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Lp coarse Baum–Connes conjecture and K -theory for
Lp Roe algebras

Jianguo Zhang and Dapeng Zhou

Abstract. In this paper, we verify the Lp coarse Baum–Connes conjecture for spaces with finite
asymptotic dimension for p 2 Œ1;1/. We also show that the K-theory of Lp Roe algebras is inde-
pendent of p 2 .1;1/ for spaces with finite asymptotic dimension.

1. Introduction

An elliptic differential operator on a closed manifold is Fredholm. The celebrated Atiyah–
Singer index theorem computes the Fredholm index [1, 2]. In the recent 40 years, the
Atiyah–Singer index theorem has been vastly generalized to the higher index theory [42,
49]. There are two most important cases. For a manifold carrying a proper cocompact
group action, the Baum–Connes assembly map defines a higher index in the K-theory of
the group C �-algebra [22, 27]. For an open manifold without group actions, the coarse
Baum–Connes assembly map defines a higher index in the K-theory of the Roe algebra
of the manifold [35].

The Baum–Connes conjecture [3] and the coarse Baum–Connes conjecture [19, 44]
give algorithms to compute the higher indices using K-homology. The K-homology is
local and much more computable. In recent years, the Lp version of the Baum–Connes
and coarse Baum–Connes conjectures is studied. The motivation for using Banach alge-
bras is that they are more flexible than C �-algebras. The traditional C �-algebraic method
[22] is very difficult for dealing with groups with property (T) (these groups admit no
proper isometric actions on Hilbert spaces). Actually a lot of interesting groups, e.g.,
hyperbolic group, may have property (T). Lafforgue invented the Banach KK-theory and
verified the Baum–Connes conjecture for a large class of groups with property (T) [24].
In [48], Guoliang Yu proved that hyperbolic groups always admit proper isometric actions
on `p spaces. In [23], Kasparov and Yu proved that the Lp Baum–Connes conjecture is
true for groups with a proper isometric action on `p space.

In [26], Benben Liao and Guoliang Yu proved that theK-theory of Lp group algebras
is independent of p for a large class of groups, e.g., hyperbolic groups. Their proof relies
on Lafforgue’s results on the Baum–Connes conjecture [24] and Lp property (RD) for the
group.
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Yeong–Chyuan Chung developed a quantitativeK-theory for Banach algebras [6] and
applied this theory to compute K-theory of Lp crossed products [7]. Chung showed that
the Lp Baum–Connes conjecture for G with coefficient in C.X/ is true if the dynamical
system G Õ X has finite dynamical complexity, a property introduced by Guentner–
Willett–Yu [17] and obtained a partial answer about p-independence of Lp crossed prod-
ucts.

Motivated by Liao-Yu and Chung’s result, we ask the following question: Is the K-
theory of Lp Roe algebras Bp.X/ independent of p? The main theorem of the paper
provides a positive answer to this question for the spaces with finite asymptotic dimension.

Theorem 1.1 (see Theorem 5.22). Let X be a proper metric space. If X has finite asymp-
totic dimension, then K�.Bp.X// does not depend on p for p 2 .1;1/.

The proof of the theorem relies on the Lp coarse Baum–Connes conjecture. The key
ingredient is the Mayer–Vietoris argument. A coarse geometric Mayer–Vietoris sequence
in K-theory was formulated by Higson–Roe–Yu [20]. In [46], Guoliang Yu invented the
quantitative K-theory and a quantitative Mayer–Vietoris sequence, and he verified the
coarse Baum–Connes conjecture for spaces with finite asymptotic dimension. The quan-
titative K-theory is a refined version of the classical operator K-theory. It encodes more
geometric information, and it is a powerful tool to compute the K-theory of Roe algebras
or other C �-algebras coming from geometry. The quantitative K-theory has been gener-
alized to general geometric C �-algebras by Oyono–Oyono and Yu [29–31], to Banach
algebras by Yeong–Chyuan Chung [6], and to groupoids by Clement Dell’Aiera [11]. It
has many important applications in dynamical systems [7,17] and coarse geometry [8,25].
In this paper, by a similar argument of quantitative K-theory for Lp algebras, we prove
the following result.

Theorem 1.2 (see Theorem 4.6). For any p 2 Œ1;1/, the Lp coarse Baum–Connes con-
jecture holds for proper metric spaces with finite asymptotic dimension.

The result is very similar to Chung’s result on the Baum–Connes conjecture with a
coefficient for dynamical systems with finite dynamical complexity [7]. His result is for
dynamical systems or transformation groupoids, while our result is for coarse geometry
or coarse groupoids.

We want to emphasize that the results in this paper do not need the condition of
bounded geometry. For the similar result for spaces with bounded geometry, we could
generalize the result to spaces with finite decomposition complexity, introduced by Erik
Guentner, Romain Tessera, and Guoliang Yu [15,16]. Our method also works for uniform
Lp Roe algebras. We will study the results in a separate paper.

The paper is organized in the following order. In Section 2, we recall the concept of
Lp Roe algebras, Lp localization algebras, and Lp coarse Baum–Connes conjecture. In
Section 3, we study the quantitativeK-theory for Lp algebras. In Section 4, we prove that
the Lp Baum–Connes conjecture is true for spaces with finite asymptotic dimension for
p 2 Œ1;1/. In Section 5, we prove that the K-theory of Lp Roe algebras is independent
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of p 2 .0; 1/ for spaces with finite asymptotic dimensions. In the end, we raise some open
problems for future study.

2. Lp coarse Baum–Connes conjecture

Let X be a proper metric space, p 2 Œ1;1/. Recall that a metric space is called proper
if every closed ball is compact. The proper metric space is a separable space the since
compact metric space is separable.

Definition 2.1. An Lp-X -module is an Lp space EpX D `p.ZX / ˝ `
p D `p.ZX ; `

p/

equipped with a natural pointwise multiplication action of C0.X/ by restricting to ZX ,
where ZX is a countable dense subset in X , `p D `p.N/, and C0.X/ is the algebra of all
complex-valued continuous functions on X which vanish at infinity.

We notice that this action can be extended naturally to the algebra of all bounded Borel
functions on X .

2.1. Lp Roe algebra

Definition 2.2. Let EpX be an Lp-X -module, EpY an Lp-Y -module, and T W EpX ! E
p
Y

a bounded linear operator. The support of T , denoted by supp.T /, consists of all points
.x; y/ 2 X � Y such that �V T�U 6D 0 for all open neighborhoods U of x and V of y,
where �U and �V are the characteristic functions of U and V , respectively.

Please note that the support defined in [42] is the inverse of ours.
We give some properties of the support; the proof can be obtained in much the same

way as in [42, Chapter 4].

Remark 2.3. Let EpX be an Lp-X -module, EpY an Lp-Y -module, and EpZ an Lp-Z-
module. Let R; S W EpX ! E

p
Y and T W EpY ! E

p
Z be bounded linear operators. Then

(1) supp.RC S/ � supp.R/ [ supp.S/;

(2) supp.TS/ � cl.supp.S/ ı supp.T // D cl.¹.x; z/ 2 X �Z W 9y 2 Y s.t. .x; y/ 2
supp.S/; .y; z/ 2 supp.T /º/, where “cl” means closure;

(3) if the coordinate projections �Y : supp.T /! Y and �Z W supp.T /!Z are proper
maps or coordinate projections �X W supp.S/! X and �Y W supp.S/! Y are
proper maps, then supp.TS/ � supp.S/ ı supp.T /;

(4) let F D supp.S/; then for any compact subset K of X , respectively Y , we have
S�K D �KıF S�K , �KS D �KS�F ıK , where K ı F WD ¹y 2 Y W there is x 2
K such that .x;y/ 2 F º, F ıK WD ¹x 2X W there is y 2K such that .x;y/ 2 F º.

Definition 2.4. Let EpX be an Lp-X -module and T a bounded linear operator acting on
E
p
X .

(1) The propagation of T is defined to be prop.T /D sup¹d.x;y/ W .x;y/ 2 supp.T /º;

(2) T is said to be locally compact if �KT and T�K are compact operators for any
compact subset K of X .
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By Remark 2.3, we have the following properties of propagation.

Remark 2.5. Let EpX be an Lp-X -module and let T; S W EpX ! E
p
X be bounded linear

operators. Then

(1) prop.T C S/ � max¹prop.T /; prop.S/º;

(2) prop.TS/ � prop.T /C prop.S/.

Definition 2.6. Let EpX be an Lp-X -module. The Lp Roe algebra of EpX , denoted by
Bp.E

p
X /, is defined to be the norm closure of the algebra of all locally compact operators

acting on EpX with finite propagations.

A Borel map f from a proper metric space X to another proper metric space Y is
called coarse if (1) f is proper, i.e., the inverse image of any bounded set is bounded;
(2) for every R > 0, there exists R0 > 0 such that d.f .x/; f .y// � R0 for all x; y 2 X
satisfying d.x; y/ � R.

Lemma 2.7. Let f be a continuous coarse map, EpX an Lp-X -module, and EpY an Lp-
Y -module. Then for any " > 0, there exist an isometric operator Vf W E

p
X ! E

p
Y and a

contractive operator V C
f
W E

p
Y ! E

p
X with V C

f
Vf D I such that

supp.Vf / �
®
.x; y/ 2 X � Y W d

�
f .x/; y

�
� "

¯
;

supp.V C
f
/ �

®
.y; x/ 2 Y �X W d

�
f .x/; y

�
� "

¯
:

Proof. LetZX ,ZY be the dense subsets ofX and Y for definingEpX andEpY , respectively,
as in Definition 2.1.

There exists a Borel cover ¹Yiºi of Y such that

(1) Yi \ Yj D ; if i 6D j ;

(2) diameter.Yi / � " for all i ;

(3) each Yi has nonempty interior.

Condition (3) implies that Yi \ ZY is a countable set. Thus if f �1.Yi / \ ZX 6D ;, then
there exist an isometric operator Vi W `p.f �1.Yi /\ZX /˝ `p ! `p.Yi \ZY /˝ `

p and
a contractive operator V Ci W `

p.Yi \ ZY / ˝ `
p ! `p.f �1.Yi / \ ZX / ˝ `

p such that
V Ci Vi D �f �1.Yi /\ZX ˝ I . If f �1.Yi / \ZX D ;, then let Vi D V Ci D 0. Define

Vf D
M
i

Vi W
M
i

`p
�
f �1.Yi / \ZX

�
˝ `p !

M
i

`p.Yi \ZY /˝ `
p;

V C
f
D

M
i

V Ci W
M
i

`p.Yi \ZY /˝ `
p
!

M
i

`p
�
f �1.Yi / \ZX

�
˝ `p:

Then Vf is an isometric operator, V C
f

is a contractive operator, and V C
f
Vf D I .

Condition (2) together with the construction of Vf and V C
f

implies that

supp.Vf / �
®
.x; y/ 2 X � Y W d

�
f .x/; y

�
� "

¯
;

supp.V C
f
/ �

®
.y; x/ 2 Y �X W d

�
f .x/; y

�
� "

¯
:
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Lemma 2.8. Let f , EpX , and EpY be as in Lemma 2.7. Then the pair .Vf ; V Cf / gives rise
to a homomorphism ad..Vf ; V Cf // W B

p.E
p
X /! Bp.E

p
Y / defined by

ad
�
.Vf ; V

C

f
/
�
.T / D Vf T V

C

f

for all T 2 Bp.EpX /.
Moreover, the map ad..Vf ; V Cf //� induced by ad..Vf ; V Cf // on K-theory depends

only on f and not on the choice of the pair .Vf ; V Cf /.

Proof. Obviously, ad.Vf ; V Cf / is a contractive homomorphism; thus we just need to show
that if T has finite propagation and is locally compact, then ad..Vf ; V Cf //.T / has these
properties too.

Assume first that T has finite propagation. Let " be as in Lemma 2.7; then d.f .x/;y/�
" and d.f .x0/; y0/ � " for any .x; y/ 2 supp.Vf / and .y0; x0/ 2 supp.V C

f
/. Let .y1; y2/ 2

supp.Vf T V Cf /. By Remark 2.3 part (3), we have that

supp.Vf T V Cf / � supp.Vf / ı supp.T / ı supp.V C
f
/:

Hence there exist x1; x2 2 X such that .x1; y1/ 2 supp.Vf /; .x1; x2/ 2 supp.T /, and
.y2; x2/ 2 supp.V C

f
/; then

d.y1; y2/ � d
�
y1; f .x1/

�
C d

�
f .x1/; f .x2/

�
C d

�
f .x2/; y2

�
� 2"C d

�
f .x1/; f .x2/

�
:

Since f is coarse and T has finite propagation, we have that d.y1;y2/ is smaller than some
constant for all .y1; y2/ 2 supp.Vf T V Cf /. This completes the proof of finite propagation.

Now assume that T is locally compact. Let K be a compact subset of Y and let F D
supp.Vf /. By Remark 2.3 (4), we have that

�KVf T V
C

f
D �KVf �F ıKT V

C

f
:

Since f is a proper map and X is a proper space, we know that F ı K is a compact
subset inX . Then �F ıKT is a compact operator, and hence �KVf �F ıKT V Cf is a compact
operator. The case of Vf T V Cf �K is similar. Thus ad..Vf ; V Cf //.T / is locally compact.

Let .V1; V C1 / and .V2; V C2 / be two pairs of operators satisfying the conditions of
Lemma 2.7; then we just need to prove

ad
�
.V1; V

C
1 /
�
�
D ad

�
.V2; V

C
2 /
�
�
W K�

�
Bp.E

p
X /
�
! K�

�
Bp.E

p
Y /
�
:

Let

U D

 
I � V1V

C
1 V1V

C
2

V2V
C
1 I � V2V

C
2

!
I

then U 2 D I and 
ad
�
.V1; V

C
1 /
�
.T / 0

0 0

!
D U

 
0 0

0 ad
�
.V2; V

C
2 /
�
.T /

!
U:

Thus ad..V1; V C1 //� D ad..V2; V C2 //�.



J. Zhang and D. Zhou 1290

Corollary 2.9. For different Lp-X -modules EpX and E 0pX , Bp.EpX / is non-canonically
isomorphic to Bp.E 0pX /, and K�.Bp.E

p
X // is canonically isomorphic to K�.Bp.E

0p
X //.

For convenience, we replaceBp.EpX / byBp.X/ representing theLp Roe algebra ofX.

2.2. Lp localization algebra and Lp K -homology

Definition 2.10. Let X be a proper metric space. The Lp localization algebra of X ,
denoted by BpL .X/, is defined to be the norm closure of the algebra of all bounded and
uniformly norm-continuous functions f from Œ0;1/ to Bp.X/ such that

prop
�
f .t/

�
is uniformly bounded and prop

�
f .t/

�
! 0 as t !1:

The propagation of f is defined to be max¹prop.f .t// W t 2 Œ0;1/º.

Let f be a uniformly continuous coarse map from a proper metric space X to another
proper metric space Y . Let ¹"kºk be a sequence of positive numbers such that "k ! 0 as
k !1. By Lemma 2.7, for each "k , there exist an isometric operator Vk from an Lp-X -
moduleEpX to anLp-Y -moduleEpY and a contractive operator V C

k
from anLp-Y -module

E
p
Y to an Lp-X -module EpX such that V C

k
Vk D I and

supp.Vk/ �
®
.x; y/ 2 X � Y W d

�
f .x/; y

�
� "k

¯
;

supp.V C
k
/ �

®
.y; x/ 2 Y �X W d

�
f .x/; y

�
� "k

¯
:

For t 2 Œ0;1/, define

Vf .t/ D R.t � k/.Vk ˚ VkC1/R
�.t � k/;

V C
f
.t/ D R.t � k/.V C

k
˚ V C

kC1
/R�.t � k/

for all k � t � k C 1, where

R.t/ D

�
cos.�t=2/ sin.�t=2/
� sin.�t=2/ cos.�t=2/

�
:

Vf .t/ is an operator fromE
p
X ˚E

p
X toEpY ˚E

p
Y , and V C

f
.t/ is an operator fromE

p
Y ˚E

p
Y

toEpX ˚E
p
X such that kVf .t/k � 4, kV C

f
.t/k � 4, and V C

f
.t/Vf .t/D I for all t 2 Œ0;1/.

Lemma 2.11. Let f and ¹"kºk be as above; then the pair .Vf .t/;V Cf .t// induces a homo-
morphism Ad..Vf ; V Cf // from B

p
L .X/ to BpL .Y /˝M2.C/ defined by

Ad
�
.Vf ; V

C

f
/
�
.u/.t/ D Vf .t/

�
u.t/˚ 0

�
V C
f
.t/

for any u 2 BpL .X/ and t 2 Œ0;1/ such that

prop
�
Ad

�
.Vf ; V

C

f
/
�
.u/.t/

�
� sup
.x;y/2supp.u.t//

d
�
f .x/; f .y/

�
C 2"k C 2"kC1

for all t 2 Œk; k C 1�.
Moreover, the induced map Ad..Vf ; V Cf //� on K-theory depends only on f and not

on the choice of the pairs ¹.Vk ; V Ck /º in the construction of Vf .t/ and V C
f
.t/.
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Proof. For any u 2BpL .X/, Ad..Vf ;V Cf //.u/ is bounded and uniformly norm-continuous
in t although Vf and V C

f
are not norm-continuous. By the same ways as the proof of

Lemma 2.8, we can obtain that Ad..Vf ; V Cf //.u/.t/ is locally compact when u.t/ is
locally compact for each t and Ad..Vf ; V Cf //� does not depend on the choice of the
pair .Vf ; V Cf /.

Thus we just need to consider prop(Ad..Vf ; V Cf //.u/.t/) for which prop(u.t/) is uni-
formly finite and prop.u.t//! 0 as t !1. By Lemma 2.3 (4), we know that

prop
�
Vku.t/V

C

k

�
� sup

®
d
�
f .x/; f .y/

�
W .x; y/ 2 supp

�
u.t/

�¯
C 2"k ;

prop
�
Vku.t/VkC1

�
� sup

®
d
�
f .x/; f .y/

�
W .x; y/ 2 supp

�
u.t/

�¯
C "k C "kC1:

Thus by Remark 2.5, we have

prop
�
Ad
�
.Vf ;V

C

f
/
�
.u/.t/

�
� sup

®
d
�
f .x/;f .y/

�
W .x;y/2 supp

�
u.t/

�¯
C2"kC2"kC1:

Therefore, prop.Ad..Vf ; V Cf //.u/.t// is uniformly finite since f is a coarse map, and
prop.Ad..Vf ; V Cf //.u/.t//! 0 as t !1 since f is a uniformly continuous map and
"k ! 0.

Definition 2.12. The i th Lp K-homology of X is defined to be Ki .B
p
L .X//.

2.3. Obstruction group

Let X be a proper metric space. Now consider the evaluation-at-zero homomorphism

e0 W B
p
L .X/! Bp.X/;

which induces a homomorphism on K-theory:

e0 W K�
�
B
p
L .X/

�
! K�

�
Bp.X/

�
:

Let C be a locally finite and uniformly bounded cover for X . The nerve space NC
associated to C is defined to be the simplicial complex whose set of vertices equals C
and where a finite subset ¹U0; : : : ; Unº � C spans an n-simplex in NC if and only ifTn
iD0 Ui 6D ;. Endow NC with the `1-metric, i.e., the path metric whose restriction to

each simplex ¹U0; : : : ; Unº is given by

d

 
nX
iD0

tiUi ;

nX
iD0

siUi

!
D

nX
iD0

jti � si j:

The distance of two points which are in different connected components is defined to be
1 by convention.

A sequence of locally finite and uniformly bounded covers ¹Ckº1kD0 of metric space
X is called an anti-Čech system of X [36] if there exists a sequence of positive numbers
Rk !1 such that, for each k,
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(1) every set U 2 Ck has diameter less than or equal to Rk ;
(2) any set of diameter Rk in X is contained in some member of CkC1.
An anti-Čech system always exists [36].
By the property of the anti-Čech system, for every pair k2 > k1, there exists a simpli-

cial map ik1k2 from NCk1 to NCk2 such that ik1k2 maps a simplex ¹U0; : : : ; Unº in NCk1
to a simplex ¹U 00; : : : ; U

0
nº in NCk2 satisfying Ui � U 0i for all 0 � i � n. Thus ik1k2 gives

rise to the following inductive systems of groups:

ad
�
.Vik1k2 ; V

C

ik1k2
/
�
�
W K�

�
Bp.NCk1 /

�
! K�

�
Bp.NCk2 /

�
;

Ad
�
.Vik1k2 ; V

C

ik1k2
/
�
�
W K�

�
B
p
L .NCk1 /

�
! K�

�
B
p
L .NCk2 /

�
:

The following conjecture is called the Lp coarse Baum–Connes conjecture.

Conjecture 2.13. LetX be a proper metric space and ¹Ckº1kD0 an anti-Čech system ofX ;
then the evaluation-at-zero homomorphism

e0 W lim
k!1

K�
�
B
p
L .NCk /

�
! lim

k!1
K�
�
Bp.NCk /

�
Š K�

�
Bp.X/

�
is an isomorphism.

For each p 2 Œ1;1/, the group limk!1K�.B
p
L .NCk // is the Lp coarseK-homology

of X (refer to [19, Definition 2.1]). Moreover, it is not difficult to see that the Lp coarse
Baum–Connes conjecture for X does not depend on the choice of the anti-Čech system.

Let BpL;0.X/ D ¹f 2 B
p
L .X/ W f .0/ D 0º. There exists an exact sequence:

0! B
p
L;0.X/! B

p
L .X/! Bp.X/! 0:

Thus we have the following reduction.

Lemma 2.14. Let X be a proper metric space and ¹Ckº1kD0 an anti-Čech system of X ;
then the Lp coarse Baum–Connes conjecture is true if and only if

lim
k!1

K�
�
B
p
L;0.NCk /

�
D 0:

For obvious reason limk!1K�.B
p
L;0.NCk // is called the obstruction group to the Lp

coarse Baum–Connes conjecture.

3. Controlled obstructions: QPı;N;r;k.X/;QUı;N;r;k.X/

The controlled obstructions QP and QU for the coarse Baum–Connes conjecture were
introduced by Guoliang Yu [46]. In this section, we will introduce and study the Lp ver-
sion of QP and QU, which can be considered as a controlled version of K0.B

p
L;0.X/˝

C0..0; 1/
k// and K1.B

p
L;0.X/˝ C0..0; 1/

k//. We will follow the notation in [46]. One
may refer to [6, 29] for more detail about the controlled K-theory for C �-algebras and
Lp-algebras.
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3.1. Fundamental concept and property

Definition 3.1 ([6]). Let A be a unital Banach algebra. For 0 < ı < 1=100, N � 1, we
define the following: (1) an element e in A is called .ı; N /-idempotent if ke2 � ek < ı
and max¹kek;kI � ekº �N ; (2) an element u in A is called .ı;N /-invertible if kuk �N ,
and there exists v 2 A with kvk � N such that max¹kuv � Ik; kvu � Ikº < ı, where I
is the unit of A. Such v is called a .ı; N /-inverse of u.

Let X be a proper metric space and let BpL;0.X/
C be the Banach algebra obtained

from B
p
L;0.X/ by adjoining an identity I .

Definition 3.2. Let 0 < ı < 1=100,N � 1, r > 0, k and n be nonnegative integers. Define
QPı;N;r;k.B

p
L;0.X/

C ˝Mn.C// to be the set of all continuous functions f from Œ0; 1�k

to BpL;0.X/
C ˝Mn.C/ such that

(1) f .t/ is an .ı; N /-idempotent and prop.f .t// � r for all t 2 Œ0; 1�k ;

(2) kf .t/ � emk < ı for all t 2 bd.Œ0; 1�k/, the boundary of Œ0; 1�k in Rk , where
em D I ˚ � � � ˚ I ˚ 0˚ � � � ˚ 0 with m identities;

(3) �.f .t//Dem, where � is the canonical homomorphism fromB
p
L;0.X/

C˝Mn.C/
to Mn.C/.

Definition 3.3. Let 0 < ı < 1=100, N � 1, r > 0, and let QPı;N;r;k.X/ be defined as the
direct limit of QPı;N;r;k.BPL;0.X/

C ˝Mn.C// under the embedding: p ! p ˚ 0.

Definition 3.4. Let 0 < ı < 1=100, N � 1, r > 0, k and n be nonnegative integers.
Define QUı;N;r;k.B

p
L;0.X/

C ˝Mn.C// to be the set of all continuous functions u from
Œ0; 1�k to BpL;0.X/

C ˝Mn.C/ such that there exists a continuous function v W Œ0; 1�k !
B
p
L;0.X/

C ˝Mn.C/ satisfying that

(1) u.t/ is a .ı; N /-invertible with a .ı; N /-inverse v.t/ such that max¹prop.u.t//;
prop.v.t//º � r for all t 2 Œ0; 1�k ;

(2) ku.t/ � Ik < ı and kv.t/ � Ik < ı for all t 2 bd.Œ0; 1�k/;

(3) �.u.t// D �.v.t// D I , where the map � is the canonical homomorphism from
B
p
L;0.X/

C ˝Mn.C/ to Mn.C/.

Such v is called a .ı; N; r/-inverse of u.

Definition 3.5. Let 0 < ı < 1=100, N � 1, r > 0, and let QUı;N;r;k.X/ be defined as the
direct limit of QUı;N;r;k.BPL;0.X/

C ˝Mn.C// under the embedding: u! u˚ I .

Definition 3.6. Let e1; e2 2QPı;N;r;k.B
p
L;0.X/

C˝Mn.C//. We say e1 is .ı;N; r/-equiv-
alent to e2 if there exists a continuous homotopy a.t 0/ in QPı;N;r;k.B

p
L;0.X/

C ˝Mn.C//
for t 0 2 Œ0; 1�, such that a.0/ D e1 and a.1/ D e2. Such homotopy is called a .ı; N; r/-
homotopy.

Notice that (1) any e 2 QPı;N;r;k.X/ is .ı0; N 0; r/-equivalent to some f for which
f .t/D�.f / for all t 2 bd.Œ0;1�k/; (2) if e1 is .ı;N;r/-equivalent to e2 and e1.t/D�.e1/,
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e2.t/D �.e2/ for all t 2 bd.Œ0; 1�k/, then there exists a homotopy a.t 0/ in QPı 00;N 00;r;k.X/
such that a.0/D e1, a.1/D e2, and a.t 0/.t/D �.a.t 0// for all t 2 bd.Œ0; 1�k/, where ı0; ı00

depend only on ı;N ; N 0; N 00 depend only on N .

Definition 3.7. Let u1; u2 be two elements in QUı;N;r;k.B
p
L;0.X/

C ˝Mn.C//. We say
that u1 is .ı; N; r/-equivalent to u2 if there exists a continuous homotopy w.t 0/ in
QUı;N;r;k.B

p
L;0.X/

C ˝Mn.C// for t 0 2 Œ0; 1� such that w.0/ D u1 and w.1/ D u2. This
equivalence induces an equivalent relation in QUı;N;r;k.X/.

The following lemma tells us that QPı;N;r;k.X/ can be considered as a controlled
version of K0.B

p
L;0.X/˝ C0..0; 1/

k//.

Lemma 3.8. Let 0< ı <1=100 and let � be a function such that �.x/D 1 for Re.x/> 1=2
and �.x/ D 0 for Re.x/ < 1=2. Then

(1) for any e 2 QPı;N;r;k.X/, �.e/ is an idempotent and defines an element Œ�.e/� 2
K0.B

p
L;0.X/˝ C0..0; 1/

k//;

(2) for any two elements e1; e2 2 QPı;N;r;k.X/ satisfying that e1 is .ı; N; r/-equiva-
lent to e2, Œ�.e1/� D Œ�.e2/� in K0.B

p
L;0.X/˝ C0..0; 1/

k//;

(3) for any 0 < ı < 1=100, every element in K0.B
p
L;0.X/˝ C0..0; 1/

k// can be rep-
resented as Œ�.e1/� � Œ�.e2/�, where e1; e2 2 QPı;N;r;k.X/ for some N � 1 and
r > 0.

Proof. (1) and (2) are straightforward by holomorphic functional calculus and the defini-
tion of .ı;N;r/-equivalence. To prove (3), for any Œp�� Œq�2K0.B

p
L;0.X/˝C0..0;1/

k//,
where p; q 2 .BpL;0 ˝C0..0; 1/

k//C ˝Mn.C/, let N D kpk C k1� pk C 1. By approx-
imation argument, there exists r > 0 and e1 2 .B

p
L;0 ˝ C..0; 1/

k//C ˝Mn.C/ such that
prop.e1/ < r and ke1 � pk< ı

4N
. Thus we have e12QPı;N;r;k.X/. Now we just need to

prove Œ�.e1/�D Œp�. Let e.t 0/D t 0e1C.1�t 0/p for t 02 Œ0; 1�. We have ke2.t 0/�e.t 0/k<ı.
Thus �.e.t 0// is a continuous homotopy of projections between �.e.0// D p and
�.e.1// D �.e1/.

The following lemma tells us that QUı;N;r;k.X/ can be considered as a controlled
version of K1.B

p
L;0.X/˝ C0..0; 1/

k//.

Lemma 3.9. Let 0 < ı < 1=100. Then

(1) for any u 2 QUı;N;r;k.X/, u is an invertible element and defines an element Œu�
in K1.B

p
L;0.X/˝ C0..0; 1/

k//;

(2) if u1 is .ı; N; r/-equivalent to u2 in QUı;N;r;k.X/, then one has Œu1� D Œu2� in
K1.B

p
L;0.X/˝ C0..0; 1/

k//;

(3) for any 0 < ı < 1=100, every element in K1.B
p
L;0.X/˝ C0..0; 1/

k// can be rep-
resented as Œu�, where u 2 QUı;N;r;k.X/ for some N � 1 and r > 0.

Proof. (1) is true since the set of invertible elements in Banach algebra is open.
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(2) is true by the definition of .ı; N; r/-equivalence. To prove (3), we assume that
Œu0� 2 K1.B

p
L;0.X/˝ C0..0; 1/

k//. Let N D ku0k C ku0�1k C 1; then there exists r > 0
and u; v 2 BpL;0.X/ ˝ C0..0; 1/

k/ ˝Mn.C/ such that ku � u0k < ı
2N

, kv � u0�1k <
ı
2N

and prop.u/ < r , prop.v/ < r . We have kuk � N , kvk � N and kuv � Ik < ı,
kvu � Ik < ı. Hence u 2 QUı;N;r;k.X/. Let w.t/ D tu C .1 � t /u0 for t 2 Œ0; 1�. We
have kw.t/u0�1 � Ik < ı < 1=100. Thus w.t/u0�1 is an invertible element, so is w.t/.
Therefore Œu� D Œu0� in K1.B

p
L;0.X/˝ C0..0; 1/

k//.

Lemma 3.10 ([6, Lemma 2.29]). If e is .ı; N; r/-equivalent to f by a homotopy et 0
.t 0 2 Œ0; 1�/ in QPı;N;r;k.X/, then there exists ˛N > 0;m 2 N such that e ˚ Im ˚ 0m is
.2ı; 3N; r/-equivalent to f ˚ Im ˚ 0m by an ˛N -Lipschitz homotopy, where ˛N depends
only on N and not on e; f; ı; r; and m depends only on ı;N; et 0 .

Proof. There exists a partition 0 D t 00 < t
0
1 < � � � < t

0
m D 1 such that

ket 0i � et
0
i�1
k < inf

t 02Œ0;1�

ı � ke2t 0 � et 0k

2N C 1
:

For each t 0, we have a Lipschitz .ı; 3N; r/-homotopy between I ˚ 0 and et 0 ˚ .1 � et 0/
given by combining the linear homotopy connecting I ˚ 0 to .et 0 � e2t 0/ ˚ 0 and the
homotopy

.et 0 ˚ 0/CR
�.s/

�
.1 � et 0/˚ 0

�
R.s/;

whereR.s/D
� cos.�s=2/ sin.�s=2/
� sin.�s=2/ cos.�s=2/

�
. Obviously, the linear homotopy between et 0i�1 and et 0i

is Lipschitz for all i . Then0@et 00 Im
0m

1A

'

0BBBBBBBB@

et 00
I

0

: : :

I

0

1CCCCCCCCA
'

0BBBBBBBB@

et 00
I � et 01

et 01
: : :

I � et 0m
et 0m

1CCCCCCCCA

'

0BBBBBBBB@

et 00
I � et 00

et 01
: : :

I � et 0m�1
et 0m

1CCCCCCCCA
'

0BBBBBBBB@

I

0

I

: : :

0

et 0m

1CCCCCCCCA
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'

0@et 0m Im
0m

1A ;
where' represents .2ı; 3N; r/-equivalence by Lipschitz homotopy.

We remark that we have a result for QU similar to the above lemma, i.e., homotopy
implies Lipschitz homotopy.

The following lemma tells us that homotopy equivalence of two quasi-invertible ele-
ments implies homotopy equivalence of their quasi-inverses.

Lemma 3.11. Let u1; u2 be two elements in QUı;N;r;k.X/ with .ı; N /-inverse v1; v2,
respectively. If u1 is .ı; N; r/-equivalent to u2, then v1 is .4ı; 2N; r/-equivalent to v2 in
QU4ı;2N;r;k.X/.

Proof. Let w.t 0/ be the homotopy path jointing u1 and u2. For " D ı
N

, there exists a
partition 0 D t 00 < t

0
1 < � � � < t

0
n D 1 such that

max
0�i�n�1

®

w.l/ � w.l 0/

 W t 0i � l; l 0 � t 0iC1¯ < ı

N
:

Assume that st 0i is the .ı; N; r/-inverse of w.t 0i /; we require s0 D v1; s1 D v2. Let

s.t 0/ D
t 0 � t 0i
t 0iC1 � t

0
i

st 0iC1 �
t 0 � t 0iC1

t 0iC1 � t
0
i

st 0i ; t 0i � t
0
� t 0iC1:

We have kst 0iw.t
0/� Ik� kst 0i k � kw.t

0/�w.t 0i /kCkst 0iw.t
0
i /� Ik� 2ı for t 0i � t

0 � t 0iC1.
Then ks.t 0/w.t 0/ � Ik � 4ı. Similarly, kw.t 0/s.t 0/ � Ik � 4ı.

Obviously, ks.t 0/k � 2N and prop.s.t 0// < r . Thus s.t 0/ is a continuous homotopy
between v1 and v2 in QU4ı;2N;r;k.X/.

The following two lemmas can be viewed as the controlled version of the classical
result in K-theory that stable homotopy equivalence of idempotents is the same as stable
similarity.

Lemma 3.12. Let 0 < ı < 1=100. If e is .ı; N; r/-equivalent to f in QPı;N;r;k.X/,
then there exist a positive number m and an element u in QUı;C1.N/;C2.N;ı/r;k.X/ with
.ı; C1.N /; C2.N; ı/r/-inverse v, such that

f ˚ Im ˚ 0m � v.e ˚ Im ˚ 0m/u

 < C3.N /ı;
where C1.N / and C3.N / depend only on N and C2.N; ı/ depends only on N and ı.

Proof. By Lemma 3.10, there exists ˛N > 0,m 2N such that e˚ Im˚ 0m is .2ı; 3N; r/-
equivalent to f ˚Im˚0m by an ˛N -Lipschitz homotopy et 0 , i.e., ket 0 �et 00k�˛N jt 0� t 00j
for any t 0; t 00 2 Œ0; 1�. There exists a partition 0 D t 00 < t

0
1 < � � � < t

0
n D 1 such that

˛N jt
0
iC1 � t

0
i j <

1

2N C 1
:
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Let wi D ..2et 0i � I /.2et 0iC1 � I /C I /=2. We have I � wi D .2et 0i � I /.et 0i � et 0iC1/C
2.et 0i � e

2
t 0i
/. Then

kI � wik < k2et 0i � Ik � ket
0
i
� et 0iC1k C 2ket

0
i
� e2

t 0i
k < 1=2C 4ı < 1:

Thus wi is an invertible element and w�1i D †
1
jD0.1 � wi /

j . Let vi D †ljD0.I � wi /
j

satisfying kvi � w�1i k < ı=2..maxi¹kwik; kw�1i kº C 1/
n/. Let

u D w0w1 � � �wn�1; v D vn�1vn�2 � � � v0:

Then max¹kuk; kvkº � C1.N /, max¹prop.u.t//; prop.v.t//º � C2.N; ı/r for t 2 Œ0; 1�k ,
and max¹kI � uvk; kI � vukº < ı, where C1.N / depends only on N and C2.N; ı/
depends only on N; ı.

By computation, we have ket 0iwi � wiet 0iC1k < 26Nı. Then kue1 � e0uk < C 0N ,
where C 0 depends only on N . Thus

e1 � v.e0/u

 D 

e1 � vue1 C v.ue1 � e0u/

 < C3.N /ı;
where C3.N / depends only on N .

Lemma 3.13. Let N � 1, 0 < ı < 1=.800N 4/, and 0 < " < 1=400. For e and f in
QPı;N;r;k.B

p
L;0.X/

C ˝Mn.C//, if there exists u in QUı;N;r;k.X/ with .ı; N; r/-inverse
v satisfying kuev � f k < ", then e ˚ 0n is .2"C 4N 4ı; 2N 3; 3r/-equivalent to f ˚ 0n
in QP2"C4N 4ı;2N 3;3r;k.X/.

Proof. Let et 0 be a homotopy connecting f ˚ 0n to e ˚ 0n obtained by combining the
linear homotopy connecting f ˚ 0n to uev˚ 0n with the following homotopy connecting
uev ˚ 0n to e ˚ 0n:

R.t 0/.u˚ In/R
�.t 0/.e ˚ 0n/R.t

0/.v ˚ In/R
�.t 0/;

where

R.t 0/ D

�
cos.�t 0=2/ sin.�t 0=2/
� sin.�t 0=2/ cos.�t 0=2/

�
:

It is not difficult to verify that et 0 is a .2"C4N 4ı; 2N 3; 3r/-homotopy between e and f .

Definition 3.14. Let X be a proper metric space and define

GQPı;N;r;k.X/ D
®
e � f W e; f 2 QPı;N;r;k.X/; �.e/ D �.f /

¯
:

We say that e1 � f1 is .ı;N; r/-equivalent to e2 � f2 if e1˚ f2˚ In˚ 0n is .ı;N; r/-
equivalent to f1 ˚ e2 ˚ In ˚ 0n for some n. This defines an equivalent relation on
GQPı;N;r;k .

For any u 2 QUı;N;r;k.X/ with a .ı; N; r/-inverse v, let Zt .u/ be a homotopy con-
necting I ˚ I to u ˚ v obtained by combining the linear homotopy connecting I ˚ I
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to uv ˚ I with the homotopy .u ˚ I /R.t/.v ˚ I /R�.t/ connecting uv ˚ I to u ˚ v;
let Z0t .u/ be a homotopy connecting I ˚ I to v ˚ u obtained by combining the linear
homotopy connecting I ˚ I to uv ˚ I with the homotopy R.t/.u ˚ I /R�.t/.v ˚ I /
connecting uv ˚ I to v ˚ u, where

R.t/ D

�
cos.�t=2/ sin.�t=2/
� sin.�t=2/ cos.�t=2/

�
:

Let
et .u/ D Zt .u/.I ˚ 0/Z

0
t .u/:

We have that

(1) ke2t .u/ � et .u/k < 8N
6ı;

(2) ket .u/k � 4N 4 and kI � et .u/k � 5N 4;

(3) prop.et .u/.t 0// � 2r for t 0 2 Œ0; 1�k .

Then we can define a map � from QUı;N;r;k.X/ to GQP8N 6ı;5N 4;2r;kC1.X/ by

�.u/ D et .u/ � .I ˚ 0/:

It is not difficult to see that the definition of � does not depend on the choice of a
.ı; N; r/-inverse v of u in the sense of equivalence.

The following result can be considered as a controlled version of a classical result in
the operator K-theory K1.A/ Š K0.SA/.

Lemma 3.15. � W QUı;N;r;k.X/ ! GQP8N 6ı;5N 4;2r;kC1.X/ is an asymptotic isomor-
phism in the following sense:

(1) for any 0 < ı < 1=100, r > 0, N � 1, there exist 0 < ı1 < ı, N1 � N , and
0 < r1 < r such that if two elements u1 and u2 in QUı1;N;r1;k.X/ are .ı1;N; r1/-
equivalent, then �.u1/ and �.u2/ are .ı;N1; r/-equivalent, where ı1 depends only
on ı and N , N1 depends only on N , and r1 depends only on r;

(2) for any 0 < ı < 1=100, r > 0, N � 1, there exist 0 < ı2 < ı, N2 � N , and
0 < r2 < r such that if u0 and u00 in QUı2;N;r2;k.X/ satisfy that �.u0/ is .ı2;N; r2/-
equivalent to �.u00/, then u0 ˚ Im is .ı; N2; r/-equivalent to u00 ˚ Im for some
m2N, where ı2 depends only on ı andN ,N2 depends only onN , and r2 depends
only on r , ı, N ;

(3) for any 0<ı<1=100, r >0,N �1, there exist 0<ı3<ı,N3�N , and 0 < r3 < r
such that, for each e � em 2 GQPı3;N;r3;kC1.X/, there exists u 2 QUı;N3;r;k.X/,
for which �.u/ is .ı;N3; r/-equivalent to e � em, where ı3 depends only on ı and
N , N3 depends only on N , and r3 depends only on r; ı; N .

Proof. (1) Let vi be the .ı1; N; r1/-inverse of ui for i D 1; 2 and w.t/ the .ı1; N; r1/-
homotopy between u1 and u2. By Lemma 3.11, there exists a .4ı1; 2N; r1/-homotopy
s.t/ connecting v1 and v2 such that kI � s.t/w.t/k and kI �w.t/s.t/k are less than 4ı1.
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Let a.t/ be a homotopy connecting I to v2u1 obtained by combining the linear homotopy
connecting I to v1u1 with the homotopy s.t/u1; let a0.t/ be a homotopy connecting I to
v1u2 obtained by combining the linear homotopy connecting I to v1u1 with the homo-
topy v1w.t/; let b.t/ be a homotopy connecting I to u2v1 obtained by combining the
linear homotopy connecting I to u1v1 with the homotopy w.t/v1; let b0.t/ be a homo-
topy connecting I to u1v2 obtained by combining the linear homotopy connecting I to
u1v1 with the homotopy u1s.t/. Define

xt D Zt .u2/
�
a.t/˚ b.t/

�
Z0t .u1/;

x0t D Zt .u1/
�
a0.t/˚ b0.t/

�
Z0t .u2/:

We have that

(i) max¹kxtk; kx0tkº � 8N
6;

(ii) max¹kI � xtx0tk; kI � x
0
txtkº < 64N

10ı1;

(iii) max¹prop.xt /; prop.x0t /º < 6r1;

(iv) max¹kxi � Ik; kx0i � Ik < 3ı1º for i D 0; 1.

Thus xt ; x0t 2 QU64N 10ı1;8N 6;6r1;kC1.X/ and

xtet .u1/x0t � et .u2/

 < .184N 14/ı1:

By Lemma 3.13, we can select appropriate ı1, N1, and r1 satisfying Lemma 3.15 (1).
(2) Let v0; v00 be .ı2; N; r2/-inverses of u0; u00, respectively. By Lemma 3.12, there

exists an element u in QUı2;C1.N/;C2.N;ı2/r2;kC1.X/ with inverse v such that

uet .u0 ˚ I /v � et .u00 ˚ I /

 < C3.N /ı2;
i.e.,

utZt .u0˚I /.I˚0/Z0t .u0˚I /vt �Zt .u00˚I /.I˚0/Z0t .u00˚I /

<C3.N /ı2; (3.1)

where t 2 Œ0; 1�. Thus we have

Z0t .u00˚I /utZt .u0˚I /.I˚0/� .I˚0/Z0t .u00˚I /utZt .u0˚I /

<C4.N /ı2: (3.2)

Let

Z0t .u
00
˚ I /utZt .u

0
˚ I / D

�
bt gt
ht dt

�
:

Then by (3.2), we obtain

kgtk < C4.N /ı2; khtk < C4.N /ı2: (3.3)

By (3.1), we also have

.I˚0/Z0t .u0˚I /vtZt .u00˚I /�Z0t .u0˚I /vtZt .u00˚I /.I˚0/

<C5.N /ı2: (3.4)
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Let

Z0t .u
0
˚ I /vtZt .u

00
˚ I / D

�
b0t g0t
h0t d 0t

�
:

Then by (3.4), we obtain

kg0tk < C5.N /ı2; kh
0
tk < C5.N /ı2: (3.5)

Thus by (3.3) and (3.5), we know that bt 2 QUC6.N/ı2;C7.N/;C8.N;ı2/r2;kC1.X/ with a
.C6.N /ı2; C7.N /; C8.N; ı2/r2/-inverse b0t such that

kc0 � Ik � ku0 � Ik < ı2;

c1 � .v00 ˚ I /.u0 ˚ I /

 < C9.N /ı2:
Thus we can select appropriate ı2, N2, and r2 satisfying Lemma 3.15 (2).

(3) e.t/ can be considered as a homotopy in QPı3;N;r3;k.X/, where t 2 Œ0; 1�. We
can assume that e.0/ D e.1/ D em D I ˚ 0. By the proof of Lemma 3.12, there exists a
homotopy w.t/ in QUı3;C1.N/;C2.N;ı3/r3;k.X/ with inverse s.t/ for which w.0/ D s.0/ D
I such that 

w.t/.I ˚ 0˚ Im ˚ 0m/s.t/ � e.t/˚ Im ˚ 0m

 < C3.N /ı3
for somem 2N and all t 2 Œ0; 1�. By some minor modifications of w.t/ and s.t/, we have

w.1/.I ˚ 0/ � .I ˚ 0/w.1/

 < C4.N /ı3: (3.6)

Let

w.1/ D

�
u g

h u0

�
; s.1/ D

�
v g0

h0 v0

�
I

then by (3.6), we obtain

max
®
kgk; khk; kg0k; kh0k

¯
< C4.N /ı3:

Thus u and u0 are two elements in QUC5.N/ı3;C6.N/;C7.N;ı3/r3;k.X/ with inverse v and v0,
respectively.

Let at be a homotopy connecting I ˚ I ˚ I to v0v ˚ I ˚ I obtained by combining
the linear homotopy connecting I ˚ I ˚ I to v0u0 ˚ I ˚ I with the rotation homotopy
connecting .v0 ˚ I ˚ I /.u0 ˚ I ˚ I / to .v0 ˚ I ˚ I /.v ˚ u˚ u0/ with the homotopy
.v0 ˚ I ˚ I /.v ˚w.1 � t // connecting .v0 ˚ I ˚ I /.v ˚ u˚ u0/ to v0v ˚ I ˚ I . Sim-
ilarly, let bt be a homotopy connecting I ˚ I ˚ I to uu0 ˚ I ˚ I . Define

yt D
�
w.t/˚ I ˚ I

��
I ˚ a.t/

��
Z0t .u/˚ I ˚ I

�
;

y0t D
�
Zt .u/˚ I ˚ I

��
I ˚ b.t/

��
s.t/˚ I ˚ I

�
I

then we have

y0 D y
0
0 D I; max

®
kyi � Ik; ky

0
i � Ik

¯
< C8.N /ı3 (3.7)

and 

yt�et .u/˚ 0�y0t � .e ˚ 0/

 < C9.N /ı3: (3.8)
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Now by Lemma 3.13, we can choose appropriate ı3, N3, and r3 on the basis of (3.7) and
(3.8) satisfying Lemma 3.15 (3).

Remark: we can also let

yt D
�
w.t/˚ I ˚ I

��
I ˚Z0t .u

0/s.t/˚ I
��
Z0t .u/˚ I ˚ I

�
;

y0t D
�
Zt .u/˚ I ˚ I

��
I ˚ w.t/Zt .u

0/˚ I
��
s.t/˚ I ˚ I

�
:

3.2. Strongly Lipschitz homotopy invariance

Definition 3.16 (Yu [45]). Let f;g W X ! Y be two proper Lipschitz maps. A continuous
homotopy F.t; x/.t 2 Œ0; 1�/ between f and g is called strongly Lipschitz if

(1) F.t; x/ is a proper map from X to Y for each t ;

(2) there exists a constant C such that d.F.t; x/;F.t; y//� Cd.x;y/ for all x;y 2X
and t 2 Œ0; 1�; this C is called Lipschitz constant of F ;

(3) F is equicontinuous in t , i.e., for any " > 0, there exists ı > 0 such that d.F.t1;x/;
F.t2; x// < " for all x 2 X if jt1 � t2j < ı;

(4) F.0; x/ D f .x/; F.1; x/ D g.x/ for all x 2 X .

X is said to be strongly Lipschitz homotopy equivalent to Y if there exist proper Lip-
schitz maps f W X ! Y and g W Y ! X such that fg and gf are strongly Lipschitz
homotopic to idY and idX , respectively.

Lemma 3.17. Let f and g be two Lipschitz maps from X to Y . Let F.t; x/ be a strongly
Lipschitz homotopy connecting f to g with Lipschitz constant C . There exists C0 > 0 such
that, for any u 2 QUı;N;r;k.X/, there exists a homotopy w.t 0/ in QUD.N/ı;N 100;C0r;k.Y /

for which

w.0/ D Ad
�
.Vf ; V

C

f
/
�
.u/˚ I;

w.1/ D Ad
�
.Vg ; V

C
g /
�
.u/˚ I;

where D.N/ depends only on N and C0 depends only on C .

Proof. Choose ¹ti;j ºi�0;j�0 � Œ0; 1� satisfying

(1) t0;j D 0, ti;jC1 � ti;j , tiC1;j � ti;j ;

(2) there exists Nj !1 such that ti;j D 1 for all i � Nj and NjC1 � Nj ;

(3) d.F.tiC1;j ; x/;F.ti;j ; x// < "j D r=.j C 1/, d.F.ti;jC1; x/;F.ti;j ; x// < "j for
all x 2 X .

Let fi;j .x/DF.ti;j ;x/. By Lemma 2.7, there exist an isometric operator Vfi;j WE
p
X !

E
p
Y and a contractive operator V C

fi;j
W E

p
Y ! E

p
X with V C

fi;j
Vfi;j D I such that

supp.Vfi;j / �
®
.x; y/ 2 X � Y W d

�
fi;j .x/; y

�
< r=.1C i C j /

¯
;

supp.V C
fi;j
/ �

®
.y; x/ 2 Y �X W d

�
fi;j .x/; y

�
< r=.1C i C j /

¯
:
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For each i > 0, define a family of operators Vi .t/.t 2 Œ0;1// fromE
p
X ˚E

p
X toEpY ˚E

p
Y

and a family of operators V Ci .t/.t 2 Œ0;1// from E
p
Y ˚E

p
Y to EpX ˚E

p
X by

Vi .t/ D R.t � j /.Vfi;j ˚ Vfi;jC1/R
�.t � j /; t 2 Œj; j C 1�;

V Ci .t/ D R.t � j /.V
C

fi;j
˚ V C

fi;jC1
/R�.t � j /; t 2 Œj; j C 1�;

where

R.t/ D

 
cos.�t=2/ sin.�t=2/
� sin.�t=2/ cos.�t=2/

!
:

Consider

u0.t/ D Ad
�
.Vf ; V

C

f
/
�
.u/ D Vf .t/

�
u.t/˚ I

�
V C
f
.t/C

�
I � Vf .t/V

C

f
.t/
�
;

u1.t/ D Ad
�
.Vg ; V

C
g /
�
.u/ D Vg.t/

�
u.t/˚ I

�
V Cg .t/C

�
I � Vg.t/V

C
g .t/

�
;

ui .t/ D Ad
�
.Vi ; V

C

i /
�
.u/ D Vi .t/

�
u.t/˚ I

�
V Ci .t/C

�
I � Vi .t/V

C

i .t/
�
:

Let v be the .ı; N; r/-inverse of u. Similarly, we can define

u0i .t/ D Ad
�
.Vi ; V

C

i /
�
.v/:

For each i , define ni by

ni D

8<:max¹j W i � Nj º; ¹j W i � Nj º 6D ;I

0; ¹j W i � Nj º D ;:

We can choose Vfi;j in such a way that ui .t/ D u1, where t � ni .
Define

wi .t/ D

8̂̂<̂
:̂
ui .t/

�
u01.t/

�
; t � ni I

.ni � t /I C .t � ni C 1/ui .t/u
0
1.t/; ni � 1 � t � ni I

I; 0 � t � ni � 1:

Consider

a D

1M
iD0

.wi ˚ I /; b D

1M
iD0

.wiC1 ˚ I /; c D .I ˚ I /

1M
iD1

.wi ˚ I /:

By the construction of ¹ti;j º, we know that a; b; c 2 QUD1.N/ı;N 2;C1r;k.Y / for some con-
stant C1 depending only on C . Let

Vi;iC1.t
0/ D R.t 0/.Vi ˚ ViC1/R

�.t 0/; t 0 2 Œ0; 1�;

V Ci;iC1.t
0/ D R.t 0/.V Ci ˚ V

C

iC1/R
�.t 0/; t 0 2 Œ0; 1�:
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Define

ui;iC1.t
0/ D Vi;iC1.t

0/
�
.u˚ I /˚ I

�
V Ci;iC1.t

0/C
�
I � Vi;iC1.t

0/V Ci;iC1.t
0/
�
I

then

ui;iC1.0/ D
�
Vi .u˚ I /V

C

i C .I � ViV
C

i /
�
˚ I;

ui;iC1.1/ D
�
ViC1.u˚ I /V

C

iC1 C .I � ViC1V
C

iC1/
�
˚ I:

Using ui;iC1.t 0/, we can construct a homotopy s1.t 0/ in QUD2.N/ı;N 100;C2r;k.Y / for some
C2 � C1 depending only on C such that

s1.0/ D a; s1.1/ D b:

We can also construct a homotopy s2.t 0/ in QUD3.N/ı;N 100;C3r;k.Y / for someC3 �C1
depending only on C , such that

s2.0/ D b ˚ I; s2.1/ D c ˚ I:

Finally, we define w.t 0/ to be the homotopy obtained by combining the following
homotopies:

(1) the linear homotopy between .u0 ˚ I /
L1
iD1.I ˚ I / and

c0a..u1 ˚ I /
L1
iD1.I ˚ I //;

(2) s02.1 � t
0/a..u1 ˚ I /

L1
iD1.I ˚ I //;

(3) s01.1 � t
0/a..u1 ˚ I /

L1
iD1.I ˚ I //;

(4) the linear homotopy between a0a..u1 ˚ I /
L1
iD1.I ˚ I // and

.u1 ˚ I /
L1
iD1.I ˚ I /,

where a0; b0; c0; s01; s
0
2 are the .D.N/ı;N 100; C0r/-inverses of a; b; c; s1; s2, respectively,

in QUD4.N/ı;N 100;C4r;k.Y / for some C4 � max¹C1; C2; C3º depending only on C .
Therefore, we have that w.t 0/ is a homotopy connecting Ad..Vf ; V Cf //.u/

L1
iD1 I to

Ad..Vg ; V Cg //.u/
L1
iD1 I .

By Lemma 3.15, we have the following result.

Lemma 3.18. Let X , Y , f , and g be as in Lemma 3.17. For any 0 < ı < 1=100, N � 1,
r � 0, there exist 0 < ı1 < ı, N1 � N , 0 � r1 < r such that, for any e 2 QPı1;N;r1;k.X/
.k > 1/, there exists a homotopy e.t 0/.t 0 2 Œ0; 1�/ in QPı;N1;r;k.Y / satisfying

e.0/ D Ad
�
.Vf ; V

C

f
/
�
.e ˚ 0/˚ .I ˚ 0/;

e.1/ D Ad
�
.Vg ; V

C
g /
�
.e ˚ 0/˚ .I ˚ 0/;

where ı1 depends only on ı and N , N1 depends only on N , and r1 depends only on
r; ı; N; C .
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3.3. Controlled cutting and pasting

Definition 3.19 (Yu [46]). Let X be a proper metric space; let X1 and X2 be two sub-
spaces. The triple .X IX1; X2/ is said to satisfy the strong excision condition if

(1) X D X1 [X2, Xi is a Borel subset, and int.Xi / is dense in Xi for i D 1; 2;

(2) there exists r0 > 0; C0 > 0 such that (i) for any r 0 � r0, bdr 0.X1/ \ bdr 0.X2/ D
bdr 0.X1 \X2/; (ii) for each X 0 D X1; X2; X1 \X2, and any r 0 � r0, bdr 0.X 0/ is
strongly Lipschitz homotopy equivalent to X 0 with C0 as the Lipschitz constant.

Let the triple .X IX1; X2/ be as above. Let 0 < ı < 1=100. For any u 2 QUı;N;r;k.X/
with .ı; N; r/-inverse v, we take uX1 D �X1u�X1 and the same for vX1. Define

wu D

�
I uX1
0 I

��
I 0

�vX1 I

��
I uX1
0 I

��
0 �I

I 0

�
I

then

w�1u D

�
0 I

�I 0

��
I �uX1
0 I

��
I 0

vX1 I

��
I �uX1
0 I

�
:

We define a homomorphism

@0 W QUı;N;r;k.X/! QP4N 4ı;2N 6;6r;k

�
bd5r .X1/ \ bd5r .X2/

�
by

@0.u/ D �bd5r .X1/\bd5r .X2/wu.I ˚ 0/w
�1
u �bd5r .X1/\bd5r .X2/:

Now we verify

@0.u/ 2 QP4N 4ı;2N 6;6r;k

�
bd5r .X1/ \ bd5r .X2/

�
:

Firstly, k@0.u/k and k1� @0.u/k are less than 2N 6. Secondly, prop.@0.u// < 6r . Finally,
we estimate k.@0.u//2 � @0.u/k. For convenience, we take Y D bd5r .X1/ \ bd5r .X2/:

�@0.u/�2 � @0.u/

 D 

�Ywu.I ˚ 0/w�1u �X1�Ywu.I ˚ 0/w

�1
u �Y



:
We now estimate k�Ywu.I ˚ 0/w�1u �X1�Y k. We have �X1u�X1�Y D u�X1�Y . Thus we
can replace uX1 by u in wu.I ˚ 0/w�1u . Then

wu.I ˚ 0/w
�1
u D

�
.I � uv/uv C uv .I � uv/u.I � vu/C u.I � vu/

.I � vu/v .I � vu/2;

�
:

Thus

�Ywu.I ˚ 0/w�1u �X1�Y


 D 

�Y\X1��wu.I ˚ 0/w�1u �

� .I ˚ 0/
�
�X1�Y



 < 2N 2ı:

Similarly, 

�X1�Ywu.I ˚ 0/w�1u �Y


 < 2N 2ı:
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Assume that r < r0=5, where r0 is as in Definition 3.19. Let f be the proper Lips-
chitz map from bd5r .X1/\ bd5r .X2/ toX1 \X2 realizing the strong Lipschitz homotopy
equivalence in Definition 3.19. By Lemma 2.11, we have the pair .Vf ; V Cf / corresponding
to ¹"mº, for which supm."m/ < r=10.

We define the boundary map @ W QUı;N;r;k.X/! GQP4N 4ı;2N 6;6C0r;k.X1 \X2/ by

@.u/ D Ad
�
.Vf ; V

C

f
/
��
@0.u/

�
� .I ˚ 0/:

Then we consider the sequence

QUı;N;r;k.X1/˚QUı;N;r;k.X2/
j
�! QUı;N;r;k.X/

@
�! GQP4N 4ı;2N 6;6C0r;k.X1\X2/;

where j.u1 ˚ u2/ D .u1 C �X�X1/˚ .u2 C �X�X2/, r < r0=5.

Lemma 3.20. Let .X IX1; X2/ be as in Definition 3.19 with r0, C0; then the above se-
quence is asymptotically exact in the following sense:

(1) for any 0 < ı < 1=100, N � 1, r > 0, there exist 0 < ı1 < ı, N1 � N ,
0 < r1 < min¹r; r0=5º such that @j.u1 ˚ u2/ is .ı;N1; r/-equivalent to 0 for any
ui 2 QUı1;N;r1;k.Xi / .i D 1; 2/, where ı1 depends only on ı and N , N1 depends
only on N , and r1 depends only on ı;N; r;

(2) for any 0 < ı < 1=100, N � 1, r > 0, there exist 0 < ı2 < ı, N2 � N ,
0 < r2 < min¹r; r0=5º such that if u is an element in QUı2;N;r2;k.X/, for which
@.u/ is .ı2; N; r2/-equivalent to 0 in GQPı2;N;r2;k.X/, then there exist ui 2
QUı;N2;r;k.Xi / .i D 1;2/ such that j.u1˚u2/ is .ı;N2; r/-equivalent to u, where
ı2 depends only on ı and N , N2 depends only on N , and r2 depends only on
ı;N; r; r0; C0.

Proof. (1) follows from the definition of the boundary map and Lemma 3.13.
(2) By the strong homotopy invariance of QP, for any 0 < ı0 < ı, N � 1, 0 < r 02 <

min¹r; r0=5º, there exist ı2 < ı0, N 0 > N , 0 < r2 < r 02 (ı2 depends only on ı0 and N ,
N 0 depends only on N , and r2 depends only on r 02; ı

0; N; r0; C0) such that, for any
u 2 QUı2;N;r2;k.X/ whose boundary @.u/ is .ı2; N; r2/-equivalent to 0, and @0.u/ is
.ı0; N 0; r 02/-equivalent to 0. In view of Lemma 3.12, there exists an element y in
QUı 0;C1.N 0/;C2.N 0;ı 0/r 02;k.bd5r2.X1/\ bd5r2.X2// with .ı0; C1.N 0/; C2.N 0; ı0/r 02/-inverse
y0 such that 

xw.I ˚ 0/w�1x0 � .I ˚ 0/

 < C3.N 0/ı0;
where x D y C �X�bd5r2 .X1/\bd5r2 .X2/

, x0 D y0 C �X�bd5r2 .X1/\bd5r2 .X2/
, w D wu˚I .

This implies that 

xw.I ˚ 0/ � .I ˚ 0/xw

 < C4.N 0/ı0:
Thus we have

xw D

�
a b

c d

�
; kbk � C4.N

0/ı0; kck � C4.N
0/ı0; (3.9)
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w�1x0 D

�
a0 b0

c0 d 0

�
; kb0k � C4.N

0/ı0; kc0k � C4.N
0/ı0: (3.10)

Define
v1 D a�bd5r2 .X1/; v01 D �bd5r2 .X1/a

0:

Equations (3.9) and (3.10) tell us that

v1 2 QU.C4.N 0/C1/ı 0;C1.N 0/N 3
2 ;.C2.N

0;ı 0/C3/r 02;k

�
bd5r2.X1/

�
with inverse v01. Equations (3.9) and (3.10) together with the definition of w imply that

�X�bd10r2 .X2/

�
v01.u˚ I � I /

�

 < C5.N 0/ı0; (3.11)

�v01.u˚ I � I /��X�bd10r2 .X2/


 < C5.N 0/ı0: (3.12)

Define

v2 D �bd10r2 .X2/
�
v01.u˚ I /

�
�bd10r2 .X2/

; v02 D �bd10r2 .X2/
�
.u0 ˚ I /v1

�
�bd10r2 .X2/

;

where u0 is the .ı2; N; r2/-inverse of u.
Equations (3.11) and (3.12) tell us that v22QUC6.N 0/ı 0;C7.N 0/;C8.N 0;ı 0/r 02;k.bd10r2.X2//

with quasi-inverse v02.
We require 0 < r2 < r0=10. Let f1 be the proper strong Lipschitz map from bd5r .X1/

to X1 realizing the strong Lipschitz homotopy equivalence. Let f2 be the proper strong
Lipschitz map from bd10r .X2/ toX2 realizing the strong Lipschitz homotopy equivalence.
Define ui DAd..Vfi ; V

C

fi
//.vi / for i D 1;2, where the pair .Vfi ; V

C

fi
/ corresponds to ¹"kº,

for which supk."k/ < r
0
2.

By (3.11) and (3.12), we have that .v1 C �X�bd.5r2/.X1//˚ .v2 C �X�bd.10r2/.X2// is
.C9.N

0/ı0; C10.N
0/; C11.N

0; ı0/r 02/-equivalent to u˚ I . Note that Cj .N 0/ depends only
on N 0 for j D 1; 3; 4; 5; 6; 7; 9; 10 and Cj .N2; ı0/ depends only on N 0; ı0; C0 for j D
2; 8; 11.

By Lemma 3.17, we can choose appropriate ı0, N2, and r 02 such that u1 and u2 satisfy
the desired properties of Lemma 3.20 (2), where ı0 depends only on ı and N , N2 depends
only on N , and r 02 depends only on r; ı; N; r0; C0.

Corollary 3.21. By Lemma 3.15 and Lemma 3.20, one has the following asymptotically
exact sequence for QU when k > 1:

QUı;N;r;k.X1/˚ QUı;N;r;k.X2/! QUı;N;r;k.X/! QUı;N;r;k�1.X1 \X2/:

4. Spaces with finite asymptotic dimension
In this section, we will recall some facts about spaces with finite asymptotic dimension and
verify the Lp coarse Baum–Connes conjecture for spaces with finite asymptotic dimen-
sion.

Definition 4.1 (Gromov [13]). The asymptotic dimension of a metric spaceX is the small-
est integerm such that, for any r > 0, there exists a uniformly bounded cover C D ¹Uiºi2I
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of X , for which the r-multiplicity of C is at most mC 1, i.e., no ball of radius r in the
metric space intersects more than mC 1 members of C . If no such m exists, we say X
has infinite asymptotic dimension.

A finitely generated group can be viewed as a metric space with a left-invariant word-
length metric. To be more precise, for a group � with a finite symmetric generating set S ,
for any 
 2 � , we define its length

lS .
/ WD min¹n W 
 D s1 � � � sn; si 2 Sº:

The word-length metric dS on � is defined by

dS .
1; 
2/ WD lS .

�1
1 
2/

for all 
1; 
2 2 � . We remark that, for any two finite symmetric generating sets S1; S2 of
� , .�; dS1/ is quasi-isometric to .�; dS2/.

Remark 4.2. Now we give some facts about asymptotic dimension.

(1) The concept of asymptotic dimension is a coarse geometric analogue of the cov-
ering dimension in topology.

(2) Hyperbolic groups have finite asymptotic dimension as a metric space with word-
length metric [13, 37].

(3) The class of finitely generated groups with finite asymptotic dimension is heredi-
tary [46, Proposition 6.2], i.e., if a finitely generated group � has finite asymptotic
dimension as a metric space with word-length metric, then any finitely generated
subgroup of � also has finite asymptotic dimension as a metric space with word-
length metric.

(4) If � is a discrete subgroup of an almost connected Lie group, e.g., SL.n;Z/, then
� has finite asymptotic dimension.

(5) CAT(0) cube complexes have finite asymptotic dimension [43].

(6) Certain relative hyperbolic groups have finite asymptotic dimension [28].

(7) Certain Coxeter groups have finite asymptotic dimension [12].

(8) Mapping class groups have finite asymptotic dimension [4].

Construction 4.3. Let X be a proper metric space with asymptotic dimension m. By the
definition of asymptotic dimension, there exists a sequence of covers Ck of X , for which
there exists a sequence of positive numbers Rk !1 such that

(1) RkC1 > 4Rk for all k;

(2) diameter.U / < Rk=4 for all U 2 Ck ;

(3) theRk-multiplicity ofCkC1 is at mostmC 1, i.e., no ball with radiusRk intersects
more than mC 1 members of Ck C 1.

Let C 0
k
D ¹B.U;Rk/ WU 2CkC1º, whereB.U;Rk/D ¹x 2X W d.x;U / <Rkº. Properties

(1), (2), and (3) imply that ¹C 0
k
º is an anti-Čech system for X .
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Fix a positive integer n0. For each n > n0, let rn D Rn
2Rn0C1

� 4. By property (1) of the
sequence Rk , there exists n1 > n0 such that rn > 2 if n > n1 and there exists a sequence
of nonnegative smooth functions ¹�nºn>n1 on Œ0;1/ for which

(1) �n.t/ D 1 for all 0 � t � 2, and �n.t/ D 0 for all t � rn;

(2) there exists a sequence of positive numbers "n ! 0 satisfying j�0n.t/j < "n � 1
for all n > n1.

For each U 2 CnC1.n > n1/, define

U 0 D ¹V 2 NC 0n0
W V 2 C 0n0 ; U \ V 6D ;º:

We define a map Gn W NC 0n0 ! NC 0n by

Gn.x/ D
X

U2CnC1

�n
�
d.x; U 0/

�P
V 2CnC1

�n
�
d.x; V 0/

�B.U;Rn/
for all x 2 NC 0n0 .

Let n > n1; we define a map in0n W NC 0n0 ! NC 0n in such a way that, for each V 2
Cn0C1,

in0n
�
B.V;Rn0/

�
D B.U;Rn/

for some U 2 CnC1 satisfying U \ V 6D ;.
Let Ft be the linear homotopy between Gn and in0n, i.e., Ft .x/ D tGn.x/ C

.1 � t /in0n.x/ for all t 2 Œ0; 1� and x 2 NC 0n0 .

By the above construction, we have the following important lemma.

Lemma 4.4 ([46, Lemma 6.3]). Let X be a proper metric space with finite asymptotic
dimension m, and let Gn, Ft , and in0n be as above; then

(1) Gn is a proper Lipschitz map with a Lipschitz constant depending only on m;

(2) Ft is a strong Lipschitz homotopy between Gn and in0n with a Lipschitz constant
depending only on m;

(3) for any " > 0, R > 0, there existsK > 0 such that d.Gn.x/;Gn.y// < " if n > K,
d.x; y/ < R.

The following lemma plays a crucial role in the proof of Theorem 4.6. Its proof is
based on the Eilenberg swindle argument and the controlled cutting and pasting exact
sequence in Section 3.3.

Lemma 4.5. Let X be a simplicial complex with finite dimension m and endowed with
`1 metric. For any k > m C 1, 0 < ı < 1=100, N � 1, r > 0, there exist 0 < ı1 � ı,
N1 � N , 0 < r1 < r such that every element u in QUı1;N;r1;k.X/ is .ı;N1; r/-equivalent
to I , where ı1 depends only on ı and N , N1 depends only on N , and r1 depends only on
r; ı; N .
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Proof. Let X .n/ be the n-skeleton of X ; we will prove our lemma for X .n/ by induction
on n.

When n D 0, we choose r1 D min¹r; 2º. Let v be the .ı1; N; r1/-inverse of u. Then
prop.u.t// D prop.v.t// D 0. For t0 2 Œ0;1/, we define

ut0.t/ D

´
I; 0 � t � t0I

u.t � t0/; t0 � t < C1:

Similarly, we can define vt0 for t0 2 Œ0;1/. Thus vt0 is the .ı1; N; r1/-inverse of ut0 .
Define

E
p;1
X D

� 1M
kD0

E
p
X

�
˚E

p
X :

Let w1.t 0/ be the linear homotopy between u˚.
L1
kD1 I /˚I and u˚.

L1
kD1 ukvk/˚I .

Let w2.t 0/ D ..
L1
kD0 uk/˚ I /.I ˚ .

L1
kD1 vk�t 0/˚ I /, where t 0 2 Œ0; 1�.

Let T; T � W Ep;1X ! E
p;1
X be linear maps defined by

T
�
.h0; h1; : : : /; h

�
D
�
.0; h0; h1; : : : /; h

�
;

T �
�
.h0; h1; : : : /; h

�
D
�
.h1; h2; : : : /; h

�
:

Thus

I ˚

� 1M
kD1

vk�1

�
˚ I D T

� 1M
kD0

.vk � I /˚ 0

�
T � C I:

Hence there exists a homotopy s1.t 0/.t 0 2 Œ0; 1�/ connecting I ˚ .
L1
kD1 vk�1/˚ I and

.
L1
kD0 vk/˚ I .
Let s2.t 0/.t 0 2 Œ0; 1�/ be the linear homotopy between .

L1
kD0 ukvk/ ˚ I and

.
L1
kD0 I /˚ I .
Define

w.t 0/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
w1.4t

0/; 0 � t 0 � 1=4I

w2.4t
0 � 1/; 1=4 � t 0 � 1=2I�

.
L1
kD0 uk/˚ I

�
s1.4t

0 � 2/; 1=2 � t 0 � 3=4I

s2.4t
0 � 3/; 3=4 � t 0 � 1:

It is not difficult to see w.t 0/ is the homotopy connecting u ˚ I to I ; thus we can
choose appropriate ı1 and N1 satisfying the lemma.

Assume by induction that the lemma holds for n D m � 1; next we will prove the
lemma holds for n D m. For each simplex4 of dimension m in X , we let

41 D
®
x 2 4 W d

�
x; c.4/

�
� 1=100

¯
;

42 D
®
x 2 4 W d

�
x; c.4/

�
� 1=100

¯
;

where c.4/ is the center of4.



J. Zhang and D. Zhou 1310

Let

X1 D
[

4Wsimplex of dimensionm in X

41;

X2 D
[

4Wsimplex of dimensionm in X

42:

Notice that

(1) X1 is strongly Lipschitz homotopy equivalent to®
c.4/ W 4 is m-dimensional simplex in X

¯
I

(2) X2 is strongly Lipschitz homotopy equivalent to X .m�1/;

(3) X .m/ D X1 [ X2 and X1 \ X2 is the disjoint union of the boundaries of all m-
dimensional41 in X .m/.

Properties (1) and (2) together with strongly Lipschitz homotopy invariance of QU
and the induction hypothesis imply that our lemma holds for X1 and X2.

By strongly Lipschitz homotopy invariance of QU and the controlled cutting and past-
ing exact sequence, we also know that our lemma holds for X1 \X2.

Obviously, .X .m/; X1; X2/ satisfies the strong excision condition; thus we can com-
plete our induction process by using the controlled cutting and pasting exact sequence and
the controlled five lemma.

Now we are ready to prove the main theorem of this section.

Theorem 4.6. For any p 2 Œ1;1/, the Lp coarse Baum–Connes conjecture holds for
proper metric spaces with finite asymptotic dimension.

Proof. Let X be a proper metric space with asymptotic dimension m. By Theorem 2.14,
it is enough to prove that

lim
n!1

Ki
�
B
p
L;0.NC 0n/

�
D 0;

where C 0n is as in Construction 4.3.
Lemmas 3.8, 3.9, and 3.15 tell us that any element Œq� in Ki .B

p
L;0.NC 0n0

// can be
represented as an element u in QUı1;N;r;k.NC 0n0 / for some N; r and k > mC 1, where ı1
is as in Lemma 4.5 for some 0 < ı < 1=100. Let

un D Ad
�
.VGn ; V

C

Gn
/
�
.u/;

whereGn is as in Lemma 4.4 and Ad..VGn ;V
C

Gn
// is defined by ¹"mº, for which sup."m/ <

r1=10, where r1 is as in Lemma 4.5.
By Lemma 4.4 (3), there exists K > 0 such that

prop.un/ < r1; for n > K:

Since the asymptotic dimension of X is m, we have dim.NC 0n/ � m for all n. By Lemma
4.5, we have that un is .ı; N1; r/-equivalent to I in QUı;N1;r;k.NC 0n/ for n > K.
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By Lemma 4.4(2), strongly Lipschitz homotopy invariance of QU, and Lemmas 3.8(2)
and 3.9(2), we have that Ad..Vin0n ; V

C

in0n
//.u/ and un correspond to the same element in

Ki .B
p
L;0.NC 0n//.

Thus Œq� D 0 in limn!1Ki .B
p
L;0.NC 0n//.

5. K -theory of Lp Roe algebras

In this section, we shall use the dual Lp K-homology as a bridge to prove that the Lp

K-homology is independent of p. Combining Theorem 4.6, we obtain that the K-theory
of the Lp Roe algebra does not depend on p 2 .1;1/ for spaces with finite asymptotic
dimension.

5.1. Dual Lp localization algebra and dual Lp K -homology

Let p 2 .1;1/; let Z and Z0 be countable discrete measure spaces. Then `p.Z/ has
a natural Schauder basis ¹eiºi2Z , where ei .z/ D 1 for i D z and ei .z/ D 0 for i 6D z.
Similarly, `p.Z0/ has a natural Schauder basis ¹e0iºi2Z0 . Let T be a bounded operator
from `p.Z/ to `p.Z0/; T can be considered as a countably dimensional matrix under
the Schauder bases ¹eiº and ¹e0iº. We can define T � as the transpose of the matrix of T .
We call T a dual operator, if T � is a bounded operator from `p.Z0/ to `p.Z/ under the
Schauder bases ¹e0iº and ¹eiº. We call T a compact dual operator if T and T � are compact
operators from `p.Z/ to `p.Z0/ and from `p.Z0/ to `p.Z/, respectively. We define the
maximal norm of dual operator T by kT kmax WD max¹kT k; kT �kº.

For p 2 .1;1/, let B�.`p.Z/; `p.Z0// be the Banach space of all dual operators from
`p.Z/ to `p.Z0/ with maximal norm. Let K�.`p.Z/; `p.Z0// be the Banach space of all
compact dual operators from `p.Z/ to `p.Z0/. It is easy to see that K�.`p.Z// is a closed
ideal of B�.`p.Z//.

Remark 5.1. For p 2 .1;1/, let q be the dual number of p, i.e., 1=p C 1=q D 1. If T is
a dual operator acting on `p.Z/, then T can be considered as a bounded operator acting
on `q.Z/ and kT k`q.Z/ D kT �k`p.Z/. This is why we call such T a dual operator. Note
that B�.`p.Z// D B�.`q.Z// for p; q 2 .1;1/ and 1=p C 1=q D 1.

Lemma 5.2. Let p 2 .1;1/ and letZ be a countable discrete measure space. If one fixes
a bijection between Z and N, then `p.Z/ has a natural Schauder basis ¹eiºi2N . For any
K 2K�.`p.Z//, one has

lim
n!1

FnKFn D K

in K�.`p.Z//, where Fn is the coordinate projection from `p.Z/ to the subspace gener-
ated by e1; : : : ; en.

Proof. We just need to prove limn!1 kFnKFn �Kkmax D 0, i.e.,

lim
n!1

kFnKFn �Kklp.Z/ D 0 and lim
n!1

kF �nK
�F �n �K

�
k`p.Z/ D 0:

These are true by [33, Proposition 1.8].
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This lemma is false for p D 1; N. C. Phillips constructed a rank one operator without
this property in [33].

Corollary 5.3. Let p 2 .1;1/ and let Z be a countable discrete measure space; then
K1.K

�.`p.Z/// D 0 and K0.K�.`p.Z/// D Z generated by a rank one idempotent.

Proof. Lemma 5.2 implies that K�.`p.Z// can be represented as the direct limit of matrix
algebras. By the continuous property of K-group, we complete the proof.

Let X be a proper metric space, p 2 .1;1/. Recall that an Lp-X -module is an Lp-
spaceEpX D `

p.ZX /˝ `
p D `p.ZX ; `

p/ equipped with a natural pointwise multiplication
action of C0.X/ by restricting to ZX , where ZX is a countable dense subset in X . This
action can naturally induce a morphism from C0.X/ to B�.E

p
X /.

Definition 5.4. Let X; Y be proper metric spaces and T 2 B�.E
p
X ; E

p
Y /. The support of

T , denoted by supp.T /, consists of all points .x; y/ 2 X � Y such that �V T�U 6D 0 for
all open neighborhoods U of x and V of y.

We remark that supp.T / has the same properties like in Remark 2.3.

Definition 5.5. Let X be a proper metric space and let T be an element in B�.E
p
X /.

(1) The propagation of T is defined to be prop.T / WD sup¹d.x;y/ W .x;y/2 supp.T /º;

(2) T is said to be a locally compact dual operator if �KT and T�K are in K�.E
p
X /

for any compact subset K in X .

Definition 5.6. The dual Lp Roe algebra of EpX , denoted by Bp;�.EpX /, is defined to be
the maximal-norm closure of the algebra of all locally compact dual operators acting on
E
p
X with finite propagations.

Let X; Y be two proper metric spaces and let f be a continuous coarse map from
X to Y . Let Vf and V C

f
be an isometric dual operator and a contractive dual operator,

respectively, constructed in Lemma 2.7. Thus we have the following lemma.

Lemma 5.7. Let f , EpX , and EpY be as above. Then the pair .Vf ; V Cf / gives rise to a
homomorphism ad..Vf ; V Cf // W B

p;�.E
p
X /! Bp;�.E

p
Y / defined by

ad
�
.Vf ; V

C

f
/
�
.T / D Vf T V

C

f

for all T 2 Bp;�.EpX /.
Moreover, the map ad..Vf ; V Cf //� induced by ad..Vf ; V Cf // on K-theory depends

only on f and not on the choice of the pair .Vf ; V Cf /.

Proof. The proof of this lemma is the same as the proof of Lemma 2.8.

Corollary 5.8. For different Lp-X -modules EpX and E 0pX , the algebra Bp;�.EpX / is non-
canonically isomorphic to Bp;�.E 0pX /, and K�.Bp;�.E

p
X // is canonically isomorphic to

K�.B
p;�.E

0p
X //.
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For convenience, we replace Bp;�.EpX / by Bp;�.X/ representing the dual Lp Roe
algebra of X .

Definition 5.9. Let X be a proper metric space. The dual Lp localization algebra of X ,
denoted by Bp;�L .X/, is defined to be the norm closure of the algebra of all bounded and
uniformly norm-continuous functions f from Œ0;1/ to Bp;�.X/ such that

prop
�
f .t/

�
is uniformly finite and prop

�
f .t/

�
! 0 as t !1:

The propagation of f is defined to be sup¹prop.f .t// W t 2 Œ0;1/º.

We have the following lemma for the dual Lp localization algebra just like Lemma
2.11.

Lemma 5.10. Let X; Y be two proper metric spaces, f a uniformly continuous coarse
map from X to Y , and ¹"kºk a sequence of positive numbers such that "k ! 0 as k !
1; then the pair .Vf .t/; V Cf .t// constructed in Lemma 2.11 induces a homomorphism
Ad..Vf ; V Cf // from B

p;�
L .X/ to Bp;�L .Y /˝M2.C/ defined by

Ad
�
.Vf ; V

C

f
/
�
.u/.t/ D Vf .t/

�
u.t/˚ 0

�
V C
f
.t/

for any u 2 Bp;�L .X/ and t 2 Œ0;1/ such that

prop
�
Ad

�
.Vf ; V

C

f
/
�
.u/.t/

�
� sup
.x;y/2supp.u.t//

®
d
�
f .x/; f .y/

�¯
C 2"k C 2"kC1

for all t 2 Œk; k C 1�.
Moreover, the map Ad..Vf ; V Cf //� induced by Ad..Vf ; V Cf // on K-theory depends

only on f and not on the choice of the pairs .Vk ; V Ck / in the construction of Vf .t/ and
V C
f
.t/.

Proof. The proof of this lemma is similar to the proof of Lemma 2.11.

Definition 5.11. The i th dual Lp K-homology is defined to be Ki .B
p;�
L .X//.

5.2. Strongly Lipschitz homotopy invariance of (dual) Lp K -homology

In this section, we will prove that (dual) Lp K-homology is strongly Lipschitz homotopy
invariant. In the following, we just discuss the case of dual Lp K-homology; similarly,
we can obtain the same result for Lp K-homology.

Lemma 5.12. Let f and g be two Lipschitz maps from X to Y and let F.t; x/ be a
strongly Lipschitz homotopy connecting f and g; then

Ad
�
.Vf ; V

C

f
/
�
�
D Ad

�
.Vg ; V

C
g /
�
�
W K�

�
B
p;�
L .X/

�
! K�

�
B
p;�
L .Y /

�
:

Proof. We just prove this lemma for K1 group, and, by suspension, we can obtain the
same result for K0 group. Choose ¹ti;j ºi�0;j�0 � Œ0; 1� satisfying
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(1) t0;j D 0; ti;jC1 � ti;j ; tiC1;j � ti;j ;

(2) there exists Nj !1 such that ti;j D 1 for all i � Nj and NjC1 � Nj ;

(3) d.F.tiC1;j ; x/;F.ti;j ; x// < "j D 1=.j C 1/, d.F.ti;jC1; x/;F.ti;j ; x// < "j for
all x 2 X .

Let fi;j .x/D F.ti;j ; x/; by Lemma 2.7, there exist an isometric operator Vfi;j WE
p
X !

E
p
Y and a contractive operator V C

fi;j
W E

p
Y ! E

p
X with V C

fi;j
Vfi;j D I such that

supp.Vfi;j / �
®
.x; y/ 2 X � Y W d

�
fi;j .x/; y

�
< 1=.1C i C j /

¯
;

supp.V C
fi;j
/ �

®
.y; x/ 2 Y �X W d

�
fi;j .x/; y

�
< 1=.1C i C j /

¯
:

For each i > 0, define a family of operators Vi .t/.t 2 Œ0;1// fromE
p
X ˚E

p
X toEpY ˚E

p
Y

and a family of operators V Ci .t/.t 2 Œ0;1// from E
p
Y ˚E

p
Y to EpX ˚E

p
X by

Vi .t/ D R.t � j /.Vfi;j ˚ Vfi;jC1/R
�.t � j /; t 2 Œj; j C 1�;

V Ci .t/ D R.t � j /.V
C

fi;j
˚ V C

fi;jC1
/R�.t � j /; t 2 Œj; j C 1�;

where

R.t/ D

�
cos.�t=2/ sin.�t=2/
� sin.�t=2/ cos.�t=2/

�
:

For any Œu� 2 K1.B
p;�
L .X//, consider

u0.t/ D Ad
�
.Vf ; V

C

f
/
�
.u/ D Vf .t/

�
u.t/˚ I

�
V C
f
.t/C

�
I � Vf .t/V

C

f
.t/
�
;

u1.t/ D Ad
�
.Vg ; V

C
g /
�
.u/ D Vg.t/

�
u.t/˚ I

�
V Cg .t/C

�
I � Vg.t/V

C
g .t/

�
;

ui .t/ D Ad
�
.Vi ; V

C

i /
�
.u/ D Vi .t/

�
u.t/˚ I

�
V Ci .t/C

�
I � Vi .t/V

C

i .t/
�
:

For each i , define ni by

ni D

´
max¹j W i � Nj º; ¹j W i � Nj º 6D ;I

0; ¹j W i � Nj º D ;:

We can choose Vfi;j in such a way that ui .t/ D u1, where t � ni .
Define

wi .t/ D ui .t/
�
u�11 .t/

�
:

Consider

a D

1M
iD0

.wi ˚ I /; b D

1M
iD0

.wiC1 ˚ I /; c D .I ˚ I /

1M
iD1

.wi ˚ I /:

By the construction of ¹ti;j º, we know that a; b; c 2 .Bp;�L .X/ ˝M2.C//C. It is not
difficult to see that a is equivalent to b and b is equivalent to c in K1.B

p;�
L .X//. Thus

u0u
�1
1 ˚i�1 I is equivalent to˚i�0I inK1.B

p;�
L .X//. This means that Ad..Vf ;V Cf //�D

Ad..Vg ; V Cg //�.

Corollary 5.13. If X is strongly Lipschitz homotopy equivalent to Y , then they have the
same (dual) Lp K-homology.
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5.3. Cutting and pasting of the (dual) Lp K -homology

Let X be a simplicial complex endowed with the `1-metric, and let X1 be a simplicial
subcomplex of X . For p 2 .1;1/, define Bp;�L .X1IX/ to be the closed subalgebra of
B
p;�
L .X/ generated by all elements f such that there exists ct > 0 satisfying limt!1 ct D

0 and supp.f .t// � ¹.x; y/ 2 X �X W d..x; y/; X1 �X1/ � ctº for all t 2 Œ0;1/.

Lemma 5.14. The inclusion homomorphism i from B
p;�
L .X1/ to Bp;�L .X1IX/ induces an

isomorphism from K�.B
p;�
L .X1// to K�.B

p;�
L .X1IX//.

Proof. For any " > 0, let B".X1/D ¹x 2X W d.x; X1/� "º. There exists a small "0 > 0
such that B"0.X1/ is strongly Lipschitz homotopy equivalent to X1. Any element in
K1.B

p;�
L .X1IX// can be represented by an invertible element a 2 .Bp;�L .X1IX//

C such
that a D a0 C I and there exists ct > 0 satisfying limt!1 ct D 0 and

supp
�
a0.t/

�
�
®
.x; y/ 2 X �X W d

�
.x; y/; X1 �X1

�
� ct

¯
:

The uniform continuity of a.t/ implies that a.t C st0/.s 2 Œ0; 1�/ is norm continuous in
s for all t0 > 0. Thus Œa.t/� is equivalent to Œa.t C st0/� in K1.B

p;�
L .X1IX// for any t0.

We can choose t0 large enough so that supp.a0.t C t0// � B"0.X1/ � B"0.X1/ for all t .
By Lemma 5.12, we know that i� is surjective.

A similar argument can be used to show that i� is injective. The case for K0 can be
similarly dealt with by a suspension argument.

Lemma 5.15. Let X be a simplicial complex endowed with the `1-metric and let X1; X2
be its two simplicial subcomplexes. One has the following six-term exact sequence:

K0
�
B
p;�
L .X1 \X2/

�
��! K0

�
B
p;�
L .X1/

�
˚K0

�
B
p;�
L .X2/

�
��! K0

�
B
p;�
L .X1 [X2/

�x?? ??y
K1
�
B
p;�
L .X1 [X2/

�
 �� K1

�
B
p;�
L .X1/

�
˚K0

�
B
p;�
L .X2/

�
 �� K1

�
B
p;�
L .X1 \X2/

�
Proof. Let Y DX1[X2; observe thatBp;�L .X1IY / andBp;�L .X2IY / are ideals ofBp;�L .Y /

such that Bp;�L .X1I Y /C B
p;�
L .X2I Y / D B

p;�
L .Y /, and Bp;�L .X1I Y / \ B

p;�
L .X2I Y / D

B
p;�
L .X1 \X2IY / since .X1;X2/ is the strong excision pair of Y (Definition 3.19). Then

by the Mayer–Vietoris sequence for K-theory of Banach algebras and Lemma 5.14, we
can obtain this lemma.

Remark 5.16. By a similar argument as above, we have the following six-term exact
sequence for Lp localization algebra:

K0
�
B
p
L .X1 \X2/

�
���! K0

�
B
p
L .X1/

�
˚K0

�
B
p
L .X2/

�
���! K0

�
B
p
L .X1 [X2/

�x?? ??y
K1
�
B
p
L .X1 [X2/

�
 ��� K1

�
B
p
L .X1/

�
˚K0

�
B
p
L .X2/

�
 ��� K1

�
B
p
L .X1 \X2/

�
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5.4. Main result and proof

Let X be a finite dimensional simplicial complex endowed with `1-metric. Recall that
E
p
X is the Lp-X -module and B�.E

p
X / is the Banach algebra of all dual operators on EpX

for p 2 .1;1/. Every T 2 B�.E
p
X / can be viewed as an element in B.EpX /. Thus the

inclusion map induces a contractive homomorphism

� W B
p;�
L .X/! B

p
L .X/:

Next we use the Riesz–Thorin interpolation theorem to build a connection between
the dual Lp localization algebra and the localization C �-algebra. Firstly, let us recall this
interpolation theorem.

Lemma 5.17 (Riesz–Thorin). Let .X; �/ and .Y; �/ be two measure spaces. Let T be a
linear operator defined on the set of all simple functions on X and taking values in the set
of measurable functions on Y . Let 1 � p0; p1; q0; q1 � 1 and assume that

T .f /



Lq0
�M0kf kLp0 ;



T .f /


Lq1
�M1kf kLp1 ;

for all simple functions f on X . Then for all 0 < � < 1 one has

T .f /


Lq
0 �M 1��

0 M �
1 kf kLp0

for all simple functions f on X , where 1=p0 D .1 � �/=p0 C �=p1 and 1=q0 D

.1 � �/=q0 C �=q1.
By density, T has a unique extension as a bounded operator from Lp

0

.X; �/ to
Lq
0

.Y; �/.

For any p 2 .1;1/, let q be the dual number of p, i.e., 1=pC 1=q D 1. Let p0 D q0 D
p, p1 D q1 D q, and � D 1=2 in the above. By the Riesz–Thorin interpolation theorem,
we have that each element T 2 B�.E

p
X / can be considered as an element in B.E2X /. This

correspondence induces a contractive homomorphism

 W B
p;�
L .X/! C �L.X/;

where C �L.X/ is the localization C �-algebra of X .

Proposition 5.18. Let X be a finite dimensional simplicial complex endowed with `1-
metric; then for any p 2 .1;1/,  induces an isomorphism between K�.B

p;�
L .X// and

K�.C
�
L.X//.

Proof. LetX .n/ be the n-skeleton ofX ; we shall prove this theorem forX .n/ by induction
on n.

When n D 0, K�.B
p;�
L .X .0/// equals to the direct product of K�.K�.`p// and

K�.C
�
L.X

.0/// equals to the direct product of K�.K�.l2// using the fact that the algebra
of all bounded and uniformly continuous functions from Œ0;1/ to a Banach algebra has
the same K-theory as this Banach algebra. Then by Corollary 5.3,  � is an isomorphism
in this case.
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Assume by induction that the theorem holds when nDm� 1. Next we shall prove the
theorem holds when n D m. For each simplex4 of dimension m in X , we let

41 D
®
x 2 4 W d

�
x; c.4/

�
� 1=100

¯
; 42 D

®
x 2 4 W d

�
x; c.4/

�
� 1=100

¯
;

where c.4/ is the center of4.
Let

X1 D
[

4Wsimplex of dimensionm in X

41;

X2 D
[

4Wsimplex of dimensionm in X

42:

Notice that

(1) X1 is strongly Lipschitz homotopy equivalent to®
c.4/ W 4 is m-dimensional simplex in X

¯
I

(2) X2 is strongly Lipschitz homotopy equivalent to X .m�1/;

(3) X .m/ D X1 [ X2 and X1 \ X2 is the disjoint union of the boundaries of all m-
dimensional41 in X .m/.

Properties (1) and (2) together with the strongly Lipschitz homotopy invariance of the
dual Lp-K-homology and the induction hypothesis imply that the theorem holds for
X1 and X2.

By the strongly Lipschitz homotopy invariance ofK�.B
p;�
L .X//,K�.C �L.X// and the

cutting and pasting exact sequence, we also know that our lemma holds for X1 \X2.
Thus we can complete our induction process by using the cutting and pasting exact

sequence and the five lemma.

Using a similar argument for �, we have the following proposition.

Proposition 5.19. Let X be a finite dimensional simplicial complex endowed with the `1-
metric; then for any p 2 .1;1/, � induces an isomorphism between K�.B

p;�
L .X// and

K�.B
p
L .X//.

By Propositions 5.18 and 5.19, we obtain that theK-theory forLp localization algebra
is independent of p for a finite dimensional simplicial complex. This gives a partial answer
to Question 26 in [9] proposed by Chung and Nowak.

Proposition 5.20. Let X be a finite dimensional simplicial complex endowed with the
`1-metric; K�.B

p
L .X// does not depend on p 2 .1;1/.

Furthermore, we have the following p-independency ofK-theory for Lp Roe algebra.

Corollary 5.21. Let X be a proper metric space; assume that there exists an anti-Čech
system ¹Ckºk for X such that NCk is a finite dimensional simplicial complex for all k.
Then if, for all p 2 .1;1/, the Lp coarse Baum–Connes conjecture is true for X , one has
that K�.Bp.X// does not depend on p.
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By Theorem 4.6, we have the following theorem.

Theorem 5.22. Let X be a proper metric space. If X has finite asymptotic dimension,
then K�.Bp.X// does not depend on p for p 2 .1;1/.

6. Open problems
In this last section, we list several interesting open problems.

Question 6.1. There are several versions of Lp K-homology. Are they all the same?

There are many different versions of K-homology:

(1) Kasparov’s K-homology [21];

(2) K-theory of dual algebra by Paschke [32];

(3) K-theory of localization algebra of Guoliang Yu [34, 45];

(4) localization K-homology by Xiaoman Chen and Qin Wang [5];

(5) E-theory by Connes and Higson [10].

In the L2 case, all the above concepts are the same. In this paper, we have seen that the
Lp counterpart of all the above notions may be equivalent for finite dimensional simplicial
complex, but we are not very optimistic that they are equivalent for general topological
spaces. To prove the equivalence, we need some deep theorems, say the Voiculescu theo-
rem [40] and the Kasparov technical lemma [22], for Lp spaces.

Question 6.2. Is it possible to prove that theK-theory of Lp Roe algebras is independent
of p without using the coarse Baum–Connes conjecture?

Up to now, all the results about the p independence of the K-theory of the group
algebras, crossed products, and Roe algebras rely on the Baum–Connes conjecture or the
coarse Baum–Connes conjecture since the K-homology sides are easier to maneuver. A
more direct approach without using the (coarse) Baum–Connes conjecture would shed
some light on a Banach algebra approach to the (coarse) Baum–Connes conjecture. For
example, if we know certain groups admitting proper isometric actions on Lp-spaces and
the K-theory of their Lp group algebras does not depend on p, by the result of Kasparov
and Yu [23], we can verify the Baum–Connes conjecture for these groups.

Question 6.3. Can we develop an Lp version of Dirac–dual-Dirac method for the Lp

Baum–Connes conjecture for amenable groupoids?

In [39], Tu that showed the Baum–Connes conjecture is true for amenable groupoids
or, more generally, a-T-menable groupoids. For a space with finite asymptotic dimension
or, more generally, finite decomposition complexity, the coarse groupoid is amenable. For
a dynamical system with finite dynamical complexity, the corresponding transformation
groupoid is also amenable [17]. It would be great if we can modify Tu’s method to deal
with Lp groupoid algebras and give a unified proof for Chung’s result on Lp crossed
products and the results in this paper on Lp Roe algebras.
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Question 6.4. Does the Lp coarse Baum–Connes conjecture hold for spaces coarsely
embeddable into Hilbert spaces?

Recently, Shan and Wang verified the Lp coarse Novikov conjecture for spaces
coarsely embeddable into simply connected nonpositively curved manifolds [38]. The key
ingredient in the proof is the Lp version of Yu’s twisted Roe algebra technique [47]. Shan
and Wang’s theorem is the first positive result on the injectivity of the Lp coarse Baum–
Connes conjecture using Yu’s technique. Can we also use theLp version of Yu’s technique
to give a surjective argument when the space is coarsely embeddable into a Hilbert space?
More generally, can we prove theLp coarse Baum–Connes conjecture for spaces coarsely
embeddable into Lp spaces?

Question 6.5. What will happen if we use Lp.X; �/ or a general Lp-space E as an Lp-
X -module to define Lp Roe algebra and Lp localization algebra?

The proof of Lemma 2.7 does not work for this broader definition. Thus we need to
find a new way to construct the homomorphism between Lp Roe algebras covering the
map between the underlying spaces.

Question 6.6. Are there any topological and geometric implications of the Lp (coarse)
Baum–Connes conjecture?

For example, does it imply the Gromov conjecture [14] that uniformly contractible
manifolds with bounded geometry admit no uniform positive scalar curvature?

Question 6.7. Are there any counter-examples for the injectivity of the Lp coarse Baum–
Connes conjecture?

In [18, 41], Higson–Lafforgue–Skandalis and Willett–Yu showed that Magulis-type
expanders and expanders with large girth are counter-examples for the surjectivity of
the coarse Baum–Connes conjecture. In [9], Chung and Nowak showed that Margulis-
type expanders are still a counterexample for the Lp coarse Baum–Connes conjecture.
However, the existence of an injectivity counterexample of the Lp coarse Baum–Connes
conjecture is still open. In [46], Guoliang Yu gave a counterexample of the injectivity
of the coarse Baum–Connes conjecture. The proof relies on a positive scalar curvature
argument. Is Yu’s counter-example still a counter-example for the Lp version?
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