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Koszul duality for compactly generated derived
categories of second kind

Ai Guan and Andrey Lazarev

Abstract. For any dg algebra A, we construct a closed model category structure on dg A-modules
such that the corresponding homotopy category is compactly generated by dg A-modules that are
finitely generated and free over A (disregarding the differential). We prove that this closed model
category is Quillen equivalent to the category of comodules over a certain, possibly nonconilpotent
dg coalgebra, a so-called extended bar construction of A. This generalises and complements certain
aspects of dg Koszul duality for associative algebras.

1. Introduction

Koszul duality is an algebraic phenomenon that goes back to Quillen’s work [15] on ratio-
nal homotopy theory; it later manifested itself in many different contexts: operads [9],
deformation theory [11], representation theory [3], and numerous others.

The modern understanding of Koszul duality for differential graded (dg) algebras and
dg modules has been formulated in [13]. According to this formulation, there is an adjunc-
tion between the categories of augmented dg algebras and conilpotent dg coalgebras, given
by bar and cobar constructions, which becomes a Quillen equivalence under certain model
category structures. The conilpotent dg coalgebra associated to an augmented dg algebra
by this equivalence is called its Koszul dual; similarly the augmented dg algebra associated
to a conilpotent dg coalgebra is called its Koszul dual. There is also a Quillen equivalence
between the corresponding categories of dg modules and dg comodules. A variant of this
correspondence exists for non-augmented dg algebras and their modules.

A salient feature of this theory is that the closed model category structures on the
Koszul dual side (both for coalgebras and their comodules) are of the “second kind:” the
weak equivalences are not created in the underlying chain complexes but are of a more
subtle nature (so-called filtered quasi-isomorphisms).

The module-comodule Koszul duality is the easiest one to prove (though still quite
nontrivial), essentially because of its linear character: this is a duality between stable
closed model categories whose homotopy categories are triangulated. There are two sym-
metric versions of it:
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(1) the duality between modules over a dg algebra and dg comodules over its Koszul
dual conilpotent dg coalgebra;

(2) the duality between comodules over a conilpotent dg coalgebra and dg modules
over its Koszul dual dg algebra.

What happens if one drops the condition of conilpotency on the coalgebra side? The
closed model structure on the category of comodules does not depend on the conilpo-
tency assumption [13, Theorem 8.2]. Furthermore, Positselski proves [13, Theorem 6.7]
that there is a Koszul duality between dg comodules over a possibly nonconilpotent dg
coalgebra and modules over its Koszul dual dg algebra. However, this time both closed
model structures are of the second kind: the weak equivalences on dg modules are not
merely quasi-isomorphisms. If the coalgebra happens to be conilpotent, then the duality
specialises to the ordinary one: the Koszul dual dg algebra becomes cofibrant and weak
equivalences of dg modules over a cofibrant dg algebra are ordinary quasi-isomorphisms.

In the present paper, we construct a complementary version of Positselski’s non-
conilpotent Koszul duality as a Quillen equivalence between closed model categories of
dg modules over a dg algebra and comodules over its “Koszul dual” dg coalgebra. The
difference between our version and the standard one is twofold: firstly, the weak equival-
ences between dg modules are of “second kind” (i.e., they are not created in the category
of underlying complexes) and secondly, our “Koszul dual” dg coalgebra is typically much
bigger than the ordinary bar construction; in particular, it is not conilpotent in general.
This extended bar construction has been considered, e.g., in a recent paper [1].

Perhaps the most interesting feature of this correspondence is an exotic model struc-
ture of the second kind on dg modules over a dg algebra: in the case of an ordinary
algebra (or, more generally, cohomologically non-positively graded dg algebra) this struc-
ture reduces to the usual one; however, in general, it is different. There are many com-
peting inequivalent notions of weak equivalence of the second kind for dg modules over
a dg algebra (as opposed to dg comodules where there is only one such notion); some of
them support closed model category structures; see [2, Proposition 1.3.6] and [13, The-
orem 8.3]. Our structure is generally different from those considered in the mentioned
references and characterised by its compatibility with Koszul duality. It is, necessarily,
compactly generated (since such is the category of dg comodules over any dg coalgebra,
to which it is Quillen equivalent). This model structure is relevant to the study of various
triangulated categories of geometric origin: coherent sheaves on complex analytic mani-
folds, cohomologically constant sheaves on smooth manifolds, andD-modules on smooth
algebraic varieties. Its prototype is contained in the paper [5], where the notion of a cohes-
ive module over a dg algebra is introduced, which is essentially the same as a cofibrant
object in our closed model structure.

1.1. Notation and conventions

Throughout the paper, k denotes a field. All vector spaces will be over k and differential
graded (dg) vector spaces are further assumed to be cohomologically Z-graded. Given a



Koszul duality for compactly generated derived categories of second kind 1357

graded vector space V , its suspension †V is a graded vector space with .†V /i D V iC1

and its dual V � is a graded vector space with .V �/i D .V �i /�. Unadorned tensor products
and Homs are assumed to be over k. The category of (graded) algebras is denoted by Alg,
the category of dg algebras is denoted by DGA, and the category of augmented dg algebras
is denoted by DGA�; all of these are also implicitly assumed to be over k.

A pseudocompact vector space is a projective limit of finite-dimensional vector spaces,
equipped with the inverse limit topology. In particular, the k-linear dual V � of a discrete
vector space V is pseudocompact, and a finite-dimensional vector space is pseudocom-
pact if and only if it is discrete. Given a pseudocompact vector space V , its dual V � is
defined to be its topological dual, hence V Š V �� is always true. Given pseudocompact
vector spaces V and W , the space of morphisms Hom.V; W / is assumed to mean the
space of continuous linear maps, and the tensor product V ˝W is assumed to mean the
completed tensor product. If V D lim

 ��i
Vi is pseudocompact and W is discrete, then their

tensor product is defined to be V ˝W D lim
 ��i

Vi ˝W ; note that, in general, this is neither
discrete nor pseudocompact. The category of (graded) pseudocompact algebras is denoted
by pcAlg, the category of pseudocompact dg algebras is denoted by pcDGA, and the cat-
egory of augmented pseudocompact dg algebras is denoted by pcDGA�. These categories
are anti-equivalent to the categories of (coaugmented) (dg) coalgebras via taking linear
and topological duals.

We will generally work with right modules over dg algebras and pseudocompact dg
algebras, unless stated otherwise. Given a dg algebra A, the category of dg A-modules is
denoted by DGMod-A. Given a pseudocompact dg algebra C , a pseudocompact C -module
is a pseudocompact vector space V together with a continuous linear map V ˝ C ! V

satisfying the usual axioms of associativity and unitality. The category of pseudocompact
dg C -modules is denoted by pcDGMod-C ; this category is anti-equivalent to the category
of dg C �-comodules, again via taking duals. Thus, all our results concerning pseudocom-
pact dg modules can readily be translated into results about dg comodules if one wishes
to do so.

2. Extended bar construction

Given an algebra A, its pseudocompact completion {A is the projective limit of the inverse
system of quotients by cofinite-dimensional ideals of A. Pseudocompact completion de-
fines a functor from Alg! pcAlg that is left adjoint to the functor pcAlg! Alg forgetting
the topology.

Definition 2.1. Let V be a pseudocompact graded vector space. If V is finite dimensional,
its pseudocompact tensor algebra {T V is the pseudocompact completion of the tensor
algebra T V . For a general pseudocompact vector space V D lim

 ��i
Vi , its pseudocompact

tensor algebra is
{T V WD lim

 ��
i

{T Vi :
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Proposition 2.2. Let V be a pseudocompact graded vector space.

(1) The pseudocompact tensor algebra {T V is the free pseudocompact algebra on V ,
that is, for any pseudocompact algebra A, there is a bijection

HompcAlg. {T V;A/ Š Hom.V; A/:

(2) For any pseudocompact {T V - {T V -bimodule M , there is a bijection

Der. {T V;M/ Š Hom.V;M/:

Proof. (1) If V is finite dimensional, then V is discrete and Hom.V;A/ŠHomAlg.T V;A/,
which equals HompcAlg. {T V; A/ as pseudocompact completion is the left adjoint to the
forgetful functor. More generally, writing V D lim

 ��i
Vi and A D lim

 ��j
Aj with Vi and Aj

being finite dimensional, we have

HompcAlg. {T V;A/ Š lim
 ��
j

HompcAlg. {T V;Aj /

Š lim
 ��
j

lim
��!
i

HompcAlg. {T Vi ; Aj /

Š lim
 ��
j

lim
��!
i

Hom.Vi ; Aj / Š Hom.V; A/:

Here, the second bijection holds as finite-dimensional algebras are cocompact in pcAlg;
that is, for any finite-dimensional algebra A, the functor HompcAlg.�; A/ takes filtered
limits to filtered colimits.

(2) Recall the following construction, which allows us to turn questions about deriva-
tions into question about algebra homomorphisms. Given a graded pseudocompact algebra
A and an A-A-bimodule M , consider the pseudocompact algebra A˚M with multiplic-
ation .a; m/ � .b; n/ D .ab; anCmb/ and let pWA˚M ! A be the natural projection.
Then there is a bijection Der.A;M/Š ¹f 2 HompcAlg.A;A˚M/ W p ı f D 1Aº. Setting
A D {T V and using part (1), we have

Der. {T V;M/ Š
®
f 2 Hom.V; {T V ˚M/ W p ı f D 1A

¯
Š Hom.V;M/:

Remark 2.3. The pseudocompact algebra {T V is the k-linear dual to the Sweedler cofree
coalgebra on the discrete vector space V � [16, Section 6.4].

Proposition 2.4. For any pseudocompact vector space V , there is a bimodule resolution
of {T V given by

0! {T V ˝ V ˝ {T V
d
�! {T V ˝ {T V

m
��! {T V ! 0;

where m is multiplication and d.1˝ v ˝ 1/ D v ˝ 1 � 1˝ v.

Proof. We use the following well-known fact for algebras, that also holds in the pseudo-
compact setting. Let .A;�/ be a graded pseudocompact algebra. Then�.A/D ker� is an
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A-A-bimodule and the map ıWA! �.A/ given by ı.a/ D a˝ 1 � 1˝ a is a derivation.
For any derivation d WA! M taking values in an A-A-bimodule M , there is a unique
bimodule homomorphism f W�.A/!M such that d D f ı ı; hence

Der.A;M/ Š HomA-A.�.A/;M/:

Now by Proposition 2.2,

Der. {T V;M/ Š Hom.V;M/ Š Hom {TV - {TV .
{T V ˝ V ˝ {T V;M/;

so �. {T V / Š {T V ˝ V ˝ {T V as required.

All our dg algebras are augmented, except in Section 4. The augmentation ideal of a
dg algebra A is denoted by xA.

Definition 2.5. We define a pair of functors

�W .pcDGA�/op � DGA� W {B

as follows. The cobar construction associates to a pseudocompact dg algebra C the dg
algebra

�C WD T†�1 xC �

with differential defined in the usual way.
The extended bar construction associates to a dg algebra A the pseudocompact dg

algebra
{BA WD {T†�1 xA�:

We define the differential on {BA as follows. Let d1W†�1 xA�!†�1 xA� and d2W†�1 xA�!
†�1 xA� y̋†�1 xA� be induced by dualising the differential and multiplication onA, respect-
ively. For a pseudocompact vector space V , consider the semi-completed tensor algebra
T 0.V / D

L
n�1 V

y̋n, which has a topology that is neither pseudocompact nor discrete
and has the property HomAlg.T

0.V /; B/ Š Hom.V; B/ for any pseudocompact algebra B
(see [10, Lemma 4.5]). Then by Proposition 2.2 (1), the identity on {T†�1 xA� induces a
map i WT 0.†�1 xA�/! {T .†�1 xA�/, and we define the differential to be

i ı .d1 C d2/W†
�1 xA� ! T 0.†�1 xA�/! {T .†�1 xA�/:

2.1. The Maurer–Cartan functor and representability

Let A be a dg algebra (possibly discrete, pseudocompact or otherwise). A Maurer–Cartan
element inA is an element x 2A of degree 1 such that dxC x2D 0. The set of all Maurer–
Cartan elements in A is denoted by MC.A/. For any dg algebra A and any pseudocompact
dg algebra C , define MC.A; C / WD MC.A˝ C/; this is functorial in both arguments.

Proposition 2.6. Let A be an augmented dg algebra and let C be an augmented pseudo-
compact dg algebra. There are natural bijections

HomDGA�.�C;A/ Š MC. xA; xC/ Š HompcDGA�. {BA;C /:

In particular, � is a left adjoint functor to {B .
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Proof. Forgetting the differential, any map of augmented pseudocompact algebras
f W {BA ! C is equivalent to a linear map †�1 xA� ! xC by Proposition 2.2, which is
equivalently a degree 1 element x 2 xA˝ xC . The condition that f commutes with differ-
entials is then equivalent to condition that x satisfies the Maurer–Cartan equation; this can
be proven just like the corresponding statement for the non-extended bar construction; see
for example [7, Proposition 2.2]. The other bijection is proved similarly.

Remark 2.7. An adjoint pair of functors .�;Bext/ between DGA� and pcDGA� was defined
in [1, Section 5.3] in a different way; it was also proved that these functors represent the
MC sets (called twisting cochains in op. cit.) as in Proposition 2.6. It follows that these
functors are (isomorphic to) the functors � and {B defined above.

3. Koszul duality for modules

3.1. Maurer–Cartan twisting

We begin this section by recalling the notion of Maurer–Cartan twistings of dg algebras
and dg modules.

Definition 3.1. Let .A; dA/ be a dg algebra and x 2 MC.A/.

(1) The twisted algebra of A by x, denoted by Ax D .A; dx/, is the dg algebra with
the same underlying algebra as A and differential dx.a/ D dA.a/C Œx; a�.

(2) Let .M; dM / be a left dg A-module. The twisted module of M by x, denoted by
M Œx� D .M; d Œx�/, is the left dg Ax-module with the same underlying module
structure as M and differential d Œx�.m/ D d.m/C xm.

Furthermore, if A and B are dg algebras and M is a dg A-B-bimodule, then for any
x 2 MC.A/ the twisted module of M by x is a dg Ax-B-bimodule, that is, the right
B-module action remains compatible with the new differential.

Definition 3.2. A twistedA-module is a dgA-module that is free as anA-module after for-
getting the differential; that is, it is isomorphic as an A-module to V ˝A for some graded
vector space V . A finitely generated twisted A-module is a twisted A-module V ˝ A with
V being finite dimensional.

Given any graded vector space V , the A-module V ˝A equipped with the differential
1˝ dA is a twistedA-module. More generally, by considering V ˝A as an .End.V /˝A/-
A-bimodule, every twisted A-module is of the form .V ˝ A; 1 ˝ dA/

Œx� for some x 2
MC.EndV ˝ A/, as noted in [6, Remark 3.2].

Definition 3.3. Let A be an augmented dg algebra, and let {BA be its extended bar con-
struction. Let � 2 MC.A˝ {BA/ be the canonical Maurer–Cartan element corresponding
to the counit � {BA! A of the adjunction � a {B . Define a pair of functors

GW .pcDGMod- {BA/op � DGMod-A WF
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as follows. The functor F associates to a dg A-module M the pseudocompact dg {BA-
module

FM WD .M � ˝ {BA/Œ��

and the functor G associates to a pseudocompact dg {BA-module N the dg A-module

GN WD .N � ˝ A/Œ��:

The functors F and G are well defined as FM is a dg .A˝ {BA/� - {BA-bimodule and
GN is a dg . {BA ˝ A/� -A-bimodule; the left .A ˝ {BA/� -module structure on FM is
disregarded similarly as with GN . It is a standard fact that G is left adjoint to F ; more
generally, this is true replacing {BA with any pseudocompact dg algebra C and � with any
Maurer–Cartan element in A˝ C ; see for example [13, Section 6.2].

Remark 3.4. In the standard formulation of Koszul duality, the functors are defined as
follows: the bar construction of a dg algebra A is instead defined to be BA D yT†�1 xA�,
a local or pronilpotent pseudocompact dg algebra (or dually, a conilpotent dg coalgebra).
Given a dg A-module M , the corresponding BA-module is defined as .M � ˝ BA/Œ��,
where � 2 MC.A ˝ BA/ is the canonical Maurer–Cartan element corresponding to the
counit �BA! A of the Koszul duality adjunction for algebras. Conversely, given a BA-
module N , the corresponding A-module is defined as .N � ˝ A/Œ��.

3.2. Model category structure on DGMod-A

We now define model category structures on DGMod-A and pcDGMod- {BA making the
adjunctionG a F a Quillen pair. In [13], Positselski constructs a model category structure
of the “second kind” on the category of dg comodules over an arbitrary (not necessarily
conilpotent) dg coalgebra; this will be the model category structure on pcDGMod- {BA. We
begin by recalling this result.

Definition 3.5. Let C be a dg coalgebra. A dg C -comodule is coacyclic if it is in the min-
imal triangulated subcategory of the homotopy category of dg C -comodules containing
the total C -comodules of exact triples of dg C -comodules and closed under infinite direct
sums.

Theorem 3.6 ([13, Theorem 8.2]). Let C be a dg coalgebra. There exists a model cat-
egory structure on the category of dg C -comodules, where

(1) a morphism f WM ! N is a weak equivalence if its cone is a coacyclic dg C -
comodule;

(2) a morphism is a cofibration if it is injective;

(3) a morphism is a fibration if it is surjective with a fibrant kernel.

Furthermore, this model category structure is cofibrantly generated, where generating
cofibrations are injective maps between finite-dimensional comodules.
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Theorem 3.7. Let A be an augmented dg algebra. There is a cofibrantly generated model
category structure on DGMod-A, where

(1) a morphism f WM ! N is a weak equivalence if it induces a quasi-isomorphism

HomA
�
.V ˝ A/Œx�;M

�
! HomA

�
.V ˝ A/Œx�; N

�
for any finitely generated twisted A-module .V ˝ A/Œx�;

(2) a morphism is a fibration if it is surjective;

(3) a morphism is a cofibration if it has the left lifting property with respect to acyclic
fibrations.

With this model structure, the adjunction G a F is a Quillen pair.

To prove Theorem 3.7, we will apply the following version of the transfer principle,
which appears in [4, Sections 2.5–2.6].

Theorem (Transfer principle). Let M be a model category cofibrantly generated by the
sets 	 and J of generating cofibrations and generating acyclic cofibrations, respectively.
Let C be a category with finite limits and small colimits. Let

LWM � C WR

be a pair of adjoint functors. Define a map f in C to be a weak equivalence (respect-
ively, fibration) if R.f / is a weak equivalence (respectively, fibration). These two classes
determine a model category structure on C cofibrantly generated by L.	/ and L.J/
provided that

(1) the functor L preserves small objects;

(2) C has a functorial fibrant replacement and a functorial path object for fibrant
objects.

Furthermore, with this model structure on C, the adjunction L a R becomes a Quillen
pair.

We first check that the weak equivalences and fibrations, obtained by transferring the
model structure on pcDGMod- {BA along the adjunctionG a F , admit the characterisations
in Theorem 3.7. In fact, both the functors F and G preserve weak equivalences between
all objects.

Lemma 3.8. (1) A morphism g of dg A-modules is a weak equivalence if and only if
F.g/ is a weak equivalence.

(2) A morphism f of pseudocompact {BA-modules is a weak equivalence if and only
if G.f / is a weak equivalence.

Proof. For (1), let gWM!N be a map of dgA-modules. By definition,F.g/WFM!FN

is a weak equivalence if and only if it induces a quasi-isomorphism

Hom {BA.FM; V /! Hom {BA.FN; V /
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for any finite-dimensional dg {BA-module V . Equivalently, this says that the dgA-modules
M ˝ V and N ˝ V (with possibly twisted differentials) are quasi-isomorphic for any
finite-dimensional V ; that is, g is a weak equivalence.

For (2), it suffices to show that G takes exact triples of {BA-modules to weakly trivial
A-modules. Let N1 ! N2 ! N3 be an exact triple of {BA-modules and let N be its total
complex. Then GN is the total complex of the complex G.N3/ ! G.N2/ ! G.N1/,
which is a bicomplex with three vertical columns and all horizontal rows being exact.

Now letM DA˝V be a finitely generated twistedA-module. Applying HomA.M;�/
to the above bicomplex gives Hom.V; G.N3//! Hom.V; G.N2//! Hom.V; G.N1//.
Since exactness of the rows is preserved, GN is indeed weakly trivial.

Lemma 3.9. A morphism g of dg A-modules is a fibration if and only if F.g/ is a fibra-
tion.

Proof. Let gWM ! N be a fibration in dg A-modules; so M Š N ˚ V for some graded
vector space V . Then F.g/WFN ! FM is a cofibration in pcDGMod- {BA if and only if it
is injective with cofibrant cokernel. But indeed, F.g/W .N � ˝ {BA/Œ�� ! .M � ˝ {BA/Œ��

has cokernel .V � ˝ {BA/Œ��, which is cofibrant.

Proof of Theorem 3.7. By Lemmas 3.8 and 3.9, it suffices to check conditions (1) and (2)
in the transfer theorem. Condition (1) holds asG preserves small objects, and every object
is fibrant so the first part of (2) trivially holds. Hence it only remains to prove that func-
torial path objects exist for anyA-module. Let I be the standard interval object for dg vec-
tor spaces; that is, IDk˚†�1k˚k with differential d.a; b; c/D .da;�dbCa � c; dc/.
Then for any A-module M , there is a factorisation

M
e
�!M ˝ I

.p1;p2/
�����!M ˚M;

where e.a/D .a; 0; a/ and p1.a; b; c/D a, p2.a; b; c/D c. Clearly, .p1; p2/ is a fibration
by Lemma 3.9. Since I is acyclic, we have a quasi-isomorphism

.M ˝ V �/Œx� ! .M ˝ V �/Œx� ˝ I Š .M ˝ I ˝ V �/Œx�

for any finitely generated twisted A-module .V ˝A/Œx�, so e is a weak equivalence. Thus,
M ˝ I is a functorial path object for M .

We now show that the adjoint pair .F;G/ is a Quillen equivalence.

Theorem 3.10. Let A be an augmented dg algebra and let {BA be its extended bar con-
struction.

(1) For any dg A-module M , the counit GFM ! M of the adjunction is a weak
equivalence of A-modules.

(2) For any pseudocompact {BA-module N , the counit FGN ! N of the adjunction
is a weak equivalence of pseudocompact {BA-modules.



A. Guan and A. Lazarev 1364

Thus, the Quillen adjunction G a F is a Quillen anti-equivalence between dg A-modules
and pseudocompact {BA-modules.

Proof. For any {BA-module N , consider

BN WD {BA˝†�1 xA� ˝N;

which is a cofibrant resolution of N . Then the functor GW .pcDGMod- {BA/op ! DGMod-A
can also be written as Hom {BA.BN;k/, and the functor F WDGMod-A! .pcDGMod- {BA/op

is .M � ˝ {BA/Œ��.
Now for any A-module M , the {BA-module F.M/ is cofibrant, so GF.M/ is quasi-

isomorphic to Hom.F.M/; k/ D M . Cofibrantly replacing M with a twisted module
M ˝ V , we obtain that M and GF.M/ are weakly equivalent.

Conversely, given a {BA-module N , the composition FG.N/ is the two-term resolu-
tion of N from Proposition 2.4, so it is weakly equivalent to N .

Remark 3.11. Note that the homotopy category of the constructed closed model category
on dg A-modules is a compactly generated triangulated category (being anti-equivalent to
the category of pseudocompact dg modules over a {BA) with compact (small) objects
being dg modules that are homotopy equivalent to retracts of finitely generated twisted
A-modules. We will denote this homotopy category by DII

c .A/.

Example 3.12. Consider the dg algebra A D kŒx�=x2 with zero differential and x in
degree 1. We have zBA Š zkŒx�. If k is algebraically closed, then the pseudocompact com-
pletion zkŒx� of kŒx� is the product of completions of kŒx� at every maximal ideal of kŒx�;
the latter correspond precisely to elements of k. In other words,

zBA Š zkŒx� Š
Y
˛2k

�
k
�
Œx�
��
˛

(this result, in a more general form, is given in [8, Example 1.13]). The derived category
DII
c .A/ of A of second kind is anti-equivalent to the derived category (of second kind)

of pseudocompact modules over
Q
˛2k.kŒŒx��/˛ and thus is drastically different from the

ordinary derived category of A. Note that MC.A/ D ¹ax W a 2 kº; then the twisted A-
modules A� for � 2 MC.A/ are pairwise weakly inequivalent and form a set of compact
generators for DII.A/. It is easy to see that it is not possible to choose a single compact
generator.

Example 3.13. The derived category of second kind DII
c arises in a number of situations

of a geometric origin.

� Let M be a smooth manifold and let A�.M/ be its smooth de Rham algebra; here the
ground field k is R, the real numbers. The choice of a point in M makes A�.M/ into
an augmented dg algebra. A compact object in DII

c .A
�.M// is a cohesive A�.M/-

module of [5] and the subcategory of compact objects is equivalent to the triangulated
category of perfect cohomologically locally constant complexes of sheaves on M by
[6, Theorem 8.1].
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� Let M be a smooth affine algebraic variety over a field k of characteristic zero hav-
ing a base point Spec.k/ ! M and let A�.M/ be its algebraic de Rham algebra.
Then twisted modules over A�.M/ correspond to D-modules, i.e., modules over the
ring of differential operators on M by [13, Theorem B.2], while compact objects in
DII
c .A

�.M// correspond essentially to coherent D-modules.

� Let M be a compact complex manifold and let A0�.M/ be the Dolbeault algebra
of M that can be viewed as augmented by choice of a base point in M . Again, a
compact object DII

c .A
�.M// is a cohesive A0�.M/-module and the subcategory of

compact objects is equivalent to the derived category of sheaves on M with coherent
cohomology; see [5, Theorem 4.1.3] or [6, Theorem 8.3].

3.3. Comparison with other weak equivalences in DGMod-A

Here, we compare the notion of weak equivalences in our model structure on DGMod-A
with other notions of a weak equivalence from the literature.

Firstly, we can consider the standard model structure on DGMod-A, where weak equi-
valences are quasi-isomorphisms and fibrations are surjections. It is clear that any weak
equivalence in our model structure is a quasi-isomorphism, by considering A-modules
trivially twisted by the Maurer–Cartan element x D 0. It follows that DII

c .A/ contains the
ordinary derived category of A as a full subcategory. If A is concentrated in nonpositive
degrees (e.g., it is an ordinary algebra) or NA is concentrated in degrees > 1 (e.g., cohomo-
logy algebras of simply-connected topological spaces), then by the degree considerations,
{BA Š yT†�1 xA�, the usual bar construction of A from which it follows that our closed

model structure on A-modules is the ordinary one (i.e., of the first kind). Another situ-
ation where we obtain the ordinary closed model category of the first kind is when the dg
algebra A is cofibrant. However, for general A, even with a vanishing differential, we get
a different result, cf. Example 3.12.

In [13], the coderived category and contraderived category of a dg algebra A are
defined, which are obtained by localising at coacyclic dg A-modules and contraacyclic
dg A-modules, respectively. These categories are different, in general, from the ordinary
derived category of the first kind, even for ungraded algebras (see, e.g., [13, Example 3.3])
and, thus, also from DII

c .A/.
It was observed in [12,13] that the category DII

c .A/ is contained in both the coderived
and contraderived categories of A. It is, therefore, the derived category of A of the second
kind that is closest to the ordinary derived category of A. If A is right Noetherian and
has finite right homological dimension, then DII

c .A/ coincides with both coderived and
contraderived categories of A by [13, Question 3.8]. Another situation when this happens
is when A is the cobar construction of a (possibly nonconilpotent) dg coalgebra B since
in this case the co/contraderived category of A is equivalent to the coderived category of
B and is, therefore, compactly generated. Related questions are considered in the recent
paper [14].
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4. Curved Koszul duality for modules

In this section, we consider generalisations of the previous results in the cases where the
underlying dg algebra is curved or non-augmented. First we need to develop the extended
bar-cobar formalism in the curved, non-augmented context.

A curved dg algebra is a graded algebra A with a degree one derivation d WA! A,
such that, for any a 2 A, d2.a/ D Œh; a� for some h 2 A2 satisfying d.h/ D 0. The linear
map d is usually called the differential of A, despite not being square zero, and h is called
the curvature of A.

A morphism of curved algebras .A;dA;hA/! .B;dB ;hB/ is a pair .f;b/ consisting of
a morphism of graded algebras f WA! B and an element b 2 B1 satisfying the equations

f
�
dA.x/

�
D dB

�
f .x/

�
C
�
b; f .x/

�
;

f .hA/ D hB C dB.b/C b
2;

for all x 2 A; if b D 0, then the corresponding morphism A ! B is called strict. The
category of curved dg algebras is denoted by CDG and the category of pseudocompact
curved dg algebras is denoted by pcCDG; additionally, we assume that our (pseudocompact
or not) curved dg algebras have nonzero units. A Maurer–Cartan element in a curved dg
algebra A is an element x 2 A of degree 1 such that hC dx C x2 D 0. Given two curved
dg algebras .A; dA; hA/ and .B; dB ; hB/, their tensor product A˝ B is likewise a curved
dg algebra with dA˝B WD dA ˝ 1C 1˝ dB and hA˝B WD hA ˝ 1C 1˝ hB .

Given a curved dg algebra .A;dA;hA/ and an element b 2A1 (not necessarily Maurer–
Cartan), we can define the twisting of A by b as a curved dg algebra Ab with the same
underlying vector space as A, twisted differential db.x/ WD dA.x/ C Œb; x� for x 2 A,
and curvature hb WD hA C dA.b/C b2. Then .id; b/ determines a (curved) isomorphism
Ab ! A.

If A is a curved dg algebra, then a dg A-module is a graded (right) A-module M with
a degree one derivation dM WM ! M such that dM is compatible with the differential d
on A, and for any m 2 M , d2M .m/ D mh, one can similarly define left dg A-modules. If
M is a left dg A-module and x 2 A1, then there is a left dg Ax-moduleM Œx� defined as in
the uncurved case; cf. Definition 3.1. Given a curved dg algebra A and a pseudocompact
curved dg algebra C , we denote the categories of dg A-modules and pseudocompact C -
modules by DGMod-A and pcDGMod-C , just as before.

We now describe how to modify the bar and cobar constructions from Definition 2.5
in the general non-augmented and curved case. Let A be a unital curved dg algebra with
differential d and curvature h. Since 1 ¤ 0 in A, we can choose a homogeneous k-linear
retraction "WA! k to be regarded as a “fake augmentation.” It allows one to identify the
dg vector space xA WD A=k with a subspace (possibly not dg) of A so that A Š k ˚ xA.
The multiplication mWA˝ A! A restricted to xA has two components m"

xA
W xA˝ xA! xA

and m"
k
W xA˝ xA! k. We will denote the corresponding components of the differential d

and curvature h by d "
xA
; d "
k

, and h"
xA
, respectively; note that the component h"

k
vanishes for
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degree reasons. Explicitly, for all Na; Nb 2 xA � A,

m"xA . Na;
Nb/ D Na Nb � ". Na Nb/; m"k. Na;

Nb/ D ". Na Nb/I

d "xA . Na/ D d. Na/ � "
�
d. Na/

�
; d "k. Na/ D "

�
d. Na/

�
I

h"xA D h � ".h/ D h:

(4.1)

To alleviate notation, we will suppress the superscript " at m xA, mk etc., where it does not
lead to confusion.

Consider the graded algebra T 0†�1A�, the non-reduced semi-completed bar construc-
tion ofA. Choose a basis ¹t i W i 2 I º in xA, where I is some indexing set and let ¹�; ti W i 2 I º
be the basis in†�1A� dual to the basis ¹1; ti W i 2 I º in A. We will write @ti for the deriv-
ation of T 0†�1A� having value 1 on ti and zero on other basis elements of †�1A� and
similarly for @� . Then define the differential on T 0†�1A� as the following derivation:

� WD
X
i2I

�
Œ�; ti �C fi .t/

�
@ti C

�
g.t/C �2

�
@� C

X
i2I

ai@ti ;

where fi .t/, g.t/ stand for sums of linear and quadratic monomials in t (so these ele-
ments of T 0†�1A� do not depend on � ). Here the term

P
i2I fi .t/@ti corresponds to the

“multiplication and differential” m xA and d xA, the term
P
i2I ai@ti reflects the curvature

h xA, the term g.t/@� corresponds to mk and dk , and the term .
P
i2I Œ�; ti �C �

2/@� reflects
the multiplication with the unit in A. Let �1 WD

P
i2I fi .t/@ti C

P
i2I ai@ti and �2 WDP

i2I Œ�; ti �@ti C .g.t/C �2/@� ; then � D �1 C �2.
The reduced semi-complete bar construction B 0"A of A is a subalgebra in T 0†�1A�

spanned by sums of monomials which do not depend on � (so only depend on ti , i 2 I ).
Thus, the underlying graded algebra of B 0"A is isomorphic to T 0†�1 xA�. The differential
on B 0"A is �1. Note that �2 D 0 but �21 D 0 only when "WA! k is a dg algebra map; in this
case g.t/ D 0. However, .B 0"A; �1/ is a curved dg algebra; more precisely, the following
result holds.

Lemma 4.1. Let A be a curved dg algebra. Then:

(1) The reduced semi-complete bar construction B 0"A endowed with the differential
�1 defined above is a curved dg algebra with curvature �g.�t/, an element of
T 0†�1 xA� obtained from �g.t/ by replacing every indeterminate ti with �ti .

(2) The curved dg algebra B 0"A is independent, up to a natural isomorphism, of the
choice of a basis in xA. Furthermore, for different choices of retractionsA! k, the
corresponding reduced semi-complete bar constructions are isomorphic as curved
dg algebras. More precisely, denote by b"�"0 the element in B 0A Š T 0†�1 xA�

corresponding to the linear map " � "0WA! k; then the curved map .id; b"�"0/
determines a curved isomorphism B 0"A! B 0"0A.

(3) The correspondence A! B 0"A determines a contravariant functor from the cat-
egory CDG to the category of topological curved dg algebras.
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Proof. Taking into account that 0 D �2 D �21 C Œ�1; �2�C �
2
2 , we have, for k 2 I ,

�21 .tk/ D �Œ�1; �2�.tk/ � �
2
2 .tk/:

Furthermore, a straightforward calculation shows that Œ�1; �2�.tk/ has no terms depend-
ing on ti , i 2 I , whereas the only term of �22 .tk/ depending on ti , i 2 I , has the form
g.t/@� .Œtk ; � �/ D .�1/jtk jŒtk ; g.t/�. It follows that

�21 .tk/ D �.�1/
jtk j
�
g.t/; tk

�
as required.

Next, the statement about the independence of B 0".A/ on a basis in xA is obvious. Let
"0WA! k be another fake augmentation; then formulas (4.1) show that h is unchanged
whereas m"

0

xA
. Na; Nb/ D m"

xA
. Na; Nb/ C ." � "0/. Na Nb/ and similarly for the differential. This

implies that B 0"0A is obtained from B 0"A by twisting with the element "� "0 2 B 0"A, which
is equivalent to the stated claim.

To see that the construction A! B 0"A is functorial, we will view an object in CDG
as a curved dg algebra A with a choice of a retraction A ! k; however, morphisms
need not respect the retraction; this is clearly the same as (or, more accurately, equi-
valent to) the category CDG. Any map A ! B in CDG can canonically be factorised in
CDG as A! A! B with the first map being a change of retraction in A followed by
a map preserving retractions. The construction B 0"A is clearly functorial with respect to
retraction-preserving maps and a change of retraction is also functorial by part (2).

This allows us to define the extended bar construction of a curved dg algebra in the
same way as it was done in the uncurved case; from now on, we will suppress the subscript
" and writeB 0"A for the semi-complete bar construction ofA; by Lemma 4.1, this specifies
a curved pseudocompact dg algebra up to a natural isomorphism.

Definition 4.2. Let A be a curved dg algebra with a retraction "WA! k. The extended
bar construction of A is the graded pseudocompact algebra

{BA WD {T†�1 xA�:

Then by Proposition 2.2 (1), the identity on {T†�1 xA� induces a map

i WB 0A Š T 0.†�1 xA�/! {BA Š {T .†�1 xA�/;

and we define the differential d {BA on {BA to be

d {BA WD i ı �1W†
�1 xA� ! T 0.†�1 xA�/! {T .†�1 xA�/:

The curvature of {BA is the image of the curvature in B 0A under the map i WB 0A! {BA.
This gives {BA the structure of a curved pseudocompact dg algebra.

Remark 4.3. It follows from Lemma 4.1 that the correspondence A 7! {BA is a functor
CDG! pcCDGop. A version of the definition above with yT†�1 xA� (the local pseudocom-
pact bar construction of a curved non-augmented algebra) in place of {T†�1 xA� is found
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in [13, Section 6.1], albeit formulated in the language of coalgebras. However, Positsel-
ski’s local bar construction is not functorial with respect to non-strict maps in CDG since
maps between pseudocompact algebras of the form yT†�1 xA� must preserve their maximal
ideals, whereas this is not true for pseudocompact algebras of the form {T†�1 xA� (which
can have many maximal ideals).

Now recall that given a pseudocompact curved dg algebra C , there is a curved dg
algebra

�C WD T†�1 xC �

defined with xC WD C=k; cf. [13, Section 6.1]. Note that the definition of � can be given
along the lines of the definition of {B , only simpler since there is no analogue, or need,
for an intermediate step involving the semi-complete bar construction. Then we have the
following result.

Proposition 4.4. The correspondence C 7!�.C/ determines a functor pcCDGop! CDG.
This functor is left adjoint to {BW CDG! pcCDGop.

Proof. The functoriality of�C was explained in [13, Section 6.1]; alternatively, the argu-
ments in the proof of Lemma 4.1 apply with obvious modifications. The adjointness
follows as in the non-curved case; namely, by noticing that for A 2 CDG, C 2 pcCDG, the
sets of morphisms HomCDG.�C;A/ and HompcCDG. {BA;C / are both naturally isomorphic
to MC.A˝ C/.

Remark 4.5. If a curved dg algebra A happens to be augmented, then there is a natural
choice of a retraction "W A ! k, namely, the given augmentation. In this case, {BA is
uncurved. Similarly, if A has vanishing curvature, {BA is naturally augmented. If A is both
augmented and uncurved, then so is {BA.

Now for a curved dg algebra A and its bar construction {BA, there is an adjunction

GW pcDGMod- {BAop � DGMod-A WF (4.2)

as defined in Definition 3.3; these functors are well defined as the twisting of a curved
dg algebra by a Maurer–Cartan element gives an uncurved dg algebra. Furthermore, The-
orem 3.6 holds (with the same definitions of weak equivalences, fibrations, and cofibra-
tions) when the dg coalgebra C is curved (indeed, this is how it was formulated in [13]).
Thus, pcDGMod- {BAop has the structure of a model category, and by transferring along the
adjunction (4.2), we obtain the following generalisation of Theorem 3.7; the arguments
are the same as in the uncurved case.

Theorem 4.6. Let A be a curved dg algebra. There is a cofibrantly generated model
category structure on DGMod-A, where

(1) a morphism f WM ! N is a weak equivalence if it induces a quasi-isomorphism

HomA
�
.V ˝ A/Œx�;M

�
! HomA

�
.V ˝ A/Œx�; N

�
for any finitely generated twisted A-module .V ˝ A/Œx�;
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(2) a morphism is a fibration if it is surjective;

(3) a morphism is a cofibration if it has the left lifting property with respect to acyclic
fibrations.

With this model structure, the adjunction G a F is a Quillen pair.

Similarly, there are model structures on DGMod-A when A is curved and augmented or
non-curved and non-augmented. Altogether, there are four cases as below. Case (4) is the
case considered previously and proved in Theorem 3.10. Again, the arguments employed
in the augmented uncurved case generalise in a straightforward fashion.

Theorem 4.7. With the above model structures, the functors G a F form a Quillen anti-
equivalence between the categories pcDGMod- {BA and DGMod-A in each of the following
four cases:

(1) A is curved and non-augmented, and {BA is curved and non-augmented;

(2) A is curved and augmented, and {BA is non-curved and non-augmented;

(3) A is non-curved and non-augmented, and {BA is curved and augmented;

(4) A is non-curved and augmented, and {BA is non-curved and augmented.
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