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Quantum Euclidean spaces with noncommutative
derivatives

Li Gao, Marius Junge, and Edward McDonald

Abstract. Quantum Euclidean spaces, as Moyal deformations of Euclidean spaces, are the model
examples of noncompact noncommutative manifold. In this paper, we study the quantum Euclidean
space equipped with partial derivatives satisfying canonical commutation relation (CCR). This gives
an example of semifinite spectral triple with nonflat geometric structure. We develop an abstract
symbol calculus for the pseudo-differential operators with noncommuting derivatives. We also ob-
tain a local index formula in our setting via the computation of the Connes–Chern character of the
corresponding spectral triple.

1. Introduction

The theory of pseudo-differential operators (‰DOs) plays an influential role in the index
theory of elliptic operators. This approach also prevails in noncommutative geometry. In
[13], Connes and Moscovici established the local index formula for spectral triples, which
gives an analytic expression for the index pairing between K-theory of noncommutative
algebras and the K-homology class induced by a Dirac-type operator. This local index
formula was extended to the locally compact (i.e., nonunital) setting by Carey, Gayral,
Rennie, and Sukochev [9]. In both proofs of the local index formula [9, 13], an abstract
theory of ‰DOs is crucial to the analysis. On the prototypical example of a noncom-
mutative geometry–quantum tori, pseudo-differential operators have been widely used in
studying curvatures and other geometric structures (see, e.g., [2, 14–16, 28]). Recently
several works [22, 23, 30, 43] give detailed accounts of the symbol calculus for ‰DOs on
quantum tori.

Quantum Euclidean spaces are model examples of noncommutative spaces in the
locally compact setting, and can be viewed as locally compact counterparts of quantum
tori. They are noncommutative deformations of Euclidean spaces which originate from the
Heisenberg relation and Moyal products in quantum mechanics. Let � D .�jk/dj;kD1 be a
skew-symmetric d � d matrix. Roughly speaking, a d -dimensional quantum Euclidean
space is given by the von Neumann algebra R� generated by the spectral projections of d
self-adjoint operators x1; : : : ; xd satisfying the canonical commutation relation (CCR)

Œxj ; xk � D �i�jk :
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We will review a rigorous definition of R� in Section 2. Despite having a relatively
simple algebraic structure (a type I von Neumann algebra) the connection to Euclidean
spaces and quantum physics make them indispensable in various scenarios. For example,
from the perspective of harmonic and functional analysis, Calderón–Zygmund theory and
pseudo-differential operator theory on quantum Euclidean spaces were established in the
recent article [19] and the theory of distributions goes back to [20, 44]. In noncommuta-
tive geometry, quantum Euclidean spaces serve as model examples for nonunital spectral
triples [18]. In mathematical physics, noncommutative Euclidean spaces have been heav-
ily studied under the name of CCR algebras [5, Section 5.2.2.2] and in the context of Weyl
quantization [24, Chapter 14], [42, Chapter 2, Section 3]. Also, the discovery of instantons
on noncommutative R4 makes an influential connection to string theory [11, 36, 40].

In this paper, we revisit the connection between ‰DOs and the local index formula
for quantum Euclidean spaces. Both topics have been considered for R� , with its standard
geometric structure. Recall that R� is associated with a Weyl quantization map, defined
for functions in the Schwartz class S.Rd / as

�� W f 2 S.R
d / 7!

1

.2�/d

Z
Rd

Of .�/�� .�/ d� 2 R� ;

where �� .�/ D e�1x1C���C�dxd ; � 2 Rd is a projective unitary representation of Rd ,

�� .�/�� .�/ D e
i
2������ .� C �/

(see Section 2 for further details). The canonical trace associated to R� is defined on
the image of S.Rd / under �� as �� .�� .f // D

R
f . Differentiation operators @

@xj
admit a

canonical extension to R� , defined on �� .S.Rd // byDj�� .f / D �� .�i @
@xj
f /. The oper-

atorsDj have self-adjoint extensions to the Hilbert–Schmidt spaceL2.R� ; �� /. Since par-
tial differentiation operators on S.Rd / commute, it follows immediately that ŒDj ;Dk �D 0
for 1 � j; k � d . The fact that these partial derivatives mutually commute reflects a “flat”
geometry of R� .

The scope of this paper is to consider a more general but still computable differential
structure on R� . More precisely, we shall equip R� with “covariant derivatives” �1; : : : ; �d
satisfying (another) CCR relation. Unlike the standard case

Œxj ; xk � D �i�j;k ; ŒDj ; xk � D �iıj;k ; ŒDj ;Dk � D 0; (1.1)

we consider that xj ’s and �k’s together have the commutation relations

Œxj ; xk � D �i�j;k ; Œ�j ; xk � D �iıjk ; Œ�j ; �k � D �i�
0
jk ; (1.2)

where ı is the Kronecker delta notation and � 0 is an arbitrary but fixed skew-symmetric
matrix. In the classical case, when � D 0 and R0 D L1.Rd /, such �j ’s are covariant
derivatives of connections with a constant curvature form (see Section 4.1). From this
perspective, (1.2) can be viewed as a natural deformation of (1.1) by adding a nonzero cur-
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vature form. From the perspective of quantum physics, noncommuting derivatives occur in
the presence of a magnetic field [1]. One can view the matrix � 0 as representing a constant
magnetic field on R� . The noncommutativity of the covariant derivatives �j adds an essen-
tial difficulty in developing the theory of ‰DOs. When � 0 D 0, the commutativity ofDj ’s
makes the phase space (or the Fourier transform side) a commutative space, and then the
symbol of a‰DO is an operator-valued function a WRd !R� . In our setting for noncom-
muting �j ’s, the symbol will become purely abstract as operators affiliated to R� ˝ R0

�
.

Moreover, due to the unbounded nature of symbol functions, we have to inevitably deal
with unbounded but smooth elements. The idea of incorporating noncommuting deriva-
tives into pseudo-differential calculus has also appeared in the related context of magnetic
pseudo-differential calculus [34, 35].

We now briefly explain our setting and illustrate the main results. Let R� x̋ R0
�

be the
2d -dimensional quantum Euclidean space generated by the relations

Œxj ; xk � D �i�j;k ; Œ�j ; �k � D �i�
0
j;k ; Œxj ; �k � D 0

and let R‚ be the 2d -dimensional space generated by (1.2) with parameter matrix ‚ D� � Id
�Id � 0

�
. We will consider a pseudo-differential calculus defined with symbols as opera-

tors affiliated to R� x̋ R0
�

and the ‰DOs themselves are operators affiliated to R‚. The
operator or quantization map “Op” sending symbols to ‰DOs is simple: for a 2 R� ,
b 2 R� 0

Op.a˝ b/ D ab 2 R‚; (1.3)

where R� ;R
0
�

are viewed as subalgebras of R‚. The domain of Op can be extended to the
following abstract symbol class.

� We say an operator a affiliated to R� x̋ R� 0 is a symbol of order m (write as a 2 †m)
if for any multi-indices ˛ and ˇ, D˛

xD
ˇ

�
.a/.1C

P
j �

2
j /
�
mCjˇ j
2 extends to a bounded

operator in R� x̋ R� 0 .

Here Dx are the canonical (commuting) differentiation operators acting on the first com-
ponent R� and D� are the same for R� 0 . A priori it is not clear that this definition is
closed under multiplication, and adjoint, or whether we have the expected properties
†m � †n D †mCn and .†m/� D †m, which are important components for the devel-
opment of a symbol calculus. To resolve that, we introduce in Section 3 a notation of
“asymptotic degree” to measure the unboundedness of operators affiliated to R� . This is a
notion directly inspired by the abstract pseudo-differential calculus developed by Connes
and Moscovici [13, Appendix B] and Higson [25]. With this definition of symbol class, we
establish in Section 4 the two core parts of‰DOs calculus—theL2-boundedness theorem
for 0-order ‰DOs and the composition formula.

Theorem 1.1 (cf. Theorem 4.12). Let a be a symbol of order 0 (i.e., a 2 †0). Then
Op.a/, initially defined on �‚.S.R2d //, has unique extension to a bounded operator on
the Hilbert space L2.R‚/.
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Theorem 1.2 (cf. Theorem 4.14). Let a be a symbol of order m and b a symbol of order
n. Then Op.a/Op.b/ D Op.c/ for some symbol c of order mC n. Moreover,

c �
X
˛

i j˛j

˛Š
D˛
� .a/D

˛
x .b/

in the sense that for any positive integer N , c �
P
j˛j�N

i j˛j

˛Š
D˛
�
.a/D˛

x .b/ is a symbol of
order mC n �N � 1.

The proofs of the above theorems use the idea of co-representation maps. The co-
representation maps enable us to convert the operator map Op to an operator-valued
classical operator map on the Rd . In particular, this gives an alternative approach to some
parts of symbol calculus in [19] for � 0 D 0.

In Section 5, we apply the ‰DO calculus proving that�
W 1;1.R� /; L2.R‚/˝CN ;D D

X
j

�j ˝ cj

�
(1.4)

forms a semifinite nonunital spectral triple (in the sense of [9, Definition 2.1]). Here, cj
are generators of the Clifford algebra Cld and W1;1.R� / D ¹ajD˛.a/ 2 L1.R� / 8˛º is
the noncommutative Sobolev spaces. We denote by W1;1.R� /� D W1;1.R� /C C the
minimal unitalization. The triple in (1.4) forms a smoothly summable semifinite spectral
triple with isolated spectrum dimension (see Section 5 for further details). We are able to
apply the even case of the local index formula in [9, Theorem 3.33], yielding the following.

Theorem 1.3 (cf. Corollary 5.10). Let d be even and R� a d -dimensional quantum
Euclidean space. Then .A; H; D/ WD .W1;1.R� /; L2.R‚/ ˝MN ;

P
j �j ˝ cj / is an

even, smoothly summable, semifinite spectral triple with isolated spectrum dimension.
Moreover, for a projection e 2Mn.W

1;1.R� /
�/, the index pairing is given by˝

Œe� � Œ1e�; .A;H;D/
˛

D �
d
2

 
�� ˝ tr

�
.e � 1e/

!
d
2

d
2
Š

�
C

d
2X

mD1

1

2mŠ
�� ˝ tr

�
e.de/2m

!
d
2�m

.d
2
�m/Š

�!
;

where ! D i
2

P
j;k �

0
j;k
cj ck .

Note that the Dirac Laplacian has square given by

D2
D

�X
j

�j ˝ cj

�2
D

X
j

�2j � !;

where ! plays the role of a curvature form in the index pairing. One direct application of
the above index formula is Theorem 5.12, in which we prove that for d D 2, the noncom-
mutative analog of Bott projection is a generator of the K0-group of R� for all � .
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The general local index formula in [9, 13] contains residue cocycles which involve
higher-order residues at z D 0 for zeta functions

�k.z/ D tr
�
a0da

.k1/
1 � � � da.km/m .1CD2/�

m
2 �k�z

�
;

where
aj 2 A; da D ŒD; a�; da.k/ WD

�
D2;

�
D2; : : : ; ŒD2„ ƒ‚ …
k-times

; da�
��
:

For compact spin Riemannian manifolds, it was observed in [13] and fully proved by
Ponge [37] that the above zeta functions only has nonzero residue for jkj D 0 and the
poles are simple, which recovers the Atiyah–Singer index theorem for spin Dirac opera-
tors. Theorem 1.3 shows that R� , as a noncommutative deformation of Euclidean space
Rd , enjoys the same simplified index formula as a manifold. This result suggests that there
should be a class of “mild” noncommutative spectral triples whose index pairing behaves
as classical cases. It would be interesting to find a criterion for such “mild” noncommuta-
tive manifolds as well as theK-theory meaning behind it. Nevertheless, this is beyond the
scope of this paper, and our work can be viewed as an invitation to such a study.

The paper is organized as follows: we first review some preliminary facts about quan-
tum Euclidean spaces in Section 2. Section 3 introduces and discusses the notation “as-
ymptotic degree,” which is a key tool in the subsequent discussions. In Section 4, we
discuss the symbol calculus of ‰DOs and prove Theorems 1.1 and 1.2. Section 5 is
devoted to the local index formula and Theorem 1.3.

2. Preliminaries on quantum Euclidean spaces

In this section, we review the basic structures of Quantum Euclidean spaces. Quantum
Euclidean spaces in the literature have been studied under several different names: Moyal
planes [18, 20, 44], CCR algebras [4, Section 5.2.2.2], noncommutative Euclidean Spaces
[17,32] and quantum Euclidean spaces [19]. In particular, [4] gives a detailed account from
the operator theoretic perspective. The distribution theory was studied in [20, 44]. More
recently, González-Pérez, Junge, and Parcet [19] studied harmonic analysis on quantum
Euclidean spaces. From the noncommutative geometric perspective, an early exposition is
in [18].

2.1. Definitions and notations

Throughout the paper, we use the usual letters x1; x2; : : : and �1; �2; : : : for operators and
the boldface letters x D .x1; x2; : : : ; xd /; � D .�1; �2; : : : ; �d / for vectors and scalars.
Let d � 2 and let � D .�jk/dj;kD1 be a real skew-symmetric d � d matrix. Let �.Rd / be
the space of complex Schwartz functions (smooth, rapidly decreasing) on Rd . The Moyal
product ?� associated to � is defined as (see [38])

f ?� g.x/ WD .2�/�d
Z

Rd

Z
Rd

f

�
xC

�

2
v
�
g.x � w/eiv�w dv dw; f; g 2 �.Rd /:
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The Moyal product is bilinear, associative, and reversed under complex conjugation
Nf ?� Ng D g ?� f , which makes .�.Rd /; ?� / a �-algebra. The left Moyal multiplication

gives the following �-homomorphism �� W .�.R
d /; ?� /! B.L2.Rd //,

�� .f /g D f ?� g; �� .f /�� .g/ D �� .f ?� g/: (2.1)

Definition 2.1. The quantum Euclidean space associated to � is given by the following
objects in B.L2.Rd //:

(i) �� WD �� .�.R
d // as the quantized Schwartz class;

(ii) E� WD �
k�k

�
as the C �-algebra generated by �� ;

(iii) R� WD .�� /
00 as the von Neumann algebra generated by �� .

When � D 0, ?0 is the usual pointwise multiplication, E0 D C0.Rd / is the space of
continuous functions on Rd which vanish at infinity, and R0 D L1.Rd / is the space
of essentially bounded functions on Rd . The algebra E� is identical to a deformation
quantization of C0.Rd / as defined by Rieffel [38]. An equivalent approach to defining R�
is to consider the � -twisted regular representation of the group Rd on L2.Rd /. For each
vector � 2 Rd , we define the unitary operator �� .�/ on L2.Rd /,�

�� .�/g
�
.x/ D ei��xg

�
x �

�

2
�
�
: (2.2)

The family of operators ¹�� .�/º�2Rd satisfies the commutation relation

�� .�/�� .�/ D e
i
2������ .� C �/ D e

i������ .�/�� .�/

for all �; � 2 Rd . The map �� W Rd ! B.L2.Rd // is a projective unitary representation
of Rd called the twisted left regular representation. The Moyal multiplication (2.1) for
.S.Rd /; ?� / can also be formulated via quantized Fourier transform

�� .f / D
1

.2�/d

Z
Rd

Of .�/�� .�/d�; f 2 �.Rd /:

Here Of .�/ D
R

Rd f .x/e�ix�� dx is the Fourier transform of f and the integral converges
in operator norm. Let uj .t/ D �� .0; 0; : : : ; t; : : : ; 0/ be the one parameter unitary group
associated to the j th coordinate. The generator xj of uj .t/ satisfying uj .t/ D eixj t is the
self-adjoint operator given by

.xjg/.x/ D xjg.x/C
i

2

X
k

�jk
@g

@xk
.x/:

The d -tuple .x1; : : : ;xd / consists of d self-adjoint operators onL2.Rd / having a common
core �.Rd / which satisfy the CCR relation Œxj ; xk � D �i�jk on �.Rd /. The operators
¹xj º

d
jD1 are affiliated with the von Neumann algebra R� in the usual sense that their

spectral measures consist of projections in R� . The projective unitary representation � !
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�� .�/ can be recovered formally from .x1; : : : ; xd / using the Baker–Campbell–Hausdorff
formula; i.e.,

�� .�/ WD e
i.�1x1C���C�dxd / D e�

i
2

P
j<k �jk�j �kei�1x1 � � � ei�dxd ; � 2 Rd :

The family of generators .x1; : : : ; xd /, unitaries �� .�/, and the quantized Schwartz class
¹�� .f / W f 2 �.Rd /º all represent equivalent formulations of quantum Euclidean spaces.
We will use them interchangeably in the paper.

2.2. The Stone–von Neumann theorem

We say that two self-adjoint operators P;Q satisfy the Heisenberg relation ŒP;Q� D �iI
if for any s; t 2 R,

eisP eitQ D eisteitQeisP :

The well-known Stone–von Neumann theorem states that any irreducible representa-
tions of ŒP;Q�D�iI are unitarily equivalent to the 1-dimensional Schrödinger represen-
tation given by

Pf D �i
df

dx
; .Qf /.x/ D xf .x/; f 2 �.R/:

Here P;Q are unbounded self-adjoint operators on L2.R/ and the one-parameter unitary
groups are

.eitPf /.x/ D f .xC t /; .eisQf /.x/ D eisxf .x/I (2.3)

see, e.g., [24, Chapter 14]. The Stone–von Neumann theorem extends to n pairs of Heisen-
berg relations that mutually commute; i.e.,

ŒPj ;Qk � D

´
�iI; if j D k;

0; if j ¤ k;
ŒPj ; Pk � D ŒQj ;Qk � D 0; 8j; k: (2.4)

The following is Theorem 14.8 in [24].

Theorem 2.2 (Stone–von Neumann theorem). Suppose that P1; : : : ; Pn and Q1; : : : ;Qn
are self-adjoint operators onH satisfying the CCR relations (2.4). ThenH can be decom-
posed as an orthogonal direct sum of closed subspaces ¹Hj º satisfying that

(i) each Hl is invariant under eitPj and eitQj for all j and t ,

(ii) there exist unitary operators Ul W Hl ! L2.Rd / such that

UlPjU
�
l f D �i

@

@xj
f; .UlQjU

�
l f /.x/ D xjf .x/: (2.5)

The above theorem says that any representation of (2.4) is a finite or infinite direct
sum of the n-dimensional Schrödinger representation on L2.Rn/. When d D 2n is even-
dimensional, this gives the standard noncommutative case for R� that � D

�
0 �In
In 0

�
, where

In is the n-dimensional identity matrix. In this case, E� ŠK.L2.R
n// the compact opera-

tors and R� ŠB.L2.R
n//. The following proposition gives a change of variables between

R� ’s with different � .
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Proposition 2.3. Let T D .Tjk/dj;kD1 be a real invertible matrix and T t its transpose. Let
� and z� be two skew-symmetric matrices such that z� D T �T t . Then the map ˆT :

ˆT
�
�z� .�/

�
D �� .T

t�/; ˆT
�
�z� .f /

�
D �� .f ı T /;

extends to a �-isomorphism from Ez� to E� and a normal �-isomorphism from Rz� to R� .

Proof. Define the operator UT on L2.Rd / as follows:

.UT f /.x/ D f .T �1x/;

where UT is bounded and invertible with kUT k D jdet.T /j
1
2 and .UT /�1 D UT�1 . For

any Schwartz function f , one verifies that�
U�1T �z� .�/UT f

�
.x/ D ei��T xf

�
T �1

�
T xC

1

2
z��
��
D ei.T

t�/�xf
�

xC
1

2
�T t�

�
D �� .T

t�/f .x/:

Then it is clear that U�1T �z�UT D �� . Since UT is a bounded invertible operator on
L2.Rd /, then ˆT .�/ D U�1T .�/UT extends to a �-isomorphism from Ez� to E� and a nor-
mal �-isomorphism from Rz� to R� .

In general, let � be a skew-symmetric matrix of rank 2n� d . There exists an invertible
matrix T such that z� D T �T t is the following standard form:24 0 �In

In 0

0d�2n

35 ; (2.6)

where 0d�2n is a .d � 2n/ � .d � 2n/ zero matrix. Recall that x1; : : : ; xd denote the
generators of the unitary semigroups tj 7! �� .0; : : : ; tj ; : : :/. Then x1; : : : ; x2n, by the
Stone–von Neumann theorem, are unitarily equivalent to (a multiple of) the derivatives
and position operators �i @

@x1
; : : : ;�i @

@xn
; x1; : : : ; xn on L2.Rn/, and x2nC1; : : : ; xd are

d � 2n position operators xnC1; : : : ; xd�n on L2.Rd�2n/. Hence if � is of rank 2n < d ,
then we have up to multiplicity [38, Proposition 5.2]

E� ŠK
�
L2.R

n/
�
˝ C0.R

d�2n/; R� Š B
�
L2.R

n/
�
x̋ L1.R

d�2n/:

In particular, the C �-algebra E� is simple if and only if the matrix � is of full rank.

2.3. Integrals and derivatives

We start with the noncommutative integrals.

Proposition 2.4. The linear functional

��
�
�� .f /

�
D

Z
Rd

f; f 2 �.Rd /

extends to a normal faithful semifinite trace on R� .
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(i) Let T be a real invertible matrix and let � and z� be two skew-symmetric matrices
such that z� D T �T t . Then the normal �-isomorphism

ˆT W Rz� ! R� ; ˆT
�
�z� .f /

�
D �� .f ı T / (2.7)

satisfies �� ıˆT D jdetT j�1�z� .

(ii) Let x 2 Rd and let ˛x be the translation action ˛x.f /.�/ D f .� C x/. Define the
map

˛x
�
�� .�/

�
D ei��x�� .�/; ˛x

�
�� .f /

�
D ��

�
˛x.f /

�
:

Then ˛x is a �� -preserving automorphism on R� .

Proof. The fact that �� extends to a normal faithful trace on R� was proved in [19] by
writing R� as an iterated crossed product L1.R/ Ì R Ì � � � Ì R. Here we present a proof
using a change of variables, which is useful for our later discussion. A similar discussion
can be found in [29]. Denote the multiplier and translation unitary groups on L2.Rn/ as
follows: �

u.�/f
�
.x/ D f .xC �/;

�
v.�/f

�
.x/ D ei��xf .x/:

We first consider the case d D 2n and � D
�
0 �In
In 0

�
. By the Stone–von Neumann theorem,

there exists some Hilbert space H and a unitary W W L2.R� /! L2.Rn/˝ IH such that

W �� .�; 0/W � D u.�/˝ IH ; W �� .0;�/W � D v.�/˝ IH ;

where � 2Rn are the first n coordinates and � 2Rn are the last n coordinates. For f1;f2 2
�.Rn/, the quantization �� .f1˝ f2/ is unitarily equivalent to (a multiple of) the following
operator Tf1;f2 . For h 2 L2.Rn/;

.Tf1;f2h/.y/ D .2�/
�2n

“
Of1.�/ Of2.�/e

� i2���ei��.yC�/h.yC �/ d� d�

D .2�/�2n
“
Of1.x � y/ Of2.�/e�

i
2 .x�y/��eix��h.x/ dx d�

D .2�/�n
Z
Of1.x � y/f2

�
xC y
2

�
h.x/ dx:

Because f1; f2 2 �.Rn/, it follows from [6, Proposition 1.1 and Theorem 3.1] that Tf1;f2
is a trace class operator on L2.Rn/ and

tr.Tf1;f2/ D .2�/
�n

Z
Rn

Of1.y � y/f2
�

yC y
2

�
dy

D .2�/�n
Z

Rn

Of1.0/f2.y/ dy D .2�/�n
Z

Rn

f1 �

Z
Rn

f2;

which coincides with �� on R� up to a normalization constant .2�/�n. Now we consider
the case where � is a singular standard form: � D

h
0 �In 0
In 0 0
0 0 0

i
. Let �1 D

�
0 �In
In 0

�
be the
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nonsingular part. R�1 Š B.L2.R
n// is a Type I factor and the degenerated part gives the

left regular representation �0 W Rd�2n ! B.L2.Rd�2n//. Then

R� Š R�1 x̋ R0 Š B
�
L2.R

n/
�
x̋ L1.R

d�2n/

as von Neumann algebras, where the tensor product x̋ is the von Neumann algebra tensor
product. The trace �� on R� is the product trace ��1 ˝ �0, where �0 on L1.Rd�2n/ is the
Lebesgue integral and ��1 is up to a constant the standard trace tr on B.L2.Rn//. Then
�� is normal faithful semifinite and the case for general � follows from (i). Recall that the
�-isomorphism ˆT is implemented by the bounded invertible operator

UT W L2.Rz� /! L2.R� /; UT �z� .f / D �� .f ı T
�1/:

For f 2 �.Rd /,

�� ıˆT
�
�z� .f /

�
D��

�Z
Rd

Of .�/�� .T �/d�

�
DjdetT j�1��

�Z
Rd

Of .T �1�/�� .�/d�

�
D jdetT j�1 Of .0/ D jdetT j�1�z�

�
�z� .f /

�
:

For (ii), ˛x is implemented by the shifting unitary Ux on L2.Rd / that

˛x
�
�� .f /

�
D Ux�� .f /U

�
x ; Uxf .y/ D f .yC x/:

Hence ˛x extends to an automorphism on R� .

The automorphism ˛x, x2Rd , is called the transference action on R� . For 1�p�1,
we write Lp.R� / for the noncommutative Lp-space with respect to �� and identify
L1.R� / D R� . Following the standard definition of the Lp-spaces for a von Neumann
algebra, for 1 � p <1, the Lp-norm is defined as

kxkp D ��
�
jxjp

�1=p
for those x 2 R� such that the norm is finite. The Lp-space is then defined as the comple-
tion of ¹x 2 R� W kxkp <1º with respect to the Lp-norm.

For all � , L2.R� /Š L2.Rd / and �� is exactly the left regular representation of R� on
L2.R� /. The density of �� in E� is by definition, and the density of �� in L2.R� / follows
from the unitarity of the map �� and the density of �.Rd / in L2.Rd /.

The following lemma proves that �� is also dense in the noncommutative L1-space
L1.R� /. A similar result with a different proof is in [31, Proposition 3.14].

Lemma 2.5. �� is dense in L1.R� /.

Proof. If a 2 L1.R� /, then it follows from the general theory of semifinite von Neumann
algebras that there exists a factorization aD a1a2 for some a1; a2 2 L2.R� / and ka1k2 D
ka2k2 D kak

1
2
1 ; indeed, one can define a2 D jaj1=2 and a1 D ujaj1=2, where a D ujaj is

a polar decomposition. Then we can find f1; f2 2 S.Rd / such that k�� .fj / � aj k2 � ",
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j D 1; 2. Thena � �� .f1/�� .f2/1 � a1a2 � a1�� .f2/1 C a1�� .f2/ � �� .f1/�� .f2/1
� ka1k2"C kf2k2" �

�
2kak

1
2

1 C "
�
":

The noncommutative Lorentz space Lp;1.R� / is the space of measurable operators a
affiliated to R� such that the following quasinorm is finite:

kak
p
Lp;1
D sup

t>0

tp�� .1jaj>t /;

where 1jaj>t denotes the spectral projection of jaj. In other words, a 2 Lp;1.R� / if
�� .1jaj>t / is asymptotically at mostO.t�p/. This is a special case of the general notion of
weak Lp-space on a semifinite von Neumann algebra. For det.�/ ¤ 0, the above (weak)
Lp-spaces are nothing but the (weak) Schatten p-spaces.

Proposition 2.6. Denote jxj WD .
P
j x

2
j /

1
2 and hxi WD .1 C

P
j x

2
j /

1
2 . For all � , the

following holds.

(i) �� .e
�t jxj2/ D t�

d
2 det. �it�

sinh.it�/ /
1=2 for t > 0.

Here the function � 7! ��
sinh� is a real function continuously extended to �D 0 and �i�

sinh.i�/
is the functional calculus for self-adjoint matrix i� .

(ii) hxi�1 2 Ld;1.R� /.

Proof. Let us first consider that � is the standard form (2.6) of rank 2n. We have shown in
Proposition 2.4 that there is (up to a factor .2�/n) a trace preserving �-isomorphism � W

R� ! B.L2.Rn// x̋ L1.Rd�2n/ on L2.Rd�n/ such that for 1� j � n, 1� k � d � 2n

xj 7! Dyj ; xjCn 7! yj ; x2nCk 7! ynCk ;

where Dyj and yj are the self-adjoint derivative and position operators on L2.Rd�n/

Dyj g D �i
@g

@yj
; .yjg/.y/ D yjg.y/:

Then hxi2 is unitary equivalent to (a multiple) of the following operator on L2.Rd�n/:

H WD

� nX
jD1

D2
yj C y2j

�
˝ idL2.Rd�2n/C idL2.Rn/˝

�
1C

d�nX
lDnC1

y2l

�
:

The first part is the Hamiltonian of n-dimensional quantum harmonic oscillator and the
second part is a multiplier on L2.Rd�2n/. It is known (see [24, Chapter 11]) that

H1 WD

� nX
jD1

D2
yj C y2j

�
has a discrete spectrum ¹nC 2kº1

kD0
and the multiplicity of nC 2k is

�
kCn�1
k

�
.
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Moreover, if T is a real invertible matrix such that T �T t is the standard form (2.6),
then det.T /D .�1�2 � � ��n/�1, where �1; �2; : : : ; �n are imaginary parts of eigenvalues
of � . Thus, by the isomorphism in (2.7), we have

�� .e
�t jxj2/ D �1�2 � � ��n.2�/

n
� tr
�
e
�t

Pn
jD1 �j .D

2
yj
Cy2j /

�
�

Z
Rd�2n

e�t
Pd�n
jDnC1 y2j dynC1 � � � dyd�n

D �1�2 � � ��n.2�/
n
�

� nY
jD1

X
kD0

e�t�j .1C2k/
�
�

�
�

t

� d�2n
2

D

� nY
jD1

2�t�j

et�j � e�t�j

�
.�/

d�2n
2 t�

d
2

D t�
d
2

� nY
jD1

�t�j

sinh t�j

�
.�/

d�2n
2

D t�
d
2 det

�
�it�

sinh.i t�/

�1=2
:

The last equality follows from lim�!0
��

sinh.�/ D � . We now explain how (i) implies (ii).
We observe that if F denotes the function

F.�/ D �.1jxj2 < �/; � > 0;

then �� .e�t jxj
2
/ is the Laplace–Stieltjes transform of F . It follows from a Tauberian theo-

rem of Hardy and Littlewood [26, Chapter 1, Theorem 15.3] that the existence of the limit

lim
t!0

t
d
2 �� .e

�t jxj2/

implies that there exists a limit as �!1 of F.�/��
d
2 . In particular, F.�/ D O.�

d
2 / as

�!1, and hence for t < 1 we have

�.1hxi�1>t / D �.1hxi<t�1/ D �.1jxj2<t�2�1/ D F.t
�2
� 1/ � Ct�d :

Since hxi� 1, we also have �.1hxi�1>t /D 0when t > 1, and hence hxi�1 2Ld;1.R� /.

Let Dx1 ; : : : ;Dxd be the partial derivative operators

Dxj f D �i
@

@xj
f;

which are unbounded self-adjoint operators on L2.Rd / with a common core �.Rd /. On
R� , we define for �� .f / in �� � B.L2.R

d // the partial derivatives

Dj�� .f / WD
�
Dxj ; �� .f /

�
D �� .Dxj f /:

SinceDxj is the same asDj for � D 0, we will often writeDxj simply asDj . Let � 0.Rd /
be the space of tempered distribution on Rd . In [20, 44] (see also [18]), Moyal product
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and the Weyl quantization are weakly extended to � 0.Rd / as follows:

hT ?� f; gi D hT; f ?� gi; hf ?� T; gi D hT; g ?� f i;

where the bracket is the pairing between �.Rd / and � 0.Rd /. For T 2 S 0.Rd /, �� .T / is
the quantized operator �� .T /f D T ?� f and satisfies

�� .T /�� .f / D �� .T ?� f /; �� .f /�� .T / D �� .f ?� T /:

For all T 2 � 0.Rd /, �� .T / commutes with the right Moyal multiplication hence affiliated
to R� . We will use the multiplier algebra introduced in [44],

M� D
®
�� .T / j T 2 � 0.Rd /; �� .T /�� � �� ; ���� .T / � ��

¯
:

The pairing between �.Rd / and � 0.Rd / coincides with the �� -trace duality for the quan-
tization. Namely, for �� .T / 2M� ; �� .f / 2 �� ,

��
�
�� .T /�� .f /

�
D ��

�
�� .T ?� f /

�
D

Z
T ?� f D hT; f i:

In particular, M� contains the noncommutative polynomials of x1; : : : ;xd as the quantized
coordinate function xj ,

�� .xj / D xj ; xj�� .f / D �� .xjf /C
1

2

X
k

�jkDk�� .f /:

The transference automorphism ˛x and the partial derivatives Dj weakly extend to M�˝
˛x.a/; �� .f /

˛
WD
˝
a; ˛�x�� .f /

˛
;

˝
Dj .a/; �� .f /

˛
D
˝
a;Dj�� .f /

˛
:

Viewing a 2 M� as an unbounded operator densely defined on S.Rd / � L2.Rd /, the
weak derivatives satisfy Dj .a/ D ŒDj ; a�.

3. Asymptotic degrees

In this section, we introduce a notion of “asymptotic degree” which measures the “growth”
of unbounded elements in M� , and which serves as a key technical tool for later discus-
sions. The idea is inspired by the abstract ‰DOs introduced by Connes and Moscovici
in [12, 13] and the abstract Weyl algebras of Guillemin [21]. We briefly recall the basic
setting here. Let D be a (possibly unbounded) self-adjoint operator on a Hilbert space H
such that jDj is strictly positive. For each s 2R, putH s D Dom.jDjs/ with inner product

hv1; v2iH s WD
˝
jDjsv1; jDj

sv2
˛
H
; v1; v2 2 Dom

�
jDjs

�
:

LetH1 D
T
s2ZH

s . Because Dom.ejDj
2
/�H1,H1 is a dense subspace ofH . Let F

be a closed operator on H such that H1 � Dom.F /, F.H1/ � H1. Because jDj�s W
H 0 ! H s is an isometric isomorphism, one sees that

kF W H s
! H s�r

k D
jDjs�rF jDj�s:
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For a fixed r 2 R, F extends to a bounded operator from H s to H s�r for any s if and
only if jDjs�rF jDj�s are bounded on H . Such an F is considered as an abstract ‰DO
of order r .

We use the above idea to characterize the asymptotic degree (we use the word “degree”
to distinguish with the notation “order” for ‰DOs) of elements in M� . We choose the
strictly positive operator D as hxi WD .1C

P
j x

2
j /

1
2 .

Definition 3.1. We say that an operator a 2M� is of asymptotic degree r if for any s 2R,

hxisahxi�s�r

extends to a bounded operator inB.L2.R� // (hence also in R� �B.L2.R� //). We denote
by Or the set of all elements of asymptotic degree r and write O�1 D

T
r2ZO

r .

Let Ls2.R� / be the Hilbert space completion of �� with respect to the inner product˝
�� .f /; �� .g/

˛
s
D ��

�
�� .f /

�
hxi2s�� .g/

�
:

It is clear that a 2 Or if and only if for any s 2 R, the left multiplication operator
�� .f / 7! a�� .f / extends continuously from Ls2.R� / to Ls�r2 .R� /. The following theo-
rem estimates the degrees of some common elements. We introduce the standard notation
of multi-indices that for ˛ D .˛1; ˛2; : : : ; ˛d /,

x˛ WD x
˛1
1 x

˛2
2 � � � x

˛d
d
; D˛

WD D
˛1
1 D

˛2
2 � � �D

˛d
d
:

Note that the product x˛ is ordered because xj ’s are noncommutative.

Theorem 3.2. For all multi-indices ˛ and r 2 R,

x˛ 2 O j˛j;
�
x˛; hxir

�
2 OrCj˛j�2; D˛

�
hxir

�
2 Or�j˛j:

Proof. We divide the proof into several steps.

Step 1. ŒDj ; hxi�r �hxirC1, Œxj ; hxi�r �hxirC1 are bounded for 0 < r < 2.
We use the fractional power for a positive operator A:

A�s D Cs

Z 1
0

.t C A/�1t�s dt; 0 < s < 1;

where Cs is a nonzero constant depending on s. Since the constant does not affect the
boundedness, we suppress all constant Cs’s. Denote � WD hxi2 D 1C

P
j x

2
j . For 0 <

r < 2,�
Dj ; hxi

�r
�

D

Z 1
0

�
Dj ; .t C�/

�1
�
t�

r
2 dt

D

Z 1
0

.t C�/�1
�
.t C�/;Dj

�
.t C�/�1t�

r
2 dt

D 2i

Z 1
0

.t C�/�1xj .t C�/
�1t�

r
2 dt
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D 2i

Z 1
0

xj .t C�/
�2t�

r
2 dt C 2i

Z 1
0

�
.t C�/�1; xj

�
.t C�/�1t�

r
2 dt

D 2i

Z 1
0

xj .t C�/
�2t�

r
2 dt C 2i

Z 1
0

.t C�/�1
�
xj ; .t C�/

�
.t C�/�2t�

r
2 dt

D 2ixj

Z 1
0

.t C�/�2t�
r
2 dt C 2

X
k

�jk

Z 1
0

.t C�/�1xk.t C�/
�2t�

r
2 dt:

For the first integral,

2ixj

Z 1
0

.t C�/�2t�
r
2 dt ��

1Cr
2 D 2ixj�

�1� r2�
1Cr
2 D 2ixj�

� 12

is bounded. For the second integral, Z 1
0

.t C�/�1xk.t C�/
�2t�

r
2 dthxi1Cr

 � Z 1
0

.t C�/�2C r
2

t� r2 dt
�

Z 1
0

.t C 1/�2C
r
2 t�

r
2 dt <1

converges absolutely. For the commutator with xj , we have�
xj ; hxi

�r
�
D

Z
.t C�/�1

�
.t C�/; xj

�
.t C�/�1t�

r
2 dt

D 2i
X
k

�jk

Z
.t C�/�1xk.t C�/

�1t�
r
2 dt D 2i

X
k

�jk
�
Dj ; hxi

�r
�
:

Then Œxj ; hxi�r �hxirC1 for 0 < r < 2which is bounded by the previous case. In particular,
we also obtained that

hxi�rxj hxi
rC1
D
�
hxi�r ; xj

�
hxirC1 C xj hxi

�1

is bounded for 0 < r < 2.

Step 2. Œxj ; hxi�r �hxirC1, ŒDj ; hxi�r �hxirC1 are bounded for all r .
First for �2 < r < 0, the boundedness follows from�

xj ; hxi
�r
�
hxirC1 D

�
xj ; hxi

�r�2
�
hxirC3 C 2i

X
k

�jkhxi
�r�2xkhxi

rC1:

Then we have the initial case for �2 < r < 2 and use the following induction steps r !
�r C 1 for r < 0 and r ! �r � 1 for r > 0:�

xj ; hxi
r
�
hxi�rC1 D hxi

�
xj ; hxi

r�1
�
hxi�rC1 C

�
xj ; hxi

�
D hxir

�
hxi�rC1; xj

�
C
�
xj ; hxi

�
;�

xj ; hxi
r
�
hxi�rC1 D hxi�1

�
xj ; hxi

rC1
�
hxi�rC1 C

�
xj ; hxi

�1
�
hxi2

D hxir
�
hxi�r�1; xj

�
hxi2 C

�
xj ; hxi

�1
�
hxi2

D hxir
�
hxi�r�1; xj

�
� hxi�1

�
hxi2; xj

�
C
�
xj ; hxi

�1
�
hxi2:

The argument for ŒDj ; hxi�r �hxirC1 is similar.
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Step 3. x˛ 2 O j˛j and Œx˛; hxir � 2 O j˛jCr�2 for all ˛ and r .
First, by Step 2 we have that for all s

hxisxj hxi
�s�1

D
�
hxis; xj

�
hxi�s�1 C xj hxi

�1;

hxi�s
�
xj ; hxi

r
�
hxi�rCsC1 D

�
xj ; hxi

r�s
�
hxi�rCsC1 C

�
xj ; hxi

�s
�
hxisC1;

hxi�s
�
Dj ; hxi

r
�
hxi�rCsC1 D

�
Dj ; hxi

r�s
�
hxi�rCsC1 C

�
Dj ; hxi

�s
�
hxisC1

are all bounded. This implies that

xj 2 O
1;

�
xj ; hxi

r
�
2 Or�1;

�
Dj ; hxi

r
�
2 Or�1:

Thus x˛ 2 O j˛j by product. For Œx˛; hxir �, we use the induction step that by the Leibniz
rule �

xjx
˛; hxir

�
D xj

�
x˛; hxir

�
C
�
xj ; hxi

r
�
x˛;

and Œxj ; x˛� is a polynomial of order less than j˛j.

Step 4. D˛.hxir / 2 Or�j˛j for all r 2 R.
We first do induction on j˛j for �2 < r D �2s < 0. For 0 < s < 1, we introduce the

notation

Is.a1; a2; : : : ; al /

WD

Z 1
0

t�s.t C�/�1a1.t C�/
�1a2.t C�/

�1
� � � .t C�/�1al .t C�/

�1 dt:

For j˛j D 1, ŒDj ; hxi�2s� D 2iIs.xj /. Note that by the Leibniz rule, we have�
Dj ; I˛.a1; : : : ; al /

�
D

X
1�k�l

I˛
�
a1; : : : ; ŒDj ; ak �„ ƒ‚ …

kth

; : : : ; al
�

C

X
1�k�lC1

I˛
�
a1; : : : ; Œ�;Dj �„ ƒ‚ …

kth

; ak ; : : : ; al
�
: (3.1)

Then all higher-order derivatives of hxi�2s are the sum of Is.a1; a2; : : : ; al / terms with
a1; : : : ; al 2 ¹1; x1; : : : ; xnº. Moreover, their degree can be tracked inductively. Let sk be
the degree of ak . We show in the next lemma that Is.a1; : : : ; al / is at most of degree
�2l � 2s C

P
k sk . Now assume that for j˛j � N , D˛.hxir / is a sum of the terms

Is.a1; a2; : : : ; al / with �2l � 2s C
P
k sk � r � j˛j. Then ŒDj ; D˛.hxir /� is a sum

of commutators as (3.1). The degree of the first part in (3.1) is lowered by 1 because
ŒDj ; xj � D �i and ŒDj ; 1� D 0, and the second part has degree at most

�2.l C 1/ � 2s C
�
1C

X
k

sk

�
D �2l � 2s � 1C

X
k

sk



Quantum Euclidean spaces with noncommutative derivatives 169

because Œ�;Dj � D 2ixj and the length l is increased by 1. Thus by induction on j˛j we
prove the case �2 < r < 0. For general r , one can always write r D r1 C r2 C � � � C rl as
a finite sum of rk 2 .�2; 0� [ 2N. Then by the Leibniz rule

D˛
�
hxir

�
D

X
˛1C���C˛lD˛

�
˛

˛1; : : : ; ˛n

�
D˛1

�
hxir1

�
� � �D˛l

�
hxirl

�
;

where
�

˛
˛1;:::;˛n

�
D ˛Š.˛1Š/

�1 � � � .˛d Š/
�1 is the multinomial coefficient. For positive inte-

germ,D˛.x2m/ is a polynomial of degree 2m� j˛j and the termD˛.hxi
rk /;�2 < rk < 0

has degree at most rk � j˛j as proved above. Therefore, D˛.hxir / is of degree at mostP
k rk � j˛kj D r � j˛j.

The following lemma is inspired from the abstract ‰DO calculus in [25].

Lemma 3.3. Let 0 < s < 1 and let Is be the notation

Is.a1; a2; : : : ; al /

WD

Z 1
0

t�s.t C�/�1a1.t C�/
�1a2.t C�/

�1
� � � .t C�/�1al .t C�/

�1 dt:

Then

(i) if ak 2 Osk , then Is.a1; a2; : : : ; al / 2 O�2l�2sC
P
k skC" for any " > 0,

(ii) if ak 2 ¹1; x1; x2; : : : ; xnº, then I˛.a1; a2; : : : ; al / 2 O�2l�2sC
P
k sk .

Proof. Let q; r 2 R with �q C r D �2l � 2s C
P
k sk C ".

hxiq
Z 1
0

t�s.t C�/�1a1.t C�/
�1a2.t C�/

�1
� � � .t C�/�1al .t C�/

�1dthxi�r

D

Z 1
0

t�s.t C�/�1C˛�"=2hxiq.t C�/�sC"=2a1.t C�/
�1

� � � .t C�/�1al .t C�/
�1
hxi�r dt:

Note thathxiq.t C�/�sC"=2a1.t C�/�1a2.t C�/�1 � � � .t C�/�1al .t C�/�1hxi�r
�
hxi2q�".t C�/�qC"=2hxiq�2sC"a1hxi�qC2s�"�s1hxi2.t C�/�1
� � �
hxi2.t C�/�1hxiqCPk�l�1 sk�2.n�1/�2sC"alhxi

�q�
P
k�l skC2sC2.n�1/�"


�
hxi2.t C�/�1

�
hxiq�2sC"a1hxi�qC2s�"�s1
� � �
hxiqCPk�l�1 sk�2.l�1/�2sC"alhxi

�q�
P
k�l skC2sC2.l�1/�"
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which is uniformly bounded. Thus,hxiq Z 1
0

t�s.t C�/�1a1.t C�/
�1a2.t C�/

�1
� � � .t C�/�1an.t C�/

�1dthxi�r


.
Z 1
0

t�q.t C�/�1Cs�"=2 dt
�

Z 1
0

t�s.t C 1/�1Cs�"=2 dt

<1:

For (ii), note that

Is.1; : : : ; 1„ ƒ‚ …
l

/ D

Z 1
0

.t C�/�l t�s dt D Cshxi
�2.l�1/�2s :

Let k be the last position in Is.a1; : : : ; al / such that ak is nonscalar. That is, for all n � k,
an D xjn for some 1 � jn � d and am D 1 for all k < m � l . We have that

Is

�
a1; : : : ; ak�1; xj ; 1; : : : ; 1„ ƒ‚ …

l

�
D Is

�
a1; : : : ; ak�1; 1; xj ; 1; : : : ; 1„ ƒ‚ …

l

�
C Is

�
a1; : : : ; ak�1; 1; Œ�; xj �; 1; : : : ; 1„ ƒ‚ …

lC1

�
D Is

�
a1; : : : ; ak�1; 1; : : : ; 1„ ƒ‚ …

l

�
xj C

X
kC1�m�lC1

Is
�
a1; : : : ; ak�1; 1; : : : ; Œ�; xj �„ƒ‚…

mth

; : : : ; 1
�
:

Note that Œ�; xj � D �2i
P
k �kjxk . Then by (i), the second part belongs to

O�2l�2C
P
k sk�2sC" � O�2lC

P
k sk�2s :

We then finish the proof by the induction on the last nonscalar position.

Proposition 3.4. (i) Let s 2 R. If D˛.a/hxi�s is bounded for all ˛, then a 2 Os .

(ii) �� D ¹a 2 R� j D
˛.a/ 2 O�1 for all ˛º. Moreover, the map f 7! �� .f / is

bi-continuous from �.Rd / equipped with the standard seminorms to �� with the
seminorms kD˛.�/hxi2nk for all ˛ and n. In particular, hxir�� � �� for any r .

Proof. (i) Define the notation

a.1/ WD Œ�; a� D i
X
l

�jl
�
xjDl .a/CDl .a/xj

�
I

a.2/ WD
�
�; Œ�; a�

�
D �2

X
l

X
m

�jl�mj
�
xmDl .a/CDl .a/xm

�
�

X
l;m

�jl�km
�
xjxkDlDm.a/CxjDlDm.a/xkCxkDlDm.a/xj CDlDm.a/xkxj

�
:
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We first give the proof for s D 0. Assume thatD˛.a/ is bounded for all ˛. Then a.1/hxi�1

is bounded because

xjDl .a/hxi
�1
D Dl .a/xj hxi

�1
C
�
xj ;Dl .a/

�
hxi�1

D Dl .a/xj hxi
�1
�

X
k

�jkDkDl .a/hxi
�1;

and similarly one can verify that a.2/hxi�2 is bounded. Then for 0 < r < 2,�
a; hxi�r

�
hxir D I r

2

�
Œ�; a�

�
hxir D I r

2
.a.1//hxir

D a.1/I r
2
.1/hxir C I r

2
.a.2/; 1/hxir

D a.1/hxi�1 C I r
2
.a.2/; 1/hxir :

The second part is bounded becauseI r
2
.a.2/; 1/hxir

 � Z 1
0

t�
r
2

.�C t /�1a.2/.t C�/�1hxir .t C�/�1 dt
.
Z 1
0

t�
r
2

hxir .t C�/�2 dt � Z 1
0

t�
r
2 .t C 1/�2C

r
2 dt <1:

Thus we have that hxi�rahxir is bounded for 0 � r � 2 and for �2 � r � 0 by taking
the adjoint. Moreover, the same argument applies to Dˇ .a/ for all ˇ. Consider that b D
hxi�rahxir ; then

D˛.b/ D
X

˛1C˛2C˛3D˛

�
˛

˛1; ˛2; ˛3

�
D˛1

�
hxi�r

�
D˛2.a/D˛3

�
hxir

�
is bounded for all ˛ by the Leibniz rule and Theorem 3.2. Thus we have shown that
hxi�rahxir is bounded for �4 � r � 4. By induction, this can be extended for all r 2 R
which proves the case s D 0. For general s, we have

D˛
�
ahxi�s

�
D

X
˛1C˛2D˛

�
˛

˛1; ˛2

�
D˛1.a/D˛2

�
hxi�s

�
;

where the assumptionD˛.a/hxi�s is bounded andD˛2.hxi�s/ 2Os�j˛j by Theorem 3.2.
Thus by the case of s D 0, we know that ahxi�s 2 O0, which implies that a 2 Os .

For (ii), we first show that for f 2 �.Rd /, �� .f /hxi2m is bounded for all positive
integers m. Note that hxi2m is a polynomial of x with degree 2m. And

xj�� .f / D ��

�
xjf C

i

2

X
k

�jk@jf
�
;

�� .f /xj D
�
xj�� . Nf /

��
D

�
��

�
xj Nf C

i

2

X
k

�jk@jf
���

D �� .xjf / �
i

2

X
k

�jk�� .@jf /:
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Then �� .f /hxi2m are again in �� ; hence bounded. Therefore, for any r > 0, �� .f /hxir

is bounded and similarly for the derivativesD˛.�� .f //. Thus by (i),D˛.�� .f // 2 O
�1

for all ˛. For the other direction, a 2 Or for r < �d
2

implies that

kak2 �
hxir

2

hxi�ra
1
<1:

Thus aD�� .f / for some f 2L2.Rd / andD˛.a/D�� .D˛.f // in the distribution sense.
Then all the derivatives of f belongs to L2.Rd / and hence f is in the Sobolev space
H s.Rd /D ¹f j .1C�/

s
2 f 2 L2.Rd /º for all s. Using the Sobolev embedding theorem,

f 2 C10 .R
d / with all derivatives bounded. To see that xˇf are bounded functions for ˇ,

we use induction on jˇj and

�� .xjf / D xj�� .f / �
i

2

X
k

�jk�� .Djf /: (3.2)

Similarly, we know that D˛.f /xˇ are bounded for all ˛; ˇ. To show that seminorms are
equivalent, let f 2 �.Rd / and denote Of as its Fourier transform. Let n be the smallest
even integer greater than d

2
,Dˇ .f /hxi2m


1
�
 5Dˇ .f /hxi2m


1
�
h�in 5Dˇ .f /hxi2m


2

h�i�n
2
:

Let h�in 5Dˇ .f /hxi2m 2 �.Rd / be the Fourier transform of g. g can be expressed as a
linear combination of xˇD˛.f / with j˛j up to n and ˇ up to 2m. Therefore,Dˇ .f /hxi2m


1

.
�� .g/2 .

�� .g/hxin1
. sup

®D˛�� .f /x
ˇ

1
j j˛j � n; jˇj � nC 2m

¯
:

Finally, we note that D˛�� .f / 2 �� � O
�1 and by Theorem 3.2 D˛hxir 2 Or�j˛j. By

the product rule, D˛.hxir�� .f // 2 O
�1 for all ˛. Then hxir�� � �� .

Lemma 3.5. Let y 2 Rd . Denote hx C yi WD .1C
P
j .xj C yj /2/

1
2 . Then

(i) ˛y.hxi
r / D hx C yir ;

(ii) for any 0 < r � 2n with n integer, there exists a constant cr;n such thathx C yirhxi�r

1
� cr;nhyi2n;

hxirhx C yi�r

1
� cr;nhyi2n:

Proof. It is clear that h˛y.x/i
2 D 1C

P
j .xj C yj /2 D ˛y.hxi

2/. Then by the fact that ˛y

is a �-isomorphism on M� , ˛y.hxi
�2/ D h˛y.x/i

�2. Then we apply the operator integral
for 0 < s < 2,

hxi�s D Cr

Z 1
0

.t C hxi2/�1t�
s
2 dt:

Then the general case follows from writing r D 2n � s. For (ii), for r D 2,hx C yi2hxi�2
 � 1CX

j

2yjxj hxi�2 C
X
j

y2j hxi
�2
 . hyi2
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��
t C hxi2

��1 � X
j

2yjxj
�
t C hxi2

��1
C

X
j

y2j
�
t C hxi2

��1
. t�

1
2 hyi2:

For r D 2n, hxi2n is a 2n-degree polynomial of xj whose largest coefficient is the constant
term hyi2n. By a similar argument for hxi2n, we havehx C yi2nhxi�2n

 . hyi2n;�hxi�2n � hx C yi2n
��
t C hxi2n

��1 . t�
1
2n hyi2:

Using the transference,hxi2nhx C yi�2n
 D ˛y

�
hx � yi2nhxi�2n

� D hxi2nhx C yi�2n
 . hyi2n:

This proves the inequality for r D 2n even integers. For general positive r , choose an
integer n such that 0 < r < 2n � 1 and consider that

1 � hxirhx C yi�r D hxir
�
hxi�r � hx C yi�r

�
:

Take s D r
2n
< 1 � 1

2n
, then we have

hxir
�
hxi�r � hx C yi�r

�
D Cshxi

r

Z 1
0

��
t C hxi2n

��1
�
�
t C hx C yi2n

��1�
t�s dt:

D Cs

Z 1
0

�
hxir

�
t C hxi2n

��1���
hx C yi2n � hxi2n

��
t C hx C yi2n

��1�
t�s dt: (3.3)

Note that khxir .t C hxi2n/�1k � .t C 1/s�1 and�hx C yi2n � hxi2n
��
t C hxi2n

� . t�
1
2n hyi2n:

Therefore,hxir�hxi�r � hx C yi�r
� .

Z 1
0

.1C t /s�1t�
1
2n�shyi2n dt . hyi2n:

This proves the inequality for hxirhx C yi�r and the other case follows from transfer-
ence.

Using Lemma 3.5, we show that quantized partial derivatives defined in Section 2.3
are indeed the vector derivatives of transference action.

Proposition 3.6. Let ej D .0; : : : ; 1; : : : ; 0/ be the j th basis vector.

(i) For �� .f / 2 �� , Dj�� .f / D �i limh!0
1
h
.˛hej .�� .f // � �� .f // in �� .

(ii) Let m 2 R. If a 2M� and D˛.a/hxim 2 R� for all j˛j � 2, then

lim
h!0

1

h

�˛hej .a/ � a � hDj .a/
�
hxim


1
D 0:



L. Gao, M. Junge, and E. McDonald 174

Proof. For a Schwartz function f 2 �.Rd /, we have that

f .xC y/ � f .x/ D
X
j

Z 1

0

yj .@jf /.xC ty/dt:

In terms of the function f , we have

˛y.f / � f D
X
j

Z 1

0

yj˛ty.iDjf /dt:

Since ¹˛ty.iDjf / j 0 � t � 1º is uniformly bounded for every seminorm of �.Rd /, we
have that y ! ˛y.f / is continuous in �.Rd /. Because �� and �.Rd / have equivalent
seminorms, we have that y 7! ˛y.�� .f // D �� .˛yf / is also continuous. It holds that

1

h

�
˛hej

�
�� .f /

�
� �� .f / � h�� .iDjf /

�
D

Z 1

0

˛thj �� .iDjf / � �� .iDjf /dt

D

Z 1

0

�
˛thej �� .iDjf / � �� .iDjf /

�
dt

which goes to 0 in �� for h! 0 because of the continuity of y! ˛y.�� .Djf //. For (ii),
we have the integral

˛y.a/hxi
m
� ahxim D

X
j

yj
Z 1

0

˛ty.iDja/hxi
m dt; (3.4)

which holds weakly. Suppose that ahxim and Dj .a/hxim are bounded. Then˛y.Dja/hxi
m
 � ˛y

�
Djahxi

m
�hx C yi�mhxim

 � Djahximhyi2n;
for some 2n > jmj. So ˛y.Dja/hxi

m is uniformly bounded for small y, which by the
integral (3.4) implies that y 7! ˛y.a/hxi

m is continuous in norm. Now if D˛.a/hxim is
bounded for all j˛j � 2, then1

h

�
˛hej .a/ � a � hDj .a/

�
hxim


1
�

Z 1

0

�˛thej .iDja/ � iDja
�
hxim


1
dt:

This goes 0 in norm as h! 0 because y! ˛y.Dja/hxi
m is continuous.

The next proposition gives an approximation of identity for Lp.R� /.

Proposition 3.7. There exists a sequence fn 2 �.Rd / independent of � such that (i) for
any a 2 E� and p D1, and (ii) for any a 2 Lp.R� / and 1 � p <1,

lim
n!1

a�� .fn/ � ap D lim
n!1

�� .fn/a � ap D 0:
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Proof. The case a 2 E� and p D 1 is a special case of [38, Proposition 4.13]. Here we
provide an argument for all 1 � p � 1. Let � 2 �.Rd / be a smooth positive function
such that � is supported on jxj � 1 and

R
� D .2�/d . Take �n D nd�.nx/ and the inverse

Fourier transform L�n. We first show that for any �� .g/ 2 �� ,�� .g/�� . L�n/ � �� .g/1 ! 0:

Indeed,

�� .g/�� . L�n/ D

�
1

2�d

Z
Rd

Og.�/�� .�/d�

��
1

2�d

Z
Rd

�n.�/�� .�/d�

�
D

1

.2�/2d

Z
Rd

Z
Rd

Og.�/�n.�/e
i
2����� .� C �/d� d�

D
1

.2�/2d

Z
Rd

�Z
Rd

Og.�/�n.� � �/e
i
2��.���/ d�

�
�� .�/d� WD �� .gn/;

where
Ogn.�/ D

1

2�d

Z
Rd

Og.�/�n.� � �/e
i
2��.���/ d�:

Then, for some R > 0,

k Og � Ognk1 D

Z
Rd

ˇ̌̌̌
Og.�/ �

1

2�d

Z
Rd

Og.�/�n.� � �/e
i
2��.���/ d�

ˇ̌̌̌
d�

D

Z
Rd

ˇ̌̌̌
Og.�/ �

1

2�d

Z
Rd

Og.�/�n.� � �/d�

ˇ̌̌̌
d�

C
1

2�d

Z
Rd

Z
Rd

ˇ̌
Og.�/�n.� � �/.1 � e

i
2��.���//

ˇ̌
d� d�

�

 Og � Og � � 1

2�
�n

�
1

C
1

2�d

Z
Rd

Z
Rd

ˇ̌
Og.�/�n.�/.1 � e

i
2���/

ˇ̌
d� d�;

where Og � . 1
2�
�n/ is the convolution and for the second term we used a change of vari-

able �! �C �. It is clear that k Og � Og � . 1
2�
�n/k1 ! 0 as n!1 because 1

2�
�n is an

approximation identity. For the second term, for any " we can find R large enough such
that

R
j�j>R

j Og.�/j < "
3

and then n is large enough such that j1 � e
i
2���j < "

3k Ogk1
for all

j�j < R and j�j � 1
n

. Since �n is supported on j�j � 1
n

,“ ˇ̌
Og.�/�n.�/.1 � e

i
2���/

ˇ̌
d� d�

�

Z
j�j>R

Z
Rd

ˇ̌
Og.�/�n.�/.1 � e

i
2���/

ˇ̌
d� d�

C

Z
j�j<R

Z
Rd

ˇ̌
Og.�/�n.�/.1 � e

i
2���/

ˇ̌
d� d�

�

Z
j�j>R

Z
Rd

2
ˇ̌
Og.�/

ˇ̌
�n.�/d� d� C

"

3k Ogk1

Z
j�j<R

Z
Rd

ˇ̌
Og.�/

ˇ̌
�n.�/d� d�

� .2�/d
�
2"

3
C
"

3

�
D .2�/d":
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Thus, we obtained �� .gn/ � �� .g/1 � k Ogn � Ogk1 ! 0:

For 1 � p <1, we apply the argument for hxid�� .g/. Note that hxidC1�� .g/ 2 �� by
Proposition 3.4. Thus, we have�� .g/�� .fn/ � �� .g/p � hxidC1��� .g/�� .fn/ � �� .g/�1hxi�d�1p ! 0:

Given a 2 L1.R� /, we choose g 2 �� so that k�� .g/ � ak1 � "=3. Note that for all n,�� . L�n/1 � k�nk1 D 1:
Then, for n large enough,a � a�� . L�n/1

�
a � �� .g/1 C �� .g/ � �� .g/�� . L�n/1 C �� .g/�� . L�n/ � a�� . L�n/1
�
a � �� .g/1 C �� .g/ � �� .g/�� . L�n/1 C �� .g/ � a1�� . L�n/1
�
"

3
C
"

3
C
"

3
D ": (3.5)

The argument for1-norm and a 2 E� is similar. For 1 < p <1, we use interpolation
inequality thata � a�� . L�n/p � a � a�� . L�n/ 1p1 a � a�� . L�n/1� 1p1 ! 0;

for any a 2 L1.R� /\L1.R� /. Since L1 \L1 is dense in Lp , the argument for general
a 2 Lp is similar to (3.5).

4. Pseudo-differential calculus for noncommutative derivatives

On Rd the CCR relation for covariant derivatives corresponds to a constant curvature
form. Consider the connection

r W C1.Rd /! �1.Rd /; rf D df C
i

2

X
j;k

� 0j;kf xjdxk (4.1)

with curvature form d! D i
2

P
j;k �jkdxj ^ dxk . The self-adjoint covariant derivatives

rj D r� @
@j

satisfy that

rjf D �i
@

@xj
.f / �

X
k

1

2
� 0jkf xk ; Œrj ;rk � D �i�

0
jk :

The physical meaning behind this is a constant magnetic field perpendicular to the space
Rd . In this section, we develop the symbol calculus of ‰DOs of the above structure for
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a noncommutative R� . Let R� be the quantum Euclidean space generated by Œxj ; xk � D
�i�jk . We equipped R� with noncommuting covariant derivatives �j satisfying

Œ�j ; xk � D �iıjk ; Œ�j ; �k � D �i�
0
jk ; (4.2)

where ı is the Kronecker delta notation. For � 0 D 0, González-Pérez, Junge, and Parcet
[19] established the ‰DOs as operators on L2.R� / via �j D Dj . For general � and � 0,
xj ’s and �k’s satisfying above commutation relations together generate a 2d -dimensional
quantum Euclidean space R‚ with parameter ‚ D

�
� �I
I � 0

�
. In general, xj ’s and �k’s do

not admit a canonical representation on L2.R� / because ‚ can be singular. Hence we
consider the ‰DOs as operators (densely) defined on L2.R‚/ Š L2.R� / ˝2 L2.R� 0/
affiliated to R‚. Here˝2 is the Hilbert space tensor product.

4.1. Abstract symbols

In the classical case for Rd , a standard symbol of orderm is a smooth bi-variable function
a 2 C1.Rd �Rd / such that theˇ̌

D˛
xD

ˇ

�
.a/.x; �/

ˇ̌
� C˛;ˇ

�
1C j�j2

�.m�jˇ j/=2 (4.3)

(see, e.g., [41, Chapter 6].) In our setting, the symbols are operators affiliated to the von
Neumann algebra tensor product R� x̋ R� 0 . Let us denote R�;� 0 WD R� x̋ R� 0 , M�;� 0 for
the multiplier algebra of R�;� 0 , and ��;� 0 for the Schwartz class. R�;� 0 is a 2d -dimensional
quantum Euclidean space with parameter matrix

�
� 0
0 � 0

�
, in which x and � variables are

mutually commuting; i.e., Œxj ; �k �D 0 for all j; k. We specify the canonical partial deriva-
tives for x variables by Dx1 ; : : : ; Dxd and for � variables by D�1 ; : : : ; D�d . That is, for
a 2M�;� 0

Dxj .a/ D ŒDj ˝ 1; a�; D�j .a/ D Œ1˝Dj ; a�:

We index the transference action by the position ˛y ˝ ˛�.a/ D ˛1�˛
2
y .a/. We use the

standard multi-derivative notation that for ˛ D .˛1; ˛2; : : : ; ˛d / 2 Nd ,

D˛
x .a/ D D

˛1
x1
D˛2
x2
� � �D˛d

xd
.a/; D˛

� .a/ D D
˛1
�1
D
˛2
�2
� � �D

˛d
�d
.a/:

Write h�i WD .1C
P
jD1d �

2
j /

1
2 , where �j ’s are the noncommuting generators for R� 0 . We

start with the abstract reformulation of the definition (4.3).

Definition 4.1. For a real numberm, define †m as the set of all operators a 2M�;� 0 such
that for all ˛; ˇ,

D˛
xD

ˇ

�
.a/h�ijˇ j�r

extends to be a bounded operator in R�;� 0 . We call †m the space of symbols of order m
and write †�1 D

T
m†

m and †1 D
S
m†

m.

A priori it is not clear that the above definition satisfies the properties that †m �†n D
†mCn and .†m/� D †m. To resolve these questions, we refine the notion of asymptotic
degree introduced in Section 3.
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Definition 4.2. Given two real numbers s and r , we say that an operator a 2M�;� 0 is of
bi-degree .s; r/ if for all s0; r 0 2 R

hxis
0

h�ir
0

ahxi�s
0�s
h�i�r

0�r

extends to a bounded element in R�;� 0 . We denote by Os;r the set of all elements of bi-
degree .s; r/ and write O�1;r D

T
s2RO

s;r and O�1;�1 D
T
s;r2RO

s;r .

Note that on R�;� 0 , hxi and h�i commute so the order of the product hxish�ir does not
matter. It follows that

Ok;lOm;n � OkCm;lCn; 8k; l;m; n 2 R: (4.4)

Indeed, for any a 2 Ok;l , b 2 Om;n, and s; r 2 R,

hxish�irabhxi�k�m�sh�i�l�n�r

D
�
hxish�irahxi�k�sh�i�l�r

��
hxikCsh�ilCrbhxi�k�m�sh�i�l�n�r

�
is bounded. The “bi-degree” gives an alternative characterization of the abstract symbol
classes.

Theorem 4.3. Let m be a real number and a 2M�;� 0 . Then a 2 †m if and only if for all
˛; ˇ,

D˛
xD

ˇ

�
.a/ 2 O0;m�jˇ j:

Proof. The sufficiency is clear by the definition. Let a 2 †m. It follows from Lemma 3.4
that for all ˛;ˇ,D˛

xD
ˇ

�
.a/ is of degree 0 for x and degreem� jˇj for �. Because hxi and

h�i commute, we have that D˛
xD

ˇ

�
.a/ 2 O0;m�jˇ j.

Recall that we write the transference action on R� as ˛D ˛1˝ ˛2, so that for a 2†m,
the notation ˛1.a/ is the function on Rd given by the restriction of ˛.a/ – which is a
function on Rd – to the first d -coordinates and ˛2.a/ is the restriction of ˛.a/ to the final
d coordinates.

Proposition 4.4. †m equipped with the seminorms k � k˛;ˇ WD kD˛
xD

ˇ

�
.�/h�ijˇ j�mk is a

Fréchet space. In particular, for a 2 †m, Dxj .a/ and D�j .a/ are the vector derivatives

Dxj .a/ D i lim
h!0

1

h

�
˛1hej .a/ � a

�
;

D�j .a/ D i lim
h!0

1

h

�
˛2hej .a/ � a

�
;

where the limits converge in the Fréchet topology of †m.

Proof. Let ¹anº1nD0 � †
m be a Cauchy sequence in†m with respect to all the seminorms

k � k˛;ˇ . In particular, an is Cauchy in the norm of R�;� 0 and hence there exists b˛;ˇ 2R�;� 0

such that D˛
xD

ˇ

�
.an/h�i

jˇ j�m
� b˛;ˇ


1
! 0 as n!1:
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Denote c˛;ˇ D b˛;ˇ h�im�jˇ j and c0;0 D b0;0h�im. Let ��;� 0.f / 2 ��;� 0 , then˝
c˛;ˇ ; h�i

jˇ j�m��;� 0.f /
˛
D
˝
b˛;ˇ h�i

jˇ j�m; ��;� 0.f /
˛
D
˝
b˛;ˇ ; ��;� 0.f /

˛
D lim
n!1

˝
D˛
xD

ˇ

�
.an/h�i

jˇ j�m; ��;� 0.f /
˛

D lim
n!1

˝
anh�i

�m; h�imD˛
xD

ˇ

�

�
h�ijˇ j�m��;� 0.f /

�˛
D
˝
b0;0; h�i

mD˛
xD

ˇ

�

�
h�ijˇ j�m��;� 0.f /

�˛
D
˝
D˛
xD

ˇ

�
.c0;0/; h�i

jˇ j�m��;� 0.f /
˛
:

Because we have an identity of sets h�ijˇ j�m��;� 0 D ��;� 0 by Proposition 3.4, we have
D˛
xD

ˇ

�
.c0;0/ D c˛;ˇ weakly. To see that c0;0 is again in the multiplier algebra M�;� 0 , it

suffices to show that for any ��;� 0.f / 2 ��;� 0 ,D˛
xD

ˇ

�

�
c0;0��;� 0.f /

��
1C

X
j

x2j C �
2
j

�
is bounded for any ˛; ˇ;  . Using the Leibniz rule,

D˛
xD

ˇ

�

�
c0;0��;� 0.f /

�
D

X
˛1C˛2D˛

X
ˇ1Cˇ2Dˇ

�
˛

˛1; ˛2

��
ˇ

ˇ1; ˇ2

�
D˛1
x D

ˇ1
�
.c0;0/D

˛2
x D

ˇ2
�

�
�� 0;� .f /

�
D

X
˛1C˛2D˛

X
ˇ1Cˇ2Dˇ

�
˛

˛1; ˛2

��
ˇ

ˇ1; ˇ2

�
c˛1;ˇ1�� 0;�

�
D˛2
x D

ˇ2
�
.f /

�
:

Note that for each ˛1; ˇ1, c˛1;ˇ1Db˛1;ˇ1h�i
m�jˇ j and b˛1;ˇ1 are bounded. Then, for any  ,

c˛1;ˇ1�� 0;�
�
D˛2
x D

ˇ2
�
.f /

��
1C

X
j

x2j C �
2
j

�
D b˛1;ˇ1h�i

m�jˇ j�� 0;�
�
D˛2
x D

ˇ2
�
.f /

��
1C

X
j

x2j C �
2
j

�
is bounded since ��;� 0.D

˛2
x D

ˇ2
�
f / are inO�1;�1. By again Proposition 3.4, this implies

that c0;0��;� 0.f / 2 S�;� 0 and c0;0 2M�;� 0 is a multiplier. The convergence of the vector
derivatives is a consequence of applying Proposition 3.6 to R�;� 0 .

Corollary 4.5. For all multi-indices ˛ and real numbers m; n,

(i) �˛ 2 †j˛j, h�im 2 †m;

(ii) if a 2 †m, then a� 2 †m;

(iii) if a 2 †m; b 2 †n, then ab 2 †mCn.
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Proof. (i) is a direct consequence of Theorem 3.2. (ii) follows from the fact that

D˛
xD

ˇ

�
.a�/ D .�1/j˛jCjˇ j

�
D˛
xD

ˇ

�
.a/
��
:

For (iii), by the Leibniz rule

D˛
xD

ˇ

�
.ab/ D

X
˛1C˛2D˛;ˇ1Cˇ2Dˇ

�
˛

˛1; ˛2

��
ˇ

ˇ1; ˇ2

�
D˛1
x D

ˇ1
�
.a/D˛2

x D
ˇ2
�
.b/: (4.5)

Using Theorem 4.3,

D˛1
x D

ˇ1
�
.a/ 2 O0;m�jˇ1j; D˛2

x D
ˇ2
�
.b/ 2 O0;n�jˇ2j:

Using the property (4.4), all summands in (4.5) belong toO0;mCn�jˇ1j�jˇ2jDO0;mCn�jˇ j.
Again by Theorem 4.3, ab 2 †nCm.

4.2. Comultiplications

One key tool that will be used in the proof of our symbol calculus is the comultiplication
maps of R� and R�;� 0 . The comultiplication map of Rd as an abelian group is

� W L1.R
d /! L1.R

d
�Rd / Š L1.R

d / x̋ L1.R
d /; �.f /.x; y/ D f .xC y/:

Algebraically, �.u.�//D u.�/˝u.�/, where u.�/ is the unitary function u.�/.x/D ei��x.
For R� , we consider the deformed comultiplication map

�� W R� ! L1.R
n/ x̋ R� ; ��

�
�� .�/

�
D u.�/˝ �� .�/;

where x̋ is the von Neumann algebra tensor product. L1.Rn/ x̋ R� can be identified
with R� -valued functions L1.Rd ;R� /, and at a point x 2 Rd ,

��
�
�� .�/

�
.x/ D eix���� .�/ D ˛x

�
�� .�/

�
:

The same co-representation map is used in [19, Corollary 1.4] in the study of ‰DOs
of R� with commuting derivatives.

Proposition 4.6. The map

�� W �� ! L1.R
d ;R� /; ��

�
�� .f /

�
.x/ D ˛x

�
�� .f /

�
(i) extends to an injective normal �-homomorphism from R� to L1.Rd ;R� /;

(ii) extends to an injective algebraic �-homomorphism from M� to L1.Rd ;M� /.
Moreover, for all a 2M� , �� .Dja/ D Dxj .�� .a// D Dxj .�� .a//;

(iii) extends to a complete isometry V� right from L2.R� /
c to Lc2.R

d / ˝wh R� .
Here ˝wh denotes the W �-Haagerup tensor product (see [3]) and Lc2.R

d / is
the column space.
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Proof. (i) follows from the fact that at each point x 2 Rd , ˛x is a �-automorphism of R� .
The normality was proved in [19, Corollary 1.4]. (ii) is similar to (i). For the derivatives,
let Dxj denote the j th partial derivatives for Rd and let Dxj denote the partial derivatives
on R� . For all x 2 Rd and a 2M� ,

Dxj
�
�� .a/

�
.x/ D lim

h!0
�
i

h

�
˛xChej .a/ � ˛x.a/

�
D Dxj

�
˛x.a/

�
D ˛x.Dxj a/:

For (iii), let b D
P
k bk�� .fk/ with bk 2 C and �� .fk/ being an orthonormal set in

L2.R� /. Then kbk2
L2.R� /

D
P
k jbkj

2. The norm of Lc2.R
d /˝wh R� is given by the R� -

valued inner product that for f; g 2 L2.Rd / and a; c 2 R�

hf ˝ a; g ˝ ciR�
D hf; giL2.Rd /a

�c; kBkLc2.Rd /˝whR�
D
hB;BiR�


R�
:

Note that on the Fourier transform side,

V�
�
�� .f /

�
.�/ D Of .�/�� .�/:

Therefore,V��X
k

bk�� .fk/
�
Lc2.R

d /˝whR�

D

X
k;k0

bk Nbk0

Z
Ofk.�/

NOfk0.�/�� .�/�� .�/
� d�


R�

D

�X
k

jbkj
2
�

1


R�

D

X
k

jbkj
2:

Replacing bk 2 C with matrices bk 2Mn in the above argument gives the complete isom-
etry.

Let us write ��;� 0.�; y/ WD �� .�/˝ �� 0.y/ for the generators of R�;� 0 WD R� x̋ R� 0 .
The quantization map for R�;� 0 is

��;� 0.F / D .2�/
�2d

Z
R2d

yF .�; y/��;� 0.�; y/d� dy;

where
yF .�; y/ D

Z
R2d

F.x; �/e�i.x�C�y/dx d�

is the Fourier transform. By Proposition 4.6, we can dilate the symbols affiliated to R�;� 0

to operator-valued symbols,

�� ˝ �� 0 W R�;� 0 ! L1.R
d
�Rd ;R� x̋ R� 0/;

.�� ˝ �
0
� /��;� 0.F /.x; y/ D ˛

1
x˛
2
y
�
��;� 0.F /

�
;

where ˛1 (resp. ˛2) is the transference action on R� (resp. R� 0 ). For the ‰DOs, we con-
sider the comultiplication maps for R‚ with ‚ D

�
� �In
In � 0

�
. Note that R� and R� 0 embed

into R‚ as the subalgebras generated respectively by

R� Š span
®
�‚.�; 0/

¯00
; R� 0 Š span

®
�‚.0; y/

¯00
;
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where 00 denotes the double commutant, or equivalently the closure in the weak operator
topology. For the ease of notation, we identify R� ;R

0
�

with their embedding in R‚ and
write

�� .�/ WD �‚.�; 0/; �� 0.y/ WD �‚.0; y/:

In R‚, these two families of unitary generators satisfy the commutation relation

�� .�/�� 0.y/ D ei�y�� 0.y/�� .�/:

We define the following quantization for R‚:

�‚.F / D .2�/
�2d

Z
Rd

Z
Rd

yF .�; y/�� .�/�� 0.y/d� dy; F 2 �.Rd �Rd /:

We have the Hilbert space isometry between two quantizations:

W W L2.R‚/! L2.R�;� 0/; W j�‚.F /i D j��;� 0.F /i:

Here and in the following, we will use the “ket” notation j�i to emphasize membership to
the corresponding L2-space.

Proposition 4.7. Define the unitary

u� .y/ W L2.R� /! L2.R� /; v� .y/j�� .f /i D
ˇ̌
�� .˛yf /

˛
:

The map

�‚ W �‚ ! B
�
L2.R� /

�
x̋ R� 0

�‚.F / 7! .2�/�2d
Z

R2d

yF .�; y/�� .�/v� .y/˝ �� 0.y/d� dy

(i) satisfies �‚.�‚.F // D W �‚.F /W �, by viewing

�‚ � B
�
L2.R‚/

�
; B

�
L2.R� /

�
x̋ R� 0 � B

�
L2.R� /˝2 L2.R� 0/

�
I

(ii) extends to an injective normal �-homomorphism from R‚ toB.L2.R� // x̋ R� 0 .

Proof. By linearity, it suffices to verify that

W �� .�0/�� 0.y0/W
�
D �� .�0/v� .y0/˝ �� 0.y0/:

Indeed, for ��;� 0.G/ 2 ��;� 0 ,

W �� .�0/�� 0.y0/W
�
ˇ̌
��;� 0.G/

˛
D W �� .�0/�� 0.y0/

ˇ̌
�‚.G/

˛
D W

ˇ̌
�‚.G1/

˛
;

where

�‚.G1/ D

Z
R2d

yG.�; y/�� .�0/�� 0.y0/�� .�/�� 0.y/dy d�

D

Z
R2d

yG.� � �0; y � y0/ei�y0e
i
2 .���0Cy� 0y0/�� .�/�� 0.y/dy d�:

Then
W j�‚.G1/i D

ˇ̌
��;� 0.G1/

˛
D
�
�� .�0/v� .y0/˝ �� 0.y0/

�ˇ̌
��;� 0.G/

˛
:



Quantum Euclidean spaces with noncommutative derivatives 183

Now let us consider the Gelfand–Naimark–Segal (GNS) construction of B.L2.R� //
with respect to its standard trace. Define for a Schwartz function F on R2d the operator

TF D .2�/
�2d

Z
R2d

yF .�; y/�� .�/v� .y/d� dy:

For j�� .f /i 2 L2.R� /,

TF
ˇ̌
�� .f /

˛
D .2�/�2d

Z
yF .�; y/�� .�/v� .y/d� dy

ˇ̌
�� .f /

˛
DW
ˇ̌
�� .g/

˛
;

where TF has the kernel representation

bg.�/ D .2�/�2d Z yF .� � �; y/eiy�e
i
2��� dy Of .�/ d�:

Since F 2 �.R2d /, TF is trace class and

tr.TF / D .2�/�2d
Z
yF .0; y/eiy� dy d� D .2�/�d

Z
F:

One calculates that

T �F TF D .2�/
�4d

Z
R2d

�Z
R2d

xyF.�1; y1/ yF .�C �1; yC y1/e�
i
2���1

� e�i�1y d�1 dy1
�
�� .�/v� .y/d� dy:

Hence

tr.T �F TF / D .2�/
�2d

Z
R2d

xyF.�1; y1/ yF .�1; y1/d�1 dy1 D .2�/�2dkF k22:

Up to a scalar we have a Hilbert space isometry

V W L2
�
B
�
L2.R� /

�
; tr
�
! L2

�
Rd ; L2.R� /

�
; V .TF /.x/ D ��

�
F.x; �/

�
:

Write z� as the GNS construction of B.L2.R� // on L2.B.L2.R� //; tr/. Then �.�/ D
V z�.�/V � gives a normal faithful �-homomorphism formB.L2.R� // toB.L2.Rd // x̋ R�
as follows:

�.TF / WD V z�.TF /V
�

D .2�/�2d
Z

R2d

yF .�; y/v.�/u.y/˝ �� .�/d� dy 2 B
�
L2.R

d /
�
x̋ R� ;

where v.�/ is translation unitary onL2.Rd /. Combining � with the co-representation �‚,
we obtain another representation of R‚.

Proposition 4.8. The map

z�‚ W �‚ ! B
�
L2.R

d /
�
x̋ R�;� 0

�‚.F / 7! .2�/�2d
Z
yF .�; y/

�
u.�/v.y/˝ ��;� 0.�; y/

�
d� dy
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(i) extends to a normal injective �-homomorphism from R‚ toB.L2.Rd // x̋ R�;� 0 ;

(ii) satisfies the intertwining relation .V� ˝ idR� 0
/z�‚.�/D �‚.�/.V� ˝ idR� 0

/ for the
isometry

V� ˝ idR� 0
W Lc2.R� /˝wh R� 0 ! Lc2.R

d /˝wh .R� x̋ R� 0/:

Proof. (i) We verify that z�‚ D .� ˝ idR� 0
/ ı �‚. Indeed,

.� ˝ idR� 0
/ ı �‚.�‚.F //

D � ˝ idR� 0

�
.2�/�2d

Z
R2d

yF .�; y/�� .�/v� .y/˝ �� 0.y/d� dy
�

D .2�/�2d
Z
yF .�; y/

�
u.�/v.y/˝ �� .�/˝ �� 0.y/

�
d� dy D z�‚

�
�‚.F /

�
:

For (ii), recall that B.L2.R� // x̋ R� 0 is canonically isomorphic to the adjointable R0
�
-

module map L.Lc2.R� /˝wh R� 0/ and similarly

B
�
L2.R

d /
�
x̋ R� x̋ R� 0 Š L

�
Lc2.R� /˝wh R�;� 0

�
as an R�;� 0 -module map (see [27]). The complete isometry V� in Proposition 4.6 gives an
isometry

V� ˝ id� 0 W Lc2.R� /˝wh R� 0 ! Lc2.R
d /˝wh .R� x̋ R� 0/:

We verify the intertwining relation .V� ˝ id/�‚.�/D z�‚.�/.V� ˝ id/. For any �‚.F /2 �‚
and ��;� 0.G/ 2 ��;� 0 , we have �‚.�‚.F //j��;� 0.G/i D j��;� 0.G1/i, where

yG1.�; y/ D .2�/�2d
Z
yF .� � �1; y � y1/ yG.�1; y1/e

i�1.y�y1/e
i
2���1e

i
2 y�y1 d�1 dy1:

On the other hand, one verifies that

z�‚ ˝ id
�
�‚.F /

�
V�
ˇ̌
��;� 0.G/

˛
D

ˇ̌̌̌ Z
yG1.�; y/u.�/˝ ��;� 0.�; y/d� dy

�
D V� ˝ id

�
�‚.�‚.F /

�ˇ̌
��;� 0.G/

˛�
:

We see that the representation .V� ˝ id/��‚.�/.V� ˝ id/ is a restriction of z�‚.

4.3. Pseudo-differential operator calculus

Recall that on Rd the pseudo-differential operator of a symbol a.x; �/ is given by the
singular integral form

op0.a/.f /.x/ WD
1

.2�/d

Z
Rd

eix��a.x; �/ Of .�/d�; f 2 �.Rd /: (4.6)

In [19], the ‰DOs on R� are defined as those operators of the form

op� .a/
�
�� .f /

�
D

1

.2�/d

Z
Rd

a.�/�� .�/ Of .�/d�; f 2 �.Rd /; (4.7)
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where a W Rd ! R� is the symbol as an R� -valued function. The ‰DOs in our setting are
operators densely defined on L2.R�;� 0/ Š L2.R� /˝2 L2.R� 0/. The main idea to define
the operator map “Op” is that for a symbol a1 ˝ a2 with a1 2 R� ; a2 2 R� 0 ,

Op.a1 ˝ a2/ D �‚.a1a2/ 2 B
�
L2.R�;� 0/

�
; (4.8)

where a1a2 is the product in R‚ by viewing R� ;R
0
�
� R‚ as subalgebras, and �‚ is the

�-representation of R‚ onL2.R�;� 0/ defined in Proposition 4.7. The definition for general
symbol a 2 †m is given as follows.

Definition 4.9. For a symbol a 2 †m, we define the operator Op.a/ W ��;� 0 ! ��;� 0 as
follows:

Op.a/��;� 0.F / D
1

.2�/2d

Z
R2d

˛2�.a/
yF .�; y/��;� 0.�; y/d� dy:

An operator of this form will be called a pseudo-differential operator (‰DO). We denote
by opm the set of all ‰DOs of order at most m.

We justify the above definition and verify the property (4.8).

Proposition 4.10. For a symbol a 2 †m, Op.a/ is a continuous map from ��;� 0 to ��;� 0

and Op.a/ is an operator affiliated to �‚.R‚/ � B.L2.R�;� 0//. In particular, if a1 2 R�
and a2 2 R� 0 , Op.a1 ˝ a2/ D �‚.a1a2/.

Proof. In the calculation below, the normalization constant .2�/�d will be omitted. Recall
from Proposition 4.7 that

W W L2.R‚/! L2.R�;� 0/; W
ˇ̌
�‚.F /

˛
D
ˇ̌
��;� 0.F /

˛
is the isometry such that W ��‚.�/W is the left regular representation of R‚ on L2.R‚/.
To verify that Op.a/ is affiliated to �‚.R‚/, it suffices to show that W Op.a/W � com-
mutes with right multiplication of R‚. For any �0; y0 2 Rd ,

�‚.F /�� .�0/�� 0.y0/ D
�Z

R2d

yF .�; y/�� .�/�� 0.y/d� dy
�
�� .�0/�

0
� .y0/

D

Z
R2d

yF .�; y/eiy�0�� .�/�� .�0/�� 0.y/�� 0.y0/d� dy:

Then W.�‚.F /�� .�0/�� 0.y0// D ˛2�0.��;� 0.F //��;� 0.�0; y0/. We verify that

Op.a/W
�
�‚.F /�� .�0/�� 0.y0/

�
D Op.a/

�
˛2�0

�
��;� 0.F /

�
��;� 0.�0; y0/

�
D

Z
R2d

˛2�C�0
.a/ yF .�; y/eiy�0e

i
2���0e

i
2 y� 0y0��;� 0.�C �0; yC y0/d� dy

D

�Z
R2d

˛2�C�0
.a/ yF .�; y/˛2�0

�
��;� 0.�; y/

�
d� dy

�
��;� 0.�0; y0/
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D ˛2�0

�Z
R2d

˛2�.a/
yF .�; y/��;� 0.�; y/d� dy

�
��;� 0.�0; y0/

D ˛2�0

�
Op.a/��;� 0.F /

�
��;� 0.�0; y0/:

Hence

W � Op.a/W
�
�‚.F /�� .�0/�� 0.y0/

�
D
�
W � Op.a/W �‚.F /

�
�� .�0/�� 0.y0/;

which implies that Op.a/ is affiliated to the representation on

�.R‚/ � B
�
L2.R� /˝2 L2.R� 0/

�
:

Now we show that Op.a/ W ��;� 0 ! ��;� 0 is continuous. Let us first assume that a 2†0

is a 0-order symbol. Then a is bounded in R�;� 0 and kak1 D k˛2�.a/k1 for all �. Thus
the singular integral Z

R2d

˛2�.a/
yF .�; y/��;� 0.�; y/d� dy


1

� k yF k1kak1

converges in R�;� 0 . Write the set�WD¹Op.a/�‚.F / jF2�.R2d/; a2†0º�R�;� 0 . For de-
rivatives, we know thatDxj .�� .�//D �j�� .�/,D�j .�� 0.y//D yj�� 0.y/, andDˇ

xD


�
.a/2

†�j j. Using product rules in the integral,

D�j
�

Op.a/��;� 0.F /
�
D D�j

�Z
R2d

˛2�.a/
yF .�; y/�� .�/˝ �� 0.y/d� dy

�
D

Z
R2d

˛2�.D�j a/
yF .�; y/��;� 0.�; y/d� dy

C

Z
R2d

˛2�.a/
yF .�; y/yj��;� 0.�; y/d� dy

D Op.D�j a/��;� 0.F /C Op.a/��;� 0.D�jF /;

which is again in the set� hence bounded in R�;� 0 . By induction,Dˇ
xD



�
.Op.a/��;� 0.F //

is in � for any ˇ;  . On the other hand, let h 2 R and ej D .0; : : : ; 1; : : : ; 0/, then

�� .�/e
ixj h D e�

i
2

P
k h�jk�k�� .�C hej /; �� 0.y/ei�j h D e

� i2

P
k h�

0
jk

yk�� .yC hej /:

Taking derivatives at h D 0,

�� .�/xj D D�j

�
�� .�/

�
�
1

2

X
k

�jk�k�� .�/;

�� .y/�j D Dyj
�
�� 0.y/

�
�
1

2

X
k

� 0jk�k�� 0.y/

holds weakly. Then�
Op.a/��;� 0.F /

�
xj D

Z
˛2�.a/

yF .�; y/D�j

�
��;� 0.�; y/

�
d� dy

�
1

2

Z
˛2�.a/

yF .�; y/
�X

k

�jk�k

�
��;� 0.�; y/d� dy
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D �

Z
˛2�.D�j a/

yF .�; y/
�
��;� 0.�; y/

�
d� dy

�

Z
˛2�.a/.D�j

yF /.�; y/
�
��;� 0.�; y/

�
d� dy

�
1

2

Z
˛2�.a/

yF .�; y/
�X

k

�jk�k

�
��;� 0.�; y/d� dy

D �Op.D�j a/��;� 0.F / � Op.a/��;� 0.�jF /

�
1

2

X
k

� 0jk Op.a/��;� 0.D�kF /

which is again in the set �. By induction, � is stable under right multiplication of poly-
nomials xˇ � . By Proposition 3.4, we know that � � ��;� 0 because for all ˇ1; ˇ2; 1; 2Dˇ1

x D
1
�

�
Op.a/��;� 0.F /

�
xˇ2�2


1
<1:

Moreover, one can track that these norms are controlled by the seminorms of a 2 †0

and ��;� 0.F / 2 S�;� 0 . Thus we proved that Op.a/ W ��;� 0 ! ��;� 0 is continuous for 0-order
‰DO. Now consider b 2†m withm being an even integer, we know that bD bh�i�mh�im,
bh�i�m is a 0-order symbol, and h�im is a polynomial. Note that for a 2 †0,

Op.a�j /��;� 0.F /

D

Z
R2d

˛2�.a�j /
yF .�; y/��;� 0.�; y/d� dy

D

Z
R2d

.�j C �j /˛
2
�.a/
yF .�; y/��;� 0.�; y/d� dy

D

Z
R2d

�j˛
2
�.a/
yF .�; y/��;� 0.�; y/d� dyC

Z
R2d

˛2�.a/
yF .�; y/�j��;� 0.�; y/d� dy

D �j Op.a/��;� 0.F /C Op.a/��;� 0.DxjF /

which is again in �. Moreover, the continuity of Op.a�j / follows from the continuity
of Op.a/. By induction, we obtain that Op.a/ W ��;� 0 ! ��;� 0 is continuous for Op.a/ 2
†m for all m. Finally, we verify the property that Op.a1 ˝ a2/ D �.a1a2/. It suffices to
consider test functions ��;� 0.F / D �� .f1/˝ �� 0.f2/ with F.x; �/ D f1.x/f2.�/. Then

Op.a1 ˝ a2/��;� 0.F / D
Z �

a1 ˝ ˛�.a2/
�
Of1.�/ Of2.y/

�
�� .�/˝ �� 0.y/

�
d� dy

D

Z
Of1.�/a1�� .�/˝

�
˛�.a2/�� 0.f2/

�
d�

D W �
�Z

Of1.�/a1�� .�/˛�.a2/�� 0.f2/d�

�
D W �

�
a1a2

Z
Of1.�/�� .�/�� 0.f2/d�

�
D W �

�
a1a2�� .f1/�� 0.f2/

�
D W �.a1a2/W

�
�� .f1/˝ �� 0.f2/

�
:
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Here we use the fact that, for a2 2M� 0 , a2�� .�/ D �� .�/˛�.a2/. This property is easily
verified for a2 2 �� 0 and then extends to M� 0 .

The connection between our setting and ‰DOs on Rd and R� can be made explicit
via the commuting diagram

†0 � R�;� 0 �‚.R‚/

R� x̋ L1.R
d ;R� 0 / B

�
L2.R� /

�
x̋ R� 0 L

�
Lc2.R� /˝wh R� 0

�

L1.Rd �Rd ;R�;� 0 / L
�
Lc2.R

d /˝wh R�;� 0
�

id˝�� 0

Op

op� ˝ idR� 0

�� ˝ id
V� .�/V

�
�op0˝ idR�;� 0

Here �� ; �� 0 ; �‚ are the co-representation maps discussed in Section 4.2. The composition
�‚ ı Op gives Definition 4.9. On the second row, the co-representation

id˝ �� 0.a/.�/ D ˛2�.a/

gives R� 0 -valued symbol, and Definition 4.9 is then coincides with the R� 0 -valued operator
map op� ˝ id on R� in (4.7). Via the identification B.L2.R� // x̋ R� 0 ŠL.L2.R� /

c ˝wh

R� 0/ [27], this also gives operators on Hilbert R� 0 -module L2.R� /c ˝wh R� 0 . On the
bottom row, we have an R�;� 0 -valued classical symbol �� ˝ � 0� .a/.x; �/ D ˛

1
x˛
2
�
.a/, and

op0˝ id�;� 0 is the R�;� 0 -valued operator map on Rd in (4.6). The ‰DOs are R�;� 0 -linear
operators on the Hilbert module L2.Rd /c ˝wh R�;� 0 . By Proposition 4.8, we have the
Hilbert space isometry

V� ˝ idR� 0
W L2.R� /

c
˝wh R� 0 ! L2.R

d /c ˝wh R�;� 0 :

Moreover, for a symbol a 2 †0, the operator Op.a/ can be viewed as a restriction of the
R�;� 0 -valued ‰DO op0˝ id.��;� 0.a// as follows:

op0˝ id
�
�� ˝ �

0
� .a/

��
V� ˝ id

�
��;� 0.F /

��
D .2�/�d

Z
eix�˛1x˛

2
�.a/

yF .�; y/��;� 0.�; y/d� dy

D ˛x

�
.2�/�d

Z
˛2�.a/

yF .�; y/��;� 0.�; y/d� dy
�
D V� ˝ id

�
Op.a/��;� 0.F /

�
:

This enables us to reduce the L2-boundedness to the operator-valued case. For that we
recall the operator-valued Calderón–Vaillancourt theorem proved by Merklen in [33].

Theorem 4.11 ([33, Theorem 2.1]). Let A be a C �-algebra and let CB1.Rd �Rd ;A/
be the set of smooth A-valued functions with bounded derivatives of all orders. Then, for
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any a 2 CB1.Rd �Rd ;A/,

op.a/f .x/ D
1

.2�/d

Z
Rd

eix��a.x; �/ Of .�/d�; f 2 �.Rd ;A/;

extends to a bounded operator on the Hilbert A-module L2.Rd ;A/. Moreover, there
exists a constant C independent of a, such that op.a/

 � C sup
®D˛

xD
ˇ
�
.a/

1
j 0 � ˛; ˇ � .1; 1; : : : ; 1/

¯
:

Then L2-boundedness theorem in our setting follows from the commuting diagram.

Theorem 4.12 (L2-boundedness). Let a 2†0 be a symbol of order 0. Then Op.a/ extends
to a bounded operator in �‚.R‚/ � B.L2.R�;� 0//.

Proof. By definition of †0, a and all its derivatives D˛
xD

ˇ

�
.a/ are in R�;� 0 . Then �� ˝

�� 0.a/ 2 L1.R
d �Rd ;R�;� 0/ and for any ˛; ˇ,D˛

xD
ˇ
�

�
��;� 0.a/

� D ��;� 0�D˛
xD

ˇ

�
.a/
�

are bounded. Thus ��;� 0.a/ is an R�;� 0 -valued symbol with all derivatives bounded. Then,
by Theorem 4.11, we know that op0˝ id.��;� 0.a// is a bounded element in B.L2.Rd // x̋
R�;� 0 . By diagram chasing,Op.a/

 D V� Op.a/V ��

B.L2.R� // x̋R� 0

�
 op

�
�� ˝ �

0
� .a/

�
L.L2.Rd ;R�;� 0 //

and the norm estimates follow from Theorem 4.11.

We now discuss the composition formula. Let us first identify the formula by a heuris-
tic argument. Given two classical operator-valued symbols a; b 2 C1.Rd �Rd ;A/, the
composition symbol in the usual Euclidean case is

c.x; �/ D
1

.2�/d

Z
R2d

a.x;�/b.y; �/ei.���/�.x�y/ d� dy:

Given symbols a; b affiliated to R�;� 0 , the co-representation ��;� 0 gives us operator-valued
symbols

��;� 0.a/.x; �/ D ˛1x˛
2
�.a/; ��;� 0.b/.x; �/ D ˛1x˛

2
�.b/:

The operator-valued composition symbol is

C.x; �/ D
1

.2�/d

Z
R2d

˛1x˛
2
�.a/˛

1
y˛
2
�.b/e

i.���/�.x�y/ d� dy

D ˛1x˛
2
�

�
1

.2�/d

Z
R2d

˛2���.a/˛
1
y�x.b/e

i.���/�.x�y/ d� dy
�

D ˛1x˛
2
�

�
1

.2�/d

Z
R2d

˛2�.a/˛
1
y .b/e

�i�y d� dy
�
D ��;� 0.c/;
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where c is an M�;� 0 -valued singular integral,

c D
1

.2�/d

Z
R2d

˛2�.a/˛
1
y .b/e

�i��y d� dy:

We first justify this singular integral and prove its formal series of the following definition.

Definition 4.13. Letmj , j � 0, be a decreasing sequence of real numbers and aj 2 †mj .
We write an m0-order symbol a �

P
j�0 aj if for any N , a �

P
N�mj

aj 2 †
N .

The proof adapts the argument for the classical case by Stein [41] to the operator-
valued setting.

Theorem 4.14 (Composition formula). Let a 2 †m and b 2 †n. Then there exists a sym-
bol c 2 †mCn such that Op.c/ D Op.a/Op.b/ and

c �
X
˛

i j˛j

˛Š
D˛
� .a/D

˛
x .b/:

Proof. Let � be a positive function on Rd such that �.x/ D 1 for jxj � 1 and �.x/ D 0
for jxj > 2. For each " > 0, denote by b".y/D �."y/˛2y .b/ as †n-valued function. Define
the symbol

c" D
1

.2�/d

Z
˛2�.a/b".y/e

�i��y d� dy:

This is a Bochner integral because the integrand function .�; y/ 7! ˛2�.a/b".y/e�i��y is
smooth in the Fréchet space †mCn by Proposition 4.4. We split our proofs into three
steps.

Step 1. For any " > 0, c" converges in†mCn and there exists remainderR" 2†mCn�N�1

such that

c" D
X
jˇ j�N

i jˇ j

ˇŠ
D
ˇ

�
aDˇ

x b CR":

For the compactly supported b" 2 C.Rd ; †n/, the Fourier transform for functions
valued in the Fréchet space †n is well defined:

Ob".�/ D

Z
b".y/e�iy� dy;

Z
Ob".y/e�i�y d� dy D .2�/db".0/ D .2�/db.0/:

Then, for any ˇ,Z
�ˇ Ob".�/d� D .�1/

jˇ j

Z
b".y/Dˇ

y .e
�iy�/dy d� D

Z
Dˇ

y
�
�."y/˛1y .b/

�
e�iy� dy d�

D

X
ˇ1Cˇ2Dˇ

�
ˇ

ˇ1; ˇ2

�Z
"jˇ1j.Dˇ1�/."y/˛1y .D

ˇ2
x b/e

�iy� dy d�

D .2�/d
X

ˇ1Cˇ2Dˇ

�
ˇ

ˇ1; ˇ2

�
"jˇ1j.Dˇ1�/.0/Dˇ2

x b D .2�/
dDˇ

x b: (4.9)
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We also have

Dˇ
xD



�
. Ob".�// D D

ˇ
xD



�

�Z
�".y/˛y.b/e

�iy� dy
�

D

Z
�".y/˛y.D

ˇ
xD



�
b/e�iy�dy D3

Dˇ
xD



�
b".�/:

By Proposition 4.4, we use the Taylor expansion for functions valued in the Fréchet space
†m,

˛�.a/ D
X
jˇ j�N

i jˇ j.D
ˇ

�
a/�ˇ

ˇŠ

C .N C 1/
X

jˇ jDNC1

i jˇ j

ˇŠ
�ˇ
Z 1

0

˛t�.D
ˇ

�
a/.1 � t /N dt: (4.10)

Using the calculation (4.9), the first part leads to

1

.2�/d

Z X
jˇ j�N

D
ˇ

�
a

ˇŠ
�ˇ Ob".�/d� D

X
jˇ j�N

i jˇ j

ˇŠ
D
ˇ

�
aDˇ

x b

which gives the leading terms. For the second term in (4.10), we have jˇj D N C 1 and Z 1

0

˛2t�.D
˛
� a/.1 � t /

Ndth�i�mCNC1


�

Z 1

0

.1 � t /N
˛2t��Dˇ

�
.a/h�i�mCNC1

� � h� C t�im�N�1h�i�mCNC1dt
�

Z 1

0

.1 � t /N
Dˇ

�
.a/h�i�mCNC1

 � h� C t�im�N�1h�i�mCNC1dt
.
Z 1

0

.1 � t /N
�
th�i

�d�mCNC1e
dt � AN;mh�i

d�mCNC1e:

Here we used Lemma 3.5 with AN;m being some positive constant that only depends on
N;m and dre as the smallest even integer greater than jr j. On the other hand, for any ˇ,

Ob".�/�
ˇ
D

X
ˇ1Cˇ2Dˇ

ˇŠ

ˇ1Šˇ2Š

Z
Dˇ1

y �".y/˛
2
y
�
Dˇ2
x .b/

�
e�iy� dy:

For each term,h�im�N�1Dˇ1
y �".y/˛

1
y
�
Dˇ2
x .b/

�
h�i�n�mCNC1


�
ˇ̌
Dˇ1

y �".y/
ˇ̌
�
˛1y �h�im�N�1Dˇ2

x .b/h�i
�n�mCNC1

�:
Here we used the assumption that b; Dˇ2

x .b/ 2 †
n. Because Dˇ1

y .�".y// is a compactly
supported function of y, we have for any positive integer l ,h�im�N�1 Ob".�/h�i�n�mCNC1 � Bn;m;N �1C j�j��l ;
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where Bl;n;m;N is a constant depending on .l; n; m; N / and ". Thus, by choosing large
enough l ,  Z

Rd

�Z 1

0

˛t�.D
ˇ

�
a/.1 � t /Ndt

�
�ˇ Ob".�/d�h�i

�m�nCNC1


.
Z
h�idm�N�1e

�
1C j�j

��l
d� <1:

A similar argument applies for derivatives:

D1
x D

2
�

�Z
Rd

�Z 1

0

˛2t�.D
ˇ

�
a/.�/.1 � t /N dt

�
�ˇ Ob".�/d�

�
:

Therefore we obtain that

c" D
X
jˇ j�N

i jˇ j

ˇŠ
D
ˇ

�
aDˇ

x b CR";

where R" is a remainder term in †nCm�N�1.

Step 2. The limit lim"!0 c"D lim"!0
1

.2�/d

R
˛2�.a/b".y/e�i��y d�dy converges in†nCm.

Now take "0 < " and

b2.y/ WD b"0.y/ � b".y/ D
�
�."0y/ � �."y/

�
˛y.b/;

which is supported on 1=" < jyj< 2="0. Note that in the above argument, we actually show
that the singular integral

R
˛�.a/b.y/ei��y d� dy converges absolutely if b is compactly

supported. Then for each j , we can use integration by parts:Z
˛�.a/yj jyj�2b2.y/ei��y d� dy D

Z
˛�.a/jyj�2b2.y/D�j e

i��y d� dy

D

Z
D�j .˛�/.a/jyj�2b2.y/ei��y d� dy

D

Z
˛�.D�j a/jyj

�2b2.y/ei��y d� dy:

Here we used the propertyD�j .˛�/.a/D˛�.D�j a/. Denote��D
P
jD

2
�j

,��D
P
jD

2
�j

,

and �y D
P
j D

2
yj . Because ��.˛

1
�.a// D ˛

1
�.��a/, using integration by parts we haveZ

˛�.a/b2.y/ei��y d� dy

D

Z
˛�.�

m1
�
a/jyj�2m1b2.y/e�i�y d� dy

D

Z
˛�.�

m1
�
a/.1C�y/

m2
�
jyj�2m1b2.y/

�
h�i�2m2e�i�y d� dy:
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Here jyj�2m1b2.y/ has no singularity because b2 is supported away from y D 0. Because
a 2 †m; b 2 †n,

�
m1
�
.a/ 2 †m�2m1 ; .1C�y/

m2
�
jyj�2m1b2.y/

�
2 †n:

For the symbol a 2 †m, we have˛�.�
m1
�
a/h�i�mC2m1

 � ˛�

�
�
m1
�
ah�i�mC2m1

�h� � �im�2m1h�i�mC2m1
� zAm;m1h�i

d�mC2m1e;

for some constants zAm;m1 . For the symbol b 2 †n, because jyj�2m1b2.y/ is supported on
1
"
< jyj < 2

"0
, h�im�2m1.1C�y/

m2
�
jyj�2m1b2.y/

�
h�i�mC2m1�n


� zBm;m1;nhyi

dm�2m1eCd2m1�m�ne�2m1�¹ 1"<jyj<
2
"0
º

for some constants zBm;m1;n and here � is the characteristic function. We first choose m1
large enough with 2m1 � dm � 2m1e � d2m1 �m � ne > 0 and then m2 large enough
such that the integral Z ˛�.a/b2.y/e�i�y d� dy � h�i�m�nCNC1


�

Z
1
"<jyj<

2
"0

h�id�mC2m1eh�i�2m2hyidm�2m1eCd2m1�m�ne�2m1 d� dy <1 (4.11)

converges absolutely. The argument for the derivatives is similar. HenceZ
˛�.a/b2.y/e�i�y d� dy 2 †nCm�N�1;

which is of lower order of the leading terms. Note that when "! 0, the norm estimates
(4.11) go to 0 uniformly for "0 < ". This implies that the remainder R" converges to 0 in
†nCm�N�1.

Step 3. For any ��;� 0.F / 2 ��;� 0 ,

Op.a/Op.b/��;� 0.F / D lim
"!0

Op.c"/��;� 0.F / D Op.c/��;� 0.F /:

Hence Op.a/Op.b/ D Op.c/.
Indeed, since the integral in c" converges absolutely, then

Op.c"/��;� 0.F /

D

Z
˛2�1

�Z
�."y/˛2�.a/˛

1
y .b/e

�i�y d� dy
�
yF .�1; y1/��;� 0.�1; y1/d�1 dy1

D

Z
�."y/e�i�y˛2�C�1

.a/˛1y˛
2
�.b/
yF .�1; y1/��;� 0.�1; y1/d�1 dy1 d� dy
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D

Z
�."y/e�i.���1/y˛2�.a/˛

1
y˛
2
�1
.b/ yF .�1; y1/��;� 0.�1; y1/d�1 dy1 d� dy

D

Z
�."y/e�i�y˛2�.a/˛

1
y

�Z
˛2�1.b/

yF .�1; y1/��;� 0.�1; y1/d�1 dy1
�
d� dy

D

Z
�."y/e�i�y˛2�.a/˛

1
y
�

Op.b/��;� 0.F /
�
d� dy:

Thus it suffices to show that for ��;� 0.G/ D Op.b/��;� 0.F /,

lim
"!0

Z
�."y/e�i�y˛2�.a/˛

1
y
�
��;� 0.G/

�
d� dy D Op.a/��;� 0.G/:

Let y� be the Fourier transform of �, thenZ
�."y/e�i�y˛1y

�
��;� 0.G/

�
dy D

Z
�."y/e�i.���1/y yG.�1; y1/��;� 0.�1; y1/dy dy1 d�1

D

Z
1

"d
y�

�
� � �1

"

�
yG.�1; y1/��;� 0.�1; y1/dy1 d�1:

Here 1

"d
y�. �
"
/ approximates the delta function,Z

�."y/e�i�y˛2�.a/˛
1
y
�
��;� 0.G/

�
d� dy D

Z
1

"d
y�

�
�

"

�
Op.˛2�a/��;� 0.G/d�

D

Z
1

"d
y�

�
�

"

�
˛2�
�

Op.a/˛2����;� 0.G/
�
d�:

Since � ! ˛2
�
.Op.a/˛2

��
��;� 0.G// is continuous in ��;� 0 , the above integral converges to

Op.a/��;� 0.G/ in ��;� 0 as "! 0.

4.4. Integrability and trace formula

In the rest of this section, we discuss the integrability of‰DOs whose symbol is integrable
in the first component R� .

Definition 4.15 (Tame symbols). An element a 2M�;� 0 is a tame symbol of order m if
there exists an r > d such that for any ˛, ˇ, and  ,

hxirD˛
xD

ˇ

�
.a/h�ijˇ j�m

extends to a bounded element in R�;� 0 . We write †mtame as the set of all tame symbols of
order m and †�1tame WD

T
r †

r
tame.

Proposition 4.16. A symbol a 2 †mtame if and only if there exists r > d such that for all
˛; ˇ, D˛

xD
ˇ

�
.a/ 2 O�r;m�jˇ j. Moreover, if b 2 †n, then ab; ba 2 †nCmtame .

Proof. This is a direct consequence of Theorem 4.3.
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Lemma 4.17. Let a 2 L2.R� / and b 2 L2.R� 0/. Then ab 2 L2.R‚/ and

kabkL2.R‚/ D kakL2.R� /kbkL2.R� 0 /
:

Proof. Note that, for �� .�/; �� 0.y/ 2 R‚,

�� .�/�� 0.y/ D e�
i
2��y�‚

�
.�; 0/C .0; y/

�
D e�

i
2��y�‚.�; y/;

where �‚.�; y/ is the quantization of R‚ as in (2.2). For f 2 �� ; g 2 �� 0 , we have

�� .f /�� 0.g/ D
1

.2�/2d

�Z
Rd

Of .�/�� .�/d�

��Z
Rd

Og.y/�� 0.y/dy
�

D
1

.2�/2d

Z
Rd

Z
Rd

Of .�/ Og.y/e�
i
2��y�‚.�; y/d� dy:

Thus we have

�‚
�
�� .f /�� 0.g/

�
D Of .0/ Og.0/ D ��

�
�� .f /

�
�� 0
�
�� .g/

�
:

Therefore, �� .f /�� 0.g/2L2.R‚/
D �‚

�
�� 0.g/

��� .f /
��� .f /�� 0.g/

�
D �‚

�
�� .f /

��� .f /�� 0.g/�� 0.g/
�
�

D ��
�
�� .f /

��� .f /
�
�� 0
�
�� 0.g/�� 0.g/

�
�

D
�� .f /2L2.R� /

�� 0.g/2L2.R� 0 /
:

The assertion for general a 2 L2.R� /; b 2 L2.R� 0/ follows from density.

In the following and also Section 5, we identify �‚.R‚/ with R‚ and viewing our
‰DOs Op.a/ as an operator affiliated to R‚ � B.L2.R‚//.

Corollary 4.18. Let a 2 †mtame. Then

(i) Op.a/ 2 L2.R‚/ if m < �d
2

;

(ii) Op.a/ 2 L1.R‚/ if m < �d .

Proof. We know from the algebraic property that Op.�� .f1/˝�� 0.f2//D�� .f1/�� 0.f2/
for f1;f2 2 �.Rd /. The Op is anL2-isometry and trace preserving on ��;� 0 . Let a 2†mtame.
Then for some r > d ,

Op.a/ D hxi�rh�imh�i�mhxir Op.a/ D hxi�rh�imh�i�m Op
�
hxira

�
D
�
hxi�rh�im

��
h�i�m Op

�
hxira

��
:

By symbol calculus, h�i�m Op.hxira/ is a ‰DO of order 0 hence in R‚. For m < �d=2,
kh�imkL2.R� 0 /

<1 and khxi�rkL2.R� / <1. Then hxi�rh�im 2 L2.R‚/ andOp.a/

2
�
hxi�rh�im

2

h�i�m Op
�
hxira

�
1
:
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For m < �d , choose n D m
2

,

Op.a/ D
�
hxinh�in

��
h�i�n Op

�
hxi�na

��
:

h�i�nOp.hxi�na/ is a tame‰DO of order less than d=2 hence inL2.R‚/ and hxi�nh�i�n

is also in L2.R‚/ by the discussion in (i).

We end this section with the trace formula.

Proposition 4.19. Suppose a symbol a 2 L1.R�;� 0/ and its operator Op.a/ 2 L1.R‚/.
Then

�‚
�

Op.a/
�
D ��;� 0.a/:

Proof. Using the definition of Op.a/,

�‚
�

Op.a/�‚.F /
�
D ��;� 0

�Z
R2d

yF .�; y/˛2�.a/��;� 0.�; y/d� dy
�

D

Z
R2d

yF .�; y/
�
��;� 0

�
˛2�.a/��;� 0.�; y/

��
d� dy

D

Z
R2d

yF .�; y/��;� 0
�
a˛2��

�
��;� 0.�; y/

��
d� dy

D

Z
R2d

yF .�; y/e�i�y���;� 0�a��;� 0.�; y/��d� dy

D ��;� 0
�
a��;� 0.F

0/
�
;

where F 0 has the Fourier transform yF 0.�; y/ D yF .�; y/e�i�y. Here we use the Fubini
theorem because a 2 L1.R�;� 0/. Let Fn 2 �.R2d / be a sequence of Schwartz function
in Proposition 3.7. Then �‚.Fn/ (resp. ��;� 0.Fn/) is an approximation of identity in
L1.R‚/ (resp. L1.R�;� 0/). Take F 0n 2 �.R2d / such that yFn0.�; y/ D yFn.�; y/e�i�y. Note
that k yFnk1 D 1 and yFn is supported in j.�; y/j � 1

n
. When n! 1,��;� 0.Fn/ � ��;� 0.F 0n/1 �  yF 0n � yFn1 D Z

R2d

yFn.�; y/j1 � e�i�y
jd� dy! 0:

Therefore,

�‚
�

Op.a/
�
D lim
n!1

�‚
�

Op.a/�‚.Fn/
�
D lim
n!1

��;� 0
�
a��;� 0.F

0
n/
�

D lim
n!1

��;� 0
�
a��;� 0.Fn/

�
D ��;� 0.a/:

5. Local index formula

In this section, we discuss the spectral triple structure on R� equipped with noncommuting
partial derivatives. We first recall the definitions of semifinite spectral triple from [9].

We shall show that the noncommuting derivatives in Section 4 give a natural example
of a semifinite spectral triple. The main result of this chapter is a simplified index formula
and we calculate it for the Bott projector as an example.
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5.1. Semifinite spectral triple

Let N be a von Neumann algebra equipped with a normal faithful semifinite trace � . The
� -compact operator K.N ; �/ is defined to be the N -norm completion of L1.N ; �/ \N

in N . In our case, K.R� ; �� / D E� . The following definition of semifinite spectral triple
is from [9, Definition 2.1].

Definition 5.1. A semifinite spectral triple .A; H;D/, relative to a semifinite tracial von
Neumann algebra .N ; �/, consists of a Hilbert space H on which N is faithfully repre-
sented, a �-subalgebra A of N acting onH , and a densely defined unbounded self-adjoint
operator D affiliated to N such that

(i) a � domD � domD for all a 2 A, so that da WD ŒD; a� is densely defined.
Moreover, da extends to a bounded operator in N for all a 2 A;

(ii) a.1CD2/�1=2 2K.N ; �/.

.A;H;D/ is even if there is an operator  2 N such that for all a 2 A,

 D �; 2 D 1; a D a; and D C D D 0:

.A; H;D/ is finitely summable if there exists s > 0 such that a.1CD2/�
s
2 2 L1.N ; �/

for all a 2 A. Then

p D inf
®
s > 0 j for all a 2 A; a.1CD2/�

s
2 2 L1.N ; �/

¯
is called the spectral dimension of .A;H;D/.

The subalgebra A plays the role of smooth functions. A spectral triple is often called
compact if A contains the identity operator on H . In this case, the condition (ii) simpli-
fies to the assumption that .1CD2/�1=2 is compact. We recall the following sufficient
condition for the smooth summability of a semifinite spectral triple and refer to [9] for a
detailed discussion of the definition.

Proposition 5.2 ([9, Proposition 2.21]). Let .A; H; D/ be a spectral triple of spectral
dimension p relative to .N ; �/. If for all a 2 A [ ŒD;A�, k 2 NC, and s > p,

.1CD2/�
s
4Lk.a/.1CD2/�

s
4 2 L1.N ; �/;

then .A;H;D/ is smoothly summable. Here L.T / WD .1CD2/�
1
2 ŒD2; T � and Lk.T /D

L.Lk�1.T //.

A quantum Euclidean space R� equipped with its natural partial derivatives Dj was
studied as the prototypical example of noncommutative semifinite spectral triple in [9,18].
The rest of this subsection is to show that a further deformation of Rd associated with
noncommuting spatial coordinates and noncommuting derivatives also gives a semifinite
spectral triple structure for R� . First, we choose the smooth subalgebra A to be the non-
commutative Sobolev space

W 1;1.R� / D
®
a j D˛.a/ 2 L1.R� / for all ˛

¯
:
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In the classical case, W 1;1.Rd / � C10 .R
d / by Sobolev embedding theorem (cf. [8,

Chapter 4, Corollary 21]). The next lemma is a weaker analog on R� .

Lemma 5.3. If D˛.a/ 2 L1.R� / for all ˛, then D˛.a/ 2 Lp.R� / for all 1 � p � 1
and ˛. In particular, the unitalization W 1;1.R� /

� WD .W 1;1.R� / C C/ is a dense �-
subalgebra of E�

�
closed under holomorphic functional calculus.

Proof. Denote � D
P
j D

2
xj

. For �� .f / 2 �� ,

.1C�/�� .f / D ��
�
.1C�/f

�
D

Z
h�i2 Of .�/�� .�/d�:

Choose an integer 2n > d , then we have that .1C�/�n WL2.R� /!L1.R� / is bounded
because .1C�/�n�� .f / D  Z h�i�n Of .�/�� .�/d� � h�i�n Of 1

� kh�i�nk2
 Of 

2
D
h�i�n

2

�� .f /2:
By duality, we also have that .1C�/�n W L1.R� /! L2.R� / is bounded. Indeed, for any
�� .f /; �� .g/ 2 �� ,˝
�� .g/; .1C�/

�n�� .f /
˛
��
D
˝
.1C�/�n�� .g/; �� .f /

˛
��

�
.1C�/�n�� .g/1�� .f /1 � C�� .g/2�� .f /1:

Here we have used the fact .1C�/�n admits self-adjoint extension when initially defined
on �� . Thus we have that .1 C �/�n W L1.R� / ! L1.R� / is continuous. If D˛.a/ 2

L1.R� / for all j˛j � 2n, then .1C�/n.a/ 2 L1.Rd / and hence a 2 L1.R� /. Therefore
W 1;1.R� / is closed under product hence a subalgebra of E� . It is dense because �� �

W 1;1.R� /. To show that W 1;1.R� / is closed under holomorphic calculus, it suffices to
consider the resolvent .� � a/�1 for � … Spec.a/. Indeed, .� � a/�1 is bounded and

��1 � .� � a/�1 D ��1
�
.� � a/ � �

�
.� � a/�1 D ���1a.� � a/�1 2 L1.R� /:

For the derivatives,�
Dj ; .� � a/

�1
�
D .� � a/�1ŒDj ; a�.� � a/

�1
2 L1:

For higher-order derivatives D˛ , we use induction and the Leibniz rule

D˛
�
.� � a/�1

�
D D˛

�
.� � a/�1.� � a/.� � a/�1

�
D

X
˛1C˛2C˛3D˛

˛Š

˛1Š˛2Š˛3Š
D˛1

�
.� � a/�1

�
D˛2.� � a/D˛3

�
.� � a/�1

�
:

The above lemma implies that the inclusionW 1;1.R� /�E� induces an isomorphism
on K-groups (cf. [10, p. 292]). In particular, every projection (resp. unitary) in E�

�
or
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Mn.E�� / can be approximated using projections (resp. unitary) in W 1;1.R� /
�. To verify

the finite and smooth summability conditions, we need the following lemma.

Lemma 5.4. Let a 2 W 1;1.R� /. Then h�i�
r
2 ah�i�

r
2 ; ah�i�r 2 L1.R‚/ if r > d .

Proof. We write a as a D a1a2 with a1; a2 2 L2.R� /. Then

h�i�
r
2 ah�i�

r
2 D

�
h�i�

r
2 a1

��
a2h�i

� r2
�
2 L1.R‚/

because h�i� r2 a1L2.R� /
D
h�i� r2 

L2.R� 0 /

a1L2.R� /
;a2h�i� r2 L2.R� /

D
h�i� r2 

L2.R� 0 /
ka2kL2.R� /:

Note that h�i�
r
2 Œa; h�i�

r
2 � D h�i�

r
2 ah�i�

r
2 � ah�i�r . To show that h�i�

r
2 Œa; h�i�

r
2 � 2

L1.R‚/, choose n such that 2n > r
2

and write sD r
4n

. Using the fractional power formula,

h�i�
r
2
�
a; h�i�

r
2
�

D Csh�i
� r2

Z 1
0

t�s
�
a;
�
t C h�i2n

��1�
dt

D Csh�i
� r2

Z 1
0

t�s
�
t C h�i2n

��1�
a; t C h�i2n

��
t C h�i2n

��1
dt

D Cs

Z 1
0

t�s
�
t C h�i2n

��1�
h�i�

r
2
�
a; h�i2n

�
h�i�2n

�
h�i2n

�
t C h�i2n

��1
dt:

Here Cs is some positive constant depending on s. Since Œa; h�i2n� is a linear combination
of a’s derivatives, we know that

h�i�
r
2
�
a; h�i2n

�
h�i�2n 2 L1.R‚/:

Then the integral converges in L1-norm,h�i� r2 �a; h�i� r2 �
1

.
Z 1
0

t�s
�tCh�i2n��1

1

h�i� r2 �a; h�i2n�h�i�2n
1

h�i2n�tCh�i2n��1
1
dt

.
Z 1
0

t�s.t C 1/�1dt <1:

Recall that the Clifford algebra Cld is generated by d self-adjoint operators c1; : : : ; cd
satisfying the anti-commutation relation cj ck C ckcj D 2ıj;k . For d D 2n even, Cld is
isomorphic to the N � N matrix algebra MN with N D 2n. For d D 2nC 1 odd, Cld

is isomorphic to M2n ˚M2n � MN with N D 2nC1. When d is even, Cld is Z2 graded
with the parity element  D .�i/

d
2 c1 � � � cd .
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Theorem 5.5. .W1;1.R� /;L2.R‚/˝CN ;
P
j �j ˝ cj / relative to .R‚˝MN ; �‚˝ tr/

is a smooth summable semifinite spectral triple with spectral dimension d . Moreover, it is
even if d D 2n is even, and  D .�i/

d
2 c1 � � � cd .

Proof. Note that

D2
D

X
j;k

�j �k ˝ cj ck D
X
j

�2j �
i

2

X
j;k

� 0j;kcj ck :

Denote ! D i
2

P
j;k �

0
j;k
cj ck . Then 1CD2 D h�i2 � !. Since ! 2MN commutes with

R‚, to verify summability it is equivalent to replace 1CD2 by h�i2. Lemma 5.4 shows
that ah�i�r 2 L1.R‚/ if r > d . For the converse direction, suppose that, for some r > 0,
ah�i�r 2 L1.R‚/ for any a 2 W1;1.R� /. We know that h�i�r � 1, h�i�r 2 Ls.R� 0/ for
s > d=r . Take en as the spectral projection of h�i�r on the interval Œ1=n; 1� and bn WD
enh�i

�r . We have �.en/ <1, �.bn/ <1, and �.bn/ is monotonically increasing. For any
nonzero a 2 �� and n � 1, by Lemma 4.17

kak2L2.R� /
kb1=2n k

2
L2.R� 0 /

D kab1=2n k
2
L2.R‚/

D �‚.abna
�/ � �‚

�
ah�i�ra�

�
�
ah�i�r

1
ka�k1 <1:

By Fatou’s lemma, This implies thath�i�r
L1.R0� /

D lim
n!1

�� 0
�
enh�i

�r
�
D lim
n!1

kb1=2n k
2
L2.R� 0 /

<1:

By Proposition 2.6, this implies that r > d . Thus we prove that the spectral dimension is
d . For smooth summability, we know that Œh�i2; a� 2 L1.R� / and by Lemma 5.4 again,

.1CD2/�
s
2L.a/.1CD2/�

s
2 2 L1.R‚/

if s > d . The arguments for Lk.a/ are similar.

5.2. Local index formula

We briefly recall the local index formula for the even case and refer to [9, 13] for detailed
information. Let .A;H;D/ be an even spectral triple relative to .N ; �/ and  is the parity
element. Denote HC D

C1
2
H and H� D

1�
2
H . For � > 0, define D� D

�
D �
� D

�
on

H ˚H . Write F� D D�jD�j�1 and

.F�/C D

�
1C 

2
˝ I2

�
F� W HC ˚HC ! H� ˚H�: (5.1)

Here and in the following, In represents the n-dimensional identity matrix. For a projec-
tion e 2Mn.A

�/, denote Oe D
�
e 0
0 1e

�
2M2n.A

�/, where 1e 2Mn.C/ is the rank element
of e. Following [9, Definition 2.12 and Proposition 2.13], the numerical index pairing
between the K0.A/ element Œe� � Œ1e� and the even spectral triple .A;H;D/ is given by˝

Œe� � Œ1e�; .A;H;D/
˛
D index�˝tr2n

�
Oe.F�;C ˝ In/ Oe

�
:
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Here the numerical index index� .F / D �.kerF / � �.cokerF / is defined as the trace of
kernel subtracting the trace of cokernel. Both quantities are invariants under homotopy.
The local index formula express the index pairings by the following residue cocycle for-
mulas.

Definition 5.6. .A; H;D/ has isolated spectral dimension if for all a0; : : : ; am 2 A, the
zeta function

�.z/ D �.a0da
.k1/
1 � � � da.km/m .1CD2/�jkj�m=2�z/

has an analytic continuation to a deleted neighborhood of z D 0.

Here we introduce the notation

da WD ŒD; a�; da.k/ WD
�
D2; ŒD2; : : : ; ŒD2„ ƒ‚ …

k-times

; da�
��
:

Let .A;H;D/ be a smoothly summable semifinite spectral triple with spectral dimension
d and let M be the largest integer in Œ0; d C 1�. Suppose that A has an isolated spectral
dimension. The residue cocycle �m W A˝mC1 ! C is the .mC 1/-linear form given by

�0.a0/ D ReszD0 z�1�
�
a0.1CD

2/�z
�
; (5.2)

�m.a0; : : : ; am/ D

M�mX
jkjD0

.�1/jkj˛.k/

jkjCm=2X
jD0

�jkjCm=2;j ReszD0 zj�1

� �
�
a0da

.k1/
1 � � � da.km/m .1CD2/�jkj�m=2�z

�
; (5.3)

where ˛.k/, �jkjCm=2;j are the constant defined as follows. For a multi-index k D

.k1; : : : ; km/,

˛.k/ D k1Šk2Š � � � kmŠ=.k1 C 1/.k1 C k2 C 2/ � � �
�
jkj Cm

�
(5.4)

�n;j are the nonnegative constant given by the equation

n�1Y
jD0

.z C j / D
X
jD1

�n;j z
j : (5.5)

In particular, ˛.0/ D mŠ and �n;1 D .n � 1/Š. The terms in �m is a linear combination of
residue and higher-order residue of the zeta function

�.z/ D �
�
a0da

.k1/
1 � � � da.km/m .1CD2/�jkj�m=2�z

�
:

The isolated spectral dimension condition assumes that these residues are well defined.

Theorem 5.7 ([9, Theorem 3.33] (even case)). Let .A; H; D/ relative to .N ; �/ be an
even smoothly summable semifinite spectral triple. Suppose that .A;H;D/ has an isolated
spectral dimension. Then the numerical index pairing can be computed by

˝
Œe� � Œ1e�;

�
.A;H;D/

�˛
D

MX
mD0; even

�m
�
Chm.e/ � Chm.1e/

�
;
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where for a projection e 2Mn.A
�/, Ch0.e/ D .e/ and

Ch2k.e/ D .�1/k
2kŠ

kŠ

�
e �

1

2

�
˝ e ˝ � � � ˝ e 2 A˝2kC1:

We shall now calculate the local index formula for the spectral triple .W1;1.R� /;
L2.R‚/ ˝ CN ;

P
j �j ˝ cj /. Recall that ! D i

2

P
� 0
jk
cj ck is the analog of curvature

form. Let us denote the super trace on Cld as str.a/D tr.a/ and the corresponding super
trace on R‚ ˝ Cld (resp. R� ˝ Cld ) as Str‚ D �‚ ˝ str (resp. Str� D �� ˝ str).

Theorem 5.8. Let d be even. The spectral triple .W1;1.R� /; L2.R‚/˝CN ;
P
j �j˝cj /

has an isolated spectral dimension. Moreover, for a0; : : : ; am 2 W1;1.R� /�,

�m.a0; : : : ; am/ D

8<: �
d
2

mŠ
Str�

�
a0da1 � � � dam

!
d�m
2

.d�m/
2 Š

�
; if m even;

0; if m odd:

Denote ‰k D a0da
.k1/
1 � � � da

.km/
m . The cocycle �m is a linear combination of residue

of the following zeta functions at z D 0:

�k.z/ D Str‚
�
‰k.1CD

2/�jkj�
m
2 �z

�
:

We first show that the residue for nonzero k vanishes.

Lemma 5.9. For k ¤ 0, ReszD0 �k.z/ D 0.

Proof. Denote �.a/ D
P
j D

2
j .a/. For a 2 W 1;1.R� /,�

j�j2;Dj .a/
�
D �.Dja/C 2

X
k

DkDj .a/�k 2 †
1;

ŒD2; da� D
h
j�j2 � !;

X
j

Dj .a/˝ cj

i
D

X
j

�
j�j2;Dj .a/

�
˝ cj C

X
j

Dj .a/˝ Œ!; cj � 2 †
1
˝ Cld

is a‰DO of order 1. Note that for any j1, j2, and j3, Œcj1cj2 ; cj3 �D 0 or of Clifford order 1.
Then da.1/ is of Clifford order 1 and similarly for da.k0/. Thus‰k D a0da

.k1/
1 � � �da

.km/
m 2

†k with Clifford term of at most order m. Moreover, by using the commutator relation
Œ�j ; a� D Dj .a/, ‰k D

P
jˇ j�k bˇ �

ˇ
j ˝ �ˇ for some bˇ 2 W 1;1.R� / and �ˇ 2 Cld of

Clifford order at most m. Thus it suffices to show that the zeta function

�.z/ WD Str‚
�
.b�ˇ ˝ �/.1CD2/�jkj�

m
2 �z

�
(5.6)

has zero residue at z D 0, for any b 2W 1;1.R� /, jˇj � k, and � of Clifford order at most
m. Recall that 1CD2 D h�i2 � ! commutes with h�i. Then, for any r > 0,h�ir .1CD2/�r=2


1
D
h�ir .1CD2/�rh�ir


1

�
�
1C k!k1

�rh�ir�1C k!k1 CD2
��r
h�ir


1

�
�
1C k!k1

�rh�irh�i�2rh�ir
1
D
�
1C k!k1

�r
:
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By Theorem 3.2, h�ir�jˇ j�ˇ h�i�r is bounded. Combined with Lemma 5.4, we have

.b�ˇ ˝ �/.1CD2/�r D
�
b�ˇ h�i�2r ˝ �

��
h�i2r .1CD2/�r

�
2 L1.R‚ ˝MN /

for 2r � jˇj > d . This implies that it suffices to consider the nonzero residue of (5.6) at
z D 0 for mC 2jkj � d C jˇj. Applying Cahen–Mellin integral,

.1CD2/�jkj�
m
2 �z D

1

�.jkj C m
2
C z/

Z 1
0

e�s.1CD
2/sjkjC

m
2 Cz�1 ds: (5.7)

For 2r � jˇj > d ,.b�ˇ ˝ �/e�s.1CD2/

L1.R‚˝MN /

� e�s
.b�ˇ ˝ �/.1CD2/�r


1

.1CD2/re�sD
2
1
:

By functional calculus, .1CD2/re�sD
2
1
� max

²
1;
rr

sr

³
:

Then the integralZ 1
0

.b�ˇ ˝ �/e�s.1CD2/

L1.R‚˝MN /

sjkjC
m
2 Cz�1 ds

converges for jkj C m
2
C Re.z/ > .d C jˇj/=2. Hence by Fubini’s theorem

�.z/ D

Z 1
0

Str‚
�
.b�ˇ ˝ �/e�s.1CD

2/
�
sjkjCm=2Cz�1 ds:

Using the trace formula from Proposition 4.19,

Str‚
�
.b�ˇ ˝ �/e�s.1CD

2/
�
D Str‚

�
.b�ˇ ˝ �/.e�s.1Cj�j

2/
˝ e�s!/

�
D �� 0.�

ˇe�s.1Cj�j
2//Str� .b ˝ �es!/

D

X
n

Str�

�
b ˝ �

!n

nŠ

�
sne�s�� 0.�

ˇe�sj�j
2

/:

Applying Theorem 3.2 and Proposition 2.6,

�� 0.�
ˇe�sj�j

2

/ �
�ˇ h�i�jˇ j

1

h�i�jˇ je� s2 j�j2
1
�� .e

� s2 j�j
2

/

�
�ˇ h�i�jˇ j

1

�
sup
w�0

.1C w/�jˇ j=2e�sw
�
.s=2/�

d
2 det

�
�i s

2
�

sinh.i s
2
�/

�1=2
� Cˇ;� 0s

�
jˇ j
2 s�

d
2 D Cˇ;� 0s

�
dCjˇ j
2 ;

where Cˇ;� 0 is a constant only depending on ˇ and � 0. Then for n � 0, the integralZ 1
0

ˇ̌
e�ssn�� 0.�

ˇe�sj�j
2

/sjkjCm=2Cz�1
ˇ̌
ds �

Z 1
0

e�ssn�.dCjˇ j/=2CjkjCm=2CRe.z/�1 ds
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converges absolutely if Re.z/ > .d C jˇj/=2 � n � jkj �m=2. Since jˇj � jkj, we have
the residue

ReszD0

Z 1
0

Str� .b ˝ �!n/�� 0.�ˇe�sj�j
2

/sn�
d
2CjkjCm=2Cz�1e�s ds D 0

if n C jkj=2 C m=2 � d=2 > 0. On the other hand, �!n contains Clifford elements of
order at most mC 2n, then the super trace Str� .b ˝ �!n/ D 0 for 2nCm < d . Hence
for jkj > 0, the above residue vanishes for every n and hence

RezzD0 �.z/ D RezzD0

Z 1
0

Str‚
�
.b�ˇ ˝ �/e�s.1CD

2/
�
sjkjCm=2Cz�1 ds

D

X
n

1

nŠ
RezzD0

Z 1
0

X
n

Str� .b ˝ �!n/sne�s�� 0.�ˇe�sj�j
2

/ds D 0:

We shall now calculate the residue for k D 0.

Proof of Theorem 5.8. We first consider the case m > 0. Denote ‰0 D a0da1 � � � dam 2
W 1;1.R� /˝ Cld . Using the trace formula from Proposition 4.19,

Str‚.‰0e�s.1CD
2// D Str‚

�
‰0.e

�s.1Cj�j2/
˝ e�s!/

�
D tr� 0.e�s.1Cj�j

2//Str� .‰0es!/

D

X
n

Str�

�
‰0
!n

nŠ

�
�
d
2 e�ssn�

d
2 h.s/:

Here we used again the calculation in Proposition 2.6 that

tr� 0.e�sj�j
2

/ D s�
d
2 det

�
i�s� 0

sinh is� 0

� 1
2

D s�
d
2 �

d
2 h.s/;

where

h.s/ D det
�

is� 0

sinh is� 0

�
D

lY
jD1

�j s

sinh�j s
;

where i�1;�i�1; : : : ; i�l ;�i�l are the nonzero eigenvalues of � 0. Using L’Hospital’s
rule, we know lims!0 s

�1.h.s/ � 1/ D 0. Then we split the residue into two parts:

ReszD0 �0.z/ D ReszD0 Str‚.‰0.1CD2/�m=2�z/

D ReszD0
1

�.m=2C z/

Z 1
0

Str‚.‰0e�s.1CD
2//sm=2Cz�1 ds

D
�
d
2

�.m=2/

X
n

1

nŠ
Str� .‰0!n/

�
ReszD0

Z 1
0

e�ssn�
d
2Cm=2Cz�1 ds

C ReszD0

Z 1
0

.h.s/ � 1/e�ssn�
d
2Cm=2Cz�1 ds

�
:

Since ‰0!n contains Clifford elements of order at most mC 2n, the super trace

Str� .‰0!n/ D 0 for 2nCm < d:
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On one hand, for 2nCm � d ,

ReszD0

Z 1
0

.h.s/ � 1/e�ssn�
d
2 sm=2Cz�1 ds

D ReszD0

Z 1
0

h.s/ � 1

s
e�ssn�

d
2Cm=2Cz ds D 0 (5.8)

because the integral converges absolutely for Re.z/ > �1 � �nC d
2
�m=2� 1. For the

other residue

ReszD0

Z 1
0

e�ssn�
d
2Cm=2Cz�1 ds D ReszD0 �

�
n �

d

2
Cm=2C z

�
is zero if n � d

2
Cm=2 > 0. Therefore, the only nonzero residue is at 2nCm � d D 0

and it is a simple pole. Then �m vanishes for odd m and for even m � 2,

�m.a0; : : : ; am/ D ˛.0/�m
2 ;1

ReszD0 �0.z/

D
�.m=2/

mŠ

�
d
2

�.m=2/
ReszD0 �.z/Str�

 
‰0
!.d�m/=2

d�m
2
Š

!

D
�
d
2

mŠ
Str�

 
a0da1 � � � dam

!.d�m/=2

d�m
2
Š

!
:

For m D 0, we follow the same argument:

�0.a0/ D ReszD0 z�1 Str‚.a0.1CD2/�z/

D ReszD0 z�1
1

�.z/

Z 1
0

Str‚.a0e�s.1CD
2//sz�1 ds

D ReszD0
1

z�.z/

Z 1
0

�� .a0/�� 0.e
�sj�j2/ str.es!/e�ssz�1 ds

D �� .a0/ReszD0
1

�.z C 1/

Z 1
0

X
nD0

str.!n/
nŠ

h.s/e�s�
d
2 sn�

d
2Cz�1 ds

D �
d
2 �� .a0/

X
nD0

str.!n/
nŠ

�
ReszD0

Z 1
0

e�ssn�
d
2Cz ds

C ReszD0

Z 1
0

�
h.s/ � 1

�
e�ssn�

d
2Cz�1 ds

�
:

The only nonzero residue is the first term with n D d=2 and

ReszD0

Z 1
0

e�ssn�
d
2Cz�1 ds D ReszD0 �.z/ D 1:

Therefore, �0.a0/ D �d=2 Str� .a0 !
d=2

.d=2/Š
/.
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For compact spin manifolds, the isolated spectral dimension condition always holds
and the only nonzero residues are when j D 0 and k D 0. This simplification recovers
the Atiyah–Singer index theorem for a Dirac operator associated with a spin structure (see
[13, 25, 37]). The above theorem gives a simplification of the cocycle formula for�

W1;1.R� /; L2.R‚/˝CN ;
X

�j ˝ cj

�
to the terms only for jkj D j D 0. As a consequence, the local index formula for R�
simplifies too. We can see the term ! playing the role of the curvature form.

Corollary 5.10. For any projection e 2 Mn.W
1;1.R� // and with F�;C defined as in

(5.1),

Index
�
e.F�;C ˝ idn/e

�
D �

d
2 Str�

 
.e � 1e/

!
d
2

d
2
Š
C

dX
mD2;even

1

mŠ
e.de/m

!
d�m
2

.d�m
2
/Š

!
:

5.3. A concrete example for d D 2

We shall now calculate a concrete example in dimension d D 2. In the classical case, a
canonical generator for K0.C0.R2// is the Bott projector

eB.x; y/ D
1

1C x2 C y2

�
1 x � iy

xC iy x2 C y2

�
2M2

�
C0.R

2/�
�
;

1eB D

�
0 0

0 1

�
2M2.C/:

Now let � be a real number and R� is the Moyal plane generated by two self-adjoint ele-
ments x; y with Œx; y� D �i� . We consider an analog of Bott projection for R� . Write
z D x C iy, R D .1 C z�z/�1, and u D

�
1
z

�
. Then e WD u

�
R 0
0 0

�
u� D

�
R Rz�

zR zRz�

�
is

a projection because u�Ru D 1. The only drawback of e is that it does not belong to
M2.W

1;1.R� /
�/. Indeed, by Proposition 2.6 and Theorem 3.2, we know that

R; zR; zRz� … L1.R� /:

Nevertheless, dede and id˝ tr2.e � 1e/ D R C zRz� � 1 do belong to L1 so that the
cocycle formula in Corollary 5.10 is well defined. The next lemma shows that by approx-
imation the cocycle formula remains valid for e.

Lemma 5.11. There exists a sequence of projection en 2 M2.W
1;1.R� /

�/ such that
1en D 1e and limn!1 ken � ek1 D 0; limn!1 k id˝ tr2.en � e/k1 D 0. As a conse-
quence, �

Œe� � Œ1e�;

�
W1;1.R� /; L2.R‚/˝CN ;

X
�j ˝ cj

��
D � Str�

�
.e � 1e/!

�
C � Str� .edede/:
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Proof. Let �� .�n/ be the approximation identity in Proposition 3.7. Define

Qen WD
�
�� .�n/˝ 1

�
.e � 1e/C 1e 2M2

�
W1;1.R� /

�
:

Because e � 1e 2 E� and id˝ tr2.e � 1e/ 2 L1.R� /, we have Qen � e1 D ��� .�n/˝ 1�.e � 1e/ � .e � 1e/1 ! 0; id˝ tr2. Qen � 1e/ � id˝ tr2.e � 1e/

1
! 0:

Using holomorphic functional calculus, we can make projections en 2 M2.W
1;1.R� //

from Qen which satisfies the same limits above. It is known that if two projections e; f
satisfy that ke � f k < 1, then e is homotopic to f and hence Œe� D Œf � (see, e.g., [39]).
Then by the homotopy invariance of index pairing, we know that for n large enough˝

Œe� � Œ1e�; .A;H;D/
˛
D
˝
Œen� � Œ1en �; .A;H;D/

˛
D �0.en � 1en/C �2

�
en �

1

2
; en; en

�
D � Str� .en � 1en!/C � Str�

��
en �

1

2

�
denden

�
:

Taking the limit n!1,

lim
n!1

Str�
�
.en � 1en/!

�
D Str�

�
.e � 1e/!

�
:

For the second term, we first note that Str� .denden/ D Str� .�denden/ D 0 because
den D �den. For the same reason, we have the cyclicity that

Str� .edende/ D Str�
�
d.een/de

�
� Str�

�
d.e/ende

�
D Str� .endede/;

Str� .endeden/ D Str�
�
d.ene/den

�
� Str�

�
d.en/eden

�
D Str�

�
edend.en/

�
:

Therefore,

Str� .edede/ � Str� .endenden/

D Str� .edede � endede/C Str� .endede � endende/C Str� .endende � endenden/

D Str� .edede � endede/C Str� .ededen � endeen/C Str� .edendenendenden/

D Str�
�
.e � en/dede

�
C Str�

�
.e � en/deden

�
C Str�

�
.e � en/denden

�
:

All the three terms above converge to 0, since ke � enk1! 0 and dede; deden; denden
are in M2.L1.R� //.

Theorem 5.12. For any �; � 0,D
Œe� � Œ1e�;

�
W1;1.R� /; L2.R‚/˝CN ;

X
�j ˝ cj

�E
D 4�2.1 � �� 0/:

In particular, Œe� is a generator of K0.E� / D Z.
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Proof. The super trace Str� .edede/ is of eight terms:

Str� .edede/ D Str� ˝ tr2

��
R Rz�

zR zRz�

� �
dR d.Rz�/

d.zR/ d.zRz�/

� �
dR d.Rz�/

d.zR/ d.zRz�/

��
D Str�

�
Rd.R/d.R/CRd.Rz�/d.zR/CRz�d.zR/d.R/

CRz�d.zRz�/d.zR/C zRd.R/d.Rz�/C zRd.Rz�/d.zRz�/

C zRz�d.zR/d.Rz�/C zRz�d.zRz�/d.zRz�/
�
:

We will repeatedly use the Leibniz rule and cyclicity of trace (in the strong sense [7,
Theorem 17]) that

d.a1a2/ D .da1/a2 C a1da2; Str�
�
da1.da2/a3

�
D Str� .a3da1da2/:

Denote � D Str� in short. For the first and fifth terms,

�
�
Rd.R/d.R/C zRd.R/d.Rz�/

�
D �

�
d.R/d.R/RC d.R/d.Rz�/zR

�
D �

�
d.R/d.R/RC d.R/d.R/z�zRC d.R/Rd.z�/zR

�
D �

�
d.R/d.R/RC d.R/d.R/.1 �R/C d.R/Rd.z�/zR

�
D �

�
d.R/d.R/C d.R/Rd.z�/zR

�
:

Similarly, we have for the second and sixth terms, third and seventh terms, fourth and
eighth terms,

�
�
Rd.Rz�/d.zR/C zRd.Rz�/d.zRz�/

�
D �

�
d.Rz�/d.zR/C zRd.Rz�/zRdz�

�
;

�
�
Rz�d.zR/d.R/C zRz�d.zR/d.Rz�/

�
D �

�
z�d.zR/dRC zRz�d.zR/Rdz�

�
;

�
�
Rz�d.zRz�/d.zR/C zRz�d.zRz�/d.zRz�/

�
D �

�
z�d.zRz�/d.zR/C zRz�d.zRz�/zRdz�

�
:

Recoupling these terms,

�
�
dRdRC z�d.zR/dR

�
D �

�
R�1dRdRC z�.dz/RdR

�
;

�
�
zR.dR/Rdz� C zRz�d.zR/Rdz�

�
D �

�
z.dR/Rdz� C zRz�dzR2dz�

�
;

�
�
d.Rz�/d.zR/C z�d.zRz�/d.zR/

�
D �

�
R�1d.Rz�/d.zR/C z�.dz/Rz�d.zR/

�
;

�
�
zRd.Rz�/zRdz� C zRz�d.zRz�/zRdz�

�
D �

�
zd.Rz�/zRdz� C zRz�.dz/Rz�zRdz�

�
:

On the right-hand side, there are only three terms that still contain derivatives of products.
We again use the Leibniz rule,

�
�
R�1d.Rz�/d.zR/

�
D�

�
R�1d.R/z�d.zR/C dz�d.zR/

�
D�

�
d.R/z�d.z/CR�1d.R/.R�1�1/dRCdz�d.z/RCdz�zdR

�
;
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�
�
z�.dz/Rz�d.zR/

�
D�

�
z�.dz/.1 �R/dRC z�.dz/Rz�d.z/R

�
;

�
�
zd.Rz�/zRdz�

�
D�

�
z�Rdz�zRdz� C zdR.1 �R/dz�

�
:

Gathering all the terms we have that�
.dR/z�dz C z�dzdR

�
C .dz�zdRC zdRdz�/

C
�
zR.dz�/zRdz� CR�1dRR�1dRC .dz/Rz�.dz/Rz�

�
CRdz�dz C zRz�.dz/Rdz�:

Here only the last two terms has nonzero trace. This is because for any a1; a2; a3; b1; b2b3

Str�
�
a1.da2/a3b1.db2/b3

�
D �Str�

�
b1.db2/b3a1.da2/a3

�
;

Str�
�
a1.da2/a3a1.da2/a3

�
D 0:

This follows from the fact that a1.da2/a3 has Clifford term of order 1 and hence
a1.da2/a3D�a1.da2/a3. It remains to calculate the trace ofRdz�dzCzRz�dzRdz�.
Note that zz� D z�z � 2� DR�1 � 1� 2� , dz D�ic1C c2, and dz� D�ic1 � c2. Then

Str�
�
Rdz�dz C zRz�.dz/Rdz�

�
D 4�� .R � zRz

�R/:

Finally, we use the spectrum of quantum harmonic oscillator to compute the above trace.
Assume that d D 2 and det.�/ > 0. Denote x1 D x and x2 D y. By Proposition 2.4, there
is a trace preserving �-isomorphism � W R� ! B.L2.R// such that (up to a factor 2�� )

x 7!
p

det.�/Dx; y 7!
p

det.�/x:

Recall that H D D2
x C x2 is the Hamiltonian of 1-dimensional quantum harmonic oscil-

lator which has eigenbasis jni; n � 0 withH jni D .2nC 1/jni. For the creation operator
a� D Dx C ix and the annihilation a D Dx � ix,

a�jni D
p
2nC 2jnC 1i; ajni D

p
2njn � 1i:

Now take z D
p
�a�, z� D

p
�a, and R�1 D 1C 2� C zz� D �.H C 1/C 1. We have

that

4�� .R � zRz
�R/ D 2�� � 4

X
kD0

1

1C 2� C 2k�
�

1

1C 2k�

2k�

1C 2� C 2k�

D 8��
X
kD0

1

1C 2k�

1

1C 2� C 2k�
D 4�:

For �0, we have that

�0.e � 1e/ D Str�
�
.e � 1e/!

�
D �� .RC zRz

�
� 1/ tr.!/ D 2� 0�� .RC zRz� � 1/:
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Note that R�1 D 1C z�z D 1C � C x2 C y2 and ŒR�1; z� D Œx2 C y2; x C iy� D 2�z.
Then

RC zRz� � 1 D R.1C z�z/ � 1C Œz; Rz�� D Œz; Rz��

D Œz; R�z� CRŒz; z�� D RŒR�1; z�Rz� � 2�R

D 2�.RzRz� �R/:

We have calculated that �� .R � RzRz�/ D 2� . So Str� ..e � 1e/!/ D ��� 04� . To con-
clude, we have the index pairing˝
Œe� � Œ1e�; .W

1;1.R� /; L2.R‚/˝MN ;D/
˛
D � Str�

�
.e � 1e/!

�
C � Str� .edede/

D �4�2�� 0 C 4�2 D 4�2.1 � �� 0/:

Recall for d D 2 that

‚ D

26664
0 � 1 0

�� 0 0 1

1 0 0 � 0

0 1 �� 0 0

37775 :
When det‚ D .1 � �� 0/2 ¤ 0, we have that R‚ is �-isomorphic to B.L2.R2// with
the trace differing by a factor �‚ D .2�/2j1 � �� 0j tr, which is exactly the normalization
constant we obtained. In other words, if we replace �‚ with the standard operator trace
tr, Indextr.eF�;Ce/ D 1 (or �1). Since for every � , we can choose � 0 such that �� 0 ¤ 1,
then the index pairing shows that e 2 M2.E�� / is a representative of generator of the
K0.E� / D Z.

Acknowledgments. The authors are grateful to the anonymous referee for many impor-
tant corrections in an earlier version of this paper. They also thank Alexander Gorokhovsky
for helpful discussion on the local index formula.

Funding. Research of the second author supported in part by NSF grants DMS-1501103
and DMS-1800872.

References

[1] J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields. I. General
interactions. Duke Math. J. 45 (1978), no. 4, 847–883 Zbl 0399.35029 MR 518109

[2] T. A. Bhuyain and M. Marcolli, The Ricci flow on noncommutative two-tori. Lett. Math. Phys.
101 (2012), no. 2, 173–194 Zbl 1261.53063 MR 2947960

[3] D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product. J. London Math. Soc.
(2) 45 (1992), no. 1, 126–144 Zbl 0712.46029 MR 1157556

[4] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1:
C�- and W �-Algebras, Symmetry Groups, Decomposition of States. 2nd edn., Texts Monogr.
Phys., Springer, New York, 1987 Zbl 0905.46046 MR 887100

https://zbmath.org/?q=an:0399.35029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=518109
https://zbmath.org/?q=an:1261.53063&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2947960
https://zbmath.org/?q=an:0712.46029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1157556
https://zbmath.org/?q=an:0905.46046&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=887100


Quantum Euclidean spaces with noncommutative derivatives 211

[5] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 2:
Equilibrium States. Models in Quantum Statistical Mechanics. 2nd edn., Texts Monogr. Phys.,
Springer, Berlin, 1997 Zbl 0903.46066 MR 1441540

[6] C. Brislawn, Kernels of trace class operators. Proc. Amer. Math. Soc. 104 (1988), no. 4, 1181–
1190 Zbl 0695.47017 MR 929421

[7] L. G. Brown and H. Kosaki, Jensen’s inequality in semi-finite von Neumann algebras. J. Oper-
ator Theory 23 (1990), no. 1, 3–19 Zbl 0718.46026 MR 1054812

[8] V. I. Burenkov, Sobolev Spaces on Domains. Teubner-Texte Math. 137, B. G. Teubner Ver-
lagsgesellschaft, Stuttgart, 1998 Zbl 0893.46024 MR 1622690

[9] A. L. Carey, V. Gayral, A. Rennie, and F. A. Sukochev, Index theory for locally compact
noncommutative geometries. Mem. Amer. Math. Soc. 231 (2014), no. 1085, vi+130
Zbl 1314.46081 MR 3221983

[10] A. Connes, Noncommutative Geometry. Academic Press, San Diego, CA, 1994
Zbl 0818.46076 MR 1303779

[11] A. Connes and G. Landi, Noncommutative manifolds, the instanton algebra and isospectral
deformations. Comm. Math. Phys. 221 (2001), no. 1, 141–159 Zbl 0997.81045
MR 1846904

[12] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic
groups. Topology 29 (1990), no. 3, 345–388 Zbl 0759.58047 MR 1066176

[13] A. Connes and H. Moscovici, The local index formula in noncommutative geometry. Geom.
Funct. Anal. 5 (1995), no. 2, 174–243 Zbl 0960.46048 MR 1334867

[14] A. Connes and H. Moscovici, Modular curvature for noncommutative two-tori. J. Amer. Math.
Soc. 27 (2014), no. 3, 639–684 Zbl 1332.46070 MR 3194491

[15] A. Connes and P. Tretkoff, The Gauss-Bonnet theorem for the noncommutative two torus.
In Noncommutative Geometry, Arithmetic, and Related Topics, pp. 141–158, Johns Hopkins
University Press, Baltimore, MD, 2011 Zbl 1243.14002 MR 2907006

[16] F. Fathizadeh and M. Khalkhali, Weyl’s law and Connes’ trace theorem for noncommutative
two tori. Lett. Math. Phys. 103 (2013), no. 1, 1–18 Zbl 1272.46055 MR 3004814

[17] L. Gao, Continuous perturbations of noncommutative Euclidean spaces and tori. J. Operator
Theory 79 (2018), no. 1, 173–200 Zbl 1399.46076 MR 3764147

[18] V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, and J. C. Várilly, Moyal planes are
spectral triples. Comm. Math. Phys. 246 (2004), no. 3, 569–623 Zbl 1084.58008
MR 2053945

[19] A. González-Pérez, M. Junge, and J. Parcet, Singular integrals in quantum Euclidean spaces.
Mem. Amer. Math. Soc. 272 (2021), no. 1334, xiii+90 MR 4320770

[20] J. M. Gracia-Bondía and J. C. Várilly, Algebras of distributions suitable for phase-space quan-
tum mechanics. I. J. Math. Phys. 29 (1988), no. 4, 869–879 Zbl 0652.46026 MR 940351

[21] V. Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues.
Adv. in Math. 55 (1985), no. 2, 131–160 Zbl 0559.58025 MR 772612

[22] H. Ha, G. Lee, and R. Ponge, Pseudodifferential calculus on noncommutative tori, I. Oscillat-
ing integrals. Internat. J. Math. 30 (2019), no. 8, 1950033 Zbl 1429.58016 MR 3985230

[23] H. Ha, G. Lee, and R. Ponge, Pseudodifferential calculus on noncommutative tori, II. Main
properties. Internat. J. Math. 30 (2019), no. 8, 1950034, 73 Zbl 1429.58017 MR 3985231

[24] B. C. Hall, Quantum Theory for Mathematicians. Grad. Texts in Math. 267, Springer, New
York, 2013 Zbl 1273.81001 MR 3112817

[25] N. Higson, The local index formula in noncommutative geometry. In Contemporary Devel-
opments in Algebraic K-Theory, pp. 443–536, ICTP Lect. Notes XV, Abdus Salam Int. Cent.
Theoret. Phys., Trieste, 2004 Zbl 1122.58015 MR 2175637

https://zbmath.org/?q=an:0903.46066&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1441540
https://zbmath.org/?q=an:0695.47017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=929421
https://zbmath.org/?q=an:0718.46026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1054812
https://zbmath.org/?q=an:0893.46024&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1622690
https://zbmath.org/?q=an:1314.46081&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3221983
https://zbmath.org/?q=an:0818.46076&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1303779
https://zbmath.org/?q=an:0997.81045&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1846904
https://zbmath.org/?q=an:0759.58047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1066176
https://zbmath.org/?q=an:0960.46048&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1334867
https://zbmath.org/?q=an:1332.46070&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3194491
https://zbmath.org/?q=an:1243.14002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2907006
https://zbmath.org/?q=an:1272.46055&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3004814
https://zbmath.org/?q=an:1399.46076&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3764147
https://zbmath.org/?q=an:1084.58008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2053945
https://mathscinet.ams.org/mathscinet-getitem?mr=4320770
https://zbmath.org/?q=an:0652.46026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=940351
https://zbmath.org/?q=an:0559.58025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=772612
https://zbmath.org/?q=an:1429.58016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3985230
https://zbmath.org/?q=an:1429.58017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3985231
https://zbmath.org/?q=an:1273.81001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3112817
https://zbmath.org/?q=an:1122.58015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2175637


L. Gao, M. Junge, and E. McDonald 212

[26] J. Korevaar, Tauberian Theory. A Century of Developments. Grundlehren Math. Wiss. 329,
Springer, Berlin, 2004 Zbl 1056.40002 MR 2073637

[27] E. C. Lance, Hilbert C�-Modules: A Toolkit For Operator Algebraists. London Math. Soc.
Lecture Note Ser. 210, Cambridge University Press, Cambridge, 1995 Zbl 0822.46080
MR 1325694

[28] M. Lesch and H. Moscovici, Modular curvature and Morita equivalence. Geom. Funct. Anal.
26 (2016), no. 3, 818–873 Zbl 1375.46053 MR 3540454

[29] G. Levitina, F. Sukochev, and D. Zanin, Cwikel estimates revisited. Proc. Lond. Math. Soc. (3)
120 (2020), no. 2, 265–304 Zbl 1443.47023 MR 4008371

[30] C. Lévy, C. Neira Jiménez, and S. Paycha, The canonical trace and the noncommutative residue
on the noncommutative torus. Trans. Amer. Math. Soc. 368 (2016), no. 2, 1051–1095
Zbl 1337.58005 MR 3430358

[31] E. McDonald, F. Sukochev, and X. Xiong, Quantum differentiability on noncommutative
Euclidean spaces. Comm. Math. Phys. 379 (2020), no. 2, 491–542 Zbl 07258561
MR 4156216

[32] E. McDonald, F. Sukochev, and D. Zanin, A C�-algebraic approach to the principal symbol
II. Math. Ann. 374 (2019), no. 1-2, 273–322 Zbl 1427.46048 MR 3961311

[33] M. I. Merklen, Boundedness of pseudodifferential operators of a C�-algebra-valued symbol.
Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 6, 1279–1286 Zbl 1097.47047
MR 2191899

[34] M. Măntoiu and R. Purice, The magnetic Weyl calculus. J. Math. Phys. 45 (2004), no. 4,
1394–1417 Zbl 1068.81043 MR 2043834
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