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Geometric K-homology and
the Freed–Hopkins–Teleman theorem

Yiannis Loizides

Abstract. We construct a map at the level of cycles from the equivariant twisted K-homology of
a compact, connected, simply connected Lie group G to the Verlinde ring, which is inverse to the
Freed–Hopkins–Teleman isomorphism. As an application, we prove that two of the proposed defi-
nitions of the quantization of a Hamiltonian loop group space—one via twisted K-homology of G
and the other via index theory on non-compact manifolds—agree with each other.

1. Introduction

A remarkable theorem due to Freed, Hopkins, and Teleman [20–22] relates the represen-
tation theory of the loop group LG of a compact Lie group G to the equivariant twisted
K-theory ofG. In the special case of a connected, simply connected, and simple Lie group,
the theorem states that there is an isomorphism of rings Rk.G/ ' KG0 .G;A

.kCh_//. Here
Rk.G/ is the Verlinde ring of level k > 0 positive energy representations of the basic
central extension LGbas of the loop group, while KG0 .G;A

.kCh_// is the equivariant K-
homology of G with twisting (Dixmier–Douady class) k C h_ 2 Z ' H 3

G.G;Z/. The
shift h_ is a Lie theoretic constant associated toG called the dual Coxeter number. Freed–
Hopkins–Teleman work with twisted K-theory, which is related by a Poincaré duality
isomorphism [54].

In the proof, Freed, Hopkins, and Teleman construct a map at the level of cycles 
level k positive energy

representations of LGbas

!
Ü

 
.k C h_/-twisted

K-theory of G

!
:

The construction involves an interesting family of algebraic Dirac operators parametrized
by the space of connections on a G-bundle over S1. Computing the equivariant twisted
K-theory of G using techniques from algebraic topology, they are able to show that their
map is an isomorphism.

It is less clear how to construct a map in the opposite direction (from twisted K-
homology to Rk.G/) at the level of cycles. One goal of this article is to describe such
a map for analytic cycles or Fredholm modules, which are the cycles for the analytic
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description of twisted K-homology (cf. [4, 25, 28]). A special class of analytic cycles are
those which come from Baum–Douglas-type geometric cycles (cf. [6, 8]), and we also
study the specialization of our map to such cycles and obtain a correspondingly more
explicit description.

We should remark at the outset that we do not directly build a positive energy repre-
sentation from a cycle, which would be interesting and perhaps preferable. The output
will instead be a formal character. Let us give an overview of the construction. The
data used to describe a twist in the analytic picture is a G-equivariant Dixmier–Douady
bundle A over G; this is a locally trivial bundle of elementary C �-algebras over G,
equipped with a G-action covering the conjugation action on the base. Such a bundle
has an invariant, the Dixmier–Douady class DD.A/ 2 H 3

G.G;Z/ ' Z, and we assume
that DD.A/ D ` > 0. Consider an analytic cycle representing a class x in the twisted K-
homology group KG0 .G;A/. Restrict x fromG to a tubular neighborhood U of a maximal
torus T insideG. Over U we show that there is a Morita equivalent Dixmier–Douady bun-
dle AU which has an especially simple structure: its algebra of continuous sections can
be presented as a twisted crossed product algebra … Ë� C0.U/, where � is the twist, …
is the integer lattice, and U is a …-covering space of U . Applying tools from KK-theory
(a Green–Julg-type isomorphism and the analytic assembly map), we obtain an element
in the K-theory of the group C �-algebra for T Ë…� . There is a map from the latter K-
group into the space of formal characters R�1.T / for T . The image of KG0 .G;A/ under
this composition is R�1.T /Waff-anti;`, the subspace of formal characters that are alternat-
ing under the action of the affine Weyl group at level `. For ` > h_, the space of such
characters is canonically isomorphic to Rk.G/, k D ` � h_ via the Weyl–Kac character
formula.

Our construction provides an elaboration of a remark made by Freed, Hopkins, and
Teleman in [21, Remark 3.5]. They comment that there ought to be an inverse map from
the twisted K-theory of T to a suitable “representation ring” for T Ë…� perhaps defined
using C �-algebras, involving an analogue of “integration over t.” Our “integration over t”
map is the analytic assembly map.

We study the specialization of our map to “D-cycles” in the sense of Baum–Carey–
Wang [6], which are an analogue of Baum–Douglas cycles in geometric K-homology [8].
A D-cycle for K0.X;A/ is a 4-tuple .M; E; ˆ; �/ consisting of a compact Riemannian
manifold M , a Hermitian vector bundle E over M , a continuous map ˆWM ! X , and a
Morita morphism � WCliff.TM/Ü ˆ�A. If A D C is trivial, � is equivalent to a spin-c
structure on M , and we recover an ordinary Baum–Douglas cycle.

In the case of a D-cycle .M; E; ˆ; �/ representing a class x 2 KG0 .G;A/, we prove
that its image under our map is the T -equivariantL2-index of a first-order elliptic operator
on a…-covering space ofˆ�1.U /, where U � T is a tubular neighborhood of the chosen
maximal torus T in G. Let us give a summary of the proof. Using .M; E; ˆ; �/, we
construct an analytic cycle .H; �; D/ representing x: the Hilbert space H is the space
of L2 sections of a smooth Hilbert bundle over M and D is a Dirac operator acting on
smooth sections. Because the bundle has infinite-dimensional fibers, D is not necessarily
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Fredholm, but the action of the C �-algebra C.A/ (continuous sections of A) along the
fibers provides the needed analytic control to make this a cycle. After passing to the Morita
equivalent Dixmier–Douady bundle over U � T , the fibers are replaced with copies of
L2.…/ (tensored with a finite-dimensional bundle); using a correspondence that is well
known (for example, in the context of Atiyah’sL2-index theorem), the operator D then has
an alternate interpretation as a Dirac-type operator on a …-covering space Y of ˆ�1.U /.
Applying the analytic assembly map gives the T -equivariant L2-index of this operator.

The initial motivation for this work was to understand the relationship between two
approaches—one via D-cycles for twisted K-homology of G [40] and the other via index
theory on non-compact manifolds [34,35]—for defining a representation-theoretic “quan-
tization” of a Hamiltonian LG-space. The construction of a suitable quantization has
interesting applications, for example, to the Verlinde formula for moduli spaces of flat
connections on Riemann surfaces; cf. [39] for an overview. A corollary of our results is
that the two approaches agree with each other. Indeed for x represented by a D-cycle,
the first-order elliptic operator on Y mentioned above coincides with the operator studied
in [35]. Our construction thus connects the index of this operator with the image of x in
Rk.G/ under the Freed–Hopkins–Teleman isomorphism.

Throughout the paper, we have restricted ourselves to the special case that G is con-
nected, simply connected, and simple, but the methods likely generalize. We will fairly
easily be able to check that the map I WKG0 .G;A/! R�1.T /Waff-anti;` that we construct
is surjective. With some additional effort and a little topology, together with a known
(and relatively easy) case of the Baum–Connes conjecture, we could use the construction
described here to prove a weak form of the Freed–Hopkins–Teleman theorem (that I is
also injective modulo torsion at primes dividing the order of the Weyl group). We hope to
return to these questions in the future.

There is an overlap of some of our methods with interesting work of Doman Takata
on Hamiltonian LT -spaces [51, 52]. In particular, Takata also studies an assembly map
into the K-theory of a twisted group C �-algebra of T � …. Takata has built infinite-
dimensional analogues of several well-known objects from index theory/non-commutative
geometry in the setting of Hamiltonian LT -spaces. It would be interesting to explore fur-
ther connections with his work.

Sections 2 and 3 briefly introduce twisted K-homology, loop groups, and the Freed–
Hopkins–Teleman theorem. Section 4 contains some results on twisted convolution alge-
bras and generalized fixed-point algebras. In Section 5, we prove some basic facts about
the C �-algebra of the semi-direct product T Ë…� that plays a key role. In Section 6, we
construct the map, denoted by I , from KG0 .G;A/ to R�1.T /Waff-anti;`, and prove that it
is inverse to the Freed–Hopkins–Teleman map. Section 7 studies the specialization of I

to geometric cycles (D-cycles in the sense of Baum–Carey–Wang) and briefly describes
the application to Hamiltonian loop group spaces. For the reader’s convenience, we have
included an appendix with proofs of a couple of standard (but not so easy to find) results
used in Section 7.
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Notation

The C �-algebras of bounded (resp. compact) operators on a Hilbert space H will be
denoted by B.H/ (resp. K.H/).

If .V;g/ is a finite-dimensional real Euclidean vector space, Cliff.V / denotes the com-
plex Clifford algebra of V , the Z2-graded complex algebra generated in degree 1 by the
elements v 2 V subject to the relation v2 D kvk2. For V , a real Euclidean vector bun-
dle over M , Cliff.V / denotes the bundle of algebras with fibers Cliff.V /m D Cliff.Vm/.
On a Riemannian manifold M , we write Cl.M/ for the algebra of continuous sections of
Cliff.TM/ vanishing at infinity.

If K is a compact Lie group, Irr.K/ denotes the set of isomorphism classes of irre-
ducible representations of K and R.K/ is the representation ring. The formal completion
R�1.K/ D ZIrr.K/ consists of formal infinite linear combinations of irreducibles � 2
Irr.K/ with coefficients in Z. When discussing a U.1/ central extension �� of a group � ,
we use the notation y to denote some lift to �� of an element  2 � .

Throughout G denotes a compact, connected, simply connected, simple Lie group
with Lie algebra g. Let T � G be a maximal torus with Lie algebra t. We fix a positive
Weyl chamber tC, and let RC (resp. R�) denote the positive (resp. negative) roots. The
half sum of the positive roots is denoted by �, and h_ is the dual Coxeter number of G.
Since G is simply connected, the integer lattice … D ker.expW t! T / coincides with the
coroot lattice. The dual …� D Hom.…;Z/ is the (real) weight lattice. There is a unique
invariant inner product B on g, the basic inner product, with the property that the squared
length of the short co-roots is 2. We often use the basic inner product to identify g ' g�,
and we sometimes writeB[,B] for the musical isomorphisms when we want to emphasize
this. The basic inner product has the property that B.…;…/ � Z, and thus B[.…/ � …�.

2. Twisted K-homology

Here we give a brief introduction to the analytic description of twisted K-homology. Our
discussion is similar to [38,40] where one can find further details. For further background
on analytic K-homology and KK-theory, see, for example, [23, 25, 28]. We also recall
the definition of “D-cycles” due to Baum, Carey, and Wang [6], which are a version of
Baum–Douglas-type geometric cycles [8] for twisted K-homology.

Let X be a locally compact space. A Dixmier–Douady bundle over X is a locally triv-
ial bundle of C �-algebras A! X , with typical fiber being isomorphic to the compact
operators K.H/ for a (separable) Hilbert space H , and with structure group being the
projective unitary group PU.H/ with the strong operator topology. Restricting to a suf-
ficiently small open U � X , AjU is isomorphic to K.H / for a bundle of Hilbert spaces
H !U , but this need not be true globally. The notation Aop denotes the Dixmier–Douady
bundle obtained by taking the opposite algebra structure on the fibers. The tensor product
A0 ˝A1 of Dixmier–Douady bundles is again a Dixmier–Douady bundle.
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A Morita morphism � WA0Ü A1 between Dixmier–Douady bundles over X is a
bundle of A1 ˝A

op
0 modules � ! X , locally modeled on the K.H1/�K.H0/ bimodule

K.H0; H1/. In the special case A1 D C, � is called a Morita trivialization of A0. Any
two Morita morphisms A0Ü A1 are related by tensoring with a line bundle; if the line
bundle is trivial, one says that the Morita morphisms are 2-isomorphic.

By a theorem of Dixmier and Douady [15], Morita isomorphism classes of Dixmier–
Douady bundles are classified by a degree 3 integral cohomology class DD.A/2H 3.X;Z/
known as the Dixmier–Douady class. The Dixmier–Douady class satisfies

DD.Aop/ D �DD.A/; DD.A0 ˝A1/ D DD.A0/C DD.A1/:

There are modest generalizations to the case where the fibers of A (resp. �) carry Z2-grad-
ings; in this case, A (resp. �) is locally modeled on K.H/ for a Z2-graded Hilbert space
H (resp. K.H0; H1/ with H0, H1 being Z2-graded Hilbert spaces), and the Dixmier–
Douady class DD.A/ 2 H 3.X;Z/ ˚ H 1.X;Z2/. If X carries an action of a compact
group G, one can define G-equivariant Dixmier–Douady bundles, which are classified up
to G-equivariant Morita morphisms by classes in the analogous equivariant cohomology
groups.

The C �-algebraic definition of twisted K-theory goes back to Donovan–Karoubi [16]
(in the case of a torsion Dixmier–Douady class) and Rosenberg [46] (the general case); see
also [3,27]. Let A be a G-equivariant Z2-graded Dixmier–Douady bundle and C0.A/ the
Z2-gradedG-C�-algebra of continuous sections of A vanishing at infinity. One defines the
G-equivariant A-twisted K-homology of X to be the G-equivariant analytic K-homology
of this C �-algebra:

KGi .X;A/ D KKiG
�
C0.A/;C

�
; i D 0; 1;

where KKiG.A;B/ is Kasparov’s KK-theory (cf. [28]). This definition is well known to be
equivalent to Atiyah–Segal’s [3] description in terms of homotopy classes of continuous
sections of bundles with typical fiber being the Fredholm operators on a Hilbert space.

Remark 2.1. A Morita morphism A0Ü A1 defines an invertible element in the group
KK0G.C0.A1/; C0.A0//, and hence an isomorphism between the corresponding twisted
K-homology groups. Thus the resulting groups depend only on the Dixmier–Douady class
of A. Note, however, that there may be no canonical isomorphism; different Morita mor-
phisms can lead to genuinely different maps. Any two Morita morphisms are related by
tensoring with a Z2-graded line bundle; hence the set of Morita morphisms is a torsor for
H 2
G.X;Z/ �H

0
G.X;Z2/.

Example 2.2. An important example of a Z2-graded Dixmier–Douady bundle is the
Clifford algebra bundle Cliff.TM/ of a Riemannian manifold M . Kasparov’s funda-
mental class ŒD � is the class in the twisted K-homology group K0.M; Cliff.TM// D

KK.Cl.M/; C/ represented by the de Rham–Dirac operator D D d C d� acting on
smooth differential forms over M (cf. [28, Definition 4.2]). A Morita trivialization
� W Cliff.TM/Ü C is the same thing as a spinor module for Cliff.TM/. � defines
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an invertible element Œ� � 2 KK.C0.M/;Cl.M//, and the KK product Œ� �˝Cl.M/ ŒD � 2

KK.C0.M/;C/ is the class represented by a spin-c Dirac operator for � . More generally,
twisting D by a complex vector bundleE, one obtains a class ŒDE � 2KK.Cl.M/;C/, and
the KK product Œ� �˝Cl.M/ ŒD

E � is the class represented by the Dirac operator coupled
to E.

2.1. Geometric twisted K-homology

Baum, Carey, and Wang [6] describe a “geometric” approach to twisted K-homology, in
the spirit of Baum–Douglas geometric K-homology [8] (see also [9]). Actually in [6],
two types of cycles for twisted geometric K-homology are discussed: “K-cycles” versus
“D-cycles.” The geometric K-homology groups defined by both types of cycles admit
natural maps to the analytic K-homology group described above. In this paper, we will
only discuss D-cycles and only use the even case.

Definition 2.3 ([6]). Let A be a G-equivariant Z2-graded Dixmier–Douady bundle over
a locally finiteG-CW complexX . An (even) D-cycle for .X;A/ is a 4-tuple .M;E;ˆ;�/,
where

� M is an even-dimensional smooth closedG-manifold, with aG-invariant Riemannian
metric,

� ˆWM ! X is a G-equivariant continuous map,

� E is a G-equivariant Hermitian vector bundle over M ,

� � WCliff.TM/Ü ˆ�A is a G-equivariant Morita morphism.

Remark 2.4. The terminology “D-cycle” comes from string theory. IfM is orientable, the
Dixmier–Douady class of Cliff.TM/ is the third integral Stiefel–Whitney class W3.M/

(the obstruction to the existence of a spin-c structure on M ). The existence of � implies
that

ˆ� DD.A/ D W3.M/;

which is called the “Freed–Witten anomaly cancelation condition” in string theory.

The geometric twisted K-homology KGgeo;i .X;A/ of X is the set of D-cycles modulo
an equivalence relation analogous to Baum–Douglas geometric K-homology (generated
by suitable versions of “disjoint union equals direct sum,” “bordism,” and “bundle modi-
fication”); see [6]. There is a functorial map

KGgeo;i .X;A/! KGi .X;A/ (2.1)

which is straightforward to describe at the level of cycles. We will only use the even case
i D 0 here; the odd case is similar. Let ŒDE � 2 KKG.Cl.M/;C/ be the class of the de
Rham–Dirac operator on M , coupled to the vector bundle E. The pair .ˆ; �/ defines a
push-forward map

.ˆ; �/�WKKG
�
Cl.M/;C

�
! KKG

�
C0.A/;C

�
;
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given as the composition of the Morita morphism Cliff.TM/Ü ˆ�A, with the map
induced by the �-homomorphism

ˆ�WC0.A/! C0.ˆ
�A/:

The image of Œ.M;E;ˆ; �/� in KG0 .X;A/ is the push-forward:

.ˆ; �/�ŒD
E �: (2.2)

The push-forward can alternately be expressed as a KK product

Œ� �˝ ŒDE �; (2.3)

where Œ� � 2 KKG.C0.A/;Cl.M// is the class defined by the triple .C0.�/; ˆ�; 0/. Fur-
ther background and other perspectives on the push-forward can be found in [14, 47] for
example.

Remark 2.5. A proof that the map (2.1) is an isomorphism has been announced by Baum,
Joachim, Khorami, and Schick [10], at least for the non-equivariant case.

2.2. Twisted K-homology of G

Let G be a compact, connected, simply connected, simple Lie group acting on itself by
conjugation. Then H 3

G.G;Z/ ' Z, while H 2
G.G;Z/ D H

1
G.G;Z2/ D H

0
G.G;Z2/ D 0.

There is a canonical generator ofH 3
G.G;Z/; in de Rham cohomology, it is represented by

the equivariant Cartan 3-form

�G.�/ D � �
1

2
B.�L C �R; �/; � D

1

12
B
�
�L; Œ�L; �L�

�
;

where � 2 g and �L (resp. �R) denotes the left (resp. right) invariant Maurer–Cartan form.
ThusG-equivariant Dixmier–Douady bundles A overG are classified up to Morita equiv-
alence by an integer ` 2 Z, and moreover any two Morita morphisms are 2-isomorphic;
see Remark 2.1. Although we will not use it, it is known that the twisted K-homology
group KG0 .G;A/ carries a ring structure; in this picture, the ring structure originates from
a canonical Morita morphism A�AÜMult�A, where MultWG �G! G is the group
multiplication; cf. [20, 38].

3. Loop groups and the Freed–Hopkins–Teleman theorem

In this section, we briefly introduce the loop group LG and its important class of projec-
tive positive energy representations; cf. [43]. We then recall the Freed–Hopkins–Teleman
theorem, which relates loop groups to a twisted K-homology.

To obtain a Banach–Lie group, we take LG to consist of maps S1 D R=Z! G of
some fixed Sobolev level s > 1

2
. The basic inner product defines a central extension of the

Lie algebra Lg by R, with cocycle

c.�1; �2/ D

Z 1

0

B
�
�1.t/; �

0
2.t/

�
dt: (3.1)
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This extension integrates to a U.1/ central extension LGbas of LG that we will call the
basic central extension. For G connected, simple, and simply connected, U.1/ central
extensions of LG are uniquely determined by their Lie algebra cocycle, which must be an
integer multiple of the generator (3.1); thus U.1/ central extensions are classified by Z,
with LGbas corresponding to the generator 1 2 Z.

For later reference, note that the loop group can be written as a semi-direct product
LG D G Ë �G, where �G D ¹ 2 LG j .0/ D .1/º is the based loop group, and
G ,! LG identifies G with the constant loops in LG. Our assumptions on G imply that
any U.1/ central extension of G is trivial; hence in particular the restriction of LGbas to
the constant loops is trivial.

Let T �G be a fixed maximal torus and let…D ker.expW t!T / be the integral lattice.
The product group T �… may be viewed as a subgroup of LG, where T is embedded as
constant loops and … as exponential loops: � 2 … corresponds to the loop s 2 R=Z 7!
exp.s�/ 2 T . The restriction of the central extensionLGbas to T �… is a central extension

1! U.1/! T Ë…bas
! T �…! 1:

We discuss the subgroup T Ë…bas � LGbas in detail in Section 5.

3.1. Positive energy representations

The loop group has a much-studied class of projective representations known as posi-
tive energy representations, which have a detailed theory parallel to the theory for com-
pact groups; cf. [26, 43]. Let S1rot Ë LG denote the semi-direct product constructed from
the action of S1 on LG by rigid rotations. This action lifts to an action on the basic
central extension. A positive energy representation is a representation of LGbas which
extends to a representation of the semi-direct product S1rot Ë LGbas such that the weights
of S1rot are bounded below. One can always tensor a positive energy representation by a
1-dimensional representation of S1rot; hence one often normalizes positive energy repre-
sentations by requiring that the minimal S1rot weight is 0, and we always assume this.

For an irreducible positive energy representation, the central circle of LGbas acts by a
fixed weight k � 0 called the level. There are finitely many irreducible positive energy rep-
resentations at any fixed level, parametrized by the “level k dominant weights”: weights
� 2…� \ t�C satisfying B.�; �/ � k, where � 2RC is the highest root of g. Equivalently,
the level k weights …�

k
D …� \ ka, where a � tC is the fundamental alcove, which we

identify with a subset of t� using the basic inner product.
Let Rk.G/ denote the free abelian group of rank #.…�

k
/ generated by Z-linear com-

binations of the level k irreducible positive energy representations. There is a canonical
isomorphism (“holomorphic induction”, cf. [20])

Rk.G/ ' R.G/=Ik.G/;

where R.G/ is the representation ring of G and Ik.G/ is the Verlinde ideal consisting of
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characters vanishing on the conjugacy classes of the elements

exp
�
� C �

k C h_

�
; � 2 …�k :

In particular, Rk.G/ is a ring, known as the level k Verlinde ring.
There is an alternate description of Rk.G/ that will be crucial for us later on; this

description plays a significant role in the proof of the Freed–Hopkins–Teleman theorem
as well. An element of Rk.G/ is uniquely determined by its multiplicity function, a map

mW…�k ! Z:

It is known that …�
k

is precisely the set of weights contained in the interior of the shifted,
scaled alcove .k C h_/a � �. The latter is a fundamental domain for the �-shifted level
.k C h_/ action of the affine Weyl group Waff D W Ë…, given by

w �kCh_ �D . xw;�/ �kCh_ �D xw.�C�/��C .kCh_/�; � 2 t�; xw 2W; �2…: (3.2)

Thus m has a unique extension to a map

mW…� ! Z

which is alternating under (3.2); i.e.,

m.w �kCh_ �/ D .�1/
l.w/m.�/;

where l.w/ is the length of the affine Weyl group element w. The extension ofm vanishes
on the boundary of the fundamental domain .k C h_/a � �. This defines an isomorphism
of abelian groups

Rk.G/
�
��! R�1.T /Waff-anti;.kCh_/; (3.3)

where the right-hand side denotes the formal characters of T which are alternating under
the action (3.2).

That (3.3) is an isomorphism can be deduced more or less immediately from the
Weyl–Kac character formula (cf. [26, 43]). A positive energy representation has a formal
character � 2 R�1.S1rot � T / given by a formula analogous to the Weyl character for-
mula for compact Lie groups, but with the numerator and denominator both being formal
infinite expressions. As in the Weyl character formula, the denominator � is a univer-
sal expression (the same for any � 2 Rk.G/); multiplying � by � and then restricting
to q D 1 2 S1rot, one obtains an element .� � �/jqD1 2 R�1.T /Waff-anti;.kCh_/, and this
correspondence is one-one.

3.2. Dixmier–Douady bundles from positive energy representations

Loop groups are closely related to twisted K-theory ofG. One manifestation of this is that
positive energy representations can be used to construct Dixmier–Douady bundles overG.
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Let ` > 0 and letLG� denote the central extension ofLG corresponding to ` times the
basic inner product (`D 1 corresponds toLGbas). Let V be a level ` positive energy repre-
sentation or, in other words, a positive energy representation of LG� such that the central
circle acts with weight 1. The dual space V � carries a negative energy representation such
that the central circle acts with weight �1. Let PG denote the space of quasi-periodic
paths in G of Sobolev level s > 1

2
; that is, PG is the space of paths  WR! G such that

.t/.t C 1/�1 is a fixed element of G, independent of t 2 R. The group LG � G acts
on PG, with LG acting by right multiplication and G by left multiplication (cf. [34] for
further discussion). The map

qW  2 PG 7! .t/.t C 1/�1 2 G

makes PG into a G-equivariant principal LG-bundle over G. The adjoint action of LG�

on the algebra of compact operators K.V �/ descends to an action of LG, and the associ-
ated bundle

A D PG �LG K.V �/ (3.4)

is a Dixmier–Douady bundle over G such that DD.A/ D ` 2 Z ' H 3
G.G;Z/; cf. [38].

3.3. The Freed–Hopkins–Teleman theorem

The following is a special case (forG connected, simply connected, simple) of the Freed–
Hopkins–Teleman theorem.

Theorem 3.1 (Freed–Hopkins–Teleman [20–22]). Let k > 0, and let h_ be the dual
Coxeter number of G. Let A be a G-equivariant Dixmier–Douady bundle over G with
DD.A/ D k C h_ 2 Z ' H 3

G.G;Z/. The group KG1 .G;A/ D 0, and there is an isomor-
phism of rings

Rk.G/ ' KG0 .G;A/:

Let �W ¹eº ,! G be the inclusion of the identity element inG. Consider the model (3.4)
for A. The Hilbert space V � gives a (canonical) G-equivariant Morita trivialization of
��A. Freed–Hopkins–Teleman prove that their isomorphism Rk.G/! KG0 .G;A/ more-
over fits into a commutative diagram

R.G/ �����! Rk.G/

'

??y '

??y
KG0 .pt/

.�;V �/
�����! KG0 .G;A/;

(3.5)

where the top horizontal arrow is the quotient map and the bottom horizontal arrow is
induced by the evaluation map ��WC.A/! Aje composed with the Morita trivialization
V �WAjeÜ C.
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4. Crossed products and twisted K-homology

In this section, we describe some general facts involving crossed product algebras, central
extensions, and generalized fixed-point algebras. Throughout this section, � , S , N are
locally compact, second countable topological groups equipped with left Haar measure,
and A is a separable C �-algebra.

4.1. Twisted crossed-products

Let � be a locally compact group with left invariant Haar measure, and let �� be a U.1/-
central extension:

1! U.1/! �� ! � ! 1:

Normalize Haar measure on �� such that the integral of a function over �� is given by first
averaging over U.1/ (using normalized Haar measure) followed by integration over � . A
choice of section � ! �� is not needed. In detail, for f 2 Cc.�� / let

Nf .y/ D

Z
U.1/

f .zy/ dz: (4.1)

Then Nf is a U.1/-invariant function on y� so it descends to a function on � , andZ
��
f .y/ d y D

Z
�

Nf ./ d: (4.2)

Let A be a �-C �-algebra. Note that A can be regarded as a �� -C �-algebra such that
the central circle in �� acts trivially. The (maximal) crossed product algebra �� Ë A D
C �.�� ; A/ (we use both notations interchangeably) decomposes into a direct sum of its
homogeneous ideals

�� Ë A D
M
n2Z

.�� Ë A/.n/; (4.3)

where .�� Ë A/.n/ denotes the norm closure (in the maximal crossed product algebra
�� Ë A) of the set of compactly supported functions a 2 Cc.�� ; A/ satisfying

a.z�1y/ D zna.y/; z 2 U.1/; y 2 �� :

There is a �-homomorphism from C �.U.1// into the multiplier algebra M.�� Ë A/ (cf.
[13, II.10.3.10–12]) making �� Ë A into a C �.U.1// D C0.Z/-algebra, and the ideals
.�� Ë A/.n/ are the fibers. The decomposition (4.3) is also not difficult to prove directly.
A short calculation using (4.1) shows that the .�� Ë A/.n/ are 2-sided ideals, and hence
one has a �-homomorphism from the right-hand side of (4.3) to �� Ë A. One also has
a �-homomorphism in the opposite direction, given by “taking Fourier coefficients.” For
further details, see, for example, [55, Proposition 3.2] or [51].

Definition 4.1. We define the � -twisted crossed product algebra � Ë� A to be the ideal

� Ë� A D .�� Ë A/.1/:
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The special case A D C gives the twisted group C �-algebra

C �� .�/ D C
�.�� /.1/:

Remark 4.2. One often sees the twisted crossed-product algebra defined in terms of a
cocycle for the central extension; cf. [37]. One can translate to this definition by choosing
a section �! �� . One reason we take the approach above is that later on we will consider
the action of a second group S ˚ � Ë� A, and it seems slightly awkward to describe this in
terms of a section �!�� ; for example, it is not clear to us that one can find an S -invariant
section.

The twisted crossed product algebra � Ë� A has the important universal property that
non-degenerate �-representations of � Ë� A are in one-one correspondence with covariant
pairs .�A; ���/, where �A is a �-representation of A, ��� is a representation of �� such that
the central circle acts with weight 1 (a � -projective representation of �), and

���.y/�A.a/�
�
�.y/

�1
D �A.y � a/ (4.4)

for all y 2 �� , a 2 A.
The space L2.�� / splits into an `2-direct sum of its homogeneous subspaces

L2.�� / D
M
n2Z

L2.�� /.n/; (4.5)

where L2.�� /.n/ denotes the subspace of L2.�� / consisting of functions f 2 L2.�� /
satisfying

f .z�1y/ D znf .y/; z 2 U.1/; y 2 �� :

Recall that the left and right regular representations of �� on L2.�� / are given, respec-
tively, by

�.y/f .y1/ D f .y
�1
y1/; �.y/f .y1/ D f .y1y/:

Both actions preserve the decomposition (4.5).

Definition 4.3. The left � -twisted regular representation of � is the restriction of the left
regular representation of �� on L2.�� / to the subspace

L2� .�/ WD L
2.�� /.1/:

The restriction of the right regular representation to L2� .�/ is the right .��/-twisted regu-
lar representation of � . (Note that under the right regular representation, the central circle
of �� acts on L2� .�/ with weight �1.)

4.2. Dixmier–Douady bundles from crossed products

Let X be a locally compact Hausdorff space with a continuous proper action of a locally
compact group � . The quotient X=� equipped with the quotient topology is then also a
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locally compact Hausdorff space. Let � act on L2.�/ by right translation and on K WD
K.L2.�// by the adjoint action. Define the algebra of sections of a field of C �-algebras
over X=� , suggestively denoted by C0.X �� K/, consisting of �-equivariant continuous
maps X ! K vanishing at infinity in X=� . The algebra C0.X �� K/ is an example of a
generalized fixed-point algebra.

The following result is attributed to Rieffel (for example, [44, Proposition 4.3], [45]);
see especially [19, Corollary 2.11] for a statement formulated in the same terms used
here. Another reference is [55, Proposition 4.3], where a quite general statement appears
for twisted convolution algebras of locally compact proper groupoids.

Proposition 4.4. Let X be a locally compact Hausdorff space with a continuous proper
action of a locally compact group � , and let K D K.L2.�//. Then

� Ë C0.X/ ' C0.X �� K/:

Remark 4.5. We mention briefly how a map � Ë C0.X/! C0.X �� K/ is constructed.
Using conventions as in [28, Section 3.7], a function a 2 Cc.�; Cc.X// is sent to the
�-equivariant family Ka.x/ 2 K, x 2 X , of compact operators defined by the family of
integral kernels

ka.1; 2I x/ D �.2/
�1a.1

�1
2 I 1x/; (4.6)

where �W� ! R>0 is the modular homomorphism of � .

Remark 4.6. Proposition 4.4 can be viewed as a generalization of the Stone–von Neu-
mann theorem (obtained from the special case � D R acting on X D R by translations).
More generally, for X D � , Proposition 4.4 specializes to a well-known isomorphism

� Ë C0.�/
�
��! K

�
L2.�/

�
: (4.7)

Using (4.6), one verifies that the induced map on multiplier algebras sends C0.�/ to mul-
tiplication operators and � to the left regular representation.

If the action of � on X is free, then X ! X=� is a principal �-bundle, and the
generalized fixed-point algebra is the algebra of continuous sections vanishing at infinity
of the associated bundle

A D X �� K: (4.8)

This is a Dixmier–Douady bundle, with typical fiber K.L2.�//. In fact, A is Morita trivial
with Morita trivialization X �� L2.�/.

To obtain something more interesting from the construction (4.8), we adjust it slightly
in two ways. First, we consider the equivariant situation, where a second group S acts
on X and L2.�/. It may happen that the Morita trivialization X �� L2.�/ is not S -
equivariant. Second, we replace � Ë C0.X/ with a twisted crossed product algebra, as in
Definition 4.1. This will be important later on, when central extensions of the loop group
come into the picture.

Consider a semi-direct product S Ë � , where S , � are locally compact groups, and
assume that the S -action preserves Haar measure on� . Let �� be aU.1/-central extension,
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and assume that the action of S on � lifts to an action on �� , so that we have aU.1/-central
extension

1! U.1/! S Ë �� ! S Ë � ! 1:

The right .��/-twisted regular representation .L2� .�/; �/ (Definition 4.3) extends to a
representation of S Ë �� (such that the central circle acts with weight �1) according to

�.s; y/f .y1/ D f .s
�1
y1sy/: (4.9)

The adjoint action Ad.�/ on K D K.L2� .�// descends to an action of S Ë � . Let X be a
locally compact S Ë �-space, such that the action of � on X is proper. The generalized
fixed point algebra C0.X �� K/ is an S -C �-algebra.

Remark 4.7. For later reference, note that the left � -twisted regular representation
.L2� .�/; �/ (Definition 4.3) also extends to a representation of S Ë �� (such that the cen-
tral circle acts with weight 1) according to

�.s; y/f .y1/ D f .y
�1s�1y1s/:

If A is a .S Ë �/-C �-algebra, the twisted crossed product � Ë� A is an S -C �-algebra,
with the S -action being the continuous extension of the S -action on Cc.�� ; A/ given by

.s � a/.y/ D s:a.s�1ys/: (4.10)

This applies in particular to the .S Ë �/-C �-algebra C0.X/, and one has the following
variation of Proposition 4.4.

Proposition 4.8. Consider a semi-direct product S Ë � , where S , � are locally compact
groups and the S -action preserves Haar measure on � . Let �� be a U.1/-central exten-
sion, and assume that the action of S on � lifts to an action on �� . Let .L2� .�/; �/ be the
right .��/-twisted regular representation (Definition 4.3), extended to a representation of
S Ë �� as in (4.9), and let S Ë �� act on K D K.L2� .�// by the adjoint action Ad.�/.
Let X be a locally compact S Ë � space, such that the � action is proper. There is an
isomorphism of S -C �-algebras

� Ë� C0.X/ ' C0.X �� K/:

Proof. This follows in a straightforward manner from Proposition 4.4 applied to �� . The
action of � onX induces a proper action of �� onX with the central circle acting trivially.
Applying Proposition 4.4 to �� ,

�� Ë C0.X/ ' C0
�
X ��� K

�
L2.�� /

��
D C0

�
X �� K

�
L2.�� /

�U.1/�
; (4.11)

where for the second equality we use the fact that the central circle acts trivially onX . The
algebra on the left-hand side of (4.11) splits into a direct sum of its homogeneous ideals

�� Ë C0.X/ D
M
n2Z

�
�� Ë C0.X/

�
.n/
:
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Decompose L2.�� / into isotypic components for the action of the central circle, as in
(4.5):

L2.�� / D
M
n2Z

L2.�� /.n/: (4.12)

The subalgebra K.L2.�� //U.1/ � K.L2.�� // is the set of compact operators preserving
the decomposition (4.12); hence

K
�
L2.�� /

�U.1/
D

M
n2Z

K
�
L2.�� /.n/

�
: (4.13)

We claim that the isomorphism (4.11) restricts to an isomorphism�
�� Ë C0.X/

�
.n/
! C0

�
X �� K

�
L2.�� /.n/

��
:

To see this, let a 2 Cc.�� Ë Cc.X//.n/, and let Ka be the corresponding family of opera-
tors defined by the integral kernels ka in (4.6). We suppress the basepoint x 2 X from the
notation as it plays no role in the argument. The homogeneity of a (and U.1/ invariance
of �) implies that (see (4.6)) ka.y1; z�1y2/D z�nka.y1; y2/, z 2 U.1/. For f 2 L2.�� /,

.Kaf /.y1/ D

Z
��
ka.y1; y2/f .y2/ d y2:

According to (4.1) and (4.2), the integral over �� can be carried out by first averaging
with respect to the U.1/ action and then integrating over � . Note thatZ

U.1/

ka.y1; z
�1
y2/f .z

�1
y2/ dz D ka.y1; y2/

Z
U.1/

z�nf .z�1y2/ dz:

The integral over z 2 U.1/ gives the projection to the .n/-isotypical component; hence
Ka is contained in the ideal K.L2.�� /.n//. In particular, for n D 1,

� Ë� C0.X/ ' C0
�
X �� K

�
L2.�� /.1/

��
D C0

�
X �� K

�
L2� .�/

��
:

Assuming that � acts onX freely, we can form the associated S -equivariant Dixmier–
Douady bundle over X=�

A D X �� K;

and � Ë� C0.X/ ' C0.A/ as S -C �-algebras.

4.3. An example: a Dixmier–Douady bundle AT over T

Let LG� denote a U.1/ central extension of the loop group, corresponding to 0 < ` 2 Z
times the generator LGbas. Let T Ë…� denote the corresponding U.1/ central extension
of the subgroup T �… (see Section 3).

Carrying out the construction of the previous section with S D T , �� D …� , and
X D t, we obtain a Dixmier–Douady bundle over T D t=…:
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Definition 4.9. Let AT be the T -equivariant associated bundle

AT D t �… K
�
L2� .…/

�
! t=… D T: (4.14)

AT is a T -equivariant Dixmier–Douady bundle over T .

Recall the G-equivariant Dixmier–Douady bundle A described in Section 3.2:

A D PG �LG K.V �/! G;

where V is a level ` positive energy representation. The map

t ,! PG; � 7! � ;

where
�.s/ D exp.s�/; s 2 R=Z;

embeds t intoPG,…-equivariantly. Restricting to t�PG in (4.15), we obtain a Dixmier–
Douady bundle

AjT D t �… K.V �/ (4.15)

over the maximal torus. The central circle in T Ë…� acts on both L2� .…/ and V � with
weight �1 (recall that for L2� .…/ we use the right regular representation � in Definition
4.3); hence the diagonal action of T Ë…� on the tensor product

L2� .…/˝ V

descends to an action of T �…. Define

E D t �…
�
L2� .…/˝ V

�
; (4.16)

a bundle of Hilbert spaces over T . By (4.14) and (4.15), E defines a T -equivariant Morita
morphism AjT Ü AT .

4.4. A Green–Julg isomorphism

For a compact groupK, the Green–Julg theorem states that theK-equivariant K-theory of
a K-C �-algebra A is isomorphic to the K-theory of the crossed-product algebra K Ë A.
There is a “dual” version of the Green–Julg theorem (cf. [12, Theorem 20.2.7 (b)]) which
applies to discrete groups instead of compact groups and K-homology instead of K-theory.

Proposition 4.10. Let � be a discrete group, and let A be a �-C �-algebra. Then

KK�.A;C/ ' KK.� Ë A;C/:

More generally, suppose that a locally compact group S acts on � preserving Haar mea-
sure. If A is an S Ë �-C �-algebra, then

KKSË�.A;C/ ' KKS .� Ë A;C/;

where � Ë A is equipped with the S -action in (4.10).
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The isomorphism is simple to describe at the level of cycles. Let .H; �; F / be a cycle
representing a class in KK.� Ë A;C/. We may assume that � is non-degenerate. The
universal property of the crossed product � ËA guarantees that � comes from a covariant
pair .�A; ��/. For the triple .H; �A; F / to represent a class in KK�.A;C/, one needs the
operators

�A.a/.1 � F
2/;

�
F; �A.a/

�
; �A.a/.Ad�� ./ F � F / (4.17)

to be compact, for all a 2 A,  2 � . The assumption that � is discrete means that A is a
sub-algebra of � ËA, so �A is simply the restriction of � to A, and the first two operators
in (4.17) are compact. For the last operator, note that

�A.a/.Ad�� ./ F � F / D
�
F; �.a/

�
�
�
F; �.a/��./

�
��./

�1: (4.18)

The operator �.a/��./2�.�ËA/; hence the compactness of both terms follows because
.H; �; F / is a cycle.

The inverse map is similar: a triple .H; �A; F / representing a class in KK�.A;C/ is
sent to the triple .H;�;F /, where � W� ËA! B.H/ is the representation induced by the
covariant pair .�A; ��/. The crossed product �.� ËA/ contains a dense sub-algebra con-
sisting of finite linear combinations of operators of the form �.a/��./ D �A.a/��./.
The operator �A.a/��./.F 2 � 1/ D ��./�A.�1 � a/.F 2 � 1/ is compact, while the
commutator ŒF; �A.a/��./� is compact using (4.18) (multiply both sides by ��./ on
the right).

The maps are well defined on homotopy classes because one can apply the same maps
to cycles for the pair .A; C.Œ0; 1�// (resp. .� Ë A;C.Œ0; 1�//).

Definition 4.11. Let N be a locally compact group with U.1/ central extension N � . Let
A, B be N -C �-algebras (trivial U.1/ action). For n 2 Z define

KKN � .A;B/.n/

to be the direct summand of KKN � .A; B/ generated by cycles where the central circle of
N � acts with weight n.

Proposition 4.12. Consider a semi-direct product N D S Ë � , where S , � are locally
compact groups and � is discrete. Let �� be a U.1/-central extension, and assume that
the action of S on � lifts to an action on �� . Let A be an S Ë �-C �-algebra. The twisted
crossed product � Ë� A is an S -C �-algebra with action given by (4.10), and

KKSË�� .A;C/.1/ ' KKS .� Ë� A;C/:

Proof. Let .H; �; F; �S / represent a class in KKS .� Ë� A;C/. We may assume that
� is non-degenerate. The universal property of � Ë� A implies that there is a covariant
pair .�A; ��� /. Define �SË�� .s; y/ D �S .s/��� .y/. At the level of cycles, the map sends
.H; �; F; �S / to .H; �A; F; �SË�� /.

We first check that �SË�� is indeed a representation of S Ë �� . The action of S on
� Ë� A extends to an action on the multiplier algebra M.� Ë� A/. By non-degeneracy,
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the representation � of � Ë� A extends to M.� Ë� A/, and one obtains a covariant pair
extending .�; �S /. For y 2 �� , the function

uy .y
0/ D

´
z if y 0 D z�1y; z 2 U.1/;

0 else

lies in M.� Ë� A/ and satisfies �.uy / D ���.y/, usys�1.y
0/ D uy .s

�1y 0s/. By (4.10),

�S .s/�
�
�.y/�S .s/

�1
D �S .s/�.uy /�S .s/

�1
D �.s � uy /

D �.usys�1/ D �
�
�.sys

�1/: (4.19)

Equation (4.19) implies that �SË�� is a representation of S Ë �� .
The algebra A can be regarded as a sub-algebra of � Ë� A, via the embedding a 7! Qa,

where

Qa.y/ D

´
za if y D z�11�� ; z 2 U.1/;

0 else

and �A.a/ D �. Qa/. The argument that .H; �A; F / represents a class in KKSË�� .A;C/ is
then similar to Proposition 4.10. For example, (4.18) now reads

�A.a/.Ad�SË�� .s;y/
F � F / D

�
F; �. Qa/

�
C �. Qa/���.y/.Ad�S .s/ F � F /�

�
�.y/

�1

�
�
F; �. Qa/���.y/

�
���.y/

�1

(we have used (4.19)). Note that �. Qa/���.y/ 2 �.� Ë� A/; hence compactness of all three
terms follows because .H; �; F / is a cycle.

In the reverse direction, let .H; �A; F; �SË�� / represent a class in KKSË�� .A;C/.1/,
and let ��� (resp. �S ) be the restriction of �SË�� to �� (resp. S ). The representations
.�A; �

�
�/ form a covariant pair as in (4.4), and the map sends .H; �A; F; �SË�� / to

.H; �; F; �S /, where � is the representation of � Ë� A guaranteed by the universal prop-
erty. One checks that the result is a cycle similar to before.

The maps are well defined on homotopy classes because one may apply the same maps
to cycles for .A; C.Œ0; 1�// (resp. .� Ë� A;C.Œ0; 1�//).

4.5. The analytic assembly map

Let X be a locally compact space with a proper action of a locally compact group N . If
the action of N is cocompact, i.e., X=N is compact, then there is a map

�N WKN0 .X/ D KKN
�
C0.X/;C

�
! KK

�
C; C �.N /

�
D K0

�
C �.N /

�
;

known as the analytic assembly map. If N is compact, the analytic assembly map is just
the equivariant index:

�N
��
.H; �; F /

��
D
�

ker.FC/
�
�
�

ker.F �/
�
2 K0

�
C �.N /

�
' R.N/:

For non-compact N , the definition of the assembly map is more involved. We give a brief
description here and refer the reader to, e.g., [7], [42, Section 2], [18, Section 4.2], [29]
for details.
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Let .H; �;F / be a cycle representing a class ŒF � 2 KKN .C0.X/;C/. Assume that the
operator F is properly supported, in the sense that for any f 2 Cc.X/ one can find an
h 2 Cc.X/ such that �.h/F�.f / D F�.f / (this can always be achieved by perturbing F ;
cf. [7, Section 3]). To define �N , the first step is to define a Cc.N /-valued inner product
.�;�/N on the subspace �.Cc.X//H � H , by

.f1; f2/N .n/ D .f1; n � f2/L2 :

Complete �.Cc.X//H in the norm kf kN D k.f; f /N k
1=2

C�.N/
, where k � kC�.N/ denotes

the norm of the C �-algebra C �.N /, to obtain a Hilbert C �.N /-module H . Then F acts
on �.Cc.X//H (here use that F is properly supported) and extends to an adjointable
operator F on H . The pair .H ;F / represents a class in K0.C �.N //, and

�N
�
ŒF �

�
D
�
.H ;F /

�
2 K0

�
C �.N /

�
:

Since F commutes with the C �.N / action, ker.F ˙/ are C �.N /-modules, but unfortu-
nately, in general, they need not be finitely generated and projective, so that “Œker.F C/��
Œker.F �/�” is not a K-theory class. If the range of F is closed and ker.F ˙/ are finitely
generated and projective, then indeed �N .ŒF �/D Œker.F C/�� Œker.F �/� (cf. [23, Propo-
sition 3.27]); more generally, it is necessary to perturb F to obtain such a description.

There is another description of the analytic assembly map due to Kasparov that we
briefly recall; see, for example, [18, Section 4.2] for a recent review, and [42, Section 2.4]
for a discussion of the relation between the two descriptions of �N (at least for N dis-
crete). As the action of N on X is cocompact, one can find a continuous compactly
supported “cut-off function” cWX ! Œ0;1/ such that for all x 2 X ,Z

N

c.n�1 � x/2 D 1:

Define pc WG �X ! Œ0;1/ by

pc.n; x/ D �.n/
�1=2c.n�1 � x/c.x/;

where � is the modular homomorphism of N . The function pc defines a self-adjoint
projection in G Ë C0.X/, and hence an element Œc� 2 KK.C; N Ë C0.X//. Kasparov’s
definition of the assembly map is as a Kasparov product

�N
�
ŒF �

�
D Œc�˝NËC0.X/ jN

�
ŒF �

�
;

where jN WKKN .C0.X/;C/! KK.N Ë C0.X/; C �.N // is the descent homomorphism.

5. The group T Ë …bas

In this section, we collect results about the group T Ë…bas and the K-theory of its group
C �-algebra. For another discussion of the K-theory ofC �.T Ë…bas/ see [51]. Throughout
G is assumed to be connected, simply connected, simple. Let T � G be a fixed maximal
torus and we identify t � t� with the basic inner product, and hence … is identified with a
sublattice of …�.
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5.1. The group …bas

Let…bas denote the restriction to…�LG of the basic central extensionLGbas of the loop
group. We give an explicit 2-cocycle � for …bas. Recall that the cocycle of a U.1/ central
extension associated to a splitting � 2 … 7! y� 2 …bas is the function � W… �…! U.1/

defined by the equation
y�1y�2 D �.�1; �2/b�1�2:

(The group operation in … is written multiplicatively.)
Let ˇ1; : : : ; ˇr 2 … be a lattice basis for …. It is known [43, Proposition 4.8.1], [53,

Theorem 3.2.1] that one can choose lifts y̌1; : : : ; y̌r 2 …bas such that

y̌
i
y̌
j
y̌�1
i
y̌�1
j D .�1/

B.ˇi ; ǰ /; (5.1)

where B is the basic inner product. For � D
P
niˇi 2 … let

y� D y̌
n1
1 � � �

y̌nr
r : (5.2)

Define a bilinear map
�W… �…! Z

by

�.ˇi ; ǰ / D

´
B.ˇi ; ǰ / if i > j;

0 if i � j

and extend bilinearly.

Proposition 5.1. The cocycle associated to the splitting (5.2) is

�.�1; �2/ D .�1/
�.�1;�2/; �1; �2 2 …:

Remark 5.2. The function .�1/� is the “off-diagonal” part of what Kac [26, Section 7.8]
calls an asymmetry function.

Proof. If i > j , then using (5.1) we have

y̌
i
y̌
j D .�1/

B.ˇi ; ǰ / y̌
j
y̌
i D .�1/

B.ˇi ; ǰ / b̌
i ǰ ;

while if i � j , then
y̌
i
y̌
j D

b̌
i ǰ :

This verifies that
�.ˇi ; ǰ / D .�1/

�.ˇi ; ǰ /

for i; j D 1; : : : ; r . On the other hand, using the definition of the lift (5.2) and the com-
mutation relation (5.1), one sees that � is bimultiplicative:

�.�1 C �2; �/ D �.�1; �/�.�2; �/; �.�; �1 C �2/ D �.�; �1/�.�; �2/:
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5.2. The group T Ë …bas

Define a group homomorphism

�W…! Hom
�
T;U.1/

�
D …�; ��.t/ D t

�B[.�/: (5.3)

It is known (cf. [22, Section 2.2], [43]) that in the subgroup T Ë…bas � LGbas, elements
t 2 T and � 2 …bas satisfy the commutation relation

y�ty��1t�1 D ��.t/:

Moreover, the data .�;�/ determine the group T Ë…bas (up to isomorphism). Let T Ë…triv

denote the analogous group defined by the data .1; �/; i.e., …triv D… � U.1/ is the trivial
central extension, and the commutator map for T , …triv is the same � defined in (5.3). In
detail, if we use the section …! …bas defined in (5.2) to view …bas (topologically) as a
product … � U.1/, then the group multiplication in T Ë…bas is

.t1; �1; z1/.t2; �2; z2/ D
�
t1t2; �1 C �2; ��1.t2/�.�1; �2/z1z2

�
; (5.4)

while in T Ë…triv the group multiplication is

.t1; �1; z1/.t2; �2; z2/ D
�
t1t2; �1 C �2; ��1.t2/z1z2

�
: (5.5)

As we saw above, in general…bas is not isomorphic to…triv (…bas need not be abelian).
Perhaps, surprisingly, the distinction between…bas and…triv disappears after taking semi-
direct product with T .

Proposition 5.3. The groups T Ë…bas, T Ë…triv are (non-canonically) isomorphic.

Proof. We will show that the additional sign �.�1; �2/ can be absorbed into the phase
��1.t2/ by choosing an appropriate identification T Ë…bas ! T Ë…triv.

For � 2 … define

�� D
1

2
B]
�
�.�; �/

�
2 t;

where here one views the contraction �.�; �/ as an element of t�, and then uses B] to
convert this to an element of t. The image of the map � 2 … 7! �� 2 t is contained in
1
2
B].…�/. By construction,

exp.��/B
[.�/
D e� i�.�;�/

D �.�; �/; �; � 2 …: (5.6)

Define
‰WT Ë…bas

! T Ë…triv; ‰.t; �; z/ D
�
t exp.��/; �; z

�
:

A short calculation using (5.6) shows that ‰ is a group homomorphism.
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5.3. The C �-algebra of T Ë …bas

Using Proposition 5.3, T Ë…bas ' T Ë…triv. There is an obvious isomorphism .t; �; z/ 2

T Ë…triv 7! .t; z; �/ 2 T triv Ì…, where T triv D T � U.1/ is the trivial central extension.
If G1 Ë G2 is a semi-direct product of locally compact groups, then there is an iso-

morphism
C �.G1 ËG2/ ' G1 Ë C �.G2/

induced by the natural map Cc.G1 �G2/! Cc.G1; Cc.G2//; cf. [57]. Thus

C �.T triv Ì…/ ' C �.T triv/ Ì…:

The group T triv D T �U.1/ is abelian; hence C �.T triv/ is isomorphic to C0.…� �Z/ (the
Pontryagin dual). Thus

C �.T triv/ Ì… ' C0.…� � Z/ Ì…:

If � 2…� and `2Z, the isomorphism C0.…
��Z/!C �.T triv/ sends ı.�;`/ 2C0.…��Z/

to its Fourier transform

e�;` 2 C
�.T triv/; e�;`.t; z/ D t

�z`:

Using the commutation relation in T Ë…triv ' T triv Ì…, the action of � 2 … on e�;` is

.� � e�;`/.t; z/ D e�;`.t; t
�z/ D t�C`�z`:

This corresponds to the action of … on the Pontryagin dual …� � Z by

� � .�; `/ D .� C `�; `/: (5.7)

We see that
C0.…

�
� Z/ Ì… D

M
`2Z

C0.…
�/ Ì` …;

where C0.…�/ Ì` … denotes the crossed product formed using the “level `” action (5.7).
The sub-algebra C �.T Ë…bas/.`/ corresponds to the `th summand.

For ` D 0, the action of … on …� is trivial; hence

C0.…
�/ Ì0 … ' C0.…�/˝ C �.…/ ' C0.…� � T _/;

where T _ D t�=…� is the Pontryagin dual of …. For `¤ 0, the algebra C0.…�/Ì`… is
isomorphic to a direct sum of finitely many copies of the compact operators on L2.…/,
indexed by the finite quotient …�=`…. One can deduce this from the Takai duality theo-
rem, but it is also not difficult to argue directly as follows. One has a faithful Schrödinger-
type representation of C0.…�/ Ì` … on L2.…�/, where C0.…�/ acts by multiplication
operators, and … acts by translations as in (5.7). The decomposition of …� into cosets
Œ�� D � C `… for the … action gives a direct sum decomposition

L2.…�/ D
M

Œ��2…�=`…

L2
�
Œ��
�
; (5.8)
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and the action of C0.…�/ Ì` … preserves this decomposition. For � 2 … and � 2 …�

let ��;� 2 Cc.…; Cc.…�// D Cc.… �…�/ be the delta function at .�; �/ 2 … �…�. As
an element of C0.…�/ Ìn …, ��;� acts on L2.…�/ by the rank 1 linear transformation
mapping ı� to ı�C`� . Such rank 1 operators generate the algebra of all compact operators
on L2.…�/ that preserve the direct sum decomposition (5.8), and thus

C0.…
�/ Ì` … '

M
Œ��2…�=`…

K
�
L2
�
Œ��
��
:

We summarize these observations with a proposition.

Proposition 5.4. The group C �-algebra C �.T Ë …bas/ is an infinite direct sum of its
homogeneous idealsC �.T Ë…bas/.`/, `2Z. A choice of group isomorphism T Ë…bas ��!

T Ë…triv determines isomorphisms of C �-algebras

C �.T Ë…bas/.0/
�
��! C0.…

�
� T _/;

and for ` ¤ 0,
C �.T Ë…bas/.`/

�
��!

M
Œ��2…�=`…

K
�
L2
�
Œ��
��
;

where Œ�� D � C `… � …� is a coset for the “level `” action of … on …�.

5.4. The map K0.C �� .T �…//! R�1.T /`…

Let � be some integer multiple 0 ¤ ` 2 Z of the basic central extension of LG, and let
T Ë…� denote the restriction of LG� to the subgroup T �… � LG. For ` D 1, this is
precisely the group T Ë…bas considered above. Elements t 2 T and y� 2 …� satisfy the
commutation relation

y�ty��1t�1 D �`�.t/ D t
�`B[.�/

2 U.1/I

see (5.3).
The structure of C �� .T �…/ follows immediately from Proposition 5.4, and in partic-

ular its K-theory is

K0
�
C �� .T �…/

�
'

M
Œ��2…�=`…

K0
�
K
�
L2
�
Œ��
���
:

The K-theory of K.L2.Œ��// is a copy of the integers, generated by the finitely generated,
projective module L2.Œ��/. Let R�1.T /`… denote the subspace of R�1.T / consisting of
formal characters invariant under the “level `” action of …, that is, formal sumsX

�2…�

a�e� ; e�.t/ D t
� ;

where the coefficients satisfy a�C`� D a� for all � 2 … (we identify … with a sublattice
of …� using the basic inner product). There is a map

K0
�
K
�
L2
�
Œ��
���
! R�1.T /`…
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sending the generator L2.Œ��/ to its formal T -character:

L2
�
Œ��
�
7!

X
�2…

e�C`�:

Put differently, this formal character has multiplicity function given by the indicator func-
tion of the coset Œ�� in…�. It is clear that this map gives an isomorphism of abelian groups:

K0
�
C �� .T �…/

� �
��! R�1.T /`…: (5.9)

6. The map I WKG
0

.G; A/! R�1.T /Waff�anti;`

Let A be a G-equivariant Dixmier–Douady bundle over G, with Dixmier–Douady class
` 2 Z ' H 3

G.G;Z/ and ` > 0. In this section, we construct a map

I WKG0 .G;A/! R�1.T /Waff-anti;`

and show that in a suitable sense, it is an inverse of the Freed–Hopkins–Teleman isomor-
phism. We begin by fixing a model for A as in Section 3.2:

A D PG �LG K.V �/; (6.1)

where V is a level ` positive energy representation of LGbas. Let LG� denote the central
extension of LG corresponding to ` times the generator LGbas; thus V is a representation
of LG� such that the central circle acts with weight 1.

Let U be a smallN.T /-invariant tubular neighborhood of T inG, with projection map
�T WU ! T . A neighborhood U can be described explicitly: for � > 0 sufficiently small,
and B�.t?/ an �-ball in t? � g, the map

T � B�.t?/; .t; �/ 7! t exp.�/;

is an N.T /-equivariant diffeomorphism onto its image, which we may take to be U , with
�T being the projection to the first factor. The first stage in the definition of I is the
restriction map

KG0 .G;A/! KT0 .U;AjU / (6.2)

induced by the “extension by 0” algebra homomorphism C0.AjU / ,! C.A/.
Recall the Dixmier–Douady bundle AT ! T constructed in Section 4.3. Let AU D

��TAT . By pullback of (4.16), we obtain a Morita equivalence AjU Ü AU and hence
also an isomorphism

KT0 .U;AjU /
�
��! KT0 .U;AU /: (6.3)

There is a canonical identification t? ' g=t. The complexification .g=t/C ' nC ˚ n�,
where nC (resp. n�) is the direct sum of the positive (resp. negative) root spaces. We
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choose a complex structure on g=t such that .g=t/1;0 D n�. This choice of complex struc-
ture determines a Bott–Thom isomorphism

KT0 .U;AU /
�
��! KT0 .T;AT /: (6.4)

By (4.14) and Proposition 4.8, the algebra of sections C0.AT / has an alternate description
as a twisted crossed product algebra…Ë�C0.t/. The isomorphismC0.AT /

�
�!…Ë� C0.t/

yields an isomorphism of K-homology groups

KT0 .T;AT /
�
��! K0T

�
… Ë� C0.t/

�
: (6.5)

By Proposition 4.12, there is a Green–Julg isomorphism

K0T
�
… Ë� C0.t/

� �
��! K0TË…�

�
C0.t/

�
.1/
: (6.6)

Since … (hence also T Ë…� ) acts cocompactly on t, we can apply the analytic assembly
map

K0TË…�

�
C0.t/

�
! K0

�
C �.T Ë…� /

�
: (6.7)

Restricted to K0TË…� .C0.t//.1/, the image of the assembly map is contained in the direct
summand isomorphic to K0.C �� .T �…//, and the latter is isomorphic to R�1.T /`… by
(5.9). Composing the maps (6.2)–(6.7) completes the construction of the desired map

I WKG0 .G;A/! R�1.T /`…:

We verify in the next two subsections that the range is the subspace R�1.T /Waff-anti;`.

Remark 6.1. The vector space t is a classifying space for proper actions of T Ë …� .
The Baum–Connes conjecture says that the assembly map (6.7) is an isomorphism. The
conjecture has been proved for a very large class of groups including, for example, all
amenable groups, of which T Ë …� is an example (we thank Shintaro Nishikawa for
pointing this out). Consequently, all of the maps in the definition of I except the first
(6.2) are isomorphisms.

Remark 6.2. There are slight variations in the order of the maps in the definition of I

that are equivalent. For example, let U ' t � B�.t?/ be the fiber product t �T U , and for
x 2 KG0 .G;A/ let xU denote the class in KKTË…� .C0.U/;C/.1/ obtained by applying
the composition

KG0 .G;A/ ��! KT0 .U;AjU /
�
��! KT0 .U;AU /

�
��! KKT

�
… Ë� C0.U/;C

� �
��! KKTË…�

�
C0.U/;C

�
.1/

similar to the definition of I given above. Then, identifyingC0.U/'C0.B�.t?//˝C0.t/,
we have

I .x/ D �TË…�
�
ˇ ˝C0.B�.t?// ŒxU �

�
D Œc�˝SËC0.t/ jS .ˇ ˝C0.B�.t?// xU /; (6.8)

where ˇ 2K0T .B�.t
?// is the Bott–Thom element, S D T Ë…� , and for the second equal-

ity we use Kasparov’s description of the assembly map (Section 4.5).
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6.1. Weyl group symmetry

The subgroup N.T / � G normalizes …� inside LG� . It follows that there is an action of
N.T / by conjugation on T Ë…� , L2� .…/, and… Ë� C0.t/' C0.AT /. Hence each of the
C �-algebras appearing in the definition of I is in a natural way an N.T /-C �-algebra.
There is only one aspect of the definition which is not N.T /-equivariant, namely, the
Bott–Thom map.

Let N be a locally compact group and let H be the connected component of the iden-
tity in N . Assume that N is unimodular for simplicity. Let A be an N -C �-algebra, with
˛AWN ! Aut.A/ being the action map. For n 2 N we can view ˛A.n/ as an isomorphism
of H -C �-algebras A! A.n/, where A.n/ denotes the C �-algebra A equipped with the
conjugated H -action ˛A.n/.n

0/ WD ˛A.nn
0n�1/. Thus, if A, B are N -C �-algebras, then

any n 2 N induces a map

KKH .A;B/! KKH .A.n/; B.n//:

Composing with the “restriction homomorphism” [28, Definition 3.1] for the automor-
phism Adn 2 Aut.H/, we obtain an automorphism

�nWKKH .A;B/! KKH .A;B/:

See [35, Appendix A] for details (note that the notation in [35, Appendix A] is different).
The automorphism �n acts trivially on elements in the image of the restriction map from
KKN .A;B/ and only depends on the class of the element n in the component groupN=H .

Let A be an N -C �-algebra. A group element n 2 N gives rise to an algebra automor-
phism

�An WH Ë A! H Ë A;

defined on the dense subspace Cc.H;A/ by the formula �An .f /.h/ D n
�1 � f .Adn h/. In

[35, Appendix A], we show that the corresponding element �An 2 KK.H Ë A;H Ë A/
intertwines �n and the descent homomorphism; more precisely,

jH
�
�n.x/

�
D �An ˝ jH .x/˝ .�

B
n /
�1; (6.9)

for any x 2 KKH .A;B/.
As a special case of the above, consider H D T � N.T / D N . As the automorphism

�n (resp. �An , �Bn ) only depends on the class w D Œn� 2N.T /=T DW , we denote it by �w
(resp. �Aw , �Bw ). The Bott–Thom element ˇ 2 K0T .t

?/ is notN.T /-equivariant, but instead
it satisfies [35, Proposition 4.8]

�w.ˇ/ D .�1/
l.w/C��w� ˝ ˇ; (6.10)

where � is the half sum of the positive roots and l.w/ is the length of the Weyl group
element w. This is a simple consequence of the fact that (1) Adn jt? reverses orientation
(hence grading) according to the length of w, (2) the weight decomposition for ^n� is not
symmetric under the Weyl group.
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To simplify the notation let S D T Ë…� . By (6.8) and using an argument similar to
that given in [35, Section 4.5], we have

I .x/˝ .�C
w /
�1
D Œc�˝ jS .ˇ ˝ xU /˝ .�

C
w /
�1

D Œc�˝ .�C0.t/w /�1 ˝ �C0.t/w ˝ jS .ˇ ˝ xU /˝ .�
C
w /
�1

D Œc�˝ .�C0.t/w /�1 ˝ jS
�
�w.ˇ ˝ xU /

�
D .�1/l.w/Œc�˝ jS .ˇ ˝ xU /˝C��w�:

In the third line, we used (6.9). In the fourth line, we used (6.10), the N.T /-equivariance
of xU (it lies in the image of the restriction map from KKN.T /Ë…� .C0.U/;C/), and the
fact that the cut-off function cW t ! Œ0;1/ may be chosen to be N.T /-invariant, which
implies Œc�˝ .�C0.t/w /�1 D Œc�. In the last line, we are also using that K0.C �.T Ë…� // is
an R.T /-module.

Corollary 6.3. The image of I is contained in R�1.T /Waff-anti;`, the space of formal
characters that are alternating under the �-shifted level ` action (3.2) of the affine Weyl
group.

6.2. Inverse of the Freed–Hopkins–Teleman map

The commutative diagram (3.5) in the Freed–Hopkins–Teleman theorem implies that
KG0 .G;A/ has a particularly simple Z-basis obtained by the push-forward from K0G.pt/
(together with the Morita morphism V �WAjEÜ C). These elements are represented by
Kasparov triples x� with trivial operator F D 0:

x� D
�
.V � ˝R�; �

�
˝ idR� ; 0/

�
: (6.11)

HereR� 2R.G/ is the finite-dimensional irreducible representation ofG with the highest
weight � 2 …�

k
, and ��WC0.A/! Ae ' K.V �/ is the restriction of a section of A to the

fiber over the identity e 2 G, so that �� ˝ idR� WC.A/! B.V � ˝R�/ is a representation
of C.A/ on the Hilbert space V � ˝ R�, with range contained in the compact operators.
By (3.5), the corresponding element of Rk.G/ is the image ŒR�� 2 Rk.G/ of R� 2 R.G/
under the quotient map. Under the isomorphism (3.3), ŒR�� is sent to the formal characterX

w2Waff

.�1/l.w/ew�`� 2 R
�1.T /: (6.12)

It is easy to determine I .x�/. Let RT
�

denote the Z2-graded representation of T cor-
responding to the numerator of the Weyl character formula for R�; thus RT

�
has characterX

xw2W

.�1/l. xw/e xw.�C�/��:

By the Weyl character formula the characters �.R�jT /, �.RT� / are related by

�.RT� / D �.R�jT / � �.^n�/;
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where ^n� denotes the Z2-graded representation of T with characterY
˛2R�

.1 � e˛/:

In defining the Bott–Thom map, we used a complex structure on g=t such that .g=t/1;0 D
n�. It follows that the image of x� under restriction toU �G, followed by the Bott–Thom
map, is �

.V � ˝RT� ; �
�
˝ idRT

�
; 0/
�
: (6.13)

Applying the Morita morphism AjT Ü AT to (6.13) swaps L2� .…/ for V �. The
Green–Julg map, followed by the assembly map, sends this element to the class of the
C �� .T �…/-module

L2� .…/˝R
T
� (6.14)

in K0.C �� .T �…//, where T Ë…� acts on L2� .…/ (see Remarks 4.6 and 4.7) by

.t; y�/ � f .y�0/ D ��0.t/
�1f .y��1y�0/ D t`�

0

f .y��1y�0/:

Since the formal character of (6.14) is exactly (6.12), we have proven the following.

Proposition 6.4. Let k > 0 and let A be a Dixmier–Douady bundle overG with Dixmier–
Douady class ` D k C h_ 2 Z ' H 3

G.G;Z/. The isomorphism

Rk.G/ ' R
�1.T /Waff-anti;`

intertwines I with the inverse of the Freed–Hopkins–Teleman isomorphism.

Remark 6.5. Without using the Freed–Hopkins–Teleman theorem, the arguments above
show that the map I WKG0 .G;A/! R�1.T /Waff-anti;` is at least surjective.

7. Specialization to geometric cycles

Throughout this section, let A be a G-equivariant Dixmier–Douady bundle over G with
DD.A/ D ` D k C h_ 2 Z ' H 3

G.G;Z/, with k > 0. Let .M; E; ˆ; �/ be a D-cycle
representing the class x D .ˆ;�/�ŒDE � 2 KG0 .G;A/. In this section, we exhibit I .x/ as
the T -equivariant L2-index of a first-order elliptic operator on a non-compact manifold.

7.1. A cycle for the K-homology push-forward

As a first step, we describe an analytic cycle representing x 2 KG0 .G;A/. To put this in
context, one should compare the standard Example 2.2. The result will be a cycle given
in terms of a “Dirac operator” acting on sections of a Clifford module, except that the
module will have an infinite rank (since � has an infinite rank). The action of the C �-
algebra C.A/ plays an essential role in making the result a well-defined analytic cycle.
The construction works more generally, with the target space G being replaced by any
compact Riemannian G-manifold X .
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The push-forward .ˆ;�/�ŒDE � is given by the KK-product Œ� �˝ ŒDE �; see (2.2) and
(2.3). The Hilbert space of the KK-product is described by the following proposition.

Proposition 7.1. There is an isomorphism

C0.�/ y̋ Cl.M/L
2
�
M;Cliff.TM/˝E

�
' L2.M; � ˝E/

of Z2-graded representations of C0.A/.

The proof is essentially the same as for the standard Example 2.2. For the reader’s
benefit, we include a proof in Appendix A.

Recall that � is a right Cliff.TM/-module, and let

cWCliff.TM/! End.�/ (7.1)

denote the action. Let

ycWCliff.TM/! End.�/; yc.v/s D .�1/deg.s/c.v/s; v 2 TM; (7.2)

denote the action with a “twist” coming from the grading. Choose G-invariant Hermitian
connections rE and r� on � , and let r�˝E denote the induced connection on � ˝ E.
Assume moreover that r� is chosen satisfying

r
�
v

�
c.'/s

�
D c.rv'/s C c.'/r�

v sI (7.3)

i.e., r� is a Clifford connection (cf. [11, Definition 3.39]). Such a connection can be
constructed as in the case of a finite-dimensional Clifford module. In short, one constructs
the connection locally and then patches the local definitions together with a partition of
unity. Locally, on U � M one can find a spin structure S spin and � jU ' S spin ˝ � 0 as
Cliff.TM/-modules, with � 0 D HomCliff.TM/.S

spin; � jU /. Using the spin connection on
S spin and any Hermitian connection on � 0 produces a Clifford connection on � jU .

The candidate Dirac-type operator DE acting on smooth sections of � ˝ E is the
composition

�1.�˝E/
r�˝E

����! �1.T �M ˝ �˝E/
g]

��! �1.TM ˝ �˝E/
yc
�! �1.�˝E/: (7.4)

Proposition 7.2. The operator DE defined in (7.4) is essentially self-adjoint. The triple
.L2.M; � ˝E/; �;DE / is an unbounded cycle for an element of KG0 .X;A/.

Proof. The presence of a vector bundle E does not alter the proof, so we set E D C
to simplify notation. The condition that r� is a Clifford connection ensures that D is
symmetric, as for a finite-dimensional Clifford module (cf. [31, Proposition 5.3]). It is
possible to extend certain proofs of the essential self-adjointness of a Dirac operator on a
finite-dimensional vector bundle over a compact manifold quite directly to the case of a
smooth Hilbert bundle; cf. [17, Proposition 1.16] for details.

It suffices to check that for a dense set of a 2 �1.A/, (1) the commutator ŒD; �.a/� is
bounded and (2) the operator �.a/.1C D2/�1 is compact. Since the underlying space X
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is compact, we can find a finite open cover such that for each U in the cover, AjU ' U �

K.H/ for some Hilbert spaceH , � jU 'U � .H ˝F /, with F being a finite-dimensional
vector space, and the action � of AjU on � jU is given by the defining representation of
K.H/ on the first factor inH ˝ F . Using a partition of unity subordinate to the cover, we
can assume that a has support contained in a single U and moreover that a is of the form
a D f b, where f 2 C1c .U / and b 2 K.H/ is a constant operator. For the first assertion,
note that �

D; �.f b/
�
D yc

�
g].df /

�
�.b/C f

�
D; �.b/

�
:

The first term is bounded since f is smooth. The second term is bounded because on U ,
D D D0 CA, where D0 is defined in the same way as D but using the trivial connection on
U (hence ŒD0; �.b/� D 0), and A is a bounded bundle endomorphism.

For the second assertion, it is convenient to assume that b also has a finite constant
rank. The range of the operator .1C D2/�1 is contained in the Sobolev space H2.M; �/

of sections with two derivatives in L2; hence the range of �.a/.1C D2/�1 is contained
in the space f �H2.U; ran.b/˝ F /. It follows that the operator �.a/.1C D2/�1 factors
through the inclusion

f �H2
�
U; ran.b/˝ F

�
,! L2

�
U; ran.b/˝ F

�
:

Since ran.b/˝ F is finite dimensional, the Rellich lemma implies that this inclusion is
compact.

Theorem 7.3. The cycle .L2.M; � ˝ E/; �; DE / represents the class Œ� � ˝ ŒDE � 2

KG0 .X;A/.

The proof is essentially the same as the standard Example 2.2; see Appendix A.

7.2. The Morita morphism AjU Ü AU

Recall from Section 6 that U denotes an N.T /-invariant tubular neighborhood of T in G,
and �T WU ! T denotes the projection map. Let

Y D ˆ�1.U / �M; ˆT D �T ıˆ:

The restriction of the Morita morphism Cliff.TM/Ü ˆ�A to Y is a morphism
Cliff.T Y /Ü ˆ�AjU . Composing with the morphism AjU Ü AU of Section 6 gives
a Morita morphism

V WCliff.T Y /Ü ˆ�AU : (7.5)

The pullback At D exp�AT D t � K.L2� .…// has a canonical T Ë…� -equivariant
Morita trivialization At Ü C given by the A

op
t -module t � L2� .…/

�. Hence we have a
pullback diagram

Y
ˆt
�����! t

qY

??y ??yexp

Y
ˆT
�����! T
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and the pullback of V to Y is a Morita morphism

q�YV WCliff.q�Y T Y / ' Cliff.TY/Ü ˆ�t At: (7.6)

Composing (7.6) with the Morita trivialization of At, we obtain a T Ë…� -equivariant
Morita trivialization

S WCliff.TY/Ü C

or, in other words, a T Ë…� -equivariant spinor module for Cliff.TY/. Thus S is a finite-
dimensional T Ë …� -equivariant Z2-graded Hermitian vector bundle over Y, together
with an isomorphism cWCliff.TY/

�
�! End.S/.

The central circle in …� acts on L2� .…/, S with opposite weight (for the action on
L2� .…/ we use the right regular representation, for which the weight of the central circle
action is �1), and hence the diagonal …� action on L2� .…/˝ S descends to an action of
…. By construction, the ˆ�AU -Cliff.T Y / bimodule V is the quotient

V D
�
L2� .…/˝ S

�
=…: (7.7)

Let ŒV � 2 KKT .C0.AU /; Cl.Y // denote the corresponding KK-element defined by the
pair .ˆjY ;V/. The action of C0.AU / on the right-hand side in (7.7) is as follows. Given
a 2 C0.AU /, the pullback q�Yˆ

�a is a …-invariant map Y ! K.L2.…// and hence acts
on the first factor of L2.…/˝ S by the defining representation for K.L2� .…//. This action
preserves the space of …-invariant sections of L2� .…/ ˝ S and hence descends to an
action � of C0.AU / on C0.V/. The action of Cl.Y / on the right-hand side in (7.7) can be
described in similar terms.

The restriction of the fundamental class ŒD � of M to Y is the fundamental class of Y ,
and we will abuse the notation slightly and denote it by ŒD � also. By functoriality of the
Kasparov product, the image of .ˆ;�/�ŒDE �jU under the Morita morphism AjUÜAU

equals the KK-product

ŒV �˝ ŒDE � 2 KKT
�
C0.AU /;C

�
:

7.3. The Dirac operator on Y

Choose a complete N.T /-invariant Riemannian metric on Y . The Kasparov product
ŒV � ˝ ŒDE � 2 KKT .C0.AU /;C/ is represented by a cycle .H; �; DE / similar to Sec-
tion 7.1, with now H D L2.Y; V ˝ E/. This cycle has an alternate interpretation as
the class represented by a Dirac operator on the covering space Y. The correspondence
between differential operators on Y and Y that we make use of is well known; cf. [48, Sec-
tion 7.5] and [5, 50] for further details.

Proposition 7.4. There is an N.T /-equivariant isomorphism of Hilbert spaces

L2.Y;V ˝E/ ' L2.Y; S ˝E/;

intertwining the Clifford actions and preserving the subspaces of smooth compactly sup-
ported sections. Under this isomorphism, the operator DE in L2.Y;V ˝ E/ corresponds
to the Dirac operator in L2.Y; S ˝E/.
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Proof. Let s 2 C1c .Y; S/ be a smooth compactly supported section of S , and let ı 2
L2� .…/ denote the function

ı.y/ D

´
z if y D z�11�� ;

0 else:

(This element plays the role of the delta function of L2.…/ supported at 1….) Define a
smooth section Qs of the bundle of Hilbert spaces L2� .…/˝ S over Y by “averaging over
…”:

Qs.y/ D
X
�2…

� �
�
ı ˝ s.��1 � y/

�
;

where here we use the fact that… acts onL2� .…/˝S (the summand on the right could also
be written y� � ı˝ y� � s.��1 � y/, for any lift y� 2…� of �). The section Qs is…-invariant and
hence descends to a section of V , which is again smooth and compactly supported. The
map intertwines the L2 norms and hence extends to a unitary mapping. It is clear that the
map intertwines the Clifford actions and hence also the corresponding Dirac operators.

Abusing the notation slightly, we continue to write DE (resp. �) for the Dirac operator
on the covering space Y acting on sections of S ˝E (resp. the representation of C0.AU /

on L2.Y; S ˝E/ induced by the isomorphism in Proposition 7.4).

Corollary 7.5. The product ŒV �˝ ŒDE � is the class ŒDE � represented by the triple�
L2.Y; S ˝E/; �;DE

�
:

7.4. The Bott–Thom map

Recall that we chose a complex structure on t? such that .t?/1;0 D n�; thus the complex
weights of the T -action on t? in the adjoint representation are the negative roots. The
Bott–Thom class Œˇ� 2 K0T .t

?/ is represented by the triple .C0.t?/˝^n�; �; ˇ/, where
ˇW t?! End.^n�/ is the bundle endomorphism given at � 2 t? by the Clifford action of
� on the spinor module ^n� for Cl.t?/.

Choose a diffeomorphism B�.t?/
�
�! t? which we use to pull the Bott element back

to an element of K0T .B�.t
?//. Taking the external product with the identity element in

KKT .C.AT /; C.AT // and using the isomorphism

C0.AU / ' C0
�
B�.t?/

�
˝ C.AT /;

we obtain an invertible element, still denoted by Œˇ�, in the group

KKT
�
C.AT /; C0.AU /

�
:

The Bott–Thom isomorphism KKT .C0.AU /;C/
�
�! KKT .C.AT /;C/ is given by Kas-

parov product with this element.
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The next step is to describe a cycle representing the product

Œˇ�˝ ŒDE � 2 KKT
�
C.AT /;C

�
:

We studied a similar product in [35, Section 4.7], and we simply state the result. The
operator DE is extended to sections of ^n� y̋S ˝ E (we use the same symbol for the
extension) such that

DE .˛ y̋ �/ D .�1/deg.˛/˛ y̋DE�;

whenever ˛ 2^deg.˛/n� is constant and � is a section of S y̋E. The product is represented
by the triple �

L2.Y;^n� y̋S ˝E/; � ı �
�
T ;D

E
ˇ

�
; DEˇ D DE C ˇY ;

where ˇY is the pullback, via the map

Y
�
�! Y

ˆ
�! U ' T � B�.t?/ ' T � t?

pr2
��! t?;

of the odd bundle endomorphism ˇW t? ! End.^n�/ described above.

7.5. The analytic assembly map and the index

In [35, Section 4.7], we verified that the operator DE
ˇ
D DE C ˇY is T -Fredholm; i.e., the

multiplicity of each irreducible representation of T in theL2-kernel ker.DE
ˇ
/ is finite. Thus

DE
ˇ

has a well-defined “T -index” denoted by index.DE
ˇ
/ 2R�1.T /; see [35, Section 2.5].

Via the isomorphism

KKT
�
C.AT /;C

�
' KKTË…�

�
C0.t/;C

�
.1/
;

the element ŒDE
ˇ
� is identified with an element ŒDE

ˇ
� 2 KKTË…� .C0.t/;C/.1/.

Proposition 7.6. The image of the class ŒDE
ˇ
� under the composition

KKTË…�
�
C0.t/;C

�
.1/

�TË…�

�����! KK
�
C; C �� .T �…/

�
' R�1.T /`…

is the formal character index.DE
ˇ
/.

Proof. LetN D T Ë…� . LetH DL2.Y;^n� y̋S ˝E/ and let H be the Hilbert C �.N /-
module obtained as the completion of Cc.t/H with respect to the norm defined by the
C �.N /-valued inner product

.s1; s2/C�.N/.n/ D .s1; n � s2/L2

as in Section 4.5. This inner product takes values in the ideal C �.N /.1/ � C �.N /. Let
�WR! Œ�1; 1� be a smooth normalizing function; that is, � is an odd function, �.t/ > 0
for t > 0, and limt!˙1 �.t/ D ˙1. We can moreover choose � to have compactly sup-
ported Fourier transform. The operator F D �.DE

ˇ
/ is then a bounded, properly supported
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operator on H , with the same T -index as DE
ˇ

; see [25, Chapter 10]. F preserves the sub-
space Cc.t/H , and its restriction extends to a bounded operator F on H . The image of
ŒDE
ˇ
� under the analytic assembly map �N is the class in K0.C �.N /.1// represented by

the pair .H ;F /.
Recall that the ideal C �.N /.1/ is isomorphic to a finite direct sum of copies of the

compact operators on L2.…/:

C �.N /.1/ '
M

Œ��2…�=`…

K
�
L2
�
Œ��
��
; (7.8)

where Œ�� � …� is viewed as a coset of the action of `… on …�. There is in particular a
faithful representation

�WC �.N /.1/ ! K
�
L2.…�/

�
with image being the block diagonal subalgebra (7.8) of K.L2.…�//. For s1; s2 2Cc.t/H ,
a short calculation shows that

Tr
�
�.f /

�
D .s1; s2/L2 ; f D .s1; s2/C�.N/: (7.9)

The norm of an element f 2 C �.N /.1/ is equal to the operator norm of �.f /. Thus for
s 2 Cc.t/H , its norm in H is k�.f /k1=2, where f D .s; s/C�.N/. Using (7.9) and since
f is a positive element, one has k�.f /k � Tr.�.f // D ksk2

L2
. It follows that H ,! H

and corresponds to the subspace of s 2 H such that �.f / is a trace class, where f D
.s; s/C�.N/.

The Hilbert C �.N /.1/-module H splits into a finite direct sum:

H D
M

Œ��2…�=`…

HŒ��; HŒ�� D H �K
�
L2
�
Œ��
��
;

with HŒ�� being a Hilbert K.L2.Œ��//-module. The operator F commutes with the
C �.N /.1/ action, hence preserves this decomposition, and induces a generalized Fred-
holm operator FŒ�� on each HŒ��. By the strong Morita equivalence K.L2.Œ��// � C, any
countably generated Hilbert K.L2.Œ��//-module can be realized as a direct summand of
K.V /, for some V . The generalized Fredholm operator FŒ�� can be extended by the iden-
tity to K.V /, giving a generalized Fredholm operator FV on K.V /.

Let V be an infinite-dimensional Hilbert space and K.V / the compact operators. When
K.V / is viewed as a right Hilbert K.V /-module, the space of (bounded) adjointable oper-
ators is naturally identified with B.V / acting by left multiplication, while the space of
generalized compact operators is K.V / � B.V / [56]. Thus the generalized Fredholm
operators, in the sense of Hilbert modules, on K.V /, are precisely the operators given
by left multiplication by a Fredholm operator on V in the ordinary sense. It follows from
Atkinson’s theorem that a generalized Fredholm operator FV on K.V / has a closed range.
If FV is left multiplication by FV 2 B.V /, then ran.F /DK.V; ran.FV //while ker.F /D
K.V; ker.FV //. As ker.FV / is finite dimensional, K.V; ker.FV // ' V ˝ ker.FV / is a fi-
nitely generated, projective K.V /-module, and also a Hilbert space; moreover, the Hilbert
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space inner product is given by the composition of the K.V /-valued inner product with
the trace.

By the above generalities, the generalized Fredholm operator FŒ�� on HŒ�� must have
closed range, and hence the same is true for F . Moreover,

�N
�
ŒDEˇ �

�
D
�

ker.F C/
�
�
�

ker.F �/
�
2 K0

�
C �.N /.1/

�
;

with ker.F ˙/ being Hilbert spaces, with the inner product given by the composition of the
K.L2.…�//-valued inner product with the trace. But the latter agrees with the L2-inner
product in H by (7.9); hence ker.F ˙/ � H . On H , the operator F coincides with F , so
this completes the proof.

Corollary 7.7. Let ` > 0 and let A be a Dixmier–Douady bundle onG with DD.A/D ` 2
Z'H 3

G.G;Z/. Let x D .ˆ;�/�ŒDE � 2 KG0 .G;A/ be the class represented by a D-cycle
.M;E;ˆ; �/. The formal character I .x/ 2 R�1.T /Waff-anti;` is given by the T -index of
a first-order elliptic operator DE

ˇ
acting on sections of a vector bundle ^n� y̋S ˝E over

the space Y D t �T ˆ
�1.U /, where U � T is a tubular neighborhood of the maximal

torus.

7.6. Application to Hamiltonian loop group spaces

A proper Hamiltonian LG-space .M; !M; ˆM/ is a Banach manifold M with a smooth
action of LG, equipped with a weakly non-degenerate LG-invariant closed 2-form !M

and a proper LG-equivariant map

ˆMWM! Lg�;

satisfying the moment map condition

�.�M/!M D �d hˆM; �i; � 2 Lg:

A level k prequantization of M is an LGbas-equivariant prequantum line bundle L!M,
such that the central circle inLGbas acts with weight k. See, for example, [1,41] for further
background on Hamiltonian loop group spaces.

The subgroup �G � LG acts freely on M; hence the quotient M D M=�G is a
smooth finite-dimensional G-manifold fitting into a pullback diagram

M
ˆM
�����! Lg�??y ??y

M
ˆ

�����! G;

(7.10)

where the vertical maps are the quotient maps by �G. The quotient M is a quasi-
Hamiltonian (or q-Hamiltonian) G-space, and the pullback diagram above gives a one-
one correspondence between proper Hamiltonian LG-spaces and compact q-Hamiltonian
G-spaces [1].
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Let G be compact and connected. It was shown in [2] (see [34] for a simpler con-
struction) that every q-Hamiltonian G-space gives rise, in a canonical way, to a D-cycle
.M;C; ˆ; �spin/ for KG0 .G;A/ for a suitable Dixmier–Douady bundle A over G; the
Morita morphism �spin is referred to as a twisted spin-c structure in [2, 34, 40]. For G
simple and simply connected, the Dixmier–Douady class of A is h_ 2 Z ' H 3

G.G;Z/,
and we denote it by A.h_/. We will assume that G is simple and simply connected below.

A level k prequantization [40] of a q-Hamiltonian space is a Morita morphism

EWCÜ ˆ�A.k/;

where DD.A.k//D k 2 Z'H 3
G.G;Z/. Isomorphism classes of level k prequantizations

E of M are in one-one correspondence with isomorphism classes of level k prequantum
line bundles L over M; see [40, 49] and references therein.

Let � D �spin ˝ E; then .M;C; ˆ; �/ is a D-cycle for KG0 .G;A
.kCh_//. The level k

quantization of .M; E/ was defined by Meinrenken in [40] as the image of the D-cycle
.M;C; ˆ; �/ in the analytic twisted K-homology group:

.ˆ; �/�ŒD � 2 KG0 .G;A
.kCh_//: (7.11)

In light of the Freed–Hopkins–Teleman theorem, as well as the one-one correspondence
between q-Hamiltonian G-spaces and Hamiltonian LG-spaces, it would seem reasonable
to define the level k “quantization” of the prequantized loop group space .M;!M;ˆM;L/

as the element ofRk.G/ corresponding to .ˆ;�/�ŒD � under the Freed–Hopkins–Teleman
isomorphism. This definition satisfies many desirable properties. For example, the quanti-
zation of a prequantized integral coadjoint orbit is the corresponding irreducible positive
energy representation. Also, the definition satisfies a “quantization commutes with reduc-
tion” principle; see [40].

In [35], building on constructions in [34], we suggested an alternative definition of
the quantization of a Hamiltonian loop group space in terms of the T -equivariant L2-
index of a Dirac-type operator on a non-compact spin-c submanifold of M. The latter
submanifold and operator can be identified, respectively, with the manifold Y and the
operator Dˇ that we discussed in Section 7; see [35] for details. As mentioned earlier,
we proved in [35, Section 4.7] that Dˇ has a well-defined T -equivariant L2-index, with
formal character lying in R�1.T /Waff-anti;.kCh_/, and proposed that the quantization of M

be defined as the corresponding element of the Verlinde ringRk.G/. The following is now
an immediate consequence of Corollary 7.7 and Proposition 6.4.

Corollary 7.8. The two definitions of the quantization of M agree; that is, under the iden-
tificationR�1.T /Waff-anti;.kCh_/'Rk.G/, the T -equivariant L2-index.Dˇ / coincides with
the image of .ˆ; �/�ŒD � 2 KG0 .G;A

.kCh_// under the Freed–Hopkins–Teleman isomor-
phism.

Our principal motivation in [35] was to give a definition amenable to study with the
Witten deformation/non-abelian localization, and using this to obtain a new proof of the
quantization-commutes-with-reduction theorem for Hamiltonian loop group spaces. This
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was mostly carried out in [36] (combined with certain results of [32] or [33]). Thus a
consequence of Corollary 7.8 is that this new proof applies also to Meinrenken’s [40]
definition (7.11).

A. A KK-product

In this appendix, we use the same notation as Section 7: .M;E;ˆ; �/ is a D-cycle repre-
senting a class x D Œ� �˝ ŒDE � 2 KG0 .X;A/. We provide proofs of two results that were
omitted. These results are well known at least in the case of a finite-rank Clifford module,
as in the standard example (Example 2.2), and the proofs are essentially the same as that
case. The first is Proposition 7.1, which we restate here for the reader’s convenience.

Proposition A.1. There is an isomorphism

C0.�/ y̋ Cl.M/L
2
�
M;Cliff.TM/˝E

�
' L2.M; � ˝E/

of Z2-graded representations of C0.A/.

Proof. Let C0.�/ ˇCl.M/ L
2.M; Cliff.TM/ ˝ E/ denote the algebraic graded tensor

product of Cl.M/-modules. Define a pre-inner product on

C0.�/ˇCl.M/ L
2
�
M;Cliff.TM/˝E

�
by the formula

hs1 ˇ '1; s2 ˇ '2i D
�
'1; .s1; s2/Cl.M/ � '2

�
L2
; (A.1)

where .s1; s2/Cl.M/ denotes the Cl.M/-valued inner product of the right Hilbert Cl.M/-
module C0.�/, and .�; �/L2 denotes the ordinary Hilbert space inner product on
L2.M; Cliff.TM/ ˝ E/. Dividing by elements of length 0 for the corresponding norm
and then completing, we obtain a Hilbert space, usually denoted by

C0.�/˝Cl.M/ L
2
�
M;Cliff.TM/˝E

�
:

Using the action of Cliff.TM/ on � , there is a map

C0.�/ˇCl.M/ L
2
�
M;Cliff.TM/˝E

�
! L2.M; � ˝E/

with dense range. The map intertwines (A.1) with the inner product on L2.M; � ˝ E/
and hence extends to an isomorphism from the completion to L2.M; � ˝E/.

Kasparov’s fundamental class ŒD � 2 KKG.Cl.M/;C/ is the class defined by the oper-
ator D D d C d� in the Hilbert space L2.M;^T �M/ (cf. [28, Definition 4.2]). Identify
TM ' T �M using the Riemannian metric. In terms of a local orthonormal frame ei ,
i D 1; : : : ; dim.M/, the operator d C d� is given byX

i

�
�.ei / � �.ei /

�
rei ;
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where r is the Levi-Civita connection and �.v/ denotes the exterior multiplication by v
[31, Lemma 5.13]. There is a (unique) isomorphism of left Cliff.TM/-modules

Cliff.TM/! ^T �M

which sends 1 to 1 and intertwines the left multiplication on Cliff.TM/ by v 2 TM with
�.v/C �.v/ 2 End.^T �M/. Under this isomorphism, �.v/ � �.v/ 2 End.^T �M/ corre-
sponds to the endomorphism Ov of Cliff.TM/ given by (cf. [24, Sections 1.11 and 1.12])

Ov' D .�1/deg.'/'v:

Note that Ov2 D �kvk2. Hence, under the isomorphism above, D D d C d� corresponds
to the operator in L2.M;Cliff.TM// given in terms of a local orthonormal frame by the
expression X

i

yc.ei /rei : (A.2)

More invariantly, the operator D (viewed as an operator in L2.M;Cliff.TM//) is given
by the composition

�1
�

Cliff.TM/
� r
��! �1

�
T �M ˝ Cliff.TM/

� yc
�! �1

�
Cliff.TM/

�
:

Recall from Section 7 that the candidate Dirac operator DE acting on smooth sections
of � ˝E is the composition

�1.� ˝E/
r�˝E

����!�1.T �M ˝�˝E/
g]

��!�1.TM ˝�˝E/
yc
�!�1.�˝E/: (A.3)

Theorem A.2. The cycle .L2.M; � ˝ E/; �; DE / represents the class Œ� � ˝ ŒDE � 2

KG0 .X;A/.

Proof. The presence of a vector bundle E does not alter the proof, so we set E D C to
simplify the notation. We have shown that the triple .L2.M;�/; �;D/ represents a class in
KG0 .X;A/ (see Proposition 7.2) with the correct Hilbert space and representation. Thus it
suffices to check the product criterion in the unbounded KK-theory [30], which involves
checking a “connection condition” and a “semi-boundedness condition.” The semi-bound-
edness condition is automatically satisfied, because the operator in the triple representing
Œ� � is 0.

For s 2 C0.�/, let Ts denote the map

' 2 L2
�
M;Cliff.TM/

�
7! s ˝ ' 2 C0.�/˝Cl.M/ L

2
�
M;Cliff.TM/

�
:

The “connection condition” says that, for a dense set of s 2 C0.�/, the operators

D ı Ts � .�1/deg.s/Ts ıD ; T �s ı D � .�1/
deg.s/D ı T �s (A.4)

extend to bounded operators from L2.M; Cliff.TM// to L2.M; �/. To verify this, let
' 2 �1.Cliff.TM//.



Geometric K-homology and the Freed–Hopkins–Teleman theorem 115

From Proposition A.1,

C0.�/˝Cl.M/ L
2
�
M;Cliff.TM/

�
' L2.M; �/; (A.5)

and
Ts.'/ D c.'/s:

Calculating in terms of a local orthonormal frame and using (7.3), we have

D ı Ts.'/ D
X
i

yc.ei /r�
ei

�
c.'/s

�
D .�1/deg.s/Cdeg.'/

X
i

c.ei /r�
ei

�
c.'/s

�
D .�1/deg.s/Cdeg.'/

X
i

c.ei /c.rei'/s C c.ei /c.'/r�
ei
s:

The second term is bounded (in '). For the first term, recall that c is a right action; hence

.�1/deg.'/c.ei /c.rei'/ D .�1/
deg.'/c

�
.rei'/ei

�
D c. Oeirei'/:

Thus, using (A.2), the first term is

.�1/deg.s/c.D'/s D .�1/deg.s/Ts ıD.'/:

The argument for T �s is similar.
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