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The relative Mishchenko—Fomenko higher index and
almost flat bundles II: Almost flat index pairing

Yosuke Kubota

Abstract. This is the second part of a series of papers which bridges the Chang—Weinberger—Yu
relative higher index and geometry of almost flat Hermitian vector bundles on manifolds with bound-
ary. In this paper, we apply the description of the relative higher index given in part I to establish
the relative version of the Hanke—Schick theorem, which relates the relative higher index with the
index pairing of K-homology cycles and almost flat relative vector bundles. We also deal with the
quantitative version and the dual problem of this theorem.
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1. Introduction

This paper is a sequel of [27]. In this part II, we apply the Mishchenko—Fomenko descrip-
tion of the Chang—Weinberger—Yu relative higher index developed in part I to the index
pairing with almost flat bundles on manifolds with boundary. Here, we also make use of
the foundations of almost flat (stably) relative bundles prepared in [26].

The notion of almost flat bundle is introduced as a geometric counterpart of the higher
index theory by Connes—Gromov—Moscovici [8] for the purpose of proving the Novikov
conjecture for a large class of groups. It also plays a fundamental role in the study of
positive scalar curvature metrics in [15, 16]. Its central concept is the almost monodromy
correspondence, that is, the rough one-to-one correspondence between almost flat bundles
and quasi-representations of the fundamental group. In [26], the author introduces the
notion of almost flatness for an element of the relative K°-group of a pair of topological
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spaces. Here, the relative or stably relative vector bundles are employed as representatives
of an element of the relative K°-group. Moreover, the almost monodromy correspondence
is generalized to this relative setting.

The relation between the role of almost flat index pairing and the C *-algebraic higher
index theory is clearly understood in the work of Hanke and Schick. In [19,20], it is proved
that the higher index ar([M]) of the K-homology fundamental class [M] € K«(M) of
an enlargeable closed spin manifold M with 71 (M) = I" does not vanish without any
assumption on the fundamental group concerned with the Baum—Connes conjecture. As
is reorganized in [17], this is essentially a consequence of the fact that ar ([M]) # 0 if M
admits an almost flat bundle with non-trivial index pairing. The idea of Hanke and Schick
relies on the fact that the dual higher index is related to the monodromy correspondence
of flat bundles of Hilbert C *-modules.

Recall that the Mishchenko—Fomenko higher index map ar is given by the Kasparov
product with the KK-class {r € KK(C, C(M) ® C*TI') represented by the Mishchenko
line bundle M xp C*T. Let P be a finitely generated projective A-module and let w: " —
B(P) be a unitary representation. Then, the dual higher index map, defined by the Kas-
parov product with £ over C*I", maps the element [7] € KK(C*T, A) to the associated
bundle [P := M xp P] € KK(C,C(M) ® A). Hence, the associativity of the Kasparov
product relates the index pairing [] ® c(ary [M] with the higher index as

ar([M]) ®c+r [7] = {r ®cm) [M] ®c+r [7]
= [P] ®cwr) [M]. (1.1)

An essential ingredient of the works of Hanke—Schick is their construction of a nice flat
Hilbert C *-module bundle from a family of almost flat bundles.

The first purpose of this paper, studied in Section 3, is to establish a relative version
of the result of Hanke—Schick. This is based on the following two works of the author:
the foundation of almost flat bundles on manifolds with boundary (particularly the almost
monodromy correspondence) developed in [26] and the relative version of index pairing
(1.1) given in this paper. Here, the higher index is replaced with the Chang—Weinberger—
Yu relative higher index map [6], which is a homomorphism

ar,a K« (X,Y) — K (C*(F, A)),

defined for a pair of connected CW-complexes (X, Y) with 71 (X) =T and 71(Y) = A
(for more details on the definition, see Section 2.1). It is proved in [27] that this map is
given by the Kasparov product with an element 1 A € KK(C, Co(X°) ® C*(T', A)). The
key observation is the following theorem.

Theorem 3.3. The Kasparov product
fr,a ®c+r,a) T € KK (C, Co(X°) ® 4) = K°(X,Y; 4)

is represented by the stably relative bundle (P1, P, @, Viu) on (X, Y).
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The precise statement, particularly the definition of IT and (#y, #», @, Viu), is given
in Section 3.1. Roughly speaking, the theorem claims that the Kasparov product with {1 A
maps the KK-element IT represented by a relative representation of (I", A) (i.e., a pair of
representations of I which is identified on A) to the associated relative bundle. To realize
the concept in full generality, we employ the equivalence relation generated by unitary
equivalence, stabilization, and homotopy as the “identification on A.”

It is an immediate consequence of Theorem 3.3 that, the same argument as (1.1) using
the associativity of the Kasparov product can be applied to the relative higher index pair-
ing. The main theorem of the paper, a relative version of the Hanke—Schick theorem, is
now obtained in the same way as in [19, 20] with the help of the relative almost mon-
odromy correspondence.

Theorem 3.5. Let M be a compact connected spin manifold with boundary N. Let I :=
m1(M), A:=m1(N), and let ¢ be the homomorphism induced from the inclusion N — M.

(1) If M has an infinite stably relative C*-K-area, then the relative higher index
/LE’A([M, N1) does not vanish.

(2) If M has an infinite relative C *-K-area, then the relative higher index
M£’¢(A) ([M, N)) does not vanish.

In addition, there is another application of Theorem 3.3 to the index theoretic refine-
ment of the Hanke—Pape—Schick codimension 2 index obstruction for the existence of a
positive scalar curvature metric [18], which is discussed in Section 3.3. Here, the higher
index of a codimension 2 submanifold N of M (with a condition on homotopy groups) is
related to the relative higher index of the manifold M \ U, where U is a tubular neighbor-
hood of N.

In the rest part of the paper, we discuss in-depth problems related to the relative index
theory of almost flat bundles. In Section 4, we study the quantitative version of Theorem
3.5. Recall that a key idea of [19] is to treat an infinite family of almost flat bundles
simultaneously and relate the asymptotics of the index pairings with the higher index.
On the other hand, if we consider the £!(I")-valued higher index instead of the usual
C*(I")-valued one, then it is mapped by a single quasi-representation to a projection up
to a small correction. This map is studied in [8] and compared with the index pairing
with the associated almost flat bundle. In [12], Dadarlat gives an alternative approach
using Lafforgue’s Banach KK-theory. Here, we reformulate the result of [12] in terms
of the quantitative K-theory introduced by Oyono-Oyono—Yu [30] instead of Banach KK-
theory. By using this formulation, we generalize the result of Connes—Gromov—Moscovici
and Dadarlat to the relative setting.

In Section 5, we study the dual problem of Theorem 3.5, in other words, the relative
version of the problem proposed by Gromov in [15, Section 4%]. It is a consequence of
the almost monodromy correspondence that any almost flat bundle is obtained as the pull-
back of a bundle on the classifying space BI" (cf. [26, Corollary 6.13]). Then, it is a natural
question whether any element of K®(BT) (or K°(BT") ® Q) is represented by an almost
flat bundle. This question is first considered in [15, Section 8%] geometrically in the case
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that I" is the fundamental group of a Riemannian manifold with a non-positive sectional
curvature. Later, Dadarlat gives a KK-theoretic approach to this problem in [13]. Here, we
follow the approach of Dadarlat to study the subgroup of almost flat K-theory classes for
the pair (BT, BA). The celebrated Tikuisis—White—Winter theorem [36] in the theory of
C *-algebras enables us to include a large class of residually amenable groups in the range
of our discussion. We show that any element of the range of the dual higher index map

Br.a:K® (C*(T,A)) - KX, Y),

i.e., the Kasparov product with £1 5 over C*(T', A), is represented by an almost flat stably
relative vector bundle. Moreover, we also show that such elements are represented by an
almost flat relative vector bundle if ¢: A — I is injective.

Notation 1.2. Throughout this paper, we use the following notations.

o Fora C*-algebra A, let A1 denote its unitization A + C - 1.

o Fora C*-algebra A, let M(A) denote its multiplier C *-algebra and @(A) := M(A)/A.

e ForaC*-algebra Aanda < b € R U {£oo}, let A(a,b) := A Q Cy(a, b). Similarly,
we define A[a,b) and A[a, b]. For a Hilbert A-module E, let E(a, b) denote the Hilbert
A(a,b)-module E ® Cy(a, b).

e For a x-homomorphism ¢: A — B, let C¢ denote the mapping cone C *-algebra
defined as
Co = {(a,bs) € A® B[0,1) | p(a) = bo}.

e For a Hilbert A-module E, let B(E) and K(E) denote the C*-algebra of bounded
adjointable and compact operators on E, respectively. Let U(E) denote the unitary
group of B(E).

e For a compact space X and a Hilbert A-module P, let Py denote the trivial bundle
X x PonX.

e For a pair (X, Y) of locally compact Hausdorff spaces, we write

v {Y x[0,7]  forr € [0, 00),

Y x[0,00) forr = oo,
X, =XUuyY,.

Forr €[l,00),letY/:=Y x[1,r] C Xoo. We write X;, ¥,°, and (¥;)° for the interiors
of X;, Yr, and Y, as subspaces of Xoo.

e Foran open cover U := {U, },es of a topological space X, we write Uy, := U, NU,
foru,vel.

o ForaC*-algebra A anday,...,a, € A, diag(ay, ..., a,) denotes the diagonal matrix
in A® M,.
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2. Preliminaries

In this section, we summarize the results of [26,27] which will be used in this paper.
Throughout this paper, we only treat the complex coefficient K-theory, C *-algebra, vector
bundle, and so on.

2.1. Relative Mishchenko-Fomenko higher index

Let (T', A) be a pair of discrete groups with a homomorphism ¢: A — T". Throughout the
paper, we use the same letter ¢ for the induced *-homomorphism between maximal group
C*-algebras; ¢: C*A — C*T'. Note that ¢ induces B¢p: BA — BT (we may assume that
B¢ is an inclusion by replacing BI" with the mapping cylinder BT" Ligy BA x [0, 1]).

Let (X, Y) be a pair of finite CW-complexes with a reference map f: (X,Y) —
(BT, BA), to which a I'-covering X > X andaA- -covering Y — Y are associated. The
Chang—Weinberger—Yu relative higher index is a group homomorphism

plA K (X, Y) — Ky (C*(T, A)),
where C*(T", A) is the relative (maximal) group C *-algebra defined as
C*(T,A):=SC(¢:C*A — C*TI).

In [27, Section 3], the author gives a definition of ,ul,:’A inspired from the Mishchenko—
Fomenko index pairing. Let us write the Mishchenko line bundles on X and Y as 'V :=
X xp C*Tand W := Y x, C*A, respectively, and let X := ¥ x4 Cé. For simplicity
of notation, we use the same letter X for the pull-back of X to ¥, = Y x [0, r] by the
projection to the first component. We define

€2 1= SC(X,V) ®cr.x) Co(Y x[0.2). X)
={(.n) e C(X.SV) @ Co(Y x[0,2). X) | ¥r Ely) = nlyx(0}}- @2.1)

where Yy : SV|y — X is the bundle map induced from the standard inclusion ¥: SC*T" —
C¢, and
o(r,s) = ps(r) ;= min{l,2s + 2r — 3} € C([1,2] x [0, 1])

We regard this p as a continuous function on X5 x [0, 1] by p(x,s) := 2s — 1 for x € X;
and p(y,r,s) := p(r,s) for (r,y) € Y,. Then, p acts on &, by multiplication such that
p € B(&,) is a self-adjoint operator with p?> — 1 € K(€,) (as is seen in Figure 1).

The relative Mishchenko line bundle {1, 5 is defined by an odd Kasparov bimodule (cf.
[3, Section 17.5.2]) as

roa i=1[E2.1,p] € KK_; ((C, Co(Xg) ® C¢)

Definition 2.2 ([27, Definition 3.3]). The relative Mishchenko—Fomenko higher index
/L£’A is defined by the Kasparov product

€A ®cy(xg) - KKy (Co(X3), C) — Ky (C*(T, A)).

We also use the symbol ar, A for this homomorphism.
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Figure 1. The shading shows the value of |p(r, 5)|.

Note that the pair (X, Y') is homotopy equivalent to (X5, Y x {2}) and hence there is
an isomorphism K*(X, Y) = K_,(Co(X5)).

Proposition 2.3 ([27, Proposition 3.6]). The dual relative higher index map
Br.a:KK(C*(I',A),C) — K*(X,Y)
is defined as the Kasparov product €1 a ®C*(I‘, A) - It satisfies

{er.a(x).€) = (x. Br.a(§)) € KK(C.C) = Z,

where the bracket (-,-) denotes the index pairing, i.e., the Kasparov product of the K-
homology and K-cohomology groups of a C*-algebra.

Here, we give a presentation of the relative Mishchenko line bundle £t 4, which is an
element of the K;-group K;(Co(X;) ® C¢), by using a unitary of Co(X;) ® C¢. Let
U := {Upy}uer be a finite open cover of X such that the restriction of X toeach U 1 is a
trivial bundle. We choose a local trivialization 0 X lu, = Uy x T and let y,, denote the
transformation function 6, (x)8; (x) (which is independent of x € Uy,y).

Let {n,}uer be a family of continuous functions such that supp(y,) C U, 0 <
Nu(x) <land ni = 1. We write M for the matrix algebra on C! and let {euv}uver
denote the matrix unit. Then,

Py = Z Nty @ Uy,, ® ey € C(X) @ C*(T) @ M; 24
n,vel

is a projection whose support is isomorphic to V as Hilbert C *I'-module bundles on X.
This means that {1 = [Py].
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Lemma 2.5. The element {r,n € K_1(Co(X;) ® C¢) is represented by the unitary
(Uw, Vy,s) € (Co(X3) ® Ch)™, where

Uy :=—e PPy + 1 — Py € (Co(Yy) ® C*A ® MI)JF’

Vi = —e P Py 4+ 1— Py € (Co(X5) ® C*T @ M) ™.

Proof. Let ix: Co(Y;) — Co(X3) denote the x-homomorphism induced from the open
embedding and let € denote the fiber sum C *-algebra

€ := Co(Yy) ® C*A ®cyxs)ec+r C(Co(X5) ® C*T)
by the x-homomorphisms

ix ® $:Co(Yy) ® C*(A) = Co(X5) ® C*T,
evp: C(Co(XS) ® C*F) — Co(X)® C*T.

This is an ideal of
Co(X3) ® C¢ = Co(X3) ® C*A dcyxgec+r C(Co(X5) ® C(CT)).

Let 1:€ — Cop(X3) ® C¢ denote the inclusion. Then, Pg := (P, Py) determines an
element of the multiplier C *-algebra M (M (€)) such that the exterior tensor product
(Pe€®) ®, (Co(X) ® C) is isomorphic to &, as a Hilbert C(X) ® C¢-module.

Recall that the identification of K;(€) = KK;(C, €) is given (in [3, Proposition
17.5.6]) by the composition of isomorphisms

K1 (€) <= Ko (Q(€)) —=> KK, (C, €).

Here, for p € Q(€) ® M, and its lift p € M(€) ® M, the right isomorphism is given
by [p] — [€", 1, p]. In particular, the projection Pg - (pTH) + (1 - Pg) € Q(€) ® My
corresponds to both [Pg‘C@m, 1, p] € KK{(C,¥€) and

[ 2mi(Pe "3 +01=PeD)] = [¢~™P Pg 1 1 — Pg] € Ky (€).

This finishes the proof since [Pg €1 1, p] ® [1] = lr.a and ((—e 7P Pg + 1 — Pg) =
Uy, Vy,s). u

2.2. Rational surjectivity of the dual relative higher index map

The rational injectivity of the relative higher index map and the rational surjectivity of
its dual are studied in [27, Section 6]. In Section 5, we will apply the latter to prove the
existence of an almost flat (stably) relative vector bundle representing an arbitrary element
of relative K°-group of the pair (BT, BA).

We consider the following assumptions for (', A).
(2.6) The group I has the y-element yr.

(2.7)  For any finite subgroup K C T, the subgroup ¢! (K) < A satisfies y = 1.
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(2.8) The subgroup ker ¢ is torsion-free.

For example, the condition (2.6) is satisfied if I" is coarsely embeddable into a separable
Hilbert space ([34] and [37, Theorem 3.3]) and the condition (2.7) is satisfied if ker ¢ has
the Haagerup property [22, Theorem 8.6].

We also consider a stronger variant of (2.7).
(2.7") The subgroup ker ¢ of A is amenable.
If (2.7') is satisfied, the group homomorphism ¢ induces a *-homomorphism ¢,: C¥A —
CT between the reduced group C *-algebras. Indeed, the unitary representation Ar o ¢
(where A denotes the left regular representation) is a direct sum of copies of the induced
representation Indf\\, 1y, where N := ker ¢. By amenability of N, it is weakly contained
in Indf\\,/\ N = Aa. (We refer to [2, Appendix F.4] for group C *-algebras and weak con-
tainment of representations.) Hence, the reduced relative group C *-algebra

CH(T,A) := SC(¢,: C}A — C;T) (2.9)

is defined. We write ep p: C*(I', A) — C} (I, A) for the quotient.
We write jg for the functor from the category of I'-C *-algebras to the category of
C *-algebras mapping A to the relative crossed product defined as

Ax(T,A):=SC>Hdg xp: A XA — AxT).

By the universality of the equivariant Kasparov category [29, Theorem 6.6], this j4 gives
rise to the functor jg: KKT > KK, which maps the y-element of I' to js(yr) €
KK(C*(T, A),C*(T, A)).

Theorem 2.10 ([27, Theorem 6.6, Proposition 6.10]). Let ¢: A — T" be a homomorphism
of groups.
(D) If (2.6), (2.7), and (2.8) are satisfied, then the composition

Br.a o jo(yr):K* (C*(T', A)) — K*(BT, BA)

is rationally surjective.
(2) If (2.7") is satisfied, then Im(ef ,) C K*(C*(T, A)) includes Im j(yr).

Therefore, if (2.6), (2.7'), and (2.8) are satisfied, then S A o ef., A 1s rationally surjec-
tive.

Remark 2.11. Theorem 2.10(1) is a relative analogue of the following statement: let
Br:K*(C*T") — K*(BT") denote the dual higher index map, i.e., the Kasparov product
Lr ®cxr - If T has the y-element, then Br o jr(yr): K*(C*(I')) — K*(BT) is rationally
surjective. This is proved in the same way as [27, Theorem 6.6] by using the Dirac-
dual Dirac method and the rational injectivity of the higher index map ar: K«(BI') —
K. (C*T) shown in [1, Section 15]. Also, it is shown, in the same way as [26, Proposition
6.10], that the image Im jr(yr) is included in Im €[\, where er: C*(I') — C¥(I) is the
quotient.
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Remark 2.12. As is pointed out in [27, Remark 6.8], we do not need to restrict the situ-
ation to the case that BI" and BA have the homotopy type of finite CW-complexes in the
statement of Theorem 2.10.

2.3. Almost flat relative bundles

Here, we briefly review the foundation of almost flat (stably) relative vector bundle and
the (stably) relative almost monodromy correspondence. Let X be a connected finite CW-
complex with a good open cover U := {U } 1. As is noted in Notation 1.2, U, denotes
U, N U,. Then, the fundamental group I' := 1 (X) is generated by § := {y., } u,ver once
we fix the collection of translation functions {y,. },.,ver of the I'-Galois covering X . Note
that § is symmetric; i.e., y~1 e g for any y € 9.

Definition 2.13. Let X, U, ', and § be as above. Let A be a unital C *-algebra, let P be
a finitely generated projective Hilbert A-module, and let 7' be a maximal subtree of the
1-skeleton Ncl(’t1 ) of the nerve of U.

e A U(P)-valued Cech 1-cocycle v = {Vuvtu,ver on U is an (g, U)-flat bundle on X
with the typical fiber P if [|v,, (x) — v ()| < e forany x,y € Uy,. Itis said to be
normalized on T if ||v,, — 1| < e forany (u,v) € T.

e Amapm:I' - U(P)is a (e, §)-representation of I" on P if 7(e) = 1 and

| (e)mh) = n(gh)| < e

forany g,h € §.

We write Bdl‘;;u (X) for the set of (e, U)-flat bundles with the typical fiber P and
qRepi;g(F ) for the set of (e, §)-representations of I' on P. We define the metrics
on Bdl;u(X) and qRepi;g (T) as

)

d(v.v') := max|lvg, —vj,, | and d(w.7") = sup |n(y) —7'(v)]
MV yeg

respectively.

Remark 2.14. The bundle E, associated to a U(P)-valued Cech 1-cocycle is constructed
as follows: as in (2.4), let {1, } ue1 be a family of positive continuous functions on X such
that ZME[ ni =1 and let e,,, € My denote the matrix element; i.e., ;e = 8y g€y,
where {e,,} 1 is the standard basis of C7. Let

Pe(x) =D 000y ()0, (x) ® ey € C(X) @ B(P) @ My,
L,V

Yr () = () vuu(x) ® ey € Cyp(Uy) @ B(P) @ CL.

Then, we have py(x) ), (x) = ¥, (x) for x € Uy and ¥, (x)* ¢ (x) = vy (x) for x € Upy.
That is, py is a projection with the support Ey and v is a local trivialization of E\.
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It is essentially proved in [5, Theorems 3.1 and 3.2] (see also [26, Lemma 6.9]) that
there is a constant C > 0 depending only on U and maps

a: BAISY (X)r — qReps=¥ (D),

(2.15)
B:qRep5? () — BAIS*Y(X)r,

satisfying
o d(a(v),a(V)) <dv,V)+ Ce,d(Boa(v),v) < Ceforanyv,v € Bdl‘;;u(X),
e d(B(x),B() <d(m, ')+ Ce,d(aoB(x), n) < Ceforany n,n’ € qRep‘;;g(F).

Remark 2.16. The construction of the map f is essentially given in [26, Lemma 4.4] (see
also [26, Definition 6.7]). Here, it is mentioned that, for a (e, §)-representation 7 of T,
the associated bundle v := B () satisfies ||v;,, (x) — 7 (Yuv)|l < 4¢. Indeed, this inequality
characterizes B(7r) up to a small correction.

Definition 2.17. Let (X, Y) be a pair of compact spaces. A stably relative bundle on
(X, Y) with the typical fiber (P, Q) is a quadruple (E1, E>, Eo, u), where E; and E;
are P-bundles on X, Ey is a O-bundle on Y, and u is a unitary bundle isomorphism
Erly ® Eo — Ez|y @ Eo.

A stably relative bundle of Hilbert C-modules with the typical fiber (C", C™) is sim-
ply called a stably relative vector bundle of rank (n, m). We simply call a stably relative
bundle of the form (Eq, E», 0, u) a relative bundle.

Remark 2.18. We associate to a stably relative bundle an element of the relative K°-group
K(X,Y;A4):=Ko(Co(X5)® A) in the following way. Let f;(r) :=min{1, max{0,1—3r}}
and f>(r):=min{l, max{0,3r — 2}}. The inverse of « is given by mapping (E1, E>, Eo,u)
to

[E],Ez,E(),u] = |:((:1 (&%) 8;137 1, (g MO ):| € KK ((C,Co(Xlo) ® A),

where

&1:= Co(X3. E1) @ Co((Y5)°, Ep).
& 1= Co(X5, E2) ® Co((Y3)°, Eo),
u:= fi(r)lg, + f2(r)u € B(E1, &2).

In particular, [Ey, E,, Eg,u] =0if E; = E; andu = 1g, |y 0F,-

Let (X, Y) be a pair of connected finite CW-complexes. We say that a good open cover
of (X,Y)is a good open cover U = {U,,},er of X such that Uly :={Y NU,}isalsoa
good open cover of Y.

Definition 2.19. Let (X, Y) and U be as above and let P be a finitely generated Hilbert
A-module. Let 7 be a maximal subtree of the 1-skeleton of N(U) such that T'| y(yy) is
also a maximal subtree.
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» For two (g, U)-flat bundles v; = {v}w} and v, = {vfw}, a morphism of (e, U)-flat
bundles u € Hom,(vy, v2) is a family of unitaries w = {u, }yer € U(P)! such that

1 2
sup sup ”MMUW(X)“: - v;w(x) H < ¢
wvel xeUy,

e A (e, U)-flat stably relative bundle on (X, Y') with the typical fiber (P, Q) is a quadru-
ple v := (vy, v, Vg, u), where

— vy and v, are (g, U)-flat P-bundles on X,
- vpisa (e, Uy)-flat Q-bundle on Y, and
- u e Homg(vily @ vo, V2|y ® Vo).

It is said to be normalized on 7T if vy, v, are normalized on 7" and v is normalized on
TNY.

We write the set of (g, U)-flat stably relative bundles on (X, Y) normalized on 7 with the

typical fiber (P, Q) as Bdl'}:’% (X,Y)r. We define the metric on Bdli;‘lé (X,Y)r as
d(v,v") 1= max {d(v1,v}),d(v2.v}5).d(vo. V). d(u,0')},

where d(u,u’) := maxy, [u, —u),|.

Remark 2.20. For sufficiently small ¢ > 0, a (e, U)-flat stably relative bundle v =

(V1. V2, Vo, u) associates an element [v] of the relative K°-group K°(X, Y; A).

(1) The definition of [v] is as follows (see [26, Definition 3.9] for the precise defini-
tion): firstly, let Ey, — X, fori =1,2, and E,,—Y be the bundles associated to vy,
V3, Vg as in Remark 2.14. It is proved in [26, Lemma 3.4] that there is a collection
of continuous maps {it;;: Uy, — U(P & Q)}er such that i, (v}, ® v), )iy =
vfw eavgv and ||, —u,| <Ce, where C >0 is a constant depending only on U.
This family {i,, },.c; induces a bundle map u: Ey, |, ® Ey,— E\,|, @ Ey,. Now, the
quadruple (Ey,, Ey,, Ey,, 1) is a stably relative bundle on (X, Y') with the typical
fiber (P, Q) and hence associates an element of K(X, Y ; A) as in Remark 2.18.

(2) If & > 0 is sufficiently small and v, v’ € Bdli;jlé (X,Y) satisfies d(v,v’) < &, then
we have [v] = [v’] [26, Lemma 6.11].

(3) Let {n,} and {e .} be as in Remark 2.14. The element
W= iy - (U, ® ), )i ® e € C(Y) @ B(P) @ My
is a partial isometry such that W*W = py,|; D Pvy» WW* = Py, |y D Py, and
(Vrvaly@ve) W (W, y@ve) = U

That is, w is identified with u in (1) under the canonical isomorphism Ey,|, =
Puly Py fori = 1,2 and Ey, PVOQ§~ We remark that this w satisfies

“u') — Dv, -diag(uu)ueln < |I|2 . suII) i —upl < |I|28,
e

where diag(u,,),er is a unitary in B(P) ® Mj.
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We say that an element § € K*(X, Y; A) is (resp. stably) almost flat with respect to
a good open cover U if for any ¢ > 0 there is a (g, U)-flat (resp. stably) relative bundle
v of finitely generated projective Hilbert A-modules such that x = [v]. It is shown in
[26, Corollary 3.16] that (stably) almost flatness does not depend on the choice of good
open covers U. Similarly, we say that an element of KO (X.Y;A)g = KO (X, Y: ) ®zQ
is (resp. stably) almost flat if it is a Q-linear combination of (resp. stably) almost flat
elements.

Definition 2.21. Let (X, Y) be a pair of connected finite CW-complexes.
(1) We write Kgf(X, Y; A), Kgf(X, Y; A)o, Kg_af(X, Y; A), and Kg_af(X, Y; A)g for
the subgroup of (stably) almost flat elements.
(2) We say that a K-homology class £ € K« (X, Y) has an infinite (resp. stably) relative

K-area if there is a (resp. stably) almost flat K-theory class x € K°(M, N) such
that the index pairing (x, £) is non-zero.

(3) We say that & € K. (X, Y) has an infinite (resp. stably) relative C*-K-area if for
any ¢ > 0 there is a C*-algebra A, and a (resp. stably) relative (¢, U)-flat bundle
v of finitely generated projective Hilbert A.-modules such that the index pairing
([v], &) € Ko(Ag) is non-zero.

In particular, we say that a spin manifold M with the boundary N has a (stably)
relative infinite (C *-)K-area if the K-homology fundamental class [M, N] € K« (M, N)
has a (stably) relative infinite (C *-)K-area.

Theorem 2.22 ([26, Theorem 5.1]). Let (M, g) be a Riemannian spin manifold with a
collared boundary N. If the infinite cylinder My is area-enlargeable, then (M, N) has
an infinite stably relative C*-K-area.

Finally, we review the almost monodromy correspondence in the relative setting.

Definition 2.23. Let (I, A) be a pair of discrete groups and let ¢p: A — I" be a homomor-
phism. Let § = (&1, ) be a symmetric generating set of (I', A) in the following sense:
Gr C I'and 95 C A are symmetric generating sets and ¢ (§5) C 9r.

e Let m; and 7, be (e, §)-representations of I'. A e-intertwiner u € Homg (71, 775) is a
unitary u € U(P) such that ||um;(y)u* — ma(y)|| < eforany y € §.

o A stably relative (&, §)-representation of (I', A) is a quadruple & := (71, 72, 7o, U),
where

— m1:I' > U(P) and 72: ' — U(P) are (e, §r)-representations,

- mo: A = U(Q) is a (g, &) )-representation, and

- u € Homg(ry 0 ¢ @ 7o, 12 0 ¢ @ 70).
We write qRep;”gQ (T, A) for the set of stably relative (&, §)-representations of (I', A) on
(P, Q). We define the metric on qRepi;gQ (T, A) as

d(m, ') := max {d(nl, 1), d (72, 73), d (1o, 7). |lu — ”/”}
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Theorem 2.24 ([26, Definition 6.11, Theorem 6.12]). There are a constant Cyy > 0
depending only on U and continuous maps
U Camé, §
a:Bdl (X, Y)r — qRepp'y” (T, A),
B:qRep}s% (I, A) — Bdlg= ™ (X, V)7,

which satisfy the following

(1) forvo,v € Bdli;:lé(X, Y)7, one has d(a(v), a(v')) < d(v,v’) + Cane and
d(ﬂ © OC(U), U) < Camés

(2) for m.x' € qRep’y (. A), one has d(B(r). B(n)) < d(n. ') + Came and
d(ao B(m), ) < Cume.

For the latter, we only recall the definition of 8 given in [26, Definition 6.10]. For a
(e, §)-representation & = (71, 72, 7o, u) of (I', A), set

B(m) := (B(m1), B(m2), B(wo). Ar(w)), (2.25)

where f is the map in (2.15) and A;: U(P @ Q) — U(P & Q) is the diagonal embed-
ding.

3. Relative index pairing with coefficient in a C *-algebra

In this section, we establish an obstruction for the relative higher index to vanish arising
from an index pairing with coefficient in a C *-algebra. It has two applications: a relative
version of the Hanke—Schick theorem [19,20] and the non-vanishing of the relative higher
index in the setting of Hanke—Pape—Schick [18].

3.1. Index pairing with stably h-relative representations

Let M be a closed connected spin manifold, let I' := 71 (M), and let 7 be a representa-
tion of I" on a finitely generated projective Hilbert A-module P; i.e., a homomorphism
7: T — U(P). Then, 7 gives rise to a *x-homomorphism 7: C*I" — B(P) and hence
determines an element [] € KK(C*T', B(P)) =~ KK(C*T, A). The Kasparov product
ar([M]) ®c+r[r] € Ko(A) coincides with the index pairing with the associated flat P-
bundle M x, P.

Here, we develop a relative version of this argument. The relative counterpart of 7 is a
pair of representations of I' whose restrictions to A are identified “up to stabilization and
homotopy” in the following sense.

Definition 3.1. Let A be a unital C*-algebra and let Py, P>, Q be finitely generated
projective Hilbert A-modules. A stably h-relative representation of (I', A) on (Py, P>, Q)
is a quintuple I1 := (7ry, 72, 7o, U, ), where

e mi:I' - U(P;), fori =1,2,and myp: A — U(Q) are representations,
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e u:P; ®Q — P, ® Q is aunitary, and

o T ={Ti}xef,2) is a continuous family of representations of A to P, @ Q (thatis, 7 isa
homomorphism from A to U(B(P, & Q)[1,2])) such that 71 = Ad(u) o (711 0 ¢ & 79)
and T, = 75 o¢p ® mp.

We associate the following two ob]ects to a stably h-relative representation. First, let
P = X Xr,m Pfori =1,2,let@ := Y X A,m @, and let Vi be a continuous family of
bundle isomorphisms

VeV xpo 7 (P1® Q) = ¥ xpz (P, ® Q)

for k € [1, 2] such that V, is the identity. Note that such V. exists by a standard argu-
ment showing that two bundles are isomorphic if and only if they are homotopic (see,
for example, [24, Theorem 4.3]). Moreover, such V, is unique up to homotopy. Indeed,
another choice V,| corresponds one-to-one to a continuous path {V,/V,*}cefo,1] of endo-
morphisms on Y x A7 (P2 @ Q) with V,V)F = id, which is homotopic to the constant
path. Now, (Py, 2, @, Viu) is a stably relative Hilbert A-module bundle with the typical
fiber (P, Q).

Second, let P; denote the Hilbert A(—1, 1)-module P; := Pi(—1,1) & Q(—1,0). We
define a KK-class

0

M = [1"51 ® P, 11, @Hz,(U

Lg*) ] € KK (C¢, A(—1,1)), (3.2)

where

(mi @moop)(a) s e (-1.0),

[y (a, bs)(s) == {Jn(bs) s €[0,1),

Tats(a) s € (=1,0),

Iy (a, bs)(s) == {nz(bs) s €f0,1),

and U is defined by using functions f; and f, used in Remark 2.18 as
U:= fi(=s)lg + fa(—s)ii € B(P).

By a reparametrization of 7,, we may assume that 7, = 771 fork € [1, %] and 7, = 7, for
K€ [i, 2]. Then, U intertwines IT; with IT,; thatis, U I1; (x) = I15(x)U forany x € C¢.

Theorem 3.3. The Kasparov product
lr,a ®c+r,a) T € KK (C,Co(X°) ® A) = K*(X,Y: A)
is represented by the stably relative bundle (P, P>, @, Viu) on (X, Y).

For the proof, we use the following lemma.



The relative Mishchenko—Fomenko higher index and almost flat bundles II 229

Lemma 3.4 ([27, Lemma A.2]). Let A, B, and D be o-unital C*-algebras such that A is
separable, let (E1, 1, T1) be an odd Kasparov A-B bimodule, and let (E,, @2, F>) be a
Kasparov B-D bimodule. Set E := E1 ®p E, with the trivial Z.,-grading, 7w := w1 ®p 1,
and Tl =T1®pl. Let G = (GOO %3) € B(E) be an odd F -connection and assume that
[r(A), T] C K(E), where

7 (1-THV*Gsa - TH'
T = - ~ ~ e B(E).
((1 —THY4Gy(1 - THV* -Ty

Then, the odd Kasparov A-D bimodule (E, w, T) represents the Kasparov product
[E1, 71, T1] ®B[E2, 72, F2].

Proof of Theorem 3.3. Let €, be as in (2.1). The Hilbert Co(X3) ® A-module &, ®m1, P,
is the section space of the continuous field

Pri= || U || VT, (PeQ)

s€(0,1) s€(—1,0]

of Hilbert A-modules over X7 x (—1,1). Let Z denote its support; thatis, Z := X7 (0,1) U
(Y3)°(=1,0].
Fori =1, 2, set B
P =Co(Z,P) P Co((Yz’)", (fl)

Then, 3_31 is canonically identified with €, ®f, P and

o(x,s), s€(0,1), x € X5,

Vip)(x,s) = { Vays(o(x,s)). se€(=1,0], x € (¥)°,

gives a unitary isomorphism
V:€Es ®ﬁ2 P — Ps.
Moreover, since U intertwines I1; with I1,, it induces an operator
U:82®ﬁ1 P —>82®ﬁ2 P.

In particular, U is a U-connection. By Lemma 3.4, we obtain that

- - 5,2(7*
lra ®cg I = [(52 ®, P1) ® (€2 ®5, P2)™. 1, (ap — )}

2[7 -
—— G2U*V*
- [Tl@?z’l’(52 (7 _ﬁ ):|7

ps(x)  (x,s) € X3(0,1),
po(x) (x,s5) € (¥;)°(-1,0],
and g = (1 — p?)"/*. Note that VU = fi(—s)lag + fo(—s)Viu.

<l

where

px.5) = (p®m, D(x.s) = {
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Figure 2. The shading shows the value of |o(r, s)| on Z and |2s — 1] on X (0, 1), respectively.

On the other hand, let P; := Co(X5, Pi) ® Co((Y5)°, @) for i = 1,2 and U :
fi(r = D1g + fo(r — 1)Viu. As is mentioned in Remark 2.18, we have

~ 0 0o U
[P1, P2, Q, V1u] = |:3’1€93)2p,1,((7* 0)]
Hence, Lemma 3.4 implies that

~ ~ 2s — 1 20*
B[P, P2, Q, V5] = [fP](O, )& ‘J’ZP(O, 1,1, ( 205 1- 2s> :|,

where 7 = (1 — (25 — 1)2)1/4,
Lett: Z — X(—1, 1) denote the open embedding. We define a continuous map f:Z —
X(0,1) by f(x,s) = (x,s) for (x,s) € X{(0,1) and
FOrors) = {(y» =5, 25 (3.rs) € (1)°(-1,0),
(y.1,2E2E) - (y.r5) € (¥5)°(0, 1).

Then, the *-homomorphism f*:Co(X5(0,1)) = Co(Z) satisfies f 2s—1)=peCy(2)
(see Figure 2). Moreover, by construction, there are unitaries ®;: P ® 0+ Co(Z) — P; of
Hilbert Co(Z) ® A-modules for i = 1,2 such that (DZ(U ®f= 1)P] = V1U . Consequently,
we obtain that

ZF,A QI = (IB ® [‘(Pl»f(/jZ’ Q, VZ]) ® [f*] ® [L*]
This concludes the proof since tx o f*: Co(X7 (0, 1)) = Co(X7(—1, 1)) is homotopic to
the inclusion X3 (0,1) — X5 (—1,1). |
3.2. Relative Hanke—Schick obstruction

We apply Theorem 3.3 to show a relative version of [17, Theorem 3.9]. Here, we identify
the topological K-group K°(M, N) with the C *-algebra K-group Ko(Co(My)).
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Theorem 3.5. Let M be a connected compact connected spin manifold with boundary N .
Let T := (M), let A := m1(N), and let p: A — T be the homomorphism induced from
the inclusion N — M.

(1) If M has an infinite stably relative C*-K-area, then the relative higher index
/LE’A ([M, N)) does not vanish.

(2) If M has an infinite relative C *-K-area, then the relative higher index
M£’¢(A)([M, N1) does not vanish.

Proof. First, we show (1). By assumption, for each n € N there is a C*-algebra 4,,
a pair of finitely generated projective Hilbert A,-modules (P,, Q,) and a (%, U)-flat
stably relative bundle v, := (V,ll, vﬁ, vg, u,) with the typical fiber (P,, Q) such that
([on], [M, N]) # 0 € Ko(Ay). Set

B = HB(Pn@Qn)»

neN
P3=H1Pn, P = pB,
g:=][te.. Q2=4B

We define the stably relative bundle v = (v', v2,v0, u) with the typical fiber (P, Q) as
V= {in}u,vél, VO = {vgu}u,vél and u = {uu}uel, where

Vi, (0) == [ [ i) (x) € B(P).

neN

v () = [ () € B(Q),
neN

Uy = l_[ (un)p € B(P & 0),
neN

fori =1,2,x € Uyyandy € Uy, N N.

Let J := @, ey B(Pr © On), let D = B/J, and let t: B — D denote the quotient.
Then, we have

vfw (x)vi, (x) — vfw(x) € J and

o (Vi ®U),)0) —upv], @ vp)(uy € J;
that is,

weo = ({eh)} T2} 00} {r0))
is a stably relative flat bundle. Let IT € KK(C*(T, A), D) denote the Kasparov bimodule
associated to the stably relative representation «(7«v) = (71, 72, 7o, ) as in Theorem
2.24; that is, each m; is the monodromy representation of 7(v') on the fiber at a fixed

basepoint x € N and u is the restriction of the bundle map induced from {u,} to the
fibers at x. By Theorem 3.3, we obtain that

ar (M, N)) ® T = Lr,a Qcyare) [M, N1 &cxr,a) TT



Y. Kubota 232

= [120] ®cym)[M. N| = 74 ([0] Ry [M. N])

ve(TT (ol 11, 1))

It is non-zero because ker 7, is identified with @ Ko(A4,) through the injective homomor-
phism Ko (B) C [[Ko(A4n).

The claim (2) is proved in the same way. We only remark that in this case IT is a
relative representation of (I', A), which is actually a relative representation of (I, ¢(A))
by [26, Remark 6.3]. [

Together with Theorem 2.22, Theorem 3.5 implies the following relative version of
the result of [19, 20].

Corollary 3.6. Let (M, g) be a compact Riemannian spin manifold with a collared bound-
ary N. If My is area-enlargeable, then ,LLI;’A([M , N) does not vanish.

3.3. The Hanke-Pape-Schick codimension 2 obstruction

The second application of Theorem 3.3 is concerned with the codimension 2 obstruction of
positive scalar curvature metric which is first introduced by Gromov-Lawson [16, Theo-
rem 7.5] and generalized by Hanke—Pape—Schick [18, Theorem 4.3]. Here, we show the
following theorem.

Theorem 3.7. Let M be an n-dimensional closed connected spin manifold with an em-
bedded connected codimension 2 submanifold N satisfying that

e the induced map w1 (N) — w1 (M) is injective,
e the induced map 7iy(N) — ma(M) is surjective, and
e the normal bundle of N is trivial.

Let W = N x D? be a closed tubular neighborhood of N, let My := M \ W°, let
No := 0My, let T := 71 (M), and let A := 71(N). Then, ,u,[l\_z([N]) =% 0 implies that
s ([Mo, No)) # 0.

Remark 3.8. Itis proved in [27, Corollary 5.3] that if there are discrete groups 'y, 'z, A,
injective homomorphisms A — I';, and a partitioned manifold M = M, LIy M, equipped
with reference maps f;:(M;, N) — (BT, BA), then the non-vanishing of u* ([M;, N])
implies that uy'*A™2([M]) # 0. We apply this theorem to M = N x D2 Liyyg1 Mo,
' =m (N xD3), A = m1(N), and I'; = 71(Mp) in the setting of Theorem 3.7. Then,
the conclusion of Theorem 3.7 implies the non-vanishing of T ([M]). In particular, we
obtain that M does not admit any metric with positive scalar curvature, as is proved in
[18, Theorem 4.3].

As is remarked in the introduction of [18], a combination of the stable Gromov—
Lawson—Rosenberg conjecture proved by Rosenberg—Stolz [32] and [18, Theorem 4.3]
also implies the non-vanishing of w,([M]) if T satisfies the Baum—Connes injectivity.
Here, we give a direct proof of this fact without the assumption of Baum—Connes injec-
tivity.
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For the proof, we prepare general lemmas on the boundary map of K-theory.

Remark 3.9. Recall that a pair of projections (¢q1, g») of the multiplier algebra M (A) of
a C*-algebra A such that g — g, € A represents the difference class [¢1, ¢2] of the Ko(A)
(cf. [10, p. 64]) in the following way. There is an isomorphism Ko (M (A4) @4 M(A)) =
Ko(A) & Ko(M(A)) induced from the split exact sequence 0 - A — M(A) 4 M(A) —
M(A)— 0. Let [¢1, 2] denote the Ko (A)-component of [(¢1,¢2)] € Ko(M(A) g M(A)).

Lemma 3.10. Let0 — I — D — D/I — 0 be an exact sequence of C*-algebras. For a
pair of projections (q1,q2) € M(D/I1)®? withq, —q, € D/ 1, the image 3[q,.q2) € K{(I)
of the difference class by the boundary map is represented by a unitary

exp(—2mwigy)exp(rigz) € 1 + 1,
where each g; € M(D) is a self-adjoint lift of q; such that g1 — g, € D.

Proof. Let I denote the kernel of the homomorphism M (D) — M(D/I). It includes /
as an ideal and 7 N D = [ holds. Consider the diagram of exact sequences

0 I D D/l ————— 0

L | !

0— 1T D1 I —> M(D) Da) M(D) — M(D/I) Da/1 M(D/I)— 0.

The vertical morphisms are inclusions into the first component. Now, the projection
(6]1 s C]z) GM(D/]) @(Q(D/I) M(D/]) hasa self—adjoint lift (6}1 s (,?2) c M(D)@@(D) M(D),
and hence

3[(611,(]2)] — [(6727[!’51’6*27[1’52)]
— L*[e—ZﬂiqleZHiqz] + [e—ZﬂiQZ’e—Zﬂi'qu] c Kl(I @I/l I)

This shows the lemma by commutativity of the boundary map and the isomorphism
Ki(Z &1 I) 2 Ki(I) & Ki(1)

induced from the split exact sequence 0 — I — I &7 I — I — 0, where the splitting
I — I @y I is given by the diagonal map. |

Let A be a C*-algebra, let B := B(Hy4), and let J := K(H4). Let Z; and Z; be
bundles of infinitely generated projective Hilbert A-modules with the typical fiber Z; and
Z,, respectively. Then,

Z; = B(Z;, Ha)/K(Z;i, Ha)

(where B(Z;, H,4) denotes the set of adjointable bounded operators from Hy to Z;) is
a Hilbert B/J-module bundle with B(Z;) = @(Z;) (the B/J-action from the right,
the @(Z;)-action from the left, and the inner product are induced from the product of
operators). Suppose that there is a bundle homomorphism U: Z |y, — Z2|n, such that



Y. Kubota 234

U*U — 1 € K(C(Ny, Z1)) and UU* — 1 € K(C(Ny, Z5)). Then, it induces a unitary
operator (7: ,‘Zl — 22.

We write [0p,7] € KK (B/J,J) and [dc(w,)] € KK1(C(No), Co(My)) for the KK-
classes corresponding to the extensions 0 - J — B — B/J — 0and 0 — Co(M;) —
C(My) — C(Ny) — 0, respectively.

Lemma 3.11. Let Z;, U, Z_Z,-, and U be as above. Then, one has
[Z1,2Z5, U] ®p; 110871 = —[Z1]Ng Z2|Ne» Ul ®cvo) [0c(no)] (3.12)

under the isomorphism KK(C, Co(My) ® J) = KK(C, Co(My) ® A) given by the Kas-
parov product with the imprimitivity bimodule [H4] € KK(J, A).

Proof. First, notice that there are isometries V;: Z; — J{4 such that ViVi—UeK(Z,.25,).

Indeed, let S denote a unitary lift of (g UO* ) and let W: Z; & Z; — 34 be an isometry
(which exists by the Kasparov stabilization theorem [25, Theorem 2]). Then, V; := WV{
and V, := WSV, where V/: Z; — Z| @ Z, denotes the embedding to the ith direct
summand, are desired isometries. Moreover, by a pull-back with respect to a deformation
retract of Ny, we may assume that P; = P, on a neighborhood O of Ny. Let ¢ be a
continuous function supported on O such that 0 < < 1 and ¥ |y, = 1 and let P’ :=
YPy+ (1 )P,

Now, we apply Lemma 3.10 to determine the left- and right-hand sides of (3.12). Since
(Py, P')is aself-adjoint lift of (q(P1),q(P2)) € M(Co(Mg) ® B/J)®? to M(Co(Mg) ®
B)®2 such that P; — P’ € Co(Mg) ® B, we get

(Z1.Z>.Ul ®g/s 108771 = 0[q(P1).q(P>)]
= [exp(—27iPy) exp(2riP’)| = [ exp(2miP’)].

Similarly, since (P’, P,) is a self-adjoint lift of (Py1|n,, P2|n,) € M(C(No) ® J)®? to
M(C(Mp) ® J)®? such that P/ — P, € C(My) ® J, we get

(21|80 Z2|No - Ul @ cvg) [dcvo)] = 3[P1|no» P2 o)
= [exp(—27miP') exp(27iPy)| = [ exp(—27iP")].

This completes the proof of the lemma. ]

We fix a base point x¢ € Ny in order to consider the Galois correspondence of covering
spaces. Let M denote the universal covering of M. Set M := M /A = M xp T /A and
let 7: M — M, %: M — M denote the projections. Then, 7 X (W) is the disjoint union
of coverings of W indexed by AgA € A\ I'/A, each of which has the fundamental group
A N gAg~!. In particular, the connected component W including the base point x is
diffeomorphic to W by 7. Let N := dW.

An essential ingredient of the codimension 2 obstruction theorem, which is given in the
proof of [18, Theorem 4.3], is the existence of a nice A x Z-Galois covering on M \ W°.
Here, we restate it for our convenience.



The relative Mishchenko—Fomenko higher index and almost flat bundles II 235

Lemma 3.13. There is a Z-Galois covering Mo over My := (77 o )~ (My) with the
following properties:

o its restriction to TV (No) = N x S is the universal covering;

e its restriction to T (T (No) \ No) is trivial.

Proof. We write y for the closed loop {xo} x S! C N x S! = Ny. Then, y generates the
second component of 1 (Ng) = A x Z[y]. Leti: N — My and j: My — M denote the
inclusions. It is proved in [18, Theorem 4.3] that there is a splitting

rim(M\W°) — AxZ

of iy; thatis, r o iy = idaxz.

Then, the homomorphism pr o r (where pry: A X Z — A is the projection) is equal
to j«. Indeed, both pr o r and j, map [y] to the trivial element and the induced homo-
morphisms from 71 (M \ W°)/([y]) to A are the inverse of the composition

A AxZ s (M \W®) — (M \ W) /{[y])-

Therefore, the covering Mo of My associated to r satisfies MO/Z = Mo XAxz A = Mo.
That is, My is a Z-Galois covering on 7~ 1(Mp).

The equality r o i, = idpxz means that the restriction of Mo to JVO is the univer-
sal covering N xR of N x S!. That is, the restriction of the Z-Galois covering Mo to
T YN) = N x S is the universal covering. At the same time, the restriction of the Z-
Galois covering M, to each connected component of =1 (Z "' (N) \ N) is trivial because
it is extended to a connected component of (7 o 7)~! (W), which is simply connected. m

Lemma 3.14. Under the assumption of Theorem 3.7, M is an infinite covering; that is,
'/ A is an infinite set.

Proof. Assume that M is a finite covering of M, and hence a closed manifold. The A x Z-
Galois covering My — 77! (My) constructed in Lemma 3.13 extends to a A x Z-Galois
covering on a spin manifold M \ W°. Since its restriction to the boundary No = Ny is
isomorphic to the universal covering of Ny, we obtain that [Ny, /]=0€ Q" (B(A x Z))
(where f is the reference map associated to the universal covering). This contradicts the
assumption u,ﬁ\_z([N 1) # 0 (which implies that ;L,?_XIZ([NO]) # 0). |

Proof of Theorem 3.77. Let A := C*(A x Z). We consider two bundles
o Vi := My xaxz C*(A x Z) and

o Vy:= My xa C*(A x Z) (here, A acts on C*(A x Z) from the left through the
inclusion A — A X Z)

of Hilbert A-modules over My, where Mo is as in Lemma 3.13. We associate to them

bundles
Zi =mV; = |_| @ (Vi)x

X€My T (xX)=x
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of infinitely generated (by Lemma 3.14) Hilbert A-modules on M, which are equipped
with thf canonical flat structures. Let Z; := @ﬁ(i):x() ('Vi)z be the fiber of Z; on xo and
let 0;: ' — U(Z;) denote the associated monodromy representation. Note that o, factors
through I

By the construction of M in Lemma 3.13, we have an isomorphism of flat A-module
bundles between the restrictions of V; and V, on 7~ 1(Nyg) \ No. Tt induces a partial
isometry U: Z1|n, — Z2|n, such thatkerU = V1|No C Zi, kerU* = Vzlﬁo C Z,, and

02(8)Uxy = Ux,01(8)

for any g € A x Z, where Uy, is a restriction of U to 7! (xo).

As in Lemma 3.11, let Z; denote the bundle B(Z;, H4)/K(Z;, H4) of Hilbert B/ J -
modules and let Z; := (Z;)x, = B(Z;, H4)/K(Z;,H4) for i = 1,2. Then, 0; and Uy,
above induce o;: T' — U(Q(Z;)) = U(Z;) and Uy,: Z — Z,, respectively. Then, Uy, is
a unitary and Uy, (g) U;O = 02(g) holds for any g € A x Z. This particularly implies
that o1 (y) = 1 (where y is the generator of Z C A x Z); thatis, o1: ' — U(Z;) factors
through I

Consequently, we obtain that the triplet IT := (o7, 02, l7xo) is a relative representation
of (', A) and its associated relative B/J-module bundle (in the sense of Theorem 3.3) is
(,‘Zl, Z,.U). Let IT denote the KK-element of KK(C¢, (B/J)(—1, 1)) associated to TT
as in (3.2). Now, we apply Theorem 3.3 and Lemma 3.11 to get

((er.a ®cog) [Mo. Nol) ®c+r,a) ) @5, [08/7]
= (br.a ®c+r.a) M) ®p/7 [08/7] ®comg) [Mo, No]
=[Z1.2,. U] ®5/s [08/7] ®comg) [Mo. No|
= —([Z1]no- Z2|no- U] ®cvio) [0cve)]) @coeag) [Mo, No]
= (= Milg,] + Val7,]) ®cwvo [Nol
=~ L (IN x 1) + paty ([N x S1])
= —pp_(IN]) +0 # 0.

The last equality is considered under the identification of K,_,(C *(A)) with the second
direct summand of

Ku—1 (C*(AXZ)) =Ku—1 (C*A ® C*(Z)) = Ky—1 (C*(A)) ® Kp—1 (C*(A) ® S*1).

For the fourth equality, we use “the boundary of Dirac is Dirac principle” [dc(vg)] ® co(arg)
[My, No] = [No] (for the proof, see, for example, [23, Proposition 11.2.15]). |
4. Relative quantitative index pairing

In this section, we reformulate the index theorems of Connes—Gromov—Moscovici [8] and
Dadarlat [12] and generalize them to the relative setting. Instead of Lafforgue’s Banach
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KK-theory, on which the formulation of [12] is based, we use the quantitative K-theory
introduced by Oyono-Oyono and Yu [30].

4.1. Quantitative K-theory and almost *-homomorphism

We start with a quick review of the quantitative K-theory. The standard reference is [30].
We say that a filtered C*-algebra is a C *-algebra A equipped with an increasing family
{A;}ref0,00) Of closed subspaces of A such that AY = A,, A, - Ay C Apyprand |, A, C A
is dense.

For a unital filtered C *-algebra A, 0 < ¢ < %, and r > 0, let

Py (4) == {p € Ma(4,) | p = p*.[1p* — pll <&},
UST(A) := {u € Mp(Ay) | lu™u—1|| <& luu* —1| <e}

and let P57 (4) := Upen P’ (4), U (A) := U, en UL" (A). For k € N, let 1 denote

the unit of My C AT ® M. We introduce the equivalence relation to P%/ (A) x N and

U (A) as

e (p, k)~ (q,1) if diag(p, 1;) and diag(q, 1) are connected by a continuous path in
P (A),

e u ~ vifuand v are connected by a continuous path in U527 (A).

The quantitative K-groups are defined by

K" (4) = P (A) x N/ ~,
K" (4) = U (4)/ ~ .

We write the elements of quantitative K.-groups represented by (p,[) € P5/(A) and
u € U (A) as [p,l]e,r and [u]e,,, respectively. The summations [p, ke, + [q, ]e,r 1=
[diag(p. q). k + I]e,r and [u]e, + [v]e,r = [diag(u, v)],, make Kg' (A4) and K]" (A) into
abelian groups (for the proof, see [30, Lemmas 1.14, 1.15, and 1.16]).

For a non-unital filtered C*-algebra A, the unitization A" is also equipped with the
structure of filtered C*-algebra by A := A, + C1. Let p: AT — C denote the quotient.
The quantitative K-group is defined by

Ky" (A) == ker (p«: Ky (A7) > Kg"(C) = Z)

and K7 (A) := K{"(A4™). For any (e, r), we write t4 for the canonical homomorphism
from K5 (A) to Ky (4).

Remark 4.1. Hereafter, we often use the norm estimates | p|| < 1 4 & for p € P57 (A)
and ||u|| <1+ &/2 for UZJ (A) (cf. [30, Remark 1.4]).

Next, we introduce the notion of a complete almost x-homomorphism between filtered
C *-algebras.
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Definition 4.2. Let A and D be filtered C *-algebras. A bounded linear map 7: A, — Dy,
is a complete (¢, r, k)-*-homomorphism if 7(a*) = 7w (a)* for any a € A4, and

|70 (@b) — 7tn(@)7n (B)|| < ellall|b]

holds foranyn € N and a,b € A, ® M, where 7, := 7 ® idpy,,.

Remark 4.3. Let: A, — Dy, be acomplete (&, r, k)-*-homomorphism. Then, 7, (a*) =
7, (@)™ also holds for any a € A ® M,,. Moreover, for a € A, ® M,, with ||a|| = 1 and
l7n (@) > ll7wn]l — &', we have

(||7Tn|| —&)? < ||7Tn(a)*77n(a)”
= ||7Tn(a*a) - ”n(a)*”n(a)“ + ||7Tn(a*a) ||

<&+ |7l

This means that |77, ||> < ||, || + € and hence ||, || < 1 + &/2. That is, 7 is a completely
bounded map between operator spaces (a reference on completely bounded maps and
operator spaces is [4, Appendix B]). In particular, 7 ® idp: 4, ® B — D, ® B is a

well-defined completely bounded map for any nuclear C *-algebra B [4, Corollary B.8].

A C*-algebra is said to be quasi-diagonal if it admits a faithful representation ¢: A —
B(H) with an increasing sequence p, of finite rank projections in B(J) such that
[p(a), pp] — 0 as n — oo for any a € A (for more details, see, for example, [4, Sec-
tion 7]). Note that

[1B(pa30 _ T1M;,
®B(pnH) — @My,

where k,, := rank p, is a faithful x-homomorphism.

A3 ar Y(a) = (pap(a)pn) €

Lemma 4.4. Let w: A — D be a complete (g, 1, k)-homomorphism and let B be a quasi-
diagonal C*-algebra. Then, m ® idg: A, ® B — D, ® B is a complete (g, r, k)-*-
homomorphism.

Proof. First, for a sequence of positive numbers {ky }neN, 7 ® id[], ., M, is a complete
(&, 7, )-*-homomorphism since A ([ [, My, ) is canonically isomorphic to [ [ ,(A®@My,).
Since there is an isomorphism

(TT9e)/(@10) = i (I]10):

we obtain that 7 ® idr M, / @m,, 1S also a complete (&, r, k)-*-homomorphism.
Since B is quasi-diagonal, there is a faithful *-homomorphism

V:B — 1_[ Mkn/ @Mk,, for some {k, }neN.

neN neN
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Since the diagram

n®idp

A® B D®B
lidA (=372 JidD (=37
1My, n®id1—[Mkn/G9Mkn 1My,
A® D My, D& D My,
commutes, 7 ® idp is also a complete (e, 7, k)-*-homomorphism. ]

Proposition 4.5. Let A, B be two unital filtered C*-algebras and let w: Ay — Byr be a
unital complete (&, r, k )-x-homomorphism. Then, for any 6 >0 such that € + (1 + 3¢)é < %,
7T gives rise to continuous maps

o Pfl,r (A) s PZ+(1+26‘)5,K"(B)’
1718, 8,
JTUnr(A) — UZ+(1+38) Kr(B)

and hence induces homomorphisms
]TﬁKi’r(A) — Ki+(1+38)8’Kr(B).
Proof. Let p € P>"(A) andu € U%7" (A). Then, we have

|7 (p)* = 7 (p)|| < |7 (P)* — 7 (P®)| + |7a(p* = p)|
<elpl? + Izl p® - pl
<e(1+8)+(1+¢/2)8
< e+ (1 4 2¢)é,

|70n ) 700 ) = 1| < |70 ) * 700 () — 700 (*u) | + || 700 (u™*u — 1) |
< elu*lull + l|I7[levd
<e(l+8)*+(1+¢/2)8
<e+ (1 +3¢)8.

Similarly, we also have ||, (u)7, (u)* — 1|| < &+ (1 + 3¢)6. L]

Remark 4.6. For possibly non-unital filtered C *-algebras A, B and a (¢, r, k)-*-homo-
morphism 7, it is straightforward to see that the unitization *-homomorphism 7: A+ —
B defined by nt|4 = w and T (14) = 1p is also a complete (&, r, k)-*-homomorphism.
Therefore, = induces a homomorphism of quantitative K-groups by Proposition 4.5.

4.2. Quantitative index pairing

Let I" be a finitely generated discrete group and let e € §r C T be a finite set generating
I". We assume that §r is symmetric; i.e., y‘l € gr forany y € Gr. Let Ir denote the word
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length function on ' with respect to §r. Since It satisfies Ir(y - ') < Ir(y) + Ir(y)), it
gives the structure of a filtered C *-algebra on the group C *-algebra C *T'; that is,

C*(I), := { > cuy e (C[F]} c Cc*()
{r(ns=r
forms an increasing family of closed subspaces of C*(I") such that C*(T"), - C*(I'),» C
C*(I')y4p and | JC*(T'), = C[I'] is dense in C*(I"). For r € Zx, we write §[. for the
set{y1---yr | vi € %1}

For an (e, 915)-representation  of I on P, we use the same letter s for the linear map
C*(T)r - B :=B(P) givenby n (D _cyuy) 1= ) cym(y). We say that x is self-adjoint
if (y~') = 7 (y)* holds for any y € §.. Note that for any (¢, §f.)-representation , there
is a self-adjoint (70s, §f.)-representation 7 with d(rr, w) < 20¢ [5, Proposition 5.6].

Proposition 4.7. Let 7w be a self-adjoint (g, §1.)-representation of I on P. Then, 7 is a

unital complete (|G]. |2¢, r, 1)-%-homomorphism.

Proof. Letx = Zyeglz ayuy andy =} cor byuy be elements in C*(I'), ® My, where
ay and b, are elements of M,,. We remark that ||a, || < ||x|| and [|b, || < ||y| forany y € I
Indeed, let t: C*T" — C denote the tracial state given by t(D _ ¢, ;) := .. Then, we have

layll = ||(z ® idm, ) (xrey-1) | < Ixuy1]| = [|x]I.

Now, we obtain that

H”n(x)nn(y) - ”n(xy)” =

Y ayby () — ¥y H

7,7/ €8]
< 3 layl- Iyl - 2 )n () — 2|
v,y €GL
< ( ) ||ay||)( ) ||by/||)e
yESL y'€9L
< 1521 Ix v le. .

Let X be a connected finite CW-complex and let I" := 71 (X)) (and hence I is a finitely
presented discrete group). Let U := {U,},er be a good cover of X and let {y, v}, ver
be a collection of flat transition functions of the universal covering X > X.Let §p =
{Vuvtu,ver. Let v = {v,,} be a U(P)-valued Cech 1-cocycle. As are mentioned in (2.4)
and Remark 2.14, the projections

PrV = Z NuMv X uyl“) X €ny € C(X) ® (C*F)l ® Mla
wvel

Dy = Z NV @ eyy € C(X) ® B @ My
w,vel

have the support isomorphic to V and Ey, respectively.
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Remark 4.8. For the latter, we give two remarks on Cuntz’s quasi-homomorphism picture
of the KK-theory [9]. Here, a KK-element £ € KK(A4, C) is represented by a quasi-
homomorphism [¢1, g2]: A — B(H) > K(H), i.e., a pair of x-homomorphisms 4 —
B(H), such that ¢1(f) — p2(f) € K(H) (strictly speaking, this pair should be called
a pre-quasihomomorphism).

(1) Let B := B(J() ®q () B(H). Then, a quasi-homomorphism [¢1, ¢2] corresponds
to a *-homomorphism ® := (@1, ¢2): A — B. The projection to the first and
second components determines a quasi-homomorphism [pr;, pr,] € KK(8B, C)
such that [¢1. 2] = [®] ® 3 [pry. pry]-

(2) Let D be another C*-algebra and let p € A ® D ® M, be a projection. Then,
(p1(p), p2(p)) is a pair of projections such that ¢;(p) — ¢2(p) € K® D. The
Kasparov product [p] ®4 ([¢1, ¢2] ® idp) € Ko(D) is equal to the difference
class [¢1(p), ¢2(p)] as in Remark 3.9 since

[P] ®a4 [¢1,92] = [p] ®4 [P] ® 3 [pry, pry]
= [(¢1(p). 92(p))] ® s [pr;. pral.
(3) A l-parameter family of quasi-homomorphisms [¢}, 5] is said to be continuous if
t — ¢! (a) is strongly continuous and ¢ > ¢ (a) — ¢2(a) is norm continuous for
any a € A. If [p1, p2] = [¢], ¢5], then K(H & F)-valued quasi-homomorphisms

1D 0,0, 0] an @ 0, @ 0] are homotopic. 1S 1S a consequence O
01 ®0,0®0] and [p] ® 0,9, O h pic. This i q f
[9, Proposition 2.4] and Kasparov’s stabilization theorem [25, Theorem 2].

Proposition 4.9. There is a group homomorphism
o Ko(X) — KO (K(H) ® C*(I))

such that 1oy (@2 (£)) = ar(£) € Ko(C*(T')) for any € € Ko(X).

Proof. Let [¢1, 2] be a quasi-homomorphism representing £ € KK(C(X),C). Let P; :=
¢1(Py) and P, := ¢2(Py). Then, the Kasparov product [Py] ®c(x) § € Ko(K ® C*T)
is represented by a pair of projections [ P1, P»] by Remark 4.8 (2).

Set

. P, ly — P, X
V= (11 P ) e My (B0 ® C*(T)y ® M),

Then, V is a self-adjoint unitary and V diag(P,, 11 — P,)V = diag(1, 0) holds. This
implies that

v (21 1 _O P2) V- (101 8) € M (K(30) ® C*(T')3 ® My);

that is, the pair (V diag(P1, 17 — P»)V, diag(1y,0)) determines a difference class

[V diag(Py, 17 — P2)v,diag(17,0)] € Ko (K(H) ® C*(I)).
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Moreover, we have the equality of difference classes as

[P1~P2]=[(€1 llng)’(zz II—OPZ)}

[.(Ph 0 7 0 .
() )] exasen,

Now, we define the map o/ as
ap(§) = [V diag(P1, 17 = P)V.|I[], 5

Then, the above discussion means that this oziilg satisfies tcx(r) o ociilg = or. Note that
the definition of oc;ilg is well defined since it is independent of the choice of a repre-
sentative [¢1, ¢2]. To see this, let [p], 5] be another representative of &, to which the
(0, 3)-projection V' diag(P;, 17 — P,)V’ is associated. By Remark 4.8 (3), there is a con-
tinuous path [}, 3] connecting [p; @ 0, ¢, & 0] and [p] & 0, 5 & 0]. Now, the same
construction for [¢}, 5] provides a desired norm continuous path of (0, 3)-projections
connecting V diag(P1, 17 — P2)V & 1y with V' diag(P{, 11 — Py)V' @ 1;. n

Definition 4.10. We call the map ozillg as in Proposition 4.9 the algebraic Mishchenko—
Fomenko higher index. For r > 3, we call the composition oc‘rs:' =155 0 a?‘lg: Ko(X) —
Kg’r (C*T) the quantitative higher index.

Now, we reformulate [12, Theorem 3.2] in the framework of quantitative K-theory.

Theorem 4.11. There is a constant C; = C1(U) depending only on U that the following

3
holds: for 0 < & < (4C1)™Y, a self-adjoint quasi-representation w € qRep;’gr (I'), and
& € Ko(X), one has

g o (idx o) ®)s(p(8)) = ([B(m)]. £) € Ko(B).

Remark 4.12. Here, we discuss the usage of Theorem 4.11 for the study of the K-theory
of group C *-algebras. For any (8, r) with |67 |2 + (1 + 3[8}|%e)§ < 1/4, (idk 30 ®7)4
is defined on Kg’r (K(H) ® C*T'). Hence, the left-hand side of Theorem 4.11 is written as
tg o (idg(gc) ®m)y 0 O{?"r (&). Let £ € Ko(X) be a K-homology class satisfying ar (£§) = 0.
Then, there is (8, r) with § < 1/4 such that ozlb;’r (§) = 0, and hence

tg o (idg (30) @)y © al‘i’r(S) =0

for any w € qRep;’gf (") with ¢ < min{%, I%IIZ/?—I_—E%)}' By Theorem 4.11, we obtain
([B(m)], &) = 0. This is a quantitative version of the Hanke—Schick theorem [17, Theo-

rem 3.9].

For the proof of Theorem 4.11, first of all, let [¢1, ¢2]: C(X) — B(H) > K(H) be a
quasi-homomorphism representing & € Ko(X) such that ¢; is ample; i.e., o7 ' (K(3)) = 0.
Set

D := K(H) + ¢1(C(X)).
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Remark 4.13. Note that D is quasi-diagonal. Indeed, let p, be an increasing sequence
of finite rank projections on J such that ||[¢1(f), pa]ll = 0 as n — oo. There exists
such p, by Voiculescu’s theorem (see, for example, [4, Theorem 7.2.5]) and the fact that
any commutative C*-algebra is quasi-diagonal [4, Proposition 7.1.5]. This sequence of
projections also satisfies ||[p, x]|| — O for any x € K(XK).

Let 7r denote a self-adjoint (g, §r)-representation of I" and let v := f(). Let Py, P5,
and V be as in the proof of Proposition 4.9. Set

P = (idc(X)®M1 ®7T)(P’V) €C(X)® B®My.

Moreover, let pr; := (¢; ® id)(px), pv.i = (p;i ®1d)(py) € D ® B @ My (fori =1,2),

and
L ( Pr,2 I, — Pr:,z) L ( Dv,2 1, — pv,Z)
Uy 1= , Uy = .

1, — Pr,2 Pr,2 1, — Dv,2 Dv,2
Lemma 4.14. For 0 < & < (60[§21*)™", both (idp ®m)(V diag(Py, 1 — P,)V) and
Uy diag(pr,1. 1 — pr2)vx are (15182 e, 3)-projections and

[(i[dp ®m)(V diag(P1, 1 — P2)V), |I|]15|§1§|s,3

= [vx diag(pr,1. 1 = pr2) V. |I|]15\€1§\3e,3

holds.

Proof. By Lemma 4.4, idg ® is a (|§2|?¢, 3. 1)-*-homomorphism. Hence, by Proposi-
tion 4.5, we have

312
(idp @) (V diag(P1. 1 — P)V) € P1T * (K(70) ® B).

Moreover, since

(idp ®m)(¢i ® idc+(r)) = (¢ ® idc+(ry)(ide(x) ®7)

as completely bounded maps, we have (idp ®7)(V) = v, and (idp @) (P;) = py,; for
i = 1, 2. Therefore, Proposition 4.7 implies that

|Gidp ®@m)(V diag(Py. 1 — P)V) — vx diag(pa,1. 1 — pr2)vr ||

< | (do ®m)(V diag(P1, 1 — P»)V) — (idp ®m)(V diag(Py, 1 — P2))(idp ®m)(V)|

+ | (idp ®m)(V diag(P1, 1—P2)) vz —(idp ®m)(V)(idp @) (diag(Py, 1—P2))vx |

< ||V diag(Pr. 1= Po)|[ - IV [62%e + [ve - | diag(Py. 1 = P)|| - [V 1621

< 3|§I§|28.

This shows the lemma by [30, Lemma 1.7], which claims that if p is a (g, r)-projection
and || p — gq|| < &, then g is a (5¢, r)-projection and [p]se,, = [¢]s¢,r- |
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Lemma 4.15. For 0 < & < (800|7|?)7Y, both the elements vy diag(pr.1, 11 — pr.2)Vx
and vy diag(py,1, 11 — pv,2)vy are (200|1 |2¢, 3)-projections and

[vz diag(pr,1, Pe2)Vrs 012 = [Vv diag(pvts Pv2)vvs 1 007126
holds.
Proof. As recalled in Remark 2.16, the Cech 1-cocycle v = B(rr) satisfies
() = )| < 4.

Then, we have

| px(x) — py(x)| = <41 (4.16)

Z nu(x)nv(x)(”(V;W) - va(x)) ® epv

v

This implies that || pri — pvi || = lgi (px — py)|| < 4/7|% and hence

”vn' _ Uv” — H (pn,Z — Pv2 DPv2— pn’,Z)

<2-4|I%e = 8|1 |%.
DPv2 — Pn2 Pn2— Dv2

Therefore, we get

vz diag(pr.1. 17 — pr2)vr — vy diag(py.a. 17 — pv2)vy|
< |z — vy) diag(py,1. 11 — pv2)vy| + |vx diag(py,1. 11 — pv.2) (vy — vz) ||
+ | vz diag(pr,i — pv1s Py — Pr2)Vx |
< vz = vyl + vzl - e = vyl + v 2 max {{| pr1 = pvalls 1pz2 = pr2ll}
< 8|12 +2- 8|17 + 2% - 41 *e = 40|1|?e.

Here, we use the fact that || py;| = 1, |loy|| = 1, and |vg|| < 2, which follows from
vz — 157]| < 4|I]%¢ < 1. Now, [30, Lemma 1.7] concludes the proof since the element
vy diag(pv,1, 11 — pv,2)vy is a projection. |

Proof of Theorem 4.11. Let Cy := max{15|§2|?,200|7|?}. Then, Lemmas 4.14 and 4.15
conclude the proof as

1 (idp ®m)y (e (£))

g7 (V diag(P1.1— Pp)V), |1|]C18’3
t8[vr diag(pr,1, 1 = pr2)vms 1] 5
LB [vv diag(py,1, Pv,2) Vs |I|]C1€’3

= [pv1. Pyl = (7). €) = ([B(0)] §),

where [py,1, pv,2] € Ko(B) denotes the difference class. L]

Theorem 4.11 is related to the Connes—Gromov—Moscovici index formula [8, Théo-
réme 10], which is generalized in [12]. Let T be a tracial state on a C*-algebra A. For
a bundle E of finitely generated Hilbert A-modules, let ch,(E) € Q¢°"(M) denote the
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Chern character defined in [33, Definition 5.1]. In particular, if A = C and 7 is the identity
map, then ch;(E) is the usual Chern character.

3
Corollary 4.17 (cf. [12, Theorem 3.6]). Let & € qRepf},’gF (T') be a self-adjoint (e, ‘312)-
representation for ¢ < (4C1)~! and let T be a trace on A. Then, for any elliptic operator
D on M with the principal symbol o (D), one has

CXENCHN)) :/ che(Eg(x)) ch (0(D)) Td(Te M).
T*M

Proof. Apply Schick’s L2-index theorem [33, Theorem 6.10] for the index pairing
t({v,[M])) = t(ind Dy, ). L]
4.3. Relative quantitative index pairing

Now, we establish a relative version of the quantitative index pairing in Section 4.2. Let
§ = (9r, 9,) be a finite symmetric generating set of (I', A) in the sense of Definition
2.23. We write §" := (§[., 9} ) and |§"| := max{|g[|, |F} |}. Let Ir and /5 denote the
word length function on I and A with respect to §r and §,, respectively. Then, the
assumption ¢(§p) C §5 implies that ¢(C*(A),) C C*(T'),. We put the structure of a
filtered C *-algebra on C¢ as

(CH)r = {(a.by) € Cp | a € C*(A)y.by € C*(T), ).
Let (X, Y) be a pair of connected finite CW-complexes. As in Lemma 2.5, let
U 1= —e ™0 Py + 1 — Py € (Co((¥4)°) ® C*(A); @ M),
Vi 1= —e T Py 41— Py € (Co(X$) ® (C*T); @ M) ™.
Then, (Uyw, Vv 5) is a (0, 1)-unitary of (Co(X5) ® C¢)* such that [(Uw, Vy 5)] = €r,a.
Proposition 4.18. There is a group homomorphism

alg

apéy: Ko(X.Y) — K (K(3H) ® C¢)

such that icg (a;l’gA &) =oara€) forany &£ € Ko(X,Y).

Proof. Let [p1, ¢2]: Co(X35) — B(H) > K(H) be a quasi-homomorphism representing
§ e Ko(X,Y). LetU; := ¢;(Uw) and V; 5 1= ¢; (Vy ) fori = 1,2. Then,

(U1U5 VisV5y) € (KOO @ Cg) T
is a (0, 2)-unitary. Now, we define the map a?-l,gA as
apéy (€) := [(U1U5 . VisV5))] € K2 (K(30) ® Cop).

Then, it is straightforward to check that a;}gA satisfies tcg © a?}g[\ = ar,A in a similar
fashion to Proposition 4.9. It is also checked in the same way as in Proposition 4.9 that
the map a?‘lgA is well defined since it is independent of the choice of a representative

(@1, @2]. [
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Definition 4.19. We call a?}gA as in Proposition 4.18 the algebraic relative Mishchenko—
Fomenko higher index. For r > 2, we call the composition ai{’j\ =150 a;‘}:gA: Ko(X,Y)—
Kf’r (K(H) ® C¢) the quantitative relative higher index.

Next, we construct a complete (&, r, k)-*-homomorphism from C¢ to a certain C*-
algebra associated to a stably relative quasi-representation. Hereafter, let (X, Y) be a pair
of connected finite CW-complexes with a good open cover U. Let I' := 71 (X) and A :=
m1(Y). Moreover, we choose a collection of translation functions {y,}u,ver of X and
{A v Fu,ver of Y such that ¢(A,) = yu for p,v € I suchthat Uy, NY # 0. Let 61 =
{Yuv) and Gp = {A,,}. We write §7 := (1, §}) and |§"| := max{|F]|, |F}|}.

Let

¢ (ClFLD GEFLOY o (Co(=1.1) Co(=1.0)
TN\G=1,0) cl=1,01) % \Co(=1,0) Co(~1,0)

and let § := {(f,e) eSS dS | f—g < So} Then, the embedding Cy(—1,1) — Sp to
the left upper component induces a KK-equivalence and hence K. (So ® D) = Ku—1(D)
for any C *-algebra D. We write 6 for the quasi-homomorphism [pry, pr,]: 5§ >8>S,
where pr; (fori = 1,2) denotes the projection to the ith component.

Let # = (mrq, 72, o, U) € qRepi;’gQr (T, A) be a self-adjoint stably relative (¢, §7)-
representation (we say that m is self-adjoint if each r; is a self-adjoint representation).
Pick a continuous path {iis}se[1,2] of unitaries in UB((P @ 0)®?)) such that u; =
diag(u, u™*) and 11, = 1. We associate to & continuous families of maps 71 s, 72,51 9} —
B((P ® Q)®?) parametrized by s € [1,2] defined as

71 5(y) := (s — )(diag (71 (¢ (). 70 (¥). lPeg))
+ (2 —s)i}(diag (2 (4 (1)), mo(¥), lpao) )1,
Fas(y) 1=} (diag (m2(p(y)), 7o), 1pao))is,

and 71,4(y) := 7| () (7] ,(¥)* 7] ;(¥)) /2. Then,

(71 (bs), m2(bs)) s €(0.1),

(7T1,2+s(a)»772,2+s(6l)) s € (=1,0]

w(a,b)(s) := {

determines a linear map 7: (C¢), > B ® S.

Lemma 4.20. Forany w € qRep‘;;’gQr (T, A) that is self-adjoint, the above 7 is a complete
(10187 ¢, r, 1)-%-homomorphism.

Proof. Since [|71,2(y) — 71 (v)|l <&, we have |1 — 7] ((y)*7] ((v)|| < 2¢ and hence

|71 = F120)| < |7} (0) — T + |1 = FL )7L ))

< 3e.
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Then, we obtain that

”771,2+s (M F1245s(Y) — T12+5(vY") ”
< || Fr24sT1245(V) = T2 T12(7)|
+ | Fr2F12() — T2y
+ |Fr24s(ry) = T2y
<2-:-3¢+ &+ 3¢ = 10g; “4.21)

that is, each 7; 245 is a (10e, §")-representation.
Now, Lemma 4.7 implies that each evaluation evg oxr: (C¢), — M, @ M is a com-
plete (10/§" |?¢, r, 1)-x-homomorphism, which finishes the proof. |

Therefore, by Proposition 4.5 we get a homomorphism
0 otp o (id®7)y: K" (Ch) — Ki(So ® B) = Ko(B)

for § > O such that e 4+ (1 4+ 3¢)§ < 1/4and r > 0.

Theorem 4.22. There is a constant C; = Co(U) depending only on U so that the follow-
ing holds: for0 <& < (4C,)" !, w € qRepi;;gQZ (I,A), and & € Ko(X,Y), one has

(6 0 15 o (idx ®7)y) (e (§)) = ([B(m)]. &) € Ko(B).

Remark 4.23. Here is a remark parallel to Remark 4.12. For any (8, r) with 10|§" |%e +
(1440|187 |>€)§ <1/4, the left-hand side of Theorem 4.22 is written as ¢ o (idk (3¢) ®7 )3 ©
“18“’2\ (£). Hence, if a K-homology class £ € Ko (X) satisfies o1 A (§) = 0, then there is (6, 7)
with § < 1/4 such that af-’r (§) = 0. By Theorem 4.22, we have ([ ()], £) = 0 for any
T e qRep‘;,”gQr (', A) with ¢ < min{ﬁ 1/4-8

, m}. This is a quantitative version of
Theorem 3.5.

Let [@1, @2]: Co(X5) — B(FH) > K(H) be a quasi-homomorphism representing § €
Ko (X, Y) such that ¢; is ample and let D := K(H) + ¢1(Co(X3)). Then, D is nuclear
and quasi-diagonal as is mentioned in Remark 4.13. Let U’, V! be as in the proof of
Proposition 4.18. We consider the element

Ur = (Uns)se—1,1) = (idcyxs)em, ®T) (U, V) € Co(X3) ® § ® B @ My

and set u’, := (¢; ® id)(uy) fori = 1,2.

Lemma 4.24. For 0 < ¢ < (160[8%|>)"!, both (idx ®7)((U', V(U2 V)*) and
ul (u2)* are (40182 %, 2)-unitaries and

[(ldK ®ﬁ)((U17 VI,S)(Uzv VZ,S)*)]40|§2|28’2 = [ullt,s(u]z[,s)*]40|g2|28,2

holds.
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Proof. By Proposition 4.5 and Lemma 4.20, the element

(ldK ®7_T) ((Ul s VI,S)(U27 VZ,S)*)

is a 10/92|?¢-unitary. By Lemma 4.4, the tensor product (idp ®7) is well defined as a
completely bounded map and (idp ®7)(U*, V{)(s) = u’, ¢ holds for s € (—1,1). Hence,
we have

| (idx ®7) (U, Vi,5)(Uz, Va,s)*) — up s )*| < 1016

This shows the lemma by [30, Lemma 1.7], which claims that if u is a (e, r)-unitary and
lu — v|| < eholds, then v is a (4¢, r)-unitary and [u]se,r = [V]4e,r- L]

For the proof of Theorem 4.22, it is convenient to rephrase the proof of Theorem 3.3
in terms of unitaries (Uw, Vy 5). Let

C(X2)  Co(Y(1,2]) Co(X.Y) = Co(X3)  Co((Y5)°)
Co(r(1,2)) Go(v[r.2])) U T \Go((1))°)  Go((7))°)

and let‘é(X, Y)={(fg)eCX,Y)DE(X,Y)| f —ge€C(X,Y)}. Then, the embed-
ding Co(X5) — (X, Y) to the left upper component induces a KK-equivalence. Let
Ox,y denote the quasi-homomorphism [pry, pr,]: ‘é(X YY) > €(X,Y)> €y(X,Y). Then,
the continuous map f and ¢ as in Theorem 3.3 induce

€(X,Y) = (

o 5 6(X, Y)(0,1) — Co(X3) ® So.

which extends to a *-homomorphism from € (X, Y)(0, 1) to Co(X;) ® § denoted by the
same letter (4 o f*.
Let v := B(x), v; := B(w;), and v;5 := B(7js) for j = 1,2 and s € [1, 2]. Let
Dv,j € €(X1,Y1) ® B ® My for j = 1,2 denote the projections
P () = {pvf(x) e
Py, () x=(,r) ey,

Ihen, Po,1 — Doz € C(X,Y) ® B ® My; that is, py := (Pu,1, Pv,2) is a projection in
€(X,Y)® B ® My, such that x,y [( Pv,1, Pv,2)] = [v]. Now, the element
Ups = (tx 0 ¥ (o™ +1— pp) € C(X3)®S ® B® M
is a unitary satisfying
Ouo] = (tx o f*)[0] ® B € Ky (Co(X3) ® So ® B).

Lemma 4.25. For 0 < ¢ < (1280|1|*)7", both the elements u), ((u% )* and u}, (uZ )*
are (320|1 |?¢, 2)-unitaries and

1 AN _ 1 2 %
[“n,s(”n,s) ]320|I|26‘,2 = [”v,s(“v,s) ]320\I|23,2

holds.
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Proof. By the definitions of f, uy s, and uy s, we have
Un,s(X) = —e PN (71 (Py), w2 (Py)) (x) + 1 = (m1(Py), m2(Py)) (%),
Uo,s(x) = =P (L pu) () + 1= (pyy Pr) (X)),
for (x,s) € X5(0,1) and
Ugs(y,r) = ezm(r_l)(?fl,zﬂ(Pw), 72245 (Pw))(»)
+ 1= (T1245(Pw). T2,245(Pw)) ().
u‘o,s(y, r) = ezm(r—l)(le!zﬂ’ sz,z-H)(y) +1- (pV1,2+s7 pV2,2+s)(y),

for (y,r,s) € Y;(—1,0]. Hence, (4.16) and (4.21) imply that

”un,s - L*f*(ut),s)” =< HEZJTi(r—l) “ || (ﬁ1,2+S(P'W)s ]72,2+S(P'W)) - (pV1,2+s’ pV2,2+J)

+ || (1 - (ﬁ1,2+s(P'W)a 52,2+s(PW))) - (1 - (Pv1,2+s, Pvz,2+s)) ”
<2-4|I|?-10e = 80|I ¢

for s € (=1, 0]. By the same argument, we also see that ||t s — t f*(tv5)|| < 807 |%¢
for s € [0, 1). Again by [30, Lemma 1.7], this concludes the proof. |

Proof of Theorem 4.22. Let C, := max{320|1|?, 40/¢?|?}. Then, Lemmas 4.24 and 4.25
prove the theorem as

0 015 (id ®T); (o (§)) = 0 0 15[ (idx ®T) (U1, Vi) V2. V2.5)") ], 2
=0 0p[uz (U7 ) ] ,00 = 0 0 tB[t0,005) ],

= 6[ud 043 )] = O] £) = (s 0 f )] @ B8]
=(lv].§)®B e Ki(B®S). .

Corollary 4.26. Let D be an elliptic differential operator on M, let ¢ < (4C3)7Y, let
2

e qRep?,gQ (T, A) be a self-adjoint stably relative (g, §?)-representation, and let T be a

trace on A. Then, one has

(00 0ucy o (idg ®7):) (W4 (ID])) = / ch, (B(x)) ch (o/(D)) Td(Te M).
T*M
Proof. Let D be an elliptic operator on the invertible double M=Muy (—M) with the
principal symbol o(D)|+p = 0(D). Leti: M° — M denote the open embedding and let
E1, E; be vector bundles on M such that i, B(;) = [E1] — [E>]. Then, Theorem 4.22 and
the L2-index theorem [33, Theorem 6.10] for the index pairing

t((B(x), D)) = t((i+B(x),[D])) = t(ind Dg, —ind Dg,)

show the corollary since the Chern character form ch; (i« (x)) = ch;(E;) — ch (E,) is
a compactly supported differential form on M ° cohomologous to ch.(B(x)) in H} (M°).
[



Y. Kubota 250

5. Dual assembly map and almost flat bundles

In this section, we relate the dual higher index map fBr, s defined in Proposition 2.3 with
the almost monodromy correspondence, i.e., Theorem 2.24. The goal of this section is
to show that the index pairing with elements of the subgroup Kg_af(X ,Y) of almost flat
K-theory class (in the sense of Definition 2.21) has rich information enough to detect the
non-vanishing of the relative higher index under certain assumptions on the fundamental
groups.

5.1. K-homology group of mapping cone C *-algebras

Let A and B be separable C *-algebras and let ¢p: A — B be a x-homomorphism. Let us
choose unital *-representations of unitization C *-algebras 0: A* — B(H) and t: BT —
B(X) such that T and & := 0 @ 7 o ¢ are ample representations; that is, 7~ (K (X)) =
0 and (K (H)) = 0 (where H := H & K). Note that we can choose ¢ as the zero
representation if ¢ is injective.

For a C*-algebra D, let C,,(T, D) denote the C *-algebra of bounded D-valued uni-
formly continuous functions on T := [0, co). Hereafter, we identify T with [0, 1) by a
reparametrization ¢ > s = £(1 + t2)~'/2. Following [14], we define the C *-algebras

D(A) :={T € B(H) | [T.5(a)] € K(F) Va € A},
D(B) :={T € B(X) | [T.z(b)] € B(X) Vb € B},
C(A) :={T € D(A) | T5(a) € K(H) Va € A},
DL(A) = {Ts € Cu(T.D(4)) | [T5.5(a)] € Co([0. 1), K(H)) Va € A},  (5.1)
CL(A) := Cu (T, C(A)) N DL(A),
D9 (4) :={Ty € DL(4) | To = 0},
€Y (A) :={T; € €L(A) | Ty = 0}.
Note that D(B) C D(A) as C*-subalgebras of B(H). We write ¢ for this inclusion.

Lemma 5.2. The inclusions

o 11:CY(4) > Cr(4),

o 126 (A) > DY (A), and

o 13:90(4)(0,1) —> S)g(A)

induce isomorphisms of K-groups.

Proof. Note that (3 is homotopic to the inclusion of D(A4)(0,1)=D(A4)(0, %) into S)g(A).
They follow from the vanishing of K-groups of €7,(A4)/€Y (A) = €(A4), D) (4)/€Y (4),
and 5)2 (A)/D(A)(0, %) >~ D1 (A), which are proved in [23, Proposition 5.3.7], [14,
Proposition 4.3 (b)], and [14, Proposition 4.3 (a)], respectively. [

We consider two homomorphisms

Ou: Ki—s (DY (4)) — KKy (4, Co(0, 1))
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for x = 0, 1 given by
Oa,0([us]) = [9‘{(0, 1) & HO. )0 &o, (lj’ ”0 ) ]
Oa1([ps]) == [H(0,1),5,2ps — 1],

for ug € UMpn(Dr(A4)°)T) and ps € P(My (D? (A)1)).

Lemma 5.3. The above © 4,9 and © 4,1 are isomorphisms.

Proof. By Lemma 5.2, it suffices to show that the composition

Wi Kie (D)0, 1) 25 Ky, (D(4)) 25 KK, (A, Co(0. 1))

is an isomorphism.
For a locally compact space X, let

D(A4,X) :={T € C;'(X.B(H)) | [T.0(a)] € Co(X.K(30))}.
Do(4, X) 1= Co(X) - D(4, X),

where C;'(X, B(3)) denotes the C*-algebra of bounded strictly continuous B(J()-valued
functions on X, which is isomorphic to the bounded operator algebra on the Hilbert
Co(X)-module H ® Co(X). By Kasparov’s generalized Voiculescu theorem [25, The-
orem 5], the representation & ® 1: A — B(H ® Co(X)) = Cl(X, B(H)) is absorbing.
Hence, the duality of KK-theory [35, Theorem 3.2] implies that the homomorphisms
Oux.+:Ki_+(D(4, X)) = KK, (4, Co(X)) given by

~ - 0 *
Ou,x,0([ux]) = [CO(X, H o HP),0 o0, (u ”OX) ]
X

@A,X,1([Px]) i=[Co(X,H),0.2px — 1],
are isomorphic.
The remaining task is to show that the inclusions
(1) D(A4)(0,1) = Do(4,(0.1)) and

induce isomorphisms of K-groups. Indeed, the composition of these two inclusions is
homotopic to the inclusion D(A)(0,1) — D(4, (0, 1)).

For (1), apply the five lemma for the map between long exact sequences of K-groups
associated to

00— D(A4)(0,1) ——— D(A)[0,1) ——— D(A) —— 0

l L]

0 —— Do(4,(0,1)) —— Do (4, [0,1)) —— D(4) —— 0.
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Note that ©(A)[0, 1) and Dy (A4, [0, 1)) have trivial K-groups since they are contractible
(indeed, the continuous path of x-endomorphisms v, (7)(s) := T (max{s + ¢, 1}) connects
the identity and the zero map). For (2), observe that

D(4,(-1,2)) /Do(A4.(0.1)) = D(A4, (—1.0]) & D(A.[1,2))

and
K (D(A [0, 1))) ~ KK« (A, Col0, 1)) =0. [ |

It is proved in [14, Proposition 4.2] that Dy (A)/€ L (A) is canonically isomorphic to
Cu(T,D(A))/Cy (T, €(A)). Hence, the x-homomorphism D(A4) — C, ([0, 1), D(A))
mapping T € D(A) to the constant function with the value 7" induces a *-homomorphism

c:D(A) = Cu(T, S)(A))/C,?(’E,@(A)) =~ D1 (4)/€)(A),
where C9(T,C(A)) := {Ts € Cu(T,C(A)) | To = 0}. Set
Dr(p) = {Ts €ED(A) | To e D(B), Ts — Ty € G(A)}.

Then, there is a commutative diagram of exact sequences

0——GC%(4) Dr(¢p) D(B) —0

| |-+

0 — € (4) — Dp(A) — DL(4)/CY (4) —— 0.

Let t4 denote the inclusion Gg (A) —> Dr(¢) and let g denote the quotient Dp (¢) —
D(B).

Lemma 5.4. The diagram

K. (D(B)(0, 1)) —— K., (€2 (4))
I\PB,* PA’*O(LZ)*
KK (B. Co(0. 1) =2 KKy . (4. Co(0. 1))
commutes.

Proof. Letk: (Sg (A) — D (¢) denote the inclusion. We regard an element f € Ck as a
D (A)-valued continuous function on [0, 1]; x [0, 1)s such that f(0,-) € 62 (®), f(¢,-) €
Dr(¢) fort € (0,1) and f(1,-) = 0. Let

9:Ck — (DL($)/CL(A))(0. 1) = D(B)(0,1)
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denote the quotient (in other words, the evaluating homomorphism at s = 0) and let
I: Ck — G9(A) denote the evaluating *-homomorphism at 7 = 0. Since ¢, is an iso-
morphism and /4 o (go*)_1 = 0, it suffices to show that the diagram

K. (Ck) ——2 5 K, (62 (4))

lw* l(lz)*

K. (D(B)(0,1)) 2222, k, (99 (4))

l‘l’A,* lGA,*

Ke (D(B.(0. 1)) —2— K. (D(4. 0. 1)))

commutes. The lower square commutes by definition. Since the continuous path

f(s,2¢s) «k €]0,1/2],

Oc(f)(s) = {f(ZKs,S) ke[l/2,1]

of *-homomorphisms from Ck to DY (A4) for k € [0, 1] satisfies 6y = 1 0/ and 6; =
13 o ¢ o @, we obtain that the upper square also commutes. |

Let H denote the Hilbert Co(—1, 1)-module H(—1,0) & K(—1, 1). We define the *-
homomorphism 6: C¢p — B(FH) by

o(a) se€(-1,0),

w(a, bs)(s) = {O’(bs) s €10,1),

and the group homomorphism
O4: K (DL(9)) > KK (Co, Co(R))
by

O ([us]) = [5( & HP, 7 @ 7, (ui ”(*;S) } (5.5)

Here, we extend ug to (—1, 1) as ugy = ug fors < 0.

Lemma 5.6. The diagram

K; (€9 (4)) S LN K (DL(9)) M Ko (D(B)(0. 1))

lQA,OO(LZ)* l(% lq’B,l
®c0(o,1) ¥*()

KK (4, Co(—1,1)) —Z— KK (C¢. Co(—1, 1)f—> KK, (B, Co(—1,1))

commutes.
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Proof. Letu; € My (€Y% (A4))" be a unitary. Then, we have

(6% 0 (12)x 0 O.0) ([us]) = [3_{(0, 1) ® H®(0,1),5 &7, (; u();‘) ]

—[iR(-L 0) ® H®P(—1,0),5 & 7, (MO iS) }

~ . *
—[ﬁf@ﬂ{w,a@a,( 0 “—S)}
U_g 0

—(©g o (L4)*)([Ms]).

This means that the left square commutes.

Next, let vy € My (Dr(¢)) be a unitary. Let T denote the *-homomorphism from
B(0,1) to B(X(—1, 1)) given by T(b)(s) = 0 (bs) for b = (bs)se(0,1) € B(0,1). Then, we
have

-~ - 0 v*
(¥ 0 B4)([vs]) = [:H © H*,G[o0.1) ® 3 |B0.1), (v s) }
-5

oo~ ~ [0 v
= |:fK(0, 1)dXO,DHP,7ThHT, (Uo 6’) ]
= O5p.0([vo]) ® jx € KK (B(0,1), Co(—1. 1)),

where j:Cy(0,1) — Co(—1, 1) is the inclusion (note that j induces a KK-equivalence).
Now, we recall that

Wg,1([vo] ® B) = Opp0([vo]) ® B € KK_1 (B, Co(—1,1))
by the definition of e B.pt,0 and Wp 1. Therefore, we get
B &co0.1)(¥* 0 Og)([vs]) = Op.r0([vol) ® B = ¥p.1(g+([vs]) ® B).
This means that the right square commutes. ]

Theorem 5.7. The homomorphism ®g is an isomorphism.

Proof. Here, we write S := Co(—1,1) and SD := D(—1, 1) for any C *-algebra D. Apply
the five lemma to the diagram of exact sequences

K (SD(B)) — K1 (€2(4)) = Ky (DL(9)) — Ko (SD(B)) — Ko (€2 (4))

J‘I‘B,o J@)A,oo(lz)* l@‘f) l‘I’B,l JG‘)A,IO(LZ)*

KK(B, S) — KK(4, §) — KK(C¢. S) — KK, (B, S) — KK; (4, S),

which commutes by Lemmas 5.4 and 5.6. ]
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Lastly, we consider the case that A and B are unital and ¢p: A — B preserves the unit.
Let (0, H) and (t, X) be unital ample *x-representations of A and B, respectively, and
(@.H) := (6 ® ., H & K). Then, the *-representations 0+ := o @ 0g¢ onto H+ := HS2
and Tt := 7 @ O onto KT := K®2 (where 04 is the zero representation to ) extend
to unital ample representations of AT and B, respectively. Here, we use ¢ and ™ for
the definition of C*-algebras as in (5.1). We also define the C *-algebras D} (¢) as

D} ($) := DL(¢) N Cu(T.BTD) = pDL($)p.
where p denotes the projection onto the first direct summand H € H+;ie., p = 5(1).

Lemma 5.8. The corner embedding D} (¢p) — DL(¢) induces an isomorphism of K-
theory.

Proof. Since the commutators [0 (1), To] and [6(14), Ts] € K(H) are compact operators,
the off-diagonal part p Dy, (¢)(1 — p) is of the form

€ = {Ty € Col0. 1) @ K(F0) | Ty € K(H0)}.

which has trivial K-groups. Similarly, the corner subalgebra (1 — p)®r (¢)(1 — p) is of
the form
B = {Ts € Cu(T.BH)) | Ts — Tp € K(FH)}.

By the six-term exact sequence associated to the extension
0— {Ts € Cu(T.K@H)) | To =0} > B — B(H) — 0,
the K-group of B turns out to be zero. Hence, the composition

Dr@)/¢ 0 )

10~ 0u9) > Dupymae = (PHPE O

induces an isomorphism of K-theory. This finishes the proof since the quotient Dy (¢) —
Dr(¢)/M,C€ also induces the isomorphism of K-theory. L]

5.2. Range of the dual assembly map

Let (X, Y) be a pair of connected finite CW-complexes. Now, we determine the ratio-
nal relative and (stably) almost flat K°-groups K% (X, Y)q and Ks.¢(X, Y)g under the
assumption that T' := 71 (X) and A := 71 (Y) satisfy (2.6), (2.7"), and (2.8) and

(5.9) Both I and A are residually amenable.

A discrete group I' is said to be residually amenable (cf. [7, Definition 1.3]) if for any non-
trivial element y € I there is a homomorphism from T" to an amenable group I which
maps y to a non-trivial element. For example, all residually finite groups are residually
amenable. In particular, all finitely generated linear groups [28] and 3-manifold groups
[21] (thanks to Perelman’s proof of the geometrization theorem) are examples of residu-
ally amenable groups (note that they also satisfy the condition (2.6)).
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Lemma 5.10. Let T be a residually amenable group and let A denote the family of unitary
representations of T" factoring through amenable quotients of I'. Then, the completion
CH (') of C[T'] by the norm ||x|| 4 := sup, 4 l|7(x)|| is an intermediate completion; that
is, there are quotient maps

r r
€max,J-l GA,r

cx (I —=2, ¢x () 25 ¢ X ()

max

r r _.T
suchthatey o€, , =€ .

Proof. Since T’ is residually amenable, there is a decreasing sequence N, of normal sub-
groups of T such that T, := I'/N, is amenable and (), N, = {e} (for the proof, see
[7, Section 1]). Let A, denote the left regular representation I' — U(£2(T,,)) and let A
denote the left regular representation I' — U(£2(T")). Now, it suffices to show that A is
weakly contained in €D, A,. (Again we refer to [2, Appendix F.4] for group C *-algebras
and weak containment of representations.)

Lete > 0, let F C I be a finite subset, and let § € L?(T"). Pick a compactly supported
function 1 € c.(I") C £2(T") such that ||n|| < ||£]| and || — || < (2||€]|)~'e. For a suffi-
ciently large 7, the restriction of the quotient g,,: I' — I', to (suppn)~! - F - (supp 1) is
injective. Let us choose a section s: g, (supp 1) — supp 1 of ¢,,. Then, we have

[(A()E.E) — (Aa(y)s™n.s™n)| = [(A()E. &) — (A(y)n. )|
<20gll- (lEN) e =

for any y € F. This concludes the proof. ]

Lemma 5.11. For a residually amenable group T, the intermediate completion C (I")
is quasi-diagonal. Moreover, a homomorphism ¢: A — T between residually amenable
groups induces the x-homomorphism ¢ 5: C (A) — C;(I).

Proof. Let T, and A, be as in Lemma 5.10. By the Tikuisis—~-White—Winter theorem
[36], the group C *-algebra C*(T',) is quasi-diagonal. Pick a dense sequence {an}neN
of C;(T"). Then, for each n € N, there is an increasing sequence { pn,m € B?(Th) b n<m
of finite rank projections such that ||[A,(a;), pa,m]|| < 27 for all [ < m. Now, p,, =
@D pn.m is an increasing sequence of finite rank projections in € £2(T,) such that
1D, An(ar), pm]ll = 0forall/ € N. Since @, A, is a faithful representation of C (T"),
the proof of the first part of the lemma is completed.

The second part follows from the fact that ¢*(Ar) C A, since amenability is passed
to subgroups [2, Corollary G.3.4]. ]

Theorem 5.12 ([13, Corollary 4.4]). Let I' be a residually amenable group. Then, for any
finite CW-complex X with a reference map f: X — BT, any element in Im(Br o ') C
K°(X) is almost flat. Moreover, if T' has the y-element (e.g., T is coarsely embeddable
into a Hilbert space), any element of Tm( fQ’f) C K%(X)q is almost flat.
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Proof. By Lemma 5.11, any element in the image of
(e4)*: KK (C3(T'),C) — KK(C*T,C)

is quasi-diagonal in the sense of [13, Definition 2.2] and hence is mapped to an almost flat
element in K*(X) by [13, Corollary 4.4]. Now, Remark 2.11 concludes the proof. ]

Now, we develop the relative version of Theorem 5.12. Let us define the intermediate
relative group C *-algebra

CE(T,A) := SC(¢a: CEA — CAD),

where ¢ 4 is a x-homomorphism given in Lemma 5.11. We discuss finite rank approxima-
tion of a representative of each element x € KK(C;(I', A), C). Let (0, H) and (7, X)
be unital *-representations of C}(A) and C}(I"), respectively, such that 7 and o :=
0 @ 7 o ¢4 are ample. By Theorem 5.7 and Lemma 5.8, the KK-group KK(C 7 (I', A), C)
is isomorphic to the K-group of D} (¢4) by the map Oy.

As in Remark 4.8, let B := B(H) S e ) B (). Note that the inclusion 1: K(H) — B
to the first component induces the isomorphism of K-groups. Let p, g € B(H) denote
the projection onto H and X and set P := (p, p)B, Q := (¢,q)B (note that Q = 0 if
7 is the zero representation). Let I1,, := (7, 72, 7w, T, 1) denote the stably h-relative
representation of (I', A) on (P, Q) defined by 71 := (Ad(up) 0 0,0), 72 1= (0,0), o :=
(z, 1) and 7, is a continuous family of representations of A onto P @& Q defined as

~ ) (uOE(y)ug,c_r(y)) k=1,
7 (y) i= x =  —
(u0u2_Ko(y)u2_Ku0,o(y)) k€ (1,2].
We write IT,, for the element of KK(C¢, B(—1, 1)) associated to IT,, as in (3.2). Since o

and 7 factor through C} (I") and C; (A), respectively, the Kasparov bimodule representing
IT,, actually determines an element of KK(C¢ 4, B(—1, 1)).

Lemma 5.13. One has Oylus] @ 1 = I,

Proof. Firstly, the unitary adjoint Ad diag(uo, uou’,) identifies ®([us]) with the KK-
element represented by the quasi-homomorphism

[ Ad(uo) 0 &, Ad(uou*,)5]: Co — B(F) > K(50).

At the same time, IT,, is also represented by a quasi-homomorphism [I1;, IT;] associ-
ated to IT,, defined as in (3.2); that is, IT; = (Ad(uo) 07,5 ) and I, = (Ad(uou*,)s,0).
This is observed as

0 1

HuZ[ﬁl®ﬁ2,H1®H2,(1 0

):| = [Hl,nz] S KK(C¢A,$(_1, 1))»

since the operator U as in (3.2) satisfies U — 1 € K(P) in our setting, namely, in the case
thatu = 1.
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Now, we have t(Ad(u¢)5 (a) — Ad(uou* )5 (a)) = I11(a) — Iz (a) foranya € Co4.
That is, [Ad(ug) o &, Ad(uou*,)o] and [I1;, IT,] coincide as *-homomorphisms from
q(C*¢4) (following [11], gA denotes the kernel of A x A — A, where A x A denotes the
free product C *-algebra). Consequently, ®4[us] ® ¢ and IT,, determine the same element
by the description of the KK-group given in [11, Definition 1.5]. ]

On the other hand, for a sufficiently large s € [0, 1), we have
|usug (uod (v)ug)uouy —5(v)| < e

forall y € §5. Thatis, my, . := (71, w2, 7o, UsUg) is a stably relative (e, §)-representation
of (I, A) onto (P, Q). Note that 7y, 75, mp are genuine representations and only the
intertwiner usug breaks the condition of genuine stable relative representation.

Lemma 5.14. For a unitary u € UMy (D] (¢p4))) and any e < (4 + 4|1 |2)71, the KK-
cycle 11, satisfies

€r.a ®cxra) My = [B(mue)] € Ko(X,Y: B).

Proof. We write v; for the Cech I-cocycle B(m;) fori = 1,2,0, where  is as in (2.15),
and let py, be the corresponding projection as in Remark 2.14. Since 7, = Ad(uou3_,) o
(2 @ 7o), Ad(uou>_, ® 1, )(pv, @ Pv,) gives a continuous family of projections con-
necting py, ® py, and py, ® py,. Therefore, by a standard argument in C *-algebra K-
theory (see, for example, [31, Proposition 2.2.6]), we obtain a continuous path of partial
isometries (vg)se[1,2] such that
. vsv;k = Pvy D Dyy»
o vy = Ad(uous_; ® Im;)(pv, ® pv,) fors € (1,2],
* VU1 = py; D Py, and
* Uy = Dy, D Py,-
By the continuity of vy, there is so € (1, 2] such that ||vs, — vy, || < & for any 51,52 € [1, So].
Set
) (Praly @ pyo)(u2—sug ® Tnm,) s € [s0.2],
s =
(Pvaly & Pyg) (U2—soug ® Ivi;)vgvs s € [1,50].
Then, wy also satisfies wsw; = pv,|y ® Pvy, Wy ws = Ad(uous_; ® Ini;) (Pv, |y B Pvy)

fors € (1.2], wiwi = py, |y & py,. and wa = py, |y @ py,.
Let Ey; denote the P-bundle py, P }I( = X Xg; P.Then,

lra ®cxr.a) My = [Ey,, Ey,, Eyy, w1] € K%(X,Y; B)
by Theorem 3.3. At the same time, we also have

[ﬁ(nu,s)] = [Ey,, Ey,, Ey,, wy].
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Indeed, as is mentioned in (2.25) we have B(my ) = (V1, V2, Vo, A7 (usug)). Hence,
[B(my,e)] = [(Ey,, Ev,, Ey,, w)], where w € C(Y) @ B(P & Q) ® My is the partial
isometry constructed in Remark 2.20 (3). In particular, w satisfies the inequality

”U_) - (pV2|y®V0)(u2—sou3 &® IMI)H < |I|28'

On the other hand, we have

le — (pwly @ pvo)(u2—sou3 ® IMI)H
= “ (pV2|Y 57 pVo)(”Z—Souz & lMI)('U:OU] - 1)“

= llvur =1l <&

and hence ||w; — w| < (1 + |1]|?)e < 1/4. This shows that w; and w are homotopic as
unitary isomorphisms of $B-module bundles. ]

Theorem 5.15. Let ¢: A — T" be a homomorphism between countable discrete groups.
Assume that (I, A) satisfies (2.6), (2.7"), and (5.9). Let (X,Y) be a pair of finite
CW-complexes with a reference map f:(X,Y) — (BT, BA). Then, any element x €
Im(Br,a o js(yr)) C KO(X,Y) is stably almost flat. Moreover, it is almost flat if ¢ is
injective.

Proof. By the assumption (2.7"), the reduced relative group C *-algebra C*(T, A) is de-
fined as in (2.9). The C*-algebra C} (T, A) is an intermediate completion of relative group
C *-algebras in the sense that there are quotient maps

I,A I,A
Emax,A EA,r
Co(L,A) —— CH(I,A) —= CJ (T, A).

By Theorem 2.10 (2), it suffices to show that any element of Im(Sr,A © erl;l;i\’ 1) C K°(X.Y)
is stably almost flat. By Theorem 5.7 and Lemmas 5.8, 5.13, and 5.14, any element
of Im(Br,a © E;;{\,A) is of the form [B(m, )] by some unitary u € UMy (DY (¢.)))
and small & > 0, under the identification K° (X,Y;B) =~ K° (X, Y). Here, we show that
[B(my,e)] is represented by a (5C,me, U)-flat stably relative vector bundle v on (X, Y) for
any small ¢ > 0.

By Lemma 5.11 and the fact that u := u,_suj satisfies u — 1 € K(J(), there are finite
rank projections e € K(H) and f € K(X) such that
o |mi(y).elll <efory € ¥r,
o N(m(y) = ma(y)et| < eand et (i (y) — ma(y))|| < & forany y € r,
o |moy). 1l < efory € §a,
o lue® fll <eand (et & fH)u—1)(et & fH)] <e.
We define the map nf: g — el%’e = B(eB) as nf(y) := em;(y)e € eBe. Similarly,
we also define nfl, n({ , and n({ . Let u¢®/ denote the unitary component of the polar
decomposition of (e & f)u(e & f); namely,

w® = (e ued )(ed NHued Nued f)) > eed f)Bled f).
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Similarly, we also define uetest = (et ® fHu(et @ f+). Then, we have
(i) w7 and nfL are (2¢, r)-representation of I fori = 1,2,
(ii) n({ and n({ . are (2¢, G )-representation of A,
(iii) u*®/ € Homsg(n{¢p @ JTOf, 5o & nof) and
uetert ¢ Hom5$(nfl¢ @ n({l, nfLQS ® nofl),
(@iv) ||7rfi (y)— nfL ()| < eforany y € T and ||uel€‘9fi —1|| <e.
(1), (i1), and (iv) are straightforward. Here, we check (iii). For simplicity of notations, let
e:=e® f.Since |eu*eue — e|| < &, we have
|u¢®/ —eue| = |eue(l — (eu*eue)™/?)| <e.
This inequality and
- e - _
Heue((m¢ @ Jro)()/))eu e— e((nqu ® ﬂo)(y))e“
<2||[u.e]|| + |e(u(mid & mo)(y)u* — (m29 ® 7o) ()| < 3¢

conclude that

|ue® (59 ® 7 ) (1)) W) —&((ns¢ @ 7 ) ()2 |
< 2/[u®®/ —éué| + |eué((mi¢ & mo)(y))éu*e — é((m2p ® 7o) (y))é| < 5e.

Now, (i), (ii), and (iii) say that

e, f . e e f . e®
e/ = (wf, 75, 7y u f),

1 orl 1 L fl lgfl
e+, A e e e~®
P = (ny ,n5 . my u f)

are stably relative (5¢, §)-representations of (I', A) and
d(my.., ' @ nel’fL) <e.
Moreover, (iv) implies that
d(nel’fl, (nfl, NleL, n({l, 1) <e.

By Theorem 2.24, we obtain that 8(®/) is a (5Cume, U)-flat stably relative bundle on
(X,Y) and

d(B(rue) B®) @ BT ™)) < 5Cume.
d(B(xeT"), (Beh), Be™). B ). 1)) < 5Cume.

The second inequality together with Remark 2.18 and Remark 2.20 (2) implies that

(B )] = [(Bex). Bt ). B ). 1)] =0
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if & > 0 is sufficiently small. Consequently, we obtain that

[Brue)] = [BG)] + [BG* )] = [Bx*/)]

for sufficiently small ¢ > 0.

Since e and f are finite rank projections in K(H) C B, the quadruple (7§, 75, n({ ,
u¢®/) also determines a (5¢, §)-representation of (I, A) on a pair of finite rank vector
spaces (eXH, fX), which is denoted by x’. Now,

w[B()] = [B(x®))] = [B(wue)] € KO%X.Y: B)

finishes the proof.

As is remarked at the beginning of Section 5, we can choose t as the zero representa-
tion if ¢ is injective. Then, the projection f in the above argument is the zero projection,
and hence the obtained B(x’) is a (g, U)-flat relative vector bundle on (X, Y). Therefore,
a given element x € Im(Br,A © jg(yr)) is almost flat. |

For a pair of connected (not necessarily finite) CW-complexes (X, Y), we say that an
element x of K°(X,Y) or K°(X,Y)q is (resp. stably) almost flat if f*x is (resp. sta-
bly) almost flat for any continuous map f from a pair of connected finite CW-complexes
(Z,W)to (X,Y).

Then, Theorem 5.15, together with Theorem 2.10 (2), implies the following.

Corollary 5.16. Let ¢: A — T" be a homomorphism between countable discrete groups.
Assume that (T, A) satisfy (2.6), (2.7"), (2.8), and (5.9).

(1) Any element x € K°(BT, BA)q is stably almost flat.

(2) If ¢ is injective, any element x € K°(BT, BA)q is almost flat.

Equivalently, we characterize infiniteness of K-area by the characteristic class.

Corollary 5.17. Let M be a compact spin manifold with a boundary N such that " :=
m1(M) and A := 71 (N) satisfies (2.6), (2.7, (2.8), and (5.9). Let | denote the reference
map from (M, N) to (BT, BA).
(1) Then, (M, N) has an infinite stably relative K-area if and only if ch( f«[M, N]) =
0 € H. (BT, BA; Q).

) If p: A — T is injective, then (M, N') has an infinite relative K-area if and only if

Proof. 1t immediately follows from Corollary 5.16. We only remark that the Chern char-
acter gives an isomorphism between K°(BT, BA)g and

*

H® (BT, BA;Q) := [| H*" (BT, BA: Q) = (@ Hon(BT, BA;Q)) .

neN neN
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