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Measured quantum groupoids on a finite basis and
equivariant Kasparov theory

Jonathan Crespo

Abstract. In this article, we generalize to the case of measured quantum groupoids on a finite
basis some important results concerning the equivariant Kasparov theory for actions of locally com-
pact quantum groups, see Baaj and Skandalis (1989, 1993). To every pair (4, B) of C*-algebras
continuously acted upon by a regular measured quantum groupoid on a finite basis §, we asso-
ciate a §-equivariant Kasparov theory group KKg (A, B). The Kasparov product generalizes to
this setting. By applying recent results by Baaj and Crespo (2017, 2018) concerning actions of
regular measured quantum groupoids on a finite basis, we obtain two canonical homomorphisms
Jg 1 KKg (A, B) > KK5(Ax G, Bx %) and Jg : KK5(A, B) > KKg(A x G, B x ) inverse of
each other through the Morita equivalence coming from a version of the Takesaki—Takai duality
theorem. We investigate in detail the case of colinking measured quantum groupoids. In particular,
if G1 and G5 are two monoidally equivalent regular locally compact quantum groups, we obtain a
new proof of the canonical equivalence of the associated equivariant Kasparov categories, see Baaj
and Crespo (2017).
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1. Introduction

The notion of monoidal equivalence of compact quantum groups has been introduced by
Bichon, De Rijdt, and Vaes in [6]. Two compact quantum groups G and G, are said to be
monoidally equivalent if their categories of representations are equivalent as monoidal C*-
categories. They have proved that G| and G, are monoidally equivalent if and only if there
exists a unital C*-algebra equipped with commuting continuous ergodic actions of full
multiplicity of G on the left and of G, on the right. Among the applications of monoidal
equivalence to the geometric theory of free discrete quantum groups, we mention the
contributions to random walks and their associated boundaries [14, 30], CCAP property
and Haagerup property [13], the Baum-Connes conjecture, and K-amenability [32,33].

In his Ph.D. thesis [11], De Commer has extended the notion of monoidal equivalence
to the locally compact case. Two locally compact quantum groups G; and G, (in the sense
of Kustermans and Vaes [20]) are said to be monoidally equivalent if there exists a von
Neumann algebra equipped with a left Galois action of G and a right Galois action of G,
that commute. He proved that this notion is completely encoded by a measured quantum
groupoid (in the sense of Enock and Lesieur [16]) on the basis C2. Such a groupoid is
called a colinking measured quantum groupoid.

The measured quantum groupoids have been introduced and studied by Lesieur and
Enock (see [16,22]). Roughly speaking, a measured quantum groupoid (in the sense of
Enock-Lesieur) is an octuple § = (N, M,«, 8, T, T, T', v), where N and M are von
Neumann algebras (the basis N and M are the algebras of the groupoid corresponding
respectively to the space of units and the total space for a classical groupoid), o and
B are faithful normal *-homomorphisms from N and N° (the opposite algebra) to M
(corresponding to the source and target maps for a classical groupoid) with commuting
ranges, " is a coproduct taking its values in a certain fiber product, v is a normal semi-
finite weight on N, and T and T’ are operator-valued weights satisfying some axioms.

In the case of a finite-dimensional basis N, the definition has been greatly simpli-
fied by De Commer [10-12] and we will use this point of view in this article. Broadly
speaking, we can take for v the non-normalized Markov trace on the C*-algebra
N = @, <<k My, (C). The relative tensor product of Hilbert spaces (resp. the fiber prod-
uct of von Neumann algebras) is replaced by the ordinary tensor product of Hilbert spaces
(resp. von Neumann algebras). The coproduct takes its values in M ® M but is no longer
unital.

In [2], the authors introduce a notion of (strongly) continuous actions on C*-algebras
of measured quantum groupoids on a finite basis. They extend the construction of the
crossed product and the dual action and give a version of the Takesaki—Takai duality gen-
eralizing the Baaj—Skandalis duality theorem [4] in this setting.

If a colinking measured quantum groupoid &, associated with a monoidal equivalence
of two locally compact quantum groups G; and G, acts (strongly) continuously on a C*-
algebra A, then A splits up as a direct sum A = Ay & A, of C*-algebras and the action of
G on A restricts to an action of G (resp. G;) on A; (resp. 4).
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They also extend the induction procedure to the case of monoidally equivalent regular
locally compact quantum groups. To any continuous action of G; on a C*-algebra A4,
they associate canonically a C*-algebra A, endowed with a continuous action of G,. As
important consequences of this construction, we mention the following:

e a one-to-one functorial correspondence between the continuous actions of the quan-
tum groups G; and G,, which generalizes the compact case [14] and the case of
deformations by a 2-cocycle [24];

e a complete description of the continuous actions of colinking measured quantum
groupoids;

» the equivalence of the categories KKg, and KKg,, which generalizes to the regular
locally compact case a result of Voigt [33].

The proofs of the above results rely crucially on the regularity of the quantum groups G,
and G». They prove that the regularity of G; and G, is equivalent to the regularity of the
associated colinking measured quantum groupoid in the sense of [15] (see also [27,28]).

In [9], the author generalizes to the case of (semi-)regular measured quantum groupoid
on a finite basis some important properties of (semi-)regular locally compact quantum
groups [1,4], which then allow him to generalize some crucial results of [5] concerning
actions of (semi-)regular locally compact quantum groups. More precisely, if § is a regular
measured quantum groupoid on a finite basis, then any weakly continuous action of § is
necessarily continuous in the strong sense.

Let § be a measured quantum groupoid on a finite basis. The author provides a notion
of action of § on Hilbert C*-modules in line with the corresponding notion for quantum
groups [3]. By using the previous result, if § is regular, then any action of § on a Hilbert
C*-module is necessarily continuous. The author defines the notion of §-equivariant
Morita equivalence between §-C*-algebras. By applying the version of the Takesaki—
Takai duality theorem obtained in [2], the author finally obtains that any §-C*-algebra
A is §-equivariantly Morita equivalent to its double crossed product (4 x §) x % ina
canonical way.

In this article, we generalize to the setting of measured quantum groupoid on a finite
basis some crucial results concerning equivariant Kasparov theory for actions of quantum
groups [3]. More precisely, we define the equivariant Kasparov groups KKg (A, B) for
any pair of §-C*-algebras (A, B) and extend the functorial properties and the Kasparov
product in this framework. For all pair of §-C*-algebras (resp. ;é-C*-algebras), we build
a homomorphism

Jg  KKg (A, B) = KKg(Ax G, BxE) (resp.Jg:KKz(A, B) — KKg(Ax G, BxE)).

We also prove that Jg and Jg are inverse of each other through the Morita equivalences
obtained in [9]. The rest of the paper is dedicated to the applications of the above theory
to monoidal equivalence. In particular, we provide a new proof of the equivalence of the
equivariant Kasparov categories KKg, and KKg, when G; and G, are monoidally equiv-
alent regular locally compact quantum groups [2] (see also [33] for the compact case). It
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should be mentioned that the equivariant Kasparov theory for actions of locally compact
topological groupoid has been studied by Le Gall in [21].

For the notions and notations used in this paper, we invite the reader to find them in [9]
and the references therein where a comprehensive and detailed study is done. For more
information on locally compact quantum groups and measured quantum groupoids, we
refer to the classical literature on these subjects (see [4, 16,20, 22,29]).

This article is organized as follows.

e Chapter 1. In the first section, we recall the notion of action of measured quantum
groupoids on a finite basis on Hilbert C*-modules (cf. [9]). In the second section, we
study the crossed product construction in this setting and we state a version of the
Takesaki—Takai duality theorem. The last section begins with a reminder of the case
of a colinking measured quantum groupoid (cf. [2, 9]). The structure of the double
crossed product is investigated at the end of this section.

e Chapter 2. In this chapter, we give the definition and some properties of equivariant
Kasparov groups by a regular measured quantum groupoid on a finite basis. We gen-
eralize to our setting the Kasparov technical theorem, which allows us to build the
Kasparov product. In the last section, we build the so-called “descent morphisms” Jg
and Jz and prove that they are inverse of each other up to Morita equivalences.

e Chapter 3. We apply the previous results to the case of a colinking measured quantum
groupoid § associated with two monoidally equivalent regular locally compact quan-
tum groups G; and G,. We obtain canonical equivalences between the equivariant
Kasparov categories of G1, G, and §. In particular, we provide a new proof of the
isomorphism obtained in [2, §4.5].

2. Hilbert C*-modules acted upon by measured quantum groupoids

2.1. Notion of actions of measured quantum groupoids on a finite basis on Hilbert
C*-modules

In this paragraph, we recall the notion of §-equivariant Hilbert C*-module for a measured
quantum groupoid § on a finite basis in the spirit of [3] (cf. [9, §6.1]). We fix a measured
quantum groupoid § on a finite-dimensional basis N = @, <;<x My, (C) endowed with
the non-normalized Markov trace € = @, <;<; 17 - Tr;. We use all the notations introduced
in [9, §3.1 and §3.2] concerning the objects associated with §. For example, (S, §) denotes
the weak Hopf C*-algebra associated to § represented on its standard Hilbert space 3 and
the morphisms o : N — M(S) and § : N° — M(S) are the base maps. Let us fix a §-
C*-algebra A. We denote by §4 : A > M(A ® S) and B4 : N° — M(A) the morphisms
which define the continuous coaction on the C*-algebra A.

Following [3, §2], an action of § on a Hilbert A-module € is defined in [9] by three
equivalent data:

e apair (B¢, 8¢) consisting of a *-homomorphism B¢ : N° — £(€) and a linear map
8e : &€ > M(E ®S) (cf. Definition 2.1.1),
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e a pair (B¢, V) consisting of a *-homomorphism Be : N° — £(€) and an isometry
Veld(€®s5(A®S),EQS) (cf. Definition 2.1.4),

e anaction (87,67) of § on J := K(E & A) (cf. Definition 2.1.8),

satisfying some conditions.
We have the following unitary equivalences of Hilbert modules:

A®s (A®S) = qpa(A®S)

a ®s, x = S4(a)x; 2.1

(A®S) ®s5,0ids (A®S®S) = 4g,a,12(ARS ® S)
X Qs @idg ¥ F> (84 ®idg)(x)y; (2.2)

(A®S) Rigy05 (A®S®S) = qpa23(ARS®S)
X ®igy @5 ¥ H> (idg @) (x)y. (2.3)

In the following, we fix a Hilbert A-module €. We will apply the usual identifications
MARS)=L(A®S), K(E)®S =K(E®S)and M(K(E)®S) =L(ER®S).

Definition 2.1.1. An action of § on the Hilbert A-module € is a pair (B¢, 8¢), where
Be : N° — £(&) is a non-degenerate *-homomorphism and §¢ : € - M(E ® S) is a
linear map such that

(1) foralla € A and &, 71 € &€, we have

8e(5a) = 8e(£)8a(a) and  (8e(£).8e(n)) = Sa((5,m).

(2) Be(E)NA® )] =qp.a(E®S),
(3) forall§é € Eandn € N, we have 8¢ (Be(n°)€) = (1 ® B(n°))de (£),

(4) the linear maps §¢ ® ids and ide ®4 extend to linear maps from £(A ® S,E ® )
toL(AQ®S RS, EX®RS ®S) and we have

(e ®ids)Se(€) = (ide ®8)S:(£) € LARS ® S, E® S ® S), forall § € &.

Remarks 2.1.2. (1) If the second formula of condition (1) holds, then §¢ is isometric (cf.
[3] and [9, Remarks A.3.2]).
(2) If condition (1) holds, then condition (2) is equivalent to

[6e(&) (14 ® S)] = gpea(E® S).
Indeed, if (1)), is an approximate unit of A we have

8e(§) = lim 8¢ (§uz) = lim 8¢ (§)d4(up) = de(§)gpa forall§ € E.

By strong continuity of the action (84, 84), condition (1) of Definition 2.1.1, and the equal-
ity EA = &, we then have [6¢(E)(A® S)] = [6¢(E)(14 ® S)] and the equivalence follows.
(3) Note that we have gg, o8¢ (§) = 8¢ (§) = 8:(§)qp,q forall £ € E.
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(4) We will prove (cf. Remarks 2.1.7) that if §¢ satisfies conditions (1) and (2) of
Definition 2.1.1, then the extensions of §¢ ® idg and ide ®4 always exist and satisfy the
formulas

(ide ®8)(T)(idg ®3)(x) = (ide ®)(Tx);
(8e ®ids)(T)(84 ® ids)(x) = (8¢ ® ids)(T x)
foralx e A®Sand T € £(4® S,E® S).

Notation 2.1.3. For § € €,letusdenoteby 7: € £(A® S, € ®s, (A ® §)) the operator
defined by
Te(x) =E®s, x foralx € A®S.

We have Tg*(n ®s, ¥) =04((E,n))y foralln e Eand y € A ® S. In particular, we have
TE*T" =384((&,m)) forall &,y € €.

Definition 2.1.4. LetV € £(€ ®;5, (A ® S),E ® S) be anisometry and B¢ : N° — £(E)
a non-degenerate *-homomorphism such that

(1) VV* =qp;a;
(2) V(Be(n®) ®s, 1) = (1 ® B(n°))Vforalln € N.
Then, V is said to be admissible if we further have
(3) VTr € M(E® S) forall £ € &,
4 (Vecids)(VQs,eidg 1) =VQiqesl € L£(E ®s2 (ARS®S),ERS®S).

The fourth statement in the previous definition makes sense since we have used the
canonical identifications thereafter. By combining the associativity of the internal tensor
product with the unitary equivalences (2.2) and (2.3), we obtain the following unitary
equivalences of Hilbert A ® S-modules:

(6 ®5, (48 S)) s,01; (ABS®S) > EB (AR ®S)
(6 ®s4 X) Bsy@ias ¥ F> § Q52 (84 ® ids)(x)y: (2.4)
(E®5, (18 9)) Rig05 (ABS®S) > EQp (A®S®S)
(§ ®s,4 X) Bigg @8 ¥ > § Qp2 (ida ®F)(x)y. (2.5)
We also have the following:

(E®S) Rs,01us (A®S®S) > (ERs, (AR S))®S

(E®S5) Qs,@idg (X ®1) > (€ ®s, X) @ st; (2.6)
(E®S) Qi (ARS®S) = gpa23(ERSRS)CERS®S
£ ®igy @5 ¥ > (ide ®8)(§)y. 2.7

In particular, V ®s,giag 1 € £(E ®s2 (ARS®S).(E®S)Rs,0i1s (A®S®S)) (2.4),
and V @c ids € L((€ ® ) ®s,0i1s (A® S ® S),ER® S ®S) (2.6).
The next result provides an equivalence of Definitions 2.1.1 and 2.1.4.
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Proposition 2.1.5. (a) Let 8¢ : £ — ﬂ((‘l ® S) be a linear map and Be : N° — £(E)
a non-degenerate *-homomorphism which satisfy conditions (1), (2), and (3) of Defini-
tion 2.1.1. Then, there exists a unique isometry V € £(€ ®s, (A ® S), & ® §) such that
8¢ (§) = VT for all § € E. Moreover, the pair (Be,V) satisfies conditions (1), (2), and (3)
of Definition 2.1.4.

(b) Conversely, let'V € £(€ Q5, (A® S),E® S) be an isometry and Be : N° — £(E)
a non-degenerate *-homomorphism which satisfy conditions (1), (2), and (3) of Defini-
tion 2.1.4. Let us consider the map 8¢ : € - £L(A® S,E ® S) given by 8¢ (§) := VT for
all £ € E. Then, the pair (Be, 8¢) satisfies conditions (1), (2), and (3) of Definition 2.1.1.

(c) Let us assume that the above statements hold. Then, the pair (Be, 8¢) is an action
of § on € if and only if V is admissible.

Notation 2.1.6. Let & and ¥ be Hilbert C*-modules. Let g € £(&) be a self-adjoint
projectionand T € £(¢€, F).Let T : & — F be the map defined by T¢ := T¢é for all
¢ € &. Therefore, T e £(8,F) and T* = qT*. By abuse of notation, we will still denote
by T the adjointable operator T.

Remarks 2.1.7. As a consequence of Proposition 2.1.5, we have the statements below.

e By applying Notation 2.1.6 and the identifications (2.3), (2.7), we have obtained a
linear map ide @5 : L(AR S, ERS) > L(ARSR®S,EQR S ®S) given by

(ide @)T) =T Qigy@s1 forallT € L(ARS,E®S).

o If §¢ satisfies conditions (1) and (2) of Definition 2.1.1, let V be the isometry associ-
ated with 8¢ (cf. Proposition 2.1.5 (a)). By applying Notation 2.1.6 and the identifica-
tions (2.2), (2.6), the linear map

0e ®ids 1 £L(AR®S,ERS) > L(ARS RS, EQRS®YS)
is defined by
e ®ids)(T) := (V&®c 1s)(T s @iag 1) forallT € £(AQ® S, ERS).
Note that the extensions ide ®8 and §¢ ® idg satisfy the following formulas:

(ide ®8)(T)(idg ®6)(x) = (ide ®8)(T'x):

2.8
(be ®ids)(T)(84 ® ids)(x) = (8e ® ids)(T'x) @9

forallx e AQ Sand T € £(A® S,E® S).

Let us denote by J := K (€ @ A) the linking C*-algebra associated with the Hilbert
A-module €. In the following, we apply the usual identifications M(J) = L£(E & A) and
MIRS)=L(E®S)B (A®S)).

Definition 2.1.8. An action (8,8;) of § on J is said to be compatible with the action
(Ba.da) if
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1) §5:J > M(J ® S) is compatible with §4; i.e., t4gs © 64 = 67 0 4,
2) By : N° — M(J) is compatible with B4; i.e., t4(B4(n°)a) = Bj(n°)i4(a) for all
ne Nanda € A.

Proposition 2.1.9. Let (87,685) be a compatible action of § on J. There exists a unique
non-degenerate *-homomorphism Be : N° — £(&) such that

0 0
ﬂ](l’lo)z ,35(71) forallnEN-
0 Ba(n®)
Moreover, we have 4Bya = (qﬂ()sa qﬁo )
Au

Proposition 2.1.10. (a) Let us assume that the C*-algebra J is endowed with a compat-
ible action (By.87) of § such that §;(J) C M(J ® S). Then, we have the following
statements:

o there exists a unique linear map 8¢ : € — ﬂ(cﬁ ® S) such that tegs 08 = 8y ote;
furthermore, the pair (Be,8¢) is an action of § on &, where Be : N° — L(E) is the
*-homomorphism defined in Proposition 2.1.9;

e there exists a unique faithful *-homomorphism §x ey : K () — e/{'Z(J’C(S) ® S) such
that Ly (e®s) © Sx(e) = 87 © Ly (g)s moreover, the pair (Be, 85 (¢)) is an action of §
on K (E).

(b) Conversely, let (Be, 8¢) be an action of § on the Hilbert A-module E. Then, there
exists a faithful *-homomorphism §5 : J — M~(J ® S) such that tegs 08¢ = 8y o Lg.
Moreover, we define a unique action (By,87) of § on J compatible with (B4, 84) by
setting
Pe@®) 0

0 Ba(n®)

If & and &, are Hilbert A-modules acted upon by §, then so is their direct sum
€1 & &, in a canonical way.

Br(n®) = ( ) foralln € N.

Proposition-Definition 2.1.11. Fori = 1,2, let €; be a Hilbert A-module acted upon by
G LetE:=E1 D Esx Fori =1,2let je,  L(ARS,E®S) > L(ARS,ERS) be
the linear extension of the canonical injection £ ® S — E R S. Let e : N° — £(E)
and§e : € —> L(A® S,E ® S) be the maps defined by

o [Bein®) 0
Be(n®) = ( 0 /352(71")) ., neN,
8e(§):= ) je 086, (&), €= (51.6)€C.

i=1,2
Then, the pair (Be, 8¢) is an action of § on E.

Remarks 2.1.12. Let (B¢, 8¢) be an action of § on the Hilbert A-module €.
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(1) The map 8x ey : K(€) = M(K (&) ® S) defined in Proposition 2.1.10 (a) is the
unique *-homomorphism satisfying the relation § s (e)(0¢,,) = 8 (§) o ¢ (n)* for
allé, neé.

(2) Forall F € £(€)and ¢ € €, 8¢ (F§) = §x(e)(F)Se({). Indeed, forall §,7n, € €

we have 8¢ (0, ) = 8e(§)84((n.£)) = 8 (§)(8e (), 8e(0)) = S (e)(Bg,)8e (§).
Hence, 8¢ (k$) = S5 (¢)(k)de(¢) for all k € K (€) and § € €. The claim is then
proved by strict continuity of §x (¢).

(3) Forallk € K (&), 8xe)(k) = V(k ®;s, 1)V*, where V € £(€ Qs, (A ® S5),E®
S is the isometry associated with the action (8¢, §¢) (cf. Definition 2.1.4).

Proposition-Definition 2.1.13. Let (B¢, 8¢) be an action of § on the Hilbert A-module
E LetV e £(E®s5, (AR S),E® S) be the isometry associated with (B¢, 8¢) (cf. Propo-
sition 2.1.5 (a)). Let us endow the C*-algebras J and K (E) with the actions defined in
Proposition 2.1.10. Let F € £(&). The following statements are equivalent:

(i) Se(F&) = (F ®1s)de(§) forall§ € &;
(ii)  F is 8xc(e)-invariant;

(i) V(F ®s, DV* = qp.o(F ® lg);

(iv) tx(e)(F) is §y-invariant.

In that case, F is said to be (8¢ -)invariant.

Proof. (ii))=(i) For all £ € &, we have (cf. [9, Remarks 6.1.23], Remark 2.1.2 (3))
8¢ (F§) = 8x(e)(F)8e(§) = (F ® 1s)qpeabe(§) = (F ® 15)8¢(§).
(1)=(ii) For all £, € &, we have (cf. Remark 2.1.12 (1))
Sxe)(FOey) = 8xe)(OFgy) = 8 (FES()* = (F ® 15)8e(£)8e (m)*
= (F ® 15)8xe)(0z,n).
Hence, §x(e)(Fk) = (F ® 1s)8xe)(k) for all k € K (E). Hence,

Sxe)(F) = (F ® 15)qp.a-
(i1)<>(iii) See Remark 2.1.12 (3).
(iii)< (iv) This is a direct consequence of the relation
87 0 Lx(e) = Lx(e®s) © Sx(e)- u

Let us recall the notion of equivariant unitary equivalence between Hilbert C*-modules
over possibly different C*-algebras acted upon by §.

Definition 2.1.14. Let A and B be two §-C*-algebras and ¢ : A — B a §-equivariant
*-isomorphism. Let £ and F be two Hilbert modules over, respectively, A and B acted
upon by §. A ¢-compatible unitary operator ® : & — F (cf. [9, Definition A.3.1]) is said
to be §-equivariant if we have

§5(PE) = (& ® ids)Se (£) forall £ € E.
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We recall that the linear map ® Q ids : L(AR® S,ERS) > L(BX® S, FRS) (cf.
[9, Notation A.3.6]) is the extension of the ¢ ® idg-compatible unitary operator ¢ ® ids :
E®S > F® S (cf. [9, Proposition-Definition A.3.4]). Note that we have ® o B¢ (n°) =
Bg(n°) o ® foralln € N (cf. [9, Proposition 6.1.13]).

Definition 2.1.15. Two Hilbert C*-modules & and F acted upon by & are said to be §-
equivariantly unitarily equivalent if there exists a §-equivariant unitary operator from &
onto J.

It is clear that the §-equivariant unitary equivalence defines an equivalence relation on
the class consisting of the Hilbert C*-modules acted upon by &. For equivalent definitions
of the §-equivariant unitary equivalence in the two other pictures, we refer to [9, §6.1].

Remark 2.1.16. Let B be a g-C*-algebra. An action of the dual measured quantum
groupoid § on a Hilbert B-module J is defined by three equivalent data:

e a pair (xg, §5) consisting of a *-homomorphism a5 : N — £(F) and a linear map
85 :F > MTFRS),

e a pair (xg, V) consisting of a *-homomorphism ag : N — £(F) and an isometry
VeL(FRs, (B®S),F®S),

e an action (ag, 0x) of§onK := K(F & B),

satisfying some conditions. The details are left to the reader’s attention.

2.2. Equivariant Hilbert modules and bimodules

In this paragraph, we recall the notion of continuity for actions of the quantum groupoid
g on Hilbert C*-modules and the notion of equivariant representation of a §-C*-algebra
on a Hilbert C*-module acted upon by & (cf. [9, §7]). Let A be a §-C*-algebra.

Definition 2.2.1. An action (B¢, 8¢) of § on a Hilbert A-module € is said to be continu-
ous if we have [(1¢ ® S)8¢(€)] = (€ ® S)qp4a- A §-equivariant Hilbert A-module is a
Hilbert A-module € endowed with a continuous action of §.

Proposition 2.2.2. Let € be a §-equivariant Hilbert A-module. Let B := K (E). We have
the following statements:
(1) the action (B,8p) of § on B defined in Proposition 2.1.10 is strongly continuous;
(2) we define a continuous action of § on the Hilbert B-module £* by setting
o Bex(m®)T :=Ba(m°)o T foralln € N and T € E*,
o Sex(T)x :=8c(T*)* oxforall T € E*andx € B® S,
where we have applied the usual identifications B ® S = K(E® S) and € =
K (A, E).

Proposition 2.2.3. Let € be a Hilbert A-module endowed with an action (B¢, 8¢) of § on
E. Let J := K (& @ A) be the associated linking C*-algebra. Let (By,8y) be the action
defined in Proposition 2.1.10. Then, the action (B¢, 8¢) is continuous if and only if the
action (B, 8y) is strongly continuous.
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Notations 2.2.4. There is a one-to-one correspondence between §-equivariant Hilbert
C*-modules (cf. Definition 2.2.1) and linking §-C*-algebras (cf. [9, Definition 6.1.22]).

o Let(J,Bys,87,e1,ez) bealinking §-C*-algebra. By restriction of the action (87,8y),
the corner e, Jey (resp. e1Jep) turns into a §-C*-algebra (resp. §-equivariant Hilbert
C*-module over e, Je;). We also have the identification of §-C*-algebras K (e Jez) =
€1 J€1 .

e Conversely, if (&, Be, ¢) is a full §-equivariant Hilbert A-module, then the C*-
algebra J := K (€ & A) endowed with the continuous action (87, 87) (cf. Proposi-
tions 2.1.10 and 2.2.3) and the projections e := tg(1¢) and e; := 14(14) is a linking
§-C*-algebra.

Theorem 2.2.5. Let € be a Hilbert A-module. If the quantum groupoid § is regular, then
any action of § on & is continuous.

Notation 2.2.6. Let A and B be two C*-algebras and € a Hilbert B-module. If y : 4 —
£(€) is a *-homomorphism, then we extend y ® ids to a *-homomorphism y ® idg :
M(AQS) > L(E®S) up to the identification M(K(E) ® §) = L(E ® S).

Definition 2.2.7. Let A and B be two §-C*-algebras, & a Hilbert B-module, (B¢, 5¢) an
actionof §on &,and y : A — £(&) a *-representation. We say that y is §-equivariant if
we have

(1) de(y(a)§) = (y ®ids)(84(a)) 0 8¢ (§) foralla € Aand § € &,
(2) Be(n®)oy(a) = y(Ba(n®)a) foralln € N and a € A.

A §-equivariant Hilbert A-B-bimodule is a countably generated §-equivariant Hilbert
B-module endowed with a §-equivariant *-representation of A.

Remarks 2.2.8. (1) Provided that the second condition in the above definition is verified,
the first condition is equivalent to

V(y(a) ®s, 1)V* = (y ® ids)8a(a) foralla € A, (2.9)

where V € £(€ ®s, (B®S),E® S) denotes the isometry defined in Proposition 2.1.5 (a).
(2) We recall that the action 85 (¢) of § on K () is defined by

Sxe)(k) := V(k ®s, )V* forall k € K (€).

Hence, (2.9) can be restated as follows: 85 (e)(y(a)) = (y @ ids)d4(a) foralla € A. In
particular, if y is non-degenerate, then Definition 2.2.7 simply means that the *-homomor-
phism y : A — M(K(&)) is F-equivariant (cf. [9, Definition 5.1.10]).

(3)Ify : A — £() is a non-degenerate *-representation such that

de (y(a)é) =(y® ids)(SA(a)) 08c(§) forallae Aand € € €,
then the second condition of Definition 2.2.7 is satisfied.

We recall below the tensor product construction.
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Proposition 2.2.9. Let C (resp. B) be a §-C*-algebra. Let £ (resp. £,) be a Hilbert
module over C (resp. B) endowed with an action (B¢,.8¢,) (resp. (Be,.8¢,)) of §. Let
v 1 C — £(&3) be a §-equivariant *-representation. Consider the Hilbert B-module
€ := &1 ®y, &. Denote

A(§1,6) = (8¢, (51) ®pomiag 1) 086, (E2) foréy € €y and & € &,.

We have A(£1,&) € M~(€ ® S)foralléy € E1 and & € E;. Let Be : N° — L(E) be the
*-homomorphism defined by

Be(n®) := Be,(n°) @y, 1 foralln € N.
There exists a unique map 8¢ : € — ﬂ(ﬁ ® S) defined by the formula
8 (51 ®y, §2) := A(61.62) for§i € &rand§r € &
such that the pair (Be, 8¢) is an action of § on E.

The operator 8¢, (£1) is considered here as an element of LC®S. & ®8)D
M(E1 ® §). In particular, we have 8¢, (§1) R5,0idg 1 € £(E2 ® S, € ® S) up to the
identifications

(C ®S)®pis (E205) > &S

X ®p,@ids 1+ (V2 ® ids)(x)n; (2.10)
(€1 ®9S) i (E205) > ER®S
(1 ®5) @peids 2 @ 1) = (61 ®, £2) ® st. (2.11)

Remark 2.2.10. We recall the definition of the isometry V € £(€ ®s, (B ® S),E® §)
associated with the action (B¢, 8¢) (cf. Definition 2.1.4). We refer to the proof of Propo-
sition 7.9 [9] for more~details. For i = 1,2, let V; be the isometry associated with the
actions (Be;,8¢;). Let V2 € £(€ ®s; (B ® S), €1 Qy,0ids)sc (E2 ® S)) be the unitary
defined forall &1 € €1, € E;and x € B ® S by

T72((51 ®y, £2) ®s; X) 1= £1 ®reids)se V2(E2 ®sy X).
Up to the identifications

(&1 ®5c (C ®S)) ®yreids (€28 S) = &1 ®reidg)se (€2 ®S)
(€1 ®sc X) ®y,1ids 1> §1 B(rwids)se (r2 ®ids)(xX)n: (2.12)
(1 ®S) @i (E2©5) >ERS

(€1 ® 5) ®y,zids (62 ® 1) = (61 By, §2) ® st (2.13)

we have V = (V1 Qy,idg 1)92.

The following result is straightforward.

Proposition 2.2.11. We use all the notations and hypotheses of Proposition 2.2.9. If A is
a §-C*-algebra and y, : A — £(&1) is a §-equivariant *-representation, then y : A —
£(E), the *-representation defined by y(a) := y1(a) ®y, 1 foralla € A, is §-equivariant.
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If (€1, y1) is a §-equivariant A-C -bimodule and &, is a §-equivariant C - B-bimodule,
then the pair (€, y) is a §-equivariant A-B-bimodule.

The ¥-equivariance of the internal tensor product associativity map is straightforward
and left to the reader’s discretion.

Lemma 2.2.12. We use all the notations and hypotheses of Proposition 2.2.9. If F €
£(E1) is invariant, then so is F ®,, 1 € £(&).

Proof. Forall&; € € and & € €, A(F&1,8) = (F ® 1s) ®5,0ids 1) A1, §2). How-
ever, (F ® 1s) ®3,gidg 1 is identified to (F ®,, 1) ® 1 through the identification (2.11).
Hence, ¢ (Fé:l Ry, Ez) = ((F Ry, H® 15)83(%'1 Ry, Ez) for all ‘i:l € &; and ?;-'2 € &,.
Hence, F ®,, 1 € £(£) is invariant (cf. Proposition-Definition 2.1.13). |

2.3. Biduality and equivariant Morita equivalence

In this paragraph, we recall the notion of equivariant Morita equivalence between §-C*-
algebras ([9, §7]).

Definition 2.3.1 (cf. [25, §6]). Let A and B be two C*-algebras. An imprimitivity A-B-
bimodule is an A-B-bimodule &, which is a full left Hilbert A-module for an A-valued
inner product 4 (-, -) and a full right Hilbert B-module for a B-valued inner product {-,-)p
such that 4(&,n)¢ = &(n, ¢)p forall £,n,¢ € &.

Remarks 2.3.2. Let A and B be two C*-algebras and € an imprimitivity A-B-bimodule.
We recall that the norms defined by the inner products 4(-,-) on 4€ and (-,-)p on Ep
coincide. We also recall that the left (resp. right) action of A (resp. B) on & defines a
non-degenerate *-homomorphism y : A — £(Ep) (resp. p : B — £(4E)).

Definition 2.3.3. Let A and B be two §-C*-algebras. A §-equivariant imprimitivity A4-
B-bimodule is an imprimitivity A-B-bimodule £ endowed with a continuous action of ¥
on Ep such that the left action y : A — £(Ep) is §-equivariant. In that case, we say that
A and B are §-equivariantly Morita equivalent.

If the quantum groupoid § is regular, then the §-equivariant Morita equivalence is a
reflexive, symmetric, and transitive relation on the class of §-C*-algebras (cf. [9, Defini-
tion 7.13]).

In what follows, we recall the canonical equivariant Morita equivalence of the double
crossed product (4 x §) x g (resp. (B x ‘3) x §) with the initial §-C*-algebra (resp.
g—C*—algebra) A (resp. B) (cf. [9, Theorem 7.22]).

Let (A, B4,84) (resp. (B,ap,8p)) be a §-C*-algebra (resp. ?—C*—algebra).

Notations 2.3.4. The *-representation of A (resp. B) on the Hilbert A-module A ® H
(resp. the Hilbert B-module B ® H)

g = ({dg®R)ob4: A —> L(ARH)
(resp. 7, := (idp ®p) 0 85 : B — L(B ® H))
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extends uniquely to a strictly/*-strongly continuous faithful *-representation g : M(A) —
(A Q@ H) (resp. mp : M(B) = £(B ® H)) satisfying wr(m) = (idg ® R)84(m) for all
m € M(A) and mr(14) = qg,5 (resp. my(m) = (idp ®p)dp(m) for all m € M(B) and
75(18) = qayp). Consider the Hilbert A-module (resp. the Hilbert B-module)

Ear :=9qp,6(ARH) (resp. EBp = (qupp(B ® 9{)).
We recall that the Banach space

D := [nr(@(la ® A(x)L(y)); a€ A, x €S, yeS]
(resp. E = [1,(b)(15 ® R(Y)A(x)); be B, y € S, x € §))

is a C*-subalgebra of £(A4 ® H) (resp. £(B ® H)) such that ugg,s = u = uqpg,q for all
u € D (resp. Vquzg = U = ¢qppV forall v € E). Moreover, we have D(A ® H) = E4,r
(resp. E(B ® H) = &p,,). We also recall that there exists a unique strictly/*-strongly con-
tinuous faithful *-representation jp : M(D)—>L(AQH) (resp. jr : M(E)—> L(BRH))
extending the inclusion map D C £(4 ® H) (resp. E C £(B ® H)) such that jp(1p) =
qpaa (resp. JE(1E) = qagp)-

Proposition 2.3.5. There exists a unique *-isomorphism ¢ : (A x §) x €D (resp.
Y (Bx ;é) xg — E) such thath(ﬁ(n(a)é(x))O(y)) =ng(a)(lgy ® A(x)L(y)) forall
a€AxeS, and y € S (resp. W(ﬂ(ﬁ(b)e(y))é(x)) =m,(b)(1p ® R(y)p(x)) for all
beB,yeS,andxe§).

Notations 2.3.6. We denote KX := J((U-C) for short. Let§p : A® K > M(AQ K ® §)
(resp. 8p : B K > M(BQR K ® S )) be the *-homomorphism defined by

So(a ® k) = 84(a)13(14 ®k ® 15) (resp. 8o(b ® k) = 8p(b)13(1p @ k ® 15))

forall a € A (resp. b € B) and k € K. The morphism §y extends uniquely to a strictly
continuous *-homomorphism still denoted by &g : M(A ® K) > M(A Q K ® §) (resp.
g M(BQ K) > M(B® KR S)) such that 80(1A®JC) = qBaa.13 (resp. So(lpex) =
dapp,13)- Let us denote by V € £(H ® S) (resp. Ve :E(i]-( ® S)) the unique partial
isometry such that (idx ® L)(V) = V (resp. (idx ®,0)(”V)

Theorem 2.3.7. There exists a unique strongly continuous action (Bp, Sp) (resp.
(xg,8g)) of § (resp. §) on the C*-algebra D = [nr(a)(14 ® A(x)L(y)); a € A, x € S,
y € 8] (resp. E := [n,(b)(1p ® R(Y)A(x)); b € B, y €S, x € §]) defined by the
relations

(jp ®ids)8p (u) = V2380 (u) V33, u€D: jp(Bp(n°)) =qp,5(14a®B(1°)). neN
(resp. (jE®idg)8E (v) = "%380(1))"\7;3, vEE; je(ar(n)) =qayp(13®3a(N)), n€N).
Moreover, the canonical *-isomorphism ¢ : (A X §) % gD (resp. ¥ : (B % ;é) xXg —

E) (cf. Proposition 2.3.5) is §-equivariant (resp. §-equivariant). If the groupoid § is
regular, then we have D = qg,5(A ® K)qp,5 (resp. E = qazp(B @ K)qayp)-
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The § (resp. g )-C*-algebra D (resp. E) defined above will be referred to as the bidual
G (resp. §)-C*-algebra of A (resp. B). We investigate below the case of a linking & (resp.
§)-C*-algebra.

Lemma 2.3.8. Let (A, B4, 64) be a §-C*-algebra (resp. g-C*-algebra). For all m €
M(A), w(m) € M(AxG) (resp. T(m) € M(A xG)) is Saxg-invariant (resp. 8, z-

invariant).

Proof. We have (5 ® id§)8A(1§) = (§ ® idg)(9ag) = qa,.gp- By strict continuity of
0 and 84xg, it follows from [9, Proposition-Definition 5.1.15 (1)] that §4xg (7 (a)) =
(m(a) ® 15)qq,,gp forall a € A. Hence, 45g (w(m)) = Gay,.0p(w(m) ® 1) by strict
continuity of 7 and §4xg, i.e., w(m) is §4xg-invariant. [ ]

Proposition 2.3.9. If the quintuple (J,By,87,e1,e2) (resp. (K,ak,8k, f1, f2)) is a link-
ing §-C*-algebra (resp. linking §—C*—algebra), then the quintuple (J X8, jxg,07xg,
n(er), 7 (e2)) (resp. (K x 8, B g Ok g T (f1),7(f2))) is alinking §-C*-algebra (resp.
linking §-C*-algebra).

Proof. Let(J,B7.,87,e1,ez) be alinking §-C*-algebra. Let K := J x § and let (e, 0k)
be the dual action of (8, 8s). Since the canonical morphism 7 : J — M(K) is non-
degenerate, we have m(ey) + mw(ez) = 1g. Let j = 1,2. Since n(e;) € M(K), we have
[Km(ej)K] C K. Any element of K is the norm limit of finite sums of the form
>a é(xk)n(a;t)é\(xi) with x,x} € Sanday € J.Since J = [Jej J], any element of K is
the norm limit of finite sums of the form Zxé(xk)n(ak)n(ej)n(b;t)é(xi) with x;, x} € S
and a,, b € J. Hence, K C [Kn(e;)K]. Hence, K = [Kn(ej)K]. Thus, the quintuple
(J X8, a5xg,85xg,7(e1), w(ez)) is a linking g—C*—algebra (cf. Lemma 2.3.8). |

Remark 2.3.10. Let (J,B7,87,e1,¢e2) (resp. (K,ak, 0k, f1, f2)) be linking § (resp. ‘3)—
C*-algebra. We have a bidual linking & (resp. é)—C*—algebra (D,Bp,ép,mr(e1), mr(e2))
(resp. (E,ag. 0. mwp(f1), mp(f2))) and ¢ : (J ><|§)><|§—>D (resp. ¥ : (Kx?)xﬁ% E)
is an isomorphism of linking & (resp. ?)—C*—algebras.

In the following result, we assume the quantum groupoid § to be regular.

Theorem 2.3.11. Let (A, B4, S4) (resp. (B, ap,dp)) be a §-C*-algebra (resp. g-C*-
algebra).

(1) There exists a unique continuous action (Bg, g, 3¢, ) (resp. (agg . 3e5,)) of §
(resp. ;é) on the Hilbert A-module &4, (resp. the Hilbert B-module Ep ) given
foralla € A (resp. b € B),{ € Handn € N by the formulas

Sear(apa(@ ® Q) = Vazbu(a)13(14 ® ¢ @ 1s);
ﬁ@A,R(nO) = (IA ® /3(”0)) I\SA’R;

(resp. 8ey, (dapp (b ® §)) = V2385 (b)13(15 ® £ ® 1g):;
agy, () := (1 ® @(n)) Lep, )
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(2) Endowed with the *-representation
D — £(6ar): ur>ulg,, (resp. E— £(Epp): vi>vlgy, ).

the §-equivariant Hilbert A-module &4 g (resp. the g—equivariant Hilbert B-
module & ) is a §-equivariant Hilbert D-A-bimodule (resp. g—equivariant
Hilbert E-B-bimodule).

(3) The §-C*-algebras (resp. g-C*-algebras) A and D (resp. B and E) are Morita
equivalent via the §-equivariant (resp. g-equivariant} imprimitivity D-A-bimod-
ule &4 R (resp. E-B-bimodule Eg ;).

2.4. Crossed product, dual action, and biduality

2.4.1. Crossed product. In this paragraph, we define and investigate the crossed product
of a Hilbert module acted upon by a measured quantum groupoid on a finite-dimensional
basis. Let us specify some notations.

Let (A, B4,84) be a §-C*-algebra. Denote by B := A x'§ the crossed product endowed
with the dual action (ap,dp). Let 7 : A — M(B) and 6:5— M (B) be the canonical mor-
phisms (cf. [9, Proposition-Definition 5.1.14]). Let € be a Hilbert A-module and (B¢, 8¢)
an action of § on €.

Definition 2.4.1. We call the crossed product of £ by the action (B¢, 8¢) the Hilbert B-
module € ®, B denoted by € x §.

Notation 2.4.2. For £ € €, we denote by I1(§) € £(B, € x §) the adjointable operator
defined by T1(§)b := € ®, b for all b € B. We have I1(§)*(n @ b) = n({§, n))b for all
n € € and b € B. We then have a linear map I1 : € — £(B, £ x §) (also denoted by IT¢
for emphasis).

Proposition 2.4.3. We have

(1) TI is non-degenerate; i.e., [I1(E)B] = € x §,

2) H(a) = (¢)n(a) forall &£ € Eand a € A,

(3) TE)*I(n) = =((§. n)) forall§,n € €,

@) TI(E)A(x) €EXE forallE €& and x €8 and Exg = [T1(£)0(x); E€&, xe8].
Proof. Statements (1), (2), and (3) are direct consequences of the definitions. Forall £ € £,
a € A,and x € S, we have H(Ea)@(x) = TI1(¢)(w(a)f(x)) € € x §. Hence, [1(£)0(x) €
ExEgforallé e Eand x € S since €A = &. The formula € x § = [TT(§)0(x); E€€&, x €
S] follows from the relations [[T(E)B] = € x g and B = [n(a)@(x); acA, xeS]. =m

Proposition 2.4.4. Letagwg: N — L(EXE) and Sgrg 1 ExE > EL(B® S, (ExF)®
S) be the linear maps defined by

aexg(n) = 1g @, ap(n), neN;
Sewg (€ ®x b) := ((E) ® 15)8p(b). £€& beB.

Then, the pair (dexg, 8exg) is a continuous action of § on the crossed product € X §.
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Proof. Since 85(B) € M(B ® S), it s clear that (TI(§) ® 15)85(b) € M((€ x §) ® S)
forall§ € € and b € B. We have §g(r(a)b) = ((a) ® 15)dp(b) foralla € Aandb € B
(cf. [9, Proposition-Definition 5.1.15 (1)]). Therefore, we have a well-defined linear map

EOpB—>MBRS)CL(B®S, (ExE®S); &®:b> (M) ® 15)85(D).
Leté,ne . Forallb,c e Band x,y € § we have

(ME @ 15)B@x). () ® 15)(c ® y)) = (6 ®x b) @ x. (1@ ) ® y)
=b*m((E.n)c @ x"y
= b x)*(7((€.1) ® 15)(c ® y).
Hence, (IT(§) ® 15)*(I1(n) ® 15) = 7 ({(§,n)) ® 1. Therefore, for all b,c € B we have

((TH®) ® 15)85(D), (T1(n) ® 15)8p(c)) = 8p(B)* (7 ((&, m) ® 15)dp(c)
= 8p(b 7 ((5.n))c)
=83 ((€ ®x b.n ®x c)).
Hence, there exists a unique bounded linear map §exg : € X9 — JC(((E XE)® S ) such
that §¢xg(§ ®p b) = (II(§) ® 15)8p(b) for all § € € and b € B. Moreover, we have
also proved that (§c¢xg (), Sexg(n)) = dp({€, n)) for all £, n € € x §. It is clear that
8exg(§)0p(D) = Sexg(ED) forall§ € E x g and b € B.

Let us fix n € N. We recall that ag(n) := ] (@(n)). It follows from the inclusion
a(N) C M’ that [14 ® p(@(n)), 7r(a)] = 0 for all a € A. Hence, [a¢p(n), w(a)] =0
for all a € A. Thus, the map 1¢ ®, ap(n) € £(E x &) is well defined. It is clear that
aexg : N = £(E€ x ) is a non-degenerate *-homomorphism.

We have [lexg ® @(n), T1(§) ® 1] =0 and (1 ® &(n))dp (b) = §p(ap(n)b) for all
neN,Eeé&, andb € B. It then follows that §gxg (e xg (1)E) = (lewg @ A(1))5exg (£)
forallé e Ex & andn € N.

By continuity of the dual action («p, §p), we have

[Bexg (€ x8)(B®8)] = [(TI(5) ® 15)qays(b ®x); E€ & be B, xeS§)
Letn,n’ e N,be B,x €S, and £ € &. We have
(M) ® 1) (s () ® B(n°))(b ® x) = (E 7 ap(')b) ® B(n°)x
= (@exs (1) ® B(n*)((§ ®x b) ® x).
Hence, (T1(§) ® 15)qapp (b ® X) = qa, 58§ ®7 b) ® x). Therefore, we have
[6exg(€ X E)(B ®5)] = Gy s (€1 9) @ 3).

The maps §exg ® idg and ide g ®3 extend to linear maps from £(B ® S, Ex9H® §)
to £(B ® S®S8S, (Ex9)® S® §) (cf. Remarks 2.1.7). For all £ € € and b € B, we
have
(ide s ®3)3ex5 (§ ®x b) = (idexg @)(M(E) ® 15)35(D)
= (T(§) ® 15 ® 15)(idp ®8)55(b)
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= ((T(§) ® 15)8p ® idg )85(b)
= (Bexg o T1(§) ® idg )85 (x)
= (Bexg ®idg)dexg (§ ®x D).

Hence, (0exg ® idg)dexg = (idexg ®g)5g>qg. It follows from the above that the pair
(dexg,8exg) is an action of € on the Hilbert B-module & x €. By continuity of (ap, ép),
we have

[(Lexs ® $)8exg(ExF)] = (€% 8) & §)qagp
and the triple (€ X 9, e xg, Sexg) is actually a g-equivariant Hilbert B-module. [

Definition 2.4.5. The action (@¢xg, e xg) of the measured quantum groupoid € on the
crossed product € x § is called the dual action of (B¢, ¢).

Lemma 2.4.6. Forall F € £(&), the operator F @, 1p € £(E x §) is invariant.

Proof. This is an immediate consequence of the definition of the action of € on the
crossed product € x g and the fact that [1(F§&) = (F ® 1p)I1(§) forall £ € £. |

Proposition 2.4.7. Let Ay and A, be two §-C*-algebras, and let £, and &, be Hilbert
C*-modules over, respectively, Ay and A, acted upon by §. Let ¢ : Ay — A, be a §-equi-
variant *-isomorphism and ® : €1 — &, a §-equivariant unitary equivalence of Hilbert
modules over the isomorphism ¢. There exists a unique g-equivariant unitary equivalence
of Hilbert modules ®. : £ X § — £, X § over the g-equivariant *-isomorphism ¢ :
A1 X8 — Ay X G such that

Qs(§ ®ny, b) = PE By, ¢x(b) forallb e Ay xGandf € €.

Proof. We have ®(£a) = ®(§)¢(a) and ¢« (w4, (a)) = ma,(¢(a)) for all £ € €; and
a € A;. Hence, ®(¢a) Qa, ¢« (D) = ®E Qra, ¢«(ma,(a)b) foralla € A; and & € &;.
Therefore, we have a linear map

o, : & Omy, (A x8) > E,xE; $®,,Al b — & Quy, ¢« (D).
Forall £,77 € €y, we have 4, ((®€. 1)) = 74, ($((£. 7)) = s (ra, ({£. 7))). Hence,
(CDE ®7ZA1 ¢*(b)’ q”? ®JTA2 ¢)*(C)) = ¢*(<‘§ ®7rA1 bv n ®ﬂA1 C))

forall §,n € €1 and b, c € A; x §. Therefore, O, extends to a unitary equivalence O :
€1 X E — &, x§ over ¢y. Since Py is g-equivariant and Tg, (PE) 0 ¢y = Dy 0 g, (§)
forall§ € &1, wehave 8¢ g (Px(§ ®ny, b)) = (Px ®id5)de, x5 (§ Qry, b) forall§ € &,
and b € A1 x §. Hence, §¢,xg 0 Px = (P4 ® id§)85mg. Hence, ®, is equivariant. =

Let (J, By, 87, e1,e) be a linking §-C*-algebra. Let us denote A := epJe, and
& := ey Jep with their structure of §-C*-algebra and §-equivariant Hilbert A-module (cf.
Notations 2.2.4). We consider the crossed products A x § (resp. K := J x §) endowed
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with the dual action (¢gxg,S4xg) (resp. (¢x, 8k )) and the canonical morphisms 74 : A —
M(A xg) and 04:85 — M(AxG) (resp. wy : J — M(K) and @1 8§ = M(K)).

We know that the quintuple (K, ok, 8k, wy(e1), my(ez)) is a linking g—C*-algebra
(cf. Proposition 2.3.9). Let B := mj(ex)Kmy(ez) and F := my(e1)Kmy(ez), respec-
tively, endowed with their structure of g-C*-algebra and g-equivariant Hilbert B-module
(cf. Notations 2.2.4). We show that we have a g-equivariant unitary equivalence between
€ x § and J. More precisely, we have the proposition below.

Proposition 2.4.8. With the above notations and hypotheses, there exists a unique g-
equivariant *-isomorphism y : A Xx§ — B such that y (74 (a)éA (X)) =mny (a)éJ (x) for
all a € A and x € S. Moreover, the map X 1 EXEG - T EQui>nwyE)x(u)isa
x-compatible unitary operator.

Proof. Since [e;Jes] = A, the inclusion map A ® K C J ® K extends uniquely to a *-
strong continuous *-homomorphism 74 : £(4 ® H) — £(J ® H) such that 14 (lagx) =
ez ® 1y up to the identifications M(A Q K) = L(A® H) and M(J Q@ K) = L(J ® H).
Now we recall that we have the identifications

£Ear) ={T € LARTH): Tqpe =T = qp,aT);
£E51)={T € £(J ®H); Tqp,qa =T = qp,aT}

We also recall that for n € N, we have B4(n°) := Bj(n°)|4 (with the identification
M(A) = £(A)) since [B7(n°), e2] = 0. As a result, 74 induces by restriction to £(&4,1.)
a *-strong *-homomorphism still denoted by 74 : £(84,1) — £(&s,1). We have the fol-
lowing formulas:

rA(éA(x)) = éj(x), xeSs; ty(mq(a)) = ny(a), a € A.
Hence, y := 14 Maxg: A X & — K is the unique *-homomorphism such that
)((nA(a)é\A(x)) = ﬂ](a)éj(x) foralla € Aand x € S.

Note that since 74 is faithful so is y. It follows from K = [z (A)@ J (§)] and the fact that
[r7(e2), éj (x)]=0forall x € S that the image of yis B :=mj(ez) K (ez). Let us prove
that y is ?—equivariant. We recall that § 4 ¢ (nA(a)gA (x)) =(m4(a) ® 1§)(§A ® id§)8A(x)
foralla € A and x € S. It then follows from xomy =myand y o §A = 51 that for all
a € Aand x € S we have

(1 ® idg)8axg (14(@)04(x)) = Sk (w7 (@)07 (x)) = 8k (x(wa(@)8a(x))).
Since my(xa) = wy(x)x(w4(a)) for x € J and a € A, we have
my(xa)x(b) = ny(x)x(wa(a)b) forxeJ,ac A, andbe AxE.
Therefore, we have a well-defined linear map

X:E0n (AxE) > K; &Qq ur>my(E)yu).
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For&,ne &, wehave wy(§)*my(n) = my((§,n) = x(ma((€,7))). Therefore, forall £, €
Eand u,v € AxE we have (wy(E)yw)* my(Mx() = x((§ Qn, U, N Qr, V). As a
result, X extends uniquely to a bounded linear map X : € x§ — K such that X ({{1,$2)) =
x((¢1,82)) forall &1,8 € € x G. Itis clear that X(Cu) = X({)y(u) forall ¢ € € x & and
ueAxg.

Forall § € &, we have (X ®idg) o (T ® idg) = (s (§) ®idg) o (x ® idg). Hence

(X ®idg)8exg (§ ®ny u) = (15(§) ® 1g)(x ® idg)daxg (u) = Sk (7 (§) x(w))

forall £ € € and u € A x §, which proves that X is ‘g-equivariant. Finally, X induces a g-
equivariant unitary equivalence of Hilbert modules from & x § onto F:= 7 s (e1) Ky (e2)
over the isomorphism of §-C*-algebras y : A X § — mwy(ex)Kmy(es). |

The continuous action (87, 8y) (resp. (ak, 8x)) also endows the C*-algebra e Je;
(resp. wy(e1)Kmy(ey)) identified with K (&) (resp. K (F)) with a continuous action
(Bx(e) 8xc(e)) (xesp. (oxc(5), Sx(5))) of & (resp. §).

Proposition 2.4.9. The map K(€) x § — K(F); wy(e)(k)Oxcey(x) = 77 (k)0 (x) is
a ‘§-equivariant *-isomorphism.

Proof. The proof is the same as that of the above proposition (by exchanging the projec-
tions e and e3). [

Corollary 2.4.10. Let A be a §-C*-algebra and £ a §-equivariant Hilbert A-module.
We have a canonical ‘g—equivariant *-isomorphism K (€) x§ ~ K (€ x §). Moreover, if
F € (&), then the operator F @y, 1 € £(€ % §) is identified with 1w ey (F) through
the identification £(E X §) >~ M(K () x §).

Proof. 1t suffices to apply Propositions 2.4.8 and 2.4.9 to J := K (€ & A) equipped with
its structure of linking §-C*-algebra (cf. Notations 2.2.4). ]

Corollary 2.4.11. Let A be a §-C*-algebra and & a §-equivariant Hilbert A-module. Let
6:5 — MK (E)xE)and Il :E — L(AxE,E xG) be the canonical morphisms. With
the identification M(K(E) x §) = L£(E x§) (c¢f. Corollary 2.4.10), we have g(x)H(E) €
EXE forall x € §and§ € &. Moreover, we have € X § = [é(x)H(S); el xe §]

Proof. Letusequip J := K (€ @& A) with its structure of linking §-C*-algebra (cf. Nota-
tions2.2.4).Leté € £,b € Ax§,and k € K (&), then I1(§)b (resp. mx(e)(k)) is identified
to wy(te(§))x(b) (resp. my(tx(e)(k))) through the identification of Proposition 2.4.8
(resp. Proposition 2.4.9). Hence, mx(¢)(k)I1(£)b is identified to my (t1e (k&)) x(b). Thus,
we have mye)(k)I1(§)b = I1(kE) x(b). As a result, we have mwx(e)(k)I1(§) = I1(k§)
forall k € K (&) andS €é.

If¢eé xe S,andk € K (€), we have Gx(g)(x)l'[(ké) = Qx(g)(x)nx(g)(k)n(é) €
€ % § since Gx(g)(x)nx(&)(k) € K(E)x& =K (ExE). Hence, GK(&)(X)H(%') €eEXE
forallx € § andS € Esince K(E)E=E. Let§ €&andx €S, then H(S)@A(x) is identified
toms(te (S))GJ (x). Moreover, s (te (S))GJ (x) is the norm limit of finite sums of the form
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> 91 (x;)my(u;) with x; € S and d u; € J. However, we have [y (ej), 91 ()] = 0 for all
y € S and 1 j =1,2. Hence, H(E)GA (x) is the norm limit of finite sums of elements of the
form ) ; 91(xl)71](e1u,e2). Write ejujes, = te (&) with & € €, then H(§)9A(x) is the
norm limit of finite sums of the form ), éx(g)(xi)l'[(é,-). |

In the following result, we investigate the functoriality of the crossed product con-
struction.

Proposition 2.4.12. Fori = 1,2, let A; be a §-C*-algebra. Let f : A1 — M(A3) be a
G-equivariant *-homomorphism.

(1) There exists a unique -homomorphzsm fe 1 A1 xE > M(A2 X §) such that for
all a€ A and x € S, f(nAl(a)QAl(x)) = 714, (f(a))@A2 (x). Moreover, f is
g- -equivariant. Note that if f(A1) C Ay, then fr (A1 X§) C Ay X 8.

(2) The correspondence — x'G : Algg — Algg is functorial.

Proof. (1) Leti = 1,2. Let us denote my4; 1, : A;i = £(A4; ® H); a — (id4; ®L)34,(a)
and B; := A; x §. In this proof, we make the identifications

M(A; ® K) C M(A; ® K) = £(A4; ® ).
We also identify
£(E4;,L) = {T e £(A4; ® H); TqﬂAiOt =T = QﬂAiaT}~

We then have B; = [714;,1.(a)(14,®p(X)); a€ A;, x€§]. It follows from L(S)K =K and
84, (A;) CM(A; ®S) that B; CM(A; ®K). Let f®idy : M(A1Q K) — £(A2® H).
By a straightforward computation, we have

(f ®id]{)(7TA1’L(a)(1Al ®p(x))) =T4,,L (f(a))(lA2 ®p(x)) forallac A; and x€S.

Hence, (f ® idx)(B1) C M(B3). Let fi := (f ®1dg<)r3l B, — M(Bz) We have
proved that the -homomorphlsm [ satisfies f(yrAl(a)GAl(x)) = Ty, (f(a))@A2 (x) for
alla € Ay and x € S.In particular, foralla € A; andu € S ® S we have

(fi ® idg) (74, (@) ® 15) (B4, ® id) ) = (74, (f (@) ® 15) (B, ® idg) ().

LetacA; and x,x'€S. By a straightforward computation, it follows from [9, Proposition-
Definition 5.1.15 (1)], the previous formula, and the relation §(x)(1g ® x') € S ® S that

(fx ®idg) (85, (704, (@)04,(x)) (15, ® X)) = 85, (fi (74, ()84, ())) (15, ® X).

Hence, (fx ® idg)dp, (4, (a)éA1 (x)) =8B, (f« (4, (a)éA1 (x))) foralla € Ay and x € S.
Moreover, it is easy to see that fi (o4, (n)b) = au,(n) f«(b) for all b € B;. Hence, f is
;é-equivariant.

(2) If f is non-degenerate, then so is fx. Indeed, we have A, = f(A1)A;. Leta € Ay,
be Ay, and x € S, By [9, Proposition-Definition 5.1.14],

745 (f(@)h) B4, (x) = 74, (£ (@) 74, (b)Ba, (x)
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1s the norm limit of finite sums of the form

> 4, (f (@) 0, (xix)may (bi) = D fulwa, (@)0a, (x0)) Bty (X)) 704, (bi)

with x;, x] € S and b; € A,. Hence, 14, (f(a)b)é;l2 (x) € [f«(B1)B3]. Hence, f is non-
degenerate. The functoriality of the correspondence — % § : Algg — Algg follows. ]

We are now able to define the bimodule structure on the crossed product £ x §.

Proposition-Definition 2.4.13. Let B be a §-C*-algebra and & a §-equivariant Hilbert
B-module. Let y : A — £(&) be a §-equivariant *-representation. By applying Propo-
sition 2.4.12 and Corollary 2.4.10, we have a canonical ?—equivariant *_representation
Vi : A NG — L£(E xG). Moreover, if € is a §-equivariant Hilbert A-B-bimodule, then
ExGisa g-equivariant Hilbert A x§-B x §-bimodule.

Proof. We only have to prove that if € is countably generated as a Hilbert B-module,
then € x g is countably generated as a Hilbert B x §-module. Let {§;; i € N} be a
generating set for the Hilbert B-module €. We have S = {(d @we ) (V); S n € H}.
Moreover, J{ is separable then so is S. Let {x;; i € N} be a total subset of S. We claim
that {GK(S)(x,)H(%‘,) ieN, jeN}CExEis ageneratmg set for the Hilbert B x §-
module € x §. Indeed, this follows from the relation £ x § = [Gx(g)(x)l'[(é) 93 x); SE g,
x,x' €8 ] (cf. Proposition 2.4.3, Corollary 2.4.11 and the fact that any element of S can
be written as a product of two elements of S ) and Proposition 2.4.3 (2). ]

Proposition 2.4.14. Let A, B, and C be three §-C*-algebras. Let &1 and €, be Hilbert

modules over C and B, respectively. Let (B¢,,8¢,) and (Be,, S¢e,) be actions of § on

&1 and &,, respectively. Let vy, : C — £(&3) be a §-equivariant *-representation. Let

€ 1= &1 ®y, &, be the Hilbert B-module acted upon by § defined in Proposition 2.2.9. Let

Vox 1 C X 8§ — L(Ey x &) be the ?—equivariant *-representation defined in Proposition-
Definition 2.4.13.

(1) There exists a unique §-equivariant unitary & : (1 X §) ®y,, (E1 X F) > EXE
such that

E(éx(el)(xl)nal(fl) ®y2a HSz(SZ)éB(XZ)) = gx(s)(xl)na(él ®,, £2)08(x2)

forallxl,xz (S §, 2,.:1 (S 81, andé‘z (S 82.

(2) Let y; : A — £(E1) be a §-equivariant *-representation. Denote by y : A —
L (&) the §-equivariant *-representation defined by y(a) 1= y1(a) ®y, 1 for all
a € A (cf Proposition 2.2.11) and y1« : A X § — £(E2 X §) the §-equivariant
*-representation defined in Proposition-Definition 2.4.13. Let

K:A—> L((E1 %) ®y,, (E2x))

be the §-equivariant *-representation defined by k(a) := y1x(a) ®y,, 1 for all
a € A (cf. Proposition2.2.11). We then have E o k(a) = y«(a) o E forall a € A.
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For the proof, we will need to use a concrete interpretation of the crossed product.

Notations 2.4.15. Let A be a §-C*-algebra. Consider the §-C*-algebra B := A x §. Let
€ be a Hilbert A-module acted upon by §.

(1) Letk : S — B(H) be a non-degenerate *-homomorphism. We have the following
unitary equivalences of Hilbert A-modules:

(A®S) Qi (AQH) > AR H

(a ®5) ®igyec (b ®@n) = ab ® k(s)n;
(E®S) iajor (AQH) > ERH

(¢ ®5) gy (@ ®n) > Ea @ k().

By using the above identifications, the map ide ®« extends to a linear map
ide @k : L(ARS,EQRS) > L(ARH,E®H)
T (ide @)(T) :=T Qiayec 1.
The extension is uniquely determined by the formula
(ide ®K)(Tx)
= (ide ®x)(T)(idg ®«)(x) forT e L(AR®R S, ERS)andx € A® S.
ForallT,S € £(A® S,E ® S) we have
(ide ®x)(T)*(ide ®K)(S) = (idg R)(T*S)
with the identification £(4 ® S) = M(A ® §).

(2) By using the above notation, we consider the linear map
My : &€ > LARH,EQH)

defined by Iy (§) := (ide ® L)S¢ (€) for all £ € £. Note that we have
o Tlp(a) =Tp(§)np(a)foralla € Aand € € €,
o M) ML) = mr((§,n) forall§,n € €,

* qpeallr(§) = L(§) = NL(§)gp,q forall § € €.

(3) There exists a unique isometric linear map Wy , : E X9 — L(AQ I, & @ K)
such that \IJL,p(H(S)é\(x)) =TI.(6)(ls ® p(x)) forall £ € € and x € S. Indeed,
let us denote by ¥z, : B — £(A ® H) the unique faithful strictly/*-strongly con-
tinuous *-representation such that wL,p(n(a)é\ (x)) = mr(a)(14 ® p(x)) for all
acAand xeS (cf. 8, Proposition 4.2.3]). Since Y (7 (a)) =ny.(a) foralla € 4,
there exists a unique isometric linear map ¥z ,: E X9 — L(A ® H, € @ H)
such that Wz, ,(§ ®, b) = I (§)Yr ,(b) forall§ € € and b € B. It is clear that
\IJL,p(H(é)é(x)) =M (E)(14 ® p(x)) forall £ € € and x € S.
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Proof of Proposition 2.4.14. (1) According to Notation 2.4.15 (3), we identify &; < §
(resp. €, x §) with a subspace of £(C ® H, &1 ® H) (resp. L(B ® H, €2 ® H)).
Since §¢(C)(lc ® S) C C ® S, we even have &; x ¢ C £(C ® H, & ® H). Let
7o ®idg : £(C ® H) — L(E2 ® H). With the identification (C ® H) ®5, €2 = €2 ® K,
we have

(2 @idg)(T) =T ®5,1 forall T € £(C @ K).

By using the identification (£; ® ) ®z, €2 = € @ J(, we then obtain an isometric
adjointable operator
E:L(C®IH,E @H) ®ppiayx L(BRH,E Q@ H) — L£(B I, EQ KH)
T1 ®,0id 12— (T1 ®3, DT3.

We prove that

E(Oxc(eny(x1) e, (1) @y, ey (£2)08(x2)) = Oxc(e) (x) e (E1 ®, £2)05(x2)

for all x1, x, € S , &1 € €1, and & € &, by a straightforward computation. Hence, &
induces by restriction a unitary & € £((€1 X §) ®,,, (€1 % ), E x§). The equivariance
of B will follow from the definitions and the formulas
Ses (Brce) () Te (§)08(x2)) = Breey ® idg)3(x1) (M () @ 15)(Bp ® idg)S(x2):

8e g (Oxcceny(x) e, (§1)) = (Oxce,) ®idg)d(x1)(Me, (51) ® 13):

8e,mg (e, (6208 (x2)) = (e, (£2) ® 15) (05 ® idg)8(x2)

forallé e &, 3;'1 (S 81, Sz (S 82, and x1, X3 € §

(2) This will follow from the formulas

V1@ (e (X)) Te, (E1) = Oxc(e) (1) e, (1 (@)§1);
k(@) ey (1) e (€)05 (x2) = Oy (x1) e (y(@)€)0p (x2)

forallé; € €1, € &, and xq,x; € S (cf. Proposition 2.4.12 (1)). n

In a similar way, we define the crossed product of a Hilbert C*-module by an action
of the dual measured quantum groupoid €. The details are left to the reader’s attention.

Let (B,ap,8p) bea g-C*-algebra. Let us denote by C := B x € the crossed product
endowed with the dual action (8¢, éc). Let7 : B — M(C) and 6 : S — M(C) be the
canonical morphisms. Let J be a Hilbert B-module and (¢, §5) an action of € on 7.

Definition 2.4.16. We call the crossed product of JF by the action (o, §5) the Hilbert
C-module ¥ ®3 C denoted by I x §.

Notation 2.4.17. For £ € F, we denote by ﬁ(é) € éC(B Fx ;é) the adjointable operator
defined by H(S)c = £ ®z c forall c € C. We have H(%) n®z c) = 7w ({&, n))c for all
n € Fand ¢ € C. We then have a linear map :5— £(B.F x ﬁ)
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Proposition-Definition 2.4.18. Let us denote by 8 . 5 :F » g — £(C RS, (Fx g) ®S)
and B4,z N° — L(F g) the linear maps defined by

Byug(®) =15 ®z Bc(n®), neN;
81,5 ®z¢) = (M(§) ® 1s)dc(c), £€T, ceC.

Then, the pair (B4,.5.84,5) is a continuous action of § on the crossed product F x g
called the dual action of (a5, 8).

Let (K, ok, 0k, fl, f2) be a linking -C*- -algebra. Let us consider the §-C*- -algebra
B := f,Kf, and the g- -equivariant Hilbert B-module ¥ := f; K f>. We consider the §-
Cc* algebras Bx§ (resp. L := K > g ) endowed with the canonical morphisms 7p : B —
M(B ><1§) and 0p : S — M(B ><1§) (resp. 7 : L — M(K) and 0, : S — M(K)). We know
that (L, Br, 8z, 7L (f1), TL(f2)) is a linking §-C*-algebra. Let us consider the §-C*-
algebra C:=7g (/) L7k (f>) and §-equivariant Hilbert C-module §:=7g (f1)Lag (f>).

Proposition 2.4.19. With the above notations and hypotheses, we have the following
statements.

(1) There exists a unique §-equivariant *-isomorphism  : B x € — C such that for
allb € Band y € S we have Y (7g(b)0p ») = 7wk (h)0k (v). Moreover, we have
§- eqmvartant unitary equivalence ¥V : F x € -G Nz, u = A (MY (1) over
v Bx g - C.

(2) The map
K@) xE — KT Fxen(k)0xe () = 7x(k)0x(y)

is a §-equivariant *-isomorphism.

Corollary 2.4.20. Let B be a g—C*—algebra and ¥ a g—equivariant Hilbert B-module.
We have a canonical §-equivariant *-isomorphism K (F) x g~ X (Fx g) Moreover, if
F € £(3), then the operator F ®z, 1 € £(F x g) is identified with 7 3 () (F) through
the identification £(F x §) ~ M(K(F) x §).

2.4.2. Takesaki-Takai duality. In the following paragraph, we investigate the double

crossed product. Let A be a §-C*-algebra and € a §-equivariant Hilbert A-module. Let
D be the bidual §-C*-algebra (cf. Notations 2.3.4).

Proposition-Definition 2.4.21. Let TIg : € - £(A ® H, € ® H) be the linear map
defined by I1g(§) := (ide ®R)S¢(§) for all & € € (cf. Notations 2.4.15). Let

D= [MTr(E)(la ® A(X)L(y)); €& xS, ye S| CLARN ERH).

For the natural right action of D by composition of operators and the D-valued inner
product given by ({1, 8,) := {T o & for £1, 8, € D, we turn D into a Hilbert D-module.
Let

Ee,R = qp.a(ER@H) CE®H.
Then, E¢ g is a Hilbert sub-A-module of € ® H and [DE4 r] = E¢ r.
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Proof. By combining the facts that [/X(§ )L(S)] and D are C*-algebras with the formula
Hg()nr(a) =Mg(Ea) for & € € and a € A, we obtain the inclusion DD C D. Moreover,
we have [Tg(§)*T1r(n) = wr({(€,n)) for all &, n € E. It then follows that D*D C D. Since
qg.a 1R (E) = IR(§) = Mr(£)gp,s for all £ € € (cf. Remark 2.1.2(3)), we have the
inclusion [ITr(€)&4,r] C E¢,r. The converse inclusion follows from [§¢(E)(14 ® §)] =
dgs(E ® §). Hence, [I1r(E)E4,R] = E¢,r. The relation [DE4 g] = E¢, g follows from
SA,R = [DSA’R] and [HR(S)D] =D. |

We will endow D with a structure of §-equivariant Hilbert D-module. Actually, the
action (Bp, 6p) defined in Theorem 2.4.22 will be obtained by transport of structure
through the identification (€ x §) % € ~ D of Theorem 2.4.23.

Letusdenotebyo : S ® KX — K ® S the flip *-homomorphism. As in Remarks 2.1.7,
we define the linear extensions

ide 0 : LARSRIK,ERSRK) > LARK RS, EQRK R S);
e ®idy : L(ARK,EQRK) > L(ARS K, ERS ® K).
We state below the main results of this paragraph.

Theorem 2.4.22. Letdp : D - L(D® S,D® S) and fp : N° — L(D) be the maps
defined by the formulas

Bo(n°) :=qp.a(le ® B(n°)), neN;
$p() = (lg ® V)(ide ®0)(6e ®idx)(0) (14 ® V)*, (e D.

Then, the pair (Bp,8p) is a continuous action of § on the Hilbert D-module D. Moreover,
forallé € &, x € S, and y € S we have

$p(MrE) (14 @ A(x)L(y))) = (Mr(E) @ 15) (14 @ A(x) ® 15)(14 ® (L ®idg)(y)).
If'G is regular, then we have D = qg.5(E ® K)qp,a-
If § is regular, we have D C € ® K up to the identification € C £(4, &).

Theorem 2.4.23. There exists a unique unitary equivalence @ : (€ X §) x € — D over
the canonical *-isomorphism ¢ : (A X §) x§ — D (cf. Proposition 2.3.5) such that

@(ﬁ(l’[(é)é(x))@(y)) = HR(‘E)(IA ® A(x)L(y)) forall§ € €, x € §, andy € S.
Moreover, ® is §-equivariant.

Proofs of Theorems 2.4.22 and 2.4.23. At the risk of considering K (€ & A), we can
assume that € is a top right-hand corner in some linking §-C*-algebra (J, 7,87, e1,€2).
By combining Proposition 2.4.19 (1) and Proposition 2.4.9, we can identify (€ X §) x g
with the top right-hand corner of the linking §-C*-algebra

((J ) %9, Blrwgynd Sungwz 7 (7(e1)). 7 (m(e2))).
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Let us denote by Dy C £(J ® H) the bidual §-C*-algebra of J. By applying the bidu-
ality theorem (cf. Theorem 2.3.7 and Remark 2.3.10), we can identify (€ x §) % £ with
the top right-hand corner of the linking §-C*-algebra (D, fp;,6p,, mr(e1). mr(e2)).
Since nr(e;) = qp,a(ej @ 1x) for j =1,2anda@(N) = M'N M’, we have

[7r(ej), 17 ® A(x)L(y)] =0 forallx € Sandy € S.

Hence, we can identify wg(e;) D jmr(ez) with D. The action (8p, §p) is then obtained
by transport of structure. ]

Corollary 2.4.24. Assume that '§ is regular. The formulas

See g(ag.a(E @) :=Va38e(9)13(14 @ ® 1s), §€& nek:
Bee x(n°) := (1 ® B(n°))lesp. n €N,

define an action of § on the Hilbert A-module &g r. Moreover, we have a canonical
identification of §-equivariant Hilbert A-modules

(€ %9) % %) ®ggms EaR = Ee.R

up to the identification of §-C*-algebras (A X §) x ¢ =D.

Proof. 1t is clear that the formula D ® p E4,r — E¢,r; ¢ @p & — ¢ (&) defines a uni-
tary equivalence of Hilbert A-modules. Let (Bg, . de, ) be the action of § on E¢ g
obtained from the action of § on D ®p E4,g by transport of structure. By a straightfor-
ward computation, we prove that (B¢, . dg, ) satisfies the formulas stated above. By
Theorem 2.4.23, we have a unitary equivalence of §-equivariant Hilbert D-modules

((8 A g) A é) ®(A>4§)>4§ D =7D.
By taking the internal tensor product by &4,z and using the associativity, we obtain

(((8 Xg) §) B (axg)xE D) ®p EaR = ((8 X g) g) B (axg)xE (D ®p &a.r)
= ((€x%) x9) ® (agg)xé CAR-

Hence, ((€ x §) x §) ®(409)xE 4R = E¢ R u

Lemma 2.4.25. Assume that G is regular. For all F € £(€), (( — ng(F) o) € £(D)
and nr(F) e, € L£(E¢,R) are invariant.

In order to keep the notations simple, we will sometimes denote by g (F') the opera-
tors defined above since no ambiguity will arise.

Proof. Let T € £(D) be the operator defined by T(¢) := wr(F) o { for all { € D. The
operator (F ®, 1) ® 1 € £((€ x &) x §) is invariant (cf. Lemma 2.4.6). However, the
operator (F ®, 1)®3 1 isidentified to T € £ (D) through the identification (ExE§)xE§ =D
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(cf. Theorem 2.4.23). Hence, T is invariant. The operator T ®p 1 € £(D ®p &4,r) is
identified to 7r(F) g, € £(E¢,r) through the identification

D®p Ea,r = Ee,r; (®p EC(§).
Hence, the operator 7r(F) ¢, € £(E¢ r) is invariant. |

Proposition-Definition 2.4.26. Assume that § is regular. Let B be a §-C*-algebra, € a
G-equivariant Hilbert B-module, and y : A — £(€) a §-equivariant *-representation of
A on &. Then, forall d € D we have

(y ®idx)(d)qp.a = (y ®idx)(d) = qp.a(y ®idx)(d) in L(E @ H).

Moreover, the map d € D — (y ® idx)(d) e, x is a §-equivariant *-representation of
D on 8¢ r. If € is a §-equivariant Hilbert A-B-bimodule, then &E¢ g is a §-equivariant
Hilbert D-B-bimodule.

Proof. We have y(B4(n°)a) = Be(n°)y(a) foralla € A andn € N. It then follows that
(y®idx)(gpaxqp.a) =4qpsa(y ®idx)(x)gp, 4 for all x € A® K. In particular, we have
(y ®idx)(d)qp.a = (y ®idx)(d) = qg.5(y ®idx)(d) foralld € D. As aresult, the
*-representation y ® idx : A ® K — L£(€ ® H) induces by restriction a *-representation
vo: D — £(E¢,r). Let us prove that y is §-equivariant. Letus fix €€, neH,ac 4, and
keX.Wehave e (y(a)f)=(y ®ids)(84(a)) o 8¢ (). By a straightforward computation,
we have 8¢, ,(qp.a(V(@)EQkn)) = (y ®idx ®ids)(V2380(a ®k))8e (§)13(14 @1 ®15).
Forall x € A ® K, we have 8o(xqg,5) = do(x)gap,23- Hence,

V2380(xqp,a) = Sagx(x)Va3 forallx € A® K.
In particular, we have V,368¢(d) = ép(d)Va3 forall d € D. Hence,

8ee r(r0(d)¢) = (yo ®idp)(8p(d)) 0 8g, x(§) forall{ € Eg randd € D.

It is easily seen that yo(Bp (n°)d) = Bg, x(n°)yo(d) foralln € N and d € D.If € is
countably generated as a Hilbert B-module, then so is £ ® H since H is separable. Hence,
the submodule &¢ g of € ® I is countably generated. |

2.5. Case of a colinking measured quantum groupoid

Let us fix a colinking measured quantum groupoid § := §g, G, associated with two
monoidally equivalent locally compact quantum groups G; and G,.

2.5.1. Hilbert C*-modules acted upon by a colinking measured quantum groupoid.
In the following, we recall the description of Hilbert C*-modules acted upon by & in terms
of Hilbert C*-modules acted upon by G and G, (cf. [9, §6.2]). Let A be a §-C*-algebra.
We follow the notations of [9, §3.3] (resp. [9, Notation 5.2.1 and Proposition 5.2.2]) con-
cerning the objects associated with § (resp. A). Let € be a Hilbert A-module endowed
with an action (B¢, 8¢) of §.
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Notations 2.5.1. We introduce some useful notations to describe the action (B¢, d¢).

Let g¢,; := Be(e;) for j = 1,2. Note that g¢; and g¢ » are orthogonal self-adjoint
projections of £(&) and ge,1 + ge2 = le.

Let J := K (& @ A) be the linking C*-algebra associated with & endowed with the
action (By7,8s) of § (cf. Proposition 2.1.10 (b)). Since B7(C?) C Z(M(J)) (cf. [2,
§3.2.3]), we have B¢ (n)é = £B4(n) in £(A,€) foralln € C2and £ € €;ie.,

Be(m)é)a = E(Ba(n)a) foralln e C*, £ € &, anda € A.
( Ja = &( ) 2

Hence,
(qe,j6)a = &(gu,ja) forallé e ac A, j=12. (2.14)

In particular, we have

(qe.i§6.qe.5m) = qa,j(E m) forallé,neé.

For j = 1,2, we then define the following Hilbert A;-module &; := g¢_ ;€. Note that
E=E168¢&,.

For j,k = 1,2, let H}‘ 1 €k ® Sg; — € ® S be the inclusion map. It is clear that

the map Hj? isa n}’-‘ -compatible operator. Then we can consider its canonical linear

extension H}‘ t E(Ak @ Skj, €k ® Skj) = L(A® S, EQ®S), up to the canonical
injective maps £ ® Sg; — L(Ax @ Skj, Ex @ Skj)and ER S - L(A® S, E®S),
defined by Hf(T)(x) = H}‘ oT((qax ® pkj)x) forall T € £(Ax ® Skj, Ex @ Skj)
andx € A®S.

Lemma 2.5.2. With the above notations and hypotheses, we have a canonical unitary
equivalence of Hilbert A @ S-modules € ®s, (A ® S) = @j,k=1,2 &j ®8§ (Ax ® Skj).
i

Proposition-Definition 2.5.3. Let V € £(€ ®s, (A ® S),E ® S) be the isometry asso-
ciated with the action (B¢, 8¢) (cf. Proposition 2.1.5 (a)). For all j, k = 1,2, there exists
a unique unitary

Vke (€ ®5§j(14k ® Skj): €k ® Sij)

such that

VE®s, )= > VE(qe sk ®sk ([qak ® pj)x) forall§ € Eandx € A®S.
k=12 /

For j, k,l = 1,2 we have the following set of unitary equivalences of Hilbert modules:
Aj ®5§_ (Ax ® Skj) = Ak ® Sk;j
J
k .
a ®5§j X 8Aj (a)x; (2.15)
(Ar ® Skj) ®8flik®idskj(Al ® Sik ® Skj) = A1 ® Sik ® Sk;j

X Bl wiag,, V1 (84, ® ids,;)(x)y: (2.16)
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(41 ® S17) ®idAl ®slkj(Al ® Sik @ Skj) = A1 @ Six ® Sk;j
X @i, @sf ¥ > (i ®8)(x)y: (2.17)
(& ®8§/_(Ak®5kj)) ®5f1k®idsk,-(Al RSk ®Skj) — &; ®(32k®idsk_,)8§j(Al ® Sk ® i)
3 ®8§,- X)®8£k®idskj y e E®(5£k®idskj) 0 (8%, ®ids,,)(x)y;
(2.18)
() @y (A1851) Biy, 038 (A1BS®Sk)) — £ B a5t ), (418 S8 Si))

. k .
¢ ®5fa,~ x)®idAl ®sk Y ™ §®(idAl ®8,’f/)8/’1j(1d14/ ® &) (x)y:
(2.19)
(Ek ® Skj) Byl giae (A1 ® Sik ® Skj) = (Ex @5t (A1 ® Sik)) ® Sij
Ay 2 1Sk ; A
(89 By gy, (BN > By X) @51 (2.20)
(&1 ® Siy) Bidy, ®glkj(Al ® Sik ® Skj) —> €1 ® Six ® Sk
£ @y, gat ¥ (ide, ®8)(6) . (2.21)
Proposition 2.5.4. Forall j,k,l = 1,2, we have
I . k !
Vy, ®c ldskj)(vj ®8z€1k®idskj )= Vj ®idAl 5k 1.
For j, k,l =1,2,
Vi ®c idg,; € ‘f((gk@Skj)@sjk@idgkj(Al®Slk®Skj)’ E1QSk®Skj)  (2.20);
k
Vj ®8ik®idskj e Z(g ®(aik®idskj)8§j(z41 ® Sik @ Skj),
(€x ® Skj) ®1 ®ids, ,(Az ® Sik ® Skj))  (2.18);
VZ 1d ®8k 1e QC(E ®(1dA ®8")8’ (4 ® Six ® Sk]) &1 RS ® Sk]) (2.21).
Moreover, the composmon (Vl Rc 1dsk/)(\7 ® 51 ®id 1) does make sense since
I k I Ski
(8Ak®ldsk/)8A - (ldAl ®8 )8

Proposition-Definition 2.5.5. For j, k = 1,2, let 8’(5/, 1€j = L(Ax ® Sj. Ex @ Skj) be
the linear map defined by '

58, (B)x == VK (& ®8§, x) forall§ € & and x € Ag ® Si;.
Forall j, k,I = 1,2, we have the following statements.

D 8e(®) = Y j=1,2 11} 0 8F, (qe,€) forall § € €.
(i) 8k (&) C M(Ek ® Sg)).
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(i) 8K (a) = 6% (6)65 (@) and (85 (£), 8%, (n) = 85 (&, n)) for all €.n € &; and

(iv)

)

(vi)

CIGA]'.

[51§j(€j)(1,4k ® Skj)] = €k ® Skj; in particular, we have

&k = [(ide, ®)SE, (€); © € B(Hrj)s, £ € ]

cf- [9, Proposition-Definition 2.3.6].

815k® ids,; (resp. idg, ®8;‘j) extends to a linear map from £(Ax @ S;, Ex @ Sk;j)
(resp. £(A; @ Sij, &1 ® Si5)) to £(A; ® Sik ® Skj, €1 ® Six ® Skj) and for
all & € E; we have

(8%, ®ids,;)SE, (€)= (ide, ®8))8%, (6) €L(A; & Six ® Skj, &1 ® St ® Skj)-

If € is a §-equivariant Hilbert A-module, then we have [(1¢, ® Skj)(?lgj (€] =
Er ® Skj.

If € is a §-equivariant Hilbert A-module, then (€, Séj) is a Gj-equivariant Hilbert A;-

module

and \7; is the associated unitary.

According to this concrete description of §-equivariant Hilbert C*-modules, we have
a description of the §-equivariant unitary equivalences in terms of G ;-equivariant unitary
equivalences for j = 1,2.

Lemma 2.5.6. Let A and B be §-C*-algebras. Let & and F be Hilbert C*-modules over
A and B, respectively, acted upon by §.

ey

@

We

Let ® : &€ — T be a §-equivariant unitary equivalence over a §-equivariant *-
isomorphism ¢ : A — B. For j = 1,2, there exists a unique map ®; : &; — T
satisfying the formula ®(§) = ®1(qe18) + Da(qe 2£) for all & € E. Moreover,
we have

(i) for j = 1,2, the map ®; is a unitary equivalence over the *-isomorphism
¢;j : Aj — Bj (cf. [9, Proposition 5.2.3 (1)]);

(i) forall j k=12 (P ®ids,;) oSlgj = 8§j o P;.

In particular, ®; is a G;-equivariant ¢;-compatible unitary operator.
Conversely, for j =1,2let ®; : &; — F; be a Gj-equivariant unitary equivalence
over a Gj-equivariant *-isomorphism

¢j : Aj — B;

such that (¢ ® ids,) o 5’;/_ = (ng o ¢ and (P ®ids,,) o 8{;}, = 5’;], o ®; forall
J.k =1,2. Then, the map ® : € — F, defined by ®(§) := D1(qe1§) + P2(qe 2£)
for all & € &, is a §-equivariant unitary equivalence over the §-equivariant *-
isomorphism ¢ : A — B (cf. [9, Proposition 5.2.3 (2)]).

also have a description of the §-equivariant *-representations in terms of G;-

equivariant *-representations for j = 1, 2.
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Lemma 2.5.7. Let A, B be two §-C*-algebras and € a §-equivariant Hilbert B-module.
We follow [9, Notations 5.2.1-5.2.2] and Notations 2.5.1 concerning these objects.

(1) Lety : A — £(E) be a §-equivariant *-representation. We have

v(a)qe,j = v(qa,ja) = qe,jy(a) foralla € Aand j =1,2.

There exist unique *-representations yj : Aj — £(&;) for j = 1,2 such that for
alla € A, y(a) = y1(qa,1a) + y2(qa2a). Furthermore, for j, k = 1,2 we have

58, (vj(@§) = (i ®ids,;) (85, (@) 0 85, (§) forallac Aj and E€€;. (2.22)

In particular, the *-representation y; : Aj — £(&;) is Gj-equivariant.

(2) Conversely, let y; : Aj — £(E;) be a Gj-equivariant *-representation for j =
1,2. Let y : A — L(&) be the *-representation defined by y(a) ‘= y1(qa,1a) +
v2(qa2a) for all a € A. Assume further that (2.22) holds for all j,k = 1,2. Then,
the *-representation y : A — £(&) is §-equivariant.

Moreover, the pair (€, y) is a §-equivariant Hilbert A-B-bimodule if and only if the pair
(&j.yj) is a Gj-equivariant Hilbert A;-B;-bimodule for j = 1, 2.

Proof. Since B4 is central and y is §-equivariant, we have

[v(a), Bem)] = y([a. Ba()]) =0 foralln € C>.

Hence, y(a)ge,; = v(qa,ja) = qe,jy(a) foralla € Aand j =1,2. For j = 1,2, we
denote by y; : Aj — L(E;) the *-representation defined by y;(a):=y(a) ¢, forall a € A;.
We have y(a) = yi1(qa,1a) + y2(qa2a) for all a € A and (2.22) is a straightforward
restatement of the fact that §¢ (y(a)€) = (y ® ids)(84(a)) o 8¢ (€). The converse and the
last statement are obvious. ]

Note that (2.22) can be restated in the following ways:
Vi (ri(@) @5 DIV)™ = (e ®ids, )8 (@), a € 4
e i(@) = (v ®ids,;)85 (@), a € A.
The following lemma is straightforward.
Lemma 2.5.8. Let A and B be two §-C*-algebras. Let & and F be two §-equivariant

Hilbert B-modules.

(1) Let w : A — L(&) and y : A — £(F) be §-equivariant *-representations. Let
® e £(E, F) be a §-equivariant unitary such that ® o w(a) = y(a) o ® for
all a € A. Then, for j = 1,2 the Gj-equivariant unitary ®; € £(€;, F;) (cf.
Lemma 2.5.6 (1)) satisfies for all a € A;j the relation ®; o 7j(a) = yj(a) o ®; (cf.
Lemma 2.5.7(1)).
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(2) Conversely, for j = 1,2 let us fix G;-equivariant *-representations w; : Aj —
E(&;)and y; : Aj — £(F;) and a G;-equivariant unitary ®; € £(E;, F;) satis-
fying the relation ®; o w;(a) = yj(a) o ®; forall a € Aj. Then, the §-equivariant
unitary ® € £(E,F) (cf. Lemma 2.5.6 (2)) satisfies the relation ® o w(a) = y(a) o
D foralla € A (cf. Lemma 2.5.7 (2)).

2.5.2. Induction of equivariant Hilbert C*-modules. In the following, we recall the
induction procedure for equivariant Hilbert C*-modules (cf. [2, Proposition 4.3], [9, §6.3]).
We assume that the quantum groups G, and G, are regular. Fix a G;-C*-algebra (41,84,)
and a G -equivariant Hilbert A;-module (€1, §¢,). We denote by J; := K (€1 & A;) the
associated linking C*-algebra endowed with the continuous action &7, of G.

Notations 2.5.9. Let us fix some notations.

o Let idgl ®8%1 1 L(A1®8511,E1®811) > L(A1 ®S12® 521, &1 ®512®S21) be the
unique linear extension ofidgl®8f1 610511 > L(A1®5120521,E1®05120.521)
such that (idg, ®38%,)(T)(id4, ®8%,)(x) = (ide, ®8%,)(Tx) forall x € M(A; ® S11)
and T € £(A1 ® S11,&1 ® S11)-

o Let§? 1 & — £(A1 ® S12 ® 521, €1 ® S12 ® Sa1) be the linear map defined by
82 (£) := (ide, ®63,)8¢e, (§) forall & € &1.
o Consider the Banach subspace of £(A4;® S12,E1® S12) defined by (cf. [9, Proposition-
Definition 2.3.6])
Ind&? (&1) := [(ide, 5, ®W)SE) (§): £ € &1 @ € B(Har)].
Proposition 2.5.10. Let us denote by A, := Indgf (A1) the induced G,-C*-algebra of
Ay Let & := Indg? (&)

(1) Mie have [82(1A1 ® 512)] =& ® S12 = [(lgl ® S11)82]. In particular, €, C
M(E1 ® S12).

(2) &3 is a Hilbert Ay-module for the right action by composition and the Aj-valued
inner product given by (€,n) == *onfor&,ne Indgf (&1).

Let us denote by (A2, 84,) := Indgf(Al, 84,) and (J2,8y,) := Indgf(Jl, 8r,) the
induced G,-C*-algebra of (A1, 84, ) and (J1,8,), respectively. We also denote by &, :=
Indgf (€1) the induced Hilbert A,-module as defined above.

Notation 2.5.11. Let
ide, ®6%, : L£(A1 ® S12,&1 ® S12) — L(A1 ® S12 ® S22, €1 ® S12 ® S22)
be the unique linear extension of
ide, ®6%,: €1 ® S12 — £(A4; ® S12 ® S22,&1 ® S12 ® Sa2)

such that (ide, ®3%,)(T)(id4, ®5%,)(x) = (ide, ®35%,)(Tx) for all x € M(A; ® S12)
and T € £(A41 ® S12,&1 ® S12).
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Proposition-Definition 2.5.12. There exists a unique linear map
ey 1 €2 = L(A2 ® S22, E2 ® S22)

satisfying the relation [8¢,(§)alb = (ide, ®5%,)(§)(ab) forall& € &, a € Ay ® Sy, and
b e A1 ® S12 ® Saa. Moreover, the pair (€2, 8¢,) is a Ga-equivariant Hilbert Ax-module.

In the proposition below, we state that the above induction procedure for equivariant
Hilbert C*-modules is equivalent to that of [2, §4.3].

Notations 2.5.13. Letey 1 :=1x,)(le,) € M(J1)and ez 1 :=14,(14,) € M(J1), where
we identify M(J;) = £(E1 @ A1). Let (J2,87,, €12, €22) be the induced linking
G,-C*-algebra, withe; 5 :=e;; ® ls,, € M(J2) for ] = 1,2 (cf. [2, Proposition 2.14]).
Consider e32J2e2,2 and e 2 J2e2 2 endowed with their structure of G,-C*-algebra and
Ga-equivariant Hilbert e, »Jse5 2-module (cf. [3]). Recall that Indgf ta, : Ay — Jo;
X — (4, ® idg,,)(x) induces a Gy-equivariant *-isomormorphism A, — e3 2 J2e2 5 (cf.
[2, Propositions 2.17 and 2.18]).

Proposition 2.5.14. We use the above notations.

(i)  There exists a unique bounded linear map Indgf te, €2 — Jo such that

Ind&? te, ((ide, 95, ®W)SE (§)) = (ids,@s,, ®D)ET (te, (6)).

forall & € &1 and w € B(Hz1)«. Moreover, we have Indgf te,(E2) =e12Jze22
and Indg? te, induces a Gy-equivariant unitary equivalence €, — e12J2€32;
£ Indgf te, (&) over the Gy-equivariant *-isomorphism Ay — e32J2e25;
ar> Indgf 14, (a).

(ii)  There exists a unique *-homomorphism t : K (&2 ® Ap) — Jo such that T o
leg, = Indgf te, and T oy, = Indgf ta,. Moreover, T is an isomorphism of
linking Go-C*-algebras.

(iii) If T eIndgf (JC((?])) C i(gl ®S]2) and ne EryC cf(Al ®S12, €1 ®S12), then
we have T o n € E,. Moreover, forall T € Indgf (K (E1)), we have [n+—>T on) €
K (E2). More precisely, the map Indgf (K€1) = K(E2);, T+ [n+ T on
is a Gy-equivariant *-isomorphism.

In the result below, we recall how to induce G1-equivariant unitary equivalence.

Proposition-Definition 2.5.15. Let us fix some notations. Consider
e two G{-C*-algebras Ay and By,
o two Gq-equivariant Hilbert modules €1 and F1 over Ay and By, respectively,

o a Gy-equivariant unitary equivalence ®1 : &, — F over a Gy-equivariant *-isomor-
phism ¢1 1 A — Bj.

Denote by
o Ay = Indgf (A1) and By := Indgf (B1) the induced G,-C*-algebras,
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. Indgf (¢1) : Ay — Bj the induced Gy-equivariant *-isomorphism,

o &= Indgf (&1) and F, = Indgf (F1) the induced Gy-equivariant Hilbert modules
over A and Bs, respectively,

e O ® id512 (4] ® 812, &1 ® S12) = £(B1 ® S12,F1 ® S12) the unique linear
map such that

(P1 ® ids;,)(T) (1 ® idsy, ) (x) = (P1 ®ids;,)(T'x)

forall £(A1 ® S12,&1 ® S12) and x € A1 ® S12 (cf. [9, Notation A.3.6]).
Then, (1 ®ids,,)(E2) C T, and the map Indgf (®1) = (1 ®ids,) e, €2 > Frisa
Gy -equivariant unitary equivalence over Indg2 (¢1) : Ay = Bj. Moreover, forall £ € &,
and o € B(Hz1)« we have Ind3? (®1)((ide, 95, ®W)SL () = (id7, 95, ®W)EF (®1£).

We can also induce G1-equivariant *-representations. Let us state a preliminary result.

Lemma 2.5.16. Let Ay be a G{-C*-algebra. If Ay is o-unital (resp. separable), then so
is the induced G,-C*-algebra Indgf (A4y).

Proof. Let us assume that A; is o-unital. Let (1, ),>1 be a countable approximate unit of
Ay.Letw € B(Hz1)« such that w(1) = 1. Then, the sequence ((id4, ©5,, ® a))b’flzl) (Un))n=1
is an approximate unit of Indgf (A1). Hence, Indgf (A1) is o-unital. Suppose now that A,
is separable. Let X (resp. Y) be a countable total subset of A; (resp. H»1). Hence, the
subset {(id4, ®s,, ®a)g,n)5§121) (a);ae X, E,neY}of Indgf (A1) is countable and spans
a dense subspace of Indgf (A1). Hence, the C*-algebra Indgf (A1) is separable. L]

Proposition-Definition 2.5.17. Let Ay and 31 be G- C*-algebms and &1 a Gy-equivari-
ant Hilbert A;-B-bimodule. Let Ap :=1Indg G2 (Al) and By := Indg G2 (Bl) be the induced
G,-C*-algebras. Let €, := Indg G2 (81) be the mduced G,- eqmvarmnt Hilbert By-module.
Let us consider a G, -equlvarlant *-representation yy : Ay — £(&1). Up to the identifica-
tions £(E1) = M(K (1)) and Indgf K(E1) = K (E2) (¢f Proposition 2.5.14 (iii)) and
by functoriality of the induction (cf. [2, Proposition 4.3 (c)]), we have a G,-equivariant
*-representation
Indg y1 : Ay — £(€2)

called the induced G,-equivariant * -representation of y1. If &1 is a Gy-equivariant Hilbert
A1-B1-bimodule, then &, is a G,-equivariant Hilbert A,-B-bimodule called the induced
Ga-equivariant bimodule of €.

Proof. The fact that we have a well-defined induced G,-equivariant *-representation
Indgf y1: Ap — £(&5) is just a restatement of [2, Proposition 4.3 (c)] and Proposition
2.5.14 (iii). Let us assume that £ is countably generated as a Hilbert B;-module; i.e., the
C*-algebra K (&) is o-unital. Hence, K (€,) is o-unital (cf. Proposition 2.5.14 (iii) and
Lemma 2.5.10); i.e., £, is a countably generated Hilbert B;-module. [
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By exchanging the roles of G; and G,, we define as above an induction procedure for
Go-equivariant Hilbert modules.

In the following, we investigate the composition of Indgf and Indg;. Let j,k =1,2.
Let A; be a G;-C*-algebra and &; a G;-equivariant Hilbert A;-module. Denote by

o Ay :=Indgk(4)) and & = IndG(€;) C £(4; ® Sk, € ® Sjx) the induced G-
C*-algebra and the induced Gy -equivariant Hilbert Az-module,

- € =Indg/ () and T :=Indg! (&) C £(Ax ® Sk;. £k ® Sg;) the induced G;-C*-
algebra and the induced G -equivariant Hilbert C-module.

Proposition 2.5.18. With the above notations and hypotheses, we have the following
statements:

(1) there exists a unique map I1; : €; — JF such that
, _ (k) , . . . .
(Hj (E)x)a—SEj &)(xa) foralléc€;, x€cAr ® Skj, andacA; @ Sjx @ Sij:
moreover, I1; is a Gj-equivariant unitary equivalence over the Gj-equivariant
. . o . &y .
-isomorphism w; : Aj — C; a > SA]_ (a),
2) 5]§]_ 1€ —> J\Z(Sk ® Skj); & = I1;(§) is a well-defined linear map such that

() 8% (5a) = 8K (6)8% (@) and (8K, (6). 8% (m) = 8% (. ) forall&.n € &
and a € Aj,

(ii) [5]§j (€)(1a, ® Sij)]l = E2 @ Sk; =[(lg, ® Sk_/)yéj (&)

Theorem 2.5.19. Let G and G, be two monoidally equivalent regular locally compact
quantum groups. The map

Indg? : (€1.8¢,)
> (€2 :=Tndg?(€1). 8e, 1§ € &2 > [x € Ay ® Sap > (ide, ®67,)(§)x]).
where &1 is a Hilbert module over the G{-C*-algebra A1 and A, = Indgf (Ay) denotes

the induced G,-C*-algebra, is a one-to-one correspondence up to unitary equivalence.
The inverse map, up to unitary equivalence, is

Indg! : (2, 83,)
= (?1 = Indg;(ffz), 83"1 : E e — [)C € B ® S~ (idg‘z ®8§1)(§)x]),
where F, is a Hilbert module over the G,-C*-algebra B, and B; = Indgf (B) denotes
the induced G-C*-algebra.

Let By be a G{-C*-algebra. Let us denote by B; := Indgf(Bl) the induced G,-C*-
algebra. Let 8§j i Bj — M(By ® Skj), for j,k = 1,2, be the *-homomorphisms defined
in [9, Notation 5.2.7].
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Notations 2.5.20. Let F; be a G;-equivariant Hilbert B;-module. Let us denote by ¥, =
Indgf (81) the induced G,-equivariant Hilbert B,-module. We have four linear maps

85, : F; — L(Br ® Skj, Fa ® Sgy) for jk = 1,2,

defined as follows:
o 8% =085 and 83 = 8g,;
. Sél 1 F1 = L£(B2 ® 521, F2 ® S»1) is the unique linear map such that
(83, ©)x)b = 63 (&) (xb)
forall €T, x€ B, ®S,21,and b€ B; ® S12® S22, where Sg)(é)::(id&@(?fl)(ﬁgl &)
(cf. Proposition 2.5.18);

. 8&2 1 F, > £(B1 ® S12,F1 ® S12) is the unique linear map such that for all £ € I,
X € Indg;(Bz) ® Sz and y € By ® S21 ® S12, we have

[(T; ®ids,,) (6%, (8)x]y = 65 (©)(xy).

where 5:(;12)(5) = (idy, ® 83,)85,(£) and TI; : F; — Indg; (&2) (cf. Proposition
2.5.18 (1)).

Lemma 2.5.21. Forall j, k,l = 1,2, we have the following statements:
(1) 85 (F)) C M(Tx ® Sk));

) 5% (€b) = 5% (S)Sﬁj (b) and (5’;}1. (55)»3’&,. () = 55§j((§, n)) forall §,n € F; and
b e Bj,‘
(3) [5{}]. (F) (g, ® Skj)] = Tk ® Sij = [(15, ® Skj)gfl;j Gl

4) Sérk Qidg,; (resp. idy, ® 5;‘/) extends uniquely to a linear map from £ (B ® Sk,
Ek ® Skj)to £(B; ® Six ® Skj €1 @ Sik ® Skj) such that

(8, ®ids, )(T)(8h, ®ids,)(x) = (6%, ®ids,,)(Tx)
(resp. (idy, ® 8)(T)(idp, ® 8;)(x) = (idz, ® 8);)(T'x))

forallT € £(Bx ® Skj, €k ® Skj) and x € By ® Sk;;
(5) (8%, ®ids,;)85, = (idy, ®8[)8% .

Let us consider the C*-algebra B := B; & B, endowed with the continuous action
(BB, 8B) (cf. [9, Proposition 5.2.9]).

Proposition 2.5.22. Let Fy be a Gy-equivariant Hilbert By-module. Let 3 := Indgf (1)
be the induced Gy,-equivariant Hilbert By-module. Consider the Hilbert B-module F =
F1 @ F,. Denote by H;‘ t LBk ® Skj. Tk @ Skj) > L(B RS, F R S) the linear exten-

sion of the canonical injection Fx ® Si; — F ® S. Let us consider the linear maps
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85:F > L(B®S,TR®S)and By : C?> — L£(F) defined by

§p():= ) Mfodh(§), &=(1.6&)eT;

k,j=1,2

Br(A, p) = (3 2) . (A,p)eC?

Then, the triple (&, By, 85) is a §-equivariant Hilbert B-module.

Proposition 2.5.23. Let (€, Be, S¢) be a G-equivariant Hilbert A-module. In the follow-
ing, we use the notations of Proposition-Definition 2.5.5. Let j,k = 1,2 with j # k. Let

A = Indg) (Ax.85) and & :=Ind/ (&x.5%)).

If €&, then we have 51§j (S)egj CJ\Z(Ek(X)Skj) and the map ﬁj 1 & —>€] §|—>81§j &)

is a G;-equivariant unitary equivalence over i; : Aj — ,ij (cf. [9, Proposition 5.2.8]).

Theorem 2.5.24. Let §g, G, be a colinking measured quantum groupoid between two
regular monoidally equivalent locally compact quantum groups Gy and G,. Let j = 1,2.
The map (€, Be, 8¢e) — (&;, Séj) is a one-to-one correspondence up to unitary equiva-
lence between §g, G,-equivariant modules and G;-equivariant modules (cf. Proposition-
Definition 2.5.5 and Lemma 2.5.6 (1)). The inverse map, up to unitary equivalence, is
(Fj,85,) > (F, Bz, 35) (cf. Proposition 2.5.22, Proposition-Definition 2.5.15, and Lemma
2.5.6(2)).

Proposition 2.5.25. We follow the hypotheses and notations of Proposition 2.5.22. Let
y1: A1 — £(&1) be a Gy-equivariant * -representation of a G1-C*-algebra Ay. Let A, be
the induced G,-C*-algebra of A1 and let y, : Ay — £(F3) be the induced G,-equivariant
*-representation of yy (cf. Proposition-Definition 2.5.17). Let us endow the C*-algebra
A = Ay & A; with the continuous action (B4,64) (cf. [9, Proposition 5.2.9]). The map

: : vila) 0
yidm 2@ @ (NG00 )

is a §-equivariant *-representation. Moreover, if F1 is a Gy-equivariant Hilbert A,-Bj-
bimodule, then F is a §-equivariant Hilbert A-B-bimodule.

Proof. This is a straightforward consequence of Lemma 2.5.7 (2) and Proposition-Defini-
tion 2.5.17. |

2.5.3. Structure of the double crossed product. For further usage, let us introduce a
writing convention concerning bimodule structures.

Convention 2.5.26. Let A and B be two § (resp. g)-C*-algebraS. When dealing with a
A-B-bimodule structure and in order to avoid any confusion between similar objects asso-
ciated with A and B, we will sometimes specify those associated with A (resp. B) by using
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the lower index “g” (resp. “d”)'. For example, we will denote by D, and Dy (resp. E; and
Ey) the bidual § (resp. §)-C*-algebra of A and B, respectively (cf. Notations 2.3.4).

In this paragraph, we assume the quantum groups G and G, to be regular. We recall
that the colinking measured quantum groupoid § := §g, G, is regular.

Let A, B be §-C*-algebras and € a §-equivariant Hilbert A-B-module. In this para-
graph, we restate the main results of [2, §4.4] in order to describe the structure of the
double crossed product (€ X §) x €. Let D, (resp. Dq) be the bidual §-C*-algebra of 4
(resp. B) (cf. Notations 2.3.4 and Convention 2.5.26). Let D be the bidual §-equivariant
Hilbert Dg-Dgy-module of € (cf. Section 2.4.2). In the following, we use all the notations
and results of [9, Notation 5.2.1] and Section 2.5.1.

Let us recall the notations of [2, Notations 3.48] concerning the structure of the bidual
§-C*-algebra Dy (and similarly for D,).

e Wehave Dg = gg,a(B ® K)qgza = ®j=1,2 Bj ® K(H; ® Hyj). Forall j = 1,2,
we will identify Djq = B; ® JC(:H:U &5 9{2]'). Let 3”/’_,',(1 =B; ® K(j{]/j, g'flj)
forl,l',j =1,2.Let By, ja:= Bj1,ja= B @ K(Hj)forl,j =1,2.Forl,l',j =
1,2, 81,4 and By ;4 are C*-algebras and By ;4 turns into a Hilbert B; ; 4-By jqa-
bimodule.

e Forl,l',jk=1,21et
a’gwd,o :Bir,ja— L(Br ® K(Hyj) @ Skj. Be @ K(Hyj, Hij) ® Skj)
be the linear map defined by
sg,”/!j,d,o(b ®T):=85 (h3(1g, ® T ® 1s,;) forall be B; and T € K (35, 30;).

e Forl,l, Jok=1,2,1let 8%”/ » : Bll’,j,d — cf(fﬁ,l’,k,d ® Skj, °(Bll’,k,d ® Skj) be the
sJs
linear map defined by

85, () = (V{285 o()(V)3; forallx € By ja.
Note that 85%,1 - By ja— L(Brga® Skj)is a *-homomorphism.
55

We identify (€ x §) x § = D (cf. Theorem 2.4.23). We have D = ¢g.5(€ ® K)gp,a C
€ ® K. In the following, we investigate the precise structure of D.

e Wehave gp ; :=fBp(e) = qp.a(1e ®PB(g)) =Pe(e;) ® Bej) =D 1212 9¢.; ®pij
forall j = 1,2 (cf. [2, Lemme 2.21 and Notations 2.22]).

e For j = 1,2, let us consider the Hilbert D;,-D;4-module D; := gp ;D (cf. Sec-
tion 2.5.1). We have

Dj = 8]' ® J((g'flj @j'fzj) = @ 8]' ® K(}Cl/j,ﬂ{lj).
1L,I'=1,2

I'The letter “g” (resp. “d”) stands for “gauche” (resp. “droite”), the french word for “left” (resp. “right”).
This choice was not motivated by chauvinism but only by the fact that the letters “1” and “r” would have
been confusing.
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For [,1’, j = 1,2, let us consider the Hilbert B; ;-8B j4-bimodule &1 ; 1= &; ®

Jf(g'fl/j,j‘flj). Forl,j =1,2,let 81,_1- = 811’1' = Ej ® JC(J’CU).

e For j,k = 1,2, let us denote by ¥ : £(Dy 4 ®Sk;, Dk ®Sj) = L(Da®S, DRS)
the linear extension of the inclusion map Dy ® Si; — D ® S. For j, k = 1,2, let us
denote by 5%}_ :Dj = L(Dia® Skj» Di @ Skj) the linear map defined in Proposition-
Definition 2.5.5. For all ¢ € D, we have

Sp(Q) = Y T odh (40,590

k=12

We recall that for j = 1,2 the pair (D;, 8,53]_) is a Gj-equivariant Hilbert D; ,-D; -
bimodule.

e Forl,l',jk=1,21et
81{-5”/’]-,0 28 = L(Br @ K(Hyrj) @ Skj, €k @ K (Hypj, Hyj) ® Skj)
be the linear map defined by
sgll/)j,o(s ®T):=68,E)3(lp, ®T ®1g,) forall & €& and T € K (Hy;,3y)).

e Let 8’5”, 18— L(Bria® Skj, 811k ® Skj) be the linear defined by
sJ

8, (©) 1= (ViasdE,, o (Viy)3s forall§ € &
e Letj, k,I,I’”=1,2. We denote by
Hﬁ/,j : L(Brr kg ® Skj» E1r k) = L(Dga ® Skj D ® Skj)

the linear extension of the inclusion map &;;/ x ® Si; — Di ® Sk;. For ¢ € Dj, let
us denote by ¢;;s the element of &/ ; defined by {110 := (qe,; ® p1;)(qB,; ® prrj).
Forall j,k = 1,2, we have

85,&) = Y Mfy 08, ().

1L,I'=1,2

Foralll,l’, j = 1,2, the pair (1,5, Sé”/ ) is a G;-equivariant Hilbert By, je-Br,ja-
sJ N
bimodule.

3. Equivariant Kasparov theory

In this chapter, we fix a regular measured quantum groupoid § on the finite-dimensional
basis N = @, <;<x My, (C) endowed with the non-normalized Markov trace. We use all
the notations introduced in [9, §3.1 and §3.2] concerning the objects associated with §.
3.1. Equivariant Kasparov groups

Let us recall a definition.
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Definition 3.1.1 (cf. [18]). Let A and B be C*-algebras. A Kasparov A-B-bimodule is a
triple (&, y, F) consisting of a countably generated Hilbert B-module &, a *-homomor-
phism y : A — £(€), and an operator F' € £(&) such that

[y(a),F]eJC(S), y(a)(Fz—l)eJ{(c‘Z), y(@)(F — F*)eX(€) forallacA.
3.1
If we have

[y(a), F] = y(a)(F?—=1)=y(@)(F —F*) =0 foralla € 4, 3.2)
then the Kasparov A-B-bimodule (&, y, F') is said to be degenerate.
Let A and B be §-C*-algebras.

Definition 3.1.2. A §-equivariant Kasparov A-B-bimodule is a triple (&, y, F'), consisting
of §-equivariant A-B-bimodule (€, y) (cf. Definition 2.2.7) and an operator F' € £(E)
such that

(1) the triple (€, y, F) is a Kasparov A-B-bimodule,
(2) [F,Be(m°)]=0foralln € N,
3) (y ®ids)(x)Bxe)(F) —qpea(F ®1s)) € K(E® S)forallx e A® S.
The §-equivariant Kasparov A-B-bimodule will sometimes be simply denoted by (&, F)

when the representation y is clear from the context.

Remarks 3.1.3. Let us make some comments concerning the previous definition.
(1) Since B¢ (n°)y(a) = y(Ba(n®)a) foralla € A andn € N, we have

(y ®ids)(xqga) = (¥ ®ids)(X)gpea = (¥ ® ids)(x)VV* forallx e A® S,
where V € £(€ ®s, (B ® S), € ® §) is the isometry defined in Proposition 2.1.5 (a). The
following statements are then equivalent to condition (3):
e (Y®ids)(X)x@e)(F)—F®1s)e K(E® S)forall x € (A Q S)qp4as
e (¥y®ids)(xX)(V(F ®s55 DV* —gg.a(F ®1s5)) € K(EQ S) forallx € A® S;
e (¥yQids)(x)(V(F ®5, DV* —F @ 1s) € K(E® S) forall x € (A ® S)qp4a-
Note that it follows from condition (2) that [FF ® 1s5,¢g.4] = 0.

(2) As in [3, Remarque 3.4 (2)], we prove that

(V(F ®s, DV* — F ® 15)(y ®ids)(x) € K(E® S) forallx € gg,a(4A® S).

Since (y ® ids)(qgaX) = qpea(y @ids)(x) forallx € A® S and [F ® 1s5,g9g.a] =0,
this is also equivalent to

(V(F ®s, )V* — qp,a(F ® 15))(y ® ids)(x) € K(E®S) forallx € A® S.

Note that the converse is also true; i.e., condition (3) is equivalent to these assertions.
(3) If F is invariant (cf. Proposition-Definition 2.1.13), then conditions (2) and (3) of
Definition 3.1.2 are satisfied.
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Definition 3.1.4. (1) Two §-equivariant Kasparov A-B-bimodules (&1, y1, F1) and
(€2, y2, F>) are said to be unitarily equivalent if there exists a unitary ® € £(&y, €»)
such that

(i) @ is g-equivariant (cf. Definition 2.1.14),

(i) Doyi(a) =yz2(a)odforalla € A4,

(ili)) Foo® = ®o Fy.

(2) Let Eg(A, B) be the set of unitary equivalence classes of §-equivariant Kasparov
A-B-bimodules.

(3) A g-equivariant Kasparov A-B-bimodule (&, y, F) is said to be degenerate, if
(€, y, F) is a degenerate Kasparov A-B-bimodule such that

re® ids)(x)(SJc(g)(F) —(F® ls)qﬂw) =0 foralx e A®S.

We denote by Dg (A, B) C Eg(A, B) the set of unitary equivalence classes of degenerate
G -equivariant Kasparov A- B-bimodules.

(4) Let us consider the C*-algebra BJ0, 1] := C([0, 1], B) of the B-valued norm con-
tinuous functions on [0, 1]. We make the identification B[O, 1] = C([0, 1]) ® B in the
following way:

(f ®b)(t) = f(t)b forall f € C(0,1]), b€ B, and ¢ € [0, 1].

Similarly, we make the identification B[0, 1] ® S = (B ® 5)[0, 1]. In particular,
M(B[0,1] ® S) (resp. M(B]0, 1])) consists of the strictly continuous M(B ® S)-valued
(resp. M(B)-valued) functions on [0, 1]. We then warn the reader that in our context
we will abusively denote M(BJ[0, 1] ® S) (resp. M(B]0, 1])) by M(B ® S)[0, 1] (resp.
M(B)[0, 1]). Let 8p[o,17 : B[O, 1] = M(B[0,1] ® S) and Bp[o,1] : N° — M(B[0, 1]) be
the maps defined by 8(0,1)(/)(1) := 85(f(¢)) and [Ba10.11(n°) /1) = B (n°) £ (¢) for
all f € B[0,1],n € N,andt € [0, 1]. Then, the pair (80,1}, 5B[0,1]) is a continuous action
of § on B[0, 1]. For ¢t € [0, 1], lete; : B[O, 1] — B be the evaluation at point 7, i.e., the
surjective *-homomorphism defined for all f € B[O, 1] by e;(f) := f(¢). Note that e; is
§-equivariant by definition of the action of § on B[0, 1].

(5) Let € be a g-equivariant Hilbert B-module. Let us consider the Hilbert B[O, 1]-
module [0, 1] := C([0, 1], £) of E-valued continuous functions on [0, 1]. We make the
identification £[0, 1] = C[0, 1] ® € as above. We equip the Hilbert B-module £[0, 1] with
the action of ¥ obtained by transport of structure through the identification

X (£[0. 1] & B[0.1]) = X (€ @ B)[0. 1].

We have Beo,1] = Bx(e)[o,1] up to the identification £(E[0, 1]) = M (K (E)[0, 1]). For all
x € B[0,1]® S and & € €[0,1] ® S, we have (8¢10,11(5)x)(t) = de(§(2))x(¢) up to the
identifications B[0,1]® S = (B ® §)[0,1]and £[0,1] ® S = (€ ® 5)[0, 1].

Proposition 3.1.5. Let Ay, A», A, By, B>, and B be §-C*-algebras.
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(1) Let f : A1 — Ay be a §-equivariant *-homomorphism. Let (€, y, F) be a §-
equivariant Kasparov Ay-B-bimodule. Let y* :== y o f : Ay — £(&). Then the
triple (€,y*, F) is a §-equivariant Kasparov A1-B-bimodule. Moreover, we have
the well-defined map

f* 1Eg(A2,B) > Eg(A1.B); (.7, F)— (E,y". F).

(2) Let g : By — By be a §-equivariant *-homomorphism. Let (€,y, F) be a §-
equivariant Kasparov A-By-bimodule. Let yx : A — £(E ®¢ Bz) be the
*-representation defined by y«(a) = y(a) Qg 1p, for all a € A. Then the triple
(E ®g By, ys+, F ®4 1B,) is a §-equivariant Kasparov A-B1-bimodule. Moreover,
we have the following well-defined map

g 1Eg(A.B) = Eg(A. Ba):  (E.7.F) > (€ ®g Bayw. F ® 1p,).

Proof. Straightforward verifications. ]

Definition 3.1.6. Let (&g, Fy), (€1, F1) € Eg(A4, B). A homotopy between (€, Fp) and
(€1, Fy) is an element x € Eg(A4, B[O, 1]) such that eg«(x) = (€, Fp) and e« (x) =
(€1, F1). In that case, we say that (£, Fy) and (€1, F7) are homotopic. The homotopy
relation is an equivalence relation on the class Eg(A4, B). We denote by KKg(A, B) the
quotient set of Eg(A, B) by the homotopy relation. We also denote by [(€, F')] the class
of (€, F) € Eg(A, B) in KKg(4, B).

Examples 3.1.7 (cf. [3, 18,26]). We can build homotopies of Eg(A, B[O, 1]) in the fol-
lowing ways.

(1) An operator homotopy is a triple (€, y, (F;)se[o,1]) consisting of a §-equivariant
Hilbert A-B-bimodule (€, y) and a family of adjointable operators (F;);c[o,1] on € such
that

o the triple (&, y, F}) is a §-equivariant Kasparov A-B-bimodule for all ¢ € [0, 1],
e the map (¢ — F}) is norm continuous.

The family of operators (F;);e[o,1] defines an element F of £(E[0, 1]) (up to the identifica-
tion £(€)[0, 1] = £(&]0, 1]); cf. Definition 3.1.4 (4), (5)) and the triple ([0, 1],y ® 1, F)
is a homotopy between (&, y, Fy) and (&, y, Fy).

(2) An important example of operator homotopy can be obtained in the following
case. Let (€, y, F) be a §-equivariant Kasparov A-B-bimodule. We call an operator G €
£(€) a compact perturbation of F if for all a € A we have y(a)(F — G) € K(€) and
(F — G)y(a) € X(E). In that case, the triple (&, y, G) is a §-equivariant Kasparov A-
B-bimodule. Moreover, the triples (€, y, F) and (&, y, G) are operator homotopic via the
obvious continuous path defined by F; := (1 —t)F +tG for ¢t € [0, 1].

(3) Let (€, (¥1)te0,1], ) be a triple where € is a §-equivariant Hilbert B-module,
(¥t)tefo,1] is a family of §-equivariant *-representations of A4 on € and F € £(€) such
that the triple (&, y¢, F) is a §-equivariant Kasparov A-B-bimodule for all z € [0, 1]
and the map (¢ — y;(a)) is norm continuous for all a € A. Up to the identification
Z(&)[0, 1] = £(£[0, 1]), the family (y;);e[o,1] defines a §-equivariant *-representation
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y 1 A — L(E[0,1]). Moreover, the triple ([0, 1], y, 1 ® F) is a homotopy between
(€, 70, F) and (€, y1, F).

As for actions of quantum groups (cf. [3, Proposition 3.3]), we have the following
proposition.
Proposition 3.1.8. Endowed with the binary operation induced by the direct sum oper-
ation ([(E1, F1)], [(E2, F2)]) = [(E1 & &2, F1 & F»)), the quotient set KKg (A, B) is an

abelian group and the class of the identity element 0 € KKg (A, B) is represented by any
element of Dg(A, B).

It follows from Definition 3.1.6 that the maps defined in Proposition 3.1.5 factor-
ize over the quotient maps so that we obtain homomorphisms of abelian groups f™* :
KKg(Az, B) = KKg(A1, B) and g : KKg (A4, B1) — KKg(A4, By).

3.2. Kasparov’s technical theorem

Notation 3.2.1. Let A be a C*-algebra. We denote by
Der(A4) :={d € B(A): Vx.y € A, d(xy) =d(x)y + xd(y)}

the Banach subspace of B(A) consisting of the continuous derivations of A. Any d €
Der(A) extends uniquely to a strictly continuous linear map d : M(A) — M(A) defined
by

d(m)a:=d(ma)—md(a) and ad(m):=d(am)—d(a)m forallme M(A), acA.

Note that d(1) = 0 and d € Der(M(A)). For all x € A, we have Ad(x) € Der(A) (inner
derivations of A).

Remarks 3.2.2. (1) If m € M(A), we define an inner derivation Ad(m) € Der(A) by
setting Ad(m)(x) := [m,x] = mx —xm € A forall x € A.

(2) Let J be a closed two-sided ideal of A and d € Der(A). We have d(J) C J.
Indeed, let (1)) be an approximate unit of J and x € J. We have d(x) = limy d(xu,)
with respect to the norm topology since d is norm continuous. Moreover, for all A we
have d(xuy) = d(x)uy + xd(uy) € J since J is an ideal of A. Hence, d(x) € J. In
particular, d induces an element of Der(J) by restriction and we have a continuous linear
map Der(A) — Der(J).

Lemma 3.2.3 (cf. [3, Lemme 4.1]). Let J be a C*-algebra and (B, 8y) an action of §
onJ.Forallhe J, keS, zeJ®S, forall compact K C Der(J), and for all real
number & > 0, there existsu € J, suchthat0 < u < 1 and [u, Bj(n°)] = O0foralln € N,
which further satisfies

(@) |luh—h| <e

(b) foralld € K, ||[d(u)| < &,

© [16s() —gpaw®@D)ARK)| <&
@ 165(u)z —gpazll <e.
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Proof. Denote by J(K) the C*-algebra consisting of the J-valued continuous functions
on K. We adapt the proof of Lemme 4.1 [3] by considering the affine map

P:J>A=JDJK)d(URS)D(IU®YS)
xr—)qD(x)::(xh —h,[d—d(x)], (SJ(x)—qﬁja(x ® 1))(1 ®k),55(x)z —qﬂjaz),

which admits a unique strictly continuous extension, still denoted by ® : M (J) — M(A),
such that ®(1) = 0. By applying the Hahn—Banach theorem, we then conclude as in [3]
that 0 is an adherent point of ®(C), where C is the nonempty closed convex subset {u € J;
0<u<l, VneN, [u,B;n°] =0} of J, which is just a restatement of the above
lemma. ]

If J is a closed two-sided ideal of A, we recall that M (A; J) denotes the strictly closed
C*-subalgebra of M(A) consisting of the elements m € M(A) such that the relations
mA C J and Am C J hold. Note that the restriction homomorphism from M (A4) to M(J)
identifies M(A; J) to a C*-subalgebra of M(J) and if B is another C*-algebra, we have
M(A® B) = M(A® B;A® B).

Definition 3.2.4. Let A be a C*-algebra endowed with an action (84, §4) of & such that
84(A) C JQ(A ® S). A closed two-sided ideal J of A is said to be invariant by (84, 54)
(or (B4, 84)-invariant) if §4(J) C M(A® S:J ® S). We denote by §; : J — M(J ® )
the map obtained by restricting §4. We also denote by Sy : N° — M(J) the map 4
composed with the projection map M(A) — M (J). Then, we obtain an action of § on J.

Before stating the generalization of Kasparov’s technical theorem, we first state an
easy lemma that will be used several times.

Lemma 3.2.5. Let B be a C*-algebra and J a closed two-sided ideal of B. Let x € B
and b € By such that [x,b] € J. Then, we have |x, bl/z] € J. In particular, if b commutes
with x so does b1/2.

Proof. Letus denote A := {b € B; [b,x] € J}. Itis easily seen that A is a closed subal-
gebra of B. If b € B is a self-adjoint element commuting with x, then b is an element of
the C*-subalgebra A N A* of B. In particular, if b is a positive element of B which also
belongs to A, then so does pl/2, n

Theorem 3.2.6 (cf. [3, Théoreme 4.3]). Let us consider

o Ji a o-unital C*-algebra endowed with an action (B 1,,87,) of § such that §5,(J1) C
M1 ®S),

o Ja(By,,8s,)-invariant ideal of J1,
e Jy a o-unital subalgebra of M(Jy; J),
e F a separable subspace of Der(Jy),

o J, ao-unital subalgebra of M(J ® S) such that §5,(x)y € J @ S forall x € J, and
y e J,
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There exists M € M(J1;J) such that0 < M < 1 and [M, By, (n°)] =0 foralln € N,
which satisfies the following statements:

s (I-M)J,CJ;

e foralld € F,dM) e J;

« 51 (M)—qp, 0(M®1ls) € M(J ® S);

* (9,0 =865 (M)J, CI®S.

Proof. In essence, the proof is that of [3, Théoréme 4.3]. We denote ¢ := ¢, « for short.
Lethy € Ji,hy € Jo, by € J5, and k € S be strictly positive elements. Indeed, we have S =
[(wg,y ®1id)(V); &€ 1 € H] and H is separable. Hence, S is o-unital. Let K be a compact

of JF such that ¥ = [K]. By Lemma 3.2.3, there exists an increasing sequence (u;);en Of
elements of J; with uy = 0, which satisfies for all integer / = 1 the following statements:

A O0<u;<L;[u;,Bs,(n°)] =0foralln € N;

Qi) fughs — ko] <270

(i) foralld € K, ||d(u;)| <27,

(V) 11, () — q(uy ® D)A @ k)| <27
Let us recall that any derivation of J; induces a derivation of J by restriction (cf. Remark
3.2.2(2)). It follows from Lemma 3.2.3 that there exists a sequence (v;);en+ of elements

of J suchthat 0 < v; < 1 and [v;, By(n°)] =0foralln € N and/ € N*, which satisfies
for all integer / = 1 the following statements:

@ s (u —u—1)"?hy — (up —up—1)?hy | <270,

(b) foralld € K, |ld(vp)ll < 27" and [[[(u; —ur—)"/?, vi]ll < 27"

© 65 @)—gq @)1 k)| <27

@) 1185, (v1) = )87, (uy —ug_) /20| < 270,
More precisely, for each fixed integer [ > 1, we have applied Lemma 3.2.3 with & :=
(wp —uj—)?hy € J, z:=85,(u; —uy—1)"?hy € J ® S, & := 27! and the compact
subset of Der(J) consists of the derivation Ad((#; — u;—;)'/?) and the image of the com-

pact subset K C Der(J7) by the continuous map Der(J;) — Der(J). For all integer [ > 1,
let us denote

o Mpi= Y0 (= wim) Y (up — uimn)V2,

e M| := Zﬁzl vi(u; —ui—1),

o Npi= Yo —uim) V21 = v) (i —uim) V2.

Let us notice the following statements.
(A) Foralll =1, we have M; € J, Ml’ e J,and N; € J;.
(B) Foralll € N*, we have

I
M;— M| = Z [(ui - ui_1)1/2, Ui](ui - Mi—l)l/2

i=1
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forall ] € N* and 1 <i <, we have ||[[(u; — u;i—1)"/2, vi](u; —u;—1)V/?|| <
27G=1 by (b); hence, the sequence (M; — M /)i=1 is norm convergent.
(C) M;+ N; = Zle(ui —Uj—1) = U l—> 1 in M (J7) with respect to the strict
topology. -
Let us prove that (M;);>; converges strictly in M(J;). Since Ay is strictly positive, it
suffices to prove that (M;h;);>1 and (h; M;);>; are norm convergent in J;. For all integer
[ =1, we have

I !
Mihy = vi(uihy —hy) = Y vi(ui—thy = hy),
i=1 i=1

with [|v; (uihy — hy)| <270 and |Jv; (ui—1hy —hyp)|| < 279D forall 1 <i <. Hence,
(M{h1);> is norm convergent. The norm convergence of (M;h1);>; follows from (B).
Since h1 M; = (M;hy)*, the norm convergence of (k1 Mj);>1 is proved. Let M € M(J;)
(resp. M’ € M(J1)) be the strict limit of (M;);> (resp. (M]);>1). We have M, M’ €
M(J1;J) by (A)and M — M’ € J by (B). Since M; (resp. N;) is positive for all integer
[ >=1,s0is M (resp. | — M). Hence, 0 < M < 1. Letn € N. Since [Bj,(n°),u;] =0
and [B, (n°), v;] = O for all integer / = 1, we have [B, (n°), M;] = O (cf. Lemma 3.2.5).
Hence, [M, B, (n°)] = Oforall n € N.In particular, we have [M ® lg,g] = 0.

For all d € K, the sequence (d(M)));> is norm convergent in M(J1). Indeed, we
have

) )
dM)) =" d); —ui1) + Y vi(d (i) — d(i1))

i=1 i=1

/ 1
=Y d)u; —uiy) + (v — vio1)d(u;)

i=1 i=1

(recall that ug = 0), which is norm convergent by (iii) and (b). Since d is strictly contin-
uous, the norm limit of (d(M)));>1 is d(M’). It follows from (A) and Remark 3.2.2(2)
that d(M/) € J foralll = 1. Hence, d(M’) € J. Since M — M' € J and d(M’) € J, it
then follows that d(M) € J foralld € K. Hence, d(M) € J forall d € F. Let us prove
that

(65, (M]) —q(M] ® 15)) (11, @ k) —— (85,(M") —q(M' ® 1)) (1, ® k)  (3.3)

l—o00

with respect to the norm topology. It suffices to see that

(60, (M) —q(M] ® 15)) (15, ®K)),5,

is norm convergent since this sequence is already convergent with respect to the strict
topology towards (85, (M’) —g(M’ ® 1s5))(1, ® k). For all integer / = 1, we have

/ 1
81, (M) —q(M[®15) = > 87, (i) (85, (i) = 87, (im1)) —q Y _ i —ui—1)®1s

i=1 i=1
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(87, ()87, (ui) — g(viu; ® 1))
1
I

1
i=

(8., ()8, (ui—1) — q(viui—y ® 1g)).

i=1

We have g(viu; ® 1s) = q(v; ® 1s)g(u; ® 1g) for all integer i > 1. Hence,

8-]1 (vi)5-71 i) —qiu; ® lg) = 8,]1 (Ui)(8J1 (ui) —qu; ® 15))
+ (87,(v1) — q(vi ® 15))q(u; @ 15).

Hence,

Z5J,~ W) (87, (i) —q(u; ®15)) (15, ® k): 2(511 i) —qi®1s))qu; @1)(15,®k)

are convergent by application of (iv) and (c) (and the fact that ||u;|| < 1 and ||v;|| < 1 for
all integer / = 1); hence, sois Y ; (8, (vi)87, (u;) —q(viu; ® 1))(1s ® k). We prove that
the series D, (87, (vi)8s, (ui—1) —q(viu;—1 ® 1))(1s ® k) is convergent in a similar way
and (3.3) is proved.

Since k is strictly positive, the sequence ((8,(M]) —g(M] ® 15))(1; ® §));>1 is
norm convergent towards (67, (M) —q(M’ ® 15))(1, ® s) forall s € S. However, since
forallinteger/ > 1 and s € S we have (87, (M) —q(M, ® 1))(1;, ®s) e J ® S (M| € J
and J is invariant), it follows that (65, (M) —g(M’'®15))(1;, ®s) € J®S forall s S.
Hence, 7,(M') —q(M'® 1) € M(J ® S) since M is self-adjoint and [M ® 1g,¢q] = 0.
Moreover, we have M = (M — M’) + M’ and M — M’ € J. Hence,

§p(M)—q(M ®@15) =8;,(M —M')—q((M — M) ® 1)
+85,(M)—q(M' @15) € M(J ®S).

By (C), the sequence (Ny);>1 converges strictly towards 1 — M. It follows from (a), the
fact that ||(1 — v;)(u; — u;_1)"/?h,|| < 27 for all integer i = 1, (i), and the previous
statement that the sequence (N;h,);> converges in norm towards (1 — M )h,. However,
we have h, € J, and N; € J; for all integer / > 1. Hence, N;h, € J for all integer / > 1.
We then have (1 — M)h, € J. Hence, (1 — M)J, C J since h; is strictly positive.

By combining (d) with the fact that [|8;, (1 — v;)87, (u; — u;—1)"2h}|| < 27 for all
integer i > 1, we prove in a similar way that the sequence (8, (N;)h5);>1 converges in
norm towards 87, (1 — M)h’, and we prove that 65, (1 — M)J, C J ® S. [

3.3. Kasparov’s product

In this paragraph, we define the Kasparov product in the equivariant framework for actions
of measured quantum groupoids on a finite basis.

Let C and B be two §-C*-algebras. Let £; and &, be §-equivariant Hilbert C*-mod-
ules over C and B, respectively. Let y, : C — £(€,) be a §-equivariant *-representation.
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Let us also consider the §-equivariant Hilbert B-module € := &; ®,, &> (cf. Proposi-
tion 2.2.9). For £ € £;, we denote by Tz € £(E,, £) the operator defined by T¢(n) :=
£ ®,, nforalln e &,.

Let us recall the notion of connection.

Definition 3.3.1 (cf. [7, Definition A.1] and [26, Definition 8]). Let F, € £(&;). We
say that I € £(&) is an F»-connection for & if for all £ € €, we have Tg F, — F T €
K (€2, &) and Fsz* — TS*F e K(E,¢&).

In the lemmas below, we assume that the Hilbert A-module € is countably generated.

Lemma 3.3.2 (cf. [7, Proposition A.2 a)]). Let F> € £(€,) such that [F>,y;(a)] € KX(E2)
for all a € A. Then there exist F-connections F for €1 such that [F, B¢ (n°)] = 0 for all
neN.

Proof. By Kasparov’s stabilization theorem (cf. [17, Theorem 2]), we can assume that £,
is a submodule of Hz = H Q¢ Cand &, = P(Hg), where P € £(Hg) is a projection.
Let
F = (P ®y, le,) 13z ®c F2)(P ®y, 1¢,)

be the Grassmann connection (cf. [7, A.2 a)]). But, since B¢ (n°) = B¢, (n°) ®, 1, we
have [15}(5 ®c F2,Be(n°)] =0foralln € N. Moreover, if T € £(€1), we have PT§ =
T¢ =TP&forall § € €. Hence, [P ®, l¢,, Be(n®)] = O0foralln € N and the result is
proved. ]

Lemma 3.3.3 (cf. [3, Lemme 5.1]). Let F; € £(&3) such that (€3, v2, F2) € Eg(C, B).
Let F € £(&) be an F,-connection for & such that [F, B¢ (n°)] = 0 foralln € N (cf.
Lemma 3.3.2). Then, we have (€,y, F)€Eg(K (E1), B), where the left action y : K (E1) —
£(E) of K(E1) on € is defined by y(k) :=k ®y, 1 forallk € X (E1).

In the following proof, we use all the notations of Remark 2.2.10.

Proof. The pair (€, y) is a §-equivariant Hilbert K (E1)-B-bimodule (cf. Propositions
2.2.9 and 2.2.11 where A := K (€1) and y; is the inclusion map K (€1) C £(&1)). By
[26, Proposition 9 (h)], it then remains to prove that

(V(F Rsz DV —qp.a(F ® 1S))(V ®idg)(x) € K(E®S) forallx € K(&1)® S.
It suffices to prove that
(V(F ®s5 DV* —qpea(F ® 15))T; € K(E2® S, E®S) forall§ €& ® S,

where Tz € £(€2 ® §,€ ® S) is defined forall n € €, @ S by Te(n) := & ®y,0ids N UP
to (2.13).Leté €&, ® Sand &' := 9B a§. wehave g, o Ty = Ty Since [F, Be (n°)] =0
foralln € N, wehave gg.o(F ® 15)T = (F ® 15)Te. Moreover, since V* = V*¢g,.q,
we have V*Ty = V*Ty. Hence, V(F ®;, 1)V* Ty = V(F ®s, 1)V*Te . Thus, we have

(V(F Rsp 1)v* _qﬂga(F ® ls))Tg = (V(F Rsp DV - F ® 1S)T§’~
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Therefore, we have to prove that (V(F ®;, )V* — F ® 15)T: € K(E2 ® S,E® S)
for all § € gp, (€1 ® S). Since {J¢, (51)x: &1 € €1, x € C ® S} is a total subset of
qﬁ&l“(gl ® §), it suffices to consider the case where & = ¢, (§1)x with & € €, and
X €48, (C ® S) (cf. Definition 2.1.1 (2) and Remark 2.1.2 (3)). Let y := (y» ® idg)(x) €
£(€2 ® §). We have § = V; Tg, (x). Hence, we have

Tt = (Vi ®yreiag )Tty andthen V*Tp = V3T, y.
By a direct computation, we have
V5 (&1 ®paiasisc Vam) = (Te, ®s, Dy forall y € € ®s, (B ® S).

Since V, V3 = qp;,o and V3V, = 1, we have
V3Te,n = (Te, ®s, V30 foralln € gp, o(E2® S).

In particular, we have ViTe, y = (T¢, ®s, 1)V5y (indeed, since x € gp.a(C ® S) we
have gg, oy = y). Hence, V*T¢ = (T¢, ®s, 1)V3y. In particular, we then obtain the
relation (F ®s, 1)V*Ty = (F T, ®s, 1)V5y.Forallé; € €5,¢ € Eand s € S, we have

Oee, Qsp 1 = T;. Tg;
(Tg ®s; DV3(1e, ® ) = ((le, ® ") V2Ts,) € XK(€2® S.B® S).

Hence, (k ®s, 1)V5(le, ®5) € K(E2Q® S, E ®s, (B ® S)) forall k € K(E,, €) and
s € S. In particular, since F is an F,-connection for £; and y € £(&;) ® S, we have

((FT{.-1 — Tgl F) Rsp I)V;y e JC(EZ ®S,& Qs (B® S))

However, (V2(F,®;5,1)V; —F,®15)y e K(E2®S) (cf. Remark 3.1.3 (2)), [F, ® 15, y]€
K(E,® S) (since y € y2(C) ® S) and V(T, ®s,; 1)V5y = T¢ (since VV* = gg,, and
qgeaTe = Tg). This completes the proof. |

Definition 3.3.4 (cf. [3, Définition 5.2]). Let A, C, and B be three §-C*-algebras. Let
(&1, 71, F1) € Eg(A, C) and (€3, y2, F2) € Eg(C, B). Let € := €| ®,, &, be the §-
equivariant Hilbert A-B-bimodule defined in Propositions 2.2.9 and 2.2.11, where y :
A — £(€); a v y1(a) ®y, 1 denotes the left action of A on €. We denote by Fi#g F>
the set of operators F' € £(&) satisfying the following conditions:

(@) (& F) e Eg(4, B);

(b) F is an F,-connection;

(c) foralla € A, the image of y(a)[F1 ®,, 1, Fly(a*) in £(€)/K (&) is positive.

With the notations and hypothesis of the above definition, we have the following result.

Theorem 3.3.5 (cf. [3, Théoreme 5.3]). We assume that the C*-algebra A is separable.
Then, the set Fi#g F, is nonempty and the class of (€, F) in KKg (A, B) is independent of
F € Fi#g F, and only depends on the class of (€1, F1) in KKg(A, C) and that of (€,, F>)
in KKg(C, B).
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Proof. The proof is basically identical to that of the non-equivariant case (cf. [18,26]) or
the equivariant case for actions of quantum groups (cf. [3]). Let us prove that F;#g F, is
nonempty. Let us denote g := gg, o for short. Let V € £(€ ®s, (B ® ), E ® §) be the
isometry associated with the action of § on €. Let T be an F,-connection for £; such
that [T, Be(n°)] = O foralln € N (cf. Lemma 3.3.2). Let us fix a strictly positive element
k € S. Let us define

o Jii= K€1) ®y, | + K(E) C £(E) = MK (&), J = K(E),
o L:=C*({T —-T* 1=T? [T, F1 ®y, 1]} U{[T.y(a)]; a € A}) C £(&),
o F:=[{Ad(F1 ®y, 1), Ad(T)} U{Ad(y(a)): a € A}] C Der(Jy),

« J=C(g(1 @K)WV(T ®s; DV* —¢q(T ® ls)),
V(T ®s, DV* —q(T ® 15))(1 ® k)g}) C L(E R S).

Then, we have the following facts.
e J is an invariant closed two-sided ideal of J;.

e JpisaC*-subalgebra of M(Jy; J); by assumption A is separable, then so is J5; hence,
J5 is o-unital.

e T is a separable (since A separable).
e J, is ao-unital C*-subalgebra of M(J @ S) (separable).
Letx € K(£1) ®y, 1. We have 67, (x) = V(x ®;, 1)V*. Since V*V = 1, we have

[87,(x), V(T ®s, DV*] = V([x, T] ®s, 1)V*:
V([x, T] ®s, 1)V* = 8;([x,T]) € M(K(€)®S) (cf. [26, Proposition 9 (e)1).
Hence,
[6,(X), V(T ®5, DV*] = V([x, T] ®s, 1)V* € M(K(E) ® S). (3.4)
Moreover, by Lemma 3.3.3 we have 67, (x)(1e ® k)(V(T ®s, DV* —q(T ® 1g)) €
K(E®S)and (VT Qs NV* —q(T @ 15))6s,(x)(1e ® k) € K(€ ® S). Hence,
[85,(x)(1e ® k). V(T ®s, DV*] = [67,(x)(1e ®k),q(T ® 15)] mod K(€® S).

By combining the fact that 67, (x)(1e ®k) € ¢(J1 ® S) with the fact that [T, y]e K (E®S)
for all y € Jy (cf. [26, Proposition 9 (h)]), we obtain [ 7,(x)(1®k), (T ®1s5)] € K(ERS).
Hence,

[65,(x)(1e ® k). V(T ®s, V'] € K(E® S). (3.5)

‘We also have

Srn (x)[V(T Rsp DV —g(T ®1s),1e ® k]
=4y, (x)(V(T ®sz DV* —g(T ® 1))(13 R k)
—85,(x)(1g @) (V(T ®s5 DV* —gq(T ® lg))
=85, ()V(T ®s5 DV*(1e ® k) =65, (X)N(T ® 15)(1e ® k)
—85,(x)(1e @ V(T ®s, V" +87,(0)(1e @ k)q(T ® 15s)
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=85,(0)V(T ®s, DV*(1e ® k) — 65, (x)(1e @ )V(T s, 1)V*
=85 (x)(1e @ )T ® 15)(1 —q).

Hence,

85, (O[V(T ®s, DV* —q(T ® 1s). (1e ® k)q]
=8, ()[V(T @, DV* —q(T ® 1s5). 1e ®k]q
= 85, (0)V(T ®s, DV* (1 ® k)g — 87, (x)(1e ® K)V(T ®s, 1)V*.

By applying (3.5), we have

85, () [V(T ®s, DV* — (T ® 1s), (le ® k)q]
= [67,(x). V(T ®s, NV*](1¢ ® k)g mod K(E® S).

By applying (3.4), we finally obtain
80, (O[T @5, DV* = (T ® 15), (1 ® k)q] € K(E®S). M
By combining the previous relation with
Sri(x)(le ® k)(V(T ®sz DV —g(T ® 15)) € K(E®S) (cf.Lemma3.3.3), (2)

we have
SJl(x)(V(T Rsp DV —g(T ® ls))(lg Rk)ge K(EX®S).

Since the above holds true when replacing 7' by T* (cf. Remark 3.1.3 (2) and [26, Propo-
sition 9 (b)]), it then follows that 57, (x)y € J ® S for all x € J; and y € J,. We can
apply Theorem 3.2.6. Let us consider M as in the theorem. Let

Fi:=M"2(F; ®y, 1) - (11— M)"/?T.

For all n € N, we have [F, Be(n°)] = 0. Indeed, since (€1, Fy) € Eg(A, C) we have
[Fi, Be,(n°)] = 0. Hence, [F1 ®,, 1, Be(n°)] = 0. We also have [T, B¢(n°)] = 0 by
assumption. By Lemma 3.2.5 ([M, Be(n°)] = 0 and M is positive), we also have
[M1'/2, B¢ (n°)] = 0. Similarly, we have [(1 — M)/2, B¢ (n°)] = 0. According to the non-
equivariant case, it only remains to prove that

x(V(F ®s, DV* —g(F ® 15)) € K(E® S) forallx € (y ® ids)(4 ® S).

Letus fix x € (y ® ids)(4 ® S). We have V(F ®s, 1)V* = 65 (F). By combining the
formula 87 (F1 ®y, 1) = x(e,)(F1) ®y,oids 1 With the fact that the pair (€4, Fy) is a
§-equivariant Kasparov A-C -bimodule, we obtain

x(87(F1 ®y, ) —q((F1 ®y, 1) ® 15)) = x(8xe,)(F1) —4pe,a(F1 ® 15)) ®y,eids 1
€ (JC(EI) ® S) ®y2®ids 1C Jl ® S.
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Since M is an element of the C*-subalgebra M (Jy; J) of M(J;), we have M /2 ¢
M(J1; J). Hence,

M2 15)x(85(F1 ®,, ) —q((F1®,, ) ®15)) € J @S = K(E®S). (3.6)
Leta € Aand s € S, then we have

(y ®ids)(a ® s)(87(M'/?) — q(M'? & 15))8, (Fi ®y, 1)
= (Y@M'"? ®5)5;(M"?) — (y(a)M'? @ 5)8; (Fi ®, 1)

(since [M ® 1s,q] = 0 we have [M'/2 ® 15, q] = 0; cf. Lemma 3.2.5) and
(17 @987 (FL®y, 1), (1;®)8,(M'*) eI ®S.

Hence,
xX(87 (M) —q(M'? @ 15))8; (Fi ®, 1) € XK(E® S). 3.7

Foralla € Aand s € S, since [y(a), M] € J (recall that Ad(y(a)) € F), we have
[(y ®ids)a®s). M'? @ 1s] = [y(@) M'?|®s€J ®S (cf. Lemma3.2.5).
Thus, we have [x, M2 g Is] € K(E® S). Hence,
X, M2 @ 15](8;(F1 ®,, ) —q((Fi ®,, D ®15)) € K(E®S).  (3.8)
By summing up (3.6), (3.7), and (3.8), we have proved that
X7 (M'2(Fy ®,, 1)) —q(M'?(F1 ®,, ) ® 1)) € K(E® )
(recall that [M /2 ® 15,¢] = 0). Let
E:={ueMU:J) 8;(u)—qu®ls) e M(J ®S)and [q,u ® 15] = 0}.

Then E is a closed subalgebra of M(Jy; J). Indeed, E is clearly a closed subspace of
M(J1; J). Moreover, for all u, v € E we have

§y(uv) —quv ® lg) = 8;(u)d7(v) —qu ® 1s)g(v ® 1)
=387u)(87(v) —qv ® 15)) + (87 () —q(u ® 15))q(v ® 1s)
= (87(u) —q(u ® 15))(87(v) —g(v ® lg))
+ @ ®1s)(Es(v) —q(v ® 15))
+(67) —quel1s))v®ls) € M(J ® S)

and [¢,uv ® 1s] = 0. Hence, we have

§7((1=M)V2) —g((1 = M)'? @ 15) e M(J ® S).
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Therefore, we have
x(87((1 =MV —q((1-=M)? @ 15)) € K(E® S). (3.9)

We also have (87 ((1 — M)Y2)—q((1 — M)/2®15))x € K(E®S) by taking the adjoint
in (3.9). In particular, we have [x, 8;((1 — M)Y/?)] = [x, ¢((1 — M)"/? ® 15)] mod
K(E®S). Moreover, we have [x, (1-M)®1s]=—[x, M @15]€ K(ERS). It follows
from Lemma 4.2.9 that [x, (1 — M)/2®15]€ X (E®S). Since g is a projection such that
[q.(1— M)'2®1g] =0, we have [x,q((1 — M)'2 @ 15)] = [gxq.(1 - M)'/2 @ 15] €
K(E® S). Hence,

[x,8;((1—M)/?)] e X(E®S). (3.10)

We have
87((1 = M)V x(8,(T) - q(T ® 1s)) € K(E® ). (3.11)

Indeed, since k is a strictly positive element of S, we can assume that x = x'(1¢ ® k)
with x” € (y ® idg)(A ® S). In virtue of (3.10), we have
8((1=M)?)x(85(T) —q(T ® 15))
=x'8;((1 = M)""?) A ® k)(8,(T) —q(T ® 1)) mod K(€® S).
Note that F := {u € M(J,); 65(u)J; C J ® S and J;6;(u) € J ® S} is a C*-algebra
and 1 — M € F.Hence, (1 — M)'/? € F and (3.11) is proved. By using again (3.10), we

prove that
x87((1—M)Y2)(8,(T) —q(T ® 1)) € K (€ ® S). (3.12)

Therefore, we have
x(8,((1=M)'2T) —q((1 - M)'PT ® 1)) € K(E® S).
Indeed, we have (recall that [¢, (1 — M)'/2 ® 15] = 0)
x(87((0 = M)'V2T) —q((1 — M)'2T & 15))
= x8;((1=M)"?)8,(T) — xq((1 - M)'> @ 1)q(T ® 1)
= x87((1 = M)V2)(8,(T) — q(T ® 15)) + x (8, ((1 — M)'/?)
—q((1 = M)'2 & 15))(T ® Ls).

By (3.9) and (3.12), we obtain
x(8((1 = M)V2T) —q((1 - M)'PT ® 15)) € K(E® S), .

Definition 3.3.6. Under the notations and hypotheses of Theorem 3.3.5, the class x in
KKg (A, B) of (€, F), where F € Fi#gF;, is called the Kasparov product of the class
x1 of (€1, F1) in KKg (A, C) and the class x; of (€,, F>) in KKg(C, B). We denote x =
X1 Qc Xx3.
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As in the non-equivariant case [18,19] and the equivariant case for actions of quantum
groups [3], we have the following theorem.

Theorem 3.3.7. The Kasparov product
KKg (A, C) X Kkg(C, B) — KKg(A4, B); (x1,X2) > x1 ®¢ X2
is bilinear, contravariant in A, covariant in B, functorial in C, and associative.

Definition 3.3.8. Let A and B be §-C*-algebras.

e Let¢: A — B bea§g-equivariant *-homomorphism. If the C*-algebra B is o-unital,
then the triple (B, ¢, 0) is an equivariant Kasparov A- B-bimodule and we define [¢] :=
[(B,¢,0)] € KKg(A, B).

o If the C*-algebra A is o-unital, we define 14 := [id4] = [(A4,0)] € KKg (A4, A).

The Kasparov product generalizes the composition of equivariant *-homomorphisms.
More precisely, we have the following result.

Proposition 3.3.9. Let A, B, and C be §-C*-algebras with B and C o-unital. Let ¢ :
A — Cand ¢ : C — B be §-equivariant *-homomorphisms.

(1) We have ¢*([¥]) = [V o ¢] = ¥« ([9]) in KKg (A, B).

(2) If A is separable, we have [ o 9] = [¢] ®c [V¥] in KKg(A, B).
Proposition 3.3.10. Let A and B be two §-C*-algebras. We have that

(1) if B is o-unital and A separable, then x @p 1p = x for all x € KKg(A, B),

(2) if A is separable, then 14 @4 x = x for all x € KKg(A, B).

Only statement (2) is not obvious. For the proof, we will need the following easy
lemma.

Lemma 3.3.11. Let A be a §-C*-algebra and p = 2 an integer. Denote by Mp(A) the
C*-algebra of matrices of size p with entries in A. Let Sy, (4) : Mp(A) — M(Mp(A4) ® S)
and B, (4) : N° — M(Mp(A)) be the maps defined by

o Sm,(a) := idu,(c) ®4 : (aij) = (8a(aij)), up to the identifications
M, (4) = My(C) ® A;
My(C) @ M(AR®S) =Mp(MA®S) CMMA®S)) = MMp(A) ®S),
o Bmy(n°)(aij) = (Ba(n®)aij) and (aij) P, a)(n°) = (aij fa(n°)) for alln € N and
(Clij) S Mp(A)

Then, the pair (Bm,(4), Om,(4)) is a continuous action of § on Mp(A).

Proof of Proposition 3.3.10(2). The idea of the proof is the same as that of [23, Lemma
3.3] (see also [26, Proposition 17]). Let (&, y, F) be an equivariant Kasparov A-B-
bimodule. Consider the Hilbert B-submodule &, := [y(A)E] of €. Let &; := € and F; :=

F € £(&1). Define maps y;; : A — £(&j, &;) for i, j = 1,2 obtained by range/domain
restriction of y(a) (for a € A fixed) and denote y; := y;; fori = 1,2. Note that y; = y



J. Crespo 56

and y, : A — £(&7) is a non-degenerate *-representation of A on &,. By equivariance
of y, the action (B¢, §¢) induces by restriction an action (8¢,,8¢,) of § on €, and it
is clear that (€, y2) is a ¥-equivariant Hilbert A-B-bimodule. It is easily seen that we
have an identification of equivariant Hilbert bimodules 4 ®, & — £2;a ®, £ — y(a)é.
Let F, € 0#gF, C £(€,). By combining the maps y;;, we obtain an equivariant *-
representation ¢ : Ma(A) — £(E1 @ E€2); (aij) — (yij(aij)) of Ma(A) on €1 @ €, (cf.
Lemma 3.3.11 and Proposition-Definition 2.1.11). Hence, the pair (€1 @ &E;, ¢) is an
equivariant Hilbert M, (A)-B-bimodule. We claim that the triple (€1 & E,, ¢, F1 & F>)
is an equivariant Kasparov bimodule. For a € A, the operator T, € £(€, A ®,, &) is iden-
tified to y»;(a) through the identification 4 ®, € = €,. Hence, F1y12(a) — y12(a) F> €
K(Ez, &) and Frys1(a) — ya1(a)F1 € K (&1, €,) since F, is an Fj-connection (for
A). In particular, if x € M,(A) is an off-diagonal matrix (i.e., the diagonal entries equal
zero), then [Fy @ F, ¢(x)] € K (€1 & &,). Since any element of A is a product of two
elements of A, any diagonal matrix of M;(A) is a product of two off-diagonal matrices
of M,(A). Moreover, if x, y € M,(A) are off-diagonal, we have [F; @ F>, ¢(xy)] =
[F1® F2,0(0)]p(y) + ¢(x)[F1 @ F2,¢9(y)] € K(E1 @ E2). Hence, [F1 ® F2, ¢(x)] €
K (E1 & &) if x € M (A) is diagonal. This relation extend by linearity to all x € My (A).
The relation ¢(x)(1 — (F1 & F»)?) € K (&1 @ €5) holds if x € M,(A) is diagonal. Since
we can factorize a finite number of elements of A by a common element of A, any matrix
of M, (A) factorizes on the right by a diagonal matrix. Hence, this relation extends to all
X € Mp(A). The remaning relation of Definition 3.1.1 is proved in a same way. With the
identifications M(K(E1 B E2) R S) =L(E1 P E)R®S) =L((E1®5) D (E2® ),
we have

Sx(er@er)(F1 @ F2) =8x(e)(F1) ® dx(e,)(F2) and  gge o 0 =qBe,a D qBe,a-

By using the above trick and the identification M (A) ® S = M,(A4A ® §), we prove that

(¢ ®ids)(x) (8c(e,0e2) (F1 ® F2) =g, oe,a(F1 ® F2) ® 15)) € K((E1 ® E2) ® S)

forall x e Ma(A) ® S.Lett := (€1 @ E2,¢, F1 & F2) € Eg(M1(A), B). For¢t € [0, 1],
lett; : A — Mjy(A) be the §-equivariant *-homomorphism defined for all ¢ € A by

((1 —t2a V1 —t2a)
u(a) = .

tv1—1t2a t2a

We have (§(7) = (€1, y1, F1) ® (€2,0, F>) and ] (1) = (1,0, F1) ® (€2, y2, F») in
Eg(A, B). Moreover, (3,0, F>) and (€1, 0, Fy) are degenerate §-equivariant Kasparov
bimodules. Hence, the triple (1D E2, (¢ ot1)ef0,1], 1D F2) defines a homotopy between
(€1, 1, F1) and (&3, y2, F2) (cf. Proposition 3.1.5 (1) and Example 3.1.7 (3)). This com-
pletes the proof. |

Remark 3.3.12. If x := [(&, F)] € KKg (A4, B) (with A separable), we can always require
the left action A — £(&) of A on & to be non-degenerate (cf. Proposition 3.3.10 (2)).
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The result below is a generalization of Proposition 3.3.9 (2) and follows straightfor-
wardly from the above remark.

Proposition-Definition 3.3.13. Let A, B, and C be §-C*-algebras with B o-unital. Let
¢ : A — B be a §-equivariant *-homomorphism.

(1) If C is separable, we have x @4 [¢] = ¢«(x) in KKg(C, B) for all x € KKg(C, A).
(2) If A is separable, we have [p] ®p x = ¢p*(x) in KKg (A, C) for all x € KKg(B, C).

In particular, if A is a separable §-C*-algebra, then the abelian group KKg(A, A)
endowed with the Kasparov product is a unital ring called the equivariant Kasparov ring
of A.

3.4. Descent morphisms

Lemma 3.4.1 (cf. [3, Lemme 6.13]). Let (€, y) be a §-equivariant A-B-bimodule with a

non-degenerate left action’y : A — £(€) and F € £(&). We assume that [y(a), F] € X (E)

forallacA, [F,Be(n°)]=0forallneN, and (85 (e)(F)—qp.o(F®1s))(y®ids)(x) C

K(ERS)forallx e AR S. Let D be the bidual §-C*-algebra of A (cf. Notations 2.3.4).

(1) Through the identification of Hilbert D-B-bimodules (cf. Theorem 2.3.11, Corol-
lary 2.4.24, and Proposition-Definition 2.4.26 for the definitions and notations)

4R ®y &= Ecr: 4pala ®E) Qy N> qpea(y(@n®§), (3.13)

the operator tr(F) g, n€ L£(E¢ R) is identified to an F-connection for €4 R.

(2) The operator F € £(€) is identified to a wr(F)|¢g, x-connection through the
identification of Hilbert A-B-bimodules EZ,R ®p Ee,r = E&.

Proof. (1) It is clear that the formula
ARH)®yE—EQRH;, (U®E®, n>yl@n®E (3.14)

defines an adjointable unitary of Hilbert B-modules, which intertwines the left actions of
A ® K.However, we have y(B4(n°)a) = Be(n®)y(a) foralln € N and a € A. Hence, the
above unitary induces by restriction the identification of Hilbert D-B-bimodules &4 g ®,
€ = 8¢ r. By compactness of the commutators [y(a), F] for all a € A, the operator
F®1ly e L(EQH) is identified to an F-connection through (3.14). Hence, the operator
(F®lgc) g, r€ L(Ee, r) is identified to an F-connection through (3.13). Moreover, since
(Bxe)(F)— F @ 1g)(y ®ids)(qpa(4 ® S)) C K(E® S), the operator Tr(F) g, r —
(F ®lgg)le ¢z 18 identified to a O-connection (cf. [26, Proposition 9 (d)]) through (3.14).
Hence, the operator 7g (F) I'¢, € £(E¢, Rr) isidentified to an F-connection through (3.13)
(cf. [26, Proposition 9 (c)]).

(2) By associativity, we have & p ®p Eg.r = (€ r ®D E4,R) ®4 € = A®4 E (cf.
[9, Proposition 7.12]). By non—degéneracy of y, we have A ®4 € = &. We then obtain
a canonical identification of Hilbert A-B-bimodules 8;;, R ®Dp &g g =& For £ € 4,
the operator Tg+ € £(E¢, R, SZ,R ®p E¢.r) is identified to TS* € L(E4r®y E,E)upto
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the identifications & » ®p E¢ g = € and &4 g ®, & = &E¢ g. Therefore, the fact that
F e £(€)isanr(F)|g, p-connection is just a restatement of (1). [

The result below will be used in the proof of Lemma 3.4.3.
Lemma 3.4.2. If m € M(A) is §4-invariant, then [ (m), é(x)] = 0forall x € S.

Proof. Let us fix a §4-invariant element m of M(A) and x € S. We have to show that
[mr(m), 14 ® p(x)] = 0. This follows from the formula 77 (m) = gg,o(m & 13¢) and the
commutation relation [gg,o, 14 ® p(x)] = 0 ensuing from S C M' C a(N)". [

Lemma 3.4.3 (cf. [3, Lemme 6.14] and [31, Proposition 5.3]). We follow the notations
and hypotheses of Lemma 3.4.1. Let £o := E¢ g be the §-equivariant Hilbert D - B-bimod-
ule defined in Corollary 2.4.24 and Proposition-Definition 2.4.26. Let Fy := nr(F) ¢, €
£(Eo). Let yo : D — £(Eo); d — (y ®1idx)(d) e, be the left action of D on Ey. Then,
we have (cf. Proposition-Definition 2.4.13)

[Vox(D % 8), x(eq)(Fo)] C K(Eo % ).

If (€,y, F) is a §-equivariant Kasparov A-B-bimodule, then the triple (o, Yo, Fo) is
a §-equivariant Kasparov D-B-bimodule and the triple (€9 X G, Yox, Ty (e,)(Fo)) is a
§-equivariant Kasparov D X §-B x §-bimodule.

Proof. From the relations ((F ® 15)qg.o¢ — $x(e)(F))(y ® ids)(A® S) C K(E) ® S
and R(S)K =K, we infer that (F®1)gg.5 —7r(F))(y ®idx)(AQK) C K(EQRH).
Hence, ((F @ 1) ¢, — Fo)yo(D) C K (Ep). We also have yo(D)(Fo — (F ® 1g¢) [e,) C
K (Ep). Hence, [yo(d), Fol = [yo(d), (Fo ® 13¢)|¢,] mod K (Ep). By compactness of
the commutators [y (a), F] foralla € A, we have [(y ® idx)(x), F ® 1] € K(E @ H)
forall x € A ® K. In particular, [yo(d), (Fo ® 13¢)['¢,] € K(Ep) forall d € D. Hence,
[vo(d), Fol € X (Eo) foralld € D.Letd € D and x € S. We have

[ox (7 ()0 (x)). Tk (e0) (Fo) ] = 7ac(e) ([vo(d). Fo])Bacceq) (x)
+ 7 (e0) (Yo(d)) [éx(eo) (x). Txc(e0)(Fo) -

The first term of the right-hand side belongs to K (&g x &) since [yo(d), Fo] € K(Ep)
(cf. Corollary 2.4.10) and the second one is zero since [0z (e,)(X), Tx (e4) (Fo)] = O (cf.
Lemmas 2.4.25 and 3.4.2). Therefore, we have

[yO*(nD(d)éD(x)),nx(go)(Fo)] € K(Eyx¥) foralld e Dandx € §.

Hence, [yo«(D % §), w5 (eq)(Fo)] C K (Eo % F). Assume that (€, y, F) is a §-equivariant
Kasparov A-B-bimodule. By arguing as at the beginning of the proof, we prove the
remaining relations of Definition 3.1.1 so that the triple (¢, yo, Fo) is a Kasparov D-
B-bimodule. By invariance of Fy, the triple (£¢, Yo, Fo) is a §-equivariant Kasparov
A-B-bimodule (cf. Remark 3.1.3 (3)). We prove the remaining relations of Definition 3.1.1
so that the triple (o X &, Yox, Tx (£4)(Fo)) is a Kasparov D-B-bimodule. For instance,
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we have

Yo (O () 71p (d)) (T (£0) (Fo)* — T c(e) (Fo))
= Oxc(e0) ()T ac(e0) (Yo(d) (Fg — Fo)) € K (E9) x°& (cf. Proposition-Definition 2.4.13),

foralld € D and x € S. Moreover, the triple (Eo X G, Yox, Tx(eo) (Fo)) is a §-equivariant
Kasparov D-B-bimodule (cf. Lemma 2.4.6 and Remark 3.1.3 (3)). ]

Now, we are in position to define the descent morphism.

Theorem 3.4.4 (cf. [3, Proposition 6.18 and Théoreme 6.19], [4, Remarque 7.7 (b)], and
[31, Proposition 5.3 and Lemme 5.4]). Let A, B, and C be §-C*-algebras.

(1) If (€, F) is a §-equivariant Kasparov A-B-bimodule (with a non-degenerate left
action), then (Ex§, FQ®g;1)isa g-equivariant Kasparov Ax&-B x§-bimodule.
Moreover, if (€1, Fy) and (€5, F>) are unitarily equivalent (resp. homotopic)
§-equivariant Kasparov A-B-bimodules, then so are (€1 1§, F| ®g; 1) and
(82 xg, F, Qg 1)

Let Jg : KKg(A, B) — KKg(A x &, B x §) be the homomorphism of abelian groups
defined for all [(€, F)] € Kkg (A, B) (with a non-degenerate left action) by

Jo([(€. F)]) :=[(€ %G, F &z, 1],

(2) Let ¢ : A — B be a §-equivariant *-homomorphism. We recall that the equiv-
ariance of ¢ allows us to define a §-equivariant *-homomorphism ¢ : A X\ § —
B %G (cf. Proposition 2.4.12 (1)). We have Jg([¢]) = [¢«]- In particular, we have

Jg(14) = laxg.
(3) Assume the C*-algebra A to be separable. For all x1 € Kkg(A, C) and x, €
KKg (C, B), we have

Jg(x1 ®c x2) = Jg(x1) ®cxg Jg(x2).

The following proof is broadly inspired by those of [31, Proposition 5.3 and Lemma
5.4], of which we take some of the notations. In the proof, we will also follow the notations
introduced in Lemmas 3.4.1 and 3.4.3.

Proof. (1) Let (€, y, F) be a §-equivariant Kasparov A- B-bimodule (with a non-degener-
ate left action). Let (€9, Yo, Fo) be the §-equivariant Kasparov D-B-bimodule defined in
Lemma 3.4.3. Note that € @ &y is a ¥-equivariant Hilbert B-module. We can consider the
canonical morphism 7y (e@e,) @ L(E D Eo) = M(K(E B Ep) x §). Up to the canonical
identifications K (€ @ Eg) X EF = K ((E ® Eo) X &) (cf. Corollary 2.4.10) and (€ & Ep) %
9 =(ExF) D (E xF), we can consider the following restrictions of wx (c@e,):

it 2(8) > L(ExE);

ig: £(E0.&) = L(Eg xF,EXE);

i%:£(8,80) = L(EXE, EgxE);
iy £(8o) = L(Eo X 9).
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Note that, up to the identifications K (€ x§) = K(E) xF and K(Eg x§) = K(Ep) X G,
we have i = my(e) and ig = T x(e,)- By using the identification €} p ®,, €o = € (cf.
Lemma 3.4.1(2)), for { € &5 g let Ty € £(&p, €) be the operator defined by Tt (n) =
¢ ®y, nforalln € E¢ g. For 77, € 3, we denote by 1, € £(E, £ ® H) the operator defined
by t¢(n) := & ® n for all £ € &. It should be noted that 7, (¢’ ® n') = (n, n')§’ for all
g € & and ' € . It follows from [T;yo(x)Tg*; £, £ € 84r, x € D] = y(A) that

[i0(T)yon(0)i°(TF); x € D %G, 0,6 € €f ] = ya(A % 5).

By combining the non-degeneracy of the canonical morphism 7p : D — M(D % §) with
the fact that yo«(7p(d)) = ig (yo(d)) forall d € D, we have that y«(A4 x §) is the closed
linear span of the elements of the form

io(T;yo(b))y()*(x)io(yo(c)Ts*), withx € Dx§, b,c e D, and {, £ € € p.

Let us prove that i (F') commutes with these elements modulo K (€ x §). We will carry
out the computations modulo K (€ x &) by using the inclusions
i0(K(€0,8))y0x(AxE) C K(EgxEF,EXE); (3.15)
Yo (A x 8)i®(K(E,€9)) C K(ExEG,ExE). (3.16)
Let us prove (3.15) since (3.16) will follow by taking the adjoint in (3.15). By the relation
K(Eo,&)=[K(E0,E)K (Eo)]. it suffices to prove that i (K (Eo))yox(AxE) C K(EgxF).
Let k € K(Ep)and x € A x&. In virtue of the non- degeneracy of the canonical morphism
QA S M(A % &), we can assume thatx = «9A(y)x with y € Sandx € AxE. By the
equlvarlance of Yox, we have yg«(x)= 9]{(50)()/))/()*()( ). Hence, i (k) yox(x) € K(EoxE)
since i (k)ex(go)(y) € K(Ep) X § and yp«(x) € M(K(Eg) X G).
Letusfixx e Dx§,b,c € D,and {,§ € SA’R.Wehave

i(F)io(Teyo(b))yox (X)io()’o(C)Tg*) =io(F T;)/o(b)))/o*(x)io(VO(C)TS*)-

Let{ = (a ® {"™)gp,qa Witha € Aand {’ e H.Letno =qp,a(n ® x) € € with n € € and
x € H. Let (eg))lslsk, I<i,j<n; De a system of matrix units of N. We have (cf. [9,
Proposition-Definition A.2.19])

Tt (o) = an Z .a(e?) 1)y (@Be (ef°)n.

i,j=1

In particular, we have

FT;(TIO)_Z’H 3 (¢ a(e?) 1) Fr@Be(e)*)n = Fy(@)t(no)

I=1 i,j=1

and since [F, B¢ (n°)] = O for alln € N, we also have

Te(F ® 1)(10) = Zn, Z &(eD) 1)@ FPe(el*)n = y(@) Frfi(no).

i,j=1
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Hence, we have FTy — T (F ® 1) ¢ = [F, )/(a)]rz‘, Peo€ K (Ep, €). Thus, we have (cf.
(3.15))

iO(F T;yo(b))y()*(x) = iO(T; (F ® l)yo(b))y(,*(x) mod K (g x&,ExE). (3.17)
We recall (cf. proof of Lemma 3.4.3) that
((F ® ) tey — Fo)yo(D) € K(Eo). (3.18)
We have
i(F)io(Teyo(b))yos (x)iO(VO(C)Tg*)
=io(Te(F ® l)yo(b))yO*(x)io(yo(c)Tg*) mod K(Ex§) (3.17)
= iO(T;Foyo(b))yO*(x)io(yo(c)Ts*) mod K(E x§) (3.18), (3.15)
= io(T¢)ig (Fo)yox (7p (b)x7p (¢))i®(TF)  mod K (€ x §)
= io(Te)yos (7 (B)x7p (¢))ig (Fo)i®(T{) mod K(€ x§) (Lemma3.4.3)
= io(Te¥0(h)) yox (x)i® (vo(c) FoTy") mod K (€ x §).

By using (3.16) and Definition 3.1.2 (3), we prove in a similar way that

Yox ()i (Yo () (F @ DT) = yox(x)i°(yo(c) T F)  mod K (€% G, 80 x);
Yo(D)((F ® 1) e, — Fo) C K(&o).

which allows us to conclude the above computation by stating that

i(F)io(Teyo () yox (x)i° (ro(e)TY)
= io(Te70(0))yox(x)i® (yo(0)T;)i(F) mod K (€ x §).

The other statements of (3.1) are obtained by a direct computation. For instance, for all
x € AxE we have y.(x)({(F)* —i(F)) € K(E x §). Indeed, this follows from the
fact that {é(y)i(y(a)); y € S, ace A} is a total subset of y.(A4 x &) and the fact that
0(»)i(y(a))((F)* —i(F))=0(y)i(y(a)(F*—F))e X(Ex§)forally € S and a € A.

It follows from the definition of the dual action (2.4.4) and the fact that Trg = i (F)T
forall £ € € that i (F) is §¢ wg-invariant. It is also straightforward that [i (F),xexg (n)] =0
for all n € N. Hence, (€ X &, y«,i(F)) is an equivariant Kasparov bimodule (Remark
3.1.3(3)).

Itis clear that (€, y, F) €Eg (A, B) defines aunique (EX G, yx,i(F)) EEg(AXE, BxG)
(cf. Proposition 2.4.7). If (€, F) € Eg(A4, B[0, 1]) is a homotopy between (€7, F1) and
(€2, F>), then (€ x §,i(F)) is a homotopy between (E1 x &,i(Fy)) and (E; X §,i(F2)).
This statement makes sense in virtue of the following result.

Lemma 3.4.5. There exists a unique equivariant *-isomorphism

B[0,1]%¢ — Bxg[0,1]; mp0.11(f)Fp0.11(x) = [t = 75(f(1))8p(x)].
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Proof of Lemma 3.4.5. We have the identifications (cf. Definition 3.1.4 (4))

£(B[0,1] ® H) = M(B[0,1] ® K) = M((B ® X)[0,1])
= M(B ® X)[0,1] = £(B ® H)[0, 1].

For f € B[0,1] and x € S, the operator 7g[o,1],L (f) (180,11 ® p(x)) € L(B[0,1] ® H)
is identified to the continuous function [t > 7p 1, (f(?))(1p ® p(x))] € £(B & H)[0, 1].
Furthermore, we also have the identifications

cf(‘gB[O,l],L) = {T € f(B[O, 1]1® :H); T‘Iﬂg[o,l]a =T= qﬁB[O,l]“T};
£(Ep,r) ={T € LB ®H); Tqpya =T = qppaT ).

We then obtain an identification between the C*-algebras £ (Epo,17,.) and £(€p,1)[0, 1],
which identifies 7 p[o,1] (f)@B[o,l] (x) with [t > mp (f(t))éB (x)]. By restriction, we obtain
an injective *-homomorphism ¢ : B|0, 1]A><1 §— Bxg[0,1]. Moreover, for all beB,x€S,
and f € C([0. 1)) we have f ® 75 (b)85(y) = $(mapo.)(f ® b)Bs(x)) (cf. B0, 1] =
C([0,1]) ® B and B x §[0, 1] = C(]0, 1]) ® B x §), which proves that the range of ¢
is dense. The surjectivity of ¢ is then proved. The §-equivariance of ¢ is a direct conse-
quence of the definition. ]

End of the proof of Theorem 3.4.4. (2) Straightforward.

(3) Let x; € KKg(A4, C) and x, € KKg(C, B). For i = 1,2, we consider an equiv-
ariant Kasparov bimodule (&;, y;, F;) such that x; = [(€;, y;, F;)]. Let us consider the
§-equivariant Hilbert B-module € := £; ®,, €,, the §-equivariant *-representation y :
A — £(&,) defined by y(a) := y1(a) ®y, 1 foralla € A and an operator F' € Fi#gF, C
£(E) (cf. Definition 3.3.4). Let y := x1 ®c x2 = [(&, y, F)] (cf. Theorem 3.3.5 and
Definition 3.3.6). For i = 1,2, denote by (E;, y/, F/) (resp. (¢, y’, F’)) the equivariant
Kasparov bimodules obtained from (&;, y;, F;) (resp. (€, y, F)) by the crossed product
construction. By definition, we have Jg(x;) = [(E}, ], F{)] fori = 1,2 and Jg(y) =
[(€",y’, F')]. We have a canonical identification £ = & ®y, &/, which intertwines the left

actions (cf. Proposition 2.4.14). Let us denote by 7 : K(E) — M(K(E) x &) and 0:5—
M(K (€) x &) the canonical morphisms. We recall that F’ = 7 (F') up to the identification
£ (&) = M(K(E) x§) (cf. Proposition 2.4.9). We also have F| ®y 1= w(F1 ®y, 1) up
to the identification & = €} ®,; €,. We have y(a)[F1 ®y, 1, Fly(a)* € £(€)+ + K ()
for all a € A by assumption. Foralla € A andu € A x §, we have

Y @) (r@)[F] @y 1 Flr(v(@)")y' )"
=7 (W (y(@[Fi ®y, 1, Fly(@)*)y )" € L&)+ + K (&)
since /() (£(€)+)y')* C £(€)+ and ' ()7 (K (£))y'(w)* C K (€)).
The positivity condition follows from the non-degeneracy of the canonical morphism
7wy A—> M(AxE). Indeed, forany v € A x G there exista € Aandu € A X g such

that v = umg(a). Then y'(v) = y'(u)y'(mwa(a)) = y'(u)7(y(a)). The compatibility with
the direct sum is straightforward. ]
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In a similar way, we prove the following theorem.

Theorem 3.4.6. Let A, B, and C be §-C*- -algebras.

M If (F,G) is a g- eqmvarlant Kasparov A-B-bimodule (with a non- degenemte
left action), then (F x .G ®zy 1) is a G-equivariant Kasparov A €-Bx§-
bimodule. Moreover, if (F1, G1) and (F», G,) are unitarily equivalent (resp. homo-
topic) ﬁ\-equivariant Kasparov A-B-bimodules, then so are (F1 % g\, G| ®z, 1)
and (F x g, Gy ®z;5 1)

Let J5 : KKg(A, B) — KKg(A4 x $.B x g) be the homomorphism of groups defined for
all [(F, G)] € KKz(A, B) (with a non-degenerate left action) by

I3([(3.6)]) = [(Fx§.G ®z, )]

2) Let ¢ : A — B be a g—equivariant *-homomorphism. We recall that the equiv-
ariance of ¢ allows us to define a §-equivariant *-homomorphism ¢y : A X\§ —
B x§. We have J5([¢]) = [p«]. In particular, we have Jg(14) = 1,, 2.

(3) Assume the C*-algebra A to be separable. For all x, € KKz(4, C) and x3 €
KKg(C, B), we have

Jg(xl ®c Xz) = Jg(xl) ®C>«§ Jg()@)

Notations 3.4.7. Before stating the main theorem of this article, we need to specify some
further notations. Let A (resp. B) be a § (resp. ﬁ)-C*-algebra. Let D (resp. E) be the
bidual § (resp. g )-C*-algebra defined in Notations 2.3.4. We recall that &4 g (resp. &p,p)
defines a § (resp. g)-equivariant Morita equivalence between A (resp. B) and D (resp.
E) (cf. Theorem 2.3.11). Let us define

by = [(SA,R,O)] € KKg(D,A) and ay:= [(SX,R’O)] € KKg(4, D)

(resp. bp 1= [(€p,.0)] € KKz(E.B) and @p :=[(€},.0)] € KKz(B. E)).

Lemma 3.4.8. Let A be a separable § (resp. ‘g)-C*-algebra. Let D (resp. E) be the
bidual G (resp. §)-C*-algebra of A. We have

by ®qa4=1p and a4 Qp by = 14
(resp. BA Q404 =1 and a4 QF BA = IA).
In particular, if A and B are separable G (resp. é\)-C*-algebras, then the map

KKg (4, B) — KKg(Dg, Dyg); x+—>by®4xQpap

(resp. KKz(A, B) — KKg(Ey, Eq);  x BA ®4 X QB aB)

are isomorphisms of abelian groups (cf. Convention 2.5.26 for the writing conventions).
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Proof. This is a consequence of [9, Proposition 7.12] and Theorem 2.3.11. ]

We can state the main result of this paragraph. We refer the reader to [3, Théoréeme
6.20], [3, Remarque 7.7 (b)], and [31, §5.1] for the corresponding statement in the quan-
tum group framework.

Theorem 3.4.9. Let A and B be § (resp. é)-C*-algebras. If A is separable and B is
o-unital, then for all x € KKg(A, B) (resp. x € KKg(A, B)), we have

JgoJg(x) =b4 ®4x ®pap (resp. JgoJg(x) = BA Q4 x B &B)

up to the identifications (A X '§) x g = Dy and (B x§) % g = Dy (resp. (A x ;é) Xg =
Eg;and (B x§)x§ = Eq) (cf. Theorem 2.3.7).

Proof. Let x € KKg(A, B). It suffices to prove that Jg(Jg(x)) ®p, bp = bg ®4 x. Let
(E,y, F) € Eg(A, B) such that x = [(€, y, F')]. With no loss of generality, we can assume
that the *-representation y is non-degenerate. Let us consider the canonical morphisms 7 :
K(E) > M(K(E)xEg)and 7T : K(E)xE —> M((K(E)xE) xg). We make the identifi-
cations M((K(E)xF) ><1‘§) =L(ExY) xg) (cf. Proposition 2.4.9 and Corollary 2.4.20).
We have
Jz0Jg(x) =[((Ex9) % & 7 on(F))]

(recall that (F ®3z, 1)®x, 1 is identified with 7 o 7 (F)). Let us compute the Kasparov
product Jz(Jg(x)) ®p, bp. Denote by np, : Dqg— £(Ep,r) the equivariant *-representa-
tion given by 7p,(d) := d 'g, , for all d € Dy. Recall that we have the identification of
equivariant Hilbert D,- B-bimodules (€ x§) x §®”Dd &p,r = &¢ g (cf. Corollary 2.4.24)
and the operator 77 (7 (F)) is identified to g (F) ¢, .. Hence,

J5(Jg(x)) ®p, bp = [(¢,r. 7r(F))].

Let us compute the Kasparov product by ®4 x. We have an identification of Hilbert
D,-B-bimodules E4 g ®, € = E¢ g (cf. Lemma 3.4.1 (1)). It is easily seen that this iden-
tification is §-equivariant. By Lemma 3.4.1, the operator 7g(F) g, € L£(E4,R ®y &) is
an F-connection. Since the positivity condition is trivial, we have proved that by ®4 x =
[(Ee,r. TR(F))]. u

Corollary 3.4.10. The homomorphisms Jg and Jz are isomorphisms of abelian groups.
Proof. This follows from Lemma 3.4.8 and Theorem 3.4.9. ]

Corollary 3.4.11. If A is a separable § (resp. ?)-C*-algebra, then the descent morphism
Jg 1 KKg(A, A) - KKg(A x G, AxG) (resp. Jg: KKg(A, A) - KKg(A x G, AxG))is
an isomorphism of rings.

Proof. This is a straightforward consequence of Theorem 3.4.9 and Corollary 3.4.10. m
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4. Monoidal equivalence and equivariant KK-theory

In this chapter, we fix a colinking measured quantum groupoid § := g, G, between two
monoidally equivalent regular locally compact quantum groups G; and Go.

4.1. Description of the §g, G,-equivariant Kasparov bimodules

In this paragraph, we fix two §-C*-algebras A and B. We also fix a §-equivariant Hilbert
A-B-bimodule (€, y). We use all the notations and results of [9, §5.2] and Section 2.5.1
concerning these objects. We assume the C*-algebra A to be separable. In particular, for
J = 1,2 the C*-algebra A; is separable.

Lemma 4.1.1. Let F € £(€). There exist unique operators F1 € £(E1) and F, € £(E3)
such that F = F1 @& F>. We have the following statements:
(1) the pair (€,y, F) is a Kasparov A-B-bimodule if and only if for j = 1,2 the pair
(&;.v), Fj) is a Kasparov A;-Bj-bimodule,
(2) the conditions below are equivalent:
i) (y®ids)(x)Bxe)(F) —qpea(F ®1s)) € K(EQ S) forallx € A® S,
i) (n® idSkj)(x)(Sgc(gj)(Fj) - F® lskj) € K(8k®skj)f0r all x € A ® Sk
and j, k = 1,2,
(3) ifthe triple (€, vy, F) is a §-equivariant Kasparov A-B-bimodule, then the triple
(&;,v), Fj) is a Gj-equivariant Kasparov Aj-Bj-bimodule for j = 1,2.

Proof. We recall that B¢(C?) C Z(£(€)) (cf. [2, Equation (3.11)]). Hence, we have
[F,qe,j]=0forj =1,2. Let F; := Fl¢;€ £(&;) for j =1,2. We have F = F; & F>.
The equivalence of the first statement follows from the relation K (£) = K (E1) & K (E2)
and the definitions; for instance we have [y(a), F]& = Zj:m[yj (qa,ja). F;lqe, ;& forall
¢ € E. Condition (ii) is just a straightforward restatement of condition (i). Statement (3)
follows by taking k = j in (ii) and by using statement (1). ]

Proposition-Definition 4.1.2. With the notations and hypotheses of Lemma 4.1.1, for j =
1,2 the map

Jg;.8 : KKg(A, B) — KKg, (4. B)); [(&.v. F)]+ [(&;.yj. F))]
is a homomorphism of abelian groups.

Proof. We first prove that J(Gj ¢ is well defined. By Lemmas 2.5.6 (1) and 2.5.8 (1), we
have well-defined maps:

JG;¢ 1 Eg(A, B) — Eg, (Aj, Bj); (&, F) — (&,y, F;) forj =1,2.

The fact that the map Jg, ¢ factorizes over the quotient map Eg (4, B) — KKg (4, B) will
follow from the following result.
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Lemma 4.1.3. Let C be a third §-C*-algebra. Let g : B — C be a §-equivariant *-
homomorphism. We recall that g induces a G -equivariant *-homomorphism g; : B; —
C; for j = 1,2 (cf. [9, Proposition 5.2.3 (1)]). Then, the diagram

Eg(A, B) —¥— Eg(A,C)

JGj,gl lJGj,g

(g')*
Eg,; (4;. Bj) — Eg,(4;.C))

commutes forall j = 1,2.

The proof of the above lemma is effortless and the details are left to the reader. We
recall that B[0, 1] is a §-C*-algebra (cf. Definition 3.1.4 (4)). Then, we apply the notations
of [9, §5.2] as follows:

e B[0,1]; := Bpo,11(g;)B[0, 1] = B;[0, 1] for j = 1,2;
© %0t Bil0. 1] = M(Be[0. 1] ® Sj) = M(B ® Si;)[0. 1] for j.k = 1.2, the
*-homomorphism defined by Sﬁ‘;]_ [0,1](f)(t) = 81’§j (f(@)) forall f € B;[0,1]and ¢ €
[0, 1].
We recall that for ¢ € [0, 1] the evaluation map e; : B[0, 1] — B is §-equivariant. Moreover,
for j =1,2, itis clear that the *-homomorphism (e;); : B;[0, 1] — B; is the evaluation at ¢.
It then follows from the above lemma that the image of a homotopy of E¢ (A, B0, 1]) by
Eg(4, B[0,1]) >Eg,(4;, B;[0,1]) is a homotopy, which finally proves that the map Jg, ¢
is well defined on KKg (A4, B). The compatibility with the direct sum is straightforward. m

Proposition 4.1.4. Let C be a third §-C*-algebra. For j = 1,2, we have
1) Jg,;,8(14) = lg;,
(2) forall x € KKkg(A,C) and y € KKg(C, B),
JG; 8(x ®c y) = Jg,,5(x) ®c; Jg,,8(y) in KKg, (4j, Bj).

Proof. The first statement is straightforward. Let us write x := [(&, F)] € KKg(4, C)
and y :=[(&', F")] € KKg(C, B). Let y : C — £(E&') be the left action of C on &’. Let
F=EQ, & Wehavex Qc y = [(F,T)] forsome T € F#g F' C £(F). Inthe following,
we use the notations of Section 2.5.1 and Lemma 4.1.1 for the Kasparov bimodules (&, F),
(&', F'),and (F,T). We have a well-defined Bj-linear isometric map ®: €; ®,; £ — F;
EQy, n>§®yn.Leté € Eandn e & Letus write § = {c with{ € Eandc € C. We
have

q7,j (§ ®y 1) = qe,;§ ®y 1 = (qe,;§)c ®y 0= (qe,j§)qc,jc @y n
=qe,j¢ ®y v(qc.jo)n = qe,j§ ®y y(c)qer,jn = qe,j§ ®y g j.
Therefore, the range of ® contains the total subset {g5 ; (§ ®, n); § € &, n € &'} of F;.

Hence, @€ £(&; ®y, 8} ,F;) and @ is unitary. We have ®*(§ ®, 1) =qe,;E ®y, qer, ;1 for
all £ ®, n € J;. Itis clear that ® is G;-equivariant and intertwines the left actions of A;.
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Therefore, (€; ®y, 8; ®*T; ®) is a G;-equivariant Kasparov A;-B;-bimodule uni-
tarily equivalent to (3}, 7j). Hence, [(§; ®,, &, ®*T; )] = [(F;, T))] in KKg, (4. B;)).

Since T is an F’-connection for &, the operator ®*7;® is an F j’ -connection for &;.
Indeed, for all £ € € and n € &', we have

q7,; Te(n) = ®(qe, ;€ ®y,; qer,jn) = PTy, ;eqer,;(0)-
Hence, g5, T F' = ®Ty, ¢ F/qer,;. We also have g5, T Tg = Tj®Ty, ,¢qer,j. Hence,
TSF]{ — CIJ*T]'q)TS = qD*qg,j(TsF/ — TT{.-) [‘E;G J{((Q,/-, 3‘}‘) forall £ € 8]'.

Letp: A — L) and 7w : A - L£(F); a — ¢(a) ®, 1 be the left actions of A. For
J =12 wehave ¢ : A; — (&) and 7r; : A; — £(F;). We have g5 ; (F ®, 1) =
®(F; ®y; 1)P*q7, ;. Hence, we have

fo,j(F ®y l)T = q)(Fj ®1’j 1)(I)*qu:¥,j;
q7,;T(F ®y 1) = Tjq3,;(F ®y 1) = T; ®(F; ®,, )®"q5,;.

Hence,

475, [F ®y LLT] = (®(F; ®y, NO*T; — T; O(F; @y, )P”)qs,;
= q)[Fj ®)’j 1, CD*’I}(I)]@*C]?,]'.

Therefore, for all @ € A; we have

n(@)[F ®, 1,Tlx(a)le;, = 7j(a)P[F; ®,, 1, d*T; ®|®*1;(a)
= (¢ (a) ®, DIF; 8y, 1, 0T, )¢ (@) @, D",

Hence, the image of (¢; (@) ®y, D[Fj ®,,; 1, @*T;d|(¢;(a) ®,; 1) in L£(E;)/K(E)) is
positive. Hence, ®*7; ® € Fj#g; Fj’ and

[(&; ®y, ;. @*T;®)] = [(&;. F))] ®c; [(€). F))] = Jg,.5(x) ®c; Jg;.6(y). m

4.2. Induction of equivariant Kasparov bimodules

We begin this paragraph with two technical lemmas that will be used in the proof of
Proposition 4.2.11.

Lemma 4.2.1. Let G be a locally compact quantum group. Let A, A’, B, and B’ be
G-C*-algebras. Let (€, ¢) (resp. (&', ¢")) be a G-equivariant Hilbert A-B (resp. A’-B’)-
bimodule. Denote by Ag (resp. By) the G-C*-algebras A & A’ (resp. B ® B’). Denote by
&o the Hilbert By-module & & &'. Denote by ¢q the *-representation of Ay on &g defined
by pola ®a’) ;= ¢(a) ® ¢'(a’) foralla e Aanda’ € A'. FixT € £(&) and T' € £(&')
anddenote Ty :=T @ T’ € £(&p).

(1) The triple (€9, ¢o, To) is a G-equivariant Kasparov Ag- Bo-bimodule if and only
if the triples (€, ¢, T) and (€', ¢, T') are G-equivariant Kasparov bimodules.
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(2) Denote by pg : Ao — A, py: Ao — A’, pa: Bo — B, and p;: By — B’ the
canonical surjections. Denote also by iy : A — Ao, ié A" — Ao, ig: B = By,
and ij : B — By the canonical injections. Assume the C*-algebras A and A’ to
be separable and B and B’ to be o -unital. If the conditions above hold true, then

we have
lie] ®4, [(E0. Fo)] ®B, [pa] = [(&. F)];
[ig] ®4, [(€0, Fo)] ®B, [Py = [(E, F)];

[Pe] ®4 [(€, F)] ®5 [ia] = [(€0, Fo)] = [P ®ar [(€', F))] @5 [if]
in KKg (A, B), KKg (A’, B’), and KKg (Ao, By), respectively.

Proof. (1), (3) The result is a straightforward consequence of the canonical identifica-
tions of C*-algebras K (&) & K (&) = K (Ep), (K (E) ® Co(G)) & (K (&) R Co(G)) =
K (Eo) ® Co(G).

(2) By definition of the structures of G-C*-algebra on Ay and By, the maps defined
above are G-equivariant *-homomorphisms. We have

lie] ®4, [(Eo. 0. Fo)] ®B, [Pa]l = [(E0 ®py B. (a = ¢o(ig(a)) ®p, 1), Fo ®p, 1)].

However, the triples (Eo ®p, B, (a = ¢o(ig(a)) ®p, 1), Fo ®p, 1) and (€, ¢, F) are uni-
tarily equivalent via the map ¢ ®p, B — &; (§ ® £') ®,, b — &b. Therefore, we obtain
the relation [i,] ®4, [(€0, ¢o, Fo)] ®B, [pa] = [(E, ¢, F)]. With a similar argument, we
also prove that [ig] ®4, [(€0, Po, Fo)] ®B, [pg] = [(E'. ¢', F')]. The last formula follows
from the first two ones since we have p, o i, = idy, pé o ié = idys, pgoiq = idp, and
py o iy =idp: (cf. Proposition 3.3.9 (2)). L]

Before stating the second technical lemma, we need to fix the notion of operators
acting by factorization.

Proposition-Definition 4.2.2. Let B be a C*-algebra. Let H and K be two Hilbert spaces.
Let € be a Hilbert B-module. We consider the Hilbert B® K (K)-module £Q K (K) and
the Hilbert B ® K (H)-module E® KX (H,K). If F € £(E ® K(K)), then there exists a
unique operator Fe £(E ® K(H, K)) such that

FERKT)= FERK (15 ®T) forallt &, k e X(K), and T € X(H, K).

The operator F will be referred to as the operator F acting on € ® K (H, K) by factoriza-
tion and will sometimes be simply denoted by F. Furthermore, forall F € K (€ ® K (K))
we have F € KX (€ ® K(H, K)).

Proof. Wehave K (H,K)=K(K)KX(H, K).Indeed, KX (H, K) is Hilbert X (K )-module
under the natural left action of K (K) by composition and the K (K)-valued inner product
defined by (T, S) :=T o S* for T, S € K (H, K). Let (u;) be an approximate unit of
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the C*-algebra K (K). Let us fix £ € € and write § = nb with € € and b € B. For all
ke K(K)and T € KX (H, K), we have

FERK)(1p@T)=1lim; FbQujk)(1p ®T) =1lim; F(n @ u;)(b @ kT).

Hence, FE k) (1 @ T) = F(( @ k')(1p  T') for all k, k' € KX(K) and T, T’ €
K (H, K) such that kT = k’T”’. Thus, the map F is well defined. Moreover, it is easily
seen that F € £(& ® K (H, K)) with F* = F*. Note also that the map F +> F is a *-
homomorphism. If the Hilbert space H is nonzero, we have K (K)=[K(H, K)KX(K, H)].
However, for all £, n € € and Ty, T, € K(H, K) the image of 9§®k,n®T1T2* by the *-
homomorphism F > F is the operator fger T, yoT; - ]

Lemma 4.2.3. Let A and B be two C*-algebras. Let H and K be two Hilbert spaces.
Let € be a Hilbert A-B-bimodule. We consider the Hilbert A @ K(K)-B ® K(K)-
bimodule £ @ K (K) and the Hilbert A @ K (K)-B ® K (H)-bimodule £ ® K (H, K).
Let F € £(€ ® K (K)) such that the pair (€ @ K (K), F) is a Kasparov bimodule. Ifﬁ €
£(E ® K(H, K)) denotes the operator F acting on € ® K (H, K) by factorization, then
the pair (€ ® KX (H, K), F) is a Kasparov bimodule.

Proof. Lety : A — L(E) be the left action of A on &. The left action of A ® K (K) on
the Hilbert B ® K (K)-module &€ ® K (K) is

¢ =y ®idxk): A® K(K)— £(€® K(K)).

It is clear that the left action of A ® K (K) on the Hilbert B® K (H )-module £ R K(H, K)
is the *-representation 5 tAQ K(K)—> £(EQ® K(H, K)), where for x € A ® K (K)
the operator $(x) is the operator ¢(x) acting on € ® J (H, K) by factorization. The
proof follows from the last statement of Proposition-Definition 4.2.2 and the fact that the
factorization map F — F is a *-homomorphism. (]

In the following, we fix two G;-C*-algebras A; and Bj. Let us denote by A, :=
Indgf (A7) and B, :=Indgf (B)) the induced G,-C*-algebras. We also fix a G;-equivariant
Hilbert A;-B;-bimodule (€1, y1) (with a non-degenerate left action) and denote by

(€2,72) := (Indg2(€1), Ind? 1)

the induced G;-equivariant Hilbert A,-B,-bimodule. Let us consider the §-C*-algebras
A:= A, & Ay and B := By & B,. We also equip the Hilbert C*-module € := &, & &,
with the structure of §-equivariant Hilbert A-B-bimodule defined by the action (B¢, §¢)
of § (cf. Proposition 2.5.22) and the equivariant *-representation y : A — £(€) (cf. Propo-
sition 2.5.25). In what follows, we will make some obvious identifications without always
mentioning them explicitly; e.g., A; = A; & {0}. We will also use the notations and results
of Section 2.5.3 concerning the objects associated with A, B, and £.
Before recalling the definition of the homomorphisms

JGk,Gj : KKG] (Aja Bj) - KKGk(A/O Bk)

for j,k = 1,2 with j # k (cf. [2, §4.5]) we first have to fix some notations.
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Notations 4.2.4. Let G be a regular locally compact quantum group. Let 4 be a G-C*-
algebra. By the Baaj—Skandalis duality theorem (cf. [4]), we identify the G-C*-algebras
(AXG)xG and A® K(LAG)). Let by := [(ARL?(G),0)] €KKG (AR K (L2(G)), A)
and a4 = [(A ® L2(G)*,0)] € KKg (s, A @ K (L2(G))) (cf. [3]).

Notations 4.2.5 (cf. [2, Corollaire 3.50 (c) and Notations 3.51]). Forall j,/,!’ = 1,2, the
Hilbert C*-module B;;/ ;. (resp. By, j,q) is a G;-equivariant imprimitivity B;,j ,-By j o~
bimodule (resp. G;-equivariant imprimitivity 8, ;-8B j 4-bimodule) and we denote by
cir,jg (resp. ¢y jq) the class of (Byy jg,0) (resp. (Biyr, j,4,0)) in KKg, (Br,j.g, Bir,j0)
(resp. KKg,; (B, j,a, B, j.a))-

Fori, j = 1,2, we have the faithful non-degenerate *-representations of the C*-algebra
S,’j, L,’j . S,'j — D(B(j‘f,'j), X = L(x) [‘g-(ij and R,’j : S,'j —> fB(fHﬁ), X = U,'jL,'j(x)Uj,',
where Uy = pixUpki € B(Hpr, Hik)-

Proposition 4.2.6 (cf. [2, Proposition 4.30 and Corollaire 4.33]). Let F; € £(&1) such
that the pair (€1, Fy) is Gy-equivariant Kasparov A:-B1-bimodule. We have that

(1) the pair (81,2, (dx e,) ®R21)8§C(81)(F1)) is a G -equivariant
B1,2,6-B1,2,9-bimodule,

(2) there exists an operator F, € £(E3) such that
(a) (&2, F2) is a Gy-equivariant Kasparov A,-B,-bimodule,
(b) in KKg, (A2, B2), we have

bAz ®A2 [(825 FZ)] ®Bz aBz
= 212, ®8,,, [(€1.2. (e, ®R21)5§<(51)(F1))] ® B4 C12,2,d5
(3) if F», F, € £(&>) satisfy conditions (a) and (b) above, then [(€2, F>)] = [(€2, F3)]
in KKG2 (Az, Bz)
If x :=[(&1, F1)] € KKg, (A1, B1), let us denote by Jg, G, (x) the unique element y €
KKg, (A2, B») satisfying the relation

b4, ®4, ¥y ®B, AB, =212,6 OBy, [ (61.2: (Idx(e,) ®R21)8%(,)(F1))] @8y, €12.2.0-

Then, the map Jg,.G, : KKg, (A1, B1) = KKg, (A2, B2) is a homomorphism of abelian
groups.

In order to define the homomorphism Jg, G, : KKg, (42, B2) — KKg, (41, B1), we
first need to fix further objects.
We consider the induced G-C*-algebras

A} :=1Ind§!(42) and B :=Indg!(By).

We denote by &) := Indg; (€2) the induced Gq-equivariant Hilbert A’-B{-bimodule.
Let us consider the §-C*-algebras A’ := A} ® A, and B’ := B| & B,. We also equip
the Hilbert C*-module &’ := £/ @ &, with the structure of §-equivariant Hilbert A’-B’'-
bimodule defined by the action (B¢, §¢/) of § (cf. Proposition 2.5.22) and the left action
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y' 1 A" — £(&) (cf. Proposition 2.5.25). We will use the notations of Section 2.5.3 deco-
rated with a prime concerning the objects associated with A’, B’, and &’.

Notations 4.2.7. Let w1, : A1 — A} and w4 : By — Bj be the G;-equivariant
*-isomorphisms defined in [9, Proposition 5.2.6]. We recall that we have §-equivariant *-
isomorphisms A — A’, (a1,a2) = (mw1,4(a1),a2) and B — B’, (b1, by) — (1,4(b1). b2)
(cf. [2, §4.1]), which then induce a §-equivariant *-isomorphism between the bidual
§-C*-algebras associated with A and A’ (resp. B and B’) by applying the functoriality of
the crossed product and the biduality theorem (cf. Propositions 2.4.12 and 2.3.5 and Theo-
rem 2.3.7). By restriction, for all j,/ = 1,2 we have two G;-equivariant *-isomorphisms

. I . !
Jijg Brje = By g and fia: Brja— By,

Proposition-Definition 4.2.8. Let F, € £(&5) such that the pair (€;, F») is a Gy-equi-
variant Kasparov As-Ba-bimodule. Let y := [(E2, F2)] € KKg, (A2, B2). Let Jg,,G, (V)
be the unique element x € KKg, (41, B1) satisfying the relation

by, @4, x ®p,ap,
= 12,1 @8, 216l @y, [(E31: (idsecer) ®R12)S (e, (F2)) | ®gy [fa1.al.

Then, the map Jg, G, : KKg, (A2, B2) — KKg, (41, B1) is a homomorphism of abelian
groups.

Lemmad4.2.9. For j =1,2,let Fj € £(Ej). Let F := F, @ F, € £(E). The pair (E,y) is
a Kasparov A-B-bimodule if and only if the pair (€;, F;) is a Kasparov A;-B;-bimodule
forj =1,2.

Proof. For all a = (a1, a») € A, we have the relations [y(a), F] = ®j=1,2[yj(a;), F;],
Y@ (F? = 1) = ®j=1,27;(@;)(F} = 1), and y (@) (F — F*) = ®;=1,2¥;(a;)(Fj — F}").
Therefore, the equivalence follows directly from K (€) = K (E1) & K (E2). |

Lemma 4.2.10. For all j,1,1' = 1,2, the pair (€115, (idx(e;) ®Rj1)8% e, (F1)) is a

Kasparov By ; o-Br, j,a-bimodule.
Proof. If I’ = 1, we refer the reader to [3] for / = j and [2, Propositions 4.30 and 4.34] for
[ # j.By applying Lemma 4.2.3, the general case follows from the case where I’ =1. m

Actually, we can prove that the pair (&7 7, (idx(e;) ®Ril)5§6(el)(Fl)) is a G;-equi-
variant Kasparov 8 ; .- B/, j ¢-bimodule. Indeed, as above the case where [ =/ is already
known (cf. [2,3]). Moreover, the operator (id (e ) ®R_,-1)8§<(81) (F1)e£(&;,;) is invariant
(cf. [2, 4.29]). By a direct computation, we show that the operator

(idxcce;) @RS ey (F1) € L(Eirr ;)

is invariant (cf. Section 2.5.3 for the definitions).
In the following, we assume the C*-algebra A4, to be separable. Hence, the C*-algebras
A, and A are separable (cf. Lemma 2.5.16).
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Proposition 4.2.11. For j = 1,2, let F; € £(&;) such that (E;, F) is a G;-equivariant
Kasparov A;-Bj-bimodule. Let F := F1 @ F, € £(€). We have that
(1) the pair (D, wr(F)) is a §-equivariant Kasparov D4-Dg-bimodule,
(2) there exists T € L(E) such that
(a) the pair (€, T) is a §-equivariant Kasparov A-B-bimodule,
(®) ba®4[(E,T)]®p ap = [(D, 7r(F))].
Moreover, we have that
(3) if T, T' € £(&) satisfy conditions (a) and (b), then [(E,T)]|=[(€,T")] in KKg (A, B),
@) if T € £(E) satisfies conditions (a) and (b), then the class of (€, T) in KKg(A, B)
only depends on those of (€1, F1) and (€2, F») in KKg, (41, B1) and KKg, (42, B»),
respectively,
(5) for j =1,2and T € £(&) satisfying conditions (a) and (b), let T; € £(&;) such
that T =Ty ® T (¢f. Lemma 4.1.1), then the pair (€;, T;) is a Gj-equivariant
Kasparov A;-Bj-bimodule and we have [(€;, T;)] = [(€;, F})] in KKg, (4;, B)).

Proof. (1) Let X € £(D) be the operator defined by X(¢) := nr(F) o forall { € D.
It suffices to prove that (D, X) is a Kasparov Dg-Dgy-bimodule (cf. Lemma 2.4.25 and
Remark 3.1.3 (3)). This amounts again to proving that (D;, X;) is a Kasparov D; ,-D; 4-
bimodule for j = 1,2 (cf. Lemma 4.2.9 (1)). However, this follows straightforwardly from
Lemmas 4.2.10 and 4.2.1 (1).

(2), (3) These statements are direct consequences of Lemma 3.4.8.

(4)For j = 1,2,let F;, F] € £(E;) such that (€, F;) and (€;, F) are G;-equivariant
Kasparov A;-B;-bimodules satisfying [(€;, F;)] = [(€;, F})] in KKg; (4;, Bj). Let F :=
FieF,ceX()and F':=F[® F,e £(&).LetT € £(&) (resp. T' € £(€)) be an opera-
tor satisfying conditions (a) and (b) for F (resp. F’). Let us prove that [(§, T)] = [(§, T")]
in KKg (A, B). For j = 1,2, there exists a degenerate G;-equivariant Kasparov A;-B;-
bimodule (J;, X;) such that (£; & J;, F; @ X;) and (&; & TF;, Fj’ @ X;) are operator
homotopic (cf. [3, Remarques 5.11 (2)]). In particular, for j = 1, 2 there exists an oper-
ator homotopy (&;, Fj;)e[0,1] between (&;, F;) and (& , Fj’). For t € [0, 1], let F; :=
Fl:®F,;€£(€).Fort€l0,1],let T, € £(€) be an operator satisfying conditions (a) and
(b) for F;. Then, (D, wr(T}))se0,1] is an operator homotopy between (D, ng(T')) and
(D, mr(T")). Hence, [(D, nr(T))] = [(D, wr(T"))]. It then follows that

by @4 [(E.T)] ®pap =bs®4[(E.T)] ®p ap.

Hence, [(€,T)] = [(€, T")] (cf. Lemma 3.4.8).

(5) For the fact that (€;, T;) is a G, -equivariant Kasparov 4;-B;-bimodule for j =
1,2, we refer to Section 4.1. Let X,Y € £(D) be the operators defined by X(¢) :=
wr(F)o¢and Y(¢) := ng(T) o ¢ for all £ € D. It follows from (b) and Theorem 3.4.9
that [(D, X)] = [(D, Y)] in KKg(Dg, Dg). By composing by Jg; g : KKg(Dy, Dg) —
KKg; (Dj,g: Dj.a), we have [(D;, X;)] = [(D;, ¥;)] forall j = 1,2 (cf. Section 4.1). Hence,
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we have (cf. Lemma 4.2.1 (2))

[(€107.7. dscqe,) R85 e, (F))]
= [(&1,;. (e ®R,-,)5§C(£l)(T,))] forall j,[,I' =1,2.

In particular, we have

[(€7.7+ (idxce;) ®R;;)8)e e,y (F)]
= [(gj’j, (idJ((gj) ®Rjj)8=j7€(8j)(7}))] forj =1,2.

By composing by the isomorphism x > a4; ®p,, X ®p,, bp;, we obtain [(;, Fj)] =
[(&;. T)] (ct. [3D). ]

In virtue of Proposition 4.2.11 (1)—(4), the following definition makes sense.

Definition 4.2.12. Let j, k = 1,2 such that j # k. Let F; € £(&;) such that the pair
(€, Fj) is aGj-equivariant Kasparov A;- Bj-bimodule. Let x:=[(&;, F; )] €KKg, (4, B;)
and Jg, G, (x) = [k, Fr)]. Let F := F1 @ F> € £(E). We denote by Jg g, (x) the unique
element y € KKg(A4, B) suchthatby ®4 y ®p ap = [(D, nr(F))]. For j = 1,2, we have
a well-defined homomorphism of abelian groups Jg G, : KKg; (4;, Bj) — KKg(4, B).

Lemma 4.2.13. With the notations and hypotheses of Definition 4.2.12, if the pair (€, F)
is a -equivariant Kasparov A-B-bimodule, then we have Jg g, (x) = [(€, F)].

Proof. This is a straightforward consequence of Theorem 3.4.9. ]
Proposition 4.2.14. Let j, k = 1,2 with j # k. We have

(D) Jg;.8 0 Jg.6; = idig, (4;.B))

(2) Jgr8 ° 9.6, = JG,.G,

(3) JGr.Gj © JG; .8 = JG,.9-

Proof. Formulas (1) and (2) are immediate consequences of Proposition 4.2.11 (5). The
last statement follows by plugging the second formula in the left-hand side and by simpli-
fying with the first one. ]

We can state the main results of this paragraph.
Theorem 4.2.15. Let j = 1,2. The maps

JG; ¢ : KKg(A, B) > KKg, (Aj, Bj) and Jgg, : KKg, (A, Bj) = KKg(4, B)
are isomorphisms of abelian groups inverse of each other.

Proof. Let j,k = 1,2 with j # k. It remains to prove that Jg G; © JG;,¢ = idkkg(4,B)
(cf. Proposition 4.2.14 (1)). Let F € £(&) such that the pair (€, F) is a §-equivariant Kas-
parov A-B-bimodule. Let x := [(€, F)] € KKg(A, B). We have F = F; & F, with F; €
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L(&1) and F, € £(&2). It follows from Proposition 4.2.14 (3) that Jg, G, ([(€;, F})]) =
[(Ek, Fr)]. By applying Lemma 4.2.13, we then obtain

J5.6,(J6,8(0) = T 6, (€. F)]) = [€. F)] = x. .
We then obtain another proof of Théoréme 4.36 [2].

Corollary 4.2.16. The map Jg,,G, : KK, (41, B1) = KKg, (42, By) is an isomorphism
of abelian groups and (Jg, G,) "' = JG,.G,-

Proof. This is an immediate consequence of Proposition 4.2.14 (2) and Theorem 4.2.15.
L]

Let us fix a third G;-C*-algebra C;. Consider the induced G,-C*-algebra C, :=
Indgf (Cy) and the §-C*-algebra C := C; & C».
Proposition 4.2.17. For j = 1,2, we have

) Jgg;(14;) = 14,

(2) forall x € KKg, (A4j,Cj) and y € KKg; (Cj, B)),

Jg.6;(x ®c; y) = Jg,6,(x) ®c Jg,G;(¥) inKKg(4, B).
Proof. This follows from Theorem 4.2.15 and Proposition 4.1.4. ]

Proposition 4.2.18. For j, k = 1,2 with j # k, we have
(1) JGk,Gj(lAj) = 1Aky
(2) forall x € KKg, (Aj,Cj) and y € KKg; (Cj, B)),

JGk,Gj (x Tl y) = JGk,Gj (x) ¢y JGk,Gj (y) in KKG, (A, Br)-
Proof. This is a direct consequence of Propositions 4.2.14 (2), 4.1.4, and 4.2.17. [

Notations 4.2.19. We denote by KKg (resp. KKg; for j = 1,2) the category of separable
9 (resp. G;)-C*-algebras whose set of arrows between two § (resp. G;)-C*-algebras A4
and B is the equivariant Kasparov group KKg (A, B) (resp. KKg, (4, B)).

Theorem 4.2.20. We have that
(1) for j = 1,2, the correspondences Jg, g : Kkg — KKg, and Jg G, : KKg, — KKg
are equivalences of categories inverse of each other,
(2) the correspondences Jg, G, : KKg, = KKg, and Jg,,G, : KK, — KKg, are equiv-
alences of categories inverse of each other.

Proof. The first (resp. second) statement is just a restatement of Theorem 2.5.24, Propo-
sition 4.2.17, and Theorem 4.2.15 (resp. Theorem 2.5.19, Proposition 4.2.18, and Corol-
lary 4.2.16). ]
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