1 C ˛wjwj is not a root. Therefore

Xwjwj�1Xwjwj D XwjwjXwjwj�1 , and if w0 D .w1; : : : ; wjwj�2; wjwj; wjwj�1/ is the word
obtained form w by switching the last two letters, then Xw D Xw 0 . Similarly, Yw D Yw 0 .
Furthermore, by definition of ˛w , we have ˛wi ���jwj D ˛w 0i ���jw0 j for all i < jwj and

pwi�=„.˛w/
�1
C pw

0

i�=„.˛w 0/
�1

D
�
pi�=„.˛wjwj/

�1
C pi�=„.˛wjwj�1/

�1
� jwj�1Y
iD1

pi�=„.˛wi ���jwj/
�1:

But under our assumptions .˛wjwj ; �/
�1 C .˛wjwj�1 ; �/

�1 D 0, and therefore the formal
expansion of pi�=„.˛wjwj/

�1 C pi�=„.˛wjwj�1/
�1 is i„.˛wjwj ; �/

�1 C i„.˛wjwj�1 ; �/
�1 C

O.„2/ D O.„2/. Consequently, the summands which could potentially be of order „ in
the sum over w 2 zW with jwj � 2 cancel out, and this sum is therefore of order „2 as
claimed.

To conclude the proof, note that antisymmetrizing the first order gives indeed

F
antisym
.1/

D i
X
˛2y�C

�.˛]/�1.X˛ ˝ Y˛ � Y˛ ˝ X˛/

D i
X
˛2y�

�
�
ŒX˛; Y˛�

��1
X˛ ˝ Y˛ D i�KKS;

where �KKS denotes the Poisson tensor associated to the KKS symplectic form.

We conclude this subsection by saying a bit more about the directions in which ? and
�„ differentiate.

Lemma 3.33. For any � D Ad�g � 2 O�, the subspaces

LC;� D span
®
.Adg X˛/O� j� ; ˛ 2 y�

C
¯
� T�O�; (3.33a)

L�;� D span
®
.Adg X˛/O� j� ; ˛ 2 y�

�
¯
� T�O� (3.33b)

are independent of the choice of g 2 G.

Proof. Any two choices g; g0 2 G differ by an element of G�; that is, g0 D gx with
x 2 G�. So it suffices to prove that span¹Adx X˛; ˛ 2 y�˙º D span¹X˛; ˛ 2 y�˙º. This
follows from the invariance of the ordering and the connectedness of G�.

Therefore the distributions LC and L� in TO� spanned by LC;� and L�;� , respec-
tively, are well defined.

Corollary 3.34. The star product �„ derives the first argument only in the directions of
L
.1;0/
C and the second argument only in the directions of L.1;0/� .
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Proof. This follows from the explicit formula for F„ obtained in Theorem 3.18, from
Remark 3.31 and Proposition 2.8.

3.4. Examples

In this subsection, we derive formulas for F„ in the case G D SL1Cn.C/ for the largest
non-trivial stabilizer G�. When restricting to real coadjoint orbits in Section 5.4, this
example allows us to obtain quantizations of complex projective spaces and hyperbolic
discs.

Example 3.35 (SL1Cn.C/). Let G D SL1Cn.C/ be the Lie group of matrices with deter-
minant 1. Its Lie algebra g D sl1Cn.C/ consists of matrices with trace 0. Number the
rows and columns of a matrix X 2 g by 0; : : : ; n. Let �W g! C, X 7! �irX0;0, where
r 2C. Using that the Killing form B satisfies B.X;Y /D 2.nC 1/ tr.XY /, where tr is the
usual (not normalized) matrix trace, it follows that �] is a multiple of the diagonal matrix
diag.n;�1; : : : ;�1/, and therefore

g� D
®
X 2 sl1Cn.C/ j X0;i D Xi;0 D 0 for 1 � i � n

¯
; (3.34a)

G� D
®
g 2 SL1Cn.C/ j g0;i D gi;0 D 0 for 1 � i � n

¯
: (3.34b)

We choose the Cartan subalgebra h consisting of the diagonal matrices in g. The roots are
then given by ˛i;j DLi �Lj for 0� i; j � nwith i ¤ j , whereLi 2 h�,Li .X/DXi;i . If
we let the roots ˛i;j with i < j be positive, then the simple roots are ˛0;1;˛1;2; : : : ;˛n�1;n.
As before, denote the matrix with entry 1 at position .i; j / by Ei;j , and define Xi;j WD
Ei;j 2 g˛i;j and Yi;j WD Ej;i 2 g j̨;i D g�˛i;j . Note that

B.Xi;j ; Yi;j / D 2.nC 1/ tr.Xi;jYi;j / D 2.nC 1/;

so we use a normalization different from that in Section 3.1.
If n D 1, it is easy to simplify the formula for F„ obtained in Theorem 3.18: there

is only one positive root ˛ D ˛0;1, and there is a unique word w` of a given length
` 2 N0. Note that � D �ir˛=2 and � D ˛=2, so pi�=„.m˛/ D

1
2
m2.˛; ˛/ � 1

2
m.˛; ˛/ �

1
2„
mr.˛; ˛/ D 1

4
m.m � 1 � r

„
/. Therefore

p
w`
i�=„.˛w`/ D

Ỳ
mD1

4

m
�
m � 1 � r

„

� D .�4/`

`Š r
„

�
r
„
� 1

�
� � �
�
r
„
� .` � 1/

� :
We set X WD X0;1 and Y WD Y0;1. Since B.X; Y / D 4, we have to plug the normalized
elements X=2 and Y=2 into (3.24) and obtain

F„ D
X
`2N0

.�1/`

`Š r
„

�
r
„
� 1

�
� � �
�
r
„
� .` � 1/

�X` ˝ Y `: (3.35)

This result was already obtained in [1, Example 4.16]. For arbitrary n, we compute the
canonical element of the Shapovalov pairing directly, instead of simplifying (3.24).
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Proposition 3.36. For G D SL1Cn.C/, the same �, and the same ordering as above, one
has

F„ D
X
`2N0

.�1/`

`Š r
„

�
r
„
� 1

�
� � �
�
r
„
� .` � 1/

� .X0;1 ˝ Y0;1 C � � � CX0;n ˝ Y0;n/`: (3.36)

Proof. The Lie algebras QnC and Qn� are commutative Lie algebras spanned by X0;1; : : : ;
X0;n and Y0;1; : : : ; Y0;n, respectively, so ¹XI WD X

I1
0;1 � � �X

In
0;n j I 2 Nn

0 º and ¹Y J WD
Y
J1
0;1 � � �Y

Jn
0;n j J 2Nn

0 º are bases of U . QnC/ and U . Qn�/. The Lie algebra nC is spanned by
Xi;j with i < j and we can view XI also as an element of U .nC/. Then z�C

�
.XI / D XI

and similarly z��
�
.Y J / D Y J . Consequently, hXI ; Y J i�i�=„ D hX

I ; Y J ii�=„. For degree
reasons, the bases ¹XI º and ¹Y J º are orthogonal, meaning that hXI ; Y J ii�=„ D 0 for
I ¤ J . Indeed, XI and Y J are homogeneous with respect to the degree d defined in
the beginning of Section 3.1, d.XI / D I1d.X0;1/C � � � C Ind.X0;n/ D I1˛0;1 C � � � C
In˛0;n, and d.Y J / D �.J1˛0;1 C � � � C Jn˛0;n/. Since the ˛0;i are linearly independent,
Lemma 3.3 implies the claimed orthogonality.

Therefore it suffices to determine the normalization hXI ; Y I ii�=„. Define Hi WD
ŒX0;i ; Y0;i � D E0;0 � Ei;i . Given a multi-index I 2 Nn

0 , we can form a sequence that
starts with I1 many 1’s, then has I2 many 2’s, : : : , then In many n’s. Denote the kth ele-
ment of this sequence by I¹kº. Introduce the projection . � /0 to U h in the decomposition
U g D U h˚ .n� �U gCU g � nC/ so that ��.u/ D �..u/0/. Then we claim that

.XIY I /0 D I Š

jI j�1Y
`D0

�
HI¹`º � `

�
: (3.37)

To see that this formula implies the proposition, note that

hXI ; Y I ii�=„ D �i�=„
�
S.XI /Y I

�
D .�1/jI j

�
i
„
�

��
.XIY I /0

�
and that i

„
�.Hi / D

r
„

for all i D 1; : : : ; n. So

F„ D
X
I2Nn

0

1

hXI ; Y I ii�=„
XI ˝ Y I

D

X
I2Nn

0

.�1/jI j

I Š r
„

�
r
„
� 1

�
� � �
�
r
„
� .jI j � 1/

�XI ˝ Y I
and an application of the multinomial theorem gives (3.36).

It remains to prove (3.37). For n D 1 this is the statement of [15, Lemma 5.2]. Note
that this also means that

Z WD X
In
0;nY

In
0;n � InŠHn.Hn � 1/ � � � .Hn � In C 1/ 2 U

�
span¹X0;n; Y0;n;Hnº

�
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satisfies .Z/0 D 0. We proceed by induction and assume that (3.37) holds for n � 1.
Writing I� D .I1; : : : ; In�1; 0/ and noting that ŒHn; X0;i � D X0;i for 1 � i � n � 1, we
compute

.XIY I /0 D
�
XI�X

In
0;nY

In
0;nY

I�
�
0

D
�
XI�

�
InŠHn.Hn � 1/ � � � .Hn � In C 1/CZ

�
Y I�

�
0

D InŠ
��
Hn � jI�j

��
Hn � jI�j � 1

�
� � �
�
Hn � jI�j � In C 1

�
XI�Y I�

�
0

C .XI�ZY I�/0

D InŠ
�
Hn � jI�j

��
Hn � jI�j � 1

�
� � �
�
Hn � jI�j � In C 1

�
.XI�Y I�/0

C .XI�ZY I�/0:

Since .Z/0 D 0 and d.Z/ D d.XIn0;nY
In
0;n � InŠHn.Hn � 1/ � � � .Hn � In C 1// D 0, we

can write Z D Y0;nZ0X0;n for some Z0 2 U .span¹X0;n; Y0;n; Hnº/. Since Y0;n 2 g˛n;0 ,
any commutator of Y0;n with elements of g˛0;1 ; : : : ; g˛0;n�1 has degree d equal to Ln �Pn�1
iD0 ciLi for some ci 2 Z, so it must either be 0 or in a negative root space. Therefore

.XI�ZY I�/0 D 0, and the claim follows by applying the induction hypothesis to the first
summand in the equation above.

Corollary 3.37. LetG D SL1Cn.C/ and let � be as above, but choose the opposite order-
ing, for which ˛i;j with i > j is positive. Then

F„ D
X
`2N0

1

`Š r
„

�
r
„
C 1

�
� � �
�
r
„
C .` � 1/

� .Y0;1 ˝ X0;1 C � � � C Y0;n ˝ X0;n/`: (3.38)

Proof. The only change in the computation above is that the roles of X0;i and Y0;i are
swapped. Now ŒY0;i ; X0;i � D Ei;i � E0;0, so i

„
�.ŒY0;i ; X0;i �/ D �

r
„

, which means that r
changes sign.

4. Continuity

In this section, we extend the product �„W Pol.O�/ � Pol.O�/ ! Pol.O�/ obtained in
Corollary 3.30 to a product �„WHol.O�/�Hol.O�/! Hol.O�/ on all holomorphic func-
tions on the coadjoint orbit, that is continuous with respect to the topology of locally
uniform convergence. More precisely, we prove the following theorem.

Theorem 4.1. Let O� be a complex semisimple coadjoint orbit of a complex semisimple
connected Lie groupG. Then for any „ 2C nP� the product �„ on Pol.O�/ is continuous
with respect to the topology of locally uniform convergence and extends to a continuous
and G-invariant product �„WHol.O�/ � Hol.O�/! Hol.O�/ on the space of all holo-
morphic functions on O�.

The proof of this theorem proceeds as follows: in Section 4.1, we prove the continuity
of �„ with respect to a topology that we call the reduction topology and in Section 4.3 we
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prove that the reduction topology coincides with the topology of locally uniform conver-
gence. Consequently, �„ extends to the completion of the space of polynomials on O�.
Using the results of Section 4.2, we prove in Section 4.3 that this completion is the space
Hol.O�/ of all holomorphic functions on O�.

In the whole section, we assume that the complex connected semisimple Lie group
G is concretely realized as a complex Lie subgroup of GLN .C/ for some N 2 N, as
explained in Section 2.1. In particular, since G is semisimple, it is a closed submanifold
of CN�N .

4.1. Continuity in the reduction topology

In this subsection, we prove the continuity of the star product �„ with respect to a topology
that we call the reduction topology, defined below. Recall that a sequence of functions
fi WX ! C on a topological space X is said to be locally uniformly convergent if for
every x 2 X there is a neighborhood U � X such that fi converges uniformly to f on
U , i.e., limi!1 supy2U jfi .y/ � f .y/j D 0. In this work, X will always be a manifold.
Then the topology of locally uniform convergence coincides with the topology of compact
convergence (for every compact subset K � X , fi converges uniformly on K), and is
therefore a locally convex topology, defined by the seminorms kf kK WD supK jf j.

Denote the ideal of polynomials in Pol.CN�N / whose restriction to G vanishes by
	.G/.

Definition 4.2 (Reduction topology). The topology Tlc of locally uniform convergence on
the space Pol.CN�N / of polynomials on CN�N induces a quotient topology on the space
Pol.G/Š Pol.CN�N /=	.G/ of polynomials on G, and we call the subspace topology on
the space Pol.O�/ Š Pol.G/G� of polynomials on the coadjoint orbit O� the reduction
topology.

In Section 4.3, we will prove that the reduction topology coincides with the topology
of locally uniform convergence on O�.

This topology is convenient for obtaining continuity estimates for �„, since we gave
a description of ‰.F„/ via bidifferential operators on G in Section 2.2. Since we assume
that the Lie group G is concretely realized as a complex Lie subgroup of GLN .C/, its Lie
algebra g is realized as a Lie subalgebra of glN .C/. Considering the element F 0

„;`
defined

in (3.32) as an element of U .glN .C//˝ U .glN .C//, we let

�
0
„
WPol.CN�N / � Pol.CN�N /! Pol.CN�N /;

.p; q/ 7! p �0
„
q WD

1X
`D0

.F 0
„;`/

left;.1;0/.p; q/; (4.1)

which is well defined because Lemma 3.28 implies that the sum over ` is finite and that
.F 0
„;`
/left;.1;0/.p; q/ is again a polynomial. Note that �0

„
is (in general) not associative

since
P1
`D0 F

0
„;`

satisfies (3.25) only after passing to the quotient. However, since F 0
„;`

lies in the subspace U g ˝ U g, it induces a product on Pol.G/ Š Pol.CN�N /=	.G/.
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As in Remark 3.31, it follows that the restriction of this product to Pol.G/G� Š Pol.O�/
coincides with �„.

Theorem 4.3. For „ 2 C n P� the product �0
„

on Pol.CN�N / is continuous with respect
to the topology of locally uniform convergence Tlc.

Before proving this theorem in the rest of this section, we would like to note the
following consequence, which motivates the definition of the reduction topology given
above.

Corollary 4.4. For „ 2 C n P� the product �„ on Pol.O�/ is continuous with respect to
the reduction topology.

Proof. This follows immediately from the previous theorem and the construction of the
reduction topology.

Remark 4.5. It is interesting to point out that the proof of Theorem 4.3 will not use
anything about the actual Lie algebra structure but semisimplicity and the form of the
element F„. In fact, we only need that the coefficients of F„ behave like pw

�
.˛w/ � jwj

2

for large jwj. The rest of the proof consists in counting terms and checking that there are
not too many.

The strategy to prove Theorem 4.3 is as follows. We first introduce a different locally
convex topology that is better suited for obtaining continuity estimates. Then we prove
that this topology is equivalent to the topology of locally uniform convergence and we
prove the continuity of �0

„
with respect to this topology.

Set m D N 2. Let B D ¹b1; : : : ; bmº be the standard basis of Cm and denote the
dual basis of .Cm/� by B� D ¹b�1 ; : : : ; b

�
mº. Elements of Pol.Cm/ Š S..Cm/�/ (where S

denotes the symmetric tensor algebra) can be written uniquely in the form
P
I2Nm

0
aIb
�
I .

Here I 2 Nm
0 is a multi-index, b�I D .b

�
1 /
_I1 _ � � � _ .b�m/

_Im , and only finitely many of
the coefficients aI 2 C are non-zero. For any R 2 RC define a normˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X

I2Nm
0

aIb
�
I

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
R

WD

X
I2Nm

0

jaI jR
jI j: (4.2)

Note that these norms coincide with the T0-norms with respect to the basis B�, studied for
example in [40]. We denote the locally convex topology given by endowing Pol.Cm/ Š

S..Cm/�/ with the seminorms jjj � jjjR by Tjjj�jjj . This topology can equivalently be defined
by the countable set of norms jjj � jjjR with R 2 N.

Note that jjj � jjjR is submultiplicative with respect to the classical product:ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
 X
I2Nm

0

aIb
�
I

!
_

 X
J2Nm

0

a0J b
�
J

!ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
R

D

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
I;J2Nm

0

aIa
0
J b
�
I _ b

�
J

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
R

�

X
I;J2Nm

0

jaI jja
0
J jR

jI jCjJ j
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D

 X
I2Nm

0

jaI jR
jI j

! X
J2Nm

0

ja0J jR
jJ j

!

D

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
I2Nm

0

aIb
�
I

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
R

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
J2Nm

0

a0J b
�
J

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
R

:

Proposition 4.6. The topologies Tjjj�jjj and Tlc coincide.

Proof. Assume that p D
P
I2Nm

0
aIb
�
I 2 Pol.Cm/ is a polynomial. Given a compact sub-

set K � Cm, choose R 2 R such that jzj � R holds for all z 2 K. Then on the one hand
we have

kpkK D max
z2K
jp.z/j �

X
I2Nm

0

jaI jR
jI j
D jjjpjjjR:

On the other hand, ifDR D ¹.z1; : : : ; zm/ 2 Cm j jzi j � R for 1 � i � mº � Cm denotes
a closed polydisc of radius R, then Cauchy’s integral formula yields

jaI j D
1

I Š

ˇ̌
@Ip.0/

ˇ̌
D

1

.2�/m

ˇ̌̌̌ Z
jzi jDR

p.z/

zIC.1;:::;1/
dzI

ˇ̌̌̌
� max
z2DR

ˇ̌
p.z/

ˇ̌ Rm

R

ˇ̌
IC.1;:::;1/

ˇ̌ D 1

RjI j
max
z2DR

ˇ̌
p.z/

ˇ̌
:

Applying this estimate for a polydisc of radius 2mR yields

jjjpjjjR D
X
I2Nm

0

jaI jR
jI j
�

X
I2Nm

0

1

.2mR/jI j
RjI j max

z2D2mR

ˇ̌
p.z/

ˇ̌
� max
z2D2mR

ˇ̌
p.z/

ˇ̌ X
I2Nm

0

.2m/�jI j � 2 max
z2D2mR

ˇ̌
p.z/

ˇ̌
D 2kpkD2mR :

Consequently, we can estimate any norm of Tjjj�jjj by a seminorm of Tlc and vice versa, so
the topologies Tjjj�jjj and Tlc coincide.

Because of the previous proposition, we can and will work with the norms jjj � jjjR
instead of the seminorms k � kK in the following. To obtain continuity estimates, we need
to estimate the coefficients p�.�/ defined in (3.8).

Lemma 4.7 (Estimates for p�). For any fixed compact set K � h� there are constants
C > 0 and M such that p�.˛w/ defined in (3.8) satisfiesˇ̌

p�.˛w/
ˇ̌
� C jwj2 (4.3)

for all words w 2 W of length jwj �M and all � 2 K.

Proof. Assume that the positive roots ˛1; : : : ; ˛k 2 �C are ordered in such a way that
˛1; : : : ; ˛r are the simple roots. Write ˛w D

Pr
iD1 cw;i˛i as a linear combination of

simple roots, where cw;i 2 N0 satisfy jwj �
Pr
iD1 cw;i � cjwj with c depending only on
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the root system. Since .�; ˛i / > 0 for all 1 � i � r we can choose c�; C� 2 RC such that
c� � .�; ˛i / � C� holds for all 1 � i � r . Similarly, there is C 0 2 RC with j.�; ˛i /j � C 0

for all � 2 K and 1 � i � r . Then

.˛w ; ˛w/ �
1

.�; �/
.˛w ; �/

2
D

1

.�; �/

� rX
iD1

.cw;i˛i ; �/

�2
�

c2�

.�; �/

� rX
iD1

cw;i

�2
�

c2�

.�; �/
jwj2

and for all � 2 K we obtainˇ̌
.�C �; ˛w/

ˇ̌
�

rX
iD1

cw;i
�
j.�; ˛i /j C j.�; ˛i /j

�
� .C� C C

0/

rX
iD1

cw;i � c.C� C C
0/jwj:

Setting C WD 1
4.�;�/

c2� , C1 WD c.C� C C
0/, and M WD C1

C
, and assuming jwj � M , we

obtain ˇ̌
p�.˛w/

ˇ̌
�
1

2
.˛w ; ˛w/ �

ˇ̌
.�C �; ˛w/

ˇ̌
� 2C jwj2 � C1jwj � 2C jwj

2
� C jwj2 D C jwj2:

Corollary 4.8 (Estimates for pw
�

). Fix � 2 h�. For any compact set K � C n P� there is
a constant Cp > 0 such that pwi�=„.˛w/ defined in (3.8) satisfies

jpwi�=„.˛w/
�1
j �

C
jwj
p

.jwjŠ/2
(4.4)

for all words w 2 zW and all „ 2 K.

Proof. Note thatK 0 D ¹i�=„ j „ 2Kº is a compact subset of zƒ. LetM and C be the con-
stants obtained by applying the previous lemma to K 0, so jp�0.˛w/j � C jwj2 for all w 2
W with jwj �M and all �0 2K 0. Since i�=„2 zƒ, we have minw2 zW ;jwj<M jpi�=„.˛w/j>0

for all „2K. Since this quantity depends continuously on „, the minimum for „2K exists
and must also be positive. Hence we may decrease the constant C such that jpi�=„.˛w/j �

C jwj2 also holds for the finitely many words w 2 zW with jwj < M . Consequently,
jpi�=„.˛w/j � C jwj

2 holds for all words w 2 zW . Setting Cp WD 1=C , the corollary fol-
lows by rearranging.

We have now collected all the results needed to prove Theorem 4.3.

Proof of Theorem 4.3. First, we note that it suffices to prove the existence of a constant
M such that for any multi-indices I; J 2 Nm

0 we have
ˇ̌̌̌ ˇ̌
b�I �

0
„
b�J

ˇ̌̌̌ ˇ̌
R
� .RM/jI jCjJ j.
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Indeed, this statement implies the continuity of �0
„

since for p D
P
I2Nm

0
pIb

�
I and q DP

I2Nm
0
qIb
�
I we estimate

ˇ̌̌̌ ˇ̌
p �0
„
q
ˇ̌̌̌ ˇ̌
R
D

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
I2Nm

0

pIb
�
I �
0
„

X
J2Nm

0

qJ b
�
J

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
R

�

X
I2Nm

0

X
J2Nm

0

jpI jjqJ j
ˇ̌̌̌ ˇ̌
b�I �

0
„
b�J
ˇ̌̌̌ ˇ̌
R

�

X
I2Nm

0

X
J2Nm

0

jpI jjqJ j.RM/jI jCjJ j

D

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
I2Nm

0

pIb
�
I

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
RM

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
J2Nm

0

qJ b
�
J

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
RM

D jjjpjjjRM jjjqjjjRM :

Using the notation I¹j º introduced in the proof of Proposition 3.36 we estimate

ˇ̌̌̌ ˇ̌
b�I �

0
„
b�J
ˇ̌̌̌ ˇ̌
R
D

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ 1X
`D0

.F 0
„;`/

left;.1;0/.b�I ; b
�
J /

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
R

�

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌ X
w2 zW

pwi�=„.˛w/
�1.Xw ˝ Yw/

left;.1;0/.b�I ; b
�
J /

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
R

.1/

�

X
w2 zW

ˇ̌
pwi�=„.˛w/

�1
ˇ̌

�

X
w.1/;:::;w.jI j/

X
w 0
.1/
;:::;w 0

.jJ j/

ˇ̌̌̌̌̌ ˇ̌̌
X left;.1;0/
w.1/

b�I¹1º

ˇ̌̌̌̌̌ ˇ̌̌
R
� � �

ˇ̌̌̌̌̌ ˇ̌̌
X left;.1;0/
w.jI j/

b�I¹jI jº

ˇ̌̌̌̌̌ ˇ̌̌
R

�

ˇ̌̌̌̌̌ ˇ̌̌
Y

left;.1;0/
w 0
.1/

b�J¹1º

ˇ̌̌̌̌̌ ˇ̌̌
R
� � �

ˇ̌̌̌̌̌ ˇ̌̌
Y

left;.1;0/
w 0
.jJ j/

b�J¹jJ jº

ˇ̌̌̌̌̌ ˇ̌̌
R

.2/

�

X
w2 zW

C
jwj
p�
jwjŠ

�2 jI jjwjjJ jjwjC 2jwjRjI jCjJ j
.3/

� RjI jCjJ j
1X
`D0

.kCpC
2/`
jI j`jJ j`

.`Š/2

.4/

� RjI jCjJ j
1X
`D0

�
k1=2C

1=2
p C jI j

�`
`Š

1X
`0D0

�
k1=2C

1=2
p C jJ j

�`0
`0Š

� RjI jCjJ jek
1=2C

1=2
p C jI jek

1=2C
1=2
p C jJ j

D
�
Rek

1=2C
1=2
p C

�jI jCjJ j
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The sum
P
w.1/;:::;w.jI j/

introduced in (1) is over all partitions of w 2 zW into words w.1/;
: : : ; w.jI j/. To be more precise, consider a partition P1; : : : ; PjI j of ¹1; : : : ; jwjº into jI j
many subsets. To Pi D ¹pi;1; : : : ; pi;ji º with pi;1 < � � � < pi;ji , we associate the word
w.i/ D wpi;1wpi;2 � � �wpi;ji . Then we sum over all partitions. The other sum is defined
similarly. We also used submultiplicativity of jjj � jjjR in this step. To justify (2), we note
that, for any Z2glN .C/, Z

left;.1;0/b�i is of degree 1 so that X left;.1;0/
w.`/ b�I¹`º

is of degree 1.
Defining C WD maxi2¹1;:::;mº;˛2� jjjX

left;.1;0/
˛ b�i jjj1, we obtainˇ̌̌̌̌̌ ˇ̌̌

X left;.1;0/
w.`/

b�I¹`º

ˇ̌̌̌̌̌ ˇ̌̌
R
� C jw.`/jR:

The sum over w.1/; : : : ; w.jI j/ has jI jjwj many terms, since for each letter of w we can
choose in which of the jI j many sets we want to have it. The same holds true for the other
sum. In (3) we used that there are at most kjwj many words of a given length jwj in zW and
(4) holds, because we just added some positive extra terms.

Remark 4.9. For a fixed compact set K � C n P� the proof above shows that there is a
constant M 2 RC such that for any „ 2 K we haveˇ̌̌̌ ˇ̌

p �0
„
q
ˇ̌̌̌ ˇ̌
R
� jjjpjjjRM jjjqjjjRM (4.5)

since Corollary 4.8 gives uniform estimates for all „ 2 K.

4.2. Stein manifolds and extension of holomorphic functions

In this subsection, we discuss extension properties of holomorphic functions on closed
complex submanifolds of Stein manifolds or, more generally, on analytic subsets of Stein
manifolds. We will use the results in the next subsection to identify the reduction topology
with the topology of locally uniform convergence and to determine the completion of the
space of polynomials with respect to this topology.

Since analytic subsets in a Stein manifold are a very natural setting to prove the extend-
ability results, we formulate them in this generality (even though we only need the case of
closed submanifolds most of the time). The content of this subsection has been known for
long and can be found, e.g., in the textbook [21].

Recall that, for a complex manifold M , we denote the vector space of holomorphic
functions on M by Hol.M/.

Definition 4.10 (Holomorphic convex hull). For a compact subset K of a complex mani-
fold M we define its holomorphic convex hull to be the set

yKM D
®
z 2M j jf .z/j � sup

K

jf j for all f 2 Hol.M/
¯
: (4.6)

Definition 4.11 (Stein manifold). A complex manifold M of dimension n is said to be
Stein if

(i) for any compact subset K �M its holomorphic convex hull yKM is compact,
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(ii) for every z 2M there are functions f1; : : : ; fn 2Hol.M/ that form a coordinate
system around z.

Stein manifolds should be thought of as domains of holomorphicity for holomorphic
functions of several complex variables. Clearly, Cn is Stein.

Definition 4.12. A subset V � M of a complex manifold is called analytic, if for every
point z 2M there is a neighborhood U �M of z such that there is a family of holomor-
phic functions fj 2 Hol.U /, indexed by j in some index set J , such that

V \ U D
®
z 2 U j fj .z/ D 0 for all j 2 J

¯
: (4.7)

Example 4.13. Any closed complex submanifold M of Cn is an analytic subset. Indeed,
around any z 2M we can find a submanifold chart, that is a neighborhood U and coordi-
nates z D .z1; : : : ; zn/ such that M \ U is given by the vanishing of the first n � dimM

coordinates. Therefore we can take fj D zj for j D 1; : : : ; n� dimM in Definition 4.12.
Around any z … M , there is a neighborhood U such that U \M D ; and we may pick
f1 D 1 in Definition 4.12.

Definition 4.14. A function f WV ! C on an analytic subset V �M of a complex man-
ifold is called holomorphic, if for every point z 2 V there is a neighborhood U �M of z
and a holomorphic function g 2 Hol.U / such that gjU\V D f jU\V .

Example 4.15. If V is a closed complex submanifold of Cn as in Example 4.13, then this
definition of a holomorphic function coincides with the usual definition. Indeed, in any
submanifold chart .U; z/ as in Example 4.13, a holomorphic function on U \ V can be
extended constantly along the first n � dimM variables to a holomorphic function on U .
The reverse implication is clear.

Proposition 4.16. Let V be an analytic subset of a Stein manifold M . Then Hol.V /
endowed with the topology of locally uniform convergence is a Fréchet space.

Proof. It follows from the definition of analytic subsets that V is closed. Therefore the
restriction of any compact exhaustion of M to V gives a compact exhaustion Ki of V .
The seminorms kf kKi D supKi jf j define a countable system of seminorms inducing the
topology of locally uniform convergence. The completeness of Hol.V / with respect to
this topology is a non-trivial result and proved in [21, Theorem 7.4.9].

The crucial property of an analytic subset V of a Stein manifold is the following
extendability property for any holomorphic function on V .

Theorem 4.17 (Extendability of holomorphic functions). Let V be an analytic subset of
a Stein manifold M . Any holomorphic function f 2 Hol.V / can be extended to a holo-
morphic function f 2 Hol.M/. In other words, the restriction map Hol.M/! Hol.V / is
surjective.

Proof. See [21, Theorem 7.4.8].
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For an analytic subset V of a complex manifoldM we denote the subspace of Hol.M/

consisting of functions that vanish on V by 	.V /. Note that the restriction map Hol.M/!

Hol.V / descends to a map on the quotient, r WHol.M/=	.V / ! Hol.V /. This map is
clearly injective by definition of 	.V /, and if M is Stein it is surjective by the previous
theorem.

Corollary 4.18. Assume that M is Stein and that V � M is an analytic subset. If
Hol.M/=	.V / is endowed with the quotient topology of the topology of locally uniform
convergence and Hol.V / is endowed with the topology of locally uniform convergence,
then the map r WHol.M/=	.V /! Hol.V / is a homeomorphism.

Proof. We know that r is bijective, so it only remains to prove the continuity of r and
r�1. Both Hol.M/ and Hol.V / are Fréchet spaces (for Hol.M/ this is well known, for
Hol.V / it is the statement of Proposition 4.16). Since 	.V / is closed, Hol.M/=	.V / is
also a Fréchet space. Clearly, the locally uniform convergence of a sequence fi 2 Hol.M/

implies the locally uniform convergence of the sequence of restrictions fi jV 2 Hol.V /, so
the map r is continuous. The statement then follows from the open mapping theorem for
Fréchet spaces.

4.3. Characterizing the reduction topology

In this subsection, we show that the reduction topology on O� as defined in Section 4.1 is
the topology of locally uniform convergence and that the completion of the space of poly-
nomials Pol.O�/ on O� with respect to this topology is exactly the space of holomorphic
functions Hol.O�/ on O�.

Proposition 4.19. The reduction topology Tred on O� coincides with the topology of
locally uniform convergence.

Proof. By the assumption at the beginning of this section (see also Section 2.1), G is a
closed complex submanifold of CN�N , hence an analytic subset by Example 4.13. Apply-
ing Corollary 4.18 yields that the quotient topology on Hol.G/ induced by the topology
of locally uniform convergence on CN�N is precisely the topology of locally uniform
convergence on G.

By Definition 4.2 the reduction topology is the restriction of this topology to the sub-
space of rightG�-invariant holomorphic functions. Using that this subspace is closed, and
that a sequence fi 2 Hol.O�/ converges locally uniformly if and only if the sequence
��.fi / 2 Hol.G/G� converges locally uniformly, one can easily check that the reduction
topology coincides with the topology of locally uniform convergence on Hol.O�/.

Finally, we would like to determine the completion cPol.O�/ of Pol.O�/ with respect
to the topology of locally uniform convergence.

Proposition 4.20. We have cPol.O�/ D Hol.O�/.

Proof. It is clear that cPol.O�/ � Hol.O�/, since Pol.O�/ � Hol.O�/ and the limit of a
locally uniformly convergent sequence of holomorphic functions is again holomorphic.
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The other inclusion is easy to see if one uses that semisimple coadjoint orbits are
affine algebraic varieties; see Remark 2.4. In particular, they are analytic subsets of the
Stein manifold g� and therefore we can use Theorem 4.17 to extend any f 2 Hol.O�/
to a holomorphic function Qf 2 Hol.g�/, which can be approximated by polynomials.
Restricting these approximating polynomials to O� gives a sequence of polynomials in
Pol.O�/ converging locally uniformly to f .

Alternatively, we know thatG is a closed submanifold of the Stein manifold CN�N , so
the same argument yields that any f 2Hol.G/ can be approximated by some pn 2 Pol.G/.
Assume that f 2Hol.G/G� . LetK� be a maximal compact subgroup ofG�. Averaging pn
over K� gives a sequence p0n 2 Pol.G/K� that converges locally uniformly to f . Now p0n
is even G�-invariant since the action of G is holomorphic, so ��p0n 2 Pol.O�/ converges
to ��f 2 Hol.O�/.

We are now able to prove the main theorem stated in the introduction to this section.

Proof of Theorem 4.1. From Section 4.1, we know that the product �„ is continuous with
respect to the reduction topology. We showed in Proposition 4.19 that the reduction topol-
ogy coincides with the topology of locally uniform convergence on O�. The previous
proposition shows that the completion of Pol.O�/ in this topology is Hol.O�/. Finally,
G-invariance of the product on the completion is clear since the action of G on Pol.O�/
is continuous with respect to the topology of locally uniform convergence.

We close this section by the following proposition, which asserts that the dependence
of �„ on „ is holomorphic.

Proposition 4.21 (Holomorphic dependence on „). For two fixed holomorphic functions
p; q 2 Hol.O�/ and x 2 O� the map C n P� ! C, „ 7! p �„ q.x/ is holomorphic.

Proof. By construction of �„ in Section 3, the map C n P� ! C, „ 7! p0 �„ q
0.x/ is

rational for p0; q0 2 Pol.O�/. Assume that pn, qn are sequences of polynomials on O�
such that pn ! p and qn ! q locally uniformly. Since the estimates of Section 4.1 are
locally uniform in „ (see Remark 4.9), it follows that pn �„ qn! p �„ q locally uniformly
in „. But clearly the evaluation at x is continuous so that „ 7! p �„ q.x/ is a locally
uniform limit of rational functions and therefore holomorphic.

5. Quantizing real coadjoint orbits

We have seen in the previous sections how to construct (formal and strict) quantizations
of complex coadjoint orbits. In this section, we will use these results to obtain (formal and
strict) quantizations of real coadjoint orbits.

In Sections 5.1 and 5.2, we collect some preliminary results on the complexification
of a real coadjoint orbit O� and a real Lie group G. We define a certain class of analytic
functions that we denote by A.O�/ and A.G/. In Section 5.3, we construct a quantization
of real orbits by restricting the quantization of a complexification. We discuss the exam-
ples of complex projective spaces and hyperbolic discs in Section 5.4. Finally, we show
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that point evaluation functionals are positive for certain coadjoint orbits in Section 5.5 and
compare the quantum algebras obtained for coadjoint orbits of real Lie groups with the
same complexification in Section 5.6. Most results in the later subsections follow almost
directly from the results in the complex case.

From now on, all complex Lie groups and Lie algebras will be denoted with a hat and
letters without decoration will be used to denote real objects. We will also use hats for
maps between complex objects, e.g., we rename the map defined in (2.8) to y‰.

5.1. Complexification

In this subsection, we define the complexification of a real coadjoint orbit O� and a real
Lie group G and show how they are related.

For a real Lie algebra g, denote the space of real-valued real-linear functionals on g

by g�. As before, Og� denotes the space of complex-valued complex-linear functionals on
a complex Lie algebra Og. In the following, we will always assume that Og D g˝ C is the
complexification of g. In this case, any element of g� has a unique extension to an element
of Og�. We will perform this extension implicitly whenever necessary, without mentioning
it. For example, in the following proposition, the coadjoint orbit yO� is really the coadjoint
orbit through the extension of � 2 g� to an element of Og�.

Proposition 5.1. Let O� � g� be a coadjoint orbit of a real connected Lie group, and
assume that Og is the complexification of g. Then O� is a submanifold of a unique complex
coadjoint orbit yO� � Og� of a complex connected Lie group with Lie algebra Og. The tangent
space T� yO� of this orbit yO� is the complexification of T�O� for every � 2 g�.

Proof. By Proposition 2.1 the coadjoint orbit O� is the symplectic leaf through � of the
linear Poisson structure on g� defined just before Proposition 2.1. Similarly, the coadjoint
orbits in Og� are symplectic leaves of the linear Poisson structure on Og�, and the sym-
plectic leaf containing � 2 Og� contains the whole orbit O�. This proves the existence and
uniqueness of yO�.

As in Section 2.1, we can identify T�O� with g=g� (as real vector spaces) and T� yO�
with Og= Og� (as complex vector spaces) for all � 2 O�. Therefore T� yO� is indeed the com-
plexification of T�O�.

We refer to the complex coadjoint orbit yO� of the previous proposition as the complex-
ification of O�. We will show how to realize it explicitly as the coadjoint orbit of some
Lie group yG.

Definition 5.2. LetG be a real Lie group. A complexification ofG is a complex connected
Lie group yG together with an embedding �WG! yG such that the corresponding Lie algebra
Og is isomorphic to the complexification g ˝ C of g and such that the map Te�W g! Og
corresponds to the injection X 7! X ˝ 1 under this isomorphism.

Note that a complexification according to this definition may fail to exist or may not
be unique, if it exists. See the paragraph after Proposition 5.8 for an example of a Lie
group with non-unique complexification. For a connected semisimple Lie groupG a com-
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plexification exists if and only if the group can be realized as a linear group: existence for
linear Lie groups is shown below, and the reverse implication follows since semisimplicity
of G implies semisimplicity of the complexification and complex connected semisimple
Lie groups are always matrix Lie groups; see Remark 2.4. There is a different notion of a
universal complexification that does always exist, but that does not enjoy the property that
Og Š g˝ C. We will not use universal complexifications in this paper.

Proposition 5.3. If G is a real connected closed linear Lie group, then it admits a com-
plexification yG.

Proof. We may assume that both G and its Lie algebra g are realized by real matrices.
Then the complexification Og D g ˝ C is a Lie subalgebra of glN .C/. We can use the
exponential map to construct an immersed complex Lie subgroup yG of GLN .C/ contain-
ing G as a subgroup and having Og as Lie algebra; see, e.g., [20, Chapter 5.9]. Since G is a
closed subgroup of GLN .C/, it is also a closed subgroup of yG.

Note that we did not claim that yG is a closed subgroup of GLN .C/. For semisimple
Lie groups this follows automatically from Remark 2.4.

Lemma 5.4. Let G be a real connected Lie group with complexification yG and let O� be
a coadjoint orbit of G with complexification yO�. Then yO� is a coadjoint orbit of yG and
the embedding �WG ! yG descends to an embedding O� Š G=G� ! yG= yG� Š yO�.

Proof. Since yG is connected and has the Lie algebra Og, it follows from Proposition 2.1
that its coadjoint orbit through � is yO�. We identify G with a subgroup of yG. Since the
coadjoint action of yG on Og is holomorphic, yG� is a complexification of G� D yG� \ G.
So the map � descends to a map O� Š G=G� ! yG= yG� Š yO� that is still injective. To
see that it is an embedding, note that the actions of G� and yG� on yG are proper and free,
so yG is a principal G� resp. yG� bundle over yG=G� resp. yG= yG�. This implies first that
G=G� ! yG=G� is still an embedding and then that G=G� ! yG= yG� also is.

5.2. Polynomials and analytic functions

In this subsection, we introduce polynomials Pol.O�/ and a certain class of analytic func-
tions A.O�/ on a real coadjoint orbit O�. A.O�/ consists of restrictions of holomorphic
functions on the complexification. In analogy to the complex case, A.O�/ is the comple-
tion of Pol.O�/ with respect to some locally convex topology.

All our polynomials are complex-valued. So for a real finite dimensional vector space
V we define Pol.V / to be the unital complex subalgebra of C1.V / generated by the
linear maps. (Remember that C1.V / consists of smooth functions V !C.) So Pol.V /Š
S.V �C /, where V �C is the complexification of V � D ¹� W V ! R; � linearº.

Definition 5.5 (Polynomials). Let O� be a coadjoint orbit of a real connected Lie group
G with Lie algebra g. Then

Pol.O�/ D
®
p W O� ! C j p D P

ˇ̌
O�

for some polynomial P on g�
¯

(5.1)

is called the algebra of polynomials on O�.
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Note that polynomials on a complex orbit yO� were assumed to be holomorphic and
do therefore not coincide with polynomials on the underlying real orbit. We will always
use holomorphic polynomials on complexifications, so this will hopefully not cause any
confusion.

Denote the ideal of polynomials on g� resp. Og� vanishing on O� resp. yO� by 	.O�/

resp. 	. yO�/. It is clear that the maps Pol.g�/=	.O�/! Pol.O�/ and Pol. Og�/=	. yO�/!
Pol. yO�/ are isomorphisms. We would now like to relate polynomials on O� and yO�.

Proposition 5.6. Let O� � g� be a real coadjoint orbit with complexification yO� �
Og�. Then the restriction map . � /jO� WC

1. yO�/! C1.O�/ restricts to an isomorphism
. � /jO� WPol. yO�/! Pol.O�/.

Proof. Since restriction to V is a bijection between complex linear maps V ˝ C ! C
and real linear maps V ! C for any finite dimensional real vector space V , it follows
that the restriction map Pol. Og�/ ! Pol.g�/ is an isomorphism. If we can prove that
the restriction map 	. yO�/ ! 	.O�/ is also an isomorphism, then we are done since
Pol. yO�/ Š Pol. Og�/=	. yO�/! Pol.g�/=	.O�/ Š Pol.O�/ would be an isomorphism.

Since any map vanishing on yO� vanishes in particular on O� � yO�, the restriction
map 	. yO�/! 	.O�/ is well defined and it is injective since it is the restriction of the
injective map Pol. Og�/! Pol.g�/. So we only need to prove surjectivity, meaning that if
a polynomial p on g� vanishes on O�, then its unique extension to a polynomial Op on
Og� vanishes on yO�. Since yO� is a complex submanifold of Og�, the restriction of Op to yO�
is holomorphic. As such, it is determined by its derivatives (of all orders) at �. It is even
determined by its derivatives in the direction of T�O� since T� yO� is the complexification
of T�O�. But all these derivatives vanish since the restriction of Op to O� vanishes.

Definition 5.7. Let G be a linear real Lie group. Its algebra of polynomials Pol.G/ is the
unital complex subalgebra of C1.G/ generated by the functions Pij WG ! C, g 7! gij .

In contrast to the complex case, the algebra of polynomials Pol.G/may depend on the
way in which G is realized as a linear group, even in the semisimple case. We will give an
instructive example after stating the following proposition, which can be proven in much
the same way as Proposition 5.6.

Proposition 5.8. Let G � GLN .R/ be a linear connected Lie group with complexifica-
tion yG � GLN .C/. Then the restriction map . � /jG WC1. yG/! C1.G/ restricts to an
isomorphism . � /jG WPol. yG/! Pol.G/.

The reason why the algebra of polynomials Pol.G/ may depend on the linear struc-
ture of G is essentially that G may not have a unique complexification. Consider the
linear semisimple Lie group SL3.R/�GL3.R/, which has SL3.C/ as a complexification.
The images of SL3.R/ and SL3.C/ under Ad are again semisimple Lie groups. Fur-
thermore, Ad.SL3.R// Š SL3.R/ since SL.3;R/ has trivial center, and Ad.SL3.C// Š
SL3.C/=¹1;e2� i=3;e4� i=3º is a complexification of Ad.SL3.R//. From the previous propo-
sition we obtain Pol.Ad.SL3.R///Š Pol.SL3.C/=¹1; e2� i=3; e4� i=3º/! Pol.SL3.C//Š
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Pol.SL3.R//, where the map in the middle is not surjective, since there are polynomials
on SL3.C/ that are not constant on ¹1; e2� i=3; e4� i=3º.

We denote the inverses of the isomorphisms in Propositions 5.6 and 5.8 by

O� W Pol.O�/! Pol. yO�/ and O� W Pol.G/! Pol. yG/: (5.2)

Lemma 5.9. Let G be a real connected linear Lie group with complexification yG, and
let � 2 g� be such that yG� is connected. If f 2 Pol. yG/ satisfies f jG 2 Pol.G/G� , then
f 2 Pol. yG/ yG� .

Proof. Let f be as in the statement of the lemma. Since f jG D .g F f /jG holds for
all g 2 G�, it follows from the injectivity of . � /jG that f D g F f , so f 2 Pol. yG/G� .
Therefore f is in particular invariant under g� and thus also under Og� since the action is
holomorphic. Since yG� is connected, we obtain that f is yG�-invariant.

Corollary 5.10. Let G be a real connected semisimple linear Lie group with complexifi-
cation yG, and assume that � 2 g� is semisimple. In this case the restriction map

. � /jG WPol. yG/ yG� ! Pol.G/G�

is an isomorphism.

Proof. G� is connected by Proposition 2.3, so this is an immediate consequence of Propo-
sition 5.8 and Lemma 5.9.

Corollary 5.11. Let G be a real connected semisimple linear Lie group with complexifi-
cation yG, and assume that � 2 g� is semisimple. Then the map ��WPol.O�/! Pol.G/G�

is an isomorphism.

Proof. From Propositions 5.6, 3.27, and Corollary 5.10 it follows that the composition

Pol.O�/
O�
�! Pol. yO�/

y��

��! Pol. yG/ yG�
.�/jG
���! Pol.G/G�

is an isomorphism, and this composition is ��.

Corollary 5.12. Let G be a real connected semisimple linear Lie group with complexifi-
cation yG, and assume that � 2 g� is semisimple. Then the following diagram commutes
and all arrows are isomorphisms:

Pol. yG/ yG� Pol. yO�/

Pol.G/G� Pol.O�/ :

y��

.�/jG .�/jO�

y��

O�

��

��

O�
(5.3)

Next, we want to introduce a class of analytic functions, that becomes the closure of
the polynomials with respect to a certain locally convex topology. To this end, assume that
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O� is a coadjoint orbit with complexification yO� and that G is a real connected Lie group
with complexification yG. Then define

A.O�/ D im
�
. � /

ˇ̌
O�
WHol. yO�/! C1.O�/

�
(5.4)

and
A.G/ D im

�
. � /

ˇ̌
G
WHol. yG/! C1.G/

�
: (5.5)

Note that an element f 2 A.O�/ determines a unique element Of 2 Hol. yO�/: existence
follows by definition of A.O�/ and Of is determined by all its derivatives at �. Since the
complexification of T�O� is just T� yO� (see Lemma 5.4), it suffices to take derivatives
in the direction of T�O�. But these derivatives are determined by f . A similar reason-
ing holds for G and yG. We obtain a commuting square that is similar to the square for
polynomials obtained in Corollary 5.12.

Proposition 5.13. The following diagram is commutative and all arrows are isomor-
phisms:

Hol. yG/ yG� Hol. yO�/

A.G/G� A.O�/ :

y��

.�/
ˇ̌̌
G

.�/
ˇ̌̌
O�

y��

O�

��

��

O�
(5.6)

Proof. We know from Section 2.1 that y��WHol. yO�/! Hol. yG/ yG� is an isomorphism. In
the previous paragraph, we explained that O� WA.O�/!Hol. yO�/ and O� WA.G/!Hol. yG/
are isomorphisms and as in Lemma 5.9 it follows that the same is true for O� WA.G/G� !
Hol. yG/ yG� . Composing these isomorphisms, we obtain that ��WA.O�/! A.G/G� is an
isomorphism.

Since Pol. yO�/ � Hol. yO�/, it follows that Pol.O�/ � A.O�/. We can define a topol-
ogy Tblu of extended locally uniform convergence on A.O�/ as follows: a sequence fn 2
A.O�/ converges to some f 2 A.O�/ if and only if the sequence Ofn 2 Hol. yO�/ con-
verges locally uniformly to Of 2 Hol. yO�/. Clearly, the maps O� WA.O�/! Hol. yO�/ and
. � /jO� WHol. yO�/! A.O�/ are both homeomorphisms. From Proposition 4.20 it follows
that the closure of Pol.O�/ with respect to the topology of extended locally uniform con-
vergence is A.O�/.

5.3. Formal and strict star products on real coadjoint orbits

In a sense all constructions in Sections 2, 3, and 4 are compatible with the restriction to
real forms. In this subsection, we want to make this statement precise. In particular, we
will show that we can restrict formal and strict products from a complexification yO� of a
semisimple coadjoint orbit O� of a real connected semisimple Lie group G to formal and
strict star products on O�. These star products can—as before—be computed by applying
fundamental vector fields or by passing to the Lie group by using the maps �� and ��.
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We will determine when the star products on O� are of (pseudo) Wick type or of standard
ordered type.

Proposition 5.14. Let O� be a semisimple coadjoint orbit of a semisimple connected real
Lie group G. By Lemma 5.4 it has a complexification yO�, and there are strict products
O�„W Pol. yO�/ � Pol. yO�/! Pol. yO�/ with extensions O�„WHol. yO�/ � Hol. yO�/! Hol. yO�/
constructed in Corollary 3.30 and Theorem 4.1, where „ 2C nP�. These products restrict
to G-invariant strict products

�„WPol.O�/ � Pol.O�/! Pol.O�/ and �„WA.O�/ �A.O�/! A.O�/ (5.7)

for all „ 2C nP�. For fixed p;q 2 Pol.O�/, the dependence of p �„ q on „ is rational with
no pole at zero, and, for fixed f; g 2A.O�/ and x 2 O�, the dependence of f �„ g.x/ on
„ is holomorphic. Both products are continuous with respect to the topology of extended
locally uniform convergence defined at the end of Section 5.2.

Proof. Since the restriction maps Pol. yO�/! Pol.O�/ and Hol. yO�/! A.O�/ are both
homeomorphisms (with respect to the topology of locally uniform convergence on the
domains and the topology of extended locally uniform convergence on the codomains), the
statement follows trivially from the corresponding statements for O�„, obtained in Corol-
lary 3.30, Theorem 4.1, and Proposition 4.21.

We would like to compute these star products without passing to the complexification.
The construction of bidifferential operators from Section 2.2 works completely similarly
in the real setting. Recall that our differential operators act on complex-valued functions,
and therefore any complex vector field �1.TCM/ defines a first-order differential opera-
tor on M .

Proposition 5.15. Let G be a real Lie group with Lie algebra g, and let Og be the com-
plexification of g. The map

. � /left
W .U Og/˝k ! k-DiffOpG.G/

obtained by extending Og 3 X 7! X left 2 �1.TCG/ to an algebra homomorphism U Og!

DiffOpG.G/ and further to tensor products as in (2.5c) is an isomorphism. If H is a
closed Lie subgroup of G, then the map

‰W
�
.U Og=U Og � Oh/˝k

�H
! k-DiffOpG.G=H/; ‰

�
ŒEu�
�
. Ef / D ��

�
Euleft.�� Ef /

�
(5.8)

is also an isomorphism.

Proof. With the obvious modifications, the proofs of Propositions 2.5 and 2.7 given in
Appendix A.1 apply also to the real situation.

To be consistent with the notation of this chapter, we denote the map defined in (2.8)
by y‰.
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Lemma 5.16. Let G be a real Lie group with closed subgroup H and assume that the
complex Lie group yG is a complexification of G and contains a complex closed subgroup
yH that is a complexification of H . The maps . � /left and ‰ are compatible with the maps
. � /left;.1;0/ and y‰ in the sense that the diagrams

Hol. yU/k C1.U /k

Hol. yU/ C1.U /

.�/j�kU

Euleft;.1;0/
Euleft

.�/jU

and
Hol. yV /k C1.V /k

Hol. yV / C1.V /

.�/j�kV

y‰.ŒEv�/ ‰.ŒEv�/

.�/jV

(5.9)

commute for all open subsets yU � yG and yV � yG= yH , with U WD yU \ G and V WD yV \
G=H , and all elements Eu 2 .U Og/˝k and Ev 2 ..U Og=U Og � Oh/˝k/ yH .

Proof. The commutativity of the second diagram follows easily from commutativity of
the first, since the restrictions are compatible with �� and ��. To prove commutativity
of the first diagram, assume that k D 1 and Eu D X 2 Og � U Og. The tangent map of a
holomorphic function commutes with the multiplication by i. We compute

X left;.1;0/f .g/ D
1

2

�
Tgf ı TeLg.X/ � iTgf ı TeLg.iX/

�
D Tgf ı TeLg.X/ D X leftf

ˇ̌
U
.g/

for f 2 Hol. yU/ and g 2 U . The general case follows from this computation by the way
in which . � /left;.1;0/ and . � /left are extended to .U Og/˝k .

Corollary 5.17. Let O� be a semisimple coadjoint orbit of a semisimple connected real
Lie group G. For „ 2 C n P� and p; q 2 Pol.O�/, the product �„WPol.O�/ � Pol.O�/!
Pol.O�/ defined in Proposition 5.14 can be computed by

p �„ q D

1X
`D0

‰.F„;`/.p; q/: (5.10)

Proof. The previous lemma implies

p �„ q D . Op O�„ Oq/jO� D

1X
`D0

y‰.F„;`/. Op; Oq/jO� D

1X
`D0

‰.F„;`/.p; q/:

Note that the sum over ` is finite by Corollary 3.29.

Theorem 5.18. Let O� be a semisimple coadjoint orbit of a semisimple connected real Lie
groupG. The product ?WC1.O�/ŒŒ„���C1.O�/ŒŒ„��! C1.O�/ŒŒ„�� defined by f ? gD
‰.F /.f; g/ where F was obtained in Theorem 3.23 is a G-invariant formal star product.
In particular, it is associative and deforms the KKS symplectic form on O�. Furthermore,
p ? q coincides with the formal power series expansion of p �„ q around „ D 0 for p; q 2
Pol.O�/, and f ? g D Of O? OgjO� for f; g 2 A.O�/.
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Proof. It is immediate from the definition of F and ‰ that every order of ? is given by
a G-invariant bidifferential operator. Since F is the formal power series expansion of F„
around „ D 0 and p �„ q is rational with no pole at 0 for p; q 2 Pol.O�/, it follows that
p ? q coincides with the formal power series expansion of p �„ q. The compatibility with
O? is immediate from Lemma 5.16. Since bidifferential operators are uniquely determined
by their behavior on Pol.O�/ � A.O�/, the compatibility with O? implies that ? is asso-
ciative and, using Proposition 3.32, that it deforms the KKS symplectic form.

Recall that we proved in Corollary 3.34 that the product O�„ separates variables with
respect to the distributions LC and L�, which we call yLC and yL� in this section. In
the real case, those distributions may have further properties. They can be real or the
holomorphic and antiholomorphic tangent spaces with respect to a complex structure.
Before giving further details, let us make the following definitions.

Definition 5.19 (Standard ordered type). A star product �„ on a symplectic manifoldM is
said to be of standard ordered type if there are two Lagrangian distributionsL1;L2 � TM
spanning the real tangent bundle TM ofM such that the first argument of the star product
is derived only in directions of L1 and the second argument only in directions of L2.

Definition 5.20 ((Pseudo) Wick type). A star product �„ on a complex manifold M that
is also symplectic is said to be of pseudo Wick type if the first argument is derived only
in holomorphic directions and the second argument only in antiholomorphic directions. A
star product of pseudo Wick type on a Kähler manifold is said to be of Wick type.

For formal star products of Wick type and with respect to the usual �-involution given
by complex conjugation, point evaluations are positive linear functionals, which is not
necessarily the case for formal star products of pseudo Wick type. Note that the situation
is more complicated for strict star products, as we shall see in Section 5.5.

Let us briefly recall some results on the existence of invariant complex structures on
coadjoint orbits. See Appendix A.3 for more details. Let O� be a semisimple coadjoint
orbit of a real connected semisimple Lie group G with Lie algebra g, and assume that G�
is compact. Choose a real Cartan subalgebra h containing �]. Since h � g�, it follows
that h is compact (meaning that it integrates to a subgroup of G with compact closure).
Then there are G-invariant complex structures on O�, and these structures are in bijection
to invariant orderings of y� (we say an ordering on y� is invariant if it is the restriction of
an invariant ordering of � as defined in Definition 3.10) as follows. Recall that TC

�
O� Š

Og= Og�Š
L
˛2y�

g˛ . So given an invariant ordering we can define a map I�WTC
�

O�!TC
�

O�
by letting I�X˛ D iX˛ if ˛ 2 y�C, and I�X˛ D �iX˛ if ˛ 2 y��. The map I� extends G-
invariantly to an endomorphism I of the complexified tangent bundle TCO� and restricts
to an endomorphism of the real tangent bundle TO�; thus it defines a complex structure.

If G is compact, there is a unique ordering that makes O� with the complex structure
I and the KKS symplectic form !KKS a Kähler manifold. This ordering is characterized
by ˛ 2 y� being positive iff .˛; i�/ > 0. In particular, it is standard. See Appendix A.3 for
more details.
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Proposition 5.21. For a semisimple coadjoint orbit O� of a real connected semisimple
linear Lie group G, the product �„ obtained in Proposition 5.14

(i) has poles P� � R if h is compact,

(ii) is of pseudo Wick type if G� is compact and the same ordering is used in the
construction of the star product and the definition of the complex structure,

(iii) is of standard ordered type with poles P� � iR if ih � Og is compact.

In particular, ifG is compact and, in the construction of �„, one chooses the ordering that
makes O� with the induced complex structure I a Kähler manifold, then �„ is of Wick
type.

Proof. Roots take purely imaginary values on a compact Lie subalgebra of h. Since �2 g�

is by definition real on h � Oh, it follows that .�;�/ 2 iR if h is compact and .�;�/ 2 R if
ih is compact. Since 1

2
.�; �/ � .�; �/ 2 R, this implies that the roots (with respect to „)

of pi�=„.�/ D
1
2
.�; �/ � .�; �/ � i

„
.�; �/ are real if h is compact and purely imaginary

if ih is compact.
Recall the definition of the distributions LC and L�, which we denote by yLC and

yL� in this section, made just after Lemma 3.33. Restricting them to O� � yO� gives two
distributions LC;L� � TCO� of the complexified tangent bundle. An analogue of Propo-
sition 2.8 in the real case and the explicit formula for F„ from Theorem 3.18 together
with Remark 3.31 show that ? derives the first argument only in directions of LC and the
second argument only in directions of L�.

Assume that g� is compact. The holomorphic tangent space T.1;0/
�

O� is, under the iso-
morphism TC

�
O� Š Og= Og�, spanned by X˛ � iI�X˛ for ˛ 2 y�. If I� is defined using the

ordering chosen in the construction of �„ as described above, thenX˛ � iI�X˛ DX˛ � i �
iX˛ D 2X˛ if ˛ 2 y�C, andX˛ � iI�X˛ D X˛ � i � .�i/X˛ D 0 if ˛ 2 y��, so T.1;0/

�
O� D

span¹.X˛/O� j�; ˛ 2 y�
Cº. This coincides exactly with LCj�, and by G-invariance it fol-

lows that LC coincides with T.1;0/O�. Similarly, L� coincides with T.0;1/O�. Therefore
? is of pseudo Wick type.

If ih is compact, then every adH forH 2 h is self-adjoint. Since they are all commuting
we can find simultaneous eigenvectors in g of all adH (without complexifying g). But then
we can pick X˛ and Y˛ to lie in g so that L1 D LC \ g and L2 D L� \ g are Lagrangian
distributions satisfying Definition 5.19.

Remark 5.22. Assume that g� is compact as in part (ii) of the previous proposition. If
one uses different invariant orderings in the construction of the star product and in the
definition of a complex structure, then the distributions LC and L� may both contain
holomorphic and antiholomorphic directions. Since we are mainly interested in star prod-
ucts of (pseudo) Wick type (these are the ones for which we would hope to find positive
linear functionals on the star product algebra; see Section 5.5), we will usually assume
that the two orderings agree.
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5.4. Examples: complex projective spaces and hyperbolic discs

Recall that we have computed the canonical element of the Shapovalov pairing for
SL1Cn.C/ and a certain choice of � in Section 3.4. Let us now specialize this result to
the real forms SU.1C n/ and SU.1; n/.

Example 5.23 (CPn). The coadjoint orbit of SU.1C n/ through the point �Wsu1Cn!R,
X 7! �irX0;0 with r 2 RC is the complex projective space CPn. SL1Cn.C/ is a com-
plexification of SU.1C n/. Using the notation Oh for the Cartan subalgebra of sl1Cn.C/
introduced in Section 3.4, we obtain a compact Cartan subalgebra h WD su1Cn \ Oh of
su1Cn. Proposition A.10 tells us that the Kähler complex structure is defined by the
ordering of y� for which ˛ 2 y�C iff .i�; ˛/ > 0. This ordering is the restriction of the
ordering on � for which all ˛i;j with i < j are positive. Therefore the element F„ from
Proposition 3.36 induces a Wick type star product on CPn. This product has poles at
¹
1
n
r j n 2 Nº.

Example 5.24 (Dn). Denote the complex hyperbolic disc in n dimensions by Dn. Recall
that SU.1; n/ denotes the group of isometries of the indefinite scalar product g.v; w/ D
�v0w0 C

Pn
iD1 viwi on R1Cn. The coadjoint orbit of SU.1; n/ through �W su1;n ! R,

X 7! �irX0;0 with r 2 RC is the hyperbolic disc Dn. SL1Cn.C/ is a complexification of
SU.1; n/. Again, h WD su1;n \ Oh defines a compact Cartan subalgebra of su1;n. Now all
roots are non-compact so that according to Corollary A.11 the Kähler complex structure
is defined by the ordering on y� for which ˛ 2 y�C iff .i�; ˛/ < 0. This ordering is the
restriction of the ordering on � for which all ˛i;j with i > j are positive. Therefore the
element F„ from Corollary 3.37 induces a Wick type star product on Dn. This product has
poles at ¹� 1

n
r j n 2 Nº.

Remark 5.25. A star product of Wick type on the hyperbolic disc was also studied in
[28], where it was obtained from a star product of Wick type on C1Cn using phase space
reduction. This product coincides with the star product obtained in Example 5.24. To see
this, one checks that monomials of degree 1 generate the star product algebra so that it
suffices to compare the two formulas for a degree 1 monomial and an arbitrary monomial.
But for a degree 1 monomial only very few summands are non-zero in both constructions
and one can explicitly check that the expressions agree.

5.5. Positive linear functionals

In this subsection, we prove that for certain coadjoint orbits and certain values of „ the
point evaluation functionals of the star product algebras constructed in Section 5.3 are
positive. In order to have a meaningful notion of positivity we need a star involution on
.A.O�/;�„/. Of course, this star involution should be the restriction of the complex con-
jugation of C1.O�/, but we need to prove that this restriction is well defined.

Assume that Og D g ˝ C is the complexification of a Lie algebra g. The complex
conjugation x� W Og! Og,X ˝ z 7!X ˝ xz is an antilinear involution on Og. Then x� W Og�! Og�,
� 7! x� WD x� ı � ı x� defines an antilinear involution on Og�. Note that on the right-hand
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side, we first apply the involution of Og, then �, and then the complex conjugation of C.
Therefore the right-hand side defines a complex linear functional x� 2 Og�. The map � 7! x�
is antilinear.

Lemma 5.26. Let G � GLN .R/ be a real linear Lie group with complexification yG �
GLN .C/, assume that � 2 g�, and let yO� be the coadjoint orbit of yG through �. Then the
map x� W Og� ! Og� restricts to an antilinear involution x� W yO� ! yO�.

Proof. Note that since � 2 g� we have x� D �. Therefore we compute

Ad�g � D � ı Adg�1 D x� ı x� ı Adg�1 ı x� D � ı Adxg�1 D Ad�xg �:

Here xg denotes the entrywise complex conjugate of g 2 yG. Since the exponential map Og!
yG commutes with the complex conjugation, it follows that yG is closed under entrywise
complex conjugation, and therefore xg 2 yG and Ad�xg � 2 yO�. This proves that x� restricts
to yO�, and the restriction is clearly still an antilinear involution.

Note that T� x� ı I� D .Ix�/
�1 ı T� x� holds for � 2 Og�, where T� x� W T� Og� ! Tx� Og

� is
the tangent map to the complex conjugation of Og� and I� WT� Og� ! T� Og� is the complex
structure at �. Since the complex structure I and the complex conjugation x� of O� are
both obtained by restriction from Og�, they satisfy the same relation.

For any f 2 Hol. yO�/ consider the function f � WD x� ı f ı x� , where the left x� is
the complex conjugation of C and the right x� is the antilinear involution obtained in the
previous lemma. Denote the complex structure of C by J , and identify the tangent space
of C with C. Then

T�f � ı I� D x� ı Tx�f ı T� x� ı I� D x� ı Tx�f ı I
�1
x�
ı T� x�

D x� ı J�1 ı Tx�f ı T� x� D J ı x� ı Tx�f ı T� x� D J ı T�f �

shows that f � is holomorphic. Since x� restricts to the identity on O� � g�, it follows that
f �jO� D f jO� . Consequently, the restriction of �WHol. yO�/! Hol. yO�/ to A.O�/ is just
the complex conjugation x� WA.O�/! A.O�/. In other words, the complex conjugation
is well defined on A.O�/.

Proposition 5.27. Let O� be a semisimple coadjoint orbit of a connected semisimple real
Lie group G. Assume that the Cartan subalgebra h used in the construction of a star
product �„ is compact. Then f �„ g D xg �x„ xf holds for all f; g 2 A.O�/.

Proof. As in the proof of Proposition 5.21 one argues that since h is compact the coeffi-
cients pwi�.˛w/ are real and more generally pwi�=„.˛w/D p

w
i�=x„.˛w/. From (A.3) we obtain

thatX˛˝Y˛DY˛˝X˛D�.X˛˝Y˛/ for both a compact and a non-compact root ˛2 y�C,
and the same formula holds when ˛ is replaced by a word w 2 zW . Here x� is the complex
conjugation of Og with respect to g, extended to .U Og/˝2, and � W .U Og/˝2 ! .U Og/˝2 is
the flip of the two tensor factors. Note that � stays well defined on .U Og=U Og � Og�/˝2, and
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therefore the formula for F„ obtained in Theorem 3.18, Remark 3.31, and the computa-
tions above imply F„;` D �.Fx„;`/. Consequently,

f �„ g D

1X
`D0

‰.F„;`/.f; g/ D

1X
`D0

‰.F„;`/. xf ; xg/

D

1X
`D0

‰.�.Fx„;`//.
xf ; xg/ D

1X
`D0

‰.Fx„;`/.xg;
xf / D xg �x„

xf

holds for all f; g 2 Pol.O�/ and extends to A.O�/ by continuity.

A linear functional � on a �-algebra A is said to be positive if �.a�a/ � 0 for all a 2
A . In the following, we formulate our results for the star algebra A„ WD .A.O�/; �„; x� /

but would like to point out that they also hold for .Pol.O�/;�„; x� /.

Theorem 5.28. Assume that O� is a semisimple coadjoint orbit of a real connected
semisimple Lie group G. Assume further that h is a compact Cartan subalgebra and that
all roots (with respect to the complexification Oh of h) in y� are non-compact. Let �„ be
the star product constructed with respect to the ordering for which ˛ 2 y� is positive if
and only if .˛; i�/ < 0. Then there is a constant M > 0 such that for all � 2 O� and
„ 2 .0;M/ n P� the point evaluation at � is a positive linear functional ev� WA„ ! C.

Proof. Since .˛; i�/ < 0 for all ˛ 2 y�C, it follows that �i.�; �/ > 0 holds for all � 2
N0
y�C n ¹0º. There are only finitely many � 2N0

y�C with .�;�/� 1
2
.�;�/ > 0; thus we

can choose M > 0 such that � i
„
.�;�/ > .�;�/� 1

2
.�; �/ holds for all � 2 N0

y�C n ¹0º

and „ 2 .0;M/ nP�. But this says precisely that pi�=„.�/ > 0, and therefore pwi�=„.˛w/ >
0 for all w 2 zW . For a non-compact root we have X˛ D Y˛ according to (A.3b). Conse-
quently, if g 2 G is such that � D Ad�g.�/, then

ev�.f �„ xf / D
1X
`D0

‰

 X
w2 zW`

pwi�=„.˛w/
�1
z�C.Xw/˝ z�

�.Yw/

!
.f; xf /.�/

D

1X
`D0

X
w2 zW`

pwi�=„.˛w/
�1X left

w .��f /.g/ � Y left
w .�� xf /.g/

D

1X
`D0

X
w2 zW`

pwi�=„.˛w/
�1X left

w .��f /.g/ �X left
w .��f /.g/

� 0

holds for all f 2 A.O�/.

Example 5.29 (Dn). It is straightforward to check that the choices made to quantize the
hyperbolic disc in Example 5.24 are such that h is compact such that every root in y� is
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non-compact, and such that ˛ 2 y� is positive iff .˛; i�/ < 0. Therefore the previous the-
orem implies the existence of a constant M > 0 such that all point evaluation functionals
are positive if „ 2 .0;M/.

We can prove a stronger result by using the formula for F„ derived in Corollary 3.37.
If „ 2 .0;1/, then all the coefficients appearing in this formula are positive, and so point
evaluations are positive for all „ 2 .0;1/.

Note that a similar proof does not work for CPn since some of the coefficients in
(3.36) are negative. Indeed, one can use the appearing negative coefficients to show that
no point evaluation functional is positive on CPn for „ 2 .0;1/ n P�.

5.6. A generalized Wick rotation

In this subsection, we want to state an immediate corollary of the construction in the
previous sections. Let g1, g2 be two real semisimple Lie algebras with the same complex-
ification Og. Assume that �2 g�1 \ g�2 , where we view g�1 and g�2 as subspaces of Og�. Denote
the coadjoint orbits in g�1 and g�2 through � by O1

�
and O2

�
, respectively. There is an iso-

morphism Pol.O1
�
/! Pol.O2

�
/ given by composing the map Pol.O1

�
/ 3 p 7! Op 2 Pol. yO�/

with the restriction to O2
�

. Here yO� is the complex extension of O�. It turns out that this
isomorphism is still an isomorphism of both the uncompleted and completed quantum
algebras.

Theorem 5.30. Let g1 and g2 be two real semisimple Lie algebras with a common com-
plexification Og and assume that �2g�1\g�2 is semisimple. Then the algebras .Pol.O1

�
/;�1
„
/

and .Pol.O2
�
/;�2
„
/, and also the algebras .A.O1

�
/;�1
„
/ and .A.O2

�
/;�2
„
/, constructed with

respect to the same Cartan subalgebra h � g1 \ g2 and the same ordering, are isomor-
phic.

Proof. Both algebras are isomorphic to .Pol. yO�/; O�„/ or .Hol. yO�/; O�„/.

Example 5.31 (CPn and Dn). We know from Examples 5.23 and 5.24 that CPn and Dn

are coadjoint orbits of the Lie groups SU.1C n/ and SU.1; n/ through the same element,
and that SL1Cn.C/ is a common complexification. So the previous proposition implies
that the star product algebras on CPn and Dn are isomorphic if we choose the same
ordering in the construction of the star products.

The ordering that induces a Kähler complex structure on CPn induces the complex
structure on Dn that is the opposite of the Kähler complex structure. Therefore the asso-
ciated star product on Dn is of pseudo Wick type with respect to this opposite complex
structure and, therefore, of anti-Wick type for the Kähler complex structure. (A star prod-
uct is of anti-Wick type if the first argument is derived in antiholomorphic directions and
the second argument is derived in holomorphic ones.) Consequently, the algebra A.CPn/
with the Wick type star product is isomorphic to the algebra A.Dn/ with the anti-Wick
type star product. Similarly, the algebra A.CPn/ with the anti-Wick type star product is
isomorphic to the algebra A.Dn/ with the Wick type star product.



Strict quantization of coadjoint orbits 59

One can also construct an isomorphism between the Wick type star product for „ and
the anti-Wick type star product for �„, both on the hyperbolic disc and the complex pro-
jective space. Composing with these isomorphisms shows that the Wick type star product
for „ on CPn is isomorphic to the Wick type star product for �„ on Dn.

Note that Theorem 5.30 only gives an algebra homomorphism between Pol.O1
�
/ and

Pol.O2
�
/, or between A.O1

�
/ and A.O2

�
/. If we view these algebras as �-algebras with the

star involution considered in Section 5.5, then they are in general not �-isomorphic! One
can see this for example by proving that the point evaluation functionals on CPn are not
positive for „ 2 .0;1/ n P�.

A. Proofs, G -finite functions, complex structures

In Appendix A.1, we prove Propositions 2.5 and 2.7. In Appendix A.2, we prove Propo-
sition 3.27 using the concept of G-finite functions. Finally, we recall some facts about
complex structures on coadjoint orbits in Appendix A.3.

A.1. Proofs of Propositions 2.5 and 2.7

LetM be a manifold. For f 2 C1.M/ we defineMf WC1.M/! C1.M/, f 0 7! ff 0,
and M i

f
D id�.i�1/ �Mf � id�.k�i/WC1.M/k ! C1.M/k .

Definition A.1. LetM be a manifold. For a multi-indexK 2 Zk withK D .K1; : : : ;Kk/
we define k-DiffOpK.M/ D ¹0º if some Ki < 0 and otherwise we define inductively

k-DiffOpK.M/D
®
D W C1.M/k ! C1.M/ jMf ıD�D ıM

i
f 2k-DiffOpK�Ei .M/

for all f 2 C1.M/ and 1 � i � k
¯
: (A.1)

Here .K � Ei /j D Kj � ıij , where ıij is 1 if i D j and 0 otherwise. Elements of k-
DiffOpK.M/ are called k-differential operators of degree K. A map DW C1.M/k !

C1.M/ is said to be a k-differential operator if it is a k-differential operator of some
degree K. The space of k-differential operators is denoted by k-DiffOp.M/.

It follows that a k-differential operator is local in every argument so that it can be
restricted to any open subset. In a chart U � M with local coordinates .x1; : : : ; xn/, a
k-differential operator D of degree K can be written as

D.f1; : : : ; fk/ D
X

I1;:::;Ik2Nn
0

cI1;:::;Ik@
I1
x f1 � � � � � @

Ik
x fk ; (A.2)

where cI1;:::;Ik 2 C1.M/ and cI1;:::;Ik D 0 if jIi j > Ki for some 1 � i � k. For a multi-
index J 2 Nn

0 we used @Jx WD @
J1
x1
� � � @

Jn
xn and @xi WD

@
@xi

. Conversely, an operator

DWC1.M/k ! C1.M/
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that has this form in any chart is k-differential of order K. A k-differential operator D on
a complex manifold M is holomorphic if, in local holomorphic coordinates .z1; : : : ; zn/,
we have

D.f1; : : : ; fk/ D
X

I1;:::;Ik2Nn
0

cI1;:::;Ik@
I1
z f1 � � � � � @

Ik
z fk

with all cI1;:::;Ik being holomorphic. Here @Jz D @
J1
z1
� � �@

Jn
zn and @zi D

@
@zi

. Equivalently,D
is holomorphic if D maps Hol.U /k into Hol.U / and DjU ıM i

f
�Mf ıDjU D 0 for all

open subsetsU �M and all antiholomorphic functions f onU . We write k-DiffOpH .M/

for the space of holomorphic k-differential operators.
We say a k-differential operator is of order K 2 Zk at a point p 2M if, when written

in a local chart U around p as in (A.2), we have cI1;:::;Ik .p/ D 0 whenever jIj j > Kj for
some 1 � j � k.

If I1; : : : ; Ik ; J; K 2 Nn
0 are all multi-indices, we write J � K if Ji � Ki for all

1 � i � n. If X1; : : : ; Xn 2 g, then we use XJ as a shorthand for XJ11 � � �X
Jn
n 2 U g and

XI1˝���˝Ik as a shorthand for XI1 ˝ � � � ˝ XIk 2 .U g/˝k .

Proof of Proposition 2.5. Choose a basis ¹X1; : : : ;Xnº of g. It follows from the Poincaré–
Birkhoff–Witt theorem that ¹XI1˝���˝Ik j I1; : : : ; Ik 2 Nn

0 º is a basis of .U g/˝k . More-
over, ¹X left;.1;0/

1 je; : : : ; X
left;.1;0/
n jeº is a basis of the tangent space T.1;0/e G and we can

choose a complex chart U around e with local coordinates .z1; : : : ; zn/ such that @zi je D
X

left;.1;0/
i je .

Assume that Eu D
P
I1;:::;Ik2Nn

0
cI1;:::;IkX

I1˝���˝Ik ¤ 0 with only finitely many
cI1;:::;Ik ¤ 0. Choose I1; : : : ; Ik in such a way that cI1;:::;Ik ¤ 0 and cJ1;:::;Jk D 0whenever
Ii � Ji and .I1; : : : ; Ik/¤ .J1; : : : ; Jk/. For Ef D .zI1 ; : : : ; zIk / 2 C1.U /�k we compute
Euleft;.1;0/ Ef .e/ D I1Š � � � IkŠcI1;:::;Ik ¤ 0. So Euleft;.1;0/ ¤ 0 and . � /left;.1;0/ is injective.

Note that .XI1/left;.1;0/f1 � � � � � .X
Ik /left;.1;0/fk D @

I1
z f1 � � � � � @

Ik
z fk CD

0.f1; : : : ;fk/,
where D0 is a holomorphic k-differential operator whose order at e is strictly smaller
than .jI1j; : : : ; jIkj/. For any holomorphic k-differential operator D we can therefore, by
induction, find coefficients cI1;:::;Ik 2 C, only finitely many of which are non-zero such
that

D.f1; : : : ; fk/.e/ D
X

I1;:::;Ik2Nn
0

cI1;:::;Ik .X
I1/left;.1;0/f1.e/ � � � � � .X

Ik /left;.1;0/fk.e/

holds for all f1; : : : ; fk 2 C1.G/. In other words, D and the differential operatorP
I1;:::;Ik2Nn

0
.cI1;:::;IkX

I1˝���˝Ik /left;.1;0/ agree at e. So if D is also left-invariant, then
these operators agree everywhere on G, proving surjectivity.

The proof of Proposition 2.7 is similar. We need the following lemma to simplify the
local calculations.

Lemma A.2. Let G be a complex Lie group with Lie algebra g, and assume that H is a
closed complex Lie subgroup of G with Lie algebra h. Given a basis B D ¹X1; : : : ; Xnº
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of g such that B 0 D ¹Xn�rC1; : : : ; Xnº is a basis of h one can choose a neighborhood U
of e in G and complex coordinates z D .z1; : : : ; zn/ on U such that

(i) for any g 2 U its fiber gH \U is given locally as .¹z.g/º C ¹0º �Cr /\ z.U /,

(ii) the left-invariant holomorphic vector fields agree with coordinate vector fields
at e 2 G; that is X left;.1;0/

i je D @zi je .

Proof. It is well known that � WG! G=H is a principal bundle. Therefore we can choose
a local trivialization �W ��1.V /! V �H on a small neighborhood V of eH in G=H .
Choosing coordinates on V (after possibly shrinking V first) and on a neighborhoodW of
the identity inH , we obtain coordinates z0 on U WD ��1.V �W /�G satisfying property
(i). Since all X left;.1;0/

i are linearly independent, we can write X left;.1;0/
i je D Aij @.z0/j je

for some invertible matrix A and since X left;.1;0/
i is tangential to H � G for i > n � r , it

follows that Aij D 0 for i > n� r , j � n� r . Then the coordinates z WD .A�1/Tz0 satisfy
both properties of the lemma.

Let � WG!G=H . Given coordinates as in the previous lemma, we may identify �.U /
locally with ¹.z1.g/; : : : ; zn�r .g/; 0; : : : ; 0/ j g 2 U º. Then .z1; : : : ; zn�r / descend to
coordinates on �.U / and � is, with respect to these coordinates, given by the projection
to the first n � r coordinates.

Lemma A.3. The map ‰ from Proposition 2.7 is injective.

Proof. Let r D dim h and n D dim g � r . We can choose a basis B D ¹X1; : : : ; Xnº of g

such that B 0 D ¹Xn�rC1; : : : ;Xnº is a basis of h. Recall from the proof of Proposition 2.5
that ¹XI1˝:::˝Ik j I1; : : : ; Ik 2 Nn

0 º is a basis of .U g/˝k . Furthermore,®
XI1˝���˝Ik j I1; : : : ; Ik 2 Nn

0 ; .Ii /j > 0 for some 1 � i � k and some j > n � r
¯

is a basis of the ideal I defined just before Lemma 2.6 and®
XI1˝���˝Ik j I1; : : : ; Ik 2 Nn

0 ; .Ii /j D 0 for all 1 � i � k; j > n � r
¯

D
®
XI1˝���˝Ik j I1; : : : ; Ik 2 Nn�r

0

¯
is a basis of a complement C of I in .U g/˝k . Injectivity of ‰ means that 0 is the only
element of C on which ‰ vanishes.

So to prove that ‰ is injective, it suffices to find, for any non-zero

Eu D
X

I1;:::;Ik2Nn�r
0

cI1;:::;IkX
I1˝���˝Ik 2 C;

some open subset U � G=H and some k-tuple of functions Ef 2 C1.U /k such that
‰.ŒEu�/. Ef / ¤ 0. Fix Eu 2 C n ¹0º and assume that I1; : : : ; Ik 2 Nn�r

0 are chosen such that
cI1;:::;Ik ¤ 0 and such that for any multi-indices J1; : : : ; Jk 2Nn�r

0 satisfying Ii � Ji and
.I1; : : : ; Ik/ ¤ .J1; : : : ; Jk/ we have cJ1;:::;Jk D 0. Choose coordinates z D .z1; : : : ; zn/
around e on G as in the previous lemma, and note that, as described just after this lemma,
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.z1; : : : ; zn�r / descend to coordinates .y1; : : : ; yn�r / on G=H . Set Ef D .yI1 ; : : : ; yIk /
so that �� Ef D .zI1 ; : : : ; zIk /. This implies that

‰.ŒEu�/. Ef /.eH/ D Euleft;.1;0/.�� Ef /.e/ D I1Š � � � IkŠcI1;:::;Ik ¤ 0:

Lemma A.4. The map ‰ from Proposition 2.7 is surjective.

Proof. We claim that for any holomorphic k-differential operator D on G=H we can find
Eu 2 .U g/˝k such that

Euleft;.1;0/.�� Ef /.e/ D ��.D Ef /.e/

holds for all Ef 2C1.G=H/k . We prove this claim by induction on the orderK 2Zk ofD
at eH . IfKi < 0 for some 1 � i � k, thenD D 0 and we can use EuD 0. For the induction
step, assume that the claim is already proven for every holomorphic k-differential operator
of order strictly smaller than K at eH . Choose coordinates z D .z1; : : : ; zn/ around e on
G as in Lemma A.2 and denote the coordinates on G=H induced by .z1; : : : ; zn�r / by
y WD .y1; : : : ; yn�r /. Locally, we can write

D.f1; : : : ; fk/ D
X

I1;:::;Ik2Nn�r
0

cI1;:::;Ik � @
I1
y f1 � � � � � @

Ik
y fk

with cI1;:::;Ik 2 C1.G=H/ satisfying cI1;:::;Ik .eH/ D 0 whenever jIi j > Ki for some
1 � i � k. Define a holomorphic k-differential operator DG on G by

DG.f
0
1 ; : : : ; f

0
k/ D

X
I1;:::;Ik2Nn�r

0

.cI1;:::;Ik ı �/ � @
I1
z f
0
1 � � � � � @

Ik
z f

0
k ;

so that DG.�� Ef /.e/ D ��.D Ef /.e/. Set

Eu1 WD
X

I1;:::;Ik2Nn�r
0

cI1;:::;Ik
�
�.e/

�
XI1 ˝ � � � ˝ XIk 2 .U g/˝k :

Note that D0G WD DG � Eu
left;.1;0/
1 has a strictly smaller order than DG at e since

X
left;.1;0/
i je D @zi je . There are functions c0I1;:::;Ik 2 C1.G/ such that we can express D0G

in local coordinates as

D0G.f
0
1 ; : : : ; f

0
k/ D

X
I1;:::;Ik2Nn

0

c0I1;:::;Ik � @
I1
z f
0
1 � � � � � @

Ik
z f

0
k :

We obtain a k-differential operator D0 on G=H of strictly smaller order than D at eH by
letting

D0.f1; : : : ; fk/ D
X

I1;:::;Ik2Nn�r
0

c0I1;:::;Ik . � ; 0/@
I1
y f1 � � � � � @

Ik
y fk :

It fulfils D0G.�
� Ef /.e/ D ��.D0 Ef /.e/. Using the induction hypothesis, we find Eu0 2

.U g/˝k such that Eu0left;.1;0/.�� Ef /.e/ D ��.D0 Ef /.e/. Now

.Eu1 C Eu
0/left;.1;0/.�� Ef /.e/ D .DG �D

0
G/.�

� Ef /.e/C ��.D0 Ef /.e/
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D ��.D Ef /.e/ � ��.D0 Ef /.e/C ��.D0 Ef /.e/

D ��.D Ef /.e/;

proving the claim.
Assume that D is in addition left-invariant. Writing Lg WG=H ! G=H also for the

action of g 2 G on G=H , we compute

Euleft;.1;0/.�� Ef /.g/ D L�g Eu
left;.1;0/.�� Ef /.e/ D Euleft;.1;0/.L�kg /�.�� Ef /.e/

D Euleft;.1;0/��..L�kg /� Ef /.e/ D ��.D.L�kg /� Ef /.e/

D ��.L�gD Ef /.e/ D L�g�
�.D Ef /.e/ D ��.D Ef /.g/:

Thus Euleft;.1;0/.�� Ef / D ��.D Ef / holds for all Ef 2 C1.G=H/k . Finally, we need to
show that Eu has the correct invariance properties under the adjoint action of H . Define
Rg WG ! G, Rg 0.g/ WD gg0. Since R�

h
��.D Ef / D ��.D Ef / for all h 2 H , we obtain

R�
h
Euleft;.1;0/�� Ef D Euleft;.1;0/�� Ef and therefore

.Adh Eu/left;.1;0/.�� Ef /.g/ D .Euleft;.1;0/�� Ef /.gh/

D R�h Eu
left;.1;0/�� Ef .g/ D Euleft;.1;0/�� Ef .g/

for all Ef 2 C1.G=H/k and all g 2 G, where the first equality follows as in the proof of
Lemma 2.6. This means that .Adh Eu� Eu/left;.1;0/.�� Ef /D 0 for all Ef 2 C1.G=H/k , and
therefore the proof of injectivity implies Adh Eu � Eu 2 I , or in other words Eu 2 Uinv.

A.2. G -finite functions

In this subsection, we introduceG-finite functions on a Lie groupG and use them to prove
Proposition 3.27. The definition of G-finite functions uses only abstract properties of the
Lie group G and is therefore independent of whether G is explicitly realized by matrices
or not. For complex semisimple connected Lie groups a function is G-finite if and only if
it is a polynomial, and therefore G-finite functions give a characterization of polynomials
that is independent of the representation.

Definition A.5 (G-finite functions). Let M be a manifold with an action of a Lie group
G. Then f 2 C1.M/ is said to be G-finite if the vector space span¹g F f j g 2 Gº is
finite dimensional. We denote the space of G-finite functions on M by FinG.M/ or just
by Fin.M/ if G is clear from the context.

Here g F f denotes the smooth function onM defined by .g F f /.m/D f .g�1 Fm/.
Below, we use this definition only for M D G and the action L or for M D yO� and the
coadjoint action, and will therefore not mention these actions explicitly.

Lemma A.6. LetG be a real or complex matrix Lie group and let O� be a coadjoint orbit
of G. Then polynomials on G are G-finite, and polynomials on O� are also G-finite.
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Proof. Let Pij WG!C,X 7!Xij , and call such polynomials elementary in this proof. We
compute .g FPij /.h/DPij .g�1h/D

P
k.g
�1/ikhkj D

P
k.g
�1/ikPkj .h/ for g 2G, so

g F Pij is a linear combination of some elementary polynomials. If p D Pi1j1 � � �Pinjn 2
Pol.G/ is a product of n elementary polynomials, then g F p is in the linear span of
products of n many elementary polynomials, which is a finite dimensional space. The
statement for arbitrary polynomials follows by taking linear combinations.

The action of G on Pol.O�/ is obtained by restricting the adjoint action of G on SgŠ

Pol.g�/. The adjoint action preserves the degree of a symmetric tensor, so span¹Adg X j
g 2 Gº is finite dimensional for any X 2 Sg, and therefore span¹g F p j g 2 Gº is finite
dimensional for any p 2 Pol.O�/.

Proposition A.7. Let G be a complex semisimple connected Lie group with coadjoint
orbit O�. Then G-finite holomorphic functions on O� are polynomials.

Proof. Hol.O�/ is isomorphic to Hol.G/G� as a G-module. The restriction to a maximal
compact Lie subgroup K � G is an injective K-module homomorphism to L2.K/, the
square-integrable functions onK with respect to the left-invariant Haar measure so that we
may view Hol.O�/ as a K-submodule of L2.K/. In particular, it is completely reducible
as a K-module and therefore also as a G-module. Each irreducible module of highest
weight � appears only finitely many times in L2.K/ and thus also in Hol.O�/.

The scalar product of L2.K/ is K-invariant and therefore any irreducible modules of
different highest weights are orthogonal. Restricting the scalar product to Hol.O�/ gives
that Hol.O�/� is orthogonal to Hol.O�/�

0

if � ¤ �0.
Assume that f 2 Fin.O�/ is holomorphic and not in Pol.O�/. We can without loss

of generality assume that f 2 Fin.O�/� for some weight �. (Indeed, we can write f DP
� f

� with f � 2 Fin.O�/� and only finitely many f � are non-zero because f is G-
finite. One of these f � is not in Pol.O�/.) We can choose f orthogonal to Pol.O�/�

(which is finite dimensional) and therefore orthogonal to Pol.O�/. However, this space is
dense in Hol.O�/ because polynomials on K are dense in L2.K/. So f D 0, a contradic-
tion.

Corollary A.8. Let G be a complex semisimple connected Lie group. Then the pullback
��WPol.O�/! Pol.G/G� is an isomorphism.

Proof. We have seen in the proof of Proposition 3.27 that �� is well defined and injective,
so it only remains to show that �� is surjective. Any element f 2 Pol.G/G� is G-finite
by Lemma A.6. Then its image under the G-equivariant isomorphism ��WHol.G/G� !
Hol.O�/ is also G-finite because finite dimensionality of span¹g F f j g 2 Gº implies
finite dimensionality of span¹g F ��f j g 2Gº D span¹��.g F f / j g 2Gº. The previous
proposition implies that theG-finite element ��f 2 Pol.O�/ is a polynomial. It is mapped
to f by ��.

With similar methods as in this subsection one can prove that G-finite functions on a
complex semisimple connected Lie group G coincide with polynomials on G. Since the
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definition ofG-finite functions does not depend on a representation ofG as a linear group,
it follows that our definition of polynomials in Definition 3.26 is indeed independent of the
representation. The same result is true for a compact semisimple connected Lie group K.

A.3. Complex structures on real coadjoint orbits

We have seen in Section 2.1 that a coadjoint orbit of a real Lie group G always admits a
G-invariant symplectic structure; in particular its dimension is even. In this subsection, we
will see that a semisimple coadjoint orbit O� of a connected semisimple real Lie group G
admits a G-invariant complex structure if G� is compact and that the set of such complex
structures is in bijection to invariant orderings. If G is compact, then there is a unique G-
invariant complex structure that makes O� a Kähler manifold. If G is not compact, then
O� might or might not admit a Kähler structure. All results of this subsection are classical
and well known; see for example [7] for a summary.

Let G be a real connected semisimple Lie group. Assume that � 2 g� is semisimple
and that G� is compact. Then any Cartan subalgebra h � g containing �] is contained in
g� and therefore compact. As usual, we denote the complexification of g by Og and let x�
be the complex conjugation of Og with respect to g.

Recall that a root ˛ 2 h� is called compact if the Killing form B is negative defi-
nite on g \ .g˛ ˚ g�˛/, and non-compact if it is positive definite. (The root spaces g˛

are subspaces of the complexification Og of g.) We can always choose X˛ 2 g˛ such that
B.X˛; X�˛/ D 1 and if ŒX˛; Xˇ � D N˛;ˇX˛Cˇ , then N�˛;�ˇ D �N˛;ˇ (see [7, Sec-
tion 3]). In this case,

�X�˛ D X˛ and i.X˛ CX�˛/; X˛ �X�˛ 2 g if ˛ is compact; (A.3a)

X�˛ D X˛ and i.X˛ �X�˛/; X˛ CX�˛ 2 g if ˛ is non-compact: (A.3b)

Recall that y� is the set of roots that are not orthogonal to �.

Theorem A.9. Let O� be a coadjoint orbit of a real connected semisimple Lie group G.
Assume that G� is compact, and let h be a Cartan subalgebra of g containing �]. Then
G-invariant complex structures on O� are in bijection with invariant orderings of y� (i.e.,
choices of positive roots y�C that arise as y�C D y� \�C from an invariant ordering of
� as defined in Definition 3.10).

Sketch. Introduce m D
L
˛2y�

g˛ Š Og= Og�. Since taking fundamental vector fields (see
Section 2.1) gives an isomorphism g=g� ! T�O�, m is isomorphic to the complexified
tangent space TC

�
O� and g \m is isomorphic to T�O�.

Given an invariant ordering of y� (see Definition 3.10), define I Wm!m by extending
X˛ 7! iX˛ if ˛ 2 y�C and X˛ 7! �iX˛ if ˛ 2 y�� linearly. Clearly, I 2 D �id. For both
a compact and a non-compact root ˛, I restricts to an endomorphism of g \ .g˛ ˚ g�˛/,
from which it follows that I restricts to a map g\m! g\m, squaring to �id. To prove
that it extends to a G-invariant almost complex structure on O�, it suffices to prove that
I is G�-invariant. By applying the analogue of Proposition 2.3 for compact connected
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semisimple Lie groups to a maximally compact subgroup of G containing G�, it follows
that G� is connected, and it suffices to prove that I is g�-invariant, in the sense that
I.ŒA;B�/D ŒA; I.B/� holds for all A 2 g� and B 2m. This identity holds for A 2 h since
I preserves the root spaces. So we only need to check it for A D X˛ and B D Xˇ with
˛ 2 �0 and ˇ 2 y�, which is equivalent to the invariance of the ordering. Finally, one uses
that ˛ C ˇ is positive if ˛; ˇ 2 y� are positive to compute that the Nijenhuis torsion of I
vanishes, so I is indeed a complex structure.

Vice versa, a G-invariant complex structure I on O� determines a g�-invariant map
I Wm ! m with I 2 D �id by restricting to the tangent space at � and complexifying.
In particular, I is h-invariant and, therefore, preserves the root spaces, so X˛ 7! ic˛X˛
with c˛ D ˙1. Since I preserves the real tangent space, we must have c˛ D �c�˛ . The
Nijenhuis torsion of the complex structure vanishes, which implies that y�C D ¹˛ 2 y� j
c˛ D 1º defines an ordering. Finally, invariance under the whole Lie algebra g� gives that
this ordering is invariant.

Proposition A.10. Any coadjoint orbit O� of a compact connected semisimple Lie group
K has a uniqueK-invariant complex structure I that makes .O�; I; !KKS/ a Kähler man-
ifold, and this complex structure corresponds to an ordering for which ˛ 2 y� is positive
if and only if .˛; i�/ > 0.

Note that ˛ attains purely imaginary values on k, whereas � attains real values. There-
fore .˛; i�/ 2 R. The ordering for which ˛ 2 y� is positive if .˛; i�/ > 0 is standard (see
Section 3.2).

Proof. Since K is compact, it follows that any root is compact. Given a K-invariant com-
plex structure I , we associate the (not necessarily positive definite) metric g.v; w/ D
!KKS.v;Iw/ and O� is a Kähler manifold if g is positive definite. Since I and!KKS areK-
invariant, so is g and we may check positive definiteness on T�O�. Identifying TC

�
O� with

m as in the proof of the previous proposition and extending g complex linearly, we com-
pute that g.X˛;Xˇ /D!KKS.X˛; IXˇ /D cˇ�.ŒX˛;Xˇ �/ for all ˛;ˇ 2 y�. This expression
is non-zero only if ˛ D �ˇ, and in this case g.X˛; X�˛/ D �ic˛�.˛]/ D �ic˛ � .˛; �/.
Then

g
�
i.X˛ CX�˛/; i.X˛ CX�˛/

�
D 2ic˛ � .˛; �/

and
g.X˛ �X�˛; X˛ �X�˛/ D 2ic˛ � .˛; �/:

So g is positive definite if and only if c˛ D 1 for all ˛ 2 y� with .˛; i�/ > 0.

Note that the situation is more complicated if G is non-compact, but G� is compact,
since we may then have both compact and non-compact roots. The condition for g being
positive definite then becomes c˛ D 1 if either ˛ is a compact root and .˛; i�/ > 0 or if
˛ is a non-compact root and .˛; i�/ < 0. If these conditions define an invariant ordering,
then O� has a G-invariant Kähler structure (which is automatically unique). One can give
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more explicit criteria for when the conditions above define an invariant ordering (see [7])
but we only need the following easy case.

Corollary A.11. Let O� be a coadjoint orbit of a connected semisimple Lie group G.
Assume that G� is compact and that h is a Cartan subalgebra containing �]. If all roots
in y� are non-compact, then .O�; I; !KKS/ is a Kähler manifold, where I is the com-
plex structure corresponding to the ordering for which ˛ 2 y� is positive if and only if
.˛; i�/ < 0.
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