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Quadratic Lie conformal superalgebras related to
Novikov superalgebras

Pavel S. Kolesnikov, Roman A. Kozlov, and Aleksander S. Panasenko

Abstract. We study quadratic Lie conformal superalgebras associated with Novikov superalgebras.
For every Novikov superalgebra .V;ı/, we construct an enveloping differential Poisson superalgebra
U.V / with a derivation d such that u ı v D ud.v/ and ¹u;vº D u ı v � .�1/jujjvjv ı u for u;v 2 V .
The latter means that the commutator Gelfand–Dorfman superalgebra of V is special. Next, we
prove that every quadratic Lie conformal superalgebra constructed on a finite-dimensional special
Gelfand–Dorfman superalgebra has a finite faithful conformal representation. This statement is a
step towards a solution of the following open problem: whether a finite Lie conformal (super)algebra
has a finite faithful conformal representation.

1. Introduction

Novikov algebras appeared in [9] as a class of algebras giving rise to Hamiltonian oper-
ators in the formal calculus of variations. Independently, these algebras were introduced
in [4] as a tool for studying linear Poisson brackets of hydrodynamic type. The study of
the structure theory of Novikov algebras was initiated in [23]; significant progress in this
direction was obtained in [1, 7, 19, 21].

A class of more complicated structures called Gelfand–Dorfman bialgebras [20] was
also introduced in [9] as a source of Hamiltonian operators. A Gelfand–Dorfman bialgebra
is a linear space with two bilinear operations .� ı �/ and Œ�; ��, where .� ı �/ is a Novikov
product (left symmetric, right commutative), i.e.,

.x1 ı x2/ ı x3 � x1 ı .x2 ı x3/ D .x2 ı x1/ ı x3 � x2 ı .x1 ı x3/; (1.1)

.x1 ı x2/ ı x3 D .x1 ı x3/ ı x2; (1.2)

Œ�; �� is a Lie product, and the following compatibility relation holds:

Œx1; x2 ı x3� � Œx3; x2 ı x1�C Œx2; x1� ı x3 � Œx2; x3� ı x1 � x2 ı Œx1; x3� D 0: (1.3)

In order to avoid confusion with the well-known notion of a bialgebra as an algebra
equipped with a coproduct, we will use the term GD-algebra [16] for a Gelfand–Dorfman
bialgebra.
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Novikov algebras and GD-algebras play an important role in the combinatorics of dif-
ferential algebras (see [16, Theorem 7]). Namely, the identities that hold for the operations

a � b D d.a/ � b; a � b D a � d.b/;

a; b 2 A, with A being an algebra in a multilinear variety Var, may be calculated by
means of the Manin white product [10] of the operad Var and the operads Nov and GDŠ,
the Koszul dual of GD.

Every differential Poisson algebra gives rise to a GD-algebra [22]: if P is a com-
mutative differential algebra with a derivation d equipped with a Poisson bracket ¹�; �º
such that d acts as a derivation relative to ¹�; �º, then P is a GD-algebra with operations
x ı y D zd.y/, Œx; y� D ¹x; yº, x; y 2 P . GD-algebras that embed into Poisson differen-
tial algebras in this way are called special [16]. Not all GD-algebras are special; a series
of necessary conditions for a GD-algebra to be special was found in the last paper. Below,
we will state some precise examples of non-special GD-algebras.

It was noted in [9, Remark 6.3] that if we enrich a Novikov algebra .V; ı/ with the
operation Œx; y� D x ı y � y ı x, x; y 2 V , then we obtain a GD-algebra. It is not hard
to check that such a system obtained from a Novikov algebra meets the necessary condi-
tions of speciality found in [16]. In Section 2, we prove that all GD-superalgebras arising
from Novikov superalgebras relative to (super-)commutator are indeed special, and we
construct an enveloping differential Poisson superalgebra for every Novikov algebra.

It turned out (see [11, 20]) that GD-algebras are in one-to-one correspondence with
quadratic Lie conformal algebras. The latter structures appeared in [12] as a tool in the
study of vertex operator algebras. Conformal algebras and their generalizations (pseudo-
algebras) also turn to be useful for the classification of Poisson brackets of hydrodynamic
type [2]. A conformal algebra is a module C over the polynomial algebra H equipped
with a “multi-valued” operation C ˝ C ! C Œ��; i.e., a product of two elements from
C is a polynomial in a formal variable � with coefficients in C . The axioms defining a
conformal algebra are stated in Section 3.

One of the most intriguing questions in the theory of conformal algebras is motivated
by the Ado theorem: Does a Lie conformal algebra which is a finitely generated free
module overH have a faithful representation on a finitely generated freeH -module? (The
condition of freeness is necessary: in conformal algebras and their modules, every torsion
element belongs to the corresponding annihilator.) In the case of a positive answer, we
may faithfully represent every Lie conformal algebra with polynomial matrices in Cendn;
see [6]. By now, the most general result in this direction says that if a Lie conformal
algebra as above has a Levi decomposition (i.e., its solvable radical splits), then it has a
finite faithful representation (FFR).

Therefore, one may observe close relations between Novikov algebras, Poisson alge-
bras, and conformal algebras. In Section 4, we prove that every quadratic Lie conformal
superalgebra obtained from a special GD-algebra has a FFR. As an application, every
quadratic Lie conformal superalgebra obtained from a Novikov superalgebra has a FFR.
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2. Gelfand–Dorfman superalgebras

A Z2-graded space V D V0 ˚ V1 with two bilinear operations .� ı �/; Œ�; �� W V ˝ V ! V

which respect the grading is said to be a GD-superalgebra if

� V is a Novikov superalgebra relative to .� ı �/;

� V is a Lie superalgebra relative to Œ�; ��;

� for every homogeneous a; b; c 2 V

Œa ı b; c�� a ı Œb; c�C Œa; b� ı cC .�1/jajjbjŒb; a ı c�� .�1/jbjjcjŒa; c� ı b D 0: (2.1)

A series of examples of GD-superalgebras may be obtained from differential Pois-
son superalgebras. Let P D P0 ˚ P1 be an associative and commutative superalgebra
equipped with an operation ¹�; �º such that

¹Pi ; Pj º � P.iCj / .mod 2/; ¹a; bº D �.�1/
jajjbj
¹b; aº;®

a; ¹b; cº
¯
� .�1/jajjbj

®
b; ¹a; cº

¯
D
®
¹a; bº; c

¯
; (2.2)

¹a; bcº D ¹a; bºc C .�1/jajjbjb¹a; cº; (2.3)

for all homogeneous a; b; c 2 P . Then P is called a Poisson superalgebra.
Suppose a Poisson superalgebra P has an (even) derivation d W P ! P , i.e.,

d.Pi / � Pi ; d.ab/ D d.a/b C ad.b/; d¹a; bº D ¹d.a/; bº C
®
a; d.b/

¯
;

for all a; b 2 P . Then the same space P equipped with

a ı b D ad.b/; Œa; b� D ¹a; bº

is a GD-superalgebra [20, Theorem 3.2] denoted by P .d/.
For a GD-superalgebra V , we say V is special if there exists a Poisson superalgebra

P with a derivation d such that V � P .d/. Non-special GD-superalgebras are said to be
exceptional.

Exceptional GD-superalgebras exist: it was shown in [16] by means of implicit compu-
tational arguments. Let us state below an explicit example of a 3-dimensional exceptional
GD-algebra.

Example 1. Let V be a 3-dimensional space with a basis ¹x; y; zº equipped with a Lie
algebra structure

Œx; y� D z; Œx; z� D Œy; z� D 0

(Heisenberg Lie algebra). It is straightforward to check that the operation .� ı �/ on V ,
given by

x ı x D x � y; y ı x D �x ı y D y;

x ı z D z ı x D y ı z D z ı y D y ı y D z ı z D 0;
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turns V into a GD-algebra. If we assume V to be special, then there exists a Poisson
differential algebra P such that V � P .d/. Consider the expression ¹x; x0ºxx0 2 P (here
x0 stands for d.x/). On the one hand,

¹x; x0º.xx0/ D ¹x; x0º.x ı x/ D
®
x; .x ı x/x0

¯
� ¹x; x ı xºx0

D
�
x; .x ı x/ ı x

�
� Œx; x ı x� ı x D �2zI

on the other hand,

¹x; x0º.xx0/ D
�
¹x; x0ºx

�
x0 D ¹x; xx0ºx0 D Œx; x ı x� ı x D 0:

Hence V cannot be embedded into a differential Poisson algebra.

Another series of examples was proposed in [9] for the non-graded case. In general, if
V is a Novikov superalgebra, then the operation

Œa; b� D .a ı b/ � .�1/jajjbj.b ı a/; a; b 2 V0 [ V1; (2.4)

turns V into a GD-superalgebra denoted by V .�/. It was conjectured in [16] that for every
Novikov algebra the commutator GD-algebra V .�/ is special. In this section, we prove the
conjecture in the Z2-graded setting.

In the following, we will need the embedding theorem proved in [5] for Novikov
algebras and then in [24] for Novikov superalgebras (in these two papers, the term
“Gelfand–Dorfman–Novikov algebra” is used for what we call “Novikov algebra” fol-
lowing the common terminology proposed in [17]).

Theorem 1 ([5, Theorem 3], [24, Theorem 3.8]). For every Novikov (super)algebra .V;ı/,
there exists an associative and (super)commutative algebra A with an even derivation d
such that V � A and u ı v D ud.v/ for u; v 2 V .

In particular, the universal enveloping differential algebra of a given Novikov super-
algebra V D V0 ˚ V1 may be constructed as follows. Let X D X0 [ X1 be a linear
basis of V , where Xi is a basis of Vi , i D 0; 1. Denote by s Com DerhX0 [ X1; d i the
free associative supercommutative differential algebra generated by even variables X0
and odd variables X1 with an even derivation d . Apparently, s Com DerhX0 [ X1; d i '
kŒd!X0�˝

V
.kd!X1/, where

d!Xi D ¹d
n.x/ j n � 0; x 2 Xiº:

Consider the (differential) ideal IV of s Com DerhX0 [ X1; d i generated by u.x; y/ D
xd.y/ � x ı y, x; y 2 X (here x ı y stands for the linear form in kX representing the
Novikov product in V ). As a non-differential ideal of kŒd!X0�˝

V
.kd!X1/, IV is gen-

erated by all derivatives of u.x; y/. Theorem 1 implies that IV \ kX D 0.
In order to define a (super-)Poisson bracket ¹�; �º on s Com DerhX0 [ X1; d i, it is

enough to determine polynomials ¹dn.x/;dm.y/º, for x;y 2X , n;m� 0, and then extend
the bracket in a unique way to the entire sCom DerhX0 [X1; d i by the Leibniz rule (2.3).
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If the bracket respects Z2-grading and is (super) anti-commutative on the generators from
d!X , then so is its extension. In order to simplify notations, let us denote dn.x/ by x.n/

for x 2 X , n � 0.

Lemma 1. Let ¹�; �º be a bracket on s Com DerhX0 [X1; d i obtained by expanding®
x.m/; y.n/

¯
D .n � 1/x.mC1/y.n/ � .m � 1/x.m/y.nC1/; x; y 2 X; n;m � 0: (2.5)

Then ¹�; �º satisfies the Jacobi identity (2.2).

Proof. For x; y; z 2 X , n;m; k � 0, evaluate®
x.m/¹y.n/; z.k/º

¯
D
®
x.m/; .k � 1/y.nC1/z.k/ � .n � 1/y.n/z.kC1/

¯
D .k � 1/

�®
x.m/; y.nC1/z.k/ C .�1/jxjjyjy.nC1/¹x.m/; z.k/º

¯�
� .n � 1/

�
¹x.m/; y.n/ºz.kC1/ C .�1/jxjjyjy.n/¹x.m/; z.kC1/º

�
D .k � 1/

��
nx.mC1/y.nC1/ � .m � 1/x.m/y.nC2/

�
z.k/

C y.nC1/.�1/jxjjyj
�
.k � 1/x.mC1/z.k/ � .m � 1/x.m/z.kC1/

��
� .n � 1/

��
.n � 1/x.mC1/y.n/ � .m � 1/x.m/y.nC1/

�
z.k/

� .�1/jxjjyjy.n/
�
kx.m/z.kC1/ � .m � 1/x.m/z.kC2/

��
D .k � 1/.nC k � 1/x.mC1/y.nC1/z.k/ � .k � 1/.m � 1/x.m/y.nC2/z.k/

C .m � 1/.n � k/x.m/y.nC1/z.k/ � .n � 1/.k C n � 1/x.mC1/y.n/z.kC1/

C .n � 1/.m � 1/x.m/y.n/z.kC2/: (2.6)

The Jacobi identity (2.2) is equivalent to

.�1/jxjjzj
®
x.m/; ¹y.n/; z.k/º

¯
C .�1/jyjjxj

®
y.n/; ¹z.k/; x.m/º

¯
C .�1/jyjjzj

®
z.k/; ¹x.m/; y.n/º

¯
D 0;

which is easy to check by the cyclic permutation of variables in (2.6).

Lemma 2. The operation d on s Com DerhX0 [ X1; d i is a derivation relative to the
bracket from Lemma 1.

Proof. It is enough to check that

d¹x.m/; y.n/º

D .n � 1/.x.mC2/y.n/ C x.mC1/y.nC1// � .m � 1/.x.m/x.nC2/ C x.mC1/y.nC1//

D .n � 1/x.mC2/y.n/ �mx.mC1/y.nC1/ C x.mC1/y.nC1/ C nx.mC1/y.nC1/

� .m � 1/x.mC1/y.nC1/ � x.mC1/y.nC1/

D ¹x.mC1/; y.n/º C ¹x.m/; y.nC1/º D ¹dx.m/; y.n/º C ¹x.m/; dy.n/º
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for x;y 2X , n;m� 0. Since the bracket on the entire sComDerhX0 [X1;d i is calculated
via the Leibniz rule, we have

d¹f; gº D
®
d.f /; g

¯
C
®
f; d.g/

¯
for all f; g 2 s Com DerhX0 [X1; d i.

Lemma 3. The ideal IV is invariant under all operations ¹f; �º, f 2 s Com DerhX0 [
X1; d i, where ¹�; �º is the bracket from Lemma 1.

Proof. Again, since ¹f; �º is defined via the Leibniz rule, it is enough to consider f D z.n/,
z 2 X , n � 0. Moreover, Lemma 2 implies that

¹z.n/; �º D d¹z.n�1/; �º �
®
z.n�1/; d.�/

¯
;

so it is enough to check the invariance of IV under ¹z; �º, where z D z.0/. The Leibniz rule
(2.3) and Lemma 2 show that it is enough to verify ¹z; u.x; y/º 2 IV for all x; y; z 2 X .
Indeed, ®

z; u.x; y/
¯
D ¹z; xy0º � ¹z; x ı yº

D ¹z; xºy0 C .�1/jxjjzjx¹z; y0º C z0.x ı y/ � zd.x ı y/

D .zx0 � z0x/y0 C .�1/jxjjzjxzy00 � z.xy0/0 C z0xy0

D zx0y0 � z0xy0 C zxy00 � zxy00 � zx0y0 C z0xy0

D 0:

Hence the entire differential ideal IV generated by u.x; y/ is invariant under the bracket
defined by (2.5).

Theorem 2. Let V be a Novikov superalgebra. Then the GD-algebra V .�/ is special.

Proof. Lemmas 1, 2, and 3 show that the quotient U.V / D s Com DerhX0 [ X1; d i=IV
is a differential Poisson algebra. Theorem 1 guarantees that V embeds into U.V / with
u ı v D ud.v/, u; v 2 V . Moreover, (2.5) implies that

¹x; yº D �x0y C xy0 D x ı y � .�1/jxjjyjy ı x for x; y 2 X:

Therefore, U.V / is a differential Poisson enveloping superalgebra of V .�/.

3. Conformal superalgebras

In this section, we recall the main definitions concerning Lie conformal (super)algebras
and their relations to GD-(super)algebras.

Let L be a Lie superalgebra over a field k of characteristic zero and let H D kŒ@� be
the algebra of polynomials in one variable.
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Two formal distributions a.z/; b.z/ 2 LŒŒz; z�1�� are said to be mutually local if there
exists N � 0 such that�

a.w/; b.z/
�
.w � z/N D 0 2 L

�
Œz; z�1; w;w�1�

�
:

For a pair of mutually local formal distributions a.z/, b.z/, their product Œa.w/;b.z/�may
be uniquely presented as a finite distribution

�
a.w/; b.z/

�
D

N�1X
nD0

cn.z/
1

nŠ

@nı.w � z/

@zn
;

where cn.z/ 2 LŒŒz; z�1��, ı.w � z/ D
P
s2Zw

sz�s�1 is the formal delta function.
The collection of formal distributions cn.z/, nD 0; 1; : : : ;N � 1, associated to a given

pair a.z/, b.z/ may be written as a polynomial in a new formal variable �:

�
a.z/ .�/ b.z/

�
D

N�1X
nD0

�n

nŠ
cn.z/ 2

�
L
�
Œz; z�1�

��
Œ��:

The latter space may be identified with kŒ@;��˝H LŒŒz; z�1��, where @ acts onLŒŒz; z�1��
as the ordinary derivation with respect to z.

An H -invariant subspace C of LŒŒz; z�1�� which consists of pairwise mutually local
distributions and is closed with respect to the operation Œ� .�/ �� (i.e., a; b 2 C implies
Œa .�/ b� 2 C Œ��) provides an example of the following class of algebraic structures.

Definition 1 ([12, Chapter 2]). A Z2-graded H -module C D C0 ˚ C1 equipped with a
linear map (�-bracket)

Œ� .�/ �� W C ˝ C ! kŒ@; ��˝H C ' C Œ��

is called a Lie conformal superalgebra if ŒCi .�/ Cj � � C.iCj / .mod 2/Œ�� and

Œ@x .�/ y� D ��Œx .�/ y�; (3.1)

Œx .�/ @y� D .@C �/Œx .�/ y�; (3.2)

Œx .�/ y� D .�1/
jxjjyjŒy .�@��/ x�; (3.3)�

x .�/ Œy .�/ z�
�
� .�1/jxjjyj

�
y .�/ Œx .�/ z�

�
D
�
Œx .�/ y� .�C�/ z

�
(3.4)

for all x; y 2 C . Here jxj stands for the parity of a homogeneous element x 2 C0 [ C1.

An operation Œ� .�/ �� satisfying (3.1) and (3.2) is said to be sesqui-linear.
In particular, if C is a free H -module with a basis B , then the �-bracket on C is

uniquely determined by polynomials pzx;y 2 kŒ@; ��, x; y; z 2 B , so that

Œx .�/ y� D
X
z2B

pzx;y.@; �/z:
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Example 2 ([20]). Let V be a GD-superalgebra. Then the space of Laurent polynomials
V Œt; t�1� is a Lie superalgebra relative to the bracket

Œatn; btm� D Œa; b�tnCm C n.a ı b/tnCm�1 � .�1/jajjbj.b ı a/tnCm�1; a; b 2 V:

For a 2 V , let a.z/ stand for the formal distribution

a.z/ D
X
n2Z

atnz�n�1 2
�
V Œt; t�1�

��
Œz; z�1�

�
:

The linear span of all such formal distributions and all their derivatives (with respect to z)
is a Lie conformal superalgebra L.V / isomorphic to H ˝ V relative to the �-bracket

Œa .�/ b� D Œa; b�C .�1/
jajjbj.@C �/.b ı a/C �.a ı b/; a; b 2 V: (3.5)

Conformal superalgebras obtained from GD-superalgebras as in Example 2 are called
quadratic Lie conformal superalgebras. As shown in [20, Theorem 2.2], every Lie confor-
mal superalgebra structure on a free H -module L D H ˝ V given by linear polynomials
pzx;y.@; �/, x; y; z 2 V , is quadratic.

An important particular example of a quadratic Lie conformal algebra comes from the
1-dimensional GD-algebra V D kv with v ı v D v:

Œv .�/ v� D @v C 2�v:

In this case, L.V / is the Virasoro conformal algebra.
Suppose that V and W are two H -modules. The space of all linear maps

˛ W V ! W Œ��; v 7! ˛�.v/;

such that ˛�.@v/ D .@C �/˛�.v/ for all v 2 V , is denoted by Chom.V;W / (the space of
conformal homomorphisms from V to W ) [12]. If V D W , then Chom.V;W / is denoted
by CendV .

If V is a finitely generated H -module, then the operation

.���/ W CendV ˝ CendV ! CendV Œ��;

given by
.˛ .�/ ˇ/�.v/ D ˛�

�
ˇ���.v/

�
; v 2 V; (3.6)

satisfies (3.1) and (3.2). Note that if V is not a finitely generated H -module, then we
cannot say in general that .˛ .�/ ˇ/ is a polynomial in �.

Example 3. Let U D U0 ˚ U1 be a finite-dimensional Z2-graded linear space, and let
V D H ˝ U D V0 ˚ V1 be the free H -module generated by U , Vi D H ˝ Ui . Then
CendV splits into the sum of even and odd components in a natural way:

.CendV /0 D Cend.V0/˚ Cend.V1/; .CendV /1 D Chom.V0; V1/˚ Chom.V1; V0/;

and the bracket
Œ˛ .�/ ˇ� D .˛ .�/ ˇ/ � .�1/

j˛jjˇ j.ˇ .�@��/ ˛/

turns CendV into a Lie conformal superalgebra denoted by gcV .
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If V is a free H -module of rank nCm, where n D dimU0, m D dimU1, then gc V
is denoted by gcnjm. This conformal superalgebra may be presented as

H ˝H ˝Mnjm.k/ ' H ˝Mnjm

�
kŒx�

�
;

where Mnjm stands for the Z2-graded algebra of .nCm/-matrices with an even compo-
nent

�Mn 0

0 Mm

�
and an odd component

� 0 Mn;m

Mm;n 0

�
. The �-bracket is given by�

A.x/ .�/ B.x/
�
D A.x/B.x C �/ � .�1/jAjjBjB.x/A.x � @ � �/;

for homogeneous matrices A;B 2Mnjm.kŒx�/.
A finite representation of a Lie conformal superalgebra L is a homomorphism of Lie

conformal superalgebras
� W L! gcnjm :

In order to have a FFR, a Lie conformal superalgebra has to be a torsion-free H -module
since �.torHL/ D 0.

Every finite torsion-free Lie conformal superalgebra L has a regular representation on
itself: �.a/ D ˛ for a 2 L, where ˛�.x/ D Œa .�/ x�.

In general, a representation of a Lie conformal superalgebra L on a Z2-graded H -
module V D V0 ˚ V1 is a sesqui-linear map ��.�; �/ W L˝ V ! V Œ�� which respects the
gradings and

��
�
a; ��.b; x/

�
� .�1/jajjbj��

�
b; ��.a; x/

�
D ��C�

�
Œa .�/ b�; x

�
; (3.7)

for a; b 2 L0 [ L1, x 2 V .
It is unknown whether all torsion-free finite Lie conformal (super)algebras have a FFR.

In the non-graded case, it is known [14] that if the solvable radical of L splits, then L has
a FFR. The proof of the latter result essentially involves the representation theory of Lie
conformal algebras [8]. For example, if V is the exceptional GD-algebra from Example 1,
then L.V / has a split solvable radical. However, a quadratic Lie conformal (super)algebra
may have a non-split solvable radical. For example, the Virasoro Lie conformal algebra
has a non-split extension [3, Theorem 7.2] corresponding to the 2-dimensional Novikov
algebra V D kv C ku, where

v ı v D v C u; v ı u D 0; u ı v D u; u ı u D 0:

Considered as an Abelian Lie algebra, V is a GD-algebra that gives rise to a quadratic Lie
conformal algebra L.V / with a non-split solvable radical H ˝ ku.

In the next section, we will show that for every special GD-superalgebra V the corre-
sponding Lie conformal superalgebra L.V / has a FFR.

4. Poisson conformal superalgebras

In the study of Ado-type problems for Lie conformal algebras, Poisson structures play an
important role.
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Definition 2. Let P be a Z2-graded H -module endowed with two sesqui-linear opera-
tions �

� .�/ �
�
W P ˝ P ! P Œ��;�

� .�/ �
�
W P ˝ P ! P Œ��;

which respect the grading and satisfy the following conditions:

(1) P is a Lie conformal superalgebra relative to Œ� .�/ ��;

(2) .a .�/ .b .�/ c// D ..a .�/ b/ .�C�/ c/ for a; b; c 2 P ;

(3) .a .�/ b/ D .�1/jajjbj.b .�@��/ a/ for homogeneous a; b 2 P .

Then P is said to be a Poisson conformal superalgebra if the following conformal ana-
logue of the Leibniz rule holds:�

a .�/ Œb .�/ c�
�
D
��
a .�/ b

�
.�C�/ c

�
C .�1/jajjbj

�
b .�/

�
a .�/ c

��
; (4.1)

for a; b 2 P0 [ P1, c 2 P .

A simplest example of a Poisson conformal (super)algebra is provided by the current
functor. Namely, if p is an ordinary commutative (super)algebra with a (super-)Poisson
bracket ¹�; �º, then Cur p D H ˝ p ' pŒ@� equipped with�

a.@/ .�/ b.@/
�
D a.��/b.@C �/;�

a.@/ .�/ b.@/
�
D
®
a.��/; b.@C �/

¯
is a Poisson conformal (super)algebra.

An associative conformal algebra [12] is an H -module A equipped with a sesqui-
linear operation .� .�/ �/, satisfying Condition 2 of Definition 2. Assuming that A is a
Z2-graded associative conformal algebra, the new (commutator) operation�

a .�/ b
�
D
�
a .�/ b

�
� .�1/jajjbj

�
b .�@��/ a

�
; a; b 2 A0 [ A1;

turns the H -module A into a Lie conformal superalgebra A.�/ (see [18, p. 323] for the
non-graded case).

Given a Lie conformal superalgebra L and a Z2-graded associative conformal algebra
A, we say that A is an associative conformal envelope of L if there exists a homoge-
neous homomorphism � W L! A.�/ of conformal algebras such that A is generated (as
an associative conformal algebra) by the image of L. For a fixed L, there exists a lattice
of universal associative conformal envelopes of L corresponding to different associative
locality bounds on the elements of L (see [18, Section 6]). It may happen that neither of
these universal envelopes contains the isomorphic image of L, i.e., there exist Lie confor-
mal (super)algebras that cannot be embedded into associative ones.

Suppose that A is an associative conformal envelope of a Lie conformal super-
algebra L. Then A has a natural filtration as an H -module:

0 D A0 � A1 � A2 � � � � ;
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where A1 D �.L/, AnC1 D An CH ¹.�.L/ .�/ An/j�D˛ W ˛ 2 kº. Then

.An .�/ Am/ � AnCmŒ��; ŒAn .�/ Am� � AnCm�1Œ��;

so the associated graded H -module grA has a well-defined structure of a Poisson confor-
mal superalgebra.

For example, the conformal Weyl algebra Cend1;x (see [6]) is an associative enve-
lope of the Virasoro conformal algebra. The corresponding Poisson conformal algebra
gr Cend1;x ' kŒ@�˝ xkŒx� has the following operations:

.xn .�/ x
m/ D xnCm; Œxn .�/ x

m� D
�
n@C .nCm/�

�
xnCm�1:

More examples of Poisson conformal superalgebra structures on universal associative
envelopes of Lie conformal superalgebras can be found in [15].

Hereinafter, we will need the following example of a Poisson conformal superalgebra.

Lemma 4. Let p D p0 ˚ p1 be an ordinary Poisson superalgebra equipped with an even
derivation d W a 7! a0. The latter means that d.pi / � pi , i D 0; 1, .ab/0 D ab0 C a0b,
¹a; bº0 D ¹a0; bº C ¹a; b0º for a; b 2 p. Then L.p; d / D H ˝ p equipped with operations

.a .�/ b/ D ab; Œa .�/ b� D ¹a; bº C @a
0b C �.ab/0;

for a; b 2 p0 [ p1, is a Poisson conformal superalgebra.

Proof. The operation .� .�/ �/ is obviously associative and (super-)commutative. By def-
inition, Œ� .�/ �� is exactly the quadratic Lie conformal bracket on the GD-superalgebra
obtained from p relative to d . The Leibniz rule (4.1) is straightforward to check. On the
one hand,�
a .�/ .b .�/ c/

�
� .�1/jajjbj

�
b .�/

�
a .�/ c

��
D ¹a; bcº C @a0bc C �.abc/0 � .�1/jajjbj

�
b¹a; cº C .@C �/ba0c C �b.ac/0

�
D ¹a; bºc � �a0bc C �ab0c

for homogeneous a; b; c 2 p. On the other hand,�
Œa .�/ b� .�C�/ c

�
D ¹a; bºc � .�C �/a0bc C �.ab/0c D ¹a; bºc � �a0bc C �ab0c:

Hence L.p; d / is a Poisson conformal superalgebra.

Suppose that L is a Lie conformal superalgebra with a representation � on an H -
module V . Then a deformation of � is a representation �" of L on the H -module
V ˚ V" ' kŒ"�˝ V=."2/, where

�".a/ D ˛
."/; ˛

."/

�
.x/ D ˛�.x/C "'�.a; x/;
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for a 2 L, x 2 V , ˛ D �.a/. Here '�.�; �/ W L˝ V ! V Œ�� is a sesqui-linear map which
has to satisfy the following equation (a consequence of the Jacobi identity (3.7)):

'�C�
�
Œa .�/ b�; x

�
D '�

�
a; ��.b; x/

�
C ��

�
a; '�.b; x/

�
� .�1/jajjbj'�

�
b; ��.a; x/

�
� .�1/jajjbj��

�
b; '�.a; x/

�
; (4.2)

for a; b 2 L0 [ L1, x 2 V . In the case when V is a finitely generated H -module, the
relation (4.2) exactly means that ' is a 1-cocycle in Z1.L;CendV / (see [3]).

Proposition 1. Let L be a graded Lie conformal subalgebra in a Poisson conformal
superalgebra P . Then L has a regular representation on P , and the sesqui-linear map
'�.�; �/ W L˝ P ! P Œ��, given by

'�.a; x/ D �.a .�/ x/; a 2 L; x 2 P;

satisfies (4.2).

Proof. Obviously, the map ��.a; x/ D Œa .�/ x�, a 2 L, x 2 P , is a representation of L
on P . Then the right-hand side of (4.2) can be transformed by (4.1) as

�
�
a .�/ Œb .�/ x�

�
C �

�
a .�/ .b .�/ x/

�
� .�1/jajjbj�

�
b .�/ Œa .�/ x�

�
� .�1/jajjbj�

�
b .�/ .a .�/ x/

�
(4.3)

D �
�
Œa .�/ b� .�C�/ x

�
C �

�
Œa .�/ b� .�C�/ x

�
D '�C�

�
Œa .�/ b�; x

�
:

Corollary 1 ([15]). Let L be a graded Lie conformal subalgebra of a Poisson conformal
superalgebra. Then the map

O��.a; x/ D Œa .�/ x�C �.a .�/ x/; a 2 L; x 2 P;

is a representation of L on P .

Proof. In order to check the Jacobi identity (3.7) for O�, note that the desired equation

O��
�
a; O��.b; x/

�
� .�1/jajjbj O��

�
b; O��.a; x/

�
D O��C�

�
Œa .�/ b�; x

�
splits into three equations: the first one is exactly the Jacobi identity for regular represen-
tation ��.a; x/D Œa .�/ x�, the second one is (4.2) for '�.a; x/D �.a .�/ x/, and the third
one is

��
�
a .�/ .b .�/ x/

�
� .�1/jajjbj��

�
b .�/ .a .�/ x/

�
D 0

which also holds due to conformal commutativity and associativity of .� .�/ �/:�
a .�/ .b .�/ x/

�
D
�
.a .�/ b/ .�C�/ x

�
D .�1/jajjbj

�
.b .�@��/ a/ .�C�/ x

�
D .�1/jajjbj

�
.b .�/ a/ .�C�/ x

�
D .�1/jajjbj

�
b .�/ .a .�/ x/

�
:

Corollary 2. If for a finite Lie conformal superalgebra L there exists an embedding
� W L! P of L into a Poisson conformal superalgebra P in such a way that .�.a/ .�/
�.L// ¤ 0 for all 0 ¤ a 2 L, then L has a FFR.
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Proof. Indeed, if we consider V D L as a regular L-module,

M D �.L/C kŒ@�˝ span
®�
�.L/ .�/ �.L/

�
j�D˛ W ˛ 2 k

¯
as an L-submodule of P , and

h� .�/ �i W L˝ V !MŒ��

given by ha .�/ bi D .�.a/ .�/ �.b//, then all conditions of [13, Theorem 3] hold and L
has a FFR.

In particular, if L satisfies the Poincaré–Birkhoff–Witt condition [18], then one may
choose P to be the associated graded conformal algebra of the appropriate universal asso-
ciative conformal envelope of L. Therefore, for conformal algebras, the PBW theorem
implies the Ado theorem immediately [13].

Theorem 3. Let V be a finite-dimensional special GD-superalgebra. Then the Lie con-
formal superalgebra L.V / has a finite faithful conformal representation.

Proof. Let us fix linear bases X0 and X1 of V0 and V1, respectively, and let X D X0 [
X1. A special GD-superalgebra embeds into its universal enveloping differential Poisson
superalgebra which can be constructed as follows. Denote by F D s Pois DerhX0 [X1; d i
the free differential Poisson superalgebra with an identity element 1 (generated by even
elements X0 and odd elements X1) and an even derivation d . Let IV stand for the
(differential) ideal of F generated by

xd.y/ � x ı y; x; y 2 X; (4.4)

where x ı y is a linear form in kX representing the Novikov product in V . The quo-
tient F=IV is the universal enveloping differential Poisson superalgebra for V denoted by
Pd .V /. If V is a special GD-superalgebra then V embeds into Pd .V /.

The free algebra F may be presented as

F D
M
n2Z

Fn;

where Fn consists of all elements of weight n. Recall that the weight in a free differential
Poisson (super)algebra generated by a set X is defined as follows [16]:

wt x D �1 for x 2 X; wt.1/ D 0;

wt.uv/ D wtuC wt v; wt¹u; vº D wtuC wt v C 1;

wt d.u/ D wtuC 1:

Since all elements in (4.4) are wt-homogeneous, the ideal IV is wt-homogeneous and the
algebra Pd .V / inherits the grading:

Pd .V / D
M
n2Z

Un; Un D Fn=IV \ Fn:
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Note that V ' U�1. The latter was shown in [16, Theorem 10] for the non-graded case;
the same reasonings work for superalgebras.

Lemma 4 states thatL.Pd .V /;d/DH ˝Pd .V / is a Poisson conformal superalgebra.
Then by Corollary 1 the Lie conformal superalgebra L D L.V / has a representation on
M D L.Pd .V /; d/ given by

O��.a; u/ D ¹a; uº C @d.a/uC �
�
d.au/C au

�
; a 2 V; u 2 Pd .V /: (4.5)

Obviously, for everym2Z the spaceM�mDH ˝
L
n�mUn is a conformalL-submodule

of M . In particular, xM D M�0=M��2 ' H ˝ .U�1 ˚ U0/ is a conformal L-module
corresponding to a representation N� defined by (4.5) for u 2 U0 and N��.a; u/ D Œa .�/ u�
for u 2 U�1 ' V . It is easy to see that the representation of L on xM is faithful: N��.a; 1/D
.@ C �/d.a/ C �a ¤ 0 for a 2 V , a ¤ 0. However, it is not yet finite in general since
dimU0 may not be finite.

Note that for every a 2 V ' U�1 the map �a W u 7! au maps U0 to U�1. Since
dim U�1 D dim V < 1, the intersection of all Ker �a, a 2 V , is a subspace of finite
codimension. So, consider N D ¹u 2 U0 j V u D 0º. For every u 2 N we have

N��.a; u/ D ¹a; uº C @d.a/u; a 2 V:

Given b 2 V , b¹a;uº D .�1/jajjbj.¹a; buº C ¹a; bºu/D 0, bd.a/uD .�1/jajjbjd.a/buD
0. Therefore, H ˝N is a conformal L-submodule of xM . Finally,

xM=N ' H ˝ .U�1 ˚ U0=N/

is a finite faithful conformal L-module.

Corollary 3. If a GD-(super)algebra V is constructed from a Novikov (super)algebra
with respect to the commutator, then the corresponding quadratic Lie conformal super-
algebra L.V / has a FFR.

Funding. Research supported by the Mathematical Center in Akademgorodok under
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of the Russian Federation.
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