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Measured quantum groupoids on a finite basis and
equivariant Kasparov theory

Jonathan Crespo

Abstract. In this article, we generalize to the case of measured quantum groupoids on a finite
basis some important results concerning the equivariant Kasparov theory for actions of locally com-
pact quantum groups, see Baaj and Skandalis (1989, 1993). To every pair .A; B/ of C�-algebras
continuously acted upon by a regular measured quantum groupoid on a finite basis G , we asso-
ciate a G -equivariant Kasparov theory group KKG .A; B/. The Kasparov product generalizes to
this setting. By applying recent results by Baaj and Crespo (2017, 2018) concerning actions of
regular measured quantum groupoids on a finite basis, we obtain two canonical homomorphisms
JG W KKG .A;B/! KK yG .A Ì G ; B Ì G / and J yG W KK yG .A;B/! KKG .A Ì yG ; B Ì yG / inverse of
each other through the Morita equivalence coming from a version of the Takesaki–Takai duality
theorem. We investigate in detail the case of colinking measured quantum groupoids. In particular,
if G1 and G2 are two monoidally equivalent regular locally compact quantum groups, we obtain a
new proof of the canonical equivalence of the associated equivariant Kasparov categories, see Baaj
and Crespo (2017).
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1. Introduction

The notion of monoidal equivalence of compact quantum groups has been introduced by
Bichon, De Rijdt, and Vaes in [6]. Two compact quantum groups G1 and G2 are said to be
monoidally equivalent if their categories of representations are equivalent as monoidal C�-
categories. They have proved that G1 and G2 are monoidally equivalent if and only if there
exists a unital C�-algebra equipped with commuting continuous ergodic actions of full
multiplicity of G1 on the left and of G2 on the right. Among the applications of monoidal
equivalence to the geometric theory of free discrete quantum groups, we mention the
contributions to random walks and their associated boundaries [14, 30], CCAP property
and Haagerup property [13], the Baum-Connes conjecture, and K-amenability [32, 33].

In his Ph.D. thesis [11], De Commer has extended the notion of monoidal equivalence
to the locally compact case. Two locally compact quantum groups G1 and G2 (in the sense
of Kustermans and Vaes [20]) are said to be monoidally equivalent if there exists a von
Neumann algebra equipped with a left Galois action of G1 and a right Galois action of G2

that commute. He proved that this notion is completely encoded by a measured quantum
groupoid (in the sense of Enock and Lesieur [16]) on the basis C2. Such a groupoid is
called a colinking measured quantum groupoid.

The measured quantum groupoids have been introduced and studied by Lesieur and
Enock (see [16, 22]). Roughly speaking, a measured quantum groupoid (in the sense of
Enock–Lesieur) is an octuple G D .N; M; ˛; ˇ; �; T; T 0; �/, where N and M are von
Neumann algebras (the basis N and M are the algebras of the groupoid corresponding
respectively to the space of units and the total space for a classical groupoid), ˛ and
ˇ are faithful normal �-homomorphisms from N and N o (the opposite algebra) to M
(corresponding to the source and target maps for a classical groupoid) with commuting
ranges, � is a coproduct taking its values in a certain fiber product, � is a normal semi-
finite weight on N , and T and T 0 are operator-valued weights satisfying some axioms.

In the case of a finite-dimensional basis N , the definition has been greatly simpli-
fied by De Commer [10–12] and we will use this point of view in this article. Broadly
speaking, we can take for � the non-normalized Markov trace on the C�-algebra
N D

L
16l6k Mnl .C/. The relative tensor product of Hilbert spaces (resp. the fiber prod-

uct of von Neumann algebras) is replaced by the ordinary tensor product of Hilbert spaces
(resp. von Neumann algebras). The coproduct takes its values in M ˝M but is no longer
unital.

In [2], the authors introduce a notion of (strongly) continuous actions on C�-algebras
of measured quantum groupoids on a finite basis. They extend the construction of the
crossed product and the dual action and give a version of the Takesaki–Takai duality gen-
eralizing the Baaj–Skandalis duality theorem [4] in this setting.

If a colinking measured quantum groupoid G , associated with a monoidal equivalence
of two locally compact quantum groups G1 and G2, acts (strongly) continuously on a C�-
algebra A, then A splits up as a direct sum AD A1 ˚A2 of C�-algebras and the action of
G on A restricts to an action of G1 (resp. G2) on A1 (resp. A2).
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They also extend the induction procedure to the case of monoidally equivalent regular
locally compact quantum groups. To any continuous action of G1 on a C�-algebra A1,
they associate canonically a C�-algebra A2 endowed with a continuous action of G2. As
important consequences of this construction, we mention the following:

� a one-to-one functorial correspondence between the continuous actions of the quan-
tum groups G1 and G2, which generalizes the compact case [14] and the case of
deformations by a 2-cocycle [24];

� a complete description of the continuous actions of colinking measured quantum
groupoids;

� the equivalence of the categories KKG1 and KKG2 , which generalizes to the regular
locally compact case a result of Voigt [33].

The proofs of the above results rely crucially on the regularity of the quantum groups G1

and G2. They prove that the regularity of G1 and G2 is equivalent to the regularity of the
associated colinking measured quantum groupoid in the sense of [15] (see also [27, 28]).

In [9], the author generalizes to the case of (semi-)regular measured quantum groupoid
on a finite basis some important properties of (semi-)regular locally compact quantum
groups [1, 4], which then allow him to generalize some crucial results of [5] concerning
actions of (semi-)regular locally compact quantum groups. More precisely, if G is a regular
measured quantum groupoid on a finite basis, then any weakly continuous action of G is
necessarily continuous in the strong sense.

Let G be a measured quantum groupoid on a finite basis. The author provides a notion
of action of G on Hilbert C�-modules in line with the corresponding notion for quantum
groups [3]. By using the previous result, if G is regular, then any action of G on a Hilbert
C�-module is necessarily continuous. The author defines the notion of G -equivariant
Morita equivalence between G -C�-algebras. By applying the version of the Takesaki–
Takai duality theorem obtained in [2], the author finally obtains that any G -C�-algebra
A is G -equivariantly Morita equivalent to its double crossed product .A Ì G / Ì yG in a
canonical way.

In this article, we generalize to the setting of measured quantum groupoid on a finite
basis some crucial results concerning equivariant Kasparov theory for actions of quantum
groups [3]. More precisely, we define the equivariant Kasparov groups KKG .A; B/ for
any pair of G -C�-algebras .A; B/ and extend the functorial properties and the Kasparov
product in this framework. For all pair of G -C�-algebras (resp. yG -C�-algebras), we build
a homomorphism

JG W KKG .A;B/! KK yG .AÌ G ;B Ì G /
�
resp. J yG W KK yG .A;B/! KKG .AÌ yG ;B Ì yG /

�
:

We also prove that JG and J yG are inverse of each other through the Morita equivalences
obtained in [9]. The rest of the paper is dedicated to the applications of the above theory
to monoidal equivalence. In particular, we provide a new proof of the equivalence of the
equivariant Kasparov categories KKG1 and KKG2 when G1 and G2 are monoidally equiv-
alent regular locally compact quantum groups [2] (see also [33] for the compact case). It
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should be mentioned that the equivariant Kasparov theory for actions of locally compact
topological groupoid has been studied by Le Gall in [21].

For the notions and notations used in this paper, we invite the reader to find them in [9]
and the references therein where a comprehensive and detailed study is done. For more
information on locally compact quantum groups and measured quantum groupoids, we
refer to the classical literature on these subjects (see [4, 16, 20, 22, 29]).

This article is organized as follows.

� Chapter 1. In the first section, we recall the notion of action of measured quantum
groupoids on a finite basis on Hilbert C�-modules (cf. [9]). In the second section, we
study the crossed product construction in this setting and we state a version of the
Takesaki–Takai duality theorem. The last section begins with a reminder of the case
of a colinking measured quantum groupoid (cf. [2, 9]). The structure of the double
crossed product is investigated at the end of this section.

� Chapter 2. In this chapter, we give the definition and some properties of equivariant
Kasparov groups by a regular measured quantum groupoid on a finite basis. We gen-
eralize to our setting the Kasparov technical theorem, which allows us to build the
Kasparov product. In the last section, we build the so-called “descent morphisms” JG

and J yG and prove that they are inverse of each other up to Morita equivalences.

� Chapter 3. We apply the previous results to the case of a colinking measured quantum
groupoid G associated with two monoidally equivalent regular locally compact quan-
tum groups G1 and G2. We obtain canonical equivalences between the equivariant
Kasparov categories of G1, G2 and G . In particular, we provide a new proof of the
isomorphism obtained in [2, §4.5].

2. Hilbert C�-modules acted upon by measured quantum groupoids

2.1. Notion of actions of measured quantum groupoids on a finite basis on Hilbert
C�-modules

In this paragraph, we recall the notion of G -equivariant Hilbert C�-module for a measured
quantum groupoid G on a finite basis in the spirit of [3] (cf. [9, §6.1]). We fix a measured
quantum groupoid G on a finite-dimensional basis N D

L
16l6k Mnl .C/ endowed with

the non-normalized Markov trace �D
L
16l6k nl �Trl . We use all the notations introduced

in [9, §3.1 and §3.2] concerning the objects associated with G . For example, .S; ı/ denotes
the weak Hopf C�-algebra associated to G represented on its standard Hilbert space H and
the morphisms ˛ W N !M.S/ and ˇ W N ı !M.S/ are the base maps. Let us fix a G -
C�-algebra A. We denote by ıA W A!M.A˝ S/ and ˇA W N ı !M.A/ the morphisms
which define the continuous coaction on the C�-algebra A.

Following [3, §2], an action of G on a Hilbert A-module E is defined in [9] by three
equivalent data:

� a pair .ˇE; ıE/ consisting of a �-homomorphism ˇE W N
o ! L.E/ and a linear map

ıE W E! zM.E˝ S/ (cf. Definition 2.1.1),
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� a pair .ˇE; V/ consisting of a �-homomorphism ˇE W N
o ! L.E/ and an isometry

V 2 L.E˝ıA .A˝ S/;E˝ S/ (cf. Definition 2.1.4),

� an action .ˇJ ; ıJ / of G on J WDK.E˚ A/ (cf. Definition 2.1.8),

satisfying some conditions.
We have the following unitary equivalences of Hilbert modules:

A˝ıA .A˝ S/! qˇA˛.A˝ S/

a˝ıA x 7! ıA.a/xI (2.1)

.A˝ S/˝ıA˝ idS .A˝ S ˝ S/! qˇA˛;12.A˝ S ˝ S/

x ˝ıA˝ idS y 7! .ıA ˝ idS /.x/yI (2.2)

.A˝ S/˝idA˝ ı .A˝ S ˝ S/! qˇ˛;23.A˝ S ˝ S/

x ˝idA˝ ı y 7! .idA˝ı/.x/y: (2.3)

In the following, we fix a Hilbert A-module E. We will apply the usual identifications
M.A˝ S/ D L.A˝ S/, K.E/˝ S DK.E˝ S/ and M.K.E/˝ S/ D L.E˝ S/.

Definition 2.1.1. An action of G on the Hilbert A-module E is a pair .ˇE; ıE/, where
ˇE W N

o ! L.E/ is a non-degenerate �-homomorphism and ıE W E ! zM.E ˝ S/ is a
linear map such that

(1) for all a 2 A and �; � 2 E, we have

ıE.�a/ D ıE.�/ıA.a/ and
˝
ıE.�/; ıE.�/

˛
D ıA

�
h�; �i

�
;

(2) ŒıE.E/.A˝ S/� D qˇE˛.E˝ S/,

(3) for all � 2 E and n 2 N , we have ıE.ˇE.no/�/ D .1E ˝ ˇ.n
o//ıE.�/,

(4) the linear maps ıE˝ idS and idE˝ı extend to linear maps from L.A˝ S;E˝ S/

to L.A˝ S ˝ S;E˝ S ˝ S/ and we have

.ıE ˝ idS /ıE.�/ D .idE˝ı/ıE.�/ 2 L.A˝ S ˝ S;E˝ S ˝ S/; for all � 2 E:

Remarks 2.1.2. (1) If the second formula of condition (1) holds, then ıE is isometric (cf.
[3] and [9, Remarks A.3.2]).

(2) If condition (1) holds, then condition (2) is equivalent to�
ıE.E/.1A ˝ S/

�
D qˇE˛.E˝ S/:

Indeed, if .u�/� is an approximate unit of A we have

ıE.�/ D lim
�
ıE.�u�/ D lim

�
ıE.�/ıA.u�/ D ıE.�/qˇA˛ for all � 2 E:

By strong continuity of the action .ˇA; ıA/, condition (1) of Definition 2.1.1, and the equal-
ity EAD E, we then have ŒıE.E/.A˝S/�D ŒıE.E/.1A˝S/� and the equivalence follows.

(3) Note that we have qˇE˛ıE.�/ D ıE.�/ D ıE.�/qˇA˛ for all � 2 E.
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(4) We will prove (cf. Remarks 2.1.7) that if ıE satisfies conditions (1) and (2) of
Definition 2.1.1, then the extensions of ıE ˝ idS and idE˝ı always exist and satisfy the
formulas

.idE˝ı/.T /.idA˝ı/.x/ D .idE˝ı/.T x/I

.ıE ˝ idS /.T /.ıA ˝ idS /.x/ D .ıE ˝ idS /.T x/

for all x 2 A˝ S and T 2 L.A˝ S;E˝ S/.

Notation 2.1.3. For � 2 E, let us denote by T� 2 L.A˝ S;E˝ıA .A˝ S// the operator
defined by

T�.x/ WD � ˝ıA x for all x 2 A˝ S:

We have T �
�
.�˝ıA y/ D ıA.h�; �i/y for all � 2 E and y 2 A˝ S . In particular, we have

T �
�
T� D ıA.h�; �i/ for all �; � 2 E.

Definition 2.1.4. Let V 2L.E˝ıA .A˝ S/;E˝ S/ be an isometry and ˇE WN o!L.E/

a non-degenerate �-homomorphism such that

(1) VV� D qˇE˛ ,

(2) V.ˇE.n
o/˝ıA 1/ D .1E ˝ ˇ.n

o//V for all n 2 N .

Then, V is said to be admissible if we further have

(3) VT� 2 zM.E˝ S/ for all � 2 E,

(4) .V˝C idS /.V˝ıA˝ idS 1/DV˝idA˝ ı 1 2L.E˝ı2A
.A˝S˝S/;E˝S˝S/.

The fourth statement in the previous definition makes sense since we have used the
canonical identifications thereafter. By combining the associativity of the internal tensor
product with the unitary equivalences (2.2) and (2.3), we obtain the following unitary
equivalences of Hilbert A˝ S -modules:�

E˝ıA .A˝ S/
�
˝ıA˝ idS .A˝ S ˝ S/! E˝ı2A

.A˝ S ˝ S/

.� ˝ıA x/˝ıA˝ idS y 7! � ˝ı2A
.ıA ˝ idS /.x/yI (2.4)�

E˝ıA .A˝ S/
�
˝idA˝ ı .A˝ S ˝ S/! E˝ı2A

.A˝ S ˝ S/

.� ˝ıA x/˝idA˝ ı y 7! � ˝ı2A
.idA˝ı/.x/y: (2.5)

We also have the following:

.E˝ S/˝ıA˝ idS .A˝ S ˝ S/!
�
E˝ıA .A˝ S/

�
˝ S

.� ˝ s/˝ıA˝ idS .x ˝ t / 7! .� ˝ıA x/˝ st I (2.6)

.E˝ S/˝idA˝ ı .A˝ S ˝ S/! qˇ˛;23.E˝ S ˝ S/ � E˝ S ˝ S

� ˝idA˝ ı y 7! .idE˝ı/.�/y: (2.7)

In particular, V˝ıA˝ idS 12L.E˝ı2A
.A˝S ˝S/; .E˝S/˝ıA˝ idS .A˝S ˝S// (2.4),

and V˝C idS 2 L..E˝ S/˝ıA˝ idS .A˝ S ˝ S/;E˝ S ˝ S/ (2.6).
The next result provides an equivalence of Definitions 2.1.1 and 2.1.4.
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Proposition 2.1.5. (a) Let ıE W E! zM.E˝ S/ be a linear map and ˇE W N o ! L.E/

a non-degenerate �-homomorphism which satisfy conditions (1), (2), and (3) of Defini-
tion 2.1.1. Then, there exists a unique isometry V 2 L.E˝ıA .A˝ S/;E˝ S/ such that
ıE.�/D VT� for all � 2 E. Moreover, the pair .ˇE;V/ satisfies conditions (1), (2), and (3)
of Definition 2.1.4.

(b) Conversely, let V 2L.E˝ıA .A˝ S/;E˝ S/ be an isometry and ˇE WN o!L.E/

a non-degenerate �-homomorphism which satisfy conditions (1), (2), and (3) of Defini-
tion 2.1.4. Let us consider the map ıE W E!L.A˝ S;E˝ S/ given by ıE.�/ WD VT� for
all � 2 E. Then, the pair .ˇE; ıE/ satisfies conditions (1), (2), and (3) of Definition 2.1.1.

(c) Let us assume that the above statements hold. Then, the pair .ˇE; ıE/ is an action
of G on E if and only if V is admissible.

Notation 2.1.6. Let E and F be Hilbert C�-modules. Let q 2 L.E/ be a self-adjoint
projection and T 2 L.qE;F /. Let zT W E ! F be the map defined by zT � WD Tq� for all
� 2 E . Therefore, zT 2L.E;F / and zT � D qT �. By abuse of notation, we will still denote
by T the adjointable operator zT .

Remarks 2.1.7. As a consequence of Proposition 2.1.5, we have the statements below.

� By applying Notation 2.1.6 and the identifications (2.3), (2.7), we have obtained a
linear map idE˝ı W L.A˝ S;E˝ S/! L.A˝ S ˝ S;E˝ S ˝ S/ given by

.idE˝ı/.T / WD T ˝idA˝ ı 1 for all T 2 L.A˝ S;E˝ S/:

� If ıE satisfies conditions (1) and (2) of Definition 2.1.1, let V be the isometry associ-
ated with ıE (cf. Proposition 2.1.5 (a)). By applying Notation 2.1.6 and the identifica-
tions (2.2), (2.6), the linear map

ıE ˝ idS W L.A˝ S;E˝ S/! L.A˝ S ˝ S;E˝ S ˝ S/

is defined by

.ıE ˝ idS /.T / WD .V˝C 1S /.T ˝ıA˝ idS 1/ for all T 2 L.A˝ S;E˝ S/:

Note that the extensions idE˝ı and ıE ˝ idS satisfy the following formulas:

.idE˝ı/.T /.idA˝ı/.x/ D .idE˝ı/.T x/I

.ıE ˝ idS /.T /.ıA ˝ idS /.x/ D .ıE ˝ idS /.T x/
(2.8)

for all x 2 A˝ S and T 2 L.A˝ S;E˝ S/.

Let us denote by J WD K.E˚ A/ the linking C�-algebra associated with the Hilbert
A-module E. In the following, we apply the usual identifications M.J / D L.E˚ A/ and
M.J ˝ S/ D L..E˝ S/˚ .A˝ S//.

Definition 2.1.8. An action .ˇJ ; ıJ / of G on J is said to be compatible with the action
.ˇA; ıA/ if
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(1) ıJ W J !M.J ˝ S/ is compatible with ıA; i.e., �A˝S ı ıA D ıJ ı �A,

(2) ˇJ W N o!M.J / is compatible with ˇA; i.e., �A.ˇA.no/a/D ˇJ .n
o/�A.a/ for all

n 2 N and a 2 A.

Proposition 2.1.9. Let .ˇJ ; ıJ / be a compatible action of G on J . There exists a unique
non-degenerate �-homomorphism ˇE W N

o ! L.E/ such that

ˇJ .n
o/ D

 
ˇE.n

o/ 0

0 ˇA.n
o/

!
for all n 2 N:

Moreover, we have qˇJ ˛ D
� qˇE˛ 0

0 qˇA˛

�
.

Proposition 2.1.10. (a) Let us assume that the C�-algebra J is endowed with a compat-
ible action .ˇJ ; ıJ / of G such that ıJ .J / � zM.J ˝ S/. Then, we have the following
statements:

� there exists a unique linear map ıE W E! zM.E˝ S/ such that �E˝S ı ıE D ıJ ı �E;
furthermore, the pair .ˇE; ıE/ is an action of G on E, where ˇE W N o ! L.E/ is the
�-homomorphism defined in Proposition 2.1.9;

� there exists a unique faithful �-homomorphism ıK.E/ WK.E/! zM.K.E/˝ S/ such
that �K.E˝S/ ı ıK.E/ D ıJ ı �K.E/; moreover, the pair .ˇE; ıK.E// is an action of G

on K.E/.

(b) Conversely, let .ˇE; ıE/ be an action of G on the Hilbert A-module E. Then, there
exists a faithful �-homomorphism ıJ W J ! zM.J ˝ S/ such that �E˝S ı ıE D ıJ ı �E.
Moreover, we define a unique action .ˇJ ; ıJ / of G on J compatible with .ˇA; ıA/ by
setting

ˇJ .n
o/ D

 
ˇE.n

o/ 0

0 ˇA.n
o/

!
for all n 2 N:

If E1 and E2 are Hilbert A-modules acted upon by G , then so is their direct sum
E1 ˚ E2 in a canonical way.

Proposition-Definition 2.1.11. For i D 1; 2, let Ei be a Hilbert A-module acted upon by
G . Let E WD E1 ˚ E2. For i D 1; 2, let jEi W L.A˝ S;Ei ˝ S/! L.A˝ S;E˝ S/ be
the linear extension of the canonical injection Ei ˝ S ! E˝ S . Let ˇE W N o ! L.E/

and ıE W E! L.A˝ S;E˝ S/ be the maps defined by

ˇE.n
o/ WD

 
ˇE1.n

o/ 0

0 ˇE2.n
o/

!
; n 2 N;

ıE.�/ WD
X
iD1;2

jEi ı ıEi .�i /; � D .�1; �2/ 2 E:

Then, the pair .ˇE; ıE/ is an action of G on E.

Remarks 2.1.12. Let .ˇE; ıE/ be an action of G on the Hilbert A-module E.
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(1) The map ıK.E/ WK.E/! zM.K.E/˝ S/ defined in Proposition 2.1.10 (a) is the
unique �-homomorphism satisfying the relation ıK.E/.��;�/D ıE.�/ ı ıE.�/

� for
all �; � 2 E.

(2) For all F 2 L.E/ and � 2 E, ıE.F �/D ıK.E/.F /ıE.�/. Indeed, for all �; �; � 2 E
we have ıE.��;��/D ıE.�/ıA.h�; �i/D ıE.�/hıE.�/; ıE.�/i D ıK.E/.��;�/ıE.�/.
Hence, ıE.k�/ D ıK.E/.k/ıE.�/ for all k 2 K.E/ and � 2 E. The claim is then
proved by strict continuity of ıK.E/.

(3) For all k 2K.E/, ıK.E/.k/ D V.k ˝ıA 1/V
�, where V 2 L.E˝ıA .A˝ S/;E˝

S/ is the isometry associated with the action .ˇE; ıE/ (cf. Definition 2.1.4).

Proposition-Definition 2.1.13. Let .ˇE; ıE/ be an action of G on the Hilbert A-module
E. Let V 2L.E˝ıA .A˝ S/;E˝ S/ be the isometry associated with .ˇE; ıE/ (cf. Propo-
sition 2.1.5 (a)). Let us endow the C�-algebras J and K.E/ with the actions defined in
Proposition 2.1.10. Let F 2 L.E/. The following statements are equivalent:

(i) ıE.F �/ D .F ˝ 1S /ıE.�/ for all � 2 E;

(ii) F is ıK.E/-invariant;

(iii) V.F ˝ıA 1/V
� D qˇE˛.F ˝ 1S /;

(iv) �K.E/.F / is ıJ -invariant.

In that case, F is said to be (ıE-)invariant.

Proof. (ii))(i) For all � 2 E, we have (cf. [9, Remarks 6.1.23], Remark 2.1.2 (3))

ıE.F �/ D ıK.E/.F /ıE.�/ D .F ˝ 1S /qˇE˛ıE.�/ D .F ˝ 1S /ıE.�/:

(i))(ii) For all �; � 2 E, we have (cf. Remark 2.1.12 (1))

ıK.E/.F ��;�/ D ıK.E/.�F �;�/ D ıE.F �/ıE.�/
�
D .F ˝ 1S /ıE.�/ıE.�/

�

D .F ˝ 1S /ıK.E/.��;�/:

Hence, ıK.E/.F k/ D .F ˝ 1S /ıK.E/.k/ for all k 2K.E/. Hence,

ıK.E/.F / D .F ˝ 1S /qˇE˛:

(ii),(iii) See Remark 2.1.12 (3).
(iii),(iv) This is a direct consequence of the relation

ıJ ı �K.E/ D �K.E˝S/ ı ıK.E/:

Let us recall the notion of equivariant unitary equivalence between Hilbert C�-modules
over possibly different C�-algebras acted upon by G .

Definition 2.1.14. Let A and B be two G -C�-algebras and � W A! B a G -equivariant
�-isomorphism. Let E and F be two Hilbert modules over, respectively, A and B acted
upon by G . A �-compatible unitary operator ˆ W E! F (cf. [9, Definition A.3.1]) is said
to be G -equivariant if we have

ıF.ˆ�/ D .ˆ˝ idS /ıE.�/ for all � 2 E:
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We recall that the linear map ˆ ˝ idS W L.A ˝ S; E ˝ S/ ! L.B ˝ S; F ˝ S/ (cf.
[9, Notation A.3.6]) is the extension of the � ˝ idS -compatible unitary operatorˆ˝ idS W
E˝ S ! F˝ S (cf. [9, Proposition-Definition A.3.4]). Note that we have ˆ ı ˇE.no/ D

ˇF.n
o/ ıˆ for all n 2 N (cf. [9, Proposition 6.1.13]).

Definition 2.1.15. Two Hilbert C�-modules E and F acted upon by G are said to be G -
equivariantly unitarily equivalent if there exists a G -equivariant unitary operator from E

onto F.

It is clear that the G -equivariant unitary equivalence defines an equivalence relation on
the class consisting of the Hilbert C�-modules acted upon by G . For equivalent definitions
of the G -equivariant unitary equivalence in the two other pictures, we refer to [9, §6.1].

Remark 2.1.16. Let B be a yG -C�-algebra. An action of the dual measured quantum
groupoid yG on a Hilbert B-module F is defined by three equivalent data:

� a pair .˛F; ıF/ consisting of a �-homomorphism ˛F W N ! L.F/ and a linear map
ıF W F! zM.F˝ yS/,

� a pair .˛E; V/ consisting of a �-homomorphism ˛F W N ! L.F/ and an isometry
V 2 L.F˝ıB .B ˝

yS/;F˝ yS/,

� an action .˛K ; ıK/ of yG on K WDK.F˚ B/,

satisfying some conditions. The details are left to the reader’s attention.

2.2. Equivariant Hilbert modules and bimodules

In this paragraph, we recall the notion of continuity for actions of the quantum groupoid
G on Hilbert C�-modules and the notion of equivariant representation of a G -C�-algebra
on a Hilbert C�-module acted upon by G (cf. [9, §7]). Let A be a G -C�-algebra.

Definition 2.2.1. An action .ˇE; ıE/ of G on a Hilbert A-module E is said to be continu-
ous if we have Œ.1E ˝ S/ıE.E/� D .E˝ S/qˇA˛ . A G -equivariant Hilbert A-module is a
Hilbert A-module E endowed with a continuous action of G .

Proposition 2.2.2. Let E be a G -equivariant Hilbert A-module. Let B WDK.E/. We have
the following statements:

(1) the action .ˇB ; ıB/ of G onB defined in Proposition 2.1.10 is strongly continuous;

(2) we define a continuous action of G on the Hilbert B-module E� by setting

� ˇE�.n
o/T WD ˇA.n

o/ ı T for all n 2 N and T 2 E�,

� ıE�.T /x WD ıE.T
�/� ı x for all T 2 E� and x 2 B ˝ S ,

where we have applied the usual identifications B ˝ S D K.E ˝ S/ and E D

K.A;E/.

Proposition 2.2.3. Let E be a Hilbert A-module endowed with an action .ˇE; ıE/ of G on
E. Let J WD K.E˚ A/ be the associated linking C�-algebra. Let .ˇJ ; ıJ / be the action
defined in Proposition 2.1.10. Then, the action .ˇE; ıE/ is continuous if and only if the
action .ˇJ ; ıJ / is strongly continuous.
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Notations 2.2.4. There is a one-to-one correspondence between G -equivariant Hilbert
C�-modules (cf. Definition 2.2.1) and linking G -C�-algebras (cf. [9, Definition 6.1.22]).

� Let .J;ˇJ ; ıJ ; e1; e2/ be a linking G -C�-algebra. By restriction of the action .ˇJ ; ıJ /,
the corner e2Je2 (resp. e1Je2) turns into a G -C�-algebra (resp. G -equivariant Hilbert
C�-module over e2Je2). We also have the identification of G -C�-algebras K.e1Je2/D

e1Je1.

� Conversely, if .E; ˇE; ıE/ is a full G -equivariant Hilbert A-module, then the C�-
algebra J WD K.E˚ A/ endowed with the continuous action .ˇJ ; ıJ / (cf. Proposi-
tions 2.1.10 and 2.2.3) and the projections e1 WD �E.1E/ and e2 WD �A.1A/ is a linking
G -C�-algebra.

Theorem 2.2.5. Let E be a Hilbert A-module. If the quantum groupoid G is regular, then
any action of G on E is continuous.

Notation 2.2.6. Let A and B be two C�-algebras and E a Hilbert B-module. If  W A!
L.E/ is a �-homomorphism, then we extend  ˝ idS to a �-homomorphism  ˝ idS W
zM.A˝ S/! L.E˝ S/ up to the identification M.K.E/˝ S/ D L.E˝ S/.

Definition 2.2.7. Let A and B be two G -C�-algebras, E a Hilbert B-module, .ˇE; ıE/ an
action of G on E, and  W A! L.E/ a �-representation. We say that  is G -equivariant if
we have

(1) ıE..a/�/ D . ˝ idS /.ıA.a// ı ıE.�/ for all a 2 A and � 2 E,

(2) ˇE.no/ ı .a/ D .ˇA.n
o/a/ for all n 2 N and a 2 A.

A G -equivariant Hilbert A-B-bimodule is a countably generated G -equivariant Hilbert
B-module endowed with a G -equivariant �-representation of A.

Remarks 2.2.8. (1) Provided that the second condition in the above definition is verified,
the first condition is equivalent to

V
�
.a/˝ıB 1

�
V� D . ˝ idS /ıA.a/ for all a 2 A; (2.9)

where V 2L.E˝ıB .B˝S/;E˝S/ denotes the isometry defined in Proposition 2.1.5 (a).
(2) We recall that the action ıK.E/ of G on K.E/ is defined by

ıK.E/.k/ WD V.k ˝ıB 1/V
� for all k 2K.E/:

Hence, (2.9) can be restated as follows: ıK.E/..a// D . ˝ idS /ıA.a/ for all a 2 A. In
particular, if  is non-degenerate, then Definition 2.2.7 simply means that the �-homomor-
phism  W A!M.K.E// is G -equivariant (cf. [9, Definition 5.1.10]).

(3) If  W A! L.E/ is a non-degenerate �-representation such that

ıE
�
.a/�

�
D . ˝ idS /

�
ıA.a/

�
ı ıE.�/ for all a 2 A and � 2 E;

then the second condition of Definition 2.2.7 is satisfied.

We recall below the tensor product construction.
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Proposition 2.2.9. Let C (resp. B) be a G -C�-algebra. Let E1 (resp. E2) be a Hilbert
module over C (resp. B) endowed with an action .ˇE1 ; ıE1/ (resp. .ˇE2 ; ıE2/) of G . Let
2 W C ! L.E2/ be a G -equivariant �-representation. Consider the Hilbert B-module
E WD E1 ˝2 E2. Denote

�.�1; �2/ WD
�
ıE1.�1/˝z2˝idS 1

�
ı ıE2.�2/ for �1 2 E1 and �2 2 E2:

We have �.�1; �2/ 2 zM.E˝ S/ for all �1 2 E1 and �2 2 E2. Let ˇE W N o ! L.E/ be the
�-homomorphism defined by

ˇE.n
o/ WD ˇE1.n

o/˝2 1 for all n 2 N:

There exists a unique map ıE W E! zM.E˝ S/ defined by the formula

ıE.�1 ˝2 �2/ WD �.�1; �2/ for �1 2 E1 and �2 2 E2

such that the pair .ˇE; ıE/ is an action of G on E.

The operator ıE1.�1/ is considered here as an element of L. zC ˝ S; E1 ˝ S/ �
zM.E1 ˝ S/. In particular, we have ıE1.�1/ ˝z2˝idS 1 2 L.E2 ˝ S; E ˝ S/ up to the

identifications

. zC ˝ S/˝z2˝idS .E2 ˝ S/! E2 ˝ S

x ˝z2˝idS � 7! .z2 ˝ idS /.x/�I (2.10)

.E1 ˝ S/˝z2˝idS .E2 ˝ S/! E˝ S

.�1 ˝ s/˝z2˝idS .�2 ˝ t / 7! .�1 ˝2 �2/˝ st: (2.11)

Remark 2.2.10. We recall the definition of the isometry V 2 L.E˝ıB .B ˝ S/;E˝ S/

associated with the action .ˇE; ıE/ (cf. Definition 2.1.4). We refer to the proof of Propo-
sition 7.9 [9] for more details. For i D 1; 2, let Vi be the isometry associated with the
actions .ˇEi ; ıEi /. Let zV2 2 L.E˝ıB .B ˝ S/;E1 ˝.2˝idS /ıC .E2 ˝ S// be the unitary
defined for all �1 2 E1, �2 2 E2 and x 2 B ˝ S by

zV2
�
.�1 ˝2 �2/˝ıB x

�
WD �1 ˝.2˝idS /ıC V2.�2 ˝ıB x/:

Up to the identifications�
E1 ˝ıC .C ˝ S/

�
˝2˝idS .E2 ˝ S/! E1 ˝.2˝idS /ıC .E2 ˝ S/

.�1 ˝ıC x/˝2˝idS � 7! �1 ˝.2˝idS /ıC .2 ˝ idS /.x/�I (2.12)

.E1 ˝ S/˝2˝idS .E2 ˝ S/! E˝ S

.�1 ˝ s/˝2˝idS .�2 ˝ t / 7! .�1 ˝2 �2/˝ st (2.13)

we have V D .V1 ˝2˝idS 1/
zV2.

The following result is straightforward.

Proposition 2.2.11. We use all the notations and hypotheses of Proposition 2.2.9. If A is
a G -C�-algebra and 1 W A! L.E1/ is a G -equivariant �-representation, then  W A!
L.E/, the �-representation defined by .a/ WD 1.a/˝2 1 for all a 2A, is G -equivariant.
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If .E1; 1/ is a G -equivariant A-C -bimodule and E2 is a G -equivariant C -B-bimodule,
then the pair .E; / is a G -equivariant A-B-bimodule.

The G -equivariance of the internal tensor product associativity map is straightforward
and left to the reader’s discretion.

Lemma 2.2.12. We use all the notations and hypotheses of Proposition 2.2.9. If F 2
L.E1/ is invariant, then so is F ˝2 1 2 L.E/.

Proof. For all �1 2 E1 and �2 2 E2,�.F �1; �2/ D ..F ˝ 1S /˝z2˝idS 1/�.�1; �2/. How-
ever, .F ˝ 1S /˝z2˝idS 1 is identified to .F ˝2 1/˝ 1S through the identification (2.11).
Hence, ıE.F �1 ˝2 �2/ D ..F ˝2 1/˝ 1S /ıE.�1 ˝2 �2/ for all �1 2 E1 and �2 2 E2.
Hence, F ˝2 1 2 L.E/ is invariant (cf. Proposition-Definition 2.1.13).

2.3. Biduality and equivariant Morita equivalence

In this paragraph, we recall the notion of equivariant Morita equivalence between G -C�-
algebras ([9, §7]).

Definition 2.3.1 (cf. [25, §6]). Let A and B be two C�-algebras. An imprimitivity A-B-
bimodule is an A-B-bimodule E, which is a full left Hilbert A-module for an A-valued
inner productAh�; �i and a full right Hilbert B-module for a B-valued inner product h�; �iB
such that Ah�; �i� D �h�; �iB for all �; �; � 2 E.

Remarks 2.3.2. Let A and B be two C�-algebras and E an imprimitivity A-B-bimodule.
We recall that the norms defined by the inner products Ah�; �i on AE and h�; �iB on EB
coincide. We also recall that the left (resp. right) action of A (resp. B) on E defines a
non-degenerate �-homomorphism  W A! L.EB/ (resp. � W B ! L.AE/).

Definition 2.3.3. Let A and B be two G -C�-algebras. A G -equivariant imprimitivity A-
B-bimodule is an imprimitivity A-B-bimodule E endowed with a continuous action of G

on EB such that the left action  W A! L.EB/ is G -equivariant. In that case, we say that
A and B are G -equivariantly Morita equivalent.

If the quantum groupoid G is regular, then the G -equivariant Morita equivalence is a
reflexive, symmetric, and transitive relation on the class of G -C�-algebras (cf. [9, Defini-
tion 7.13]).

In what follows, we recall the canonical equivariant Morita equivalence of the double
crossed product .A Ì G / Ì yG (resp. .B Ì yG / Ì G ) with the initial G -C�-algebra (resp.
yG -C�-algebra) A (resp. B) (cf. [9, Theorem 7.22]).

Let .A; ˇA; ıA/ (resp. .B; ˛B ; ıB/) be a G -C�-algebra (resp. yG -C�-algebra).

Notations 2.3.4. The �-representation of A (resp. B) on the Hilbert A-module A ˝H

(resp. the Hilbert B-module B ˝H)

�R WD .idA˝R/ ı ıA W A! L.A˝H/�
resp. �� WD .idB ˝�/ ı ıB W B ! L.B ˝H/

�
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extends uniquely to a strictly/�-strongly continuous faithful �-representation �R WM.A/!

L.A˝H/ (resp. �� WM.B/! L.B ˝H/) satisfying �R.m/ D .idA˝R/ıA.m/ for all
m 2M.A/ and �R.1A/ D qˇA y̨ (resp. ��.m/ D .idB ˝�/ıB.m/ for all m 2M.B/ and
��.1B/ D q˛Bˇ ). Consider the Hilbert A-module (resp. the Hilbert B-module)

EA;R WD qˇA y̨.A˝H/
�
resp. EB;� WD q˛Bˇ .B ˝H/

�
:

We recall that the Banach space

D WD
�
�R.a/

�
1A ˝ �.x/L.y/

�
I a 2 A; x 2 yS; y 2 S

��
resp. E WD

�
��.b/

�
1B ˝R.y/�.x/

�
I b 2 B; y 2 S; x 2 yS

��
is a C�-subalgebra of L.A˝H/ (resp. L.B ˝H/) such that uqˇA y̨ D u D uqˇA y̨ for all
u 2 D (resp. vq˛Bˇ D v D q˛Bˇv for all v 2 E). Moreover, we have D.A˝H/ D EA;R
(resp.E.B ˝H/D EB;�). We also recall that there exists a unique strictly/�-strongly con-
tinuous faithful �-representation jD WM.D/!L.A˝H/ (resp. jE WM.E/!L.B˝H/)
extending the inclusion mapD �L.A˝H/ (resp.E �L.B ˝H/) such that jD.1D/D
qˇA y̨ (resp. jE .1E / D q˛Bˇ ).

Proposition 2.3.5. There exists a unique �-isomorphism � W .A Ì G / Ì yG ! D (resp.
 W .B Ì yG / Ì G ! E) such that �.y�.�.a/y�.x//�.y//D �R.a/.1A ˝ �.x/L.y// for all
a 2 A, x 2 yS , and y 2 S (resp.  .�.y�.b/�.y//y�.x// D ��.b/.1B ˝ R.y/�.x// for all
b 2 B , y 2 S , and x 2 yS ).

Notations 2.3.6. We denote K WDK.H/ for short. Let ı0 W A˝K !M.A˝K ˝ S/

(resp. ı0 W B ˝K !M.B ˝K ˝ yS/) be the �-homomorphism defined by

ı0.a˝ k/ D ıA.a/13.1A ˝ k ˝ 1S /
�
resp. ı0.b ˝ k/ D ıB.b/13.1B ˝ k ˝ 1 yS /

�
for all a 2 A (resp. b 2 B) and k 2 K . The morphism ı0 extends uniquely to a strictly
continuous �-homomorphism still denoted by ı0 WM.A˝K/!M.A˝K ˝ S/ (resp.
ı0 WM.B ˝K/!M.B ˝K ˝ yS/) such that ı0.1A˝K/ D qˇA˛;13 (resp. ı0.1B˝K/ D

q˛Bˇ;13). Let us denote by V 2 L.H ˝ S/ (resp. zV 2 L.H ˝ yS/) the unique partial
isometry such that .idK ˝L/.V/ D V (resp. .idK ˝�/. zV/ D zV ).

Theorem 2.3.7. There exists a unique strongly continuous action .ˇD; ıD/ (resp.
.˛E ; ıE /) of G (resp. yG ) on the C�-algebraD WD Œ�R.a/.1A˝�.x/L.y//I a2A; x 2 yS;
y 2 S� (resp. E WD Œ��.b/.1B ˝ R.y/�.x//I b 2 B; y 2 S; x 2 yS�) defined by the
relations

.jD˝idS /ıD.u/DV23ı0.u/V
�
23; u2DI jD

�
ˇD.n

o/
�
DqˇA y̨

�
1A˝ˇ.n

o/
�
; n2N�

resp. .jE˝id yS /ıE .v/D zV23ı0.v/ zV
�
23; v2EI jE

�
˛E .n/

�
Dq˛Bˇ

�
1B˝y̨.n/

�
; n2N

�
:

Moreover, the canonical �-isomorphism � W .A Ì G / Ì yG !D (resp.  W .B Ì yG / Ì G !

E) (cf. Proposition 2.3.5) is G -equivariant (resp. yG -equivariant). If the groupoid G is
regular, then we have D D qˇA y̨.A˝K/qˇA y̨ (resp. E D q˛Bˇ .B ˝K/q˛Bˇ ).
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The G (resp. yG )-C�-algebraD (resp.E) defined above will be referred to as the bidual
G (resp. yG )-C�-algebra of A (resp. B). We investigate below the case of a linking G (resp.
yG )-C�-algebra.

Lemma 2.3.8. Let .A; ˇA; ıA/ be a G -C�-algebra (resp. yG -C�-algebra). For all m 2
M.A/, �.m/ 2 M.A Ì G / (resp. y�.m/ 2 M.A Ì yG /) is ıAÌG -invariant (resp. ı

AÌ yG
-

invariant).

Proof. We have .y� ˝ id yS /
yı.1 yS / D .y� ˝ id yS /.qy̨ˇ / D q˛AÌGˇ . By strict continuity of

y� and ıAÌG , it follows from [9, Proposition-Definition 5.1.15 (1)] that ıAÌG .�.a// D

.�.a/˝ 1 yS /q˛AÌGˇ for all a 2 A. Hence, ıAÌG .�.m// D q˛AÌGˇ .�.m/˝ 1 yS / by strict
continuity of � and ıAÌG , i.e., �.m/ is ıAÌG -invariant.

Proposition 2.3.9. If the quintuple .J;ˇJ ; ıJ ; e1; e2/ (resp. .K;˛K ; ıK ; f1; f2/) is a link-
ing G -C�-algebra (resp. linking yG -C�-algebra), then the quintuple .J Ì G ; ˛JÌG ; ıJÌG ;

�.e1/;�.e2// (resp. .K Ì yG ;ˇ
KÌ yG

; ı
KÌ yG

; y�.f1/; y�.f2//) is a linking yG -C�-algebra (resp.
linking G -C�-algebra).

Proof. Let .J;ˇJ ; ıJ ; e1; e2/ be a linking G -C�-algebra. LetK WD J Ì G and let .˛K ; ıK/
be the dual action of .ˇJ ; ıJ /. Since the canonical morphism � W J ! M.K/ is non-
degenerate, we have �.e1/C �.e2/ D 1K . Let j D 1; 2. Since �.ej / 2M.K/, we have
ŒK�.ej /K� � K. Any element of K is the norm limit of finite sums of the formP
�
y�.x�/�.a�/y�.x

0
�
/with x�;x0� 2 yS and a� 2 J . Since J D ŒJejJ �, any element ofK is

the norm limit of finite sums of the form
P
�
y�.x�/�.a�/�.ej /�.b�/y�.x

0
�
/ with x�; x0�2 yS

and a�; b� 2 J . Hence, K � ŒK�.ej /K�. Hence, K D ŒK�.ej /K�. Thus, the quintuple
.J Ì G ; ˛JÌG ; ıJÌG ; �.e1/; �.e2// is a linking yG -C�-algebra (cf. Lemma 2.3.8).

Remark 2.3.10. Let .J;ˇJ ; ıJ ; e1; e2/ (resp. .K;˛K ; ıK ; f1; f2/) be linking G (resp. yG )-
C�-algebra. We have a bidual linking G (resp. yG )-C�-algebra .D;ˇD; ıD;�R.e1/;�R.e2//
(resp. .E; ˛E ; ıE ; ��.f1/; ��.f2/// and � W .J ÌG /Ì yG!D (resp.  W .KÌ yG /ÌG!E)
is an isomorphism of linking G (resp. yG )-C�-algebras.

In the following result, we assume the quantum groupoid G to be regular.

Theorem 2.3.11. Let .A; ˇA; ıA/ (resp. .B; ˛B ; ıB/) be a G -C�-algebra (resp. yG -C�-
algebra).

(1) There exists a unique continuous action .ˇEA;R ; ıEA;R/ (resp. .˛EB;� ; ıEB;�/) of G

(resp. yG ) on the Hilbert A-module EA;R (resp. the Hilbert B-module EB;�) given
for all a 2 A (resp. b 2 B), � 2 H and n 2 N by the formulas

ıEA;R

�
qˇA y̨.a˝ �/

�
D V23ıA.a/13.1A ˝ � ˝ 1S /I

ˇEA;R.n
o/ WD

�
1A ˝ ˇ.n

o/
�
�EA;R I�

resp. ıEB;�

�
q˛Bˇ .b ˝ �/

�
D zV23ıB.b/13.1B ˝ � ˝ 1 yS /I

˛EB;�.n/ WD
�
1B ˝ y̨.n/

�
�EB;�

�
:
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(2) Endowed with the �-representation

D ! L.EA;R/I u 7! u�EA;R

�
resp. E ! L.EB;�/I v 7! v�EB;�

�
;

the G -equivariant Hilbert A-module EA;R (resp. the yG -equivariant Hilbert B-
module EB;�) is a G -equivariant Hilbert D-A-bimodule (resp. yG -equivariant
Hilbert E-B-bimodule).

(3) The G -C�-algebras (resp. yG -C�-algebras) A and D (resp. B and E) are Morita
equivalent via the G -equivariant (resp. yG -equivariant) imprimitivity D-A-bimod-
ule EA;R (resp. E-B-bimodule EB;�).

2.4. Crossed product, dual action, and biduality

2.4.1. Crossed product. In this paragraph, we define and investigate the crossed product
of a Hilbert module acted upon by a measured quantum groupoid on a finite-dimensional
basis. Let us specify some notations.

Let .A;ˇA; ıA/ be a G -C�-algebra. Denote byB WDAÌG the crossed product endowed
with the dual action .˛B ; ıB/. Let � WA!M.B/ and y� W yS!M.B/ be the canonical mor-
phisms (cf. [9, Proposition-Definition 5.1.14]). Let E be a Hilbert A-module and .ˇE; ıE/
an action of G on E.

Definition 2.4.1. We call the crossed product of E by the action .ˇE; ıE/ the Hilbert B-
module E˝� B denoted by E Ì G .

Notation 2.4.2. For � 2 E, we denote by ….�/ 2 L.B; E Ì G / the adjointable operator
defined by ….�/b WD � ˝� b for all b 2 B . We have ….�/�.�˝� b/ D �.h�; �i/b for all
� 2 E and b 2 B . We then have a linear map … W E! L.B;E Ì G / (also denoted by …E

for emphasis).

Proposition 2.4.3. We have

(1) … is non-degenerate; i.e., Œ….E/B� D E Ì G ,

(2) ….�a/ D ….�/�.a/ for all � 2 E and a 2 A,

(3) ….�/�….�/ D �.h�; �i/ for all �; � 2 E,

(4) ….�/y�.x/2EÌG for all �2E and x2 yS and EÌG D Œ….�/y�.x/I �2E; x2 yS�.

Proof. Statements (1), (2), and (3) are direct consequences of the definitions. For all � 2 E,
a 2 A, and x 2 yS , we have….�a/y�.x/ D….�/.�.a/y�.x// 2 E Ì G . Hence,….�/y�.x/ 2
EÌ G for all � 2 E and x 2 yS since EAD E. The formula EÌ G D Œ….�/y�.x/I � 2 E; x 2
yS� follows from the relations Œ….E/B�D E Ì G and B D Œ�.a/y�.x/I a 2 A; x 2 yS�.

Proposition 2.4.4. Let ˛EÌG WN !L.EÌ G / and ıEÌG W EÌ G !L.B ˝ yS; .EÌ G /˝
yS/ be the linear maps defined by

˛EÌG .n/ WD 1E ˝� ˛B.n/; n 2 N I

ıEÌG .� ˝� b/ WD
�
….�/˝ 1 yS

�
ıB.b/; � 2 E; b 2 B:

Then, the pair .˛EÌG ; ıEÌG / is a continuous action of yG on the crossed product E Ì G .
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Proof. Since ıB.B/ 2 zM.B ˝ yS/, it is clear that .….�/˝ 1 yS /ıB.b/ 2 zM..E Ì G /˝ yS/

for all � 2 E and b 2 B . We have ıB.�.a/b/D .�.a/˝ 1 yS /ıB.b/ for all a 2 A and b 2 B
(cf. [9, Proposition-Definition 5.1.15 (1)]). Therefore, we have a well-defined linear map

EˇB B ! zM.B ˝ yS/ � L
�
B ˝ yS; .E Ì G /˝ yS

�
I � ˝� b 7!

�
….�/˝ 1 yS

�
ıB.b/:

Let �; � 2 E. For all b; c 2 B and x; y 2 yS , we have˝�
….�/˝ 1 yS

�
.b ˝ x/;

�
….�/˝ 1 yS

�
.c ˝ y/

˛
D
˝
.� ˝� b/˝ x; .�˝� c/˝ y

˛
D b��

�
h�; �i

�
c ˝ x�y

D .b ˝ x/�
�
�
�
h�; �i

�
˝ 1 yS

�
.c ˝ y/:

Hence, .….�/˝ 1 yS /
�.….�/˝ 1 yS / D �.h�; �i/˝ 1 yS . Therefore, for all b; c 2 B we have˝�

….�/˝ 1 yS
�
ıB.b/;

�
….�/˝ 1 yS

�
ıB.c/

˛
D ıB.b/

�
�
�
�
h�; �i

�
˝ 1 yS

�
ıB.c/

D ıB
�
b��

�
h�; �i

�
c
�

D ıB
�
h� ˝� b; �˝� ci

�
:

Hence, there exists a unique bounded linear map ıEÌG W E Ì G ! zM..E Ì G /˝ yS/ such
that ıEÌG .� ˝B b/ D .….�/ ˝ 1 yS /ıB.b/ for all � 2 E and b 2 B . Moreover, we have
also proved that hıEÌG .�/; ıEÌG .�/i D ıB.h�; �i/ for all �; � 2 E Ì G . It is clear that
ıEÌG .�/ıB.b/ D ıEÌG .�b/ for all � 2 E Ì G and b 2 B .

Let us fix n 2 N . We recall that ˛B.n/ WD y�.y̨.n//. It follows from the inclusion
y̨.N / � M 0 that Œ1A ˝ �.y̨.n//; �L.a/� D 0 for all a 2 A. Hence, Œ˛B.n/; �.a/� D 0

for all a 2 A. Thus, the map 1E ˝� ˛B.n/ 2 L.E Ì G / is well defined. It is clear that
˛EÌG W N ! L.E Ì G / is a non-degenerate �-homomorphism.

We have Œ1EÌG ˝ y̨.n/;….�/˝ 1 yS �D 0 and .1B ˝ y̨.n//ıB.b/D ıB.˛B.n/b/ for all
n 2 N , � 2 E, and b 2 B . It then follows that ıEÌG .˛EÌG .n/�/D .1EÌG ˝ y̨.n//ıEÌG .�/

for all � 2 E Ì G and n 2 N .
By continuity of the dual action .˛B ; ıB/, we have�
ıEÌG .E Ì G /.B ˝ yS/

�
D
��
….�/˝ 1 yS

�
q˛Bˇ .b ˝ x/I � 2 E; b 2 B; x 2 yS

�
:

Let n; n0 2 N , b 2 B , x 2 yS , and � 2 E. We have�
….�/˝ 1 yS

��
˛B.n

0/˝ ˇ.no/
�
.b ˝ x/ D

�
� ˝� ˛B.n

0/b
�
˝ ˇ.no/x

D
�
˛EÌG .n

0/˝ ˇ.no/
��
.� ˝� b/˝ x

�
:

Hence, .….�/˝ 1 yS /q˛Bˇ .b ˝ x/ D q˛EÌGˇ ..� ˝� b/˝ x/. Therefore, we have�
ıEÌG .E Ì G /.B ˝ yS/

�
D q˛EÌGˇ

�
.E Ì G /˝ yS

�
:

The maps ıEÌG ˝ id yS and idEÌG ˝
yı extend to linear maps from L.B ˝ yS; .E Ì G /˝ yS/

to L.B ˝ yS ˝ yS; .E Ì G /˝ yS ˝ yS/ (cf. Remarks 2.1.7). For all � 2 E and b 2 B , we
have

.idEÌG ˝
yı/ıEÌG .� ˝� b/ D .idEÌG ˝

yı/
�
….�/˝ 1 yS

�
ıB.b/

D .….�/˝ 1 yS ˝ 1 yS /.idB ˝
yı/ıB.b/
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D
�
.….�/˝ 1 yS /ıB ˝ id yS

�
ıB.b/

D
�
ıEÌG ı….�/˝ id yS

�
ıB.x/

D .ıEÌG ˝ id yS /ıEÌG .� ˝� b/:

Hence, .ıEÌG ˝ id yS /ıEÌG D .idEÌG ˝
yı/ıEÌG . It follows from the above that the pair

.˛EÌG ; ıEÌG / is an action of yG on the Hilbert B-module EÌ G . By continuity of .˛B ; ıB/,
we have �

.1EÌG ˝
yS/ıEÌG .E Ì G /

�
D
�
.E Ì G /˝ yS

�
q˛Bˇ

and the triple .E Ì G ; ˛EÌG ; ıEÌG / is actually a yG -equivariant Hilbert B-module.

Definition 2.4.5. The action .˛EÌG ; ıEÌG / of the measured quantum groupoid yG on the
crossed product E Ì G is called the dual action of .ˇE; ıE/.

Lemma 2.4.6. For all F 2 L.E/, the operator F ˝� 1B 2 L.E Ì G / is invariant.

Proof. This is an immediate consequence of the definition of the action of yG on the
crossed product E Ì G and the fact that ….F �/ D .F ˝� 1B/….�/ for all � 2 E.

Proposition 2.4.7. Let A1 and A2 be two G -C�-algebras, and let E1 and E2 be Hilbert
C�-modules over, respectively, A1 and A2 acted upon by G . Let � W A1! A2 be a G -equi-
variant �-isomorphism and ˆ W E1 ! E2 a G -equivariant unitary equivalence of Hilbert
modules over the isomorphism �. There exists a unique yG -equivariant unitary equivalence
of Hilbert modules ˆ� W E1 Ì G ! E2 Ì G over the yG -equivariant �-isomorphism �� W

A1 Ì G ! A2 Ì G such that

ˆ�.� ˝�A1 b/ D ˆ� ˝�A2 ��.b/ for all b 2 A1 Ì G and � 2 E1:

Proof. We have ˆ.�a/ D ˆ.�/�.a/ and ��.�A1.a// D �A2.�.a// for all � 2 E1 and
a 2 A1. Hence, ˆ.�a/˝�A2 ��.b/ D ˆ� ˝�A2 ��.�A1.a/b/ for all a 2 A1 and � 2 E1.
Therefore, we have a linear map

ˆ� W E1 ˇ�A1 .A1 Ì G /! E2 Ì G I � ˝�A1 b 7! ˆ� ˝�A2 ��.b/:

For all �; � 2 E1, we have �A2.hˆ�;ˆ�i/ D �A2.�.h�; �i// D ��.�A1.h�; �i//. Hence,˝
ˆ� ˝�A1 ��.b/;ˆ�˝�A2 ��.c/

˛
D ��

�
h� ˝�A1 b; �˝�A1 ci

�
for all �; � 2 E1 and b; c 2 A1 Ì G . Therefore, ˆ� extends to a unitary equivalence ˆ� W
E1 Ì G ! E2 Ì G over ��. Since �� is yG -equivariant and…E2.ˆ�/ ı �� D ˆ� ı…E1.�/

for all � 2 E1, we have ıE1ÌG .ˆ�.�˝�A1 b//D .ˆ�˝ id yS /ıE1ÌG .�˝�A1 b/ for all � 2 E1
and b 2 A1 Ì G . Hence, ıE1ÌG ıˆ� D .ˆ� ˝ id yS /ıE1ÌG . Hence, ˆ� is equivariant.

Let .J; ˇJ ; ıJ ; e1; e2/ be a linking G -C�-algebra. Let us denote A WD e2Je2 and
E WD e1Je2 with their structure of G -C�-algebra and G -equivariant Hilbert A-module (cf.
Notations 2.2.4). We consider the crossed products A Ì G (resp. K WD J Ì G ) endowed
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with the dual action .˛AÌG ; ıAÌG / (resp. .˛K ; ıK/) and the canonical morphisms �A WA!
M.A Ì G / and y�A W yS !M.A Ì G / (resp. �J W J !M.K/ and y�J W yS !M.K/).

We know that the quintuple .K; ˛K ; ıK ; �J .e1/; �J .e2// is a linking yG -C�-algebra
(cf. Proposition 2.3.9). Let B WD �J .e2/K�J .e2/ and F WD �J .e1/K�J .e2/, respec-
tively, endowed with their structure of yG -C�-algebra and yG -equivariant Hilbert B-module
(cf. Notations 2.2.4). We show that we have a yG -equivariant unitary equivalence between
E Ì G and F. More precisely, we have the proposition below.

Proposition 2.4.8. With the above notations and hypotheses, there exists a unique yG -
equivariant �-isomorphism � W A Ì G ! B such that �.�A.a/y�A.x// D �J .a/y�J .x/ for
all a 2 A and x 2 yS . Moreover, the map X W E Ì G ! F; � ˝�A u 7! �J .�/�.u/ is a
�-compatible unitary operator.

Proof. Since Œe2Je2� D A, the inclusion map A˝K � J ˝K extends uniquely to a �-
strong continuous �-homomorphism �A WL.A˝H/!L.J ˝H/ such that �A.1A˝K/D

e2˝ 1K up to the identifications M.A˝K/DL.A˝H/ and M.J ˝K/DL.J ˝H/.
Now we recall that we have the identifications

L.EA;L/ D
®
T 2 L.A˝H/I TqˇA˛ D T D qˇA˛T

¯
I

L.EJ;L/ D
®
T 2 L.J ˝H/I TqˇJ ˛ D T D qˇJ ˛T

¯
:

We also recall that for n 2 N , we have ˇA.no/ WD ˇJ .n
o/�A (with the identification

M.A/ D L.A/) since ŒˇJ .no/; e2� D 0. As a result, �A induces by restriction to L.EA;L/

a �-strong �-homomorphism still denoted by �A W L.EA;L/! L.EJ;L/. We have the fol-
lowing formulas:

�A
�
y�A.x/

�
D y�J .x/; x 2 yS I �A.�A.a// D �J .a/; a 2 A:

Hence, � WD �A�AÌG W A Ì G ! K is the unique �-homomorphism such that

�
�
�A.a/y�A.x/

�
D �J .a/y�J .x/ for all a 2 A and x 2 yS:

Note that since �A is faithful so is �. It follows from K D Œ�J .A/y�J . yS/� and the fact that
Œ�J .e2/; y�J .x/�D 0 for all x 2 yS that the image of � isB WD�J .e2/K�J .e2/. Let us prove
that � is yG -equivariant. We recall that ıAÌG .�A.a/y�A.x//D .�A.a/˝ 1 yS /.

y�A˝ id yS /
yı.x/

for all a 2 A and x 2 yS . It then follows from � ı �A D �J and � ı y�A D y�J that for all
a 2 A and x 2 yS we have

.�˝ id yS /ıAÌG

�
�A.a/y�A.x/

�
D ıK

�
�J .a/y�J .x/

�
D ıK

�
�
�
�A.a/y�A.x/

��
:

Since �J .xa/ D �J .x/�.�A.a// for x 2 J and a 2 A, we have

�J .xa/�.b/ D �J .x/�
�
�A.a/b

�
for x 2 J; a 2 A; and b 2 A Ì G :

Therefore, we have a well-defined linear map

X W Eˇ�A .A Ì G /! KI � ˝�A u 7! �J .�/�.u/:
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For �;� 2 E, we have �J .�/��J .�/D �J .h�;�i/D �.�A.h�;�i//. Therefore, for all �;� 2
E and u; v 2 A Ì G we have .�J .�/�.u//��J .�/�.v/ D �.h� ˝�A u; � ˝�A vi/. As a
result,X extends uniquely to a bounded linear mapX WEÌG!K such thatX.h�1; �2i/D
�.h�1; �2i/ for all �1; �2 2 E Ì G . It is clear that X.�u/ D X.�/�.u/ for all � 2 E Ì G and
u 2 A Ì G .

For all � 2 E, we have .X ˝ id yS / ı .T� ˝ id yS / D .�J .�/˝ id yS / ı .�˝ id yS /. Hence

.X ˝ id yS /ıEÌG .� ˝�A u/ D .�J .�/˝ 1 yS /.�˝ id yS /ıAÌG .u/ D ıK
�
�J .�/�.u/

�
for all � 2 E and u 2AÌ G , which proves thatX is yG -equivariant. Finally,X induces a yG -
equivariant unitary equivalence of Hilbert modules from EÌG onto F WD�J .e1/K�J .e2/

over the isomorphism of yG -C�-algebras � W A Ì G ! �J .e2/K�J .e2/.

The continuous action .ˇJ ; ıJ / (resp. .˛K ; ıK/) also endows the C�-algebra e1Je1
(resp. �J .e1/K�J .e1/) identified with K.E/ (resp. K.F/) with a continuous action
.ˇK.E/; ıK.E// (resp. .˛K.F/; ıK.F//) of G (resp. yG ).

Proposition 2.4.9. The map K.E/ Ì G ! K.F/; �K.E/.k/y�K.E/.x/ 7! �J .k/y�J .x/ is
a yG -equivariant �-isomorphism.

Proof. The proof is the same as that of the above proposition (by exchanging the projec-
tions e1 and e2).

Corollary 2.4.10. Let A be a G -C�-algebra and E a G -equivariant Hilbert A-module.
We have a canonical yG -equivariant �-isomorphism K.E/ Ì G 'K.E Ì G /. Moreover, if
F 2 L.E/, then the operator F ˝�A 1 2 L.E Ì G / is identified with �K.E/.F / through
the identification L.E Ì G / 'M.K.E/ Ì G /.

Proof. It suffices to apply Propositions 2.4.8 and 2.4.9 to J WDK.E˚ A/ equipped with
its structure of linking G -C�-algebra (cf. Notations 2.2.4).

Corollary 2.4.11. LetA be a G -C�-algebra and E a G -equivariant HilbertA-module. Let
y� W yS !M.K.E/Ì G / and… W E!L.AÌ G ;EÌ G / be the canonical morphisms. With
the identification M.K.E/Ì G /DL.EÌ G / (cf. Corollary 2.4.10), we have y�.x/….�/ 2
E Ì G for all x 2 yS and � 2 E. Moreover, we have E Ì G D Œy�.x/….�/I � 2 E; x 2 yS�.

Proof. Let us equip J WDK.E˚A/ with its structure of linking G -C�-algebra (cf. Nota-
tions 2.2.4). Let � 2E, b 2AÌG , and k 2K.E/, then….�/b (resp. �K.E/.k/) is identified
to �J .�E.�//�.b/ (resp. �J .�K.E/.k//) through the identification of Proposition 2.4.8
(resp. Proposition 2.4.9). Hence, �K.E/.k/….�/b is identified to �J .�E.k�//�.b/. Thus,
we have �K.E/.k/….�/b D ….k�/�.b/. As a result, we have �K.E/.k/….�/ D ….k�/

for all k 2K.E/ and � 2 E.
If � 2 E, x 2 yS , and k 2K.E/, we have y�K.E/.x/….k�/D y�K.E/.x/�K.E/.k/….�/ 2

EÌ G since y�K.E/.x/�K.E/.k/ 2K.E/Ì G DK.EÌ G /. Hence, y�K.E/.x/….�/ 2 EÌ G

for all x 2 yS and � 2E since K.E/EDE. Let � 2E and x 2 yS , then….�/y�A.x/ is identified
to �J .�E.�//y�J .x/. Moreover, �J .�E.�//y�J .x/ is the norm limit of finite sums of the form
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i
y�J .xi /�J .ui / with xi 2 yS and ui 2 J . However, we have Œ�J .ej /; y�J .y/� D 0 for all

y 2 yS and j D 1; 2. Hence, ….�/y�A.x/ is the norm limit of finite sums of elements of the
form

P
i
y�J .xi /�J .e1uie2/. Write e1uie2 D �E.�i / with �i 2 E, then ….�/y�A.x/ is the

norm limit of finite sums of the form
P
i
y�K.E/.xi /….�i /.

In the following result, we investigate the functoriality of the crossed product con-
struction.

Proposition 2.4.12. For i D 1; 2, let Ai be a G -C�-algebra. Let f W A1 !M.A2/ be a
G -equivariant �-homomorphism.

(1) There exists a unique �-homomorphism f� W A1 Ì G !M.A2 Ì G / such that for
all a 2 A1 and x 2 yS , f .�A1.a/y�A1.x// D �A2.f .a//

y�A2.x/. Moreover, f� is
yG -equivariant. Note that if f .A1/ � A2, then f�.A1 Ì G / � A2 Ì G .

(2) The correspondence � Ì G W AlgG ! Alg yG is functorial.

Proof. (1) Let i D 1; 2. Let us denote �Ai ;L W Ai ! L.Ai ˝H/; a 7! .idAi ˝L/ıAi .a/
and Bi WD Ai Ì G . In this proof, we make the identifications

zM.Ai ˝K/ �M.Ai ˝K/ D L.Ai ˝H/:

We also identify

L.EAi ;L/ D
®
T 2 L.Ai ˝H/I TqˇAi ˛ D T D qˇAi ˛T

¯
:

We then haveBiD Œ�Ai ;L.a/.1Ai˝�.x//I a2Ai ; x2 yS�. It follows fromL.S/KDK and
ıAi .Ai /�

zM.Ai˝S/ that Bi� zM.Ai˝K/. Let f ˝ idK W
zM.A1˝K/!L.A2˝H/.

By a straightforward computation, we have

.f ˝idK/
�
�A1;L.a/

�
1A1˝�.x/

��
D�A2;L

�
f .a/

��
1A2˝�.x/

�
for all a2A1 and x2 yS:

Hence, .f ˝ idK/.B1/ � M.B2/. Let f� WD .f ˝ idK/�B1 W B1 ! M.B2/. We have
proved that the �-homomorphism f� satisfies f .�A1.a/y�A1.x// D �A2.f .a//y�A2.x/ for
all a 2 A1 and x 2 yS . In particular, for all a 2 A1 and u 2 yS ˝ yS we have

.f� ˝ id yS /
��
�A1.a/˝ 1 yS

�
.y�A1 ˝ id yS /.u/

�
D
�
�A2

�
f .a/

�
˝ 1 yS

�
.y�A2 ˝ id yS /.u/:

Let a2A1 and x;x02 yS . By a straightforward computation, it follows from [9, Proposition-
Definition 5.1.15 (1)], the previous formula, and the relation yı.x/.1 yS ˝ x

0/ 2 yS ˝ yS that

.f� ˝ id yS /
�
ıB1
�
�A1.a/

y�A1.x/
�
.1B1 ˝ x

0/
�
D ıB2

�
f�
�
�A1.a/

y�A1.x/
��
.1B2 ˝ x

0/:

Hence, .f�˝ id yS /ıB1.�A1.a/
y�A1.x//D ıB2.f�.�A1.a/

y�A1.x/// for all a 2A1 and x 2 yS .
Moreover, it is easy to see that f�.˛A1.n/b/ D ˛A2.n/f�.b/ for all b 2 B1. Hence, f� is
yG -equivariant.

(2) If f is non-degenerate, then so is f�. Indeed, we haveA2 D f .A1/A2. Let a 2A1,
b 2 A2, and x 2 yS . By [9, Proposition-Definition 5.1.14],

�A2
�
f .a/b

�
y�A2.x/ D �A2

�
f .a/

�
�A2.b/

y�A2.x/
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is the norm limit of finite sums of the formX
i

�A2
�
f .a/

�
y�A2.xix

0
i /�A2.bi / D

X
i

f�
�
�A1.a/

y�A1.xi /
�
y�A2.x

0
i /�A2.bi /

with xi ; x0i 2 yS and bi 2 A2. Hence, �A2.f .a/b/y�A2.x/ 2 Œf�.B1/B2�. Hence, f� is non-
degenerate. The functoriality of the correspondence � Ì G W AlgG ! Alg yG follows.

We are now able to define the bimodule structure on the crossed product E Ì G .

Proposition-Definition 2.4.13. Let B be a G -C�-algebra and E a G -equivariant Hilbert
B-module. Let  W A! L.E/ be a G -equivariant �-representation. By applying Propo-
sition 2.4.12 and Corollary 2.4.10, we have a canonical yG -equivariant �-representation
� W A Ì G ! L.E Ì G /. Moreover, if E is a G -equivariant Hilbert A-B-bimodule, then
E Ì G is a yG -equivariant Hilbert A Ì G -B Ì G -bimodule.

Proof. We only have to prove that if E is countably generated as a Hilbert B-module,
then E Ì G is countably generated as a Hilbert B Ì G -module. Let ¹�i I i 2 Nº be a
generating set for the Hilbert B-module E. We have yS D ¹.id˝!�;�/.V /I �; � 2 Hº.
Moreover, H is separable then so is yS . Let ¹xi I i 2 Nº be a total subset of yS . We claim
that ¹y�K.E/.xi /….�j /I i 2 N; j 2 Nº � E Ì G is a generating set for the Hilbert B Ì G -
module EÌG . Indeed, this follows from the relation EÌGDŒy�K.E/.x/….�/y�B.x

0/I �2E;

x; x0 2 yS� (cf. Proposition 2.4.3, Corollary 2.4.11 and the fact that any element of yS can
be written as a product of two elements of yS ) and Proposition 2.4.3 (2).

Proposition 2.4.14. Let A, B , and C be three G -C�-algebras. Let E1 and E2 be Hilbert
modules over C and B , respectively. Let .ˇE1 ; ıE1/ and .ˇE2 ; ıE2/ be actions of G on
E1 and E2, respectively. Let 2 W C ! L.E2/ be a G -equivariant �-representation. Let
E WD E1˝2 E2 be the HilbertB-module acted upon by G defined in Proposition 2.2.9. Let
2� W C Ì G ! L.E2 Ì G / be the yG -equivariant �-representation defined in Proposition-
Definition 2.4.13.

(1) There exists a unique G -equivariant unitary„ W .E1 Ì G /˝2� .E1 Ì G /! EÌ G

such that

„
�
y�K.E1/.x1/…E1.�1/˝2� …E2.�2/

y�B.x2/
�
D y�K.E/.x1/…E.�1˝2 �2/

y�B.x2/

for all x1; x2 2 yS , �1 2 E1, and �2 2 E2.

(2) Let 1 W A ! L.E1/ be a G -equivariant �-representation. Denote by  W A !
L.E/ the G -equivariant �-representation defined by .a/ WD 1.a/˝2 1 for all
a 2 A (cf. Proposition 2.2.11) and 1� W A Ì G ! L.E2 Ì G / the yG -equivariant
�-representation defined in Proposition-Definition 2.4.13. Let

� W A! L
�
.E1 Ì G /˝2� .E2 Ì G /

�
be the G -equivariant �-representation defined by �.a/ WD 1�.a/ ˝2� 1 for all
a 2 A (cf. Proposition 2.2.11). We then have„ ı �.a/ D �.a/ ı„ for all a 2 A.
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For the proof, we will need to use a concrete interpretation of the crossed product.

Notations 2.4.15. Let A be a G -C�-algebra. Consider the yG -C�-algebra B WD A Ì G . Let
E be a Hilbert A-module acted upon by G .

(1) Let � W S !B.H/ be a non-degenerate �-homomorphism. We have the following
unitary equivalences of Hilbert A-modules:

.A˝ S/˝idA˝� .A˝H/! A˝H

.a˝ s/˝idA˝� .b ˝ �/ 7! ab ˝ �.s/�I

.E˝ S/˝idA˝� .A˝H/! E˝H

.� ˝ s/˝idA˝� .a˝ �/ 7! �a˝ �.s/�:

By using the above identifications, the map idE˝� extends to a linear map

idE˝� W L.A˝ S;E˝ S/! L.A˝H;E˝H/

T 7! .idE˝�/.T / WD T ˝idA˝� 1:

The extension is uniquely determined by the formula

.idE˝�/.T x/

D .idE˝�/.T /.idA˝�/.x/ for T 2 L.A˝ S;E˝ S/ and x 2 A˝ S:

For all T; S 2 L.A˝ S;E˝ S/ we have

.idE˝�/.T /
�.idE˝�/.S/ D .idA˝�/.T �S/

with the identification L.A˝ S/ DM.A˝ S/.

(2) By using the above notation, we consider the linear map

…L W E! L.A˝H;E˝H/

defined by …L.�/ WD .idE˝L/ıE.�/ for all � 2 E. Note that we have

� …L.�a/ D …L.�/�L.a/ for all a 2 A and � 2 E,

� …L.�/
�…L.�/ D �L.h�; �i/ for all �; � 2 E,

� qˇE˛…L.�/ D …L.�/ D …L.�/qˇA˛ for all � 2 E.

(3) There exists a unique isometric linear map ‰L;� W E Ì G ! L.A˝H; E˝H/

such that ‰L;�.….�/y�.x// D…L.�/.1A ˝ �.x// for all � 2 E and x 2 yS . Indeed,
let us denote by L;� WB!L.A˝H/ the unique faithful strictly/�-strongly con-
tinuous �-representation such that  L;�.�.a/y�.x// D �L.a/.1A ˝ �.x// for all
a2A and x2 yS (cf. [8, Proposition 4.2.3]). Since L;�.�.a//D�L.a/ for all a2A,
there exists a unique isometric linear map ‰L;� W E Ì G ! L.A ˝H; E ˝H/

such that ‰L;�.� ˝� b/ D …L.�/ L;�.b/ for all � 2 E and b 2 B . It is clear that
‰L;�.….�/y�.x// D …L.�/.1A ˝ �.x// for all � 2 E and x 2 yS .
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Proof of Proposition 2.4.14. (1) According to Notation 2.4.15 (3), we identify E1 Ì G

(resp. E2 Ì G ) with a subspace of L.C ˝ H; E1 ˝ H/ (resp. L.B ˝ H; E2 ˝ H/).
Since ıC .C /.1C ˝ S/ � C ˝ S , we even have E1 Ì G � L. zC ˝ H; E1 ˝ H/. Let
z2˝ idK WL. zC ˝H/!L.E2˝H/. With the identification . zC ˝H/˝z2 E2DE2˝H,
we have

.z2 ˝ idK/.T / D T ˝z2 1 for all T 2 L. zC ˝H/:

By using the identification .E1 ˝ H/ ˝z2 E2 D E ˝ H, we then obtain an isometric
adjointable operator

„ W L. zC ˝H;E1 ˝H/˝z2˝idK
L.B ˝H;E2 ˝H/! L.B ˝H;E˝H/

T1 ˝z2˝idK
T2 7! .T1 ˝z2 1/T2:

We prove that

„
�
y�K.E1/.x1/…E1.�1/˝2� …E2.�2/

y�B.x2/
�
D y�K.E/.x1/…E.�1 ˝2 �2/

y�B.x2/

for all x1; x2 2 yS , �1 2 E1, and �2 2 E2 by a straightforward computation. Hence, „
induces by restriction a unitary„ 2L..E1 Ì G /˝2� .E1 Ì G /;EÌ G /. The equivariance
of „ will follow from the definitions and the formulas

ıEÌG

�
y�K.E/.x1/…E.�/y�B.x2/

�
D .y�K.E/ ˝ id yS /

yı.x1/
�
…E.�/˝ 1 yS

�
.y�B ˝ id yS /

yı.x2/I

ıE1ÌG

�
y�K.E1/.x1/…E1.�1/

�
D .y�K.E1/ ˝ id yS /

yı.x1/
�
…E1.�1/˝ 1 yS

�
I

ıE2ÌG

�
…E2.�2/

y�B.x2/
�
D
�
…E2.�2/˝ 1 yS

�
.y�B ˝ id yS /

yı.x2/

for all � 2 E, �1 2 E1, �2 2 E2, and x1; x2 2 yS .
(2) This will follow from the formulas

1�.a/y�K.E1/.x1/…E1.�1/ D
y�K.E1/.x1/…E1.1.a/�1/I

�.a/y�K.E/.x1/…E.�/y�B.x2/ D y�K.E/.x1/…E..a/�/y�B.x2/

for all �1 2 E1, � 2 E, and x1; x2 2 yS (cf. Proposition 2.4.12 (1)).

In a similar way, we define the crossed product of a Hilbert C�-module by an action
of the dual measured quantum groupoid yG . The details are left to the reader’s attention.

Let .B; ˛B ; ıB/ be a yG -C�-algebra. Let us denote by C WD B Ì yG the crossed product
endowed with the dual action .ˇC ; ıC /. Let y� W B !M.C / and � W S !M.C / be the
canonical morphisms. Let F be a Hilbert B-module and .˛F; ıF/ an action of yG on F.

Definition 2.4.16. We call the crossed product of F by the action .˛F; ıF/ the Hilbert
C -module F˝y� C denoted by F Ì yG .

Notation 2.4.17. For � 2 F, we denote by y….�/ 2 L.B;F Ì yG / the adjointable operator
defined by y….�/c WD � ˝y� c for all c 2 C . We have y….�/�.�˝y� c/ D y�.h�; �i/c for all
� 2 F and c 2 C . We then have a linear map y… W F! L.B;F Ì yG /.
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Proposition-Definition 2.4.18. Let us denote by ı
FÌ yG
WFÌ yG!L.C ˝S;.FÌ yG /˝S/

and ˇ
FÌ yG
W N o ! L.F Ì yG / the linear maps defined by

ˇ
FÌ yG

.no/ WD 1F ˝y� ˇC .n
o/; n 2 N I

ı
FÌ yG

.� ˝y� c/ WD
�
y….�/˝ 1S

�
ıC .c/; � 2 F; c 2 C:

Then, the pair .ˇ
FÌ yG

; ı
FÌ yG

/ is a continuous action of G on the crossed product F Ì yG
called the dual action of .˛F; ıF/.

Let .K; ˛K ; ıK ; f1; f2/ be a linking yG -C�-algebra. Let us consider the yG -C�-algebra
B WD f2Kf2 and the yG -equivariant Hilbert B-module F WD f1Kf2. We consider the G -
C�-algebras B Ì yG (resp.L WDK Ì yG ) endowed with the canonical morphisms y�B W B!
M.BÌ yG / and �B W S!M.BÌ yG / (resp. y�L WL!M.K/ and �L W S!M.K/). We know
that .L; ˇL; ıL; y�L.f1/; y�L.f2// is a linking G -C�-algebra. Let us consider the G -C�-
algebraC WDy�K.f2/Ly�K.f2/ and G -equivariant HilbertC-module GWDy�K.f1/Ly�K.f2/.

Proposition 2.4.19. With the above notations and hypotheses, we have the following
statements.

(1) There exists a unique G -equivariant �-isomorphism  W B Ì yG ! C such that for
all b 2 B and y 2 S we have  .y�B.b/�B.y//D y�K.b/�K.y/. Moreover, we have
G -equivariant unitary equivalence ‰ W F Ì yG ! G; �˝y�B u 7! y�K.�/ .u/ over
 W B Ì yG ! C .

(2) The map

K.E/ Ì G !K.F/I y�K.F/.k/�K.F/.y/ 7! y�K.k/y�K.y/

is a G -equivariant �-isomorphism.

Corollary 2.4.20. Let B be a yG -C�-algebra and F a yG -equivariant Hilbert B-module.
We have a canonical G -equivariant �-isomorphism K.F/ Ì yG 'K.F Ì yG /. Moreover, if
F 2 L.F/, then the operator F ˝y�B 1 2 L.F Ì yG / is identified with y�K.F/.F / through
the identification L.F Ì yG / 'M.K.F/ Ì yG /.

2.4.2. Takesaki–Takai duality. In the following paragraph, we investigate the double
crossed product. Let A be a G -C�-algebra and E a G -equivariant Hilbert A-module. Let
D be the bidual G -C�-algebra (cf. Notations 2.3.4).

Proposition-Definition 2.4.21. Let …R W E ! L.A ˝ H; E ˝ H/ be the linear map
defined by …R.�/ WD .idE˝R/ıE.�/ for all � 2 E (cf. Notations 2.4.15). Let

D WD
�
…R.�/

�
1A ˝ �.x/L.y/

�
I � 2 E; x 2 yS; y 2 S

�
� L.A˝H;E˝H/:

For the natural right action of D by composition of operators and the D-valued inner
product given by h�1; �2i WD ��1 ı �2 for �1; �2 2 D, we turn D into a Hilbert D-module.
Let

EE;R WD qˇE y̨.E˝H/ � E˝H:

Then, EE;R is a Hilbert sub-A-module of E˝H and ŒDEA;R� D EE;R.
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Proof. By combining the facts that Œ�. yS/L.S/� and D are C�-algebras with the formula
…R.�/�R.a/D…R.�a/ for � 2E and a 2A, we obtain the inclusion DD�D. Moreover,
we have…R.�/

�…R.�/D �R.h�;�i/ for all �;� 2 E. It then follows that D�D�D. Since
qˇE y̨…R.�/ D …R.�/ D …R.�/qˇA y̨ for all � 2 E (cf. Remark 2.1.2 (3)), we have the
inclusion Œ…R.E/EA;R� � EE;R. The converse inclusion follows from ŒıE.E/.1A ˝ S/� D

qˇE˛.E˝ S/. Hence, Œ…R.E/EA;R� D EE;R. The relation ŒDEA;R� D EE;R follows from
EA;R D ŒDEA;R� and Œ…R.E/D� D D.

We will endow D with a structure of G -equivariant Hilbert D-module. Actually, the
action .ˇD; ıD/ defined in Theorem 2.4.22 will be obtained by transport of structure
through the identification .E Ì G / Ì yG ' D of Theorem 2.4.23.

Let us denote by � W S ˝K!K ˝S the flip �-homomorphism. As in Remarks 2.1.7,
we define the linear extensions

idE˝� W L.A˝ S ˝K;E˝ S ˝K/! L.A˝K ˝ S;E˝K ˝ S/I

ıE ˝ idK W L.A˝K;E˝K/! L.A˝ S ˝K;E˝ S ˝K/:

We state below the main results of this paragraph.

Theorem 2.4.22. Let ıD W D! L.D ˝ S;D˝ S/ and ˇD W N o ! L.D/ be the maps
defined by the formulas

ˇD.n
o/ WD qˇE y̨

�
1E ˝ ˇ.n

o/
�
; n 2 N I

ıD.�/ WD .1E ˝ V/.idE˝�/.ıE ˝ idK/.�/.1A ˝ V/�; � 2 D:

Then, the pair .ˇD; ıD/ is a continuous action of G on the HilbertD-module D. Moreover,
for all � 2 E, x 2 yS , and y 2 S we have

ıD
�
…R.�/

�
1A ˝ �.x/L.y/

��
D
�
…R.�/˝ 1S

�
.1A ˝ �.x/˝ 1S /

�
1A ˝ .L˝ idS /ı.y/

�
:

If G is regular, then we have D D qˇE y̨.E˝K/qˇA y̨ .

If G is regular, we have D � E˝K up to the identification E � L.A;E/.

Theorem 2.4.23. There exists a unique unitary equivalence ˆ W .E Ì G / Ì yG ! D over
the canonical �-isomorphism � W .A Ì G / Ì yG ! D (cf. Proposition 2.3.5) such that

ˆ
�
y…
�
….�/y�.x/

�
�.y/

�
D …R.�/

�
1A ˝ �.x/L.y/

�
for all � 2 E; x 2 yS; and y 2 S:

Moreover, ˆ is G -equivariant.

Proofs of Theorems 2.4.22 and 2.4.23. At the risk of considering K.E ˚ A/, we can
assume that E is a top right-hand corner in some linking G -C�-algebra .J; ˇJ ; ıJ ; e1; e2/.
By combining Proposition 2.4.19 (1) and Proposition 2.4.9, we can identify .E Ì G / Ì yG
with the top right-hand corner of the linking G -C�-algebra�

.J Ì G / Ì yG ; ˇ
.JÌG /Ì yG

; ı
.JÌG /Ì yG

; y�
�
�.e1/

�
; y�
�
�.e2/

��
:
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Let us denote by DJ � L.J ˝H/ the bidual G -C�-algebra of J . By applying the bidu-
ality theorem (cf. Theorem 2.3.7 and Remark 2.3.10), we can identify .E Ì G / Ì yG with
the top right-hand corner of the linking G -C�-algebra .DJ ; ˇDJ ; ıDJ ; �R.e1/; �R.e2//.
Since �R.ej / D qˇJ y̨.ej ˝ 1K/ for j D 1; 2 and y̨.N / DM 0 \ yM 0, we have�

�R.ej /; 1J ˝ �.x/L.y/
�
D 0 for all x 2 yS and y 2 S:

Hence, we can identify �R.e1/DJ�R.e2/ with D. The action .ˇD; ıD/ is then obtained
by transport of structure.

Corollary 2.4.24. Assume that G is regular. The formulas

ıEE;R

�
qˇE y̨.� ˝ �/

�
WD V23ıE.�/13.1A ˝ �˝ 1S /; � 2 E; � 2 HI

ˇEE;R
.no/ WD

�
1E ˝ ˇ.n

o/
�
�EE;R

; n 2 N;

define an action of G on the Hilbert A-module EE;R. Moreover, we have a canonical
identification of G -equivariant Hilbert A-modules�

.E Ì G / Ì yG
�
˝
.A˝G /Ì yG

EA;R D EE;R

up to the identification of G -C�-algebras .A Ì G / Ì yG D D.

Proof. It is clear that the formula D ˝D EA;R ! EE;R; � ˝D � 7! �.�/ defines a uni-
tary equivalence of Hilbert A-modules. Let .ˇEE;R

; ıEE;R
/ be the action of G on EE;R

obtained from the action of G on D˝D EA;R by transport of structure. By a straightfor-
ward computation, we prove that .ˇEE;R

; ıEE;R
/ satisfies the formulas stated above. By

Theorem 2.4.23, we have a unitary equivalence of G -equivariant Hilbert D-modules�
.E Ì G / Ì yG

�
˝
.AÌG /Ì yG

D D D:

By taking the internal tensor product by EA;R and using the associativity, we obtain��
.E Ì G / Ì yG

�
˝
.AÌG /Ì yG

D
�
˝D EA;R D

�
.E Ì G / Ì yG

�
˝
.AÌG /Ì yG

.D ˝D EA;R/

D
�
.E Ì G / Ì yG

�
˝
.A˝G /Ì yG

EA;R:

Hence, ..E Ì G / Ì yG /˝
.A˝G /Ì yG

EA;R D EE;R.

Lemma 2.4.25. Assume that G is regular. For all F 2 L.E/, .� 7! �R.F / ı �/ 2 L.D/

and �R.F /�EE;R
2 L.EE;R/ are invariant.

In order to keep the notations simple, we will sometimes denote by �R.F / the opera-
tors defined above since no ambiguity will arise.

Proof. Let T 2 L.D/ be the operator defined by T .�/ WD �R.F / ı � for all � 2 D. The
operator .F ˝� 1/˝y� 1 2 L..E Ì G / Ì yG / is invariant (cf. Lemma 2.4.6). However, the
operator .F˝� 1/˝y� 1 is identified to T 2L.D/ through the identification .EÌG /Ì yG DD
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(cf. Theorem 2.4.23). Hence, T is invariant. The operator T ˝D 1 2 L.D˝D EA;R/ is
identified to �R.F /�EE;R

2 L.EE;R/ through the identification

D˝D EA;R ! EE;RI � ˝D � 7! �.�/:

Hence, the operator �R.F /�EE;R
2 L.EE;R/ is invariant.

Proposition-Definition 2.4.26. Assume that G is regular. Let B be a G -C�-algebra, E a
G -equivariant Hilbert B-module, and  W A!L.E/ a G -equivariant �-representation of
A on E. Then, for all d 2 D we have

. ˝ idK/.d/qˇE y̨ D . ˝ idK/.d/ D qˇE y̨. ˝ idK/.d/ in L.E˝H/:

Moreover, the map d 2 D 7! . ˝ idK/.d/�EE;R
is a G -equivariant �-representation of

D on EE;R. If E is a G -equivariant Hilbert A-B-bimodule, then EE;R is a G -equivariant
Hilbert D-B-bimodule.

Proof. We have .ˇA.no/a/ D ˇE.n
o/.a/ for all a 2 A and n 2 N . It then follows that

.˝idK/.qˇA y̨xqˇA y̨/DqˇE y̨.˝idK/.x/qˇE y̨ for all x2A˝K . In particular, we have

. ˝ idK/.d/qˇE y̨ D . ˝ idK/.d/ D qˇE y̨. ˝ idK/.d/ for all d 2 D. As a result, the
�-representation  ˝ idK W A˝K!L.E˝H/ induces by restriction a �-representation
0 WD!L.EE;R/. Let us prove that 0 is G -equivariant. Let us fix �2E, �2H, a2A, and
k2K . We have ıE..a/�/D. ˝ idS /.ıA.a// ı ıE.�/. By a straightforward computation,
we have ıEE;R

.qˇE y̨..a/�˝k�//D .˝idK˝idS /.V23ı0.a˝k//ıE.�/13.1A˝�˝1S /.
For all x 2 A˝K , we have ı0.xqˇA y̨/ D ı0.x/qy̨ˇ;23. Hence,

V23ı0.xqˇA y̨/ D ıA˝K.x/V23 for all x 2 A˝K:

In particular, we have V23ı0.d/ D ıD.d/V23 for all d 2 D. Hence,

ıEE;R

�
0.d/�

�
D .0 ˝ idD/

�
ıD.d/

�
ı ıEE;R

.�/ for all � 2 EE;R and d 2 D:

It is easily seen that 0.ˇD.no/d/ D ˇEE;R
.no/0.d/ for all n 2 N and d 2 D. If E is

countably generated as a HilbertB-module, then so is E˝H since H is separable. Hence,
the submodule EE;R of E˝H is countably generated.

2.5. Case of a colinking measured quantum groupoid

Let us fix a colinking measured quantum groupoid G WD GG1;G2 associated with two
monoidally equivalent locally compact quantum groups G1 and G2.

2.5.1. Hilbert C�-modules acted upon by a colinking measured quantum groupoid.
In the following, we recall the description of Hilbert C�-modules acted upon by G in terms
of Hilbert C�-modules acted upon by G1 and G2 (cf. [9, §6.2]). Let A be a G -C�-algebra.
We follow the notations of [9, §3.3] (resp. [9, Notation 5.2.1 and Proposition 5.2.2]) con-
cerning the objects associated with G (resp. A). Let E be a Hilbert A-module endowed
with an action .ˇE; ıE/ of G .
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Notations 2.5.1. We introduce some useful notations to describe the action .ˇE; ıE/.

� Let qE;j WD ˇE."j / for j D 1; 2. Note that qE;1 and qE;2 are orthogonal self-adjoint
projections of L.E/ and qE;1 C qE;2 D 1E.

� Let J WD K.E˚ A/ be the linking C�-algebra associated with E endowed with the
action .ˇJ ; ıJ / of G (cf. Proposition 2.1.10 (b)). Since ˇJ .C2/ � Z.M.J // (cf. [2,
§3.2.3]), we have ˇE.n/� D �ˇA.n/ in L.A;E/ for all n 2 C2 and � 2 E; i.e.,�

ˇE.n/�
�
a D �

�
ˇA.n/a

�
for all n 2 C2; � 2 E; and a 2 A:

Hence,
.qE;j �/a D �.qA;ja/ for all � 2 E; a 2 A; j D 1; 2: (2.14)

In particular, we have

hqE;j �; qE;j�i D qA;j h�; �i for all �; � 2 E:

For j D 1; 2, we then define the following Hilbert Aj -module Ej WD qE;jE. Note that
E D E1 ˚ E2.

� For j; k D 1; 2, let …k
j W Ek ˝ Skj ! E ˝ S be the inclusion map. It is clear that

the map …k
j is a �kj -compatible operator. Then we can consider its canonical linear

extension …k
j W L.Ak ˝ Skj ; Ek ˝ Skj / ! L.A ˝ S; E ˝ S/, up to the canonical

injective maps Ek ˝ Skj !L.Ak ˝ Skj ;Ek ˝ Skj / and E˝ S !L.A˝ S;E˝ S/,
defined by…k

j .T /.x/ WD…
k
j ı T ..qA;k ˝ pkj /x/ for all T 2L.Ak ˝ Skj ;Ek ˝ Skj /

and x 2 A˝ S .

Lemma 2.5.2. With the above notations and hypotheses, we have a canonical unitary
equivalence of Hilbert A˝ S -modules E˝ıA .A˝ S/ D

L
j;kD1;2 Ej ˝ıkAj

.Ak ˝ Skj /.

Proposition-Definition 2.5.3. Let V 2 L.E˝ıA .A˝ S/;E˝ S/ be the isometry asso-
ciated with the action .ˇE; ıE/ (cf. Proposition 2.1.5 (a)). For all j; k D 1; 2, there exists
a unique unitary

Vkj 2 L
�
Ej ˝ıkAj

.Ak ˝ Skj /;Ek ˝ Skj
�

such that

V.� ˝ıA x/ D
X

j;kD1;2

Vkj
�
qE;j � ˝ıkAj

.qA;k ˝ pkj /x
�

for all � 2 E and x 2 A˝ S:

For j;k; l D 1;2we have the following set of unitary equivalences of Hilbert modules:

Aj ˝ıkAj
.Ak ˝ Skj /! Ak ˝ Skj

a˝ıkAj
x 7! ıkAj .a/xI (2.15)

.Ak ˝ Skj /˝ılAk˝ idSkj
.Al ˝ Slk ˝ Skj /! Al ˝ Slk ˝ Skj

x ˝ılAk˝ idSkj
y 7! .ılAk ˝ idSkj /.x/yI (2.16)
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.Al ˝ Slj /˝idAl ˝ ı
k
lj
.Al ˝ Slk ˝ Skj /! Al ˝ Slk ˝ Skj

x ˝idAl ˝ ı
k
lj
y 7! .idAl ˝ı

k
lj /.x/yI (2.17)�

Ej˝ıkAj
.Ak˝Skj /

�
˝ılAk

˝ idSkj
.Al˝Slk˝Skj /! Ej˝.ılAk˝ idSkj /ı

k
Aj

.Al˝Slk˝Skj /

.�˝ıkAj
x/˝ılAk˝ idSkj

y 7! �˝.ılAk˝ idSkj /ı
k
Aj

.ılAk˝idSkj /.x/yI

(2.18)�
Ej˝ılAj

.Al˝Slj /
�
˝idAl ˝ ı

k
lj
.Al˝Slk˝Skj /! Ej˝.idAl ˝ ı

k
lj
/ılAj
.Al˝Slk˝Skj /

.�˝ılAj
x/˝idAl ˝ ı

k
lj
y 7! �˝.idAl ˝ ı

k
lj
/ılAj
.idAl˝ ı

k
lj /.x/yI

(2.19)

.Ek ˝ Skj /˝ılAk˝ idSkj
.Al ˝ Slk ˝ Skj /!

�
Ek ˝ılAk

.Al ˝ Slk/
�
˝ Skj

.� ˝ s/˝ılAk˝ idSkj
.x ˝ t / 7! .� ˝ılAk

x/˝ st I (2.20)

.El ˝ Slj /˝idAl ˝ ı
k
lj
.Al ˝ Slk ˝ Skj /! El ˝ Slk ˝ Skj

� ˝idAl ˝ ı
k
lj
y 7! .idEl ˝ı

k
lj /.�/y: (2.21)

Proposition 2.5.4. For all j; k; l D 1; 2, we have

.Vlk ˝C idSkj /.V
k
j ˝ılAk

˝idSkj
1/ D Vlj ˝idAl ˝ı

k
lj
1:

For j; k; l D 1; 2,

Vlk ˝C idSkj 2 L
�
.Ek˝Skj /˝ılAk˝ idSkj

.Al˝Slk˝Skj /;El˝Slk˝Skj
�

(2.20)I

Vkj ˝ılAk˝ idSkj
1 2 L

�
Ej ˝.ılAk˝ idSkj /ı

k
Aj

.Al ˝ Slk ˝ Skj /;

.Ek ˝ Skj /˝ılAk˝ idSkj
.Al ˝ Slk ˝ Skj /

�
(2.18)I

Vlj ˝idAl ˝ ı
k
lj
1 2 L

�
Ej ˝.idAl ˝ ı

k
lj
/ılAj
.Al ˝ Slk ˝ Skj /;El ˝ Slk ˝ Skj

�
(2.21):

Moreover, the composition .Vl
k
˝C idSkj /.V

k
j ˝ılAk

˝idSkj
1/ does make sense since

.ılAk
˝idSkj /ı

k
Aj
D.idAl ˝ı

k
lj
/ılAj .

Proposition-Definition 2.5.5. For j; k D 1; 2, let ıkEj W Ej !L.Ak ˝ Skj ;Ek ˝ Skj / be
the linear map defined by

ıkEj .�/x WD Vkj .� ˝ıkAj
x/ for all � 2 Ej and x 2 Ak ˝ Skj :

For all j; k; l D 1; 2, we have the following statements.

(i) ıE.�/ D
P
k;jD1;2…

k
j ı ı

k
Ej
.qE;j �/ for all � 2 E.

(ii) ıkEj .Ej / �
zM.Ek ˝ Skj /.
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(iii) ıkEj .�a/D ı
k
Ej
.�/ıkAj .a/ and hıkEj .�/; ı

k
Ej
.�/i D ıkAj .h�; �i/ for all �; � 2 Ej and

a 2 Aj .

(iv) ŒıkEj .Ej /.1Ak ˝ Skj /� D Ek ˝ Skj ; in particular, we have

Ek D
�
.idEk ˝!/ı

k
Ej
.�/I ! 2 B.Hkj /�; � 2 Ej

�
cf. [9, Proposition-Definition 2.3.6].

(v) ılEk˝ idSkj (resp. idEl˝ı
k
lj

) extends to a linear map from L.Ak˝Skj ;Ek˝Skj /

(resp. L.Al ˝ Slj ;El ˝ Slj /) to L.Al ˝ Slk ˝ Skj ;El ˝ Slk ˝ Skj / and for
all � 2 Ej we have

.ılEk ˝ idSkj /ı
k
Ej
.�/D.idEl ˝ı

k
lj /ı

l
Ej
.�/2L.Al ˝ Slk ˝ Skj ;El ˝ Slk ˝ Skj /:

(vi) If E is a G -equivariant HilbertA-module, then we have Œ.1Ek ˝ Skj /ı
k
Ej
.Ej /�D

Ek ˝ Skj .

If E is a G -equivariant Hilbert A-module, then .Ej ; ı
j
Ej
/ is a Gj -equivariant Hilbert Aj -

module and V
j
j is the associated unitary.

According to this concrete description of G -equivariant Hilbert C�-modules, we have
a description of the G -equivariant unitary equivalences in terms of Gj -equivariant unitary
equivalences for j D 1; 2.

Lemma 2.5.6. Let A and B be G -C�-algebras. Let E and F be Hilbert C�-modules over
A and B , respectively, acted upon by G .

(1) Let ˆ W E! F be a G -equivariant unitary equivalence over a G -equivariant �-
isomorphism � W A! B . For j D 1; 2, there exists a unique map ĵ W Ej ! Fj
satisfying the formula ˆ.�/ D ˆ1.qE;1�/C ˆ2.qE;2�/ for all � 2 E. Moreover,
we have

(i) for j D 1; 2, the map ĵ is a unitary equivalence over the �-isomorphism
�j W Aj ! Bj (cf. [9, Proposition 5.2.3 (1)]);

(ii) for all j; k D 1; 2, .ˆk ˝ idSkj / ı ı
k
Ej
D ıkFj ı ĵ .

In particular, ĵ is a Gj -equivariant �j -compatible unitary operator.

(2) Conversely, for j D 1;2 let ĵ W Ej !Fj be a Gj -equivariant unitary equivalence
over a Gj -equivariant �-isomorphism

�j W Aj ! Bj

such that .�k ˝ idSkj / ı ı
k
Aj
D ıkBj ı �j and .ˆk ˝ idSkj / ı ı

k
Ej
D ıkFj ı ĵ for all

j;k D 1;2. Then, the mapˆ W E! F, defined byˆ.�/ WDˆ1.qE;1�/Cˆ2.qE;2�/
for all � 2 E, is a G -equivariant unitary equivalence over the G -equivariant �-
isomorphism � W A! B (cf. [9, Proposition 5.2.3 (2)]).

We also have a description of the G -equivariant �-representations in terms of Gj -
equivariant �-representations for j D 1; 2.
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Lemma 2.5.7. Let A, B be two G -C�-algebras and E a G -equivariant Hilbert B-module.
We follow [9, Notations 5.2.1–5.2.2] and Notations 2.5.1 concerning these objects.

(1) Let  W A! L.E/ be a G -equivariant �-representation. We have

.a/qE;j D .qA;ja/ D qE;j .a/ for all a 2 A and j D 1; 2:

There exist unique �-representations j W Aj ! L.Ej / for j D 1; 2 such that for
all a 2 A, .a/ D 1.qA;1a/C 2.qA;2a/. Furthermore, for j; k D 1; 2 we have

ıkEj

�
j .a/�

�
D.k ˝ idSkj /

�
ıkAj .a/

�
ı ıkEj .�/ for all a2Aj and �2Ej : (2.22)

In particular, the �-representation j W Aj ! L.Ej / is Gj -equivariant.

(2) Conversely, let j W Aj ! L.Ej / be a Gj -equivariant �-representation for j D
1; 2. Let  W A! L.E/ be the �-representation defined by .a/ WD 1.qA;1a/C
2.qA;2a/ for all a 2 A. Assume further that (2.22) holds for all j; k D 1; 2. Then,
the �-representation  W A! L.E/ is G -equivariant.

Moreover, the pair .E; / is a G -equivariant Hilbert A-B-bimodule if and only if the pair
.Ej ; j / is a Gj -equivariant Hilbert Aj -Bj -bimodule for j D 1; 2.

Proof. Since ˇA is central and  is G -equivariant, we have�
.a/; ˇE.n/

�
D 

��
a; ˇA.n/

��
D 0 for all n 2 C2:

Hence, .a/qE;j D .qA;ja/ D qE;j .a/ for all a 2 A and j D 1; 2. For j D 1; 2, we
denote by j WAj!L.Ej / the �-representation defined by j .a/ WD.a/�Ej for all a2Aj .
We have .a/ D 1.qA;1a/ C 2.qA;2a/ for all a 2 A and (2.22) is a straightforward
restatement of the fact that ıE..a/�/ D . ˝ idS /.ıA.a// ı ıE.�/. The converse and the
last statement are obvious.

Note that (2.22) can be restated in the following ways:

Vkj .j .a/˝ıkBj
1/.Vkj /

�
D .k ˝ idSkj /ı

k
Aj
.a/; a 2 AI

ıkK.Ej /
.j .a// D .k ˝ idSkj /ı

k
Aj
.a/; a 2 A:

The following lemma is straightforward.

Lemma 2.5.8. Let A and B be two G -C�-algebras. Let E and F be two G -equivariant
Hilbert B-modules.

(1) Let � W A! L.E/ and  W A! L.F/ be G -equivariant �-representations. Let
ˆ 2 L.E; F / be a G -equivariant unitary such that ˆ ı �.a/ D .a/ ı ˆ for
all a 2 A. Then, for j D 1; 2 the Gj -equivariant unitary ĵ 2 L.Ej ; Fj / (cf.
Lemma 2.5.6 (1)) satisfies for all a 2 Aj the relation ĵ ı �j .a/D j .a/ ı ĵ (cf.
Lemma 2.5.7 (1)).
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(2) Conversely, for j D 1; 2 let us fix Gj -equivariant �-representations �j W Aj !
L.Ej / and j W Aj !L.Fj / and a Gj -equivariant unitary ĵ 2L.Ej ;Fj / satis-
fying the relation ĵ ı�j .a/D j .a/ ı ĵ for all a 2Aj . Then, the G -equivariant
unitaryˆ 2L.E;F/ (cf. Lemma 2.5.6 (2)) satisfies the relationˆ ı �.a/D .a/ ı
ˆ for all a 2 A (cf. Lemma 2.5.7 (2)).

2.5.2. Induction of equivariant Hilbert C�-modules. In the following, we recall the
induction procedure for equivariant Hilbert C�-modules (cf. [2, Proposition 4.3], [9, §6.3]).
We assume that the quantum groups G1 and G2 are regular. Fix a G1-C�-algebra .A1; ıA1/
and a G1-equivariant Hilbert A1-module .E1; ıE1/. We denote by J1 WDK.E1 ˚A1/ the
associated linking C�-algebra endowed with the continuous action ıJ1 of G1.

Notations 2.5.9. Let us fix some notations.

� Let idE1˝ ı
2
11 WL.A1˝S11;E1˝S11/!L.A1˝S12˝S21;E1˝S12˝S21/ be the

unique linear extension of idE1˝ı
2
11 W E1˝S11!L.A1˝S12˝S21;E1˝S12˝S21/

such that .idE1˝ı
2
11/.T /.idA1˝ı

2
11/.x/D .idE1˝ı

2
11/.T x/ for all x 2M.A1˝ S11/

and T 2 L.A1 ˝ S11;E1 ˝ S11/.

� Let ı.2/E1
W E1 ! L.A1 ˝ S12 ˝ S21; E1 ˝ S12 ˝ S21/ be the linear map defined by

ı
.2/
E1
.�/ WD .idE1 ˝ı

2
11/ıE1.�/ for all � 2 E1.

� Consider the Banach subspace of L.A1˝S12;E1˝S12/ defined by (cf. [9, Proposition-
Definition 2.3.6])

IndG2

G1
.E1/ WD

�
.idE1˝S12 ˝!/ı

.2/
E1
.�/I � 2 E1; ! 2 B.H21/�

�
:

Proposition 2.5.10. Let us denote by A2 WD IndG2

G1
.A1/ the induced G2-C�-algebra of

A1. Let E2 WD IndG2

G1
.E1/.

(1) We have ŒE2.1A1 ˝ S12/� D E1 ˝ S12 D Œ.1E1 ˝ S11/E2�. In particular, E2 �
zM.E1 ˝ S12/.

(2) E2 is a Hilbert A2-module for the right action by composition and the A2-valued
inner product given by h�; �i WD �� ı � for �; � 2 IndG2

G1
.E1/.

Let us denote by .A2; ıA2/ WD IndG2

G1
.A1; ıA1/ and .J2; ıJ2/ WD IndG2

G1
.J1; ıJ1/ the

induced G2-C�-algebra of .A1; ıA1/ and .J1; ıJ1/, respectively. We also denote by E2 WD

IndG2

G1
.E1/ the induced Hilbert A2-module as defined above.

Notation 2.5.11. Let

idE1 ˝ı
2
12 W L.A1 ˝ S12;E1 ˝ S12/! L.A1 ˝ S12 ˝ S22;E1 ˝ S12 ˝ S22/

be the unique linear extension of

idE1˝ ı
2
12 W E1 ˝ S12 ! L.A1 ˝ S12 ˝ S22;E1 ˝ S12 ˝ S22/

such that .idE1 ˝ı
2
12/.T /.idA1 ˝ı

2
12/.x/ D .idE1 ˝ı

2
12/.T x/ for all x 2 M.A1 ˝ S12/

and T 2 L.A1 ˝ S12;E1 ˝ S12/.



J. Crespo 34

Proposition-Definition 2.5.12. There exists a unique linear map

ıE2 W E2 ! L.A2 ˝ S22;E2 ˝ S22/

satisfying the relation ŒıE2.�/a�b D .idE1˝ı
2
12/.�/.ab/ for all � 2 E2, a 2 A2˝ S22, and

b 2A1˝ S12˝ S22. Moreover, the pair .E2; ıE2/ is a G2-equivariant HilbertA2-module.

In the proposition below, we state that the above induction procedure for equivariant
Hilbert C�-modules is equivalent to that of [2, §4.3].

Notations 2.5.13. Let e1;1 WD �K.E1/.1E1/2M.J1/ and e2;1 WD �A1.1A1/2M.J1/, where
we identify M.J1/ D L.E1 ˚ A1/. Let .J2; ıJ2 ; e1;2; e2;2/ be the induced linking
G2-C�-algebra, with el;2 WD el;1 ˝ 1S12 2M.J2/ for l D 1; 2 (cf. [2, Proposition 2.14]).
Consider e2;2J2e2;2 and e1;2J2e2;2 endowed with their structure of G2-C�-algebra and
G2-equivariant Hilbert e2;2J2e2;2-module (cf. [3]). Recall that IndG2

G1
�A1 W A2 ! J2;

x 7! .�A1 ˝ idS12/.x/ induces a G2-equivariant �-isomormorphism A2 ! e2;2J2e2;2 (cf.
[2, Propositions 2.17 and 2.18]).

Proposition 2.5.14. We use the above notations.

(i) There exists a unique bounded linear map IndG2

G1
�E1 W E2 ! J2 such that

IndG2

G1
�E1
�
.idE1˝S12 ˝!/ı

.2/
E1
.�/
�
D .idJ1˝S12 ˝!/ı

.2/
J1

�
�E1.�/

�
;

for all � 2 E1 and ! 2B.H21/�. Moreover, we have IndG2

G1
�E1.E2/D e1;2J2e2;2

and IndG2

G1
�E1 induces a G2-equivariant unitary equivalence E2 ! e1;2J2e2;2;

� 7! IndG2

G1
�E1.�/ over the G2-equivariant �-isomorphism A2 ! e2;2J2e2;2;

a 7! IndG2

G1
�A1.a/.

(ii) There exists a unique �-homomorphism � W K.E2 ˚ A2/ ! J2 such that � ı
�E2 D IndG2

G1
�E1 and � ı �A2 D IndG2

G1
�A1 . Moreover, � is an isomorphism of

linking G2-C�-algebras.

(iii) If T 2 IndG2

G1
.K.E1//�L.E1˝S12/ and �2E2�L.A1˝S12; E1˝S12/, then

we have T ı �2E2. Moreover, for all T 2 IndG2

G1
.K.E1//, we have Œ� 7! T ı ��2

K.E2/. More precisely, the map IndG2

G1
.K.E1//! K.E2/; T 7! Œ� 7! T ı ��

is a G2-equivariant �-isomorphism.

In the result below, we recall how to induce G1-equivariant unitary equivalence.

Proposition-Definition 2.5.15. Let us fix some notations. Consider

� two G1-C�-algebras A1 and B1,

� two G1-equivariant Hilbert modules E1 and F1 over A1 and B1, respectively,

� a G1-equivariant unitary equivalenceˆ1 W E1! F1 over a G1-equivariant �-isomor-
phism �1 W A1 ! B1.

Denote by

� A2 WD IndG2

G1
.A1/ and B2 WD IndG2

G1
.B1/ the induced G2-C�-algebras,
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� IndG2

G1
.�1/ W A2 ! B2 the induced G2-equivariant �-isomorphism,

� E2 WD IndG2

G1
.E1/ and F2 WD IndG2

G1
.F1/ the induced G2-equivariant Hilbert modules

over A2 and B2, respectively,

� ˆ1 ˝ idS12 W L.A1 ˝ S12; E1 ˝ S12/! L.B1 ˝ S12;F1 ˝ S12/ the unique linear
map such that

.ˆ1 ˝ idS12/.T /.�1 ˝ idS12/.x/ D .ˆ1 ˝ idS12/.T x/

for all L.A1 ˝ S12;E1 ˝ S12/ and x 2 A1 ˝ S12 (cf. [9, Notation A.3.6]).

Then, .ˆ1˝ idS12/.E2/� F2 and the map IndG2

G1
.ˆ1/ WD .ˆ1 ˝ idS12/�E2 W E2! F2 is a

G2-equivariant unitary equivalence over IndG2

G1
.�1/ W A2 ! B2. Moreover, for all � 2 E1

and!2B.H21/� we have IndG2

G1
.ˆ1/..idE1˝S12˝!/ı

.2/
E1
.�//D.idF1˝S12˝!/ı

.2/
F1
.ˆ1�/.

We can also induce G1-equivariant �-representations. Let us state a preliminary result.

Lemma 2.5.16. Let A1 be a G1-C�-algebra. If A1 is � -unital (resp. separable), then so
is the induced G2-C�-algebra IndG2

G1
.A1/.

Proof. Let us assume that A1 is � -unital. Let .un/n>1 be a countable approximate unit of
A1. Let !2B.H21/� such that !.1/D1. Then, the sequence ..idA1˝S12˝!/ı

.2/
A1
.un//n>1

is an approximate unit of IndG2

G1
.A1/. Hence, IndG2

G1
.A1/ is � -unital. Suppose now that A1

is separable. Let X (resp. Y ) be a countable total subset of A1 (resp. H21). Hence, the
subset ¹.idA1˝S12 ˝!�;�/ı

.2/
A1
.a/I a 2 X; �; � 2 Y º of IndG2

G1
.A1/ is countable and spans

a dense subspace of IndG2

G1
.A1/. Hence, the C�-algebra IndG2

G1
.A1/ is separable.

Proposition-Definition 2.5.17. LetA1 andB1 be G1-C�-algebras and E1 a G1-equivari-
ant Hilbert A1-B1-bimodule. Let A2 WD IndG2

G1
.A1/ and B2 WD IndG2

G1
.B1/ be the induced

G2-C�-algebras. Let E2 WD IndG2

G1
.E1/ be the induced G2-equivariant HilbertB2-module.

Let us consider a G1-equivariant �-representation 1 W A1!L.E1/. Up to the identifica-
tions L.E1/ DM.K.E1// and IndG2

G1
K.E1/ D K.E2/ (cf. Proposition 2.5.14 (iii)) and

by functoriality of the induction (cf. [2, Proposition 4.3 (c)]), we have a G2-equivariant
�-representation

IndG2

G1
1 W A2 ! L.E2/

called the induced G2-equivariant �-representation of 1. If E1 is a G1-equivariant Hilbert
A1-B1-bimodule, then E2 is a G2-equivariant HilbertA2-B2-bimodule called the induced
G2-equivariant bimodule of E1.

Proof. The fact that we have a well-defined induced G2-equivariant �-representation
IndG2

G1
1 W A2 ! L.E2/ is just a restatement of [2, Proposition 4.3 (c)] and Proposition

2.5.14 (iii). Let us assume that E1 is countably generated as a Hilbert B1-module; i.e., the
C�-algebra K.E1/ is � -unital. Hence, K.E2/ is � -unital (cf. Proposition 2.5.14 (iii) and
Lemma 2.5.16); i.e., E2 is a countably generated Hilbert B2-module.
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By exchanging the roles of G1 and G2, we define as above an induction procedure for
G2-equivariant Hilbert modules.

In the following, we investigate the composition of IndG2

G1
and IndG1

G2
. Let j; k D 1; 2.

Let Aj be a Gj -C�-algebra and Ej a Gj -equivariant Hilbert Aj -module. Denote by

� Ak WD IndGk

Gj
.Aj / and Ek D IndGk

Gj
.Ej / � L.Aj ˝ Sjk ; Ej ˝ Sjk/ the induced Gk-

C�-algebra and the induced Gk-equivariant Hilbert Ak-module,

� C D IndGj
Gk
.Ak/ and F WD IndGj

Gk
.Ek/ �L.Ak ˝ Skj ;Ek ˝ Skj / the induced Gj -C�-

algebra and the induced Gj -equivariant Hilbert C -module.

Proposition 2.5.18. With the above notations and hypotheses, we have the following
statements:

(1) there exists a unique map …j W Ej ! F such that�
…j .�/x

�
aDı

.k/
Ej
.�/.xa/ for all �2Ej ; x2Ak ˝Skj ; and a2Aj ˝Sjk ˝Skj I

moreover, …j is a Gj -equivariant unitary equivalence over the Gj -equivariant
�-isomorphism �j W Aj ! C ; a 7! ı

.k/
Aj
.a/;

(2) ıkEj W Ej !
zM.Ek ˝ Skj /; � 7! …j .�/ is a well-defined linear map such that

(i) ıkEj .�a/D ı
k
Ej
.�/ıkAj .a/ and hıkEj .�/; ı

k
Ej
.�/i D ıkAj .h�; �i/ for all �; � 2 Ej

and a 2 Aj ,

(ii) ŒıkEj .Ej /.1Ak ˝ Skj /� D E2 ˝ Skj D Œ.1Ek ˝ Skj /ı
k
Ej
.Ej /�.

Theorem 2.5.19. Let G1 and G2 be two monoidally equivalent regular locally compact
quantum groups. The map

IndG2

G1
W .E1; ıE1/

7!
�
E2 WD IndG2

G1
.E1/; ıE2 W � 2 E2 7!

�
x 2 A2 ˝ S22 7! .idE1 ˝ı

2
12/.�/x

��
;

where E1 is a Hilbert module over the G1-C�-algebra A1 and A2 D IndG2

G1
.A1/ denotes

the induced G2-C�-algebra, is a one-to-one correspondence up to unitary equivalence.
The inverse map, up to unitary equivalence, is

IndG1

G2
W .F2; ıF2/

7!
�
F1 WD IndG1

G2
.F2/; ıF1 W � 2 F1 7!

�
x 2 B1 ˝ S11 7! .idF2 ˝ı

1
21/.�/x

��
;

where F2 is a Hilbert module over the G2-C�-algebra B2 and B1 D IndG2

G1
.B2/ denotes

the induced G1-C�-algebra.

Let B1 be a G1-C�-algebra. Let us denote by B2 WD IndG2

G1
.B1/ the induced G2-C�-

algebra. Let ıkBj W Bj !M.Bk ˝ Skj /, for j; k D 1; 2, be the �-homomorphisms defined
in [9, Notation 5.2.7].
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Notations 2.5.20. Let F1 be a G1-equivariant Hilbert B1-module. Let us denote by F2 D

IndG2

G1
.F1/ the induced G2-equivariant Hilbert B2-module. We have four linear maps

ıkFj W Fj ! L.Bk ˝ Skj ;Fk ˝ Skj / for j; k D 1; 2;

defined as follows:

� ı1F1 WD ıF1 and ı2F2 WD ıF2 ;

� ı2F1 W F1 ! L.B2 ˝ S21;F2 ˝ S21/ is the unique linear map such that�
ı2F1.�/x

�
b D ı

.2/
F1
.�/.xb/

for all �2F1, x2B2˝S21, and b2B1˝S12˝S22, where ı.2/F1
.�/WD.idE1˝ı

2
11/ıF1.�/

(cf. Proposition 2.5.18);

� ı1F2 W F2 ! L.B1 ˝ S12;F1 ˝ S12/ is the unique linear map such that for all � 2 F2,
x 2 IndG1

G2
.B2/˝ S12 and y 2 B2 ˝ S21 ˝ S12, we have�

.…1 ˝ idS12/
�
ı1F2.�/

�
x
�
y D ı

.1/
F2
.�/.xy/;

where ı
.1/
F2
.�/ WD .idF1˝ ı

1
22/ıF2.�/ and …1 W F1 ! IndG1

G2
.F2/ (cf. Proposition

2.5.18 (1)).

Lemma 2.5.21. For all j; k; l D 1; 2, we have the following statements:

(1) ıkFj .Fj / �
zM.Fk ˝ Skj /;

(2) ıkFj .�b/ D ı
k
Fj
.�/ıkBj .b/ and hıkFj .�/; ı

k
Fj
.�/i D ıkBj .h�; �i/ for all �; � 2 Fj and

b 2 Bj ;

(3) ŒıkFj .Fj /.1Bk ˝ Skj /� D Fk ˝ Skj D Œ.1Fk ˝ Skj /ı
k
Fj
.Fj /�;

(4) ılFk˝idSkj (resp. idFl˝ ı
k
lj

) extends uniquely to a linear map from L.Bk˝Skj ;

Ek ˝ Skj / to L.Bl ˝ Slk ˝ Skj ;El ˝ Slk ˝ Skj / such that

.ılFk ˝ idSkj /.T /.ı
l
Bk
˝ idSkj /.x/ D .ı

l
Fk
˝ idSkj /.T x/�

resp. .idFl˝ ı
k
lj /.T /.idBl˝ ı

k
lj /.x/ D .idFl˝ ı

k
lj /.T x/

�
for all T 2 L.Bk ˝ Skj ;Ek ˝ Skj / and x 2 Bk ˝ Skj ;

(5) .ılFk ˝ idSkj /ı
k
Fj
D .idFl˝ ı

k
lj
/ılFj .

Let us consider the C�-algebra B WD B1 ˚ B2 endowed with the continuous action
.ˇB ; ıB/ (cf. [9, Proposition 5.2.9]).

Proposition 2.5.22. Let F1 be a G1-equivariant HilbertB1-module. Let F2 WD IndG2

G1
.F1/

be the induced G2-equivariant Hilbert B2-module. Consider the Hilbert B-module F WD

F1 ˚ F2. Denote by…k
j WL.Bk ˝ Skj ;Fk ˝ Skj /!L.B ˝ S;F˝ S/ the linear exten-

sion of the canonical injection Fk ˝ Skj ! F ˝ S . Let us consider the linear maps
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ıF W F! L.B ˝ S;F˝ S/ and ˇF W C2 ! L.F/ defined by

ıF.�/ WD
X

k;jD1;2

…k
j ı ı

k
Fj
.�j /; � D .�1; �2/ 2 FI

ˇF.�; �/ WD

�
� 0

0 �

�
; .�; �/ 2 C2:

Then, the triple .F; ˇF; ıF/ is a G -equivariant Hilbert B-module.

Proposition 2.5.23. Let .E; ˇE; ıE/ be a G -equivariant Hilbert A-module. In the follow-
ing, we use the notations of Proposition-Definition 2.5.5. Let j; k D 1; 2 with j ¤ k. Let

zAj WD IndGj
Gk
.Ak ; ı

k
Ak
/ and zEj WD IndGj

Gk
.Ek ; ı

k
Ek
/:

If �2Ej , then we have ıkEj .�/2
zEj � zM.Ek˝Skj / and the map z…j W Ej!zEj ; � 7!ıkEj .�/

is a Gj -equivariant unitary equivalence over z�j W Aj ! zAj (cf. [9, Proposition 5.2.8]).

Theorem 2.5.24. Let GG1;G2 be a colinking measured quantum groupoid between two
regular monoidally equivalent locally compact quantum groups G1 and G2. Let j D 1; 2.
The map .E; ˇE; ıE/ 7! .Ej ; ı

j
Ej
/ is a one-to-one correspondence up to unitary equiva-

lence between GG1;G2 -equivariant modules and Gj -equivariant modules (cf. Proposition-
Definition 2.5.5 and Lemma 2.5.6 (1)). The inverse map, up to unitary equivalence, is
.Fj ; ıFj / 7!.F;ˇF; ıF/ (cf. Proposition 2.5.22, Proposition-Definition 2.5.15, and Lemma
2.5.6 (2)).

Proposition 2.5.25. We follow the hypotheses and notations of Proposition 2.5.22. Let
1 WA1!L.E1/ be a G1-equivariant �-representation of a G1-C�-algebraA1. LetA2 be
the induced G2-C�-algebra ofA1 and let 2 WA2!L.F2/ be the induced G2-equivariant
�-representation of 1 (cf. Proposition-Definition 2.5.17). Let us endow the C�-algebra
A WD A1 ˚ A2 with the continuous action .ˇA; ıA/ (cf. [9, Proposition 5.2.9]). The map

 W A! L.F/I .a1; a2/ 7!

�
1.a1/ 0

0 2.a2/

�
is a G -equivariant �-representation. Moreover, if F1 is a G1-equivariant Hilbert A1-B1-
bimodule, then F is a G -equivariant Hilbert A-B-bimodule.

Proof. This is a straightforward consequence of Lemma 2.5.7 (2) and Proposition-Defini-
tion 2.5.17.

2.5.3. Structure of the double crossed product. For further usage, let us introduce a
writing convention concerning bimodule structures.

Convention 2.5.26. Let A and B be two G (resp. yG )-C�-algebras. When dealing with a
A-B-bimodule structure and in order to avoid any confusion between similar objects asso-
ciated withA andB , we will sometimes specify those associated withA (resp.B) by using
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the lower index “g” (resp. “d”)1. For example, we will denote byDg andDd (resp. Eg and
Ed) the bidual G (resp. yG )-C�-algebra of A and B , respectively (cf. Notations 2.3.4).

In this paragraph, we assume the quantum groups G1 and G2 to be regular. We recall
that the colinking measured quantum groupoid G WD GG1;G2 is regular.

Let A, B be G -C�-algebras and E a G -equivariant Hilbert A-B-module. In this para-
graph, we restate the main results of [2, §4.4] in order to describe the structure of the
double crossed product .E Ì G / Ì yG . Let Dg (resp. Dd) be the bidual G -C�-algebra of A
(resp. B) (cf. Notations 2.3.4 and Convention 2.5.26). Let D be the bidual G -equivariant
Hilbert Dg-Dd-module of E (cf. Section 2.4.2). In the following, we use all the notations
and results of [9, Notation 5.2.1] and Section 2.5.1.

Let us recall the notations of [2, Notations 3.48] concerning the structure of the bidual
G -C�-algebra Dd (and similarly for Dg).

� We haveDd D qˇB y̨.B ˝K/qˇB y̨ D j̊D1;2Bj ˝K.H1j ˚H2j /. For all j D 1; 2,
we will identify Dj;d D Bj ˝K.H1j ˚H2j /. Let Bl l 0;j;d WD Bj ˝K.Hl 0j ;Hlj /

for l; l 0; j D 1; 2. Let Bl;j;d WD Bl l;j;d D Bj ˝K.Hlj / for l; j D 1; 2. For l; l 0; j D
1; 2, Bl;j;d and Bl 0;j;d are C�-algebras and Bl l 0;j;d turns into a Hilbert Bl;j;d-Bl 0;j;d-
bimodule.

� For l; l 0; j; k D 1; 2, let

ıkBl l 0;j;d;0
W Bl l 0;j;d ! L

�
Bk ˝K.Hl 0j /˝ Skj ; Bk ˝K.Hl 0j ;Hlj /˝ Skj

�
be the linear map defined by

ıkBl l 0;j;d;0
.b˝ T /WDıkBj .b/13.1Bk ˝ T ˝ 1Skj / for all b2Bj and T 2K.Hl 0j ;Hlj /:

� For l; l 0; j; k D 1; 2, let ık
Bl l 0;j;d

W Bl l 0;j;d ! L.Bl 0;k;d ˝ Skj ;Bl l 0;k;d ˝ Skj / be the
linear map defined by

ıkBl l 0;j;d
.x/ WD .V lkj /23ı

k
Bl l 0;j;d;0

.x/.V l
0

kj /
�
23 for all x 2 Bl l 0;j;d:

Note that ık
Bl;j;d

W Bl;j;d ! L.Bl;k;d ˝ Skj / is a �-homomorphism.

We identify .E Ì G / Ì yG D D (cf. Theorem 2.4.23). We have D D qˇE y̨.E˝K/qˇB y̨ �

E˝K . In the following, we investigate the precise structure of D.

� We have qD;j WD ˇD."j /D qˇE y̨.1E˝ˇ."j //DˇE."j /˝ ˇ."j /D
P
lD1;2 qE;j˝plj

for all j D 1; 2 (cf. [2, Lemme 2.21 and Notations 2.22]).

� For j D 1; 2, let us consider the Hilbert Dj;g-Dj;d-module Dj WD qD;jD (cf. Sec-
tion 2.5.1). We have

Dj D Ej ˝K.H1j ˚H2j / D
M

l;l 0D1;2

Ej ˝K.Hl 0j ;Hlj /:

1The letter “g” (resp. “d”) stands for “gauche” (resp. “droite”), the french word for “left” (resp. “right”).
This choice was not motivated by chauvinism but only by the fact that the letters “l” and “r” would have
been confusing.
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For l; l 0; j D 1; 2, let us consider the Hilbert Bl;j;g-Bl 0;j;d-bimodule El l 0;j WD Ej ˝

K.Hl 0j ;Hlj /. For l; j D 1; 2, let El;j WD El l;j D Ej ˝K.Hlj /.

� For j; k D 1; 2, let us denote by …k
j W L.Dk;d˝Skj ;Dk˝Skj /!L.Dd˝S;D˝S/

the linear extension of the inclusion map Dk ˝ Skj ! D˝ S . For j; k D 1; 2, let us
denote by ıkDj

WDj!L.Dk;d˝Skj ;Dk˝Skj / the linear map defined in Proposition-
Definition 2.5.5. For all � 2 D, we have

ıD.�/ D
X

j;kD1;2

…k
j ı ı

k
Dj
.qD;j �/:

We recall that for j D 1; 2 the pair .Dj ; ı
j
Dj
/ is a Gj -equivariant Hilbert Dj;g-Dj;d-

bimodule.

� For l; l 0; j; k D 1; 2, let

ıkEl l 0;j ;0
W El l 0;j ! L.Bk ˝K.Hl 0j /˝ Skj ;Ek ˝K.Hl 0j ;Hlj /˝ Skj /

be the linear map defined by

ıkEl l 0;j ;0
.� ˝ T / WD ıkEj .�/13.1Bk ˝ T ˝ 1Skj / for all � 2 Ej and T 2K.Hl 0j ;Hlj /:

� Let ık
El l 0;j

W El l 0;j ! L.Bl 0;k;d ˝ Skj ;El l 0;k ˝ Skj / be the linear defined by

ıkEl l 0;j
.�/ WD .V lkj /23ı

k
El l 0;j ;0

.�/.V l
0

kj /
�
23 for all � 2 El l 0;j :

� Let j; k; l; l 0 D 1; 2. We denote by

…k
l l 0;j W L.Bl 0;k;d ˝ Skj ;El l 0;k/! L.Dk;d ˝ Skj ;Dk ˝ Skj /

the linear extension of the inclusion map El l 0;k ˝ Skj ! Dk ˝ Skj . For � 2 Dj , let
us denote by �l l 0 the element of El l 0;j defined by �l l 0 WD .qE;j ˝ plj /�.qB;j ˝ pl 0j /.
For all j; k D 1; 2, we have

ıkDj
.�/ D

X
l;l 0D1;2

…k
l l 0;j ı ı

k
El l 0;j

.�l l 0/:

For all l; l 0; j D 1; 2, the pair .El l 0;j ; ı
j

El l 0;j
/ is a Gj -equivariant Hilbert Bl;j;g-Bl 0;j;d-

bimodule.

3. Equivariant Kasparov theory
In this chapter, we fix a regular measured quantum groupoid G on the finite-dimensional
basis N D

L
16l6k Mnl .C/ endowed with the non-normalized Markov trace. We use all

the notations introduced in [9, §3.1 and §3.2] concerning the objects associated with G .

3.1. Equivariant Kasparov groups

Let us recall a definition.
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Definition 3.1.1 (cf. [18]). Let A and B be C�-algebras. A Kasparov A-B-bimodule is a
triple .E; ; F / consisting of a countably generated Hilbert B-module E, a �-homomor-
phism  W A! L.E/, and an operator F 2 L.E/ such that�
.a/; F

�
2K.E/; .a/.F 2 � 1/2K.E/; .a/.F � F �/2K.E/ for all a2A:

(3.1)
If we have �

.a/; F
�
D .a/.F 2 � 1/ D .a/.F � F �/ D 0 for all a 2 A; (3.2)

then the Kasparov A-B-bimodule .E; ; F / is said to be degenerate.

Let A and B be G -C�-algebras.

Definition 3.1.2. A G -equivariant KasparovA-B-bimodule is a triple .E;;F /, consisting
of G -equivariant A-B-bimodule .E; / (cf. Definition 2.2.7) and an operator F 2 L.E/

such that

(1) the triple .E; ; F / is a Kasparov A-B-bimodule,

(2) ŒF; ˇE.no/� D 0 for all n 2 N ,

(3) . ˝ idS /.x/.ıK.E/.F / � qˇE˛.F ˝ 1S // 2K.E˝ S/ for all x 2 A˝ S .

The G -equivariant Kasparov A-B-bimodule will sometimes be simply denoted by .E; F /
when the representation  is clear from the context.

Remarks 3.1.3. Let us make some comments concerning the previous definition.
(1) Since ˇE.no/.a/ D .ˇA.n

o/a/ for all a 2 A and n 2 N , we have

. ˝ idS /.xqˇA˛/ D . ˝ idS /.x/qˇE˛ D . ˝ idS /.x/VV� for all x 2 A˝ S;

where V 2L.E˝ıB .B ˝ S/;E˝ S/ is the isometry defined in Proposition 2.1.5 (a). The
following statements are then equivalent to condition (3):

� . ˝ idS /.x/.ıK.E/.F / � F ˝ 1S / 2K.E˝ S/ for all x 2 .A˝ S/qˇA˛;

� . ˝ idS /.x/.V.F ˝ıB 1/V
� � qˇE˛.F ˝ 1S // 2K.E˝ S/ for all x 2 A˝ S ;

� . ˝ idS /.x/.V.F ˝ıB 1/V
� � F ˝ 1S / 2K.E˝ S/ for all x 2 .A˝ S/qˇA˛ .

Note that it follows from condition (2) that ŒF ˝ 1S ; qˇE˛� D 0.
(2) As in [3, Remarque 3.4 (2)], we prove that�
V.F ˝ıB 1/V

�
� F ˝ 1S

�
. ˝ idS /.x/ 2K.E˝ S/ for all x 2 qˇA˛.A˝ S/:

Since . ˝ idS /.qˇA˛x/D qˇE˛. ˝ idS /.x/ for all x 2 A˝ S and ŒF ˝ 1S ; qˇE˛�D 0,
this is also equivalent to�

V.F ˝ıB 1/V
�
� qˇE˛.F ˝ 1S /

�
. ˝ idS /.x/ 2K.E˝ S/ for all x 2 A˝ S:

Note that the converse is also true; i.e., condition (3) is equivalent to these assertions.
(3) If F is invariant (cf. Proposition-Definition 2.1.13), then conditions (2) and (3) of

Definition 3.1.2 are satisfied.
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Definition 3.1.4. (1) Two G -equivariant Kasparov A-B-bimodules .E1; 1; F1/ and
.E2; 2; F2/ are said to be unitarily equivalent if there exists a unitary ˆ 2 L.E1; E2/

such that

(i) ˆ is G -equivariant (cf. Definition 2.1.14),

(ii) ˆ ı 1.a/ D 2.a/ ıˆ for all a 2 A,

(iii) F2 ıˆ D ˆ ı F1.

(2) Let EG .A; B/ be the set of unitary equivalence classes of G -equivariant Kasparov
A-B-bimodules.

(3) A G -equivariant Kasparov A-B-bimodule .E; ; F / is said to be degenerate, if
.E; ; F / is a degenerate Kasparov A-B-bimodule such that

. ˝ idS /.x/
�
ıK.E/.F / � .F ˝ 1S /qˇE˛

�
D 0 for all x 2 A˝ S:

We denote by DG .A; B/ � EG .A; B/ the set of unitary equivalence classes of degenerate
G -equivariant Kasparov A-B-bimodules.

(4) Let us consider the C�-algebra BŒ0; 1� WD C.Œ0; 1�; B/ of the B-valued norm con-
tinuous functions on Œ0; 1�. We make the identification BŒ0; 1� D C.Œ0; 1�/ ˝ B in the
following way:

.f ˝ b/.t/ WD f .t/b for all f 2 C.Œ0; 1�/; b 2 B; and t 2 Œ0; 1�:

Similarly, we make the identification BŒ0; 1� ˝ S D .B ˝ S/Œ0; 1�. In particular,
M.BŒ0; 1�˝ S/ (resp. M.BŒ0; 1�/) consists of the strictly continuous M.B ˝ S/-valued
(resp. M.B/-valued) functions on Œ0; 1�. We then warn the reader that in our context
we will abusively denote M.BŒ0; 1�˝ S/ (resp. M.BŒ0; 1�/) by M.B ˝ S/Œ0; 1� (resp.
M.B/Œ0; 1�). Let ıBŒ0;1� W BŒ0; 1�!M.BŒ0; 1�˝ S/ and ˇBŒ0;1� W N o !M.BŒ0; 1�/ be
the maps defined by ıBŒ0;1�.f /.t/ WD ıB.f .t// and ŒˇBŒ0;1�.no/f �.t/ D ˇB.n

o/f .t/ for
all f 2BŒ0;1�, n 2N , and t 2 Œ0; 1�. Then, the pair .ˇBŒ0;1�; ıBŒ0;1�/ is a continuous action
of G on BŒ0; 1�. For t 2 Œ0; 1�, let et W BŒ0; 1�! B be the evaluation at point t , i.e., the
surjective �-homomorphism defined for all f 2 BŒ0; 1� by et .f / WD f .t/. Note that et is
G -equivariant by definition of the action of G on BŒ0; 1�.

(5) Let E be a G -equivariant Hilbert B-module. Let us consider the Hilbert BŒ0; 1�-
module EŒ0; 1� WD C.Œ0; 1�; E/ of E-valued continuous functions on Œ0; 1�. We make the
identification EŒ0; 1� D CŒ0; 1�˝ E as above. We equip the Hilbert B-module EŒ0; 1� with
the action of G obtained by transport of structure through the identification

K
�
EŒ0; 1�˚ BŒ0; 1�

�
DK.E˚ B/Œ0; 1�:

We have ˇEŒ0;1� D ˇK.E/Œ0;1� up to the identification L.EŒ0; 1�/DM.K.E/Œ0; 1�/. For all
x 2 BŒ0; 1�˝ S and � 2 EŒ0; 1�˝ S , we have .ıEŒ0;1�.�/x/.t/ D ıE.�.t//x.t/ up to the
identifications BŒ0; 1�˝ S D .B ˝ S/Œ0; 1� and EŒ0; 1�˝ S D .E˝ S/Œ0; 1�.

Proposition 3.1.5. Let A1, A2, A, B1, B2, and B be G -C�-algebras.
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(1) Let f W A1 ! A2 be a G -equivariant �-homomorphism. Let .E; ; F / be a G -
equivariant Kasparov A2-B-bimodule. Let � WD  ı f W A1 ! L.E/. Then the
triple .E; �;F / is a G -equivariant KasparovA1-B-bimodule. Moreover, we have
the well-defined map

f � W EG .A2; B/! EG .A1; B/I .E; ; F / 7! .E; �; F /:

(2) Let g W B1 ! B2 be a G -equivariant �-homomorphism. Let .E; ; F / be a G -
equivariant Kasparov A-B1-bimodule. Let � W A ! L.E ˝g B2/ be the
�-representation defined by �.a/ WD .a/˝g 1B2 for all a 2 A. Then the triple
.E˝g B2; �;F ˝g 1B2/ is a G -equivariant KasparovA-B1-bimodule. Moreover,
we have the following well-defined map

g� W EG .A;B1/! EG .A;B2/I .E; ; F / 7! .E˝g B2; �; F ˝g 1B2/:

Proof. Straightforward verifications.

Definition 3.1.6. Let .E0; F0/; .E1; F1/ 2 EG .A; B/. A homotopy between .E0; F0/ and
.E1; F1/ is an element x 2 EG .A; BŒ0; 1�/ such that e0�.x/ D .E0; F0/ and e1�.x/ D
.E1; F1/. In that case, we say that .E0; F0/ and .E1; F1/ are homotopic. The homotopy
relation is an equivalence relation on the class EG .A; B/. We denote by KKG .A; B/ the
quotient set of EG .A; B/ by the homotopy relation. We also denote by Œ.E; F /� the class
of .E; F / 2 EG .A;B/ in KKG .A;B/.

Examples 3.1.7 (cf. [3, 18, 26]). We can build homotopies of EG .A; BŒ0; 1�/ in the fol-
lowing ways.

(1) An operator homotopy is a triple .E; ; .Ft /t2Œ0;1�/ consisting of a G -equivariant
Hilbert A-B-bimodule .E; / and a family of adjointable operators .Ft /t2Œ0;1� on E such
that

� the triple .E; ; Ft / is a G -equivariant Kasparov A-B-bimodule for all t 2 Œ0; 1�,

� the map .t 7! Ft / is norm continuous.

The family of operators .Ft /t2Œ0;1� defines an elementF of L.EŒ0;1�/ (up to the identifica-
tion L.E/Œ0; 1�DL.EŒ0; 1�/; cf. Definition 3.1.4 (4), (5)) and the triple .EŒ0; 1�;  ˝ 1;F /
is a homotopy between .E; ; F0/ and .E; ; F1/.

(2) An important example of operator homotopy can be obtained in the following
case. Let .E; ; F / be a G -equivariant Kasparov A-B-bimodule. We call an operator G 2
L.E/ a compact perturbation of F if for all a 2 A we have .a/.F � G/ 2 K.E/ and
.F � G/.a/ 2 K.E/. In that case, the triple .E; ; G/ is a G -equivariant Kasparov A-
B-bimodule. Moreover, the triples .E; ; F / and .E; ; G/ are operator homotopic via the
obvious continuous path defined by Ft WD .1 � t /F C tG for t 2 Œ0; 1�.

(3) Let .E; .t /t2Œ0;1�; F / be a triple where E is a G -equivariant Hilbert B-module,
.t /t2Œ0;1� is a family of G -equivariant �-representations of A on E and F 2 L.E/ such
that the triple .E; t ; F / is a G -equivariant Kasparov A-B-bimodule for all t 2 Œ0; 1�
and the map .t 7! t .a// is norm continuous for all a 2 A. Up to the identification
L.E/Œ0; 1� D L.EŒ0; 1�/, the family .t /t2Œ0;1� defines a G -equivariant �-representation
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 W A! L.EŒ0; 1�/. Moreover, the triple .EŒ0; 1�; ; 1 ˝ F / is a homotopy between
.E; 0; F / and .E; 1; F /.

As for actions of quantum groups (cf. [3, Proposition 3.3]), we have the following
proposition.

Proposition 3.1.8. Endowed with the binary operation induced by the direct sum oper-
ation .Œ.E1; F1/�; Œ.E2; F2/�/ 7! Œ.E1 ˚ E2; F1 ˚ F2/�, the quotient set KKG .A; B/ is an
abelian group and the class of the identity element 0 2 KKG .A; B/ is represented by any
element of DG .A;B/.

It follows from Definition 3.1.6 that the maps defined in Proposition 3.1.5 factor-
ize over the quotient maps so that we obtain homomorphisms of abelian groups f � W
KKG .A2; B/! KKG .A1; B/ and g� W KKG .A;B1/! KKG .A;B2/.

3.2. Kasparov’s technical theorem

Notation 3.2.1. Let A be a C�-algebra. We denote by

Der.A/ WD
®
d 2 B.A/I 8x; y 2 A; d.xy/ D d.x/y C xd.y/

¯
the Banach subspace of B.A/ consisting of the continuous derivations of A. Any d 2
Der.A/ extends uniquely to a strictly continuous linear map d WM.A/!M.A/ defined
by

d.m/a WDd.ma/�md.a/ and ad.m/ WDd.am/� d.a/m for all m2M.A/; a2A:

Note that d.1/ D 0 and d 2 Der.M.A//. For all x 2 A, we have Ad.x/ 2 Der.A/ (inner
derivations of A).

Remarks 3.2.2. (1) If m 2 M.A/, we define an inner derivation Ad.m/ 2 Der.A/ by
setting Ad.m/.x/ WD Œm; x� D mx � xm 2 A for all x 2 A.

(2) Let J be a closed two-sided ideal of A and d 2 Der.A/. We have d.J / � J .
Indeed, let .u�/ be an approximate unit of J and x 2 J . We have d.x/ D lim� d.xu�/

with respect to the norm topology since d is norm continuous. Moreover, for all � we
have d.xu�/ D d.x/u� C xd.u�/ 2 J since J is an ideal of A. Hence, d.x/ 2 J . In
particular, d induces an element of Der.J / by restriction and we have a continuous linear
map Der.A/! Der.J /.

Lemma 3.2.3 (cf. [3, Lemme 4.1]). Let J be a C�-algebra and .ˇJ ; ıJ / an action of G

on J . For all h 2 J , k 2 S , z 2 J ˝ S , for all compact K � Der.J /, and for all real
number " > 0, there exists u 2 J , such that 0 6 u 6 1 and Œu; ˇJ .no/� D 0 for all n 2 N ,
which further satisfies

(a) kuh � hk 6 ",
(b) for all d 2 K, kd.u/k < ",

(c) k.ıJ .u/ � qˇJ ˛.u˝ 1//.1˝ k/k < ",

(d) kıJ .u/z � qˇJ ˛zk < ".
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Proof. Denote by J.K/ the C�-algebra consisting of the J -valued continuous functions
on K. We adapt the proof of Lemme 4.1 [3] by considering the affine map

ˆ W J!A WD J ˚ J.K/˚ .J ˝ S/˚ .J ˝ S/

x 7!ˆ.x/ WD
�
xh � h; Œd 7!d.x/�;

�
ıJ .x/�qˇJ ˛.x ˝ 1/

�
.1˝ k/; ıJ .x/z � qˇJ ˛z

�
;

which admits a unique strictly continuous extension, still denoted byˆ WM.J /!M.A/,
such that ˆ.1/ D 0. By applying the Hahn–Banach theorem, we then conclude as in [3]
that 0 is an adherent point ofˆ.C/, where C is the nonempty closed convex subset ¹u2J I
0 6 u 6 1; 8n 2 N; Œu; ˇJ .no/� D 0º of J , which is just a restatement of the above
lemma.

If J is a closed two-sided ideal ofA, we recall that M.AIJ / denotes the strictly closed
C�-subalgebra of M.A/ consisting of the elements m 2 M.A/ such that the relations
mA� J andAm� J hold. Note that the restriction homomorphism from M.A/ to M.J /

identifies M.AI J / to a C�-subalgebra of M.J / and if B is another C�-algebra, we have
zM.A˝ B/ DM. zA˝ BIA˝ B/.

Definition 3.2.4. Let A be a C�-algebra endowed with an action .ˇA; ıA/ of G such that
ıA.A/ � zM.A˝ S/. A closed two-sided ideal J of A is said to be invariant by .ˇA; ıA/
(or .ˇA; ıA/-invariant) if ıA.J / �M. zA˝ S IJ ˝ S/. We denote by ıJ W J ! zM.J ˝ S/

the map obtained by restricting ıA. We also denote by ˇJ W N o ! M.J / the map ˇA
composed with the projection map M.A/!M.J /. Then, we obtain an action of G on J .

Before stating the generalization of Kasparov’s technical theorem, we first state an
easy lemma that will be used several times.

Lemma 3.2.5. Let B be a C�-algebra and J a closed two-sided ideal of B . Let x 2 B
and b 2 BC such that Œx; b� 2 J . Then, we have Œx; b1=2� 2 J . In particular, if b commutes
with x so does b1=2.

Proof. Let us denote A WD ¹b 2 BI Œb; x� 2 J º. It is easily seen that A is a closed subal-
gebra of B . If b 2 B is a self-adjoint element commuting with x, then b is an element of
the C�-subalgebra A \ A� of B . In particular, if b is a positive element of B which also
belongs to A, then so does b1=2.

Theorem 3.2.6 (cf. [3, Théorème 4.3]). Let us consider

� J1 a � -unital C�-algebra endowed with an action .ˇJ1 ; ıJ1/ of G such that ıJ1.J1/ �
zM.J1 ˝ S/,

� J a .ˇJ1 ; ıJ1/-invariant ideal of J1,

� J2 a � -unital subalgebra of M.J1IJ /,

� F a separable subspace of Der.J1/,

� J 02 a � -unital subalgebra of M.J ˝ S/ such that ıJ1.x/y 2 J ˝ S for all x 2 J1 and
y 2 J 02.
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There exists M 2M.J1I J / such that 0 6 M 6 1 and ŒM; ˇJ1.n
o/� D 0 for all n 2 N ,

which satisfies the following statements:

� .1 �M/J2 � J ;

� for all d 2 F, d.M/ 2 J ;

� ıJ1.M/ � qˇJ1˛.M ˝ 1S / 2
zM.J ˝ S/;

� .qˇJ1˛ � ıJ1.M//J 02 � J ˝ S .

Proof. In essence, the proof is that of [3, Théorème 4.3]. We denote q WD qˇJ1˛ for short.
Let h1 2 J1, h2 2 J2, h02 2 J

0
2, and k 2S be strictly positive elements. Indeed, we have S D

Œ.!�;� ˝ id/.V /I �; � 2 H� and H is separable. Hence, S is � -unital. Let K be a compact
of F such that F D ŒK�. By Lemma 3.2.3, there exists an increasing sequence .ul /l2N of
elements of J1 with u0 D 0, which satisfies for all integer l > 1 the following statements:

(i) 0 6 ul 6 1; Œul ; ˇJ1.n
o/� D 0 for all n 2 N ;

(ii) kulh1 � h1k 6 2�l ;
(iii) for all d 2 K, kd.ul /k 6 2�l ;
(iv) k.ıJ1.ul / � q.ul ˝ 1//.1˝ k/k 6 2�l .

Let us recall that any derivation of J1 induces a derivation of J by restriction (cf. Remark
3.2.2 (2)). It follows from Lemma 3.2.3 that there exists a sequence .vl /l2N� of elements
of J such that 0 6 vl 6 1 and Œvl ; ˇJ .no/� D 0 for all n 2 N and l 2 N�, which satisfies
for all integer l > 1 the following statements:

(a) kvl .ul � ul�1/1=2h2 � .ul � ul�1/1=2h2k 6 2�l ;
(b) for all d 2 K, kd.vl /k 6 2�l and kŒ.ul � ul�1/1=2; vl �k 6 2�l ;
(c) k.ıJ1.vl / � q.vl ˝ 1//.1˝ k/k 6 2�l ;
(d) k.ıJ1.vl / � q/ıJ1.ul � ul�1/

1=2h02k 6 2�l .
More precisely, for each fixed integer l > 1, we have applied Lemma 3.2.3 with h WD
.ul � ul�1/

1=2h2 2 J , z WD ıJ1.ul � ul�1/
1=2h02 2 J ˝ S , " WD 2�l and the compact

subset of Der.J / consists of the derivation Ad..ul � ul�1/1=2/ and the image of the com-
pact subsetK � Der.J1/ by the continuous map Der.J1/! Der.J /. For all integer l > 1,
let us denote

� Ml WD
Pl
iD1.ui � ui�1/

1=2vi .ui � ui�1/
1=2,

� M 0
l
WD
Pl
iD1 vi .ui � ui�1/,

� Nl WD
Pl
iD1.ui � ui�1/

1=2.1 � vi /.ui � ui�1/
1=2.

Let us notice the following statements.

(A) For all l > 1, we have Ml 2 J , M 0
l
2 J , and Nl 2 J1.

(B) For all l 2 N�, we have

Ml �M
0
l D

lX
iD1

�
.ui � ui�1/

1=2; vi
�
.ui � ui�1/

1=2
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for all l 2 N� and 1 6 i 6 l , we have kŒ.ui � ui�1/1=2; vi �.ui � ui�1/1=2k 6
2�.i�1/ by (b); hence, the sequence .Ml �M

0
l
/l>1 is norm convergent.

(C) Ml CNl D
Pl
iD1.ui � ui�1/ D ul ����!

l!1
1 in M.J1/ with respect to the strict

topology.

Let us prove that .Ml /l>1 converges strictly in M.J1/. Since h1 is strictly positive, it
suffices to prove that .Mlh1/l>1 and .h1Ml /l>1 are norm convergent in J1. For all integer
l > 1, we have

M 0lh1 D

lX
iD1

vi .uih1 � h1/ �

lX
iD1

vi .ui�1h1 � h1/;

with kvi .uih1 � h1/k 6 2�i and kvi .ui�1h1 � h1/k 6 2�.i�1/ for all 1 6 i 6 l . Hence,
.M 0

l
h1/l>1 is norm convergent. The norm convergence of .Mlh1/l>1 follows from (B).

Since h1Ml D .Mlh1/
�, the norm convergence of .h1Ml /l>1 is proved. Let M 2M.J1/

(resp. M 0 2 M.J1/) be the strict limit of .Ml /l>1 (resp. .M 0
l
/l>1). We have M;M 0 2

M.J1I J / by (A) and M �M 0 2 J by (B). Since Ml (resp. Nl ) is positive for all integer
l > 1, so is M (resp. 1 �M ). Hence, 0 6 M 6 1. Let n 2 N . Since ŒˇJ1.n

o/; ul � D 0

and ŒˇJ1.n
o/; vl � D 0 for all integer l > 1, we have ŒˇJ1.n

o/;Ml � D 0 (cf. Lemma 3.2.5).
Hence, ŒM; ˇJ1.n

o/� D 0 for all n 2 N . In particular, we have ŒM ˝ 1S ; q� D 0.
For all d 2 K, the sequence .d.M 0

l
//l>1 is norm convergent in M.J1/. Indeed, we

have

d.M 0l / D

lX
iD1

d.vi /.ui � ui�1/C

lX
iD1

vi
�
d.ui / � d.ui�1/

�
D

lX
iD1

d.vi /.ui � ui�1/C

lX
iD1

.vi � vi�1/d.ui /

(recall that u0 D 0), which is norm convergent by (iii) and (b). Since d is strictly contin-
uous, the norm limit of .d.M 0

l
//l>1 is d.M 0/. It follows from (A) and Remark 3.2.2 (2)

that d.M 0
l
/ 2 J for all l > 1. Hence, d.M 0/ 2 J . Since M �M 0 2 J and d.M 0/ 2 J , it

then follows that d.M/ 2 J for all d 2 K. Hence, d.M/ 2 J for all d 2 F. Let us prove
that�

ıJ1.M
0
l / � q.M

0
l ˝ 1S /

�
.1J1 ˝ k/ ���!

l!1

�
ıJ1.M

0/ � q.M 0 ˝ 1S /
�
.1J1 ˝ k/ (3.3)

with respect to the norm topology. It suffices to see that��
ıJ1.M

0
l / � q.M

0
l ˝ 1S /

�
.1J1 ˝ k/

�
l>1

is norm convergent since this sequence is already convergent with respect to the strict
topology towards .ıJ1.M

0/ � q.M 0 ˝ 1S //.1J1 ˝ k/. For all integer l > 1, we have

ıJ1.M
0
l / � q.M

0
l˝1S / D

lX
iD1

ıJ1.vi /
�
ıJ1.ui / � ıJ1.ui�1/

�
� q

lX
iD1

vi .ui � ui�1/˝1S
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D

lX
iD1

�
ıJ1.vi /ıJ1.ui / � q.viui ˝ 1S /

�
�

lX
iD1

�
ıJ1.vi /ıJ1.ui�1/ � q.viui�1 ˝ 1S /

�
:

We have q.viui ˝ 1S / D q.vi ˝ 1S /q.ui ˝ 1S / for all integer i > 1. Hence,

ıJ1.vi /ıJ1.ui / � q.viui ˝ 1S / D ıJ1.vi /
�
ıJ1.ui / � q.ui ˝ 1S /

�
C
�
ıJ1.vi / � q.vi ˝ 1S /

�
q.ui ˝ 1S /:

Hence,X
i

ıJi .vi /
�
ıJ1.ui /�q.ui˝1S /

�
.1J1˝k/I

X
i

�
ıJ1.vi /�q.vi˝1S /

�
q.ui˝1/.1J1˝k/

are convergent by application of (iv) and (c) (and the fact that kulk 6 1 and kvlk 6 1 for
all integer l > 1); hence, so is

P
i .ıJ1.vi /ıJ1.ui /� q.viui ˝ 1//.1S ˝ k/. We prove that

the series
P
i .ıJ1.vi /ıJ1.ui�1/� q.viui�1 ˝ 1//.1S ˝ k/ is convergent in a similar way

and (3.3) is proved.
Since k is strictly positive, the sequence ..ıJ1.M

0
l
/ � q.M 0

l
˝ 1S //.1J1 ˝ s//l>1 is

norm convergent towards .ıJ1.M
0/� q.M 0˝ 1S //.1J1 ˝ s/ for all s 2 S . However, since

for all integer l > 1 and s 2S we have .ıJ1.M
0
n/� q.M

0
n˝ 1//.1J1 ˝ s/2 J ˝S (M 0

l
2 J

and J is invariant), it follows that .ıJ1.M
0/� q.M 0˝1S //.1J1˝ s/ 2 J˝S for all s2S .

Hence, ıJ1.M
0/� q.M 0˝ 1/ 2 zM.J ˝ S/ sinceM 0 is self-adjoint and ŒM ˝ 1S ; q�D 0.

Moreover, we have M D .M �M 0/CM 0 and M �M 0 2 J . Hence,

ıJ1.M/ � q.M ˝ 1S / D ıJ1.M �M
0/ � q

�
.M �M 0/˝ 1S

�
C ıJ1.M

0/ � q.M 0 ˝ 1S / 2 zM.J ˝ S/:

By (C), the sequence .Nl /l>1 converges strictly towards 1 �M . It follows from (a), the
fact that k.1 � vi /.ui � ui�1/1=2h2k 6 2�i for all integer i > 1, (i), and the previous
statement that the sequence .Nlh2/l>1 converges in norm towards .1 �M/h2. However,
we have h2 2 J2 and Nl 2 J1 for all integer l > 1. Hence, Nlh2 2 J for all integer l > 1.
We then have .1 �M/h2 2 J . Hence, .1 �M/J2 � J since h2 is strictly positive.

By combining (d) with the fact that kıJ1.1 � vi /ıJ1.ui � ui�1/
1=2h02k 6 2�i for all

integer i > 1, we prove in a similar way that the sequence .ıJ1.Nl /h
0
2/l>1 converges in

norm towards ıJ1.1 �M/h02 and we prove that ıJ1.1 �M/J 02 � J ˝ S .

3.3. Kasparov’s product

In this paragraph, we define the Kasparov product in the equivariant framework for actions
of measured quantum groupoids on a finite basis.

Let C and B be two G -C�-algebras. Let E1 and E2 be G -equivariant Hilbert C�-mod-
ules over C and B , respectively. Let 2 W C !L.E2/ be a G -equivariant �-representation.
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Let us also consider the G -equivariant Hilbert B-module E WD E1 ˝2 E2 (cf. Proposi-
tion 2.2.9). For � 2 E1, we denote by T� 2 L.E2; E/ the operator defined by T�.�/ WD
� ˝2 � for all � 2 E2.

Let us recall the notion of connection.

Definition 3.3.1 (cf. [7, Definition A.1] and [26, Definition 8]). Let F2 2 L.E2/. We
say that F 2 L.E/ is an F2-connection for E1 if for all � 2 E1, we have T�F2 � F T� 2
K.E2;E/ and F2T �� � T

�
�
F 2K.E;E2/.

In the lemmas below, we assume that the Hilbert A-module E1 is countably generated.

Lemma 3.3.2 (cf. [7, Proposition A.2 a)]). Let F2 2L.E2/ such that ŒF2; 2.a/� 2K.E2/

for all a 2 A. Then there exist F2-connections F for E1 such that ŒF; ˇE.no/� D 0 for all
n 2 N .

Proof. By Kasparov’s stabilization theorem (cf. [17, Theorem 2]), we can assume that E1
is a submodule of H zC DH˝C zC and E1 D P.H zC /, where P 2 L.H zC / is a projection.
Let

F WD .P ˝2 1E2/.1H zC ˝C F2/.P ˝2 1E2/

be the Grassmann connection (cf. [7, A.2 a)]). But, since ˇE.no/ D ˇE1.n
o/ ˝ 1, we

have Œ1H zC ˝C F2; ˇE.n
o/� D 0 for all n 2 N . Moreover, if T 2 L.E1/, we have PT � D

T � D TP � for all � 2 E1. Hence, ŒP ˝ 1E2 ; ˇE.n
o/� D 0 for all n 2 N and the result is

proved.

Lemma 3.3.3 (cf. [3, Lemme 5.1]). Let F2 2 L.E2/ such that .E2; 2; F2/ 2 EG .C; B/.
Let F 2 L.E/ be an F2-connection for E1 such that ŒF; ˇE.no/� D 0 for all n 2 N (cf.
Lemma 3.3.2). Then, we have .E;;F /2EG .K.E1/;B/, where the left action  WK.E1/!

L.E/ of K.E1/ on E is defined by .k/ WD k ˝2 1 for all k 2K.E1/.

In the following proof, we use all the notations of Remark 2.2.10.

Proof. The pair .E; / is a G -equivariant Hilbert K.E1/-B-bimodule (cf. Propositions
2.2.9 and 2.2.11 where A WD K.E1/ and 1 is the inclusion map K.E1/ � L.E1/). By
[26, Proposition 9 (h)], it then remains to prove that�
V.F ˝ıB 1/V

�
� qˇE˛.F ˝ 1S /

�
. ˝ idS /.x/ 2K.E˝ S/ for all x 2K.E1/˝ S:

It suffices to prove that�
V.F ˝ıB 1/V

�
� qˇE˛.F ˝ 1S /

�
T� 2K.E2 ˝ S;E˝ S/ for all � 2 E1 ˝ S;

where T� 2 L.E2 ˝ S;E˝ S/ is defined for all � 2 E2 ˝ S by T�.�/ WD � ˝2˝idS � up
to (2.13). Let � 2 E1˝ S and � 0 WD qˇE1˛�, we have qˇE˛T� D T� 0 . Since ŒF;ˇE.no/�D 0

for all n 2 N , we have qˇE˛.F ˝ 1S /T� D .F ˝ 1S /T� 0 . Moreover, since V� D V�qˇE˛ ,
we have V�T� D V�T� 0 . Hence, V.F ˝ıB 1/V

�T� D V.F ˝ıB 1/V
�T� 0 . Thus, we have�

V.F ˝ıB 1/V
�
� qˇE˛.F ˝ 1S /

�
T� D

�
V.F ˝ıB 1/V

�
� F ˝ 1S

�
T� 0 :
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Therefore, we have to prove that .V.F ˝ıB 1/V
� � F ˝ 1S /T� 2 K.E2 ˝ S; E ˝ S/

for all � 2 qˇE1˛.E1 ˝ S/. Since ¹ıE1.�1/xI �1 2 E1; x 2 C ˝ Sº is a total subset of
qˇE1˛.E1 ˝ S/, it suffices to consider the case where � D ıE1.�1/x with �1 2 E1 and
x 2 qˇC˛.C ˝S/ (cf. Definition 2.1.1 (2) and Remark 2.1.2 (3)). Let y WD .2˝ idS /.x/2
L.E2 ˝ S/. We have � D V1T�1.x/. Hence, we have

T� D .V1 ˝2˝idS 1/T�1y and then V�T� D zV
�
2T�1y:

By a direct computation, we have

zV�2.�1 ˝.2˝idS /ıC V2�/ D .T�1 ˝ıB 1/� for all � 2 E2 ˝ıB .B ˝ S/:

Since V2V
�
2 D qˇE2˛ and V�2V2 D 1, we have

zV�2T�1� D .T�1 ˝ıB 1/V
�
2� for all � 2 qˇE2˛.E2 ˝ S/:

In particular, we have zV�2T�1y D .T�1 ˝ıB 1/V
�
2y (indeed, since x 2 qˇC˛.C ˝ S/ we

have qˇE2˛y D y). Hence, V�T� D .T�1 ˝ıB 1/V
�
2y. In particular, we then obtain the

relation .F ˝ıB 1/V
�T� D .F T�1 ˝ıB 1/V

�
2y. For all �2 2 E2, � 2 E and s 2 S , we have

��;�2 ˝ıB 1 D T�T
�
�2
I

.T ��2 ˝ıB 1/V
�
2.1E2 ˝ s/ D

�
.1E2 ˝ s

�/V2T�2
��
2K.E2 ˝ S;B ˝ S/:

Hence, .k ˝ıB 1/V
�
2.1E2 ˝ s/ 2 K.E2 ˝ S; E˝ıB .B ˝ S// for all k 2 K.E2; E/ and

s 2 S . In particular, since F is an F2-connection for E1 and y 2 L.E2/˝ S , we have�
.F T�1 � T�1F2/˝ıB 1

�
V�2y 2K

�
E2 ˝ S;E˝ıB .B ˝ S/

�
:

However, .V2.F2˝ıB1/V
�
2�F2˝1S /y2K.E2˝S/ (cf. Remark 3.1.3 (2)), ŒF2˝1S ;y�2

K.E2 ˝ S/ (since y 2 2.C /˝ S ) and V.T�1 ˝ıB 1/V
�
2y D T� (since VV� D qˇE˛ and

qˇE˛T� D T� ). This completes the proof.

Definition 3.3.4 (cf. [3, Définition 5.2]). Let A, C , and B be three G -C�-algebras. Let
.E1; 1; F1/ 2 EG .A; C / and .E2; 2; F2/ 2 EG .C; B/. Let E WD E1 ˝2 E2 be the G -
equivariant Hilbert A-B-bimodule defined in Propositions 2.2.9 and 2.2.11, where  W
A! L.E/; a 7! 1.a/˝2 1 denotes the left action of A on E. We denote by F1#GF2
the set of operators F 2 L.E/ satisfying the following conditions:

(a) .E; F / 2 EG .A;B/;

(b) F is an F2-connection;

(c) for all a 2 A, the image of .a/ŒF1 ˝2 1; F �.a
�/ in L.E/=K.E/ is positive.

With the notations and hypothesis of the above definition, we have the following result.

Theorem 3.3.5 (cf. [3, Théorème 5.3]). We assume that the C�-algebra A is separable.
Then, the set F1#GF2 is nonempty and the class of .E; F / in KKG .A;B/ is independent of
F 2 F1#GF2 and only depends on the class of .E1; F1/ in KKG .A;C / and that of .E2; F2/
in KKG .C;B/.
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Proof. The proof is basically identical to that of the non-equivariant case (cf. [18, 26]) or
the equivariant case for actions of quantum groups (cf. [3]). Let us prove that F1#GF2 is
nonempty. Let us denote q WD qˇE˛ for short. Let V 2 L.E˝ıB .B ˝ S/;E˝ S/ be the
isometry associated with the action of G on E. Let T be an F2-connection for E1 such
that ŒT; ˇE.no/� D 0 for all n 2 N (cf. Lemma 3.3.2). Let us fix a strictly positive element
k 2 S . Let us define

� J1 WDK.E1/˝2 1CK.E/ � L.E/ DM.K.E//, J WDK.E/,

� J2 WD C�.¹T � T �; 1 � T 2; ŒT; F1 ˝2 1�º [ ¹ŒT; .a/�I a 2 Aº/ � L.E/,

� F WD Œ¹Ad.F1 ˝2 1/; Ad.T /º [ ¹Ad..a//I a 2 Aº� � Der.J1/,

� J 02 WD C�.¹q.1˝ k/.V.T ˝ıB 1/V
� � q.T ˝ 1S //;

.V.T ˝ıB 1/V
� � q.T ˝ 1S //.1˝ k/qº/ � L.E˝ S/.

Then, we have the following facts.

� J is an invariant closed two-sided ideal of J1.

� J2 is a C�-subalgebra of M.J1IJ /; by assumptionA is separable, then so is J2; hence,
J2 is � -unital.

� F is a separable (since A separable).

� J 02 is a � -unital C�-subalgebra of M.J ˝ S/ (separable).

Let x 2K.E1/˝2 1. We have ıJ1.x/ D V.x ˝ıB 1/V
�. Since V�V D 1, we have�

ıJ1.x/;V.T ˝ıB 1/V
�
�
D V

�
Œx; T �˝ıB 1

�
V�I

V
�
Œx; T �˝ıB 1

�
V� D ıJ

�
Œx; T �

�
2 zM

�
K.E/˝ S

� �
cf. [26, Proposition 9 (e)]

�
:

Hence, �
ıJ1.x/;V.T ˝ıB 1/V

�
�
D V

�
Œx; T �˝ıB 1

�
V� 2 zM

�
K.E/˝ S

�
: (3.4)

Moreover, by Lemma 3.3.3 we have ıJ1.x/.1E ˝ k/.V.T ˝ıB 1/V
� � q.T ˝ 1S // 2

K.E˝ S/ and .V.T ˝ıB 1/V
� � q.T ˝ 1S //ıJ1.x/.1E ˝ k/ 2K.E˝ S/. Hence,�

ıJ1.x/.1E ˝ k/;V.T ˝ıB 1/V
�
�
D
�
ıJ1.x/.1E ˝ k/; q.T ˝ 1S /

�
mod K.E˝ S/:

By combining the fact that ıJ1.x/.1E˝k/2 q.J1˝S/with the fact that ŒT; y�2K.E˝S/

for all y2J1 (cf. [26, Proposition 9 (h)]), we obtain ŒıJ1.x/.1˝k/; q.T˝1S /�2K.E˝S/.
Hence, �

ıJ1.x/.1E ˝ k/;V.T ˝ıB 1/V
�
�
2K.E˝ S/: (3.5)

We also have

ıJ1.x/
�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /; 1E ˝ k

�
D ıJ1.x/

�
V.T ˝ıB 1/V

�
� q.T ˝ 1/

�
.1E ˝ k/

� ıJ1.x/.1E ˝ k/
�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /

�
D ıJ1.x/V.T ˝ıB 1/V

�.1E ˝ k/ � ıJ1.x/.T ˝ 1S /.1E ˝ k/

� ıJ1.x/.1E ˝ k/V.T ˝ıB 1/V
�
C ıJ1.x/.1E ˝ k/q.T ˝ 1S /
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D ıJ1.x/V.T ˝ıB 1/V
�.1E ˝ k/ � ıJ1.x/.1E ˝ k/V.T ˝ıB 1/V

�

� ıJ1.x/.1E ˝ k/.T ˝ 1S /.1 � q/:

Hence,

ıJ1.x/
�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /; .1E ˝ k/q

�
D ıJ1.x/

�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /; 1E ˝ k

�
q

D ıJ1.x/V.T ˝ıB 1/V
�.1E ˝ k/q � ıJ1.x/.1E ˝ k/V.T ˝ıB 1/V

�:

By applying (3.5), we have

ıJ1.x/
�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /; .1E ˝ k/q

�
D
�
ıJ1.x/;V.T ˝ıB 1/V

�
�
.1E ˝ k/q mod K.E˝ S/:

By applying (3.4), we finally obtain

ıJ1.x/
�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /; .1E ˝ k/q

�
2K.E˝ S/: (1)

By combining the previous relation with

ıJ1.x/.1E ˝ k/
�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /

�
2K.E˝ S/ .cf. Lemma 3.3.3/; (2)

we have
ıJ1.x/

�
V.T ˝ıB 1/V

�
� q.T ˝ 1S /

�
.1E ˝ k/q 2K.E˝ S/:

Since the above holds true when replacing T by T � (cf. Remark 3.1.3 (2) and [26, Propo-
sition 9 (b)]), it then follows that ıJ1.x/y 2 J ˝ S for all x 2 J1 and y 2 J 02. We can
apply Theorem 3.2.6. Let us consider M as in the theorem. Let

F WDM 1=2.F1 ˝2 1/ � .1 �M/1=2T:

For all n 2 N , we have ŒF; ˇE.no/� D 0. Indeed, since .E1; F1/ 2 EG .A; C / we have
ŒF1; ˇE1.n

o/� D 0. Hence, ŒF1 ˝2 1; ˇE.n
o/� D 0. We also have ŒT; ˇE.no/� D 0 by

assumption. By Lemma 3.2.5 (ŒM; ˇE.no/� D 0 and M is positive), we also have
ŒM 1=2; ˇE.n

o/�D 0. Similarly, we have Œ.1�M/1=2; ˇE.n
o/�D 0. According to the non-

equivariant case, it only remains to prove that

x
�
V.F ˝ıB 1/V

�
� q.F ˝ 1S /

�
2K.E˝ S/ for all x 2 . ˝ idS /.A˝ S/:

Let us fix x 2 . ˝ idS /.A˝ S/. We have V.F ˝ıB 1/V
� D ıJ .F /. By combining the

formula ıJ .F1 ˝2 1/ D ıK.E1/.F1/ ˝2˝idS 1 with the fact that the pair .E1; F1/ is a
G -equivariant Kasparov A-C -bimodule, we obtain

x
�
ıJ .F1 ˝2 1/ � q

�
.F1 ˝2 1/˝ 1S

��
D x

�
ıK.E1/.F1/ � qˇE1˛.F1 ˝ 1S /

�
˝2˝idS 1

2
�
K.E1/˝ S

�
˝2˝idS 1 � J1 ˝ S:
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Since M is an element of the C�-subalgebra M.J1I J / of M.J1/, we have M 1=2 2

M.J1IJ /. Hence,

.M 1=2
˝ 1S /x

�
ıJ .F1 ˝2 1/ � q

�
.F1 ˝2 1/˝ 1S

��
2 J ˝ S DK.E˝ S/: (3.6)

Let a 2 A and s 2 S , then we have

. ˝ idS /.a˝ s/
�
ıJ .M

1=2/ � q.M 1=2
˝ 1S /

�
ıJ .F1 ˝2 1/

D
�
.a/M 1=2

˝ s
�
ıJ .M

1=2/ �
�
.a/M 1=2

˝ s
�
ıJ .F1 ˝2 1/

(since ŒM ˝ 1S ; q� D 0 we have ŒM 1=2 ˝ 1S ; q� D 0; cf. Lemma 3.2.5) and

.1J ˝ s/ıJ .F1 ˝2 1/; .1J ˝ s/ıJ .M
1=2/ 2 J ˝ S:

Hence,
x
�
ıJ .M

1=2/ � q.M 1=2
˝ 1S /

�
ıJ .F1 ˝2 1/ 2K.E˝ S/: (3.7)

For all a 2 A and s 2 S , since Œ.a/;M � 2 J (recall that Ad..a// 2 F), we have�
. ˝ idS /.a˝ s/;M 1=2

˝ 1S
�
D Œ.a/;M 1=2�˝ s 2 J ˝ S .cf. Lemma 3.2.5/:

Thus, we have Œx;M 1=2 ˝ 1S � 2K.E˝ S/. Hence,

Œx;M 1=2
˝ 1S �

�
ıJ .F1 ˝2 1/ � q

�
.F1 ˝2 1/˝ 1S

��
2K.E˝ S/: (3.8)

By summing up (3.6), (3.7), and (3.8), we have proved that

x
�
ıJ
�
M 1=2.F1 ˝2 1/

�
� q

�
M 1=2.F1 ˝2 1/˝ 1S

��
2K.E˝ S/

(recall that ŒM 1=2 ˝ 1S ; q� D 0). Let

E WD
®
u 2M.J1IJ /I ıJ .u/ � q.u˝ 1S / 2 zM.J ˝ S/ and Œq; u˝ 1S � D 0

¯
:

Then E is a closed subalgebra of M.J1I J /. Indeed, E is clearly a closed subspace of
M.J1IJ /. Moreover, for all u; v 2 E we have

ıJ .uv/ � q.uv ˝ 1S / D ıJ .u/ıJ .v/ � q.u˝ 1S /q.v ˝ 1S /

D ıJ .u/
�
ıJ .v/ � q.v ˝ 1S /

�
C
�
ıJ .u/ � q.u˝ 1S /

�
q.v ˝ 1S /

D
�
ıJ .u/ � q.u˝ 1S /

��
ıJ .v/ � q.v ˝ 1S /

�
C .u˝ 1S /.ıJ .v/ � q.v ˝ 1S //

C
�
ıJ .u/ � q.u˝ 1S /

�
.v ˝ 1S / 2 zM.J ˝ S/

and Œq; uv ˝ 1S � D 0. Hence, we have

ıJ
�
.1 �M/1=2

�
� q

�
.1 �M/1=2 ˝ 1S

�
2 zM.J ˝ S/:
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Therefore, we have

x
�
ıJ
�
.1 �M/1=2

�
� q

�
.1 �M/1=2 ˝ 1S

��
2K.E˝ S/: (3.9)

We also have .ıJ ..1�M/1=2/�q..1�M/1=2˝1S //x2K.E˝S/ by taking the adjoint
in (3.9). In particular, we have Œx; ıJ ..1 � M/1=2/� D Œx; q..1 � M/1=2 ˝ 1S /� mod
K.E˝S/. Moreover, we have Œx; .1�M/˝1S �D�Œx; M˝1S �2K.E˝S/. It follows
from Lemma 4.2.9 that Œx; .1�M/1=2˝1S �2K.E˝S/. Since q is a projection such that
Œq; .1�M/1=2˝ 1S �D 0, we have Œx; q..1�M/1=2˝ 1S /�D Œqxq; .1�M/1=2˝ 1S � 2

K.E˝ S/. Hence, �
x; ıJ

�
.1 �M/1=2

��
2K.E˝ S/: (3.10)

We have
ıJ
�
.1 �M/1=2

�
x
�
ıJ .T / � q.T ˝ 1S /

�
2K.E˝ S/: (3.11)

Indeed, since k is a strictly positive element of S , we can assume that x D x0.1E ˝ k/
with x0 2 . ˝ idS /.A˝ S/. In virtue of (3.10), we have

ıJ
�
.1 �M/1=2

�
x
�
ıJ .T / � q.T ˝ 1S /

�
D x0ıJ

�
.1 �M/1=2

�
.1˝ k/

�
ıJ .T / � q.T ˝ 1/

�
mod K.E˝ S/:

Note that F WD ¹u 2M.J1/I ıJ .u/J
0
2 � J ˝ S and J 02ıJ .u/ 2 J ˝ Sº is a C�-algebra

and 1�M 2 F . Hence, .1�M/1=2 2 F and (3.11) is proved. By using again (3.10), we
prove that

xıJ
�
.1 �M/1=2

��
ıJ .T / � q.T ˝ 1S /

�
2K.E˝ S/: (3.12)

Therefore, we have

x
�
ıJ
�
.1 �M/1=2T

�
� q

�
.1 �M/1=2T ˝ 1S

��
2K.E˝ S/:

Indeed, we have (recall that Œq; .1 �M/1=2 ˝ 1S � D 0)

x
�
ıJ
�
.1 �M/1=2T

�
� q

�
.1 �M/1=2T ˝ 1S

��
D xıJ

�
.1 �M/1=2

�
ıJ .T / � xq

�
.1 �M/1=2 ˝ 1

�
q.T ˝ 1S /

D xıJ
�
.1 �M/1=2

��
ıJ .T / � q.T ˝ 1S /

�
C x

�
ıJ
�
.1 �M/1=2

�
� q

�
.1 �M/1=2 ˝ 1S

��
.T ˝ 1S /:

By (3.9) and (3.12), we obtain

x
�
ıJ
�
.1 �M/1=2T

�
� q

�
.1 �M/1=2T ˝ 1S

��
2K.E˝ S/:

Definition 3.3.6. Under the notations and hypotheses of Theorem 3.3.5, the class x in
KKG .A; B/ of .E; F /, where F 2 F1#GF2, is called the Kasparov product of the class
x1 of .E1; F1/ in KKG .A; C / and the class x2 of .E2; F2/ in KKG .C; B/. We denote x D
x1 ˝C x2.
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As in the non-equivariant case [18,19] and the equivariant case for actions of quantum
groups [3], we have the following theorem.

Theorem 3.3.7. The Kasparov product

KKG .A; C / � KKG .C;B/! KKG .A;B/I .x1; x2/ 7! x1 ˝C x2

is bilinear, contravariant in A, covariant in B , functorial in C , and associative.

Definition 3.3.8. Let A and B be G -C�-algebras.

� Let � W A! B be a G -equivariant �-homomorphism. If the C�-algebra B is � -unital,
then the triple .B;�;0/ is an equivariant KasparovA-B-bimodule and we define Œ�� WD
Œ.B; �; 0/� 2 KKG .A;B/.

� If the C�-algebra A is � -unital, we define 1A WD ŒidA� D Œ.A; 0/� 2 KKG .A;A/.

The Kasparov product generalizes the composition of equivariant �-homomorphisms.
More precisely, we have the following result.

Proposition 3.3.9. Let A, B , and C be G -C�-algebras with B and C � -unital. Let � W
A! C and  W C ! B be G -equivariant �-homomorphisms.

(1) We have ��.Œ �/ D Œ ı �� D  �.Œ��/ in KKG .A;B/.

(2) If A is separable, we have Œ ı �� D Œ��˝C Œ � in KKG .A;B/.

Proposition 3.3.10. Let A and B be two G -C�-algebras. We have that

(1) if B is � -unital and A separable, then x ˝B 1B D x for all x 2 KKG .A;B/,

(2) if A is separable, then 1A ˝A x D x for all x 2 KKG .A;B/.

Only statement (2) is not obvious. For the proof, we will need the following easy
lemma.

Lemma 3.3.11. Let A be a G -C�-algebra and p > 2 an integer. Denote by Mp.A/ the
C�-algebra of matrices of size p with entries inA. Let ıMp.A/ WMp.A/!M.Mp.A/˝ S/

and ˇMp.A/ W N
o !M.Mp.A// be the maps defined by

� ıMp.A/ WD idMp.C/˝ıA W .aij / 7! .ıA.aij //, up to the identifications

Mp.A/ D Mp.C/˝ AI

Mp.C/˝M.A˝ S/ D Mp.M.A˝ S// �M.Mp.A˝ S// DM.Mp.A/˝ S/;

� ˇMp.A/.n
o/.aij /D .ˇA.n

o/aij / and .aij /ˇMp.A/.n
o/D .aijˇA.n

o// for all n 2N and
.aij / 2 Mp.A/.

Then, the pair .ˇMp.A/; ıMp.A// is a continuous action of G on Mp.A/.

Proof of Proposition 3.3.10 (2). The idea of the proof is the same as that of [23, Lemma
3.3] (see also [26, Proposition 17]). Let .E; ; F / be an equivariant Kasparov A-B-
bimodule. Consider the Hilbert B-submodule E2 WD Œ.A/E� of E. Let E1 WD E and F1 WD
F 2 L.E1/. Define maps ij W A! L.Ej ;Ei / for i; j D 1; 2 obtained by range/domain
restriction of .a/ (for a 2 A fixed) and denote i WD i i for i D 1; 2. Note that 1 D 
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and 2 W A! L.E2/ is a non-degenerate �-representation of A on E2. By equivariance
of  , the action .ˇE; ıE/ induces by restriction an action .ˇE2 ; ıE2/ of G on E2 and it
is clear that .E2; 2/ is a G -equivariant Hilbert A-B-bimodule. It is easily seen that we
have an identification of equivariant Hilbert bimodules A˝ E! E2; a˝ � 7! .a/� .
Let F2 2 0 #GF1 � L.E2/. By combining the maps ij , we obtain an equivariant �-
representation � W M2.A/! L.E1 ˚ E2/; .aij / 7! .ij .aij // of M2.A/ on E1 ˚ E2 (cf.
Lemma 3.3.11 and Proposition-Definition 2.1.11). Hence, the pair .E1 ˚ E2; �/ is an
equivariant Hilbert M2.A/-B-bimodule. We claim that the triple .E1 ˚ E2; �; F1 ˚ F2/

is an equivariant Kasparov bimodule. For a 2 A, the operator Ta 2 L.E; A˝ E/ is iden-
tified to 21.a/ through the identification A˝ E D E2. Hence, F112.a/ � 12.a/F2 2
K.E2; E1/ and F221.a/ � 21.a/F1 2 K.E1; E2/ since F2 is an F1-connection (for
A). In particular, if x 2 M2.A/ is an off-diagonal matrix (i.e., the diagonal entries equal
zero), then ŒF1 ˚ F2; �.x/� 2 K.E1 ˚ E2/. Since any element of A is a product of two
elements of A, any diagonal matrix of M2.A/ is a product of two off-diagonal matrices
of M2.A/. Moreover, if x; y 2 M2.A/ are off-diagonal, we have ŒF1 ˚ F2; �.xy/� D
ŒF1 ˚ F2; �.x/��.y/C �.x/ŒF1 ˚ F2; �.y/� 2K.E1 ˚ E2/. Hence, ŒF1 ˚ F2; �.x/� 2
K.E1˚ E2/ if x 2M2.A/ is diagonal. This relation extend by linearity to all x 2M2.A/.
The relation �.x/.1� .F1 ˚ F2/2/ 2K.E1 ˚ E2/ holds if x 2M2.A/ is diagonal. Since
we can factorize a finite number of elements of A by a common element of A, any matrix
of Mp.A/ factorizes on the right by a diagonal matrix. Hence, this relation extends to all
x 2 Mp.A/. The remaning relation of Definition 3.1.1 is proved in a same way. With the
identifications M.K.E1 ˚ E2/˝ S/ D L..E1 ˚ E2/˝ S/ D L..E1 ˝ S/˚ .E2 ˝ S//,
we have

ıK.E1˚E2/.F1 ˚ F2/DıK.E1/.F1/˚ ıK.E2/.F2/ and qˇE1˚E2˛DqˇE1˛ ˚ qˇE2˛:

By using the above trick and the identification M2.A/˝ S D M2.A˝ S/, we prove that

.� ˝ idS /.x/
�
ıK.E1˚E2/.F1˚F2/� qˇE1˚E2˛

�
.F1˚F2/˝ 1S

��
2K

�
.E1˚ E2/˝ S

�
for all x 2 M2.A/˝ S . Let � WD .E1 ˚ E2; �; F1 ˚ F2/ 2 EG .M2.A/; B/. For t 2 Œ0; 1�,
let �t W A! M2.A/ be the G -equivariant �-homomorphism defined for all a 2 A by

�t .a/ WD

 
.1 � t2/a t

p
1 � t2a

t
p
1 � t2a t2a

!
:

We have ��0.�/ D .E1; 1; F1/ ˚ .E2; 0; F2/ and ��1.�/ D .E1; 0; F1/ ˚ .E2; 2; F2/ in
EG .A; B/. Moreover, .E2; 0; F2/ and .E1; 0; F1/ are degenerate G -equivariant Kasparov
bimodules. Hence, the triple .E1˚E2; .� ı �t /t2Œ0;1�;F1˚F2/ defines a homotopy between
.E1; 1; F1/ and .E2; 2; F2/ (cf. Proposition 3.1.5 (1) and Example 3.1.7 (3)). This com-
pletes the proof.

Remark 3.3.12. If x WD Œ.E; F /� 2 KKG .A;B/ (with A separable), we can always require
the left action A! L.E/ of A on E to be non-degenerate (cf. Proposition 3.3.10 (2)).
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The result below is a generalization of Proposition 3.3.9 (2) and follows straightfor-
wardly from the above remark.

Proposition-Definition 3.3.13. Let A, B , and C be G -C�-algebras with B �-unital. Let
� W A! B be a G -equivariant �-homomorphism.

(1) If C is separable, we have x˝A Œ��D ��.x/ in KKG .C;B/ for all x 2 KKG .C;A/.

(2) IfA is separable, we have Œ��˝B x D ��.x/ in KKG .A;C / for all x 2 KKG .B;C /.

In particular, if A is a separable G -C�-algebra, then the abelian group KKG .A; A/

endowed with the Kasparov product is a unital ring called the equivariant Kasparov ring
of A.

3.4. Descent morphisms

Lemma 3.4.1 (cf. [3, Lemme 6.13]). Let .E; / be a G -equivariant A-B-bimodule with a
non-degenerate left action  WA!L.E/ and F 2L.E/. We assume that Œ.a/;F �2K.E/

for all a2A, ŒF;ˇE.no/�D0 for all n2N , and .ıK.E/.F /�qˇE˛.F˝1S //.˝ idS /.x/�
K.E˝ S/ for all x 2A˝ S . LetD be the bidual G -C�-algebra ofA (cf. Notations 2.3.4).

(1) Through the identification of Hilbert D-B-bimodules (cf. Theorem 2.3.11, Corol-
lary 2.4.24, and Proposition-Definition 2.4.26 for the definitions and notations)

EA;R ˝ E! EE;RI qˇA˛.a˝ �/˝ � 7! qˇE˛
�
.a/�˝ �

�
; (3.13)

the operator �R.F /�EE;R
2 L.EE;R/ is identified to an F -connection for EA;R.

(2) The operator F 2 L.E/ is identified to a �R.F /�EE;R
-connection through the

identification of Hilbert A-B-bimodules E�A;R ˝D EE;R D E.

Proof. (1) It is clear that the formula

.A˝H/˝ E! E˝HI .a˝ �/˝ � 7! .a/�˝ � (3.14)

defines an adjointable unitary of Hilbert B-modules, which intertwines the left actions of
A˝K . However, we have .ˇA.no/a/D ˇE.n

o/.a/ for all n 2N and a 2A. Hence, the
above unitary induces by restriction the identification of HilbertD-B-bimodules EA;R ˝
E D EE;R. By compactness of the commutators Œ.a/; F � for all a 2 A, the operator
F˝1H2L.E˝H/ is identified to an F -connection through (3.14). Hence, the operator
.F˝1H/�EE;R

2L.EE;R/ is identified to an F -connection through (3.13). Moreover, since
.ıK.E/.F /�F ˝ 1S /. ˝ idS /.qˇA˛.A˝ S//�K.E˝ S/, the operator �R.F /�EE;R

�

.F ˝ 1H/�EE;R
is identified to a 0-connection (cf. [26, Proposition 9 (d)]) through (3.14).

Hence, the operator �R.F /�EE;R
2L.EE;R/ is identified to anF -connection through (3.13)

(cf. [26, Proposition 9 (c)]).
(2) By associativity, we have E�A;R ˝D EE;R D .E

�
A;R ˝D EA;R/˝A E D A˝A E (cf.

[9, Proposition 7.12]). By non-degeneracy of  , we have A ˝A E D E. We then obtain
a canonical identification of Hilbert A-B-bimodules E�A;R ˝D EE;R D E. For � 2 EA;R,
the operator T�� 2 L.EE;R;E

�
A;R ˝D EE;R/ is identified to T �

�
2 L.EA;R ˝ E;E/ up to
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the identifications E�A;R ˝D EE;R D E and EA;R ˝ E D EE;R. Therefore, the fact that
F 2 L.E/ is a �R.F /�EE;R

-connection is just a restatement of (1).

The result below will be used in the proof of Lemma 3.4.3.

Lemma 3.4.2. If m 2M.A/ is ıA-invariant, then Œ�.m/; y�.x/� D 0 for all x 2 yS .

Proof. Let us fix a ıA-invariant element m of M.A/ and x 2 yS . We have to show that
Œ�L.m/; 1A ˝ �.x/�D 0. This follows from the formula �L.m/D qˇA˛.m˝ 1H/ and the
commutation relation ŒqˇA˛; 1A ˝ �.x/� D 0 ensuing from yS � yM 0 � ˛.N /0.

Lemma 3.4.3 (cf. [3, Lemme 6.14] and [31, Proposition 5.3]). We follow the notations
and hypotheses of Lemma 3.4.1. Let E0 WDEE;R be the G -equivariant HilbertD-B-bimod-
ule defined in Corollary 2.4.24 and Proposition-Definition 2.4.26. Let F0 WD �R.F /�E02
L.E0/. Let 0 WD! L.E0/; d 7! . ˝ idK/.d/�E0 be the left action ofD on E0. Then,
we have (cf. Proposition-Definition 2.4.13)�

0�.D Ì G /; �K.E0/.F0/
�
�K.E0 Ì G /:

If .E; ; F / is a G -equivariant Kasparov A-B-bimodule, then the triple .E0; 0; F0/ is
a G -equivariant Kasparov D-B-bimodule and the triple .E0 Ì G ; 0�; �K.E0/.F0// is a
yG -equivariant Kasparov D Ì G -B Ì G -bimodule.

Proof. From the relations ..F ˝ 1S /qˇE˛ � ıK.E/.F //. ˝ idS /.A˝ S/ � K.E/˝ S

and R.S/KDK , we infer that ..F˝1/qˇE y̨ ��R.F //.˝idK/.A˝K/�K.E˝H/.
Hence, ..F ˝ 1/�E0 �F0/0.D/�K.E0/. We also have 0.D/.F0 � .F ˝ 1H/�E0/�
K.E0/. Hence, Œ0.d/; F0� D Œ0.d/; .F0 ˝ 1H/�E0 � mod K.E0/. By compactness of
the commutators Œ.a/; F � for all a 2 A, we have Œ. ˝ idK/.x/; F ˝ 1H� 2K.E˝H/

for all x 2 A˝K . In particular, Œ0.d/; .F0 ˝ 1H/�E0 � 2K.E0/ for all d 2 D. Hence,
Œ0.d/; F0� 2K.E0/ for all d 2 D. Let d 2 D and x 2 yS . We have�

0�
�
�D.d/y�D.x/

�
; �K.E0/.F0/

�
D �K.E0/

��
0.d/; F0

��
y�K.E0/.x/

C �K.E0/

�
0.d/

��
y�K.E0/.x/; �K.E0/.F0/

�
:

The first term of the right-hand side belongs to K.E0 Ì G / since Œ0.d/; F0� 2 K.E0/

(cf. Corollary 2.4.10) and the second one is zero since Œy�K.E0/.x/; �K.E0/.F0/� D 0 (cf.
Lemmas 2.4.25 and 3.4.2). Therefore, we have�

0�
�
�D.d/y�D.x/

�
; �K.E0/.F0/

�
2K.E0 Ì G / for all d 2 D and x 2 yS:

Hence, Œ0�.D Ì G /;�K.E0/.F0/��K.E0 Ì G /. Assume that .E; ;F / is a G -equivariant
Kasparov A-B-bimodule. By arguing as at the beginning of the proof, we prove the
remaining relations of Definition 3.1.1 so that the triple .E0; 0; F0/ is a Kasparov D-
B-bimodule. By invariance of F0, the triple .E0; 0; F0/ is a G -equivariant Kasparov
A-B-bimodule (cf. Remark 3.1.3 (3)). We prove the remaining relations of Definition 3.1.1
so that the triple .E0 Ì G ; 0�; �K.E0/.F0// is a Kasparov D-B-bimodule. For instance,
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we have

0�
�
y�D.x/�D.d/

��
�K.E0/.F0/

�
� �K.E0/.F0/

�
D y�K.E0/.x/�K.E0/

�
0.d/.F

�
0 �F0/

�
2K.E0/ÌG .cf. Proposition-Definition 2.4.13/;

for all d 2D and x 2 yS . Moreover, the triple .E0 Ì G ; 0�;�K.E0/.F0// is a G -equivariant
Kasparov D-B-bimodule (cf. Lemma 2.4.6 and Remark 3.1.3 (3)).

Now, we are in position to define the descent morphism.

Theorem 3.4.4 (cf. [3, Proposition 6.18 and Théorème 6.19], [4, Remarque 7.7 (b)], and
[31, Proposition 5.3 and Lemme 5.4]). Let A, B , and C be G -C�-algebras.

(1) If .E; F / is a G -equivariant Kasparov A-B-bimodule (with a non-degenerate left
action), then .EÌG ;F˝�B1/ is a yG -equivariant KasparovAÌG -BÌG -bimodule.
Moreover, if .E1; F1/ and .E2; F2/ are unitarily equivalent (resp. homotopic)
G -equivariant Kasparov A-B-bimodules, then so are .E1 Ì G ; F1 ˝�B 1/ and
.E2 Ì G ; F2 ˝�B 1/.

Let JG W KKG .A; B/ ! KK yG .A Ì G ; B Ì G / be the homomorphism of abelian groups
defined for all Œ.E; F /� 2 KKG .A;B/ (with a non-degenerate left action) by

JG

��
.E; F /

��
WD
�
.E Ì G ; F ˝�B 1/

�
:

(2) Let � W A! B be a G -equivariant �-homomorphism. We recall that the equiv-
ariance of � allows us to define a yG -equivariant �-homomorphism �� W A Ì G !

B Ì G (cf. Proposition 2.4.12 (1)). We have JG .Œ��/D Œ���. In particular, we have
JG .1A/ D 1AÌG .

(3) Assume the C�-algebra A to be separable. For all x1 2 KKG .A; C / and x2 2
KKG .C;B/, we have

JG .x1 ˝C x2/ D JG .x1/˝CÌG JG .x2/:

The following proof is broadly inspired by those of [31, Proposition 5.3 and Lemma
5.4], of which we take some of the notations. In the proof, we will also follow the notations
introduced in Lemmas 3.4.1 and 3.4.3.

Proof. (1) Let .E; ;F / be a G -equivariant Kasparov A-B-bimodule (with a non-degener-
ate left action). Let .E0; 0; F0/ be the G -equivariant Kasparov D-B-bimodule defined in
Lemma 3.4.3. Note that E˚ E0 is a G -equivariant Hilbert B-module. We can consider the
canonical morphism �K.E˚E0/ WL.E˚ E0/!M.K.E˚ E0/ Ì G /. Up to the canonical
identifications K.E˚ E0/Ì G DK..E˚ E0/Ì G / (cf. Corollary 2.4.10) and .E˚ E0/Ì
G D .E Ì G /˚ .E0 Ì G /, we can consider the following restrictions of �K.E˚E0/:

i W L.E/! L.E Ì G /I

i0 W L.E0;E/! L.E0 Ì G ;E Ì G /I

i0 W L.E;E0/! L.E Ì G ;E0 Ì G /I

i00 W L.E0/! L.E0 Ì G /:
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Note that, up to the identifications K.EÌ G /DK.E/Ì G and K.E0 Ì G /DK.E0/Ì G ,
we have i D �K.E/ and i00 D �K.E0/. By using the identification E�A;R ˝0 E0 D E (cf.
Lemma 3.4.1 (2)), for � 2 E�A;R let T� 2 L.E0; E/ be the operator defined by T� .�/ D
� ˝0 � for all � 2 EE;R. For � 2H, we denote by �� 2L.E;E˝H/ the operator defined
by ��.�/ WD � ˝ � for all � 2 E. It should be noted that ��� .�

0 ˝ �0/ D h�; �0i� 0 for all
� 0 2 E and �0 2 H. It follows from ŒT�0.x/T

�
�
I �; � 2 EA;R; x 2 D� D .A/ that�

i0.T� /0�.x/i
0.T �� /I x 2 D Ì G ; �; � 2 E�A;R

�
D �.A Ì G /:

By combining the non-degeneracy of the canonical morphism �D WD!M.D Ì G / with
the fact that 0�.�D.d//D i00 .0.d// for all d 2D, we have that �.A Ì G / is the closed
linear span of the elements of the form

i0
�
T�0.b/

�
0�.x/i

0.0.c/T
�
� /; with x 2 D Ì G ; b; c 2 D; and �; � 2 E�A;R:

Let us prove that i.F / commutes with these elements modulo K.E Ì G /. We will carry
out the computations modulo K.E Ì G / by using the inclusions

i0
�
K.E0;E/

�
0�.A Ì G / �K.E0 Ì G ;E Ì G /I (3.15)

0�.A Ì G /i0
�
K.E;E0/

�
�K.E Ì G ;E0 Ì G /: (3.16)

Let us prove (3.15) since (3.16) will follow by taking the adjoint in (3.15). By the relation
K.E0;E/DŒK.E0;E/K.E0/�, it suffices to prove that i00 .K.E0//0�.AÌG /�K.E0ÌG /.
Let k 2K.E0/ and x 2AÌ G . In virtue of the non-degeneracy of the canonical morphism
y�A W yS !M.AÌ G /, we can assume that x D y�A.y/x0 with y 2 yS and x0 2 AÌ G . By the
equivariance of 0�, we have 0�.x/Dy�K.E0/.y/0�.x

0/. Hence, i00 .k/0�.x/2K.E0ÌG /

since i00 .k/y�K.E0/.y/ 2K.E0/ Ì G and 0�.x/ 2M.K.E0/ Ì G /.
Let us fix x 2 D Ì G , b; c 2 D, and �; � 2 E�A;R. We have

i.F /i0
�
T�0.b/

�
0�.x/i

0
�
0.c/T

�
�

�
D i0

�
F T�0.b/

�
0�.x/i

0
�
0.c/T

�
�

�
:

Let � D .a˝ �0�/qˇA y̨ with a 2A and �0 2H. Let �0D qˇE y̨.�˝�/ 2 E0 with � 2 E and
� 2 H. Let .e.l/ij /16l6k; 16i;j6nl be a system of matrix units of N . We have (cf. [9,
Proposition-Definition A.2.19])

T� .�0/ D

kX
lD1

n�1l

nlX
i;jD1

˝
�0; y̨

�
e
.l/
j i

�
�
˛
.a/ˇE

�
e
.l/o
ij

�
�:

In particular, we have

F T� .�0/ D

kX
lD1

n�1l

nlX
i;jD1

˝
�0; y̨

�
e
.l/
j i

�
�
˛
F.a/ˇE

�
e
.l/o
ij

�
� D F.a/��� 0.�0/

and since ŒF; ˇE.no/� D 0 for all n 2 N , we also have

T� .F ˝ 1/.�0/ D

kX
lD1

n�1l

nlX
i;jD1

˝
�0; y̨

�
e
.l/
j i

�
�
˛
.a/FˇE

�
e
.l/o
ij

�
� D .a/F ��� 0.�0/:
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Hence, we have F T� � T� .F ˝ 1/�E0D ŒF; .a/���� 0�E02 K.E0;E/. Thus, we have (cf.
(3.15))

i0
�
F T�0.b/

�
0�.x/ D i0

�
T� .F ˝ 1/0.b/

�
0�.x/ mod K.E0 Ì G ;E Ì G /: (3.17)

We recall (cf. proof of Lemma 3.4.3) that�
.F ˝ 1/�E0 �F0

�
0.D/ �K.E0/: (3.18)

We have

i.F /i0
�
T�0.b/

�
0�.x/i

0
�
0.c/T

�
�

�
D i0

�
T� .F ˝ 1/0.b/

�
0�.x/i

0
�
0.c/T

�
�

�
mod K.E Ì G / (3.17)

D i0
�
T�F00.b/

�
0�.x/i

0
�
0.c/T

�
�

�
mod K.E Ì G / (3.18); (3.15)

D i0.T� /i
0
0 .F0/0�

�
�D.b/x�D.c/

�
i0.T �� / mod K.E Ì G /

D i0.T� /0�
�
�D.b/x�D.c/

�
i00 .F0/i

0.T �� / mod K.E Ì G / .Lemma 3.4.3/

D i0
�
T�0.b/

�
0�.x/i

0
�
0.c/F0T

�
�

�
mod K.E Ì G /:

By using (3.16) and Definition 3.1.2 (3), we prove in a similar way that

0�.x/i
0
�
0.c/.F ˝ 1/T

�
�

�
D 0�.x/i

0
�
0.c/T

�
� F

�
mod K.E Ì G ;E0 Ì G /I

0.D/
�
.F ˝ 1/�E0 �F0

�
�K.E0/;

which allows us to conclude the above computation by stating that

i.F /i0
�
T�0.b/

�
0�.x/i

0
�
0.c/T

�
�

�
D i0

�
T�0.b/

�
0�.x/i

0
�
0.c/T

�
�

�
i.F / mod K.E Ì G /:

The other statements of (3.1) are obtained by a direct computation. For instance, for all
x 2 A Ì G we have �.x/.i.F /� � i.F // 2 K.E Ì G /. Indeed, this follows from the
fact that ¹y�.y/i..a//I y 2 yS; a 2 Aº is a total subset of �.A Ì G / and the fact that
y�.y/i..a//.i.F /� � i.F //D y�.y/i..a/.F � �F //2K.EÌG / for all y 2 yS and a 2A.

It follows from the definition of the dual action (2.4.4) and the fact that TF � D i.F /T�
for all � 2 E that i.F / is ıEÌG -invariant. It is also straightforward that Œi.F /;˛EÌG .n/�D 0

for all n 2 N . Hence, .E Ì G ; �; i.F // is an equivariant Kasparov bimodule (Remark
3.1.3 (3)).

It is clear that .E;;F /2EG .A;B/ defines a unique .EÌG ; �; i.F //2E yG .AÌG ;BÌG /

(cf. Proposition 2.4.7). If .E; F / 2 EG .A; BŒ0; 1�/ is a homotopy between .E1; F1/ and
.E2; F2/, then .E Ì G ; i.F // is a homotopy between .E1 Ì G ; i.F1// and .E2 Ì G ; i.F2//.
This statement makes sense in virtue of the following result.

Lemma 3.4.5. There exists a unique equivariant �-isomorphism

BŒ0; 1� Ì G ! B Ì G Œ0; 1�I �BŒ0;1�.f /y�BŒ0;1�.x/ 7!
�
t 7! �B

�
f .t/

�
y�B.x/

�
:
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Proof of Lemma 3.4.5. We have the identifications (cf. Definition 3.1.4 (4))

L
�
BŒ0; 1�˝H

�
DM

�
BŒ0; 1�˝K

�
DM

�
.B ˝K/Œ0; 1�

�
DM.B ˝K/Œ0; 1� D L.B ˝H/Œ0; 1�:

For f 2 BŒ0; 1� and x 2 yS , the operator �BŒ0;1�;L.f /.1BŒ0;1� ˝ �.x// 2 L.BŒ0; 1�˝H/

is identified to the continuous function Œt 7! �B;L.f .t//.1B ˝ �.x//� 2 L.B ˝H/Œ0; 1�.
Furthermore, we also have the identifications

L.EBŒ0;1�;L/ D
®
T 2 L

�
BŒ0; 1�˝H

�
I TqˇBŒ0;1�˛ D T D qˇBŒ0;1�˛T

¯
I

L.EB;L/ D
®
T 2 L.B ˝H/I TqˇB˛ D T D qˇB˛T

¯
:

We then obtain an identification between the C�-algebras L.EBŒ0;1�;L/ and L.EB;L/Œ0; 1�,
which identifies �BŒ0;1�.f /y�BŒ0;1�.x/with Œt 7!�B.f .t//y�B.x/�. By restriction, we obtain
an injective �-homomorphism � WBŒ0;1�ÌG!BÌG Œ0; 1�. Moreover, for all b2B , x2 yS ,
and f 2 C.Œ0; 1�/ we have f ˝ �B.b/y�B.y/ D �.�BŒ0;1�.f ˝ b/y�B.x// (cf. BŒ0; 1� D
C.Œ0; 1�/˝ B and B Ì G Œ0; 1� D C.Œ0; 1�/˝ B Ì G ), which proves that the range of �
is dense. The surjectivity of � is then proved. The G -equivariance of � is a direct conse-
quence of the definition.

End of the proof of Theorem 3.4.4. (2) Straightforward.
(3) Let x1 2 KKG .A; C / and x2 2 KKG .C; B/. For i D 1; 2, we consider an equiv-

ariant Kasparov bimodule .Ei ; i ; Fi / such that xi D Œ.Ei ; i ; Fi /�. Let us consider the
G -equivariant Hilbert B-module E WD E1 ˝2 E2, the G -equivariant �-representation  W
A!L.E2/ defined by .a/ WD 1.a/˝2 1 for all a 2 A and an operator F 2 F1#GF2 �

L.E/ (cf. Definition 3.3.4). Let y WD x1 ˝C x2 D Œ.E; ; F /� (cf. Theorem 3.3.5 and
Definition 3.3.6). For i D 1; 2, denote by .E0i ; 

0
i ; F

0
i / (resp. .E0;  0; F 0/) the equivariant

Kasparov bimodules obtained from .Ei ; i ; Fi / (resp. .E; ; F /) by the crossed product
construction. By definition, we have JG .xi / D Œ.E0i ; 

0
i ; F

0
i /� for i D 1; 2 and JG .y/ D

Œ.E0; 0;F 0/�. We have a canonical identification E0DE01˝ 02 E
0
2, which intertwines the left

actions (cf. Proposition 2.4.14). Let us denote by � WK.E/!M.K.E/Ì G / and y� W yS!
M.K.E/ÌG / the canonical morphisms. We recall that F 0D�.F / up to the identification
L.E0/DM.K.E/Ì G / (cf. Proposition 2.4.9). We also have F 01˝ 02 1D �.F1˝2 1/ up
to the identification E0 D E01˝ 02 E

0
2. We have .a/ŒF1˝2 1;F �.a/

� 2L.E/CCK.E/

for all a 2 A by assumption. For all a 2 A and u 2 A Ì G , we have

 0.u/�
�
.a/

�
ŒF 01 ˝ 02 1; F

0��
�
.a/�

�
 0.u/�

D  0.u/�
�
.a/ŒF1 ˝2 1; F �.a/

�
�
 0.u/� 2 L.E0/C CK.E0/

since  0.u/�.L.E/C/ 0.u/� � L.E0/C and  0.u/�.K.E// 0.u/� �K.E0/.
The positivity condition follows from the non-degeneracy of the canonical morphism

�A W A!M.A Ì G /. Indeed, for any v 2 A Ì G there exist a 2 A and u 2 A Ì G such
that v D u�A.a/. Then  0.v/ D  0.u/ 0.�A.a// D  0.u/�..a//. The compatibility with
the direct sum is straightforward.
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In a similar way, we prove the following theorem.

Theorem 3.4.6. Let A, B , and C be yG -C�-algebras.

(1) If .F; G/ is a yG -equivariant Kasparov A-B-bimodule (with a non-degenerate
left action), then .F Ì yG ; G ˝y�B 1/ is a G -equivariant Kasparov A Ì yG -B Ì yG -
bimodule. Moreover, if .F1;G1/ and .F2;G2/ are unitarily equivalent (resp. homo-
topic) yG -equivariant Kasparov A-B-bimodules, then so are .F1 Ì yG ; G1 ˝y�B 1/
and .F2 Ì yG ; G2 ˝y�B 1/.

Let J yG W KK yG .A; B/! KKG .A Ì yG ; B Ì yG / be the homomorphism of groups defined for
all Œ.F; G/� 2 KK yG .A;B/ (with a non-degenerate left action) by

J yG

��
.F; G/

��
D
�
.F Ì yG ; G ˝y�B 1/

�
:

(2) Let � W A! B be a yG -equivariant �-homomorphism. We recall that the equiv-
ariance of � allows us to define a G -equivariant �-homomorphism �� W A Ì yG !
B Ì yG . We have J yG .Œ��/ D Œ���. In particular, we have J yG .1A/ D 1AÌ yG

.

(3) Assume the C�-algebra A to be separable. For all x1 2 KK yG .A; C / and x2 2
KK yG .C;B/, we have

J yG .x1 ˝C x2/ D J yG .x1/˝CÌ yG
J yG .x2/:

Notations 3.4.7. Before stating the main theorem of this article, we need to specify some
further notations. Let A (resp. B) be a G (resp. yG )-C�-algebra. Let D (resp. E) be the
bidual G (resp. yG )-C�-algebra defined in Notations 2.3.4. We recall that EA;R (resp. EB;�)
defines a G (resp. yG )-equivariant Morita equivalence between A (resp. B) and D (resp.
E) (cf. Theorem 2.3.11). Let us define

bA WD
�
.EA;R; 0/

�
2 KKG .D;A/ and aA WD

�
.E�A;R; 0/

�
2 KKG .A;D/�

resp. ybB WD
�
.EB;�; 0/

�
2 KK yG .E;B/ and yaB WD

�
.E�B;�; 0/

�
2 KK yG .B;E/

�
:

Lemma 3.4.8. Let A be a separable G (resp. yG )-C�-algebra. Let D (resp. E) be the
bidual G (resp. yG )-C�-algebra of A. We have

bA ˝A aA D 1D and aA ˝D bA D 1A�
resp. ybA ˝A yaA D 1E and yaA ˝E ybA D 1A

�
:

In particular, if A and B are separable G (resp. yG )-C�-algebras, then the map

KKG .A;B/! KKG .Dg;Dd/I x 7! bA ˝A x ˝B aB�
resp. KK yG .A;B/! KK yG .Eg; Ed/I x 7! ybA ˝A x ˝B yaB

�
are isomorphisms of abelian groups (cf. Convention 2.5.26 for the writing conventions).
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Proof. This is a consequence of [9, Proposition 7.12] and Theorem 2.3.11.

We can state the main result of this paragraph. We refer the reader to [3, Théorème
6.20], [3, Remarque 7.7 (b)], and [31, §5.1] for the corresponding statement in the quan-
tum group framework.

Theorem 3.4.9. Let A and B be G (resp. yG )-C�-algebras. If A is separable and B is
� -unital, then for all x 2 KKG .A;B/ (resp. x 2 KK yG .A;B/), we have

J yG ı JG .x/ D bA ˝A x ˝B aB
�
resp. JG ı J yG .x/ D

ybA ˝A x ˝B yaB
�

up to the identifications .AÌ G /Ì yG DDg and .B Ì G /Ì yG DDd (resp. .AÌ yG /Ì G D

Eg and .B Ì yG / Ì G D Ed) (cf. Theorem 2.3.7).

Proof. Let x 2 KKG .A; B/. It suffices to prove that J yG .JG .x//˝Dd bB D bA ˝A x. Let
.E; ; F / 2 EG .A;B/ such that x D Œ.E; ; F /�. With no loss of generality, we can assume
that the �-representation  is non-degenerate. Let us consider the canonical morphisms � W
K.E/!M.K.E/ Ì G / and y� W K.E/ÌG!M..K.E/ÌG /Ì yG /. We make the identifi-
cations M..K.E/ÌG /Ì yG /DL..EÌG /Ì yG / (cf. Proposition 2.4.9 and Corollary 2.4.20).
We have

J yG ı JG .x/ D
��
.E Ì G / Ì yG ; y� ı �.F /

��
(recall that .F˝y�B 1/˝�B 1 is identified with y� ı �.F /). Let us compute the Kasparov
product J yG .JG .x//˝Dd bB . Denote by �Dd WDd!L.EB;R/ the equivariant �-representa-
tion given by �Dd.d/ WD d�EB;R for all d 2 Dd. Recall that we have the identification of
equivariant HilbertDg-B-bimodules .EÌG /Ì yG˝�Dd

EB;R D EE;R (cf. Corollary 2.4.24)
and the operator y�.�.F // is identified to �R.F /�EE;R

. Hence,

J yG

�
JG .x/

�
˝Dd bB D

��
EE;R; �R.F /

��
:

Let us compute the Kasparov product bA ˝A x. We have an identification of Hilbert
Dg-B-bimodules EA;R ˝ ED EE;R (cf. Lemma 3.4.1 (1)). It is easily seen that this iden-
tification is G -equivariant. By Lemma 3.4.1, the operator �R.F /�EE;R

2 L.EA;R ˝ E/ is
an F -connection. Since the positivity condition is trivial, we have proved that bA ˝A x D

Œ.EE;R; �R.F //�.

Corollary 3.4.10. The homomorphisms JG and J yG are isomorphisms of abelian groups.

Proof. This follows from Lemma 3.4.8 and Theorem 3.4.9.

Corollary 3.4.11. If A is a separable G (resp. yG )-C�-algebra, then the descent morphism
JG W KKG .A;A/! KK yG .A Ì G ; A Ì G / (resp. J yG W KK yG .A;A/! KKG .A Ì yG ; A Ì yG /) is
an isomorphism of rings.

Proof. This is a straightforward consequence of Theorem 3.4.9 and Corollary 3.4.10.
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4. Monoidal equivalence and equivariant KK-theory

In this chapter, we fix a colinking measured quantum groupoid G WD GG1;G2 between two
monoidally equivalent regular locally compact quantum groups G1 and G2.

4.1. Description of the GG1;G2
-equivariant Kasparov bimodules

In this paragraph, we fix two G -C�-algebras A and B . We also fix a G -equivariant Hilbert
A-B-bimodule .E; /. We use all the notations and results of [9, §5.2] and Section 2.5.1
concerning these objects. We assume the C�-algebra A to be separable. In particular, for
j D 1; 2 the C�-algebra Aj is separable.

Lemma 4.1.1. Let F 2 L.E/. There exist unique operators F1 2 L.E1/ and F2 2 L.E2/

such that F D F1 ˚ F2. We have the following statements:

(1) the pair .E; ; F / is a Kasparov A-B-bimodule if and only if for j D 1; 2 the pair
.Ej ; j ; Fj / is a Kasparov Aj -Bj -bimodule,

(2) the conditions below are equivalent:

(i) . ˝ idS /.x/.ıK.E/.F /� qˇE˛.F ˝ 1S // 2K.E˝ S/ for all x 2 A˝ S ,

(ii) .k˝ idSkj /.x/.ı
k
K.Ej /

.Fj /�Fk˝1Skj/2K.Ek˝Skj/ for all x2Ak˝Skj
and j; k D 1; 2,

(3) if the triple .E; ; F / is a G -equivariant Kasparov A-B-bimodule, then the triple
.Ej ; j ; Fj / is a Gj -equivariant Kasparov Aj -Bj -bimodule for j D 1; 2.

Proof. We recall that ˇE.C2/ � Z.L.E// (cf. [2, Equation (3.11)]). Hence, we have
ŒF; qE;j �D 0 for j D 1; 2. Let Fj WD F�Ej2L.Ej / for j D 1; 2. We have F D F1 ˚ F2.
The equivalence of the first statement follows from the relation K.E/DK.E1/˚K.E2/

and the definitions; for instance we have Œ.a/;F �� D
P
jD1;2Œj .qA;ja/;Fj �qE;j � for all

� 2 E. Condition (ii) is just a straightforward restatement of condition (i). Statement (3)
follows by taking k D j in (ii) and by using statement (1).

Proposition-Definition 4.1.2. With the notations and hypotheses of Lemma 4.1.1, for j D
1; 2 the map

JGj ;G W KKG .A;B/! KKGj .Aj ; Bj /I
�
.E; ; F /

�
7!
�
.Ej ; j ; Fj /

�
is a homomorphism of abelian groups.

Proof. We first prove that JGj ;G is well defined. By Lemmas 2.5.6 (1) and 2.5.8 (1), we
have well-defined maps:

JGj ;G W EG .A;B/! EGj .Aj ; Bj /I .E; ; F / 7! .Ej ; j ; Fj / for j D 1; 2:

The fact that the map JGj ;G factorizes over the quotient map EG .A;B/! KKG .A;B/ will
follow from the following result.
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Lemma 4.1.3. Let C be a third G -C�-algebra. Let g W B ! C be a G -equivariant �-
homomorphism. We recall that g induces a Gj -equivariant �-homomorphism gj W Bj !

Cj for j D 1; 2 (cf. [9, Proposition 5.2.3 (1)]). Then, the diagram

EG .A;B/ EG .A; C /

EGj .Aj ; Bj / EGj .Aj ; Cj /

g�

JGj ;G
JGj ;G

.gj /�

commutes for all j D 1; 2.

The proof of the above lemma is effortless and the details are left to the reader. We
recall thatBŒ0;1� is a G -C�-algebra (cf. Definition 3.1.4 (4)). Then, we apply the notations
of [9, §5.2] as follows:

� BŒ0; 1�j WD ˇBŒ0;1�."j /BŒ0; 1� D Bj Œ0; 1� for j D 1; 2;

� ık
Bj Œ0;1�

W Bj Œ0; 1� ! M.Bk Œ0; 1� ˝ Skj / D M.Bk ˝ Skj /Œ0; 1� for j; k D 1; 2, the
�-homomorphism defined by ık

Bj Œ0;1�
.f /.t/ WD ıkBj .f .t// for all f 2 Bj Œ0; 1� and t 2

Œ0; 1�.

We recall that for t 2 Œ0;1� the evaluation map et WBŒ0;1�!B is G -equivariant. Moreover,
for jD1;2, it is clear that the �-homomorphism .et /j WBj Œ0;1�!Bj is the evaluation at t .
It then follows from the above lemma that the image of a homotopy of EG .A; BŒ0; 1�/ by
EG .A;BŒ0;1�/!EGj.Aj ;Bj Œ0;1�/ is a homotopy, which finally proves that the map JGj ;G

is well defined on KKG .A;B/. The compatibility with the direct sum is straightforward.

Proposition 4.1.4. Let C be a third G -C�-algebra. For j D 1; 2, we have

(1) JGj ;G .1A/ D 1Aj ,

(2) for all x 2 KKG .A; C / and y 2 KKG .C;B/,
JGj ;G .x ˝C y/ D JGj ;G .x/˝Cj JGj ;G .y/ in KKGj .Aj ; Bj /.

Proof. The first statement is straightforward. Let us write x WD Œ.E; F /� 2 KKG .A; C /

and y WD Œ.E0; F 0/� 2 KKG .C; B/. Let  W C ! L.E0/ be the left action of C on E0. Let
F WDE˝ E

0. We have x˝C yD Œ.F;T /� for some T 2F #GF
0�L.F/. In the following,

we use the notations of Section 2.5.1 and Lemma 4.1.1 for the Kasparov bimodules .E;F /,
.E0;F 0/, and .F;T /. We have a well-definedBj -linear isometric mapˆ W Ej ˝j E

0
j !Fj ;

� ˝j � 7! � ˝ �. Let � 2 E and � 2 E0. Let us write � D �c with � 2 E and c 2 C . We
have

qF;j .� ˝ �/ D qE;j � ˝ � D .qE;j �/c ˝ � D .qE;j �/qC;j c ˝ �

D qE;j � ˝ .qC;j c/� D qE;j � ˝ .c/qE0;j� D qE;j � ˝ qE0;j�:

Therefore, the range of ˆ contains the total subset ¹qF;j .� ˝ �/I � 2 E; � 2 E0º of Fj .
Hence, ˆ2L.Ej˝j E

0
j ;Fj / and ˆ is unitary. We have ˆ�.�˝ �/DqE;j �˝j qE0;j� for

all � ˝ � 2 Fj . It is clear that ˆ is Gj -equivariant and intertwines the left actions of Aj .
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Therefore, .Ej ˝j E
0
j ; ˆ

�Tjˆ/ is a Gj -equivariant Kasparov Aj -Bj -bimodule uni-
tarily equivalent to .Fj ; Tj /. Hence, Œ.Ej ˝j E

0
j ;ˆ

�Tjˆ/� D Œ.Fj ; Tj /� in KKGj .Aj ; Bj /.
Since T is an F 0-connection for E, the operator ˆ�Tjˆ is an F 0j -connection for Ej .

Indeed, for all � 2 E and � 2 E0, we have

qF;jT�.�/ D ˆ.qE;j � ˝j qE0;j�/ D ˆTqE;j �qE0;j .�/:

Hence, qF;jT�F 0 D ˆTqE;j �F
0
j qE0;j . We also have qF;jT T� D TjˆTqE;j �qE0;j . Hence,

T�F
0
j �ˆ

�TjˆT� D ˆ
�qF;j .T�F

0
� T T�/�E0j2K.E0j ;Fj / for all � 2 Ej :

Let � W A ! L.E/ and � W A ! L.F/; a 7! �.a/ ˝ 1 be the left actions of A. For
j D 1; 2, we have �j W Aj ! L.Ej / and �j W Aj ! L.Fj /. We have qF;j .F ˝ 1/ D
ˆ.Fj ˝j 1/ˆ

�qF;j . Hence, we have

qF;j .F ˝ 1/T D ˆ.Fj ˝j 1/ˆ
�Tj qF;j I

qF;jT .F ˝ 1/ D Tj qF;j .F ˝ 1/ D Tjˆ.Fj ˝j 1/ˆ
�qF;j :

Hence,

qF;j ŒF ˝ 1; T � D
�
ˆ.Fj ˝j 1/ˆ

�Tj � Tjˆ.Fj ˝j 1/ˆ
�
�
qF;j

D ˆŒFj ˝j 1;ˆ
�Tjˆ�ˆ

�qF;j :

Therefore, for all a 2 Aj we have

�.a/ŒF ˝ 1; T ��.a/�Ej D �j .a/ˆŒFj ˝j 1;ˆ
�Tjˆ�ˆ

��j .a/

D ˆ.�j .a/˝j 1/ŒFj ˝j 1;ˆ
�Tjˆ�.�j .a/˝j 1/ˆ

�:

Hence, the image of .�j .a/˝j 1/ŒFj ˝j 1; ˆ
�Tjˆ�.�j .a/˝j 1/ in L.Ej /=K.Ej / is

positive. Hence, ˆ�Tjˆ 2 Fj #GjF
0
j and�

.Ej ˝j E
0
j ; ˆ

�Tjˆ/
�
D
�
.Ej ; Fj /

�
˝Cj

�
.E0j ; F

0
j /
�
D JGj ;G .x/˝Cj JGj ;G .y/:

4.2. Induction of equivariant Kasparov bimodules

We begin this paragraph with two technical lemmas that will be used in the proof of
Proposition 4.2.11.

Lemma 4.2.1. Let G be a locally compact quantum group. Let A, A0, B , and B 0 be
G-C�-algebras. Let .E; �/ (resp. .E0; �0/) be a G-equivariant Hilbert A-B (resp. A0-B 0)-
bimodule. Denote by A0 (resp. B0) the G-C�-algebras A˚A0 (resp. B ˚B 0). Denote by
E0 the Hilbert B0-module E˚ E0. Denote by �0 the �-representation of A0 on E0 defined
by �0.a˚ a0/ WD �.a/˚ �0.a0/ for all a 2 A and a0 2 A0. Fix T 2 L.E/ and T 0 2 L.E0/

and denote T0 WD T ˚ T 0 2 L.E0/.

(1) The triple .E0; �0; T0/ is a G-equivariant Kasparov A0-B0-bimodule if and only
if the triples .E; �; T / and .E0; �0; T 0/ are G-equivariant Kasparov bimodules.
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(2) Denote by pg W A0 ! A, p0g W A0 ! A0, pd W B0 ! B , and p0d W B0 ! B 0 the
canonical surjections. Denote also by ig W A! A0, i 0g W A

0 ! A0, id W B ! B0,
and i 0d W B ! B0 the canonical injections. Assume the C�-algebras A and A0 to
be separable and B and B 0 to be � -unital. If the conditions above hold true, then
we have

Œig�˝A0
�
.E0; F0/

�
˝B0 Œpd� D

�
.E; F /

�
I

Œi 0g�˝A0
�
.E0; F0/

�
˝B0 Œp

0
d� D

�
.E0; F 0/

�
I

Œpg�˝A
�
.E; F /

�
˝B Œid� D

�
.E0; F0/

�
D Œp0g�˝A0

�
.E0; F 0/

�
˝B 0 Œi

0
d�

in KKG.A;B/, KKG.A
0; B 0/, and KKG.A0; B0/, respectively.

Proof. (1), (3) The result is a straightforward consequence of the canonical identifica-
tions of C�-algebras K.E/˚K.E0/DK.E0/, .K.E/˝C0.G//˚ .K.E0/˝C0.G//D
K.E0/˝ C0.G/.

(2) By definition of the structures of G-C�-algebra on A0 and B0, the maps defined
above are G-equivariant �-homomorphisms. We have

Œig�˝A0
�
.E0; �0; F0/

�
˝B0 Œpd� D

�
.E0 p̋d B;

�
a 7! �0.ig.a// p̋d 1

�
; F0 p̋d 1/

�
:

However, the triples .E0 p̋d B; .a 7! �0.ig.a// p̋d 1/; F0 p̋d 1/ and .E; �; F / are uni-
tarily equivalent via the map E0 p̋d B ! E; .� ˚ � 0/ p̋d b 7! �b. Therefore, we obtain
the relation Œig�˝A0 Œ.E0; �0; F0/�˝B0 Œpd� D Œ.E; �; F /�. With a similar argument, we
also prove that Œi 0g�˝A0 Œ.E0; �0; F0/�˝B0 Œp

0
d� D Œ.E

0; �0; F 0/�. The last formula follows
from the first two ones since we have pg ı ig D idA, p0g ı i

0
g D idA0 , pd ı id D idB , and

p0d ı i
0
d D idB 0 (cf. Proposition 3.3.9 (2)).

Before stating the second technical lemma, we need to fix the notion of operators
acting by factorization.

Proposition-Definition 4.2.2. LetB be a C�-algebra. LetH andK be two Hilbert spaces.
Let E be a Hilbert B-module. We consider the Hilbert B˝K.K/-module E˝K.K/ and
the Hilbert B ˝K.H/-module E˝K.H;K/. If F 2 L.E˝K.K//, then there exists a
unique operator zF 2 L.E˝K.H;K// such that

zF .� ˝ kT / D F.� ˝ k/.1B ˝ T / for all � 2 E; k 2K.K/; and T 2K.H;K/:

The operator zF will be referred to as the operator F acting on E˝K.H;K/ by factoriza-
tion and will sometimes be simply denoted by F . Furthermore, for all F 2K.E˝K.K//

we have zF 2K.E˝K.H;K//.

Proof. We have K.H;K/DK.K/K.H;K/. Indeed, K.H;K/ is Hilbert K.K/-module
under the natural left action of K.K/ by composition and the K.K/-valued inner product
defined by hT; Si WD T ı S� for T; S 2 K.H; K/. Let .ui / be an approximate unit of
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the C�-algebra K.K/. Let us fix � 2 E and write � D �b with � 2 E and b 2 B . For all
k 2K.K/ and T 2K.H;K/, we have

F.� ˝ k/.1B ˝ T / D limi F.�b ˝ uik/.1B ˝ T / D limi F.�˝ ui /.b ˝ kT /:

Hence, F.� ˝ k/.1B ˝ T / D F.� ˝ k0/.1B ˝ T
0/ for all k; k0 2 K.K/ and T; T 0 2

K.H;K/ such that kT D k0T 0. Thus, the map zF is well defined. Moreover, it is easily
seen that zF 2 L.E˝K.H;K// with zF � D zF �. Note also that the map F 7! zF is a �-
homomorphism. If the Hilbert spaceH is nonzero, we have K.K/DŒK.H;K/K.K;H/�.
However, for all �; � 2 E and T1; T2 2 K.H; K/ the image of ��˝k;�˝T1T �2 by the �-
homomorphism F 7! zF is the operator ��˝kT2;�˝T1 .

Lemma 4.2.3. Let A and B be two C�-algebras. Let H and K be two Hilbert spaces.
Let E be a Hilbert A-B-bimodule. We consider the Hilbert A ˝ K.K/-B ˝ K.K/-
bimodule E˝K.K/ and the Hilbert A˝K.K/-B ˝K.H/-bimodule E˝K.H;K/.
Let F 2L.E˝K.K// such that the pair .E˝K.K/;F / is a Kasparov bimodule. If zF 2
L.E˝K.H;K// denotes the operator F acting on E˝K.H;K/ by factorization, then
the pair .E˝K.H;K/; zF / is a Kasparov bimodule.

Proof. Let  W A! L.E/ be the left action of A on E. The left action of A˝K.K/ on
the Hilbert B ˝K.K/-module E˝K.K/ is

� WD  ˝ idK.K/ W A˝K.K/! L
�
E˝K.K/

�
:

It is clear that the left action ofA˝K.K/ on the HilbertB˝K.H/-module E˝K.H;K/

is the �-representation z� W A˝K.K/! L.E˝K.H;K//, where for x 2 A˝K.K/

the operator z�.x/ is the operator �.x/ acting on E ˝K.H; K/ by factorization. The
proof follows from the last statement of Proposition-Definition 4.2.2 and the fact that the
factorization map F 7! zF is a �-homomorphism.

In the following, we fix two G1-C�-algebras A1 and B1. Let us denote by A2 WD
IndG2

G1
.A1/ andB2 WDIndG2

G1
.B1/ the induced G2-C�-algebras. We also fix a G1-equivariant

Hilbert A1-B1-bimodule .E1; 1/ (with a non-degenerate left action) and denote by

.E2; 2/ WD
�

IndG2

G1
.E1/; IndG2

G1
1
�

the induced G2-equivariant Hilbert A2-B2-bimodule. Let us consider the G -C�-algebras
A WD A1 ˚ A2 and B WD B1 ˚ B2. We also equip the Hilbert C�-module E WD E1 ˚ E2
with the structure of G -equivariant Hilbert A-B-bimodule defined by the action .ˇE; ıE/
of G (cf. Proposition 2.5.22) and the equivariant �-representation  WA!L.E/ (cf. Propo-
sition 2.5.25). In what follows, we will make some obvious identifications without always
mentioning them explicitly; e.g.,A1DA1˚¹0º. We will also use the notations and results
of Section 2.5.3 concerning the objects associated with A, B , and E.

Before recalling the definition of the homomorphisms

JGk ;Gj W KKGj .Aj ; Bj /! KKGk
.Ak ; Bk/

for j; k D 1; 2 with j ¤ k (cf. [2, §4.5]) we first have to fix some notations.
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Notations 4.2.4. Let G be a regular locally compact quantum group. Let A be a G-C�-
algebra. By the Baaj–Skandalis duality theorem (cf. [4]), we identify the G-C�-algebras
.AÌG/Ì yG and A˝K.L2.G//. Let bA WD Œ.A˝L2.G/; 0/�2KKG.A˝K.L2.G//;A/
and aA WD Œ.A˝ L2.G/�; 0/� 2 KKG .A;A˝K.L2.G/// (cf. [3]).

Notations 4.2.5 (cf. [2, Corollaire 3.50 (c) and Notations 3.51]). For all j; l; l 0 D 1; 2, the
Hilbert C�-module Bl l 0;j;g (resp. Bl l 0;j;d) is a Gj -equivariant imprimitivity Bl;j;g-Bl 0;j;g-
bimodule (resp. Gj -equivariant imprimitivity Bl;j;d-Bl 0;j;d-bimodule) and we denote by
cl l 0;j;g (resp. cl l 0;j;d) the class of .Bl l 0;j;g; 0/ (resp. .Bl l 0;j;d; 0/) in KKGj .Bl;j;g;Bl 0;j;g/

(resp. KKGj .Bl;j;d;Bl 0;j;d/).
For i;j D 1;2, we have the faithful non-degenerate �-representations of the C�-algebra

Sij , Lij W Sij ! B.Hij /, x 7! L.x/�Hij
and Rij W Sij ! B.Hj i /, x 7! UijLij .x/Uj i ,

where Ukl D plkUpkl 2 B.Hkl ;Hlk/.

Proposition 4.2.6 (cf. [2, Proposition 4.30 and Corollaire 4.33]). Let F1 2 L.E1/ such
that the pair .E1; F1/ is G1-equivariant Kasparov A1-B1-bimodule. We have that

(1) the pair .E1;2; .idK.E2/˝R21/ı
2
K.E1/

.F1// is a G1-equivariant
B1;2;g-B1;2;d-bimodule,

(2) there exists an operator F2 2 L.E2/ such that

(a) .E2; F2/ is a G2-equivariant Kasparov A2-B2-bimodule,

(b) in KKG2.A2; B2/, we have

bA2 ˝A2
�
.E2; F2/

�
˝B2 aB2

D c21;2;g ˝B1;2;g

��
E1;2;

�
idK.E2/˝R21

�
ı2K.E1/

.F1/
��
˝B1;2;d c12;2;d;

(3) if F2;F 02 2L.E2/ satisfy conditions (a) and (b) above, then Œ.E2;F2/�D Œ.E2;F 02/�
in KKG2.A2; B2/.

If x WD Œ.E1; F1/� 2 KKG1.A1; B1/, let us denote by JG2;G1.x/ the unique element y 2
KKG2.A2; B2/ satisfying the relation

bA2 ˝A2 y˝B2 aB2Dc21;2;g˝B1;2;g

��
E1;2;

�
idK.E2/˝R21

�
ı2K.E1/

.F1/
��
˝B1;2;d c12;2;d:

Then, the map JG2;G1 W KKG1.A1; B1/! KKG2.A2; B2/ is a homomorphism of abelian
groups.

In order to define the homomorphism JG1;G2 W KKG2.A2; B2/! KKG1.A1; B1/, we
first need to fix further objects.

We consider the induced G1-C�-algebras

A01 WD IndG1

G2
.A2/ and B 01 WD IndG1

G2
.B2/:

We denote by E01 WD IndG1

G2
.E2/ the induced G1-equivariant Hilbert A01-B 01-bimodule.

Let us consider the G -C�-algebras A0 WD A01 ˚ A2 and B 0 WD B 01 ˚ B2. We also equip
the Hilbert C�-module E0 WD E01 ˚ E2 with the structure of G -equivariant Hilbert A0-B 0-
bimodule defined by the action .ˇE0 ; ıE0/ of G (cf. Proposition 2.5.22) and the left action
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 0 W A0! L.E0/ (cf. Proposition 2.5.25). We will use the notations of Section 2.5.3 deco-
rated with a prime concerning the objects associated with A0, B 0, and E0.

Notations 4.2.7. Let �1;g W A1 ! A01 and �1;d W B1 ! B 01 be the G1-equivariant
�-isomorphisms defined in [9, Proposition 5.2.6]. We recall that we have G -equivariant �-
isomorphisms A! A0, .a1; a2/ 7! .�1;g.a1/; a2/ and B ! B 0, .b1; b2/ 7! .�1;d.b1/; b2/

(cf. [2, §4.1]), which then induce a G -equivariant �-isomorphism between the bidual
G -C�-algebras associated with A and A0 (resp. B and B 0) by applying the functoriality of
the crossed product and the biduality theorem (cf. Propositions 2.4.12 and 2.3.5 and Theo-
rem 2.3.7). By restriction, for all j; l D 1; 2 we have two Gj -equivariant �-isomorphisms
fl;j;g W Bl;j;g ! B 0

l;j;g and fl;j;d W Bl;j;d ! B 0
l;j;g.

Proposition-Definition 4.2.8. Let F2 2 L.E2/ such that the pair .E2; F2/ is a G2-equi-
variant Kasparov A2-B2-bimodule. Let y WD Œ.E2; F2/� 2 KKG2.A2; B2/. Let JG1;G2.y/

be the unique element x 2 KKG1.A1; B1/ satisfying the relation

bA1 ˝A1 x ˝B1aB1

D c12;1;g ˝B2;1;g Œf2;1;g�˝B02;1;g

��
E 02;1;

�
idK.E01/

˝R12
�
ı1K.E2/

.F2/
��
˝B02;1;d

Œf �12;1;d�:

Then, the map JG1;G2 W KKG2.A2; B2/! KKG1.A1; B1/ is a homomorphism of abelian
groups.

Lemma 4.2.9. For j D 1;2, let Fj 2L.Ej /. Let F WD F1˚F2 2L.E/. The pair .E; / is
a Kasparov A-B-bimodule if and only if the pair .Ej ; Fj / is a Kasparov Aj -Bj -bimodule
for j D 1; 2.

Proof. For all a D .a1; a2/ 2 A, we have the relations Œ.a/; F � D j̊D1;2Œj .aj /; Fj �,
.a/.F 2 � 1/D j̊D1;2j .aj /.F

2
j � 1/, and .a/.F � F �/D j̊D1;2j .aj /.Fj � F

�
j /.

Therefore, the equivalence follows directly from K.E/ DK.E1/˚K.E2/.

Lemma 4.2.10. For all j; l; l 0 D 1; 2, the pair .El l 0;j ; .idK.Ej / ˝Rjl /ı
j

K.El /
.Fl // is a

Kasparov Bl;j;g-Bl 0;j;d-bimodule.

Proof. If l 0 D l , we refer the reader to [3] for l D j and [2, Propositions 4.30 and 4.34] for
l ¤ j . By applying Lemma 4.2.3, the general case follows from the case where l 0 D l .

Actually, we can prove that the pair .El l 0;j ; .idK.Ej /˝Rjl /ı
j

K.El /
.Fl // is a Gj -equi-

variant Kasparov Bl;j;g-Bl 0;j;d-bimodule. Indeed, as above the case where l 0D l is already
known (cf. [2,3]). Moreover, the operator .idK.Ej /˝Rjl /ı

j

K.El /
.Fl /2L.El;j / is invariant

(cf. [2, 4.29]). By a direct computation, we show that the operator

.idK.Ej /˝Rjl /ı
j

K.El /
.Fl / 2 L.El l 0;j /

is invariant (cf. Section 2.5.3 for the definitions).
In the following, we assume the C�-algebraA1 to be separable. Hence, the C�-algebras

A2 and A are separable (cf. Lemma 2.5.16).
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Proposition 4.2.11. For j D 1; 2, let Fj 2 L.Ej / such that .Ej ; Fj / is a Gj -equivariant
Kasparov Aj -Bj -bimodule. Let F WD F1 ˚ F2 2 L.E/. We have that

(1) the pair .D; �R.F // is a G -equivariant Kasparov Dg-Dd-bimodule,

(2) there exists T 2 L.E/ such that

(a) the pair .E; T / is a G -equivariant Kasparov A-B-bimodule,

(b) bA ˝A Œ.E; T /�˝B aB D Œ.D; �R.F //�.

Moreover, we have that

(3) if T;T 02L.E/ satisfy conditions (a) and (b), then Œ.E;T /�DŒ.E;T 0/� in KKG .A;B/,

(4) if T 2 L.E/ satisfies conditions (a) and (b), then the class of .E; T / in KKG .A;B/

only depends on those of .E1;F1/ and .E2;F2/ in KKG1.A1;B1/ and KKG2.A2;B2/,
respectively,

(5) for j D 1; 2 and T 2 L.E/ satisfying conditions (a) and (b), let Tj 2 L.Ej / such
that T D T1 ˚ T2 (cf. Lemma 4.1.1), then the pair .Ej ; Tj / is a Gj -equivariant
Kasparov Aj -Bj -bimodule and we have Œ.Ej ; Tj /� D Œ.Ej ; Fj /� in KKGj .Aj ; Bj /.

Proof. (1) Let X 2 L.D/ be the operator defined by X.�/ WD �R.F / ı � for all � 2 D.
It suffices to prove that .D; X/ is a Kasparov Dg-Dd-bimodule (cf. Lemma 2.4.25 and
Remark 3.1.3 (3)). This amounts again to proving that .Dj ; Xj / is a Kasparov Dj;g-Dj;d-
bimodule for j D 1;2 (cf. Lemma 4.2.9 (1)). However, this follows straightforwardly from
Lemmas 4.2.10 and 4.2.1 (1).

(2), (3) These statements are direct consequences of Lemma 3.4.8.
(4) For j D 1;2, let Fj ;F 0j 2L.Ej / such that .Ej ;Fj / and .Ej ;F 0j / are Gj -equivariant

Kasparov Aj -Bj -bimodules satisfying Œ.Ej ; Fj /� D Œ.Ej ; F 0j /� in KKGj .Aj ; Bj /. Let F WD
F1˚F2 2L.E/ and F 0 WDF 01˚F

0
2 2L.E/. Let T 2L.E/ (resp. T 0 2L.E/) be an opera-

tor satisfying conditions (a) and (b) for F (resp. F 0). Let us prove that Œ.E; T /� D Œ.E; T 0/�
in KKG .A; B/. For j D 1; 2, there exists a degenerate Gj -equivariant Kasparov Aj -Bj -
bimodule .Fj ; Xj / such that .Ej ˚ Fj ; Fj ˚ Xj / and .Ej ˚ Fj ; F

0
j ˚Xj / are operator

homotopic (cf. [3, Remarques 5.11 (2)]). In particular, for j D 1; 2 there exists an oper-
ator homotopy .Ej ; Fj;t /t2Œ0;1� between .Ej ; Fj / and .Ej ; F 0j /. For t 2 Œ0; 1�, let Ft WD
F1;t˚F2;t 2L.E/. For t 2 Œ0; 1�, let Tt 2L.E/ be an operator satisfying conditions (a) and
(b) for Ft . Then, .D; �R.Tt //t2Œ0;1� is an operator homotopy between .D; �R.T // and
.D; �R.T

0//. Hence, Œ.D; �R.T //� D Œ.D; �R.T 0//�. It then follows that

bA ˝A
�
.E; T /

�
˝B aB D bA ˝A

�
.E; T 0/

�
˝B aB :

Hence, Œ.E; T /� D Œ.E; T 0/� (cf. Lemma 3.4.8).
(5) For the fact that .Ej ; Tj / is a Gj -equivariant Kasparov Aj -Bj -bimodule for j D

1; 2, we refer to Section 4.1. Let X; Y 2 L.D/ be the operators defined by X.�/ WD
�R.F / ı � and Y.�/ WD �R.T / ı � for all � 2 D. It follows from (b) and Theorem 3.4.9
that Œ.D; X/� D Œ.D; Y /� in KKG .Dg; Dd/. By composing by JGj ;G W KKG .Dg; Dd/ !

KKGj .Dj;g;Dj;d/, we have Œ.Dj ;Xj /�D Œ.Dj ;Yj /� for all j D 1;2 (cf. Section 4.1). Hence,
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we have (cf. Lemma 4.2.1 (2))��
El l 0;j ; .idK.Ej /˝Rjl /ı

j

K.El /
.Fl /

��
D
��

El l 0;j ; .idK.Ej /˝Rjl /ı
j

K.El /
.Tl /

��
for all j; l; l 0 D 1; 2:

In particular, we have��
Ej;j ;

�
idK.Ej /˝Rjj

�
ı
j

K.Ej /
.Fj /

��
D
��

Ej;j ;
�

idK.Ej /˝Rjj
�
ı
j

K.Ej /
.Tj /

��
for j D 1; 2:

By composing by the isomorphism x 7! aAj ˝Dj;g x ˝Dj;d bBj , we obtain Œ.Ej ; Fj /� D
Œ.Ej ; Tj /� (cf. [3]).

In virtue of Proposition 4.2.11 (1)–(4), the following definition makes sense.

Definition 4.2.12. Let j; k D 1; 2 such that j ¤ k. Let Fj 2 L.Ej / such that the pair
.Ej ;Fj / is a Gj -equivariant KasparovAj -Bj -bimodule. Let x WDŒ.Ej ;Fj /�2KKGj .Aj ;Bj /

and JGk ;Gj .x/D Œ.Ek ;Fk/�. LetF WDF1˚F2 2L.E/. We denote by JG ;Gj .x/ the unique
element y 2 KKG .A;B/ such that bA˝A y ˝B aB D Œ.D; �R.F //�. For j D 1; 2, we have
a well-defined homomorphism of abelian groups JG ;Gj W KKGj .Aj ; Bj /! KKG .A;B/.

Lemma 4.2.13. With the notations and hypotheses of Definition 4.2.12, if the pair .E; F /
is a G -equivariant Kasparov A-B-bimodule, then we have JG ;Gj .x/ D Œ.E; F /�.

Proof. This is a straightforward consequence of Theorem 3.4.9.

Proposition 4.2.14. Let j; k D 1; 2 with j ¤ k. We have

(1) JGj ;G ı JG ;Gj D idKKGj
.Aj ;Bj /,

(2) JGk ;G ı JG ;Gj D JGk ;Gj ,

(3) JGk ;Gj ı JGj ;G D JGk ;G .

Proof. Formulas (1) and (2) are immediate consequences of Proposition 4.2.11 (5). The
last statement follows by plugging the second formula in the left-hand side and by simpli-
fying with the first one.

We can state the main results of this paragraph.

Theorem 4.2.15. Let j D 1; 2. The maps

JGj ;G W KKG .A;B/! KKGj .Aj ; Bj / and JG ;Gj W KKGi
.Aj ; Bj /! KKG .A;B/

are isomorphisms of abelian groups inverse of each other.

Proof. Let j; k D 1; 2 with j ¤ k. It remains to prove that JG ;Gj ı JGj ;G D idKKG .A;B/

(cf. Proposition 4.2.14 (1)). Let F 2L.E/ such that the pair .E;F / is a G -equivariant Kas-
parov A-B-bimodule. Let x WD Œ.E; F /� 2 KKG .A;B/. We have F D F1 ˚ F2 with F1 2
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L.E1/ and F2 2 L.E2/. It follows from Proposition 4.2.14 (3) that JGk ;Gj .Œ.Ej ; Fj /�/ D

Œ.Ek ; Fk/�. By applying Lemma 4.2.13, we then obtain

JG ;Gj

�
JGj ;G .x/

�
D JG ;Gj

��
.Ej ; Fj /

��
D
�
.E; F /

�
D x:

We then obtain another proof of Théorème 4.36 [2].

Corollary 4.2.16. The map JG2;G1 W KKG1.A1; B1/! KKG2.A2; B2/ is an isomorphism
of abelian groups and .JG2;G1/

�1 D JG1;G2 .

Proof. This is an immediate consequence of Proposition 4.2.14 (2) and Theorem 4.2.15.

Let us fix a third G1-C�-algebra C1. Consider the induced G2-C�-algebra C2 WD
IndG2

G1
.C1/ and the G -C�-algebra C WD C1 ˚ C2.

Proposition 4.2.17. For j D 1; 2, we have

(1) JG ;Gj .1Aj / D 1A,

(2) for all x 2 KKGj .Aj ; Cj / and y 2 KKGj .Cj ; Bj /,

JG ;Gj .x ˝Cj y/ D JG ;Gj .x/˝C JG ;Gj .y/ in KKG .A;B/:

Proof. This follows from Theorem 4.2.15 and Proposition 4.1.4.

Proposition 4.2.18. For j; k D 1; 2 with j ¤ k, we have

(1) JGk ;Gj .1Aj / D 1Ak ,

(2) for all x 2 KKGj .Aj ; Cj / and y 2 KKGj .Cj ; Bj /,

JGk ;Gj .x ˝Cj y/ D JGk ;Gj .x/˝Ck JGk ;Gj .y/ in KKGk
.Ak ; Bk/:

Proof. This is a direct consequence of Propositions 4.2.14 (2), 4.1.4, and 4.2.17.

Notations 4.2.19. We denote by KKG (resp. KKGj for j D 1; 2) the category of separable
G (resp. Gj )-C�-algebras whose set of arrows between two G (resp. Gj )-C�-algebras A
and B is the equivariant Kasparov group KKG .A;B/ (resp. KKGj .A;B/).

Theorem 4.2.20. We have that

(1) for j D 1; 2, the correspondences JGj ;G W KKG ! KKGj and JG ;Gj W KKGj ! KKG

are equivalences of categories inverse of each other,

(2) the correspondences JG2;G1 W KKG1! KKG2 and JG1;G2 W KKG2! KKG1 are equiv-
alences of categories inverse of each other.

Proof. The first (resp. second) statement is just a restatement of Theorem 2.5.24, Propo-
sition 4.2.17, and Theorem 4.2.15 (resp. Theorem 2.5.19, Proposition 4.2.18, and Corol-
lary 4.2.16).
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