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The coarse geometric `p-Novikov conjecture for
subspaces of nonpositively curved manifolds

Lin Shan and Qin Wang

Abstract. In this paper, we prove the coarse geometric `p-Novikov conjecture for metric spaces
with bounded geometry which admit a coarse embedding into a simply connected complete Rie-
mannian manifold of nonpositive sectional curvature.

1. Introduction

The coarse geometric Novikov conjecture [12, 15, 27, 30] is a statement that the coarse
Baum–Connes assembly map from the coarse K-homology of a metric space to the K-
theory of the Roe C �-algebra, which encodes the coarse geometry of the space, is injec-
tive. This is a geometric analogue of the strong Novikov conjecture and provides an
algorithm to determine the non-vanishing problem of the higher index of the Dirac oper-
ator on a noncompact complete Riemannian manifold. It implies Gromov’s conjecture
that a uniformly contractible Riemannian manifold with bounded geometry cannot have
a uniformly positive scalar curvature and the zero-in-the-spectrum conjecture stating that
the Laplacian operator acting on the space of all L2-forms of a uniformly contractible
Riemannian manifold has zero in its spectrum.

A remarkable progress was achieved by G. Yu who proved the coarse Baum–Connes
conjecture, and consequently the coarse geometric Novikov conjecture, for metric spaces
with bounded geometry which admit a coarse embedding into a Hilbert space [28]. Among
the main tools in [28] is the localization algebra of Yu [26] together with the twisted Roe
algebra technique. A fundamental idea underlining the approach in [28] is that the index
of a Dirac operator is more computable if the Dirac operator is twisted by a family of
“almost flat Bott bundles.” This approach inspires several later progresses on the coarse
geometric Novikov conjecture for coarse embeddings into certain Banach spaces [3, 15]
or nonpositively curved manifolds [22].

Recently, an `p-analog of the coarse geometric Baum–Connes assembly map for
1 < p <1 was introduced in [7]; see also [31]. An important impetus behind this gen-
eralization is the unpublished work of G. Kasparov and G. Yu on the Lp-Novikov and
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Baum–Connes conjectures (cf. [14]), together with earlier works of Lafforgue’s Banach
KK-theory [16] and the discovery of G. Yu [29] that all Gromov hyperbolic groups, which
include plenty of groups with Kazhdan’s property (T), admit a proper affine isometric
action on an `p-space for some p � 2. Another similar Lp-assembly map has been con-
sidered in [4] by Y. C. Chung. And closely related to these problems, rigidity andK-theory
of `p-Roe-type algebras have also be studied by Y. C. Chung and K. Li [5, 6].

The `p-version of the geometric Novikov conjecture is a natural analog of the classical
conjecture obtained by considering algebras of operators on `p-spaces. While applications
to geometry and topology have yet to be found when p ¤ 2, there is motivation in the
coarse geometric `p-Novikov conjecture coming from comparison with the classical case
and the intrinsic interest in comparing K-theories of different completions of a given
algebra.

In this paper, we shall prove the following result.

Theorem 1. Let � be a discrete metric space with bounded geometry. If � admits a coarse
embedding into a simply connected complete Riemannian manifold of nonpositive sec-
tional curvature, then the coarse geometric `p-Novikov conjecture holds for � , i.e., the
assembly map

� W lim
d!1

K�
�
B
p
L

�
Pd .�/

��
! K�

�
Bp.�/

�
is injective for all 1 < p <1.

Recall that a map f W X ! Y from a metric space X to another metric space Y is
said to be a coarse embedding [11] if there exist non-decreasing functions �1 and �2 from
RC D Œ0;1/ to R with limr!1 �i .r/ D1 for i D 1; 2, such that

�1
�
d.x; y/

�
� d

�
f .x/; f .y/

�
� �2

�
d.x; y/

�
for all x; y 2 X . The above assembly map � is induced by the evaluation-at-zero map
e from the localization `p algebra BpL .Pd .�// of the Rips complex of � to the `p-Roe
algebra Bp.�/ of � . The definition of the `p-assembly map is motivated by the result of
G. Yu in [26] that the local index map from K-homology to the K-theory of the local-
ization algebra is an isomorphism for a finite-dimensional simplicial complex. Due to the
local nature, it can be shown (cf. [31]) that the K-theory of the `p-localization algebras
B
p
L .Pd .�// is independent of the choice of 1 < p <1. Therefore, the left-hand side of

the assembly map � in Theorem 1 is isomorphic to the classical coarse K-homology of
the space � .

The proof of Theorem 1 is again based on the fundamental idea and tools in [28]
of G. Yu by using localization algebra technique and an `p-version of the twisted Roe
algebras and `p-Bott maps. We closely follow our previous work [22] in the classical
p D 2 case, with necessary technical adjustments.

It should be noted that techniques used in the C �-algebraic setting often do not trans-
fer to the Lp-setting in a straightforward manner. This is due to the more complicated
geometry of Lp-spaces, including the fact that they are not reflexive unless p D 2. For
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instance, while for any closed two-sided ideals I , J in a C �-algebra A we always have
I \ J D IJ (this general fact is frequently used to establish theK-theory Mayer–Vietoris
exact sequences), this equality may not hold in an arbitraryLp-operator algebra (as a clue,
consider C with its usual norm and the trivial product given by xy D 0 for all x; y 2 C).
In general, an Lp-operator algebra need not have a (contractive, one-sided) approximate
identity. However, we will show that closed ideals in the `p-Roe algebras or the twisted
`p-Roe algebras supported on subspaces of the metric space � or open subsets of the
manifoldM do admit contractive approximate units. This allows us to establishK-theory
Mayer–Vietoris sequences for the `p-Roe algebra and the twisted `p-Roe algebra.

Another subtle issue is about tensor products associated with Lp-spaces. In general,
the tensor product T ˝ S of a bounded operator T on Lp.�/ and a bounded operator S
on a Banach space E may not extend to a bounded operator on the “natural tensor prod-
uct” Lp.�/ p̋ E, unless, for example, E D Lp.�/ is another Lp-space, in which case
kT ˝SkD kT kkSk. This suggests us to view the algebra ADC0.M;CliffC.TM// in the
construction of the twisted `p-Roe algebra and Bott elements inK-theory as anLp-opera-
tor algebra. Since the Clifford bundle CliffC.TM/ is finite-dimensional, one would natu-
rally like to regard it as an `p-space bundle so that the algebra A D C0.M;CliffC.TM//

could act on the Lp-space Lp.M; CliffC.TM// of the `p-space bundle CliffC.TM/.
However, since the `p-norm on a tangent space TxM depends on the choice of the
(orthonormal) basis of TxM , ifM is not flat, we cannot end up with a consistent `p-struc-
ture on the tangent bundle TM or the Clifford bundle CliffC.TM/, which is needed for
the construction of “the family of uniformly almost flat Bott elements” onM . To solve this
confliction, we will view AD C0.M;CliffC.TM// acting on Lp.M;CliffC.TM// which
is the Lp-space of locally measurable sections of the Hilbert space bundle CliffC.TM/.
It turns out that the tensor product T ˝ S of a bounded operator T on `p and a bounded
operator S on Lp.M;CliffC.TM//, regarded as the Lp-space of the Hilbert space bundle
CliffC.TM/, still extends to a bounded operator on the “natural tensor product” `p p̋

Lp.M;CliffC.TM// and satisfies kT ˝ Sk D kT kkSk.
The paper is organized as follows. In Section 2, we recall the `p-Roe algebra, `p-

localization algebras, and the coarse geometric `p-Novikov conjecture. In Section 3, we
study approximate units for an ideal of the `p-Roe algebra supported on a subspace and
present an `p-coarse Mayer–Vietoris principle. In Section 4, we first discuss a certain
measure theory aspect of the Lp-space Lp.M;CliffC.TM// of the Hilbert space bundle
CliffC.TM/ and the natural tensor norm p̋ , so as to view A D C0.M;CliffC.TM// as
an Lp-operator algebra. Then we define the twisted `p-Roe algebra and its localization
counterpart and discuss how to use ideals supported on separate open subsets of M to
show that the evaluation map induces an isomorphism for twisted algebras. In Section 5,
we adapt Yu’s arguments about strong Lipschitz homotopy invariance to the `p-setting.
In Section 6, we construct families of uniformly almost flat Bott generators to establish
a Bott map ˇ from the K-theory of the `p-Roe algebra to the K-theory of the twisted
`p-Roe algebra and a Bott map ˇL between the corresponding `p-localization algebras.
In Section 7, we complete the proof of the main theorem of this paper.
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2. The coarse geometric Novikov conjecture

In this section, we shall recall the concepts of the `p-Roe algebra [7,21], Yu’s `p-localiza-
tion algebras [7, 26], and the coarse geometric `p-Novikov conjecture [7].

Let X be a proper metric space. Recall that the space X is called proper if every
closed ball is compact. When X is discrete, we say that X has bounded geometry if, for
any R > 0, there exists NR > 0 such that for any x 2 X the cardinality jB.xIR/j is less
than or equal toNR. For r > 0, an r-net in X is a discrete subset Y � X such that, for any
y1; y2 2 Y , d.y1; y2/ � r and for any x 2 X there is a y 2 Y such that d.x; y/ � r . A
general metric space X is called to have bounded geometry if X has an r-net Y for some
r > 0 such that Y has bounded geometry.

Throughout this paper, we assume p > 1 and denote by Kp D K.`p/ the Banach
algebra of all compact operators on `p .

Definition 2 ([7, 21]). Let X be a proper metric space, and fix a countable dense subset
Z �X . Let T be a bounded operator on `p.Z; `p/, and write T D .T .x;y//x;y2Z so that
each T .x; y/ is a bounded operator on `p . The operator T is said to be locally compact if

� each T .x; y/ is a compact operator on `p;

� for every bounded subset B � X , the set®
.x; y/ 2 .B � B/ \ .Z �Z/ W T .x; y/ ¤ 0

¯
is finite.

The propagation of T is defined to be

propagation.T / D inf
®
S > 0 W T .x; y/ D 0 for all x; y 2 Z with d.x; y/ > S

¯
:

The algebraic `p-Roe algebra ofX, denoted byBpalg.X/, is the subalgebra of L.`p.Z;`p//

consisting of all finite propagation, locally compact operators. The `p-Roe algebra of X ,
denoted by Bp.X/, is the closure of Bpalg.X/ in L.`p.Z; `p//.

Up to non-canonical isomorphisms,Bp.X/ does not depend on the choice of the dense
subspace Z, while, up to canonical isomorphism, its K-theory does not depend on the
choice of Z. The proof in [13] for p D 2 works well for general p > 1.

Definition 3 ([26]). The `p-localization algebra BpL .X/ is the norm-closure of the alge-
bra of all bounded and uniformly norm-continuous functions g W Œ0;1/! Bp.X/ such
that

propagation
�
g.t/

�
! 0 as t !1:

The evaluation homomorphism e from B
p
L .X/ to Bp.X/ is defined by

e.g/ D g.0/

for all g 2 BpL .X/.
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Definition 4 ([24]). Let � be a locally finite metric space. Let d � 0. The Rips complex
of � at scale d , denoted by Pd .�/, is the simplicial complex with vertex set � where a
subset ¹
0; : : : ; 
nº of � spans a simplex if and only if d.
i ; 
j / � d for all i , j . Write
points x in such a simplex �¹
0;:::;
nº of Pd .�/ as formal linear combinations:

x D

nX
iD0

ti
i ;

where each coefficient ti is in Œ0; 1�, and
Pn
iD0 ti D 1. Let S.RnC1/ be the sphere in the

Euclidean space RnC1, and define a bijection from the simplex �¹
0;:::;
nº to S.RnC1/ via
the map

� W x D

nX
iD0

ti
i 7!

� nX
iD0

t2i

�� 12
.t0; : : : ; tn/:

The spherical metric on �¹
0; : : : ; 
nº is the metric defined by

d� .x; y/ WD
2

�
arccos

�˝
�.x/; �.y/

˛�
;

i.e., the length (normalized by 2=�) of the shorter arc of a great circle connecting �.x/
and �.y/.

For points x;y2Pd .�/, a simplicial path 
 (cf. [24]) between them is a finite sequence
x D x0; x1; : : : ; xn D y of points in Pd .�/ together with a choice of simplices �1; : : : ; �n
such that each �i contains .xi�1; xi /. The length of such a path 
 is defined to be

l.
/ WD

nX
iD1

d�i .xi�1; xi /;

and the spherical distance between two arbitrary points x; y 2 Pd .�/ is defined to be

dS .x; y/ WD inf
®
l.
/ W 
 a simplicial path between x and y

¯
and dS .x; y/ D1 if no simplicial path exists.

A semi-simplicial path ı (see [24, Definition 7.2.8]) between points x and y in Pd .�/
consists of a sequence of the form

x D x0; y0; x1; y1; x2; y2; : : : ; xn; yn D y;

where each of the points xi and yi is in � and some of these points may be repeated. The
length of such a path is defined as

`.ı/ WD

nX
iD0

dS .xi ; yi /C

n�1X
iD0

d�.yi ; xiC1/:

The semi-spherical distance on Pd .�/ is defined by

dPd .x; y/ WD inf
®
`.ı/ j ı a semi-simplicial path between x and y

¯
:

Note that a semi-simplicial path between two points always exists.
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The Rips complex of � is defined to be the space Pd .�/ equipped with the metric dPd
above.

It turns out that (see [24, Proposition 7.2.11]) (1) P0.�/ identifies isometrically with
�; (2) for any d � 0, the Rips complex Pd .�/ is a proper, second countable metric space;
(3) for each d 0 � d � 0, the canonical inclusion id 0d W Pd .�/! Pd 0.�/ is a coarse equiv-
alence and a homeomorphism onto its image.

To define the assembly map, we recall that when pD 2, Yu in [26] proved that the local
index map from K-homology to K-theory of localization algebra is an isomorphism for
a finite-dimensional simplicial complex. Y. Qiao and J. Roe in [20] later generalized this
isomorphism to general locally compact metric spaces. Therefore, for p 2 .1;1/, consid-
ering the analogs of `p-Roe algebra and `p-localization algebra, we define the evaluation
at zero map as the assembly map, which is equivalent to the original index map when
p D 2. The following conjecture is called the coarse geometric `p-Novikov conjecture.

Conjecture 5. If � is a discrete metric space with bounded geometry, then the assembly
map

� WD e� W lim
d!1

K�
�
B
p
L

�
Pd .�/

��
! lim

d!1
K�
�
Bp
�
Pd .�/

��
Š K�

�
Bp.�/

�
is injective, where 1 < p <1.

3. An `p coarse Mayer–Vietoris principle

In this section, we present an `p coarse Mayer–Vietoris principle similar to the argument
in [13].

Definition 6 ([13]). Let X be a proper metric space, and let A and B be closed subspaces
with X D A [ B . We say that .A; B/ is an !-excisive pair, or that X D A [ B is an
!-excisive decomposition, if for each R > 0 there is some S > 0 such that

Pen.AIR/ \ Pen.BIR/ � Pen.A \ BIS/;

where Pen.AIR/ D ¹y 2 X j d.y;A/ � Rº is the R-neighborhood of A in X .

Definition 7 ([13]). Let A be a closed subspace of a proper metric space X . Denote by
Bp.AIX/ the operator-norm closure of the set of all locally compact, finite propagation
operators T on `p.Z; `p/ whose support is contained in Pen.AIR/� Pen.AIR/, for some
R > 0 depending on T .

One can see thatBp.AIX/ is a two-sided ideal ofBp.X/. For s; t 2 Œ0;1/with s < t ,
the inclusion Pen.AI s/! Pen.AI t / induces an inclusion map

it;s W B
p
�
Pen.AI s/

�
! Bp

�
Pen.AI t /

�
:

It follows that Bp.AIX/ D limn!1 B
p.Pen.AIn//, and we get an induced map

i W Bp.A/! Bp.AIX/:
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Lemma 8 ([13]). The induced map at K-theory level

i� W K�
�
Bp.A/

�
! K�

�
Bp.AIX/

�
is an isomorphism.

Proof. Since the inclusions A � Pen.AI n/ and Pen.AI n/ � Pen.AI n C 1/ are coarse
equivalence, the induced maps on K-theory are all isomorphisms.

Let A be a closed subspace of S and consider the ideal Bp.AIX/ of Bp.X/. Define
idempotents Q W X �X !Kp by the formula

Q.x; y/ D 0 if x ¤ y;

Q.x; x/ D

 
Ir.x/ 0

0 0

!
;

where Ir.x/ is the r.x/ � r.x/ identity matrix for some r.x/ 2 N and

Supp
�
r.x/

�
� Pen.AIR/

for some R � 0. We define a partial order on all such idempotents Q by the following:
Q2 � Q1 if rank.Q2.x; x// � rank.Q1.x; x// for all x 2 X .

Let Q be the set of all such operators Q with this order.

Proposition 9. The collection Q is an approximate unit of Bp.AIX/.

Proof. Let T 2 Bp.AIX/ and " > 0. For any x; y 2 X , T .x; y/ is either a zero operator
or a compact operator on `p . Recall that Z � X is a chosen countable dense subset in the
definition of the `p-Roe algebra. Enumerate Z �Z such that each pair .x; y/ 2 Z �Z is
assigned a unique integer n 2 N.

Let F.x; y/ be a finite rank operator on `p such that kT .x; y/ � F.x; y/k < 1
2n
"

when T .x; y/ ¤ 0 and n is the corresponding integer of .x; y/, and F.x; y/ D 0 when
T .x; y/ D 0. Then F D .F.x; y// is a locally finite rank operator of finite propagation
with kT � F k < ".

For each fixed x, since F has finite propagation, there are only finitely many y such
that F.x; y/ ¤ 0. Let

Q.x; x/ D

 
Ir.x/ 0

0 0

!
be a finite-rank projection for some r.x/ 2 N such that

Q.x; x/F.x; y/ D F.x; y/

for all y with F.x; y/ ¤ 0. Define Q.x; y/ D 0 if x ¤ y. Then

kQT � T k � kQT �QF k C kQF � F k C kF � T k:

Here kF �T k<",QF �F D 0, and kQT �QF k� kQkkF �T k<". So kQT �T k<
2" and the proof is done.
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Proposition 10. Let A, B be closed subspaces of X such that X D A [ B . Then

(1) Bp.AIX/C Bp.BIX/ D Bp.X/;

(2) Bp.AIX/\Bp.BIX/ D Bp.A\BIX/ if X D A[B is an !-excisive decom-
position.

Proof. Obviously, Bp.AIX/CBp.BIX/ � Bp.X/. For the reverse inclusion, let �A be
the characteristic function of A. For any T 2 Bp.X/ and " > 0, there exists T" 2 B

p
alg.X/

with kT � T"k < ". Then T"�A 2 Bp.AIX/ and kT�A � T"�Ak � kT � T"k < ". It
follows that T�A 2 Bp.AIX/, and consequently, T D T�A C T .1� �A/ 2 Bp.AIX/C
Bp.BIX/. Therefore Bp.AIX/C Bp.BIX/ � Bp.X/.

For the second part, we will show that

Bp.AIX/ \ Bp.BIX/ D Bp.AIX/Bp.BIX/ D Bp.A \ BIX/

for an !-excisive pair .A;B/ of X .
Obviously, Bp.A \ BIX/ � Bp.AIX/ \ Bp.BIX/ holds for any decomposition

pair .A; B/. On the other hand, by Proposition 9, one can easily see that Bp.AIX/ \
Bp.BIX/ � Bp.AIX/Bp.BIX/. Finally, for TA 2 B

p
alg.AIX/ and TB 2 B

p
alg.BIX/

with

Supp.TA/ � Pen.AIR/ � Pen.AIR/;

Supp.TB/ � Pen.BIR0/ � Pen.BIR0/;

since .A;B/ is w-excisive, there exists S > 0 such that

Supp.TATB/ � Pen.A \ BIS/ � Pen.A \ BIS/:

Hence Bp.AIX/Bp.BIX/ � Bp.A \ BIX/. This completes the proof.

As a general fact (cf. [24, proof of Proposition 2.7.15]), if A is a Banach algebra,
and I and J are two closed two-sided ideals of A such that I C J D A, then standard
isomorphism theorems in pure algebra give that

I

I \ J
Š
I C J

J
D
A

J
;

which further induces the following Mayer–Vietoris exact sequence (cf. [24, Proposi-
tion 2.7.15]).

Proposition 11 (cf. [24]). Let A be a Banach algebra, and let I and J be two closed
two-sided ideals of A such that I C J D A. Then there is a six term Mayer–Vietoris exact
sequence on K-theory:

K0.I \ J / // K0.I /˚K0.J / // K0.A/

��

K1.A/

OO

K1.I /˚K1.J /oo K1.I \ J /:oo
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Combining these lemmas, we obtain the following `p-version of the coarse Mayer–
Vietoris principle.

Proposition 12. Let X D A [ B be an !-excisive decomposition of X . Then there is a
six term Mayer–Vietoris exact sequence:

K0
�
Bp.A \ B/

�
// K0

�
Bp.A/

�
˚K0

�
Bp.B/

�
// K0

�
Bp.X/

�
��

K1
�
Bp.X/

�
OO

K1
�
Bp.A/

�
˚K1

�
Bp.B/

�
oo K1

�
Bp.A \ B/

�
:oo

4. Twisted `p-Roe algebras and twisted `p-localization algebras

In this section, we shall define the twisted `p-Roe algebras and the twisted `p-localization
algebras for bounded geometry spaces which admit a coarse embedding into a simply
connected complete Riemannian manifold of nonpositive sectional curvature. The con-
struction of these twisted `p-algebras follows those twisted algebras introduced in [28],
with technical adjustments suitable to `p spaces.

LetM be a simply connected complete Riemannian manifold of nonpositive sectional
curvature. In the following, we shall assume that the dimension ofM is even. If dim.M/ is
odd, we can replace M by M �R. Indeed, the product manifold M �R is also a simply
connected complete Riemannian manifold with nonpositive sectional curvature. And if
f W � ! M is a coarse embedding, then the induced map f 0 W � ! M � R defined by
f 0.
/ D .f .
/; 0/ is also a coarse embedding so that we can replace f by f 0.

Let A D C0.M; CliffC.TM// be the C �-algebra of continuous sections a on M
which have value a.x/ 2 CliffC.TxM/ at each point x 2M and vanish at infinity, where
CliffC.TxM/ is the complexified Clifford algebra [1] of the tangent space TxM at x 2M
with respect to the inner product on TxM given by the Riemannian structure of M .
Here CliffC.TM/ is the Clifford algebra bundle over M . Meanwhile, for any x 2 M ,
CliffC.TxM/ is also a Hilbert space, so that CliffC.TM/ is a Hilbert space bundle. Let

B WD Lp
�
M;CliffC.TM/

�
;

the set of all Lp sections of the Hilbert space bundle CliffC.TM/, which is a Banach
space. TheC �-algebra A acts on B by pointwise multiplications, so that it can be regarded
as an Lp-operator algebra (cf. [18, 19]).

Let us make this point of view more precise. Let � be the Radon measure on M
induced by the Riemannian metric on M (cf. [17, Chapter XVI, Theorem 4.4]). The con-
tinuous sections with compact support of the Hilbert space bundle CliffC.TM/ generate a
local �-measurability structure W for the cross-sections of CliffC.TM/ (cf. [9, Chapter II,
Section 15]). For 1 � p <1, the Banach space B D Lp.M;CliffC.TM// consists of all
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those locally �-measurable cross-sections f of W such that

kf kpp D

Z
M



f .x/

pd�.x/ � 1;
and two elements of Lp.M;CliffC.TM// are identical if they differ only on a �-null set
(cf. [9, Chapter II, Section 15.7]). Since M is a simply connected complete Riemannian
manifold with nonpositive sectional curvature, by the Cartan–Hadamard theorem, for any
x 2 M , the exponential map expx W TxM ! M gives rise to a diffeomorphism from Rn

to M , so that the Hilbert space bundle CliffC.TM/ is isomorphic to the trivial bundle
M �M2k .C/, where n D 2k D dim.M/ and the matrix algebra M2k .C/ is endowed
with a Hilbert space structure induced from the Hilbert space structure of CliffC.TxM/.
Consequently, we have

B WD Lp
�
M;CliffC.TM/

�
Š Lp

�
M; �IM2k .C/

�
Š Lp.M; �/ p̋ M2k .C/:

Let us recall some facts about the tensor norms on the spaces of p-integrable functions
and tensor product operators (cf. [8, Chapter 7] and [10, Theorem 1.1 and Corollary 1.1].
For a good summary, see [4] or [18]). Let .�;�/ be an arbitrary measure space, 1 � p <
1, and E a Banach space. Then the space Lp.�; E/ of (classes of a.e. equal) Bochner
p-integrable functions provides the algebraic tensor productLp.�/˝alg E with a “natural
tensor norm” �p via the natural injective mapping

Lp.�/˝alg E ,! Lp.�;E/

f ˝ x 7! f .�/x:

The completion of Lp.�/˝alg E against the tensor norm �p is denoted in the following
by Lp.�/ p̋ E. Since the simple functions are dense in Lp.�; E/, the above inclusion
induces an isometric isomorphism

Lp.�/ p̋ E Š L
p.�;E/:

For the product measure � � � on �1 ��2, the Fubini–Tonelli theorem shows that
the inclusion Lp.�/˝alg L

p.�/ ,! Lp.� � �/ induces isometric isomorphisms

Lp.�/ p̋ L
p.�/ Š Lp

�
�;Lp.�/

�
Š Lp.� � �/:

Moreover, the Fubini theorem for Bochner integrals (cf. [25, Appendices, Theorem B.41];
or more generally, [9, Chapter II, Section 16]) shows that we may replace the space Lp.�/
in the above identifications by Lp.�; F / of Bochner p-integrable functions into a Banach
space F . In particular, we have

Lp.�/ p̋

�
Lp.�/ p̋ F

�
Š Lp.�/ p̋ L

p.�; F /

Š Lp
�
�;Lp.�; F /

�
Š Lp.� � �; F /;

provided that the spaces�1 and�2 are locally compact and � -compact Hausdorff spaces.
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In general, for bounded linear operators S 2 L.Lp.�// and T 2 L.E/, there are
natural examples showing that the tensor product operator

S ˝ T W Lp.�/˝alg E ! Lp.�/˝alg E

may not extend to a bounded operator on Lp.�/ p̋ E (cf. [8, Chapter 7, Sections 7.5 and
7.6]). However, in the situation considered in this paper, we do not meet this difficulty.
Namely, on one hand, if S D idLp.�/, it is easy to verify that

id˝ T W Lp.�/ p̋ E ! Lp.�/ p̋ E



 D kT k
for any T 2L.E/ (cf. [10, the proof of Theorem 1.2]). On the other hand, ifEDLp.�;F /
for a Banach space F and the same p as inLp.�/, and if idLp.�;F / is the identity operator,
then for any bounded operator S 2 L.Lp.�//, the operator

S ˝ idLp.�;F / W Lp.�/˝alg L
p.�; F /! Lp.�/˝alg L

p.�; F /

has a unique extension to a bounded linear operator

S ˝ idLp.�;F / W Lp.�/ p̋ L
p.�; F /! Lp.�/ p̋ L

p.�; F /

such that 

S ˝ idLp.�;F /


 D kSk:

This can be proved by appealing to the proof of Theorem 1.1 in [10] (replacing Lp.�/
there by Lp.�; F / here and confining to the case p D q, so that the integral version of
the Minkowski inequality for ˛ D 1 still holds). Consequently, for any bounded linear
operators S 2L.Lp.�// and T 2L.Lp.�;F //, the operator S ˝ T D .S ˝ id/.id˝ T /
on L.Lp.�//˝alg L.Lp.�;F // extends continuously to a unique bounded linear operator

S ˝ T W L
�
Lp.�/

�
p̋ L

�
Lp.�; F /

�
! L

�
Lp.�/

�
p̋ L

�
Lp.�; F /

�
and kS ˝ T k D kSkkT k (cf. [10, the proof of Corollary 1.1]).

In this paper, we will only concern ourselves with the situation where Lp.�/ D `p

and
Lp.�; F / D B WD Lp

�
M;CliffC.TM/

�
Š Lp

�
M; �IM2k .C/

�
:

For a 2 A D C0.M;CliffC.TM// and h 2 B, define

kak1 D sup
®

a.x/

 j x 2M¯

:

Then ka � hk � kak1khk and A � L.B/. For n 2 N, define

Bn;p D B p̊ � � � p̊ B;

the `p-direct sum of n copies of B. The `p-norm of Bn;p is defined as



.f1; : : : ; fn/

p D � nX
iD1

kfik
p

�1=p
; for f1; : : : ; fn 2 B:
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LetMn.A/ be the algebra of n � n matrices with entries in A. ThenMn.A/ acts on Bn;p

by matrix multiplications, so that Mn.A/ � L.Bn;p/. Embed Mn.A/ into MnC1.A/ at
the top left corner, and let M1;p.A/ be the inductive limit of ¹Mn.A/º

1
nD1. Define

B1;p D B p̊ � � � p̊ B p̊ � � �

to be the `p-direct sum of infinitely many copies of B with the `p-norm

¹fiº1iD1

p D � 1X
iD1

kfik
p

�1=p
; for ¹fiº1iD1 2 B1;p:

It follows from the above discussions that we have isometric isomorphisms

B1;p Š `
p.N;B/ Š `p p̋ B

and all Mn.A/ can be considered as subalgebras of L.B1;p/. Denote by Kp ˝alg A

the algebraic tensor product of Kp and A. Naturally, Kp ˝alg A acts on B1;p and
Kp ˝alg A � L.B1;p/. Let

Kp p̋ A DKp ˝alg A
L.B1;p/

:

It follows that Kp p̋ A ŠM1;p.A/.
Let � be a discrete metric space with bounded geometry. Let f W � !M be a coarse

embedding. For each d > 0, we shall extend the map f to the Rips complex Pd .�/ in
the following way. Note that f is a coarse map, i.e., there exists R > 0 such that, for all

1; 
2 2 � ,

d.
1; 
2/ � d ) dM
�
f .
1/; f .
2/

�
� R:

For any point x D
P

2� c

 2 Pd .�/, where c
 � 0 and

P

2� c
 D 1, we choose a

point fx 2M such that
d
�
fx ; f .
/

�
� R

for all 
 2� with c
 ¤ 0. The correspondence x 7! fx gives a coarse embeddingPd .�/!
M , also denoted by f .

Choose a countable dense subset �d of Pd .�/ for each d > 0 in such a way that
�d � �d 0 when d < d 0.

Definition 13. Let Bpalg.Pd .�/;A/ be the set of all functions

T W �d � �d !Kp p̋ A � L.B1;p/ D L
�
`p p̋ L

p
�
M;CliffC.TM/

��
such that

(1) there exists C > 0 such that kT .x; y/k � C for all x; y 2 �d ;

(2) there exists R > 0 such that T .x; y/ D 0 if d.x; y/ > R;

(3) there exists L > 0 such that, for every z 2 Pd .�/, the number of elements in the
set ®

.x; y/ 2 �d � �d W d.x; z/ � 3R; d.y; z/ � 3R; T .x; y/ ¤ 0
¯

is less than L;
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(4) there exists r > 0 such that

Supp
�
T .x; y/

�
� B

�
f .x/; r

�
for all x; y 2 �d , where B.f .x/; r/ D ¹m 2 M W d.m; f .x// < rº and, for all
x; y 2 �d , the entry T .x; y/ 2 Kp p̋ A is a function on M with T .x; y/.m/ 2
Kp p̋ CliffC.TmM/ for each m 2 M so that the support of T .x; y/ is defined
by

Supp
�
T .x; y/

�
WD
®
m 2M W T .x; y/.m/ ¤ 0

¯
:

For f 2 `p.�d ;B1;p/, we define

Tf .x/ D
X
y2�d

T .x; y/f .y/:

Then T D .T .x; y// 2 L.`p.�d ;B1;p//.

Definition 14. The twisted `p-Roe algebra Bp.Pd .�/;A/ is defined to be the operator
norm closure of Bpalg.Pd .�/;A/ in L.`p.�d ;B1;p//.

The above definition of the twisted `p-Roe algebra is similar to that in [28].
Let BpL;alg.Pd .�/;A/ be the set of all bounded, uniformly norm-continuous functions

g W RC ! B
p
alg

�
Pd .�/;A

�
such that

(1) there exists a bounded function R.t/ W RC ! RC with limt!1 R.t/ D 0 such
that .g.t//.x; y/ D 0 whenever d.x; y/ > R.t/;

(2) there exists L > 0 such that, for every z 2 Pd .�/, the number of elements in the
set ®

.x; y/ 2 �d � �d W d.x; z/ � 3R; d.y; z/ � 3R; g.t/.x; y/ ¤ 0
¯

is less than L for every t 2 RC;

(3) there exists r > 0 such that Supp..g.t//.x; y// � B.f .x/; r/ for all t 2 RC,
x; y 2 �d , where f W Pd .�/ ! M is the extension of the coarse embedding
f W � !M and B.f .x/; r/ D ¹m 2M W d.m; f .x// < rº.

Definition 15. The twisted `p-localization algebra BpL .Pd .�/;A/ is defined to be the
norm completion ofBpL;alg.Pd .�/;A/, whereBpL;alg.Pd .�/;A/ is endowed with the norm

kgk1 D sup
t2RC



g.t/


Bp.Pd .�/;A/

:

The above definition of the twisted `p-localization Roe algebra is similar to that in
[28]. The evaluation homomorphism e from B

p
L .Pd .�/;A/ to Bp.Pd .�/;A/ defined by

e.g/ D g.0/ induces a homomorphism at K-theory level:

e� W lim
d!1

K�
�
B
p
L .Pd .�/;A/

�
! lim

d!1
K�
�
Bp.Pd .�/;A/

�
:
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Theorem 16. Let � be a discrete metric space with bounded geometry which admits a
coarse embedding f W � ! M into a simply connected, complete Riemannian manifold
M of nonpositive sectional curvature. Then the homomorphism

e� W lim
d!1

K�
�
B
p
L .Pd .�/;A/

�
! lim

d!1
K�
�
Bp.Pd .�/;A/

�
is an isomorphism.

The proof of Theorem 16 will follow the proof of Theorem 6.8 in [28]. To begin
with, we need to discuss ideals of the twisted algebras associated to open subsets of the
manifold M .

Definition 17. (1) The support of an element T in Bpalg.Pd .�/;A/ is defined to be

Supp.T / D
®
.x; y;m/ 2 �d � �d �M W m 2 Supp

�
T .x; y/

�¯
D
®
.x; y;m/ 2 �d � �d �M W

�
T .x; y/

�
.m/ ¤ 0

¯
:

(2) The support of an element g in BpL;alg.Pd .�/;A/ is defined to be[
t2RC

Supp
�
g.t/

�
:

Let O �M be an open subset ofM . Define Bpalg.Pd .�/;A/O to be the subalgebra of
B
p
alg.Pd .�/;A/ consisting of all elements whose supports are contained in �d � �d �O ,

i.e.,

B
p
alg

�
Pd .�/;A

�
O
D
®
T 2 B

p
alg

�
Pd .�/;A

�
W Supp

�
T .x; y/

�
� O; 8 x; y 2 �d

¯
:

Define Bp.Pd .�/;A/O to be the norm closure of Bpalg.Pd .�/;A/O . Similarly, let

B
p
L;alg

�
Pd .�/;A

�
O
D
®
g 2 B

p
L;alg

�
Pd .�/;A

�
W Supp.g/ � �d � �d �O

¯
and define BpL .Pd .�/;A/O to be the norm closure of BpL;alg.Pd .�/;A/O under the norm
kgk1 D supt2RC kg.t/kBp.Pd .�/;A/.

Note that Bp.Pd .�/; A/O and B
p
L .Pd .�/; A/O are closed two-sided ideals of

Bp.Pd .�/;A/ and BpL .Pd .�/;A/, respectively. We also have an evaluation homomor-
phism

e W B
p
L

�
Pd .�/;A

�
O
! Bp

�
Pd .�/;A

�
O

given by e.g/ D g.0/.

Lemma 18. For any two open subsets O1, O2 of M , one has

Bp
�
Pd .�/;A

�
O1
C Bp

�
Pd .�/;A

�
O2
D Bp

�
Pd .�/;A

�
O1[O2

;

Bp
�
Pd .�/;A

�
O1
\ Bp

�
Pd .�/;A

�
O2
D Bp

�
Pd .�/;A

�
O1\O2

;

B
p
L

�
Pd .�/;A

�
O1
C B

p
L

�
Pd .�/;A

�
O2
D B

p
L

�
Pd .�/;A

�
O1[O2

;

B
p
L

�
Pd .�/;A

�
O1
\ B

p
L

�
Pd .�/;A

�
O2
D B

p
L

�
Pd .�/;A

�
O1\O2

:
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Consequently, one has the following commuting diagram connecting two Mayer–Vietoris
sequences at K-theory level:

AL0 //

��

BL0 //

��

CL0

e�

��

{{

CL1

;;

e�

��

BL1oo

��

AL1oo

��

A0 // B0 // C0

{{

C1

;;

B1oo A1oo

where, for � D 0; 1,

AL� D K�
�
B
p
L

�
Pd .�/;A

�
O1\O2

�
; CL� D K�

�
B
p
L

�
Pd .�/;A

�
O1[O2

�
;

A� D K�
�
Bp
�
Pd .�/;A

�
O1\O2

�
; C� D K�

�
Bp
�
Pd .�/;A

�
O1[O2

�
;

BL� D K�
�
B
p
L

�
Pd .�/;A

�
O1

�
˚K�

�
B
p
L

�
Pd .�/;A

�
O2

�
;

B� D K�
�
Bp
�
Pd .�/;A

�
O1

�
˚K�

�
Bp
�
Pd .�/;A

�
O2

�
:

Proof. We shall prove the first two equalities. The other two equalities can be proved
similarly. Then the two Mayer–Vietoris exact sequences follow from Proposition 11.

To prove the first equality, it suffices to show that

B
p
alg

�
Pd .�/;A

�
O1[O2

� B
p
alg

�
Pd .�/;A

�
O1
C B

p
alg

�
Pd .�/;A

�
O2
:

Now suppose T 2 Bpalg.Pd .�/;A/O1[O2 . Take a continuous partition of unity ¹'1; '2º on
O1 [O2 subordinate to the open over ¹O1; O2º of O1 [O2. Define two functions

T1; T2 W �d � �d !Kp p̋ A

by

T1.x; y/.m/ D '1.m/
�
T .x; y/.m/

�
;

T2.x; y/.m/ D '2.m/
�
T .x; y/.m/

�
for x; y 2 �d and m 2M .

Then T1 2 B
p
alg.Pd .�/;A/O1 , T2 2 B

p
alg.Pd .�/;A/O2 , and

T D T1 C T2 2 B
p
alg

�
Pd .�/;A

�
O1
C B

p
alg

�
Pd .�/;A

�
O2

as desired.
For the second equality, similar to the proof of Proposition 11, it suffices to show that

Bp
�
Pd .�/;A

�
O1
\ Bp

�
Pd .�/;A

�
O2
� Bp

�
Pd .�/;A

�
O1
Bp
�
Pd .�/;A

�
O2
:
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Consider all (rank) functions r W �d ! N and all pairs .K; �/, where K � O1 is a
compact subset in O1 and � 2 A is such that

Supp.�/ � O1 and �jK D 1:

For any triple .r IK;�/, define an element Q 2 Bpalg.Pd .�/;A/O1 by the formula

Q.x; x/ D

 
Ir.x/ 0

0 0

!
˝ �

and Q.x; y/ D 0 if x ¤ y. It is straightforward that all such elements Q constitute an
approximate unit Q of Bp.Pd .�/;A/O1 . Thus the second equality follows in a similar
way to the second equality in Proposition 10. This completes the proof.

It would be convenient to introduce the following notion associated with the coarse
embedding f W � !M .

Definition 19. Let r > 0. A family of open subsets ¹Oiºi2J of M is said to be .�; r/-
separate if

(1) Oi \Oj D ; if i ¤ j ;

(2) there exists 
i 2 � such that Oi � B.f .
i /; r/ �M for each i 2 J .

Lemma 20. If ¹Oiºi2J is a family of .�; r/-separate open subsets of M , then

e� W lim
d!1

K�
�
B
p
L

�
Pd .�/;A

�F
i2J Oi

�
! lim

d!1
K�
�
Bp
�
Pd .�/;A

�F
i2J Oi

�
is an isomorphism, where

F
i2J Oi is the (disjoint) union of ¹Oiºi2J .

We will prove Lemma 20 in Section 5. Granting Lemma 20 for the moment, we are
able to prove Theorem 16. The proof is in much the same way as in [28].

Proof of Theorem 16. For any r > 0, we define Or �M by

Or D
[

2�

B
�
f .
/; r

�
;

where f W �!M is the coarse embedding and B.f .
/; r/D ¹p 2M W d.p;f .
// < rº.
For any d > 0, if r < r 0 then

Bp
�
Pd .�/;A

�
Or
� Bp

�
Pd .�/;A

�
Or 0
; B

p
L

�
Pd .�/;A

�
Or
� B

p
L

�
Pd .�/;A

�
Or 0
:

By definition, we have

Bp
�
Pd .�/;A

�
D lim
r!1

Bp
�
Pd .�/;A

�
Or
;

B
p
L

�
Pd .�/;A

�
D lim
r!1

B
p
L

�
Pd .�/;A

�
Or
:
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On the other hand, for any r > 0, if d < d 0 then �d � �d 0 in Pd .�/ � Pd 0.�/ so that
we have natural inclusionsBp.Pd .�/;A/Or �B

p.Pd 0.�/;A/Or andBpL .Pd .�/;A/Or �
B
p
L .Pd 0.�/;A/Or . These inclusions induce the commuting diagram

K�
�
B
p
L

�
Pd 0.�/;A

�
Or

� e� //

��

K�
�
Bp
�
Pd 0.�/;A

�
Or

�

��

K�
�
B
p
L

�
Pd .�/;A

�
Or

�
77

e� //

��

K�
�
Bp
�
Pd .�/;A

�
Or

�
77

��

K�
�
B
p
L

�
Pd 0.�/;A

�
Or 0

� e� // K�
�
Bp
�
Pd 0.�/;A

�
Or 0

�

K�
�
B
p
L

�
Pd .�/;A

�
Or 0

� e� //

77

K�
�
Bp
�
Pd .�/;A

�
Or 0

�
77

which allows us to change the order of limits from limd!1 limr!1 to limr!1 limd!1

in the second piece of the commuting diagram

lim
d!1

K�
�
B
p
L

�
Pd .�/;A

��
Š

��

e� // lim
d!1

K�
�
Bp
�
Pd .�/;A

��
Š

��

lim
d!1

limr!1K�
�
B
p
L

�
Pd .�/;A

�
Or

�
Š

��

e� // lim
d!1

lim
r!1

K�
�
Bp
�
Pd .�/;A

�
Or

�
Š

��

lim
r!1

limd!1K�
�
B
p
L

�
Pd .�/;A

�
Or

� e� // lim
r!1

lim
d!1

K�
�
Bp
�
Pd .�/;A

�
Or

�
:

So, to prove Theorem 16, it suffices to show that, for any r > 0,

e� W lim
d!1

K�
�
B
p
L

�
Pd .�/;A

�
Or

�
! lim

d!1
K�
�
Bp
�
Pd .�/;A

�
Or

�
is an isomorphism.

Let r > 0. Since � has bounded geometry and f W�!M is a coarse embedding, there
exist finitely many mutually disjoint subsets of � , say �k WD ¹
i W i 2 Jkºwith some index
set Jk for k D 1; 2; : : : ; k0, such that � D

Fk0
kD1

�k and, for each k, d.f .
i /; f .
j // > 2r
for distinct elements 
i , 
j in �k .

For each k D 1; 2; : : : ; k0, let

Or;k D
[
i2Jk

B
�
f .
i /; r

�
:

Then Or D
Sk0
kD1

Or;k and each Or;k , or an intersection of several Or;k , is the union of a
family of .�; r/-separate (Definition 19) open subsets of M .
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Now Theorem 16 follows from Lemma 20 together with a Mayer–Vietoris sequence
argument by using Lemma 18.

5. Strong Lipschitz homotopy invariance

In this section, we shall present Yu’s arguments about strong Lipschitz homotopy invari-
ance for K-theory of the twisted localization algebras [28], and prove Lemma 20 of the
previous section.

Let f W � !M be a coarse embedding of a bounded geometry discrete metric space
� into a simply connected complete Riemannian manifold M of nonpositive sectional
curvature, and let r > 0. Let ¹Oiºi2J be a family of .�; r/-separate open subsets of M ,
i.e.,

(1) Oi \Oj D ; if i ¤ j ;

(2) there exists 
i 2 � such that Oi � B.f .
i /; r/ �M for each i 2 J .

For d > 0, let Xi , i 2 J , be a family of closed subsets of Pd .�/ such that 
i 2 Xi for
every i 2 J and ¹Xiºi2J is uniformly bounded in the sense that there exists r0 > 0 such
that diameter.Xi / � r0 for each i 2 J . In particular, we will consider the following three
cases of ¹Xiºi2J :

(1) Xi D BPd .�/.
i ;R/ WD ¹x 2 Pd .�/ W d.x; 
i / � Rº, for some common R > 0 for
all i 2 J ;

(2) Xi D �i , a simplex in Pd .�/ with 
i 2 �i for each i 2 J ;

(3) Xi D ¹
iº for each i 2 J .

For each i 2 J , let AOi be the subalgebra of A D C0.M;CliffC.TM// generated by
those functions whose supports are contained in Oi .

We define A.Xi W i 2 J / to be the closed subalgebra of the Banach algebra²M
i2J

Ti j Ti 2 B
p.Xi / p̋ AOi ; sup

i2J

kTik <1

³
generated by the elements

L
i2J Ti for which conditions (3) and (4) from Definition 13

are satisfied by all operators Ti , i 2 J , viewed as functions

Ti W .�d \Xi / � .�d \Xi /!Kp p̋ AOi ;

uniformly (cf. [23, 28]).
Similarly, we define AL;alg.Xi W i 2 J / to be the algebra of bounded, uniformly con-

tinuous maps
g W Œ0;1/! A.Xi W i 2 J /

such that if we write
g.t/ D

M
i2J

gi .t/
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then conditions (3) and (4) from Definition 13 are satisfied by all operators gi .t/, i 2 J ,
t 2 Œ0;1/, uniformly, and there exists a bounded function c.t/ on RC with limt!1 c.t/D

0 such that �
gi .t/

�
.x; y/ D 0

whenever d.x; y/ > c.t/ for all i 2 J , x; y 2 �d \Xi and t 2 Œ0;1/ (cf. [23, 28]).
Define AL.Xi W i 2 J / to be the completion of AL;alg.Xi W i 2 J / for the norm

kgk D sup
t2Œ0;1/



g.t/

:
Note that there is an evaluation-at-zero map

e W AL.Xi W i 2 J /! A.Xi W i 2 J /:

For each natural number s > 0, let �i .s/ be the simplex with vertices ¹
 2 � W
d.
; 
i / � sº in Pd .�/ for d > s.

Lemma 21. Let O D
F
i2J Oi be the disjoint union of a family of .�; r/-separate open

subsets ¹Oiºi2J of M as above. Then

(1) Bp.Pd .�/;A/O Š limR!1A.¹x 2 Pd .�/ W d.x; 
i / � Rº W i 2 J /;

(2) BpL .Pd .�/;A/O Š limR!1AL.¹x 2 Pd .�/ W d.x; 
i / � Rº W i 2 J /;

(3) limd!1 B
p.Pd .�/;A/O Š lims!1A.�i .s/ W i 2 J /;

(4) limd!1 B
p
L .Pd .�/;A/O Š lims!1AL.�i .s/ W i 2 J /.

Proof (cf. [28]). Let AO be the subalgebra of A D C0.M; CliffC.TM// generated by
elements whose supports are contained in O . Let BO D Lp.O; CliffC.TM// and let
BO;1;p be the `p-direct sum of infinite copies of BO with the `p-norm



¹fiº1iD1

p D � 1X
iD1

kfik
p

�1=p
; for ¹fiº1iD1 2 BO;1;p:

The algebra Kp p̋ AO acts on BO;1;p and the algebra Bp.Pd .�/; A/O acts on
`p.�d ;BO;1;p/. We have a decomposition

`p.�d ;BO;1;p/ D
�M
i2J

`p.�d ;BOi ;1;p/
�
p
:

Each T 2 Bpalg.Pd .�/;A/O has a corresponding decomposition

T D
M
i2J

Ti

such that there exists R > 0 for which each Ti is supported on®
.x; y; p/ W p 2 Oi ; x; y 2 �d ; d.x; 
i / � R; d.y; 
i / � R

¯
:
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On the other hand, the Banach algebra Bp.¹x 2 Pd .�/ W d.x; 
i / � Rº/ p̋ AOi acts on

`p
�®
x 2 �d W d.x; 
i / � R

¯
; BOi ;1;p

�
;

so that on `p.�d ;BOi ;1;p/, for each R > 0, the algebra

A
�®
x 2 Pd .�/ W d.x; 
i / � R

¯
W i 2 J

�
can be represented as a subalgebra of Bp.Pd .�/;A/O . In this way, the decomposition
T D

L
i2J Ti induces a Banach algebra isomorphism

Bp
�
Pd .�/;A

�
O
Š lim
R!1

A
�®
x 2 Pd .�/ W d.x; 
i / � R

¯
W i 2 J

�
as desired in (1). Then (2), (3), and (4) follow straightforwardly from (1).

Now we turn to recall the notion of strong Lipschitz homotopy [26–28].
Let ¹Yiºi2J and ¹Xiºi2J be two families of uniformly bounded closed subspaces of

Pd .�/ for some d > 0 with 
i 2 Xi , 
i 2 Yi for every i 2 J . A map g W
F
i2J Xi !F

i2J Yi is said to be Lipschitz if

(1) g.Xi / � Yi for each i 2 J ;

(2) there exists a constant c, independent of i 2 J , such that

d
�
g.x/; g.y/

�
� cd.x; y/

for all x; y 2 Xi , i 2 J .

Let g1, g2 be two Lipschitz maps from
F
i2J Xi to

F
i2J Yi . We say g1 is strongly

Lipschitz homotopy equivalent to g2 if there exists a continuous map

F W Œ0; 1� �
�G
i2J

Xi

�
!

G
i2J

Yi

such that

(1) F.0; x/ D g1.x/, F.1; x/ D g2.x/ for all x 2
F
i2J Xi ;

(2) there exists a constant c for which d.F.t;x/;F.t;y//� cd.x;y/ for all x;y 2Xi ,
t 2 Œ0; 1�, where i is any element in J ;

(3) F is equicontinuous in t , i.e., for any " > 0 there exists ı > 0 such that

d
�
F.t1; x/; F.t2; x/

�
< " for all x 2

G
i2J

Xi if jt1 � t2j < ı:

We say ¹Xiºi2J is strongly Lipschitz homotopy equivalent to ¹Yiºi2J if there exist
Lipschitz maps g1 W

F
i2J Xi !

F
i2J Yi and g2 W

F
i2J Yi !

F
i2J Xi such that g1g2

and g2g1 are, respectively, strongly Lipschitz homotopy equivalent to identity maps.
Define AL;0.Xi W i 2 J / to be the subalgebra of AL.Xi W i 2 J / consisting of elementsL
i2J bi .t/ satisfying bi .0/ D 0 for all i 2 J .

Lemma 22 ([28]). If ¹Xiºi2J is strongly Lipschitz homotopy equivalent to ¹Yiºi2J , then
K�.AL;0.Xi W i 2 J // is isomorphic to K�.AL;0.Yi W i 2 J //.



The coarse geometric `p-Novikov conjecture 1343

Let e be the evaluation homomorphism from AL.Xi W i 2 J / to A.Xi W i 2 J / given
by
L
i2J gi .t/ 7!

L
i2J gi .0/.

Lemma 23 ([28]). Let ¹
iºi2J be as above, i.e., Oi � B.f .
i /; r/ � M for each i . If
¹�iºi2J is a family of simplices in Pd .�/ for some d > 0 such that 
i 2 �i for all i 2 J ,
then

e� W K�
�
AL.�i W i 2 J /

�
! K�

�
A.�i W i 2 J /

�
is an isomorphism.

Proof ([28]). Note that ¹�iºi2J is strongly Lipschitz homotopy equivalent to ¹
iºi2J . By
an argument of Eilenberg swindle, we have K�.AL;0.¹
iº W i 2 J // D 0. Consequently,
Lemma 23 follows from Lemma 22 and the six term exact sequence of Banach algebra
K-theory.

We are now ready to give a proof to Lemma 20 of the previous section.

Proof of Lemma 20 [28]. By Lemma 21, we have the commuting diagram

lim
d!1

B
p
L

�
Pd .�/;A

�F
i2J Oi

Š

��

e // lim
d!1

Bp
�
Pd .�/;A

�F
i2J Oi

Š

��

lim
s!1

AL
�
�i .s/i W i 2 J

� e // lim
s!1

A
�
�i .s/i W i 2 J

�
which induces the following commuting diagram at K-theory level:

lim
d!1

K�
�
B
p
L

�
Pd .�/;A

�F
i2J Oi

�
Š

��

e� // lim
d!1

K�
�
Bp
�
Pd .�/;A

�F
i2J Oi

�
Š

��

lim
s!1

K�
�
AL
�
�i .s/ W i 2 J

�� e� // lim
s!1

K�
�
A
�
�i .s/ W i 2 J

��
:

Now Lemma 20 follows from Lemma 23.

6. Almost flat Bott elements and Bott maps

In this section, we shall construct uniformly almost flat Bott generators for a simply con-
nected complete Riemannian manifold of nonpositive sectional curvature, and define a
Bott map from the K-theory of the `p-Roe algebra to the K-theory of the twisted `p-Roe
algebra and another Bott map between the K-theories of corresponding `p-localization
algebras. We show that the Bott map from the K-theory of the `p-localization algebra to
the K-theory of the twisted `p-localization algebra is an isomorphism (Theorem 27).

Let M be a simply connected complete Riemannian manifold of nonpositive sec-
tional curvature. As remarked at the beginning of Section 4, without loss of generality,
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we assume in the following dim.M/ D 2n for some integer n > 0. Recall that A D

C0.M; CliffC.TM// is the C �-algebra of continuous sections of the complex Clifford
algebra bundle CliffC.TM/ of the tangent bundle of M vanishing at infinity. Let B WD

Cb.M;CliffC.TM// be theC �-algebra of all continuous bounded sections of CliffC.TM/.
We can consider ADC0.M;CliffC.TM// and BDCb.M;CliffC.TM// asLp-oper-

ator algebras, acting onLp.M;CliffC.TM//, theLp-space of the locally measurable sec-
tions of the Hilbert space bundle CliffC.TM/. Since A and B act onLp.M;CliffC.TM//

by pointwise multiplication, both algebras have equivalent norms for different p 2 .1;1/.
Hence theK-theory of both A and B does not depend on p. In particular, the Bott element
is still a generator for K0.A/ if A is viewed as an Lp-operator algebra.

Let x 2M . For any z 2M , let � W Œ0; 1�!M be the unique geodesic such that

�.0/ D x; �.1/ D z:

Let vx.z/ WD
� 0.1/
k� 0.1/k

2 TzM . For any c > 0, take a continuous function �x;c WM ! Œ0; 1�

satisfying

�x;c.z/ D

´
0; if d.x; z/ � c

2
I

1; if d.x; z/ � c:
(6.1)

For any z 2M , let
fx;c.z/ WD �x;c.z/ � vx.z/ 2 TzM:

Then fx;c 2 B. The following result describes certain “uniform almost flatness” of the
functions fx;c (x 2M , c > 0).

Lemma 24. For any R > 0 and " > 0, there exist a constant c > 0 and a family of
continuous functions ¹�x;cºx2M satisfying (6.1) such that, if d.x; y/ < R, then

sup
z2M



fx;c.z/ � fy;c.z/

TzM < ":

Proof. Let c D 2R
"

. For any x 2M , define �x;c WM ! Œ0; 1� by

�x;c.z/ D

8̂̂<̂
:̂
0; if d.x; z/ � R

"
I

"
R
d.x; z/ � 1; if R

"
� d.x; z/ � 2R

"
I

1; if d.x; z/ � 2R
"
:

Let x;y 2M such that d.x;y/ < R. Then we have several cases for the position of z 2M
with respect to x, y.

Consider the case where d.x; z/ > c D 2R
"

and d.y; z/ > c D 2R
"

. Since �x;c.z/ D
�y;c.z/ D 1, we have

fx;c.z/ � fy;c.z/ D vx.z/ � vy.z/:

Without loss of generality, assume d.x; z/ � d.y; z/. Then there exists a unique point y0

on the unique geodesic connecting y and z such that d.y0; z/D d.x;z/. Then d.y0;y/ <R
since d.x; y/ < R, so that d.x; y0/ < 2R.
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Let exp�1z WM ! TzM denote the inverse of the exponential map

expz W TzM !M

at z 2M . Then we have

(˛) k exp�1z .x/k D d.x; z/ D d.y
0; z/ D k exp�1z .y

0/k > c D 2R
"

;

(ˇ) k exp�1z .x/ � exp�1z .y
0/k � d.x; y0/ < 2R, since M has nonpositive sectional

curvature;

(
 ) vx.z/ D �
exp�1z .x/

kexp�1z .x/k
and vy.z/ D �

exp�1z .y0/

kexp�1z .y0/k
.

Hence, for any z 2M , we have

fx;c.z/ � fy;c.z/

 D 

vx.z/ � vy.z/

 < 2R=.2R="/ D "
whenever d.x;y/ < R. Similarly, we can check the inequality in other cases where z 2M
satisfies either d.x; z/ � c or d.y; z/ � c.

Now let us consider the short exact sequence

0! A! B
�
�! B=A! 0;

where A D C0.M;CliffC.TM// and B D Cb.M;CliffC.TM//. For any fx;c (x 2 M ,
c > 0) constructed above, it is easy to see that Œfx;c � WD �.fx;c/ is invertible in B=A

with its inverse Œ�fx;c �. Thus Œfx;c � defines an element inK1.B=A/. With the help of the
index map

@ W K1.B=A/! K0.A/;

we obtain an element @.Œfx;c �/ in

K0.A/ D K0
�
C0
�
M;CliffC.TM/

��
Š K0

�
C0.R

2n/˝M2n.C/
�
Š Z:

It follows from the construction of fx;c that, for every x 2M and c > 0, @.Œfx;c �/ is just
the Bott generator of K0.A/.

The element @.Œfx;c �/ can be expressed explicitly as follows. Let

Wx;c D

�
1 fx;c
0 1

��
1 0

fx;c 1

��
1 fx;c
0 1

��
0 �1

1 0

�
;

bx;c D Wx;c

�
1 0

0 0

�
W �1x;c ;

b0 D

�
1 0

0 0

�
:

Then both bx;c and b0 are idempotents in M2.A
C/, where AC is the algebra jointing

a unit to A. It is easy to check that

bx;c � b0 2 Cc
�
M;CliffC.TM/

�
˝M2.C/;
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the algebra of 2 � 2 matrices of compactly supported continuous functions, with

Supp.bx;c � b0/ � BM .x; c/ WD
®
z 2M W d.x; z/ � c

¯
;

where for a matrix a D
�
a11 a12
a21 a22

�
of functions on M we define the support of a by

Supp.a/ D
2[

i;jD1

Supp.ai;j /:

Now we have the explicit expression

@
�
Œfx;c �

�
D Œbx;c � � Œb0� 2 K0.A/:

Lemma 25 (Uniform almost flatness of the Bott generators). The family of idempotents
¹bx;cºx2M;c>0 in M2.A

C/ D C0.M; CliffC.TM//C ˝M2.C/ constructed above are
uniformly almost flat in the following sense: for anyR > 0 and " > 0, there exist c > 0 and
a family of continuous functions ¹�x;c WM ! Œ0;1�ºx2M such that, whenever d.x;y/ <R,
one has

sup
z2M



bx;c.z/ � by;c.z/

CliffC.TzM/˝M2.C/
< ";

where bx;c is defined via Wx;c and fx;c D �x;cvx as above, and CliffC.TzM/ is the
complexified Clifford algebra of the tangent space TzM .

Proof. Straightforward from Lemma 24.

It would be convenient to introduce the following notion.

Definition 26. ForR>0, ">0, and c>0, a family of idempotents ¹bxºx2M in M2.A
C/D

C0.M;CliffC.TM//C ˝M2.C/ is said to be .R; "I c/-flat if

(1) for any x; y 2M with d.x; y/ < R we have

sup
z2M



bx.z/ � by.z/

CliffC.TzM/˝M2.C/
< "I

(2) bx � b0 2 Cc.M;CliffC.TM//˝M2.C/ and

Supp.bx � b0/ � BM .x; c/ WD
®
z 2M W d.x; z/ � c

¯
:

Construction of the Bott map ˇ�

Now we shall use the above almost flat Bott generators for

K0.A/ D K0
�
C0
�
M;CliffC.TM/

��
to construct a “Bott map”

ˇ� W K�
�
Bp
�
Pd .�/

��
! K�

�
Bp
�
Pd .�/;A

��
:
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To begin with, we give a representation of Bp.Pd .�// on `p.�d ; `p/, where �d is the
countable dense subset of Pd .�/ as in the definition of Bp.Pd .�/;A/.

Let Bpalg.Pd .�// be the algebra of functions

Q W �d � �d !Kp

such that

(1) there exists C > 0 such that kQ.x; y/k � C for all x; y 2 �d ;

(2) there exists R > 0 such that Q.x; y/ D 0 whenever d.x; y/ > R;

(3) there exists L > 0 such that, for every z 2 Pd .�/, the number of elements in the
set ®

.x; y/ 2 �d � �d W d.x; z/ � 3R; d.y; z/ � 3R; Q.x; y/ ¤ 0
¯

is less than L.

The product structure on Bpalg.Pd .�// is defined by

.Q1Q2/.x; y/ D
X
z2�d

Q1.x; z/Q2.z; y/:

The algebra Bpalg.Pd .�// acts on `p.�d ; `
p/. The operator norm completion of

B
p
alg.Pd .�// with respect to this action is isomorphic to Bp.Pd .�// when � has bounded

geometry.
Note thatBp.Pd .�// is stable in the sense thatBp.Pd .�//ŠBp.Pd .�// p̋ Mk.C/

for all natural number k. Any element in K0.Bp.Pd .�/// can be expressed as the differ-
ence of the K0-classes of two idempotents in Bp.Pd .�//. To define the Bott map

ˇ� W K0
�
Bp
�
Pd .�/

��
! K0

�
Bp
�
Pd .�/;A

��
;

we need to specify the value ˇ�.ŒP �/ in K0.Bp.Pd .�/;A// for any idempotent P 2
Bp.Pd .�//.

Now let P 2 Bp.Pd .�// � B.`p.�d ; `
p// be an idempotent. Denote kP k D N . For

any 0 < "1 < 1=100, take an element Q 2 Bpalg.Pd .�// such that

kP �Qk <
"1

2N C 2
:

Then kQk < kP �Qk C kP k < N C 1, hence

kQ �Q2
k � kQ � P k C kP kkP �Qk C kP �QkkQk < "1;

and there is R"1 > 0 such thatQ.x;y/D 0 whenever d.x; y/ > R"1 . For any "2 > 0, take
by Lemma 25 a family of .R"1 ; "2I c/-flat idempotents ¹bxºx2M in M2.A

C/ for some
c > 0. Define

zQ; zQ0 W �d � �d !Kp p̋ AC p̋ M2.C/
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by

zQ.x; y/ D Q.x; y/˝ bx ;

zQ0.x; y/ D Q.x; y/˝ b0;

respectively, for all .x; y/ 2 �d � �d , where b0 D
�
1 0
0 0

�
. Then

zQ; zQ0 2 B
p
alg

�
Pd .�/;A

C
p̋ M2.C/

�
Š B

p
alg

�
Pd .�/;A

C
�

p̋ M2.C/

and
zQ � zQ0 2 B

p
alg

�
Pd .�/;A

�
p̋ M2.C/:

Since � has bounded geometry, by the almost flatness of the Bott generators (Lemma
25), we can choose "1 and "2 small enough to obtain zQ; zQ0 as constructed above such
that k zQ2 � zQk < 1=5 and k zQ2

0 �
zQ0k < 1=5.

It follows that the spectrum of either zQ or zQ0 is contained in disjoint neighborhoods
S0 of 0 and S1 of 1 in the complex plane. Let f W S0 t S1 ! C be the holomorphic
function such that f .S0/ D ¹0º, f .S1/ D ¹1º. Let ‚ D f . zQ/ and‚0 D f . zQ0/. Then ‚
and ‚0 are idempotents in Bp.Pd .�/;AC/˝M2.C/ with

‚ �‚0 2 B
p
�
Pd .�/;A

�
˝M2.C/:

Note that Bp.Pd .�/;A/ ˝M2.C/ is a closed two-sided ideal of Bp.Pd .�/;AC/ ˝
M2.C/.

At this point, we need to recall the difference construction in K-theory of Banach
algebras introduced by Kasparov–Yu [15]. Let J be a closed two-sided ideal of a Banach
algebra B . Let p; q 2 BC be idempotents such that p � q 2 J . Then a difference element
D.p; q/ 2 K0.J / associated to the pair p; q is defined as follows. Let

Z.p; q/ D

0BB@
q 0 1 � q 0

1 � q 0 0 q

0 0 q 1 � q

0 1 0 0

1CCA 2M4.B
C/:

We have

�
Z.p; q/

��1
D

0BB@
q 1 � q 0 0

0 0 0 1

1 � q 0 q 0

0 q 1 � q 0

1CCA 2M4.B
C/:

Define

D0.p; q/ D
�
Z.p; q/

��10BB@
p 0 0 0

0 1 � q 0 0

0 0 0 0

0 0 0 0

1CCAZ.p; q/:
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Let

p1 D

0BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCA :
Then D0.p; q/ 2M4.J

C/ and D0.p; q/ D p1 modulo M4.J /. We define the difference
element

D.p; q/ WD
�
D0.p; q/

�
� Œp1�

in K0.J /.
Finally, for any idempotent P 2Bp.Pd .�//which represents aK-theory element ŒP �

in K0.Bp.Pd .�///, we define

ˇ�
�
ŒP �

�
D D.‚;‚0/ 2 K0

�
Bp
�
Pd .�/;A

��
:

The correspondence ŒP �! ˇ�.ŒP �/ extends to a homomorphism, the Bott map

ˇ� W K0
�
Bp
�
Pd .�/

��
! K0

�
Bp
�
Pd .�/;A

��
:

By using suspension, we similarly define the Bott map

ˇ� W K1
�
Bp
�
Pd .�/

��
! K1

�
Bp
�
Pd .�/;A

��
:

Construction of the Bott map .ˇL/�

Next we shall construct a Bott map for K-theory of `p-localization algebras:

.ˇL/� W K�
�
B
p
L

�
Pd .�/

��
! K�

�
B
p
L

�
Pd .�/;A

��
:

Let BpL;alg.Pd .�// be the algebra of all bounded, uniformly continuous functions

g W RC ! B
p
alg

�
Pd .�/

�
� B

�
`p.�d ; `

p/
�

with the following properties:

(1) there exists a bounded function R W RC ! RC with limt!1 R.t/ D 0 such that
g.t/.x; y/ D 0 whenever d.x; y/ > R.t/ for every t ;

(2) there exists L > 0 such that, for every z 2 Pd .�/, the number of elements in the
set ®

.x; y/ 2 �d � �d W d.x; z/ � 3R; d.y; z/ � 3R; g.t/.x; y/ ¤ 0
¯

is less than L for every t 2 RC.

The `p-localization algebra BpL .Pd .�// is isomorphic to the norm completion of
B
p
L;alg.Pd .�// under the norm

kgk1 WD sup
t2RC



g.t/
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when � has bounded geometry. Note that BpL .Pd .�// is stable in the sense that

B
p
L

�
Pd .�/

�
Š B

p
L

�
Pd .�/

�
p̋ Mk.C/

for all natural number k. Hence any element in K0.B
p
L .Pd .�/// can be expressed as the

difference of the K0-classes of two idempotents in BpL .Pd .�//. To define the Bott map

.ˇL/� W K0
�
B
p
L

�
Pd .�/

��
! K0

�
B
p
L

�
Pd .�/;A

��
;

we need to specify the value .ˇL/�.Œg�/ in K0.B
p
L .Pd .�/;A// for any idempotent g 2

B
p
L .Pd .�// representing an element Œg� 2 K0.B

p
L .Pd .�///.

Now let g 2 BpL .Pd .�// be an idempotent with kgk D N . For any 0 < "1 < 1=100,
take an element h 2 BpL;alg.Pd .�// such that

kg � hk1 <
"1

2N C 2
:

Then kh� h2k1 < "1 and there is a bounded functionR"1.t/ > 0with limt!1R"1.t/D 0

such that h.t/.x;y/D 0 whenever d.x;y/ > R"1.t/ for every t . Let eR"1 D supt2RC R.t/.
For any "2 > 0, take by Lemma 25 a family of .eR"1 ; "2I c/-flat idempotents ¹bxºx2M in
M2.A

C/ for some c > 0. Define

eh;eh0 W RC ! B
p
alg

�
Pd .�/;A

C
�

p̋ M2.C/

by �eh.t/�.x; y/ D �h.t/.x; y/� p̋ bx 2Kp p̋ AC p̋ M2.C/;�eh0.t/�.x; y/ D �h.t/.x; y/� p̋

�
1 0

0 0

�
2Kp p̋ AC ˝M2.C/;

for each t 2 RC. Then we have

eh;eh0 2 BpL;alg

�
Pd .�/;A

C
�

p̋ M2.C/

and eh �eh0 2 BpL;alg

�
Pd .�/;A

�
p̋ M2.C/:

Since � has bounded geometry, by the almost flatness of the Bott generators, we can
choose "1 and "2 small enough to obtain eh, eh0, as constructed above, such that
keh2 �ehk1 < 1=5 and keh20 �eh0k < 1=5. The spectrum of either eh or eh0 is contained
in disjoint neighborhoods S0 of 0 and S1 of 1 in the complex plane. Let f W S0 t S1! C
be the function such that f .S0/D ¹0º, f .S1/D ¹1º. Let �D f .eh/ and �0 D f .eh0/. Then
� and �0 are idempotents in BpL .Pd .�/;A

C/ p̋ M2.C/ with

� � �0 2 B
p
L

�
Pd .�/;A

�
p̋ M2.C/:
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Thanks to the difference construction, we define

.ˇL/�
�
Œg�
�
D D.�; �0/ 2 K0

�
B
p
L

�
Pd .�/;A

��
:

This correspondence Œg� 7! .ˇL/�.Œg�/ extends to a homomorphism, the Bott map

.ˇL/� W K0
�
B
p
L

�
Pd .�/

��
! K0

�
B
p
L

�
Pd .�/;A

��
:

By suspension, we similarly define

.ˇL/� W K1
�
B
p
L

�
Pd .�/

��
! K1

�
B
p
L

�
Pd .�/;A

��
:

This completes the construction of the Bott map .ˇL/�.
It follows from the constructions of ˇ� and .ˇL/� that we have the commuting diagram

K�
�
B
p
L

�
Pd .�/

��
e�

��

.ˇL/� // K�
�
B
p
L

�
Pd .�/;A

��
e�

��

K�
�
Bp
�
Pd .�/

�� ˇ� // K�
�
Bp
�
Pd .�/;A

��
:

Theorem 27. For any d � 0, the Bott map

.ˇL/� W K�
�
B
p
L

�
Pd .�/

��
! K�

�
B
p
L

�
Pd .�/;A

��
is an isomorphism.

Proof. Note that � has bounded geometry, and both the `p-localization algebra and the
twisted `p-localization algebra have strong Lipschitz homotopy invariance at theK-theory
level. By a Mayer–Vietoris sequence argument and induction on the dimension of the
skeletons [2, 26], the general case can be reduced to the 0-dimensional case; namely, if
D � Pd .�/ is a ı-separated subspace (meaning d.x; y/ � ı if x ¤ y 2 D) for some
ı > 0, then

.ˇL/� W K�
�
B
p
L .D/

�
! K�

�
B
p
L .D;A/

�
is an isomorphism. But this follows from the facts that

K�
�
B
p
L .D/

�
Š

Y

2D

K�
�
B
p
L

�
¹
º

��
;

K�
�
B
p
L .D;A/

�
Š

Y

2D

K�
�
B
p
L

�
¹
º;A

��
and that .ˇL/� restricts to an isomorphism from K�.B

p
L .¹
º// Š K�.Kp/ to

K�
�
B
p
L

�
¹
º;A

��
Š K�

�
Kp ˝A

�
at each 
 2 D by the classical Bott periodicity.
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7. Proof of the main theorem

Proof of Theorem 1. We have the commuting diagram

lim
d!1

K�
�
B
p
L

�
Pd .�/

��
e�

��

.ˇL/�

Š
// lim
d!1

K�
�
B
p
L

�
Pd .�/;A

��
e�Š

��

lim
d!1

K�
�
Bp
�
Pd .�/

�� ˇ� // lim
d!1

K�
�
Bp
�
Pd .�/;A

��
:

Hence ˇ� ı e� D e� ı .ˇL/�. It follows from Theorems 16 and 27 that ˇ� ı e� is an
isomorphism. Consequently, the assembly map

� D e� W lim
d!1

K�
�
B
p
L

�
Pd .�/

��
! lim

d!1
K�
�
Bp.Pd .�/

��
Š K�

�
Bp.�/

�
is injective.
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