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The relative Mishchenko–Fomenko higher index and
almost flat bundles II: Almost flat index pairing

Yosuke Kubota

Abstract. This is the second part of a series of papers which bridges the Chang–Weinberger–Yu
relative higher index and geometry of almost flat Hermitian vector bundles on manifolds with bound-
ary. In this paper, we apply the description of the relative higher index given in part I to establish
the relative version of the Hanke–Schick theorem, which relates the relative higher index with the
index pairing of K-homology cycles and almost flat relative vector bundles. We also deal with the
quantitative version and the dual problem of this theorem.
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1. Introduction

This paper is a sequel of [27]. In this part II, we apply the Mishchenko–Fomenko descrip-
tion of the Chang–Weinberger–Yu relative higher index developed in part I to the index
pairing with almost flat bundles on manifolds with boundary. Here, we also make use of
the foundations of almost flat (stably) relative bundles prepared in [26].

The notion of almost flat bundle is introduced as a geometric counterpart of the higher
index theory by Connes–Gromov–Moscovici [8] for the purpose of proving the Novikov
conjecture for a large class of groups. It also plays a fundamental role in the study of
positive scalar curvature metrics in [15, 16]. Its central concept is the almost monodromy
correspondence, that is, the rough one-to-one correspondence between almost flat bundles
and quasi-representations of the fundamental group. In [26], the author introduces the
notion of almost flatness for an element of the relative K0-group of a pair of topological
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spaces. Here, the relative or stably relative vector bundles are employed as representatives
of an element of the relative K0-group. Moreover, the almost monodromy correspondence
is generalized to this relative setting.

The relation between the role of almost flat index pairing and the C �-algebraic higher
index theory is clearly understood in the work of Hanke and Schick. In [19,20], it is proved
that the higher index ˛�.ŒM �/ of the K-homology fundamental class ŒM � 2 K�.M/ of
an enlargeable closed spin manifold M with �1.M/ D � does not vanish without any
assumption on the fundamental group concerned with the Baum–Connes conjecture. As
is reorganized in [17], this is essentially a consequence of the fact that ˛�.ŒM �/ ¤ 0 if M
admits an almost flat bundle with non-trivial index pairing. The idea of Hanke and Schick
relies on the fact that the dual higher index is related to the monodromy correspondence
of flat bundles of Hilbert C �-modules.

Recall that the Mishchenko–Fomenko higher index map ˛� is given by the Kasparov
product with the KK-class `� 2 KK.C; C.M/˝ C ��/ represented by the Mishchenko
line bundle zM �� C �� . Let P be a finitely generated projectiveA-module and let � W�!
B.P / be a unitary representation. Then, the dual higher index map, defined by the Kas-
parov product with `� over C �� , maps the element Œ�� 2 KK.C ��;A/ to the associated
bundle ŒP WD zM �� P � 2 KK.C; C.M/˝ A/. Hence, the associativity of the Kasparov
product relates the index pairing ŒP �˝C.M/ ŒM � with the higher index as

˛�
�
ŒM �

�
˝C�� Œ�� D `� ˝C.M/ ŒM �˝C�� Œ��

D ŒP �˝C.M/ ŒM �: (1.1)

An essential ingredient of the works of Hanke–Schick is their construction of a nice flat
Hilbert C �-module bundle from a family of almost flat bundles.

The first purpose of this paper, studied in Section 3, is to establish a relative version
of the result of Hanke–Schick. This is based on the following two works of the author:
the foundation of almost flat bundles on manifolds with boundary (particularly the almost
monodromy correspondence) developed in [26] and the relative version of index pairing
(1.1) given in this paper. Here, the higher index is replaced with the Chang–Weinberger–
Yu relative higher index map [6], which is a homomorphism

˛�;ƒWK�.X; Y /! K�
�
C �.�;ƒ/

�
;

defined for a pair of connected CW-complexes .X; Y / with �1.X/ D � and �1.Y / D ƒ
(for more details on the definition, see Section 2.1). It is proved in [27] that this map is
given by the Kasparov product with an element `�;ƒ 2 KK.C; C0.Xı/˝C �.�;ƒ//. The
key observation is the following theorem.

Theorem 3.3. The Kasparov product

`�;ƒ ˝C�.�;ƒ/ … 2 KK
�
C; C0.X

ı/˝ A
�
Š K0.X; Y IA/

is represented by the stably relative bundle .P1;P2;Q; V1u/ on .X; Y /.
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The precise statement, particularly the definition of … and .P1;P2;Q; V1u/, is given
in Section 3.1. Roughly speaking, the theorem claims that the Kasparov product with `�;ƒ
maps the KK-element … represented by a relative representation of .�;ƒ/ (i.e., a pair of
representations of � which is identified on ƒ) to the associated relative bundle. To realize
the concept in full generality, we employ the equivalence relation generated by unitary
equivalence, stabilization, and homotopy as the “identification on ƒ.”

It is an immediate consequence of Theorem 3.3 that, the same argument as (1.1) using
the associativity of the Kasparov product can be applied to the relative higher index pair-
ing. The main theorem of the paper, a relative version of the Hanke–Schick theorem, is
now obtained in the same way as in [19, 20] with the help of the relative almost mon-
odromy correspondence.

Theorem 3.5. Let M be a compact connected spin manifold with boundary N . Let � WD
�1.M/,ƒ WD�1.N /, and let � be the homomorphism induced from the inclusionN!M .

(1) If M has an infinite stably relative C �-K-area, then the relative higher index
�
�;ƒ
� .ŒM;N �/ does not vanish.

(2) If M has an infinite relative C �-K-area, then the relative higher index
�
�;�.ƒ/
� .ŒM;N �/ does not vanish.

In addition, there is another application of Theorem 3.3 to the index theoretic refine-
ment of the Hanke–Pape–Schick codimension 2 index obstruction for the existence of a
positive scalar curvature metric [18], which is discussed in Section 3.3. Here, the higher
index of a codimension 2 submanifold N of M (with a condition on homotopy groups) is
related to the relative higher index of the manifoldM nU , where U is a tubular neighbor-
hood of N .

In the rest part of the paper, we discuss in-depth problems related to the relative index
theory of almost flat bundles. In Section 4, we study the quantitative version of Theorem
3.5. Recall that a key idea of [19] is to treat an infinite family of almost flat bundles
simultaneously and relate the asymptotics of the index pairings with the higher index.
On the other hand, if we consider the `1.�/-valued higher index instead of the usual
C �.�/-valued one, then it is mapped by a single quasi-representation to a projection up
to a small correction. This map is studied in [8] and compared with the index pairing
with the associated almost flat bundle. In [12], Dadarlat gives an alternative approach
using Lafforgue’s Banach KK-theory. Here, we reformulate the result of [12] in terms
of the quantitative K-theory introduced by Oyono-Oyono–Yu [30] instead of Banach KK-
theory. By using this formulation, we generalize the result of Connes–Gromov–Moscovici
and Dadarlat to the relative setting.

In Section 5, we study the dual problem of Theorem 3.5, in other words, the relative
version of the problem proposed by Gromov in [15, Section 42

3
]. It is a consequence of

the almost monodromy correspondence that any almost flat bundle is obtained as the pull-
back of a bundle on the classifying spaceB� (cf. [26, Corollary 6.13]). Then, it is a natural
question whether any element of K0.B�/ (or K0.B�/˝Q) is represented by an almost
flat bundle. This question is first considered in [15, Section 814

15
] geometrically in the case
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that � is the fundamental group of a Riemannian manifold with a non-positive sectional
curvature. Later, Dadarlat gives a KK-theoretic approach to this problem in [13]. Here, we
follow the approach of Dadarlat to study the subgroup of almost flat K-theory classes for
the pair .B�; Bƒ/. The celebrated Tikuisis–White–Winter theorem [36] in the theory of
C �-algebras enables us to include a large class of residually amenable groups in the range
of our discussion. We show that any element of the range of the dual higher index map

ˇ�;ƒWK0
�
C �.�;ƒ/

�
! K0.X; Y /;

i.e., the Kasparov product with `�;ƒ over C �.�;ƒ/, is represented by an almost flat stably
relative vector bundle. Moreover, we also show that such elements are represented by an
almost flat relative vector bundle if �Wƒ! � is injective.

Notation 1.2. Throughout this paper, we use the following notations.

� For a C �-algebra A, let AC denote its unitization ACC � 1.

� For aC �-algebraA, let M.A/ denote its multiplierC �-algebra and Q.A/ WDM.A/=A.

� For a C �-algebra A and a < b 2 R [ ¹˙1º, let A.a; b/ WD A˝ C0.a; b/. Similarly,
we defineAŒa;b/ andAŒa;b�. For a HilbertA-moduleE, letE.a;b/ denote the Hilbert
A.a; b/-module E ˝ C0.a; b/.

� For a �-homomorphism �W A ! B , let C� denote the mapping cone C �-algebra
defined as

C� D
®
.a; bs/ 2 A˚ BŒ0; 1/ j �.a/ D b0

¯
:

� For a Hilbert A-module E, let B.E/ and K.E/ denote the C �-algebra of bounded
adjointable and compact operators on E, respectively. Let U.E/ denote the unitary
group of B.E/.

� For a compact space X and a Hilbert A-module P , let PX denote the trivial bundle
X � P on X .

� For a pair .X; Y / of locally compact Hausdorff spaces, we write

Yr WD

´
Y � Œ0; r� for r 2 Œ0;1/;

Y � Œ0;1/ for r D1;

Xr WD X tY Yr :

For r 2 Œ1;1/, let Y 0r WD Y � Œ1; r��X1. We writeXır , Y ır , and .Y 0r /
ı for the interiors

of Xr , Yr , and Y 0r as subspaces of X1.

� For an open cover U WD ¹U�º�2I of a topological spaceX , we write U�� WD U� \U�
for �; � 2 I .

� For a C �-algebra A and a1; : : : ; an 2 A, diag.a1; : : : ; an/ denotes the diagonal matrix
in A˝Mn.
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2. Preliminaries

In this section, we summarize the results of [26, 27] which will be used in this paper.
Throughout this paper, we only treat the complex coefficient K-theory, C �-algebra, vector
bundle, and so on.

2.1. Relative Mishchenko–Fomenko higher index

Let .�;ƒ/ be a pair of discrete groups with a homomorphism �Wƒ! � . Throughout the
paper, we use the same letter � for the induced �-homomorphism between maximal group
C �-algebras; �WC �ƒ! C �� . Note that � induces B�WBƒ! B� (we may assume that
B� is an inclusion by replacing B� with the mapping cylinder B� tB� Bƒ � Œ0; 1�).

Let .X; Y / be a pair of finite CW-complexes with a reference map f W .X; Y / !
.B�;Bƒ/, to which a �-covering zX ! X and a ƒ-covering zY ! Y are associated. The
Chang–Weinberger–Yu relative higher index is a group homomorphism

��;ƒ� WK�.X; Y /! K�
�
C �.�;ƒ/

�
;

where C �.�;ƒ/ is the relative (maximal) group C �-algebra defined as

C �.�;ƒ/ WD SC.�WC �ƒ! C ��/:

In [27, Section 3], the author gives a definition of��;ƒ� inspired from the Mishchenko–
Fomenko index pairing. Let us write the Mishchenko line bundles on X and Y as V WD
zX �� C

�� and W WD zY �ƒ C
�ƒ, respectively, and let X WD zY �ƒ C�. For simplicity

of notation, we use the same letter X for the pull-back of X to Yr D Y � Œ0; r� by the
projection to the first component. We define

E2 WD SC.X;V/˚C.Y;X/ C0
�
Y � Œ0; 2/;X

�
D
®
.�; �/ 2 C.X; SV/˚ C0

�
Y � Œ0; 2/;X

�
j  Y .�jY / D �jY�¹0º

¯
; (2.1)

where Y WSV jY!X is the bundle map induced from the standard inclusion WSC ��!
C�, and

�.r; s/ D �s.r/ WD min¹1; 2s C 2r � 3º 2 C
�
Œ1; 2� � Œ0; 1�

�
:

We regard this � as a continuous function on X2 � Œ0; 1� by �.x; s/ WD 2s � 1 for x 2 X1
and �.y; r; s/ WD �.r; s/ for .r; y/ 2 Y 02. Then, � acts on E2 by multiplication such that
� 2 B.E2/ is a self-adjoint operator with �2 � 1 2 K.E2/ (as is seen in Figure 1).

The relative Mishchenko line bundle `�;ƒ is defined by an odd Kasparov bimodule (cf.
[3, Section 17.5.2]) as

`�;ƒ WD ŒE2; 1; �� 2 KK�1
�
C; C0.X

ı
2 /˝ C�

�
:

Definition 2.2 ([27, Definition 3.3]). The relative Mishchenko–Fomenko higher index
�
�;ƒ
� is defined by the Kasparov product

`�;ƒ y̋ C0.Xı2 / �WKK�
�
C0.X

ı
2 /;C

�
! K�

�
C �.�;ƒ/

�
:

We also use the symbol ˛�;ƒ for this homomorphism.
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Figure 1. The shading shows the value of j�.r; s/j.

Note that the pair .X; Y / is homotopy equivalent to .X2; Y � ¹2º/ and hence there is
an isomorphism K�.X; Y / Š K��.C0.Xı2 //.

Proposition 2.3 ([27, Proposition 3.6]). The dual relative higher index map

ˇ�;ƒWKK.C �.�;ƒ/;C/! K�.X; Y /

is defined as the Kasparov product `�;ƒ y̋ C�.�;ƒ/ �. It satisfies˝
˛�;ƒ.x/; �

˛
D
˝
x; ˇ�;ƒ.�/

˛
2 KK.C;C/ Š Z;

where the bracket h�; �i denotes the index pairing, i.e., the Kasparov product of the K-
homology and K-cohomology groups of a C �-algebra.

Here, we give a presentation of the relative Mishchenko line bundle `�;ƒ, which is an
element of the K1-group K1.C0.Xı2 / ˝ C�/, by using a unitary of C0.Xı2 / ˝ C�. Let
U WD ¹U�º�2I be a finite open cover of X such that the restriction of zX to each U� is a
trivial bundle. We choose a local trivialization ��W zX jU� Š U� � � and let �� denote the
transformation function ��.x/���.x/ (which is independent of x 2 U��).

Let ¹��º�2I be a family of continuous functions such that supp.��/ � U�, 0 �
��.x/ � 1 and

P
�2� D 1. We write MI for the matrix algebra on CI and let ¹e��º�;�2I

denote the matrix unit. Then,

PV WD

X
�;�2I

���� ˝ u�� ˝ e�� 2 C.X/˝ C
�.�/˝MI (2.4)

is a projection whose support is isomorphic to V as Hilbert C ��-module bundles on X .
This means that `� D ŒPV �.
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Lemma 2.5. The element `�;ƒ 2 K�1.C0.Xı2 / ˝ C�/ is represented by the unitary
.UW ; VV ;s/ 2 .C0.X

ı
2 /˝ C�/

C, where

UW WD �e
��i�0PW C 1 � PW 2

�
C0.Y

ı
2 /˝ C

�ƒ˝MI

�C
;

VV ;s WD �e
��i�sPV C 1 � PV 2

�
C0.X

ı
2 /˝ C

�� ˝MI

�C
:

Proof. Let i�WC0.Y ı2 / ! C0.X
ı
2 / denote the �-homomorphism induced from the open

embedding and let C denote the fiber sum C �-algebra

C WD C0.Y
ı
2 /˝ C

�ƒ˚C0.Xı2 /˝C�� C
�
C0.X

ı
2 /˝ C

��
�

by the �-homomorphisms

i� ˝ �WC0.Y
ı
2 /˝ C

�.ƒ/! C0.X
ı
2 /˝ C

��;

ev0WC
�
C0.X

ı
2 /˝ C

��
�
! C0.X/˝ C

��:

This is an ideal of

C0.X
ı
2 /˝ C� Š C0.X

ı
2 /˝ C

�ƒ˚C0.Xı2 /˝C�� C
�
C0.X

ı
2 /˝ C.C�/

�
:

Let �W C ! C0.X
ı
2 / ˝ C� denote the inclusion. Then, PE WD .PW ; PV / determines an

element of the multiplier C �-algebra M.MI .C// such that the exterior tensor product
.PEC˚jI j/˝� .C0.X/˝ C�/ is isomorphic to E2 as a Hilbert C.X/˝ C�-module.

Recall that the identification of K1.C/ Š KK1.C; C/ is given (in [3, Proposition
17.5.6]) by the composition of isomorphisms

K1.C/
@
 � K0

�
Q.C/

� Š
��! KK1.C;C/:

Here, for p 2 Q.C/˝Mn and its lift Qp 2M.C/˝Mn, the right isomorphism is given
by Œp� 7! ŒCn; 1; Qp�. In particular, the projection PE � .

�C1
2
/C .1 � PE/ 2 Q.C/˝MI

corresponds to both ŒPEC˚jI j; 1; �� 2 KK1.C;C/ and�
e�2�i.PE �

�C1
2 C.1�PE //

�
D Œ�e��i�PE C 1 � PE � 2 K1.C/:

This finishes the proof since ŒPEC˚jI j; 1; ��˝ Œ�� D `�;ƒ and �.�e��i�PE C 1 � PE/ D

.UV ; VV ;s/.

2.2. Rational surjectivity of the dual relative higher index map

The rational injectivity of the relative higher index map and the rational surjectivity of
its dual are studied in [27, Section 6]. In Section 5, we will apply the latter to prove the
existence of an almost flat (stably) relative vector bundle representing an arbitrary element
of relative K0-group of the pair .B�;Bƒ/.

We consider the following assumptions for .�;ƒ/.

(2.6) The group � has the  -element � .

(2.7) For any finite subgroup K � � , the subgroup ��1.K/ � ƒ satisfies  D 1.
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(2.8) The subgroup ker� is torsion-free.

For example, the condition (2.6) is satisfied if � is coarsely embeddable into a separable
Hilbert space ([34] and [37, Theorem 3.3]) and the condition (2.7) is satisfied if ker� has
the Haagerup property [22, Theorem 8.6].

We also consider a stronger variant of (2.7).

(2.70) The subgroup ker� of ƒ is amenable.

If (2.70) is satisfied, the group homomorphism � induces a �-homomorphism �r WC
�
r ƒ!

C �r � between the reduced group C �-algebras. Indeed, the unitary representation �� ı �
(where �� denotes the left regular representation) is a direct sum of copies of the induced
representation IndƒN 1N , where N WD ker �. By amenability of N , it is weakly contained
in IndƒN�N D �ƒ. (We refer to [2, Appendix F.4] for group C �-algebras and weak con-
tainment of representations.) Hence, the reduced relative group C �-algebra

C �r .�;ƒ/ WD SC
�
�r WC

�
r ƒ! C �r �

�
(2.9)

is defined. We write ��;ƒWC �.�;ƒ/! C �r .�;ƒ/ for the quotient.
We write j� for the functor from the category of �-C �-algebras to the category of

C �-algebras mapping A to the relative crossed product defined as

A Ì .�;ƒ/ WD SC.idA Ì�WA Ìƒ! A Ì �/:

By the universality of the equivariant Kasparov category [29, Theorem 6.6], this j� gives
rise to the functor j� W KK�

! KK, which maps the  -element of � to j�.�/ 2

KK.C �.�;ƒ/; C �.�;ƒ//.

Theorem 2.10 ([27, Theorem 6.6, Proposition 6.10]). Let �Wƒ! � be a homomorphism
of groups.

(1) If (2.6), (2.7), and (2.8) are satisfied, then the composition

ˇ�;ƒ ı j�.�/WK�
�
C �.�;ƒ/

�
! K�.B�;Bƒ/

is rationally surjective.

(2) If (2.70) is satisfied, then Im.���;ƒ/ � K�.C �.�;ƒ// includes Im j�.�/.

Therefore, if (2.6), (2.70), and (2.8) are satisfied, then ˇ�;ƒ ı ���;ƒ is rationally surjec-
tive.

Remark 2.11. Theorem 2.10 (1) is a relative analogue of the following statement: let
ˇ� WK�.C ��/! K�.B�/ denote the dual higher index map, i.e., the Kasparov product
`� ˝C�� �. If � has the  -element, then ˇ� ı j�.�/WK�.C �.�//!K�.B�/ is rationally
surjective. This is proved in the same way as [27, Theorem 6.6] by using the Dirac-
dual Dirac method and the rational injectivity of the higher index map ˛� WK�.B�/!
K�.C ��/ shown in [1, Section 15]. Also, it is shown, in the same way as [26, Proposition
6.10], that the image Im j�.�/ is included in Im ��� , where �� WC �.�/! C �r .�/ is the
quotient.
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Remark 2.12. As is pointed out in [27, Remark 6.8], we do not need to restrict the situ-
ation to the case that B� and Bƒ have the homotopy type of finite CW-complexes in the
statement of Theorem 2.10.

2.3. Almost flat relative bundles

Here, we briefly review the foundation of almost flat (stably) relative vector bundle and
the (stably) relative almost monodromy correspondence. Let X be a connected finite CW-
complex with a good open cover U WD ¹U�º�2I . As is noted in Notation 1.2, U�� denotes
U� \U� . Then, the fundamental group � WD �1.X/ is generated by G WD ¹��º�;�2I once
we fix the collection of translation functions ¹��º�;�2I of the �-Galois covering zX . Note
that G is symmetric; i.e., �1 2 G for any  2 G .

Definition 2.13. Let X , U, � , and G be as above. Let A be a unital C �-algebra, let P be
a finitely generated projective Hilbert A-module, and let T be a maximal subtree of the
1-skeleton N .1/

U
of the nerve of U.

� A U.P /-valued Čech 1-cocycle v D ¹v��º�;�2I on U is an .";U/-flat bundle on X
with the typical fiber P if kv��.x/ � v��.y/k < " for any x; y 2 U�� . It is said to be
normalized on T if kv�� � 1k < " for any h�; �i 2 T .

� A map � W� ! U.P / is a .";G /-representation of � on P if �.e/ D 1 and�.g/�.h/ � �.gh/ < "
for any g; h 2 G .

We write Bdl";UP .X/ for the set of ."; U/-flat bundles with the typical fiber P and
qRep";GP .�/ for the set of ."; G /-representations of � on P . We define the metrics
on Bdl";UP .X/ and qRep";GP .�/ as

d.v; v0/ WD max
�;�
kv�� � v

0
��k and d.�; � 0/ D sup

2G

�./ � � 0./;
respectively.

Remark 2.14. The bundle Ev associated to a U.P /-valued Čech 1-cocycle is constructed
as follows: as in (2.4), let ¹��º�2I be a family of positive continuous functions on X such
that

P
�2I �

2
� D 1 and let e�� 2 MI denote the matrix element; i.e., e��e� D ı�;�e�,

where ¹e�º�2I is the standard basis of CI . Let

pv.x/ WD
X
�;�

��.x/��.x/v��.x/˝ e�� 2 C.X/˝ B.P /˝MI ;

 v
�.x/ WD

X
�

��.x/v��.x/˝ e� 2 Cb.U�/˝ B.P /˝CI :

Then, we have pv.x/ 
v
�.x/D �.x/ for x 2U� and v

�.x/
� v

�.x/D v��.x/ for x 2U�� .
That is, pv is a projection with the support Ev and  v

� is a local trivialization of Ev.
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It is essentially proved in [5, Theorems 3.1 and 3.2] (see also [26, Lemma 6.9]) that
there is a constant C > 0 depending only on U and maps

˛WBdl";UP .X/T ! qRepC";GP .�/;

ˇW qRep";GP .�/! BdlC";UP .X/T ;
(2.15)

satisfying

� d.˛.v/; ˛.v0// � d.v; v0/C C", d.ˇ ı ˛.v/; v/ � C" for any v; v0 2 Bdl";UP .X/,

� d.ˇ.�/; ˇ.� 0// � d.�; � 0/C C", d.˛ ı ˇ.�/; �/ � C" for any �; � 0 2 qRep";GP .�/.

Remark 2.16. The construction of the map ˇ is essentially given in [26, Lemma 4.4] (see
also [26, Definition 6.7]). Here, it is mentioned that, for a ."; G /-representation � of � ,
the associated bundle v WD ˇ.�/ satisfies kv��.x/� �.��/k< 4". Indeed, this inequality
characterizes ˇ.�/ up to a small correction.

Definition 2.17. Let .X; Y / be a pair of compact spaces. A stably relative bundle on
.X; Y / with the typical fiber .P; Q/ is a quadruple .E1; E2; E0; u/, where E1 and E2
are P -bundles on X , E0 is a Q-bundle on Y , and u is a unitary bundle isomorphism
E1jY ˚E0 ! E2jY ˚E0.

A stably relative bundle of Hilbert C-modules with the typical fiber .Cn;Cm/ is sim-
ply called a stably relative vector bundle of rank .n; m/. We simply call a stably relative
bundle of the form .E1; E2; 0; u/ a relative bundle.

Remark 2.18. We associate to a stably relative bundle an element of the relative K0-group
K0.X;Y IA/WDK0.C0.Xı2 /˝A/ in the following way. Let f1.r/ WDmin¹1;max¹0;1�3rºº
and f2.r/ WDmin¹1;max¹0;3r � 2ºº. The inverse of � is given by mapping .E1;E2;E0;u/
to

ŒE1; E2; E0; u� WD

�
E1 ˚ E

op
2 ; 1;

�
0 Qu�

Qu 0

��
2 KK

�
C; C0.X

ı
1 /˝ A

�
;

where

E1 WD C0.X
ı
2 ; E1/˚ C0

�
.Y 02/

ı; E0
�
;

E2 WD C0.X
ı
2 ; E2/˚ C0

�
.Y 02/

ı; E0
�
;

Qu WD f1.r/1E0 C f2.r/u 2 B.E1;E2/:

In particular, ŒE1; E2; E0; u� D 0 if E1 D E2 and u D 1E1jY˚E0 .

Let .X;Y / be a pair of connected finite CW-complexes. We say that a good open cover
of .X; Y / is a good open cover U D ¹U�º�2I of X such that UjY WD ¹Y \ U�º is also a
good open cover of Y .

Definition 2.19. Let .X; Y / and U be as above and let P be a finitely generated Hilbert
A-module. Let T be a maximal subtree of the 1-skeleton of N.U/ such that T jN.UjY / is
also a maximal subtree.
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� For two .";U/-flat bundles v1 D ¹v1��º and v2 D ¹v2��º, a morphism of .";U/-flat
bundles u 2 Hom".v1; v2/ is a family of unitaries u D ¹u�º�2I 2 U.P /I such that

sup
�;�2I

sup
x2U��

u�v1��.x/u�� � v2��.x/ < ":
� A .";U/-flat stably relative bundle on .X;Y /with the typical fiber .P;Q/ is a quadru-

ple v WD .v1; v2; v0;u/, where

– v1 and v2 are .";U/-flat P -bundles on X ,

– v0 is a .";UY /-flat Q-bundle on Y , and

– u 2 Hom".v1jY ˚ v0; v2jY ˚ v0/.
It is said to be normalized on T if v1, v2 are normalized on T and v0 is normalized on
T \ Y .

We write the set of .";U/-flat stably relative bundles on .X; Y / normalized on T with the
typical fiber .P;Q/ as Bdl";UP;Q.X; Y /T . We define the metric on Bdl";UP;Q.X; Y /T as

d.v; v0/ WD max
®
d.v1; v01/; d.v2; v

0
2/; d.v0; v

0
0/; d.u;u

0/
¯
;

where d.u;u0/ WD max� ku� � u0�k.

Remark 2.20. For sufficiently small " > 0, a .";U/-flat stably relative bundle v D

.v1; v2; v0;u/ associates an element Œv� of the relative K0-group K0.X; Y IA/.

(1) The definition of Œv� is as follows (see [26, Definition 3.9] for the precise defini-
tion): firstly, letEvi!X , for iD1;2, andEv0!Y be the bundles associated to v1,
v2; v0 as in Remark 2.14. It is proved in [26, Lemma 3.4] that there is a collection
of continuous maps ¹ Nu�WU� ! U.P ˚Q/º�2I such that Nu�.v1�� ˚ v

0
��/ Nu

�
� D

v2��˚v
0
�� and k Nu��u�k<C", where C >0 is a constant depending only on U.

This family ¹ Nu�º�2I induces a bundle map NuWEv1jY˚Ev0!Ev2jY˚Ev0 . Now, the
quadruple .Ev1 ; Ev2 ; Ev0 ; Nu/ is a stably relative bundle on .X; Y / with the typical
fiber .P;Q/ and hence associates an element of K0.X; Y IA/ as in Remark 2.18.

(2) If " > 0 is sufficiently small and v;v0 2 Bdl";UP;Q.X; Y / satisfies d.v;v0/ < ", then
we have Œv� D Œv0� [26, Lemma 6.11].

(3) Let ¹��º and ¹e��º be as in Remark 2.14. The element

Nw WD
X

���� �
�
v2�� ˚ v

0
��

�
Nu� ˝ e�� 2 C.Y /˝ B.P /˝MI

is a partial isometry such that Nw� Nw D pv1jY ˚ pv0 , Nw Nw� D pv2jY ˚ pv0 , and

. v2jY˚v0/
�
Nw. v1jY˚v0/ D Nu�:

That is, Nw is identified with Nu in (1) under the canonical isomorphism Evi jY Š

pv1jY P
I
Y for i D 1; 2 and Ev0 Š pv0Q

I

Y
. We remark that this Nw satisfies Nw � pv2 � diag.u�/�2I

 � jI j2 � sup
�2I

k Nu� � u�k < jI j
2";

where diag.u�/�2I is a unitary in B.P /˝MI .
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We say that an element � 2 K0.X; Y IA/ is (resp. stably) almost flat with respect to
a good open cover U if for any " > 0 there is a .";U/-flat (resp. stably) relative bundle
v of finitely generated projective Hilbert A-modules such that x D Œv�. It is shown in
[26, Corollary 3.16] that (stably) almost flatness does not depend on the choice of good
open covers U. Similarly, we say that an element of K0.X;Y IA/Q WDK0.X;Y IA/˝Z Q
is (resp. stably) almost flat if it is a Q-linear combination of (resp. stably) almost flat
elements.

Definition 2.21. Let .X; Y / be a pair of connected finite CW-complexes.

(1) We write K0af.X; Y IA/, K0af.X; Y IA/Q, K0s-af.X; Y IA/, and K0s-af.X; Y IA/Q for
the subgroup of (stably) almost flat elements.

(2) We say that a K-homology class � 2K�.X;Y / has an infinite (resp. stably) relative
K-area if there is a (resp. stably) almost flat K-theory class x 2 K0.M;N / such
that the index pairing hx; �i is non-zero.

(3) We say that � 2 K�.X; Y / has an infinite (resp. stably) relative C �-K-area if for
any " > 0 there is a C �-algebra A" and a (resp. stably) relative .";U/-flat bundle
v of finitely generated projective Hilbert A"-modules such that the index pairing
hŒv�; �i 2 K0.A"/ is non-zero.

In particular, we say that a spin manifold M with the boundary N has a (stably)
relative infinite (C �-)K-area if the K-homology fundamental class ŒM; N � 2 K�.M; N /
has a (stably) relative infinite (C �-)K-area.

Theorem 2.22 ([26, Theorem 5.1]). Let .M; g/ be a Riemannian spin manifold with a
collared boundary N . If the infinite cylinder M1 is area-enlargeable, then .M; N / has
an infinite stably relative C �-K-area.

Finally, we review the almost monodromy correspondence in the relative setting.

Definition 2.23. Let .�;ƒ/ be a pair of discrete groups and let �Wƒ! � be a homomor-
phism. Let G D .G� ;Gƒ/ be a symmetric generating set of .�;ƒ/ in the following sense:
G� � � and Gƒ � ƒ are symmetric generating sets and �.Gƒ/ � G� .

� Let �1 and �2 be .";G /-representations of � . A "-intertwiner u 2 Hom".�1; �2/ is a
unitary u 2 U.P / such that ku�1./u� � �2./k < " for any  2 G .

� A stably relative .";G /-representation of .�;ƒ/ is a quadruple � WD .�1; �2; �0; u/,
where

– �1W� ! U.P / and �2W� ! U.P / are .";G�/-representations,

– �0Wƒ! U.Q/ is a .";Gƒ/-representation, and

– u 2 Hom".�1 ı � ˚ �0; �2 ı � ˚ �0/.

We write qRep";GP;Q.�;ƒ/ for the set of stably relative .";G /-representations of .�;ƒ/ on

.P;Q/. We define the metric on qRep";GP;Q.�;ƒ/ as

d.�;� 0/ WD max
®
d.�1; �

0
1/; d.�2; �

0
2/; d.�0; �

0
0/; ku � u

0
k
¯
:
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Theorem 2.24 ([26, Definition 6.11, Theorem 6.12]). There are a constant Cam > 0

depending only on U and continuous maps

˛WBdl";UP;Q.X; Y /T ! qRepCam";G
P;Q .�;ƒ/;

ˇW qRep";GP;Q.�;ƒ/! BdlCam";U
P;Q .X; Y /T ;

which satisfy the following

(1) for v; v0 2 Bdl";UP;Q.X; Y /T , one has d.˛.v/;˛.v0// � d.v; v0/C Cam" and
d.ˇ ı ˛.v/; v/ � Cam";

(2) for �;� 0 2 qRep";GP;Q.�;ƒ/, one has d.ˇ.�/;ˇ.� 0// � d.�;� 0/C Cam" and
d.˛ ı ˇ.�/;�/ � Cam".

For the latter, we only recall the definition of ˇ given in [26, Definition 6.10]. For a
.";G /-representation � D .�1; �2; �0; u/ of .�;ƒ/, set

ˇ.�/ WD
�
ˇ.�1/; ˇ.�2/; ˇ.�0/;�I .u/

�
; (2.25)

where ˇ is the map in (2.15) and �I WU.P ˚Q/! U.P ˚Q/I is the diagonal embed-
ding.

3. Relative index pairing with coefficient in a C �-algebra

In this section, we establish an obstruction for the relative higher index to vanish arising
from an index pairing with coefficient in a C �-algebra. It has two applications: a relative
version of the Hanke–Schick theorem [19,20] and the non-vanishing of the relative higher
index in the setting of Hanke–Pape–Schick [18].

3.1. Index pairing with stably h-relative representations

Let M be a closed connected spin manifold, let � WD �1.M/, and let � be a representa-
tion of � on a finitely generated projective Hilbert A-module P ; i.e., a homomorphism
� W � ! U.P /. Then, � gives rise to a �-homomorphism � W C �� ! B.P / and hence
determines an element Œ�� 2 KK.C ��; B.P // Š KK.C ��; A/. The Kasparov product
˛�.ŒM �/ y̋ C�� Œ�� 2 K0.A/ coincides with the index pairing with the associated flat P -
bundle zM �� P .

Here, we develop a relative version of this argument. The relative counterpart of � is a
pair of representations of � whose restrictions to ƒ are identified “up to stabilization and
homotopy” in the following sense.

Definition 3.1. Let A be a unital C �-algebra and let P1, P2, Q be finitely generated
projective Hilbert A-modules. A stably h-relative representation of .�;ƒ/ on .P1; P2;Q/
is a quintuple … WD .�1; �2; �0; u; z�/, where

� �i W� ! U.Pi /, for i D 1; 2, and �0Wƒ! U.Q/ are representations,
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� uWP1 ˚Q! P2 ˚Q is a unitary, and

� z�D¹z��º�2Œ1;2� is a continuous family of representations ofƒ toP2˚Q (that is, z� is a
homomorphism fromƒ to U.B.P2˚Q/Œ1;2�/) such that z�1DAd.u/ ı .�1 ı�˚�0/
and z�2 D �2 ı � ˚ �0.

We associate the following two objects to a stably h-relative representation. First, let
Pi WD zX ��;�i P for i D 1; 2, let Q WD zY �ƒ;�0 Q, and let V� be a continuous family of
bundle isomorphisms

V� W zY �ƒ;z�� .P1 ˚Q/!
zY �ƒ;z�2 .P2 ˚Q/

for � 2 Œ1; 2� such that V2 is the identity. Note that such V� exists by a standard argu-
ment showing that two bundles are isomorphic if and only if they are homotopic (see,
for example, [24, Theorem 4.3]). Moreover, such V� is unique up to homotopy. Indeed,
another choice V 0� corresponds one-to-one to a continuous path ¹V 0�V

�
� º�2Œ0;1� of endo-

morphisms on zY �ƒ;z�2 .P2 ˚Q/ with V 02V
�
2 D id, which is homotopic to the constant

path. Now, .P1;P2;Q; V1u/ is a stably relative Hilbert A-module bundle with the typical
fiber .P;Q/.

Second, let zPi denote the Hilbert A.�1; 1/-module zPi WD Pi .�1; 1/˚Q.�1; 0/. We
define a KK-class

… D

�
zP1 ˚ zP2;…1 ˚…2;

�
0 U �

U 0

��
2 KK

�
C�;A.�1; 1/

�
; (3.2)

where

…1.a; bs/.s/ WD

´
.�1 ˚ �0 ı �/.a/ s 2 .�1; 0/;

�1.bs/ s 2 Œ0; 1/;

…2.a; bs/.s/ WD

´
z�2Cs.a/ s 2 .�1; 0/;

�2.bs/ s 2 Œ0; 1/;

and U is defined by using functions f1 and f2 used in Remark 2.18 as

U WD f1.�s/1Q C f2.�s/ Nu 2 B. zP /:

By a reparametrization of z�� , we may assume that z�� D z�1 for � 2 Œ1; 4
3
� and z�� D z�2 for

� 2 Œ5
3
; 2�. Then, U intertwines…1 with…2; that is, U…1.x/D…2.x/U for any x 2 C�.

Theorem 3.3. The Kasparov product

`�;ƒ ˝C�.�;ƒ/ … 2 KK
�
C; C0.X

ı/˝ A
�
Š K0.X; Y IA/

is represented by the stably relative bundle .P1;P2;Q; V1u/ on .X; Y /.

For the proof, we use the following lemma.
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Lemma 3.4 ([27, Lemma A.2]). Let A, B , andD be � -unital C �-algebras such that A is
separable, let .E1; �1; T1/ be an odd Kasparov A-B bimodule, and let .E2; '2; F2/ be a
KasparovB-D bimodule. SetE WDE1˝B E2 with the trivial Z2-grading, � WD �1˝B 1,
and zT1 WD T1 ˝B 1. Let G D

� 0 G�0
G0 0

�
2 B.E/ be an odd F -connection and assume that

Œ�.A/; T � � K.E/, where

T D

 
zT1 .1 � zT 21 /

1=4G�0 .1 �
zT 21 /

1=4

.1 � zT 21 /
1=4G0.1 � zT

2
1 /
1=4 �zT1

!
2 B.E/:

Then, the odd Kasparov A-D bimodule .E; �; T / represents the Kasparov product
ŒE1; �1; T1� y̋B ŒE2; �2; F2�.

Proof of Theorem 3.3. Let E2 be as in (2.1). The Hilbert C0.Xı2 /˝A-module E2˝…2 zP2
is the section space of the continuous field

zP2 WD
G

s2.0;1/

P2 [
G

s2.�1;0�

zY �z�2Cs .P ˚Q/

of HilbertA-modules overXı2 � .�1;1/. LetZ denote its support; that is,Z WDXı2 .0;1/[
.Y 02/

ı.�1; 0�.
For i D 1; 2, set

xPi WD C0.Z;Pi /˚ C0
�
.Y 02/

ı;Q
�
:

Then, xP1 is canonically identified with E2 ˝ z…1
zP and

xV .'/.x; s/ D

´
'.x; s/; s 2 .0; 1/; x 2 Xı2 ;

V2Cs
�
'.x; s/

�
; s 2 .�1; 0�; x 2 .Y 02/

ı;

gives a unitary isomorphism
xV WE2 ˝ z…2

zP ! xP2:

Moreover, since U intertwines …1 with …2, it induces an operator

xU WE2 ˝ z…1
zP ! E2 ˝ z…2

zP :

In particular, xU is a U -connection. By Lemma 3.4, we obtain that

`�;ƒ ˝C� … D

�
.E2 ˝ z…1

zP1/˚ .E2 ˝ z…2
zP2/

op; 1;

�
x� x�2 xU �

x�2 xU �x�

��
D

�
xP1 ˚ xP2; 1;

�
x� x�2 xU � xV �

x�2 xV xU �x�

��
;

where

x�.x; s/ WD .�˝…i 1/.x; s/ D

´
�s.x/ .x; s/ 2 Xı2 .0; 1/;

�0.x/ .x; s/ 2 .Y 02/
ı.�1; 0�;

and x� D .1 � x�2/1=4. Note that xV xU D f1.�s/1Q C f2.�s/V1u.
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r

s
X1 Y 02

21

1

0

�1 r

s
X1 Y 02

21

1

0

Figure 2. The shading shows the value of j�.r; s/j on Z and j2s � 1j on X.0; 1/, respectively.

On the other hand, let zPi WD C0.X
ı
2 ; Pi / ˚ C0..Y

0
2/
ı;Q/ for i D 1; 2 and zU WD

f1.r � 1/1Q C f2.r � 1/V1u. As is mentioned in Remark 2.18, we have

ŒP1;P2;Q; V1u� D

�
zP1 ˚ zP

op
2 ; 1;

 
0 zU
zU � 0

!�
:

Hence, Lemma 3.4 implies that

ˇ ˝ ŒP1;P2;Q; V2� D

�
zP1.0; 1/˚ zP

op
2 .0; 1/; 1;

 
2s � 1 �2 zU �

�2 zU 1 � 2s

!�
;

where � D .1 � .2s � 1/2/1=4.
Let �WZ!X.�1;1/ denote the open embedding. We define a continuous map f WZ!

X.0; 1/ by f .x; s/ D .x; s/ for .x; s/ 2 Xı1 .0; 1/ and

f .y; r; s/ D

´ �
y; 1 � s; x�.r;s/C1

2

�
.y; r; s/ 2 .Y 02/

ı.�1; 0/;�
y; 1; x�.r;s/C1

2

�
.y; r; s/ 2 .Y 02/

ı.0; 1/:

Then, the �-homomorphism f �WC0.X
ı
2 .0;1//!C0.Z/ satisfies f �.2s � 1/Dx� 2C0.Z/

(see Figure 2). Moreover, by construction, there are unitaries ˆi W zPi f̋ � C0.Z/! xPi of
HilbertC0.Z/˝A-modules for i D 1;2 such thatˆ2. zU f̋ � 1/ˆ

�
1 D
xV1 xU . Consequently,

we obtain that

`�;ƒ ˝… D
�
ˇ ˝ ŒP1;P2;Q; V2�

�
˝ Œf ��˝ Œ���:

This concludes the proof since �� ı f �WC0.Xı1 .0; 1//! C0.X
ı
1 .�1; 1// is homotopic to

the inclusion Xı2 .0; 1/! Xı2 .�1; 1/.

3.2. Relative Hanke–Schick obstruction

We apply Theorem 3.3 to show a relative version of [17, Theorem 3.9]. Here, we identify
the topological K-group K0.M;N / with the C �-algebra K-group K0.C0.M ı2 //.
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Theorem 3.5. LetM be a connected compact connected spin manifold with boundaryN .
Let � WD �1.M/, letƒ WD �1.N /, and let �Wƒ! � be the homomorphism induced from
the inclusion N !M .

(1) If M has an infinite stably relative C �-K-area, then the relative higher index
�
�;ƒ
� .ŒM;N �/ does not vanish.

(2) If M has an infinite relative C �-K-area, then the relative higher index
�
�;�.ƒ/
� .ŒM;N �/ does not vanish.

Proof. First, we show (1). By assumption, for each n 2 N there is a C �-algebra An,
a pair of finitely generated projective Hilbert An-modules .Pn; Qn/ and a . 1

n
;U/-flat

stably relative bundle vn WD .v1n; v2n; v0n; un/ with the typical fiber .Pn; Qn/ such that
hŒvn�; ŒM;N �i ¤ 0 2 K0.An/. Set

B WD
Y
n2N

B.Pn ˚Qn/;

p WD
Y

1Pn ; P D pB;

q WD
Y

1Qn ; Q D qB:

We define the stably relative bundle v D .v1; v2; v0; u/ with the typical fiber .P; Q/ as
vi D ¹vi��º�;�2I , v0 D ¹v0��º�;�2I and u D ¹u�º�2I , where

vi��.x/ WD
Y
n2N

.vin/��.x/ 2 B.P /;

v0��.y/ WD
Y
n2N

.v0n/��.y/ 2 B.Q/;

u� WD
Y
n2N

.un/� 2 B.P ˚Q/;

for i D 1; 2, x 2 U�� and y 2 U�� \N .
Let J WD

L
n2N B.Pn ˚Qn/, let D D B=J , and let � WB ! D denote the quotient.

Then, we have

� vi��.x/v
i
�� .x/ � v

i
�� .x/ 2 J and

� .v1�� ˚ v
0
��/.y/ � u�.v

2
�� ˚ v

0
��/.y/u

�
� 2 J ;

that is,
��v WD

�®
�.v1��/

¯
;
®
�.v2��/

¯
;
®
�.v0��/

¯
;
®
�.u�/

¯�
is a stably relative flat bundle. Let… 2 KK.C �.�;ƒ/;D/ denote the Kasparov bimodule
associated to the stably relative representation ˛.��v/ D .�1; �2; �0; u/ as in Theorem
2.24; that is, each �i is the monodromy representation of �.vi / on the fiber at a fixed
basepoint x 2 N and u is the restriction of the bundle map induced from ¹u�º to the
fibers at x. By Theorem 3.3, we obtain that

˛�;ƒ
�
ŒM;N �

�
y̋ … D `�;ƒ ˝C0.M ı/ ŒM;N � y̋ C�.�;ƒ/…
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D Œ��v� y̋ C0.M ı/ŒM;N � D ��
�
Œv� y̋ C0.M ı/ŒM;N �

�
D ��

�Y
n

˝
Œvn�; ŒM;N �

˛�
:

It is non-zero because ker �� is identified with
L

K0.An/ through the injective homomor-
phism K0.B/ �

Q
K0.An/.

The claim (2) is proved in the same way. We only remark that in this case … is a
relative representation of .�; ƒ/, which is actually a relative representation of .�; �.ƒ//
by [26, Remark 6.3].

Together with Theorem 2.22, Theorem 3.5 implies the following relative version of
the result of [19, 20].

Corollary 3.6. Let .M;g/ be a compact Riemannian spin manifold with a collared bound-
ary N . If M1 is area-enlargeable, then ��;ƒ� .ŒM;N �/ does not vanish.

3.3. The Hanke–Pape–Schick codimension 2 obstruction

The second application of Theorem 3.3 is concerned with the codimension 2 obstruction of
positive scalar curvature metric which is first introduced by Gromov–Lawson [16, Theo-
rem 7.5] and generalized by Hanke–Pape–Schick [18, Theorem 4.3]. Here, we show the
following theorem.

Theorem 3.7. Let M be an n-dimensional closed connected spin manifold with an em-
bedded connected codimension 2 submanifold N satisfying that

� the induced map �1.N /! �1.M/ is injective,

� the induced map �2.N /! �2.M/ is surjective, and

� the normal bundle of N is trivial.

Let W Š N � D2 be a closed tubular neighborhood of N , let M0 WD M n W ı, let
N0 WD @M0, let � WD �1.M/, and let ƒ WD �1.N /. Then, �ƒn�2.ŒN �/ ¤ 0 implies that
�
�;ƒ
n .ŒM0; N0�/ ¤ 0.

Remark 3.8. It is proved in [27, Corollary 5.3] that if there are discrete groups �1; �2;ƒ,
injective homomorphismsƒ! �i , and a partitioned manifoldM DM1 tN M2 equipped
with reference maps fi W .Mi ;N /! .B�i ;Bƒ/, then the non-vanishing of ��;ƒ.ŒMi ;N �/

implies that ��1�ƒ�2� .ŒM �/ ¤ 0. We apply this theorem to M D N � D2 tN�S1 M0,
�1 D �1.N �D2/, ƒ D �1.N /, and �2 D �1.M0/ in the setting of Theorem 3.7. Then,
the conclusion of Theorem 3.7 implies the non-vanishing of ��.ŒM �/. In particular, we
obtain that M does not admit any metric with positive scalar curvature, as is proved in
[18, Theorem 4.3].

As is remarked in the introduction of [18], a combination of the stable Gromov–
Lawson–Rosenberg conjecture proved by Rosenberg–Stolz [32] and [18, Theorem 4.3]
also implies the non-vanishing of �n.ŒM �/ if � satisfies the Baum–Connes injectivity.
Here, we give a direct proof of this fact without the assumption of Baum–Connes injec-
tivity.
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For the proof, we prepare general lemmas on the boundary map of K-theory.

Remark 3.9. Recall that a pair of projections .q1; q2/ of the multiplier algebra M.A/ of
a C �-algebra A such that q1 � q2 2 A represents the difference class Œq1; q2� of the K0.A/
(cf. [10, p. 64]) in the following way. There is an isomorphism K0.M.A/˚A M.A// Š

K0.A/˚K0.M.A// induced from the split exact sequence 0!A!M.A/˚A M.A/!

M.A/!0. Let Œq1; q2� denote the K0.A/-component of Œ.q1; q2/�2K0.M.A/˚A M.A//.

Lemma 3.10. Let 0! I !D!D=I ! 0 be an exact sequence of C �-algebras. For a
pair of projections .q1;q2/2M.D=I /˚2 with q1 � q2 2D=I , the image @Œq1;q2�2K1.I /
of the difference class by the boundary map is represented by a unitary

exp.�2�i Qq1/ exp.2�i Qq2/ 2 1C I;

where each Qqi 2M.D/ is a self-adjoint lift of qi such that Qq1 � Qq2 2 D.

Proof. Let 	 denote the kernel of the homomorphism M.D/!M.D=I /. It includes I
as an ideal and 	 \D D I holds. Consider the diagram of exact sequences

0 // I

�
��

// D //

��

D=I //

��

0

0 // 	 ˚	=I 	 //M.D/˚Q.D/ M.D/ //M.D=I /˚Q.D=I/ M.D=I / // 0:

The vertical morphisms are inclusions into the first component. Now, the projection
.q1;q2/2M.D=I /˚Q.D=I/M.D=I / has a self-adjoint lift . Qq1; Qq2/2M.D/˚Q.D/M.D/,
and hence

@
�
.q1; q2/

�
D
�
.e�2�i Qq1 ; e�2�i Qq2/

�
D ��Œe

�2�i Qq1e2�i Qq2 �C Œe�2�i Qq2 ; e�2�i Qq2 � 2 K1.	 ˚	=I 	/:

This shows the lemma by commutativity of the boundary map and the isomorphism

K�.	 ˚I 	/ Š K�.	/˚ K�.I /

induced from the split exact sequence 0! 	 ! 	 ˚I 	 ! 	 ! 0, where the splitting
	 ! 	 ˚I 	 is given by the diagonal map.

Let A be a C �-algebra, let B WD B.HA/, and let J WD K.HA/. Let Z1 and Z2 be
bundles of infinitely generated projective Hilbert A-modules with the typical fiber Z1 and
Z2, respectively. Then,

xZi WD B.Zi ;HA/=K.Zi ;HA/

(where B.Zi ;HA/ denotes the set of adjointable bounded operators from HA to Zi ) is
a Hilbert B=J -module bundle with B. xZi / Š Q.Zi / (the B=J -action from the right,
the Q.Zi /-action from the left, and the inner product are induced from the product of
operators). Suppose that there is a bundle homomorphism U WZ1jN0 ! Z2jN0 such that
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U �U � 1 2 K.C.N0;Z1// and UU � � 1 2 K.C.N0;Z2//. Then, it induces a unitary
operator xU W xZ1 ! xZ2.

We write Œ@B=J � 2 KK1.B=J; J / and Œ@C.N0/� 2 KK1.C.N0/; C0.M ı0 // for the KK-
classes corresponding to the extensions 0! J ! B ! B=J ! 0 and 0! C0.M

ı
0 /!

C.M0/! C.N0/! 0, respectively.

Lemma 3.11. Let Zi , U , xZi , and xU be as above. Then, one has

Œ xZ1; xZ2; xU � y̋B=J Œ@B=J � D �ŒZ1jN0 ;Z2jN0 ; U � y̋ C.N0/Œ@C.N0/� (3.12)

under the isomorphism KK.C; C0.M ı0 /˝ J / Š KK.C; C0.M ı0 /˝ A/ given by the Kas-
parov product with the imprimitivity bimodule ŒHA� 2 KK.J; A/.

Proof. First, notice that there are isometries Vi WZi!HA such that V �2 V1�U2K.Z1;Z2/.

Indeed, let S denote a unitary lift of
�
0 xU �

xU 0

�
and let W WZ1 ˚ Z2 ! HA be an isometry

(which exists by the Kasparov stabilization theorem [25, Theorem 2]). Then, V1 WD W V 01
and V2 WD WSV 02, where V 0i WZi ! Z1 ˚ Z2 denotes the embedding to the i th direct
summand, are desired isometries. Moreover, by a pull-back with respect to a deformation
retract of N0, we may assume that P1 D P2 on a neighborhood O of N0. Let  be a
continuous function supported on O such that 0 �  � 1 and  jN0 � 1 and let P 0 WD
 P1 C .1 �  /P2.

Now, we apply Lemma 3.10 to determine the left- and right-hand sides of (3.12). Since
.P1;P

0/ is a self-adjoint lift of .q.P1/;q.P2//2M.C0.M
ı
0 /˝B=J /

˚2 to M.C0.M
ı
0 /˝

B/˚2 such that P1 � P 0 2 C0.M ı0 /˝ B , we get

Œ xZ1; xZ2; xU �˝B=J Œ@B=J � D @
�
q.P1/; q.P2/

�
D
�

exp.�2�iP1/ exp.2�iP 0/
�
D
�

exp.2�iP 0/
�
:

Similarly, since .P 0; P2/ is a self-adjoint lift of .P1jN0 ; P2jN0/ 2M.C.N0/˝ J /
˚2 to

M.C.M0/˝ J /
˚2 such that P 0 � P2 2 C.M0/˝ J , we get

ŒZ1jN0 ;Z2jN0 ; U �˝C.N0/ Œ@C.N0/� D @ŒP1jN0 ; P2jN0 �

D
�

exp.�2�iP 0/ exp.2�iP2/
�
D
�

exp.�2�iP 0/
�
:

This completes the proof of the lemma.

We fix a base point x0 2N0 in order to consider the Galois correspondence of covering
spaces. Let zM denote the universal covering of M . Set xM WD zM=ƒ D zM �� �=ƒ and
let x� W xM ! M , z� W zM ! xM denote the projections. Then, x��1.W / is the disjoint union
of coverings ofW indexed byƒgƒ 2ƒ n �=ƒ, each of which has the fundamental group
ƒ \ gƒg�1. In particular, the connected component xW including the base point x0 is
diffeomorphic to W by x� . Let xN0 WD @ xW .

An essential ingredient of the codimension 2 obstruction theorem, which is given in the
proof of [18, Theorem 4.3], is the existence of a niceƒ �Z-Galois covering on xM n xW ı.
Here, we restate it for our convenience.
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Lemma 3.13. There is a Z-Galois covering MM0 over zM0 WD .z� ı x�/�1.M0/ with the
following properties:

� its restriction to z��1. xN0/ Š zN � S1 is the universal covering;

� its restriction to z��1.x��1.N0/ n xN0/ is trivial.

Proof. We write  for the closed loop ¹x0º � S1 � N � S1 Š N0. Then,  generates the
second component of �1.N0/ Š ƒ � ZŒ�. Let i W xN ! xM0 and j W xM0 ! xM denote the
inclusions. It is proved in [18, Theorem 4.3] that there is a splitting

r W�1. xM n xW
ı/! ƒ � Z

of i�; that is, r ı i� D idƒ�Z.
Then, the homomorphism prƒ ı r (where prƒWƒ � Z! ƒ is the projection) is equal

to j�. Indeed, both prƒ ı r and j� map Œ� to the trivial element and the induced homo-
morphisms from �1. xM n xW

ı/=hŒ�i to ƒ are the inverse of the composition

ƒ ,! ƒ � Z
i�
��! �1. xM n xW

ı/! �1. xM n xW
ı/
ı˝
Œ�
˛
:

Therefore, the covering MM0 of xM0 associated to r satisfies MM0=Z D MM0 �ƒ�Z ƒ Š zM0.
That is, MM0 is a Z-Galois covering on z��1. xM0/.

The equality r ı i� D idƒ�Z means that the restriction of MM0 to xN0 is the univer-
sal covering zN � R of N � S1. That is, the restriction of the Z-Galois covering MM0 to
z��1. xN/ Š zN � S1 is the universal covering. At the same time, the restriction of the Z-
Galois covering MM0 to each connected component of z��1.x��1.N / n xN/ is trivial because
it is extended to a connected component of .z� ı x�/�1.W /, which is simply connected.

Lemma 3.14. Under the assumption of Theorem 3.7, xM is an infinite covering; that is,
�=ƒ is an infinite set.

Proof. Assume that xM is a finite covering ofM , and hence a closed manifold. Theƒ�Z-
Galois covering MM0 ! x�

�1.M0/ constructed in Lemma 3.13 extends to a ƒ � Z-Galois
covering on a spin manifold xM n xW ı. Since its restriction to the boundary xN0 Š N0 is
isomorphic to the universal covering ofN0, we obtain that ŒN0;f �D 02�

spin
n�1.B.ƒ�Z//

(where f is the reference map associated to the universal covering). This contradicts the
assumption �ƒn�2.ŒN �/ ¤ 0 (which implies that �ƒ�Z

n�1 .ŒN0�/ ¤ 0).

Proof of Theorem 3.7. Let A WD C �.ƒ � Z/. We consider two bundles

� V1 WD MM0 �ƒ�Z C
�.ƒ � Z/ and

� V2 WD zM0 �ƒ C
�.ƒ � Z/ (here, ƒ acts on C �.ƒ � Z/ from the left through the

inclusion ƒ! ƒ � Z)

of Hilbert A-modules over xM0, where MM0 is as in Lemma 3.13. We associate to them
bundles

Zi WD x�ŠVi D
G
x2M0

M
x�. Nx/Dx

.Vi / Nx
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of infinitely generated (by Lemma 3.14) Hilbert A-modules on M0, which are equipped
with the canonical flat structures. Let Zi WD

L
x�. Nx/Dx0

.Vi / Nx be the fiber of Zi on x0 and
let �i W x� ! U.Zi / denote the associated monodromy representation. Note that �2 factors
through � .

By the construction of MM0 in Lemma 3.13, we have an isomorphism of flat A-module
bundles between the restrictions of V1 and V2 on x��1.N0/ n xN0. It induces a partial
isometry U WZ1jN0 ! Z2jN0 such that kerU D V1j xN0 � Z1, kerU � D V2j xN0 � Z2, and

�2.g/Ux0 D Ux0�1.g/

for any g 2 ƒ � Z, where Ux0 is a restriction of U to x��1.x0/.
As in Lemma 3.11, let xZi denote the bundle B.Zi ;HA/=K.Zi ;HA/ of Hilbert B=J -

modules and let xZi WD . xZi /x0 D B.Zi ;HA/=K.Zi ;HA/ for i D 1; 2. Then, �i and Ux0
above induce x�i W x� ! U.Q.Zi //Š U. xZi / and xUx0 W xZ1! xZ2, respectively. Then, xUx0 is
a unitary and xUx0x�1.g/ xU

�
x0
D x�2.g/ holds for any g 2 ƒ � Z. This particularly implies

that x�1./ D 1 (where  is the generator of Z � ƒ � Z); that is, x�1W x� ! U. xZ1/ factors
through � .

Consequently, we obtain that the triplet… WD .x�1; x�2; xUx0/ is a relative representation
of .�;ƒ/ and its associated relative B=J -module bundle (in the sense of Theorem 3.3) is
. xZ1; xZ2; xU/. Let … denote the KK-element of KK.C�; .B=J /.�1; 1// associated to …
as in (3.2). Now, we apply Theorem 3.3 and Lemma 3.11 to get��

`�;ƒ ˝C0.M ı0 / ŒM0; N0�
�
˝C�.�;ƒ/ …

�
˝B=J Œ@B=J �

D
�
`�;ƒ ˝C�.�;ƒ/ …

�
˝B=J Œ@B=J �˝C0.M ı0 / ŒM0; N0�

D Œ xZ1; xZ2; xU �˝B=J Œ@B=J �˝C0.M ı0 / ŒM0; N0�

D �
�
ŒZ1jN0 ;Z2jN0 ; U �˝C.N0/ Œ@C.N0/�

�
˝C0.M

ı
0 /
ŒM0; N0�

D
�
� ŒV1j xN0 �C ŒV2j xN0 �

�
˝C.N0/ ŒN0�

D ��ƒ�Z
n�1

�
ŒN � S1�

�
C �ƒn�1

�
ŒN � S1�

�
D ��ƒn�2

�
ŒN �

�
C 0 ¤ 0:

The last equality is considered under the identification of Kn�2.C �.ƒ// with the second
direct summand of

Kn�1
�
C �.ƒ�Z/

�
DKn�1

�
C �ƒ˝C �.Z/

�
ŠKn�1

�
C �.ƒ/

�
˚Kn�1

�
C �.ƒ/˝S0;1

�
:

For the fourth equality, we use “the boundary of Dirac is Dirac principle” Œ@C.N0/�˝C0.M ı0 /
ŒM0; N0� D ŒN0� (for the proof, see, for example, [23, Proposition 11.2.15]).

4. Relative quantitative index pairing

In this section, we reformulate the index theorems of Connes–Gromov–Moscovici [8] and
Dadarlat [12] and generalize them to the relative setting. Instead of Lafforgue’s Banach
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KK-theory, on which the formulation of [12] is based, we use the quantitative K-theory
introduced by Oyono-Oyono and Yu [30].

4.1. Quantitative K-theory and almost �-homomorphism

We start with a quick review of the quantitative K-theory. The standard reference is [30].
We say that a filtered C �-algebra is a C �-algebra A equipped with an increasing family
¹Arºr2Œ0;1/ of closed subspaces ofA such thatA�r DAr ,Ar �Ar 0 �ArCr 0 and

S
r Ar �A

is dense.
For a unital filtered C �-algebra A, 0 � " � 1

4
, and r > 0, let

P";rn .A/ WD
®
p 2Mn.Ar / j p D p

�; kp2 � pk < "
¯
;

U";rn .A/ WD
®
u 2Mn.Ar / j ku

�u � 1k < "; kuu� � 1k < "
¯

and let P";r1 .A/ WD
S
n2N P";rn .A/, U";r1 .A/ WD

S
n2N U";rn .A/. For k 2 N, let 1k denote

the unit of Mk � A
C ˝Mk . We introduce the equivalence relation to P";r1 .A/ �N and

U";r1 .A/ as

� .p; k/ � .q; l/ if diag.p; 1l / and diag.q; 1k/ are connected by a continuous path in
P";r1 .A/,

� u � v if u and v are connected by a continuous path in U3";2r1 .A/.

The quantitative K-groups are defined by

K";r0 .A/ WD P";r1 .A/ �N= �;

K";r1 .A/ WD U";r1 .A/= � :

We write the elements of quantitative K�-groups represented by .p; l/ 2 P";r1 .A/ and
u 2 U";r1 .A/ as Œp; l�";r and Œu�";r , respectively. The summations Œp; k�";r C Œq; l�";r WD
Œdiag.p; q/; k C l �";r and Œu�";r C Œv�";r D Œdiag.u; v/�";r make K";r0 .A/ and K";r1 .A/ into
abelian groups (for the proof, see [30, Lemmas 1.14, 1.15, and 1.16]).

For a non-unital filtered C �-algebra A, the unitization AC is also equipped with the
structure of filtered C �-algebra by ACr WD Ar CC1. Let �WAC! C denote the quotient.
The quantitative K-group is defined by

K";r0 .A/ WD ker
�
��WK

";r
0 .A

C/! K";r0 .C/ Š Z
�

and K";r1 .A/ WD K";r1 .A
C/. For any ."; r/, we write �A for the canonical homomorphism

from K";r� .A/ to K�.A/.

Remark 4.1. Hereafter, we often use the norm estimates kpk � 1C " for p 2 P";r1 .A/
and kuk � 1C "=2 for U";r1 .A/ (cf. [30, Remark 1.4]).

Next, we introduce the notion of a complete almost �-homomorphism between filtered
C �-algebras.
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Definition 4.2. LetA andD be filtered C �-algebras. A bounded linear map � WAr!D�r
is a complete ."; r; �/-�-homomorphism if �.a�/ D �.a/� for any a 2 Ar and�n.ab/ � �n.a/�n.b/ � "kakkbk
holds for any n 2 N and a; b 2 Ar ˝Mn, where �n WD � ˝ idMn .

Remark 4.3. Let � WAr!D�r be a complete .";r;�/-�-homomorphism. Then, �n.a�/D
�n.a/

� also holds for any a 2 A˝Mn. Moreover, for a 2 Ar ˝Mn with kak D 1 and
k�n.a/k > k�nk � "

0, we have�
k�nk � "

0/2 <
�n.a/��n.a/
�
�n.a�a/ � �n.a/��n.a/C �n.a�a/
� "C k�nk:

This means that k�nk2 < k�nkC " and hence k�nk < 1C "=2. That is, � is a completely
bounded map between operator spaces (a reference on completely bounded maps and
operator spaces is [4, Appendix B]). In particular, � ˝ idB WAr ˝ B ! D�r ˝ B is a
well-defined completely bounded map for any nuclear C �-algebra B [4, Corollary B.8].

A C �-algebra is said to be quasi-diagonal if it admits a faithful representation 'WA!
B.H/ with an increasing sequence pn of finite rank projections in B.H/ such that
Œ'.a/; pn� ! 0 as n ! 1 for any a 2 A (for more details, see, for example, [4, Sec-
tion 7]). Note that

A 3 a 7!  .a/ WD
�
pn'.a/pn

�
2

Q
B.pnH/

˚B.pnH/
Š

Q
MknL
Mkn

;

where kn WD rankpn is a faithful �-homomorphism.

Lemma 4.4. Let � WA! D be a complete ."; r; �/-homomorphism and let B be a quasi-
diagonal C �-algebra. Then, � ˝ idB W Ar ˝ B ! D�r ˝ B is a complete ."; r; �/-�-
homomorphism.

Proof. First, for a sequence of positive numbers ¹knºn2N , � ˝ idQ
n2N Mkn

is a complete
."; r;�/-�-homomorphism sinceA˝.

Q
nMkn/ is canonically isomorphic to

Q
n.A˝Mkn/.

Since there is an isomorphism� Y
n2N

Mkn

�.�M
n2N

Mkn

�
Š lim
�!
N!1

� Y
n�N

Mkn

�
;

we obtain that � ˝ idQMkn=
L

Mkn
is also a complete ."; r; �/-�-homomorphism.

Since B is quasi-diagonal, there is a faithful �-homomorphism

 WB !
Y
n2N

Mkn

.M
n2N

Mkn for some ¹knºn2N :
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Since the diagram

A˝ B
�˝idB //

idA˝ 
��

D ˝ B

idD ˝ 
��

A˝
Q

MknL
Mkn

�˝idQMkn
=
L

Mkn // D ˝
Q

MknL
Mkn

commutes, � ˝ idB is also a complete ."; r; �/-�-homomorphism.

Proposition 4.5. Let A, B be two unital filtered C �-algebras and let � WAr ! B�r be a
unital complete ."; r;�/-�-homomorphism. Then, for any ı�0 such that "C .1C3"/ı< 1

4
,

� gives rise to continuous maps

� WPı;rn .A/! P"C.1C2"/ı;�rn .B/;

� WUı;rn .A/! U"C.1C3"/ı;�rn .B/

and hence induces homomorphisms

�]WKı;r� .A/! K"C.1C3"/ı;�r� .B/:

Proof. Let p 2 Pı;rn .A/ and u 2 Uı;rn .A/. Then, we have�n.p/2 � �n.p/ � �n.p/2 � �n.p2/C �n.p2 � p/
� "kpk2 C k�kcbkp

2
� pk

� ".1C ı/C .1C "=2/ı

� "C .1C 2"/ı;�n.u/��n.u/ � 1 � �n.u/��n.u/ � �n.u�u/C �n.u�u � 1/
� "ku�kkuk C k�kcbı

� ".1C ı/2 C .1C "=2/ı

� "C .1C 3"/ı:

Similarly, we also have k�n.u/�n.u/� � 1k � "C .1C 3"/ı.

Remark 4.6. For possibly non-unital filtered C �-algebras A, B and a ."; r; �/-�-homo-
morphism � , it is straightforward to see that the unitization �-homomorphism �CWAC!

BC defined by �CjAD � and �C.1A/D 1B is also a complete ."; r; �/-�-homomorphism.
Therefore, � induces a homomorphism of quantitative K-groups by Proposition 4.5.

4.2. Quantitative index pairing

Let � be a finitely generated discrete group and let e 2 G� � � be a finite set generating
� . We assume that G� is symmetric; i.e., �1 2 G� for any  2 G� . Let l� denote the word
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length function on � with respect to G� . Since l� satisfies l�. �  0/ � l�./C l�. 0/, it
gives the structure of a filtered C �-algebra on the group C �-algebra C ��; that is,

C �.�/r WD

² X
`� ./�r

cu 2 CŒ��

³
� C �.�/

forms an increasing family of closed subspaces of C �.�/ such that C �.�/r � C �.�/r 0 �
C �.�/rCr 0 and

S
C �.�/r D CŒ�� is dense in C �.�/. For r 2 Z>0, we write G r� for the

set ¹1 � � � r j i 2 G�º.
For an .";G r�/-representation � of � on P , we use the same letter � for the linear map

C �.�/r ! B WD B.P / given by �.
P
cu / WD

P
c�./. We say that � is self-adjoint

if �.�1/D �./� holds for any  2 G r� . Note that for any .";G r�/-representation � , there
is a self-adjoint .70";G r�/-representation M� with d.�; M�/ < 20" [5, Proposition 5.6].

Proposition 4.7. Let � be a self-adjoint ."; G r�/-representation of � on P . Then, � is a
unital complete .jG r� j

2"; r; 1/-�-homomorphism.

Proof. Let x D
P
2G r�

au and y D
P
2G r�

bu be elements in C �.�/r ˝Mn, where
a and b are elements of Mn. We remark that kak � kxk and kbk � kyk for any  2� .
Indeed, let � WC ��!C denote the tracial state given by �.

P
cu / WD ce . Then, we have

kak D
.� ˝ idMn/.xu�1/

 � kxu�1k D kxk:
Now, we obtain that�n.x/�n.y/ � �n.xy/ D  X

; 02G r�

ab 0
�
�./�. 0/ � �. 0/

�
�

X
; 02G r�

kak � kb 0k �
�./�. 0/ � �. 0/

�

� X
2G r�

kak

�� X
 02G r�

kb 0k

�
"

� jG r� j
2
kxkkyk":

LetX be a connected finite CW-complex and let � WD �1.X/ (and hence � is a finitely
presented discrete group). Let U WD ¹U�º�2I be a good cover of X and let ¹��º�;�2I
be a collection of flat transition functions of the universal covering zX ! X . Let G� WD

¹��º�;�2I . Let v D ¹v��º be a U.P /-valued Čech 1-cocycle. As are mentioned in (2.4)
and Remark 2.14, the projections

PV WD

X
�;�2I

���� ˝ u�� ˝ e�� 2 C.X/˝ .C
��/1 ˝MI ;

pv WD
X
�;�2I

����v�� ˝ e�� 2 C.X/˝ B ˝MI

have the support isomorphic to V and Ev, respectively.
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Remark 4.8. For the latter, we give two remarks on Cuntz’s quasi-homomorphism picture
of the KK-theory [9]. Here, a KK-element � 2 KK.A; C/ is represented by a quasi-
homomorphism Œ'1; '2�W A ! B.H/ F K.H/, i.e., a pair of �-homomorphisms A !
B.H/, such that '1.f / � '2.f / 2 K.H/ (strictly speaking, this pair should be called
a pre-quasihomomorphism).

(1) Let B WD B.H/˚Q.H/ B.H/. Then, a quasi-homomorphism Œ'1; '2� corresponds
to a �-homomorphism ˆ WD .'1; '2/W A ! B. The projection to the first and
second components determines a quasi-homomorphism Œpr1; pr2� 2 KK.B;C/
such that Œ'1; '2� D Œˆ�˝B Œpr1; pr2�.

(2) Let D be another C �-algebra and let p 2 A ˝D ˝Mn be a projection. Then,
.'1.p/; '2.p// is a pair of projections such that '1.p/ � '2.p/ 2 K ˝D. The
Kasparov product Œp� ˝A .Œ'1; '2� ˝ idD/ 2 K0.D/ is equal to the difference
class Œ'1.p/; '2.p/� as in Remark 3.9 since

Œp�˝A Œ'1; '2� D Œp�˝A Œˆ�˝B Œpr1; pr2�

D
��
'1.p/; '2.p/

��
˝B Œpr1; pr2�:

(3) A 1-parameter family of quasi-homomorphisms Œ't1; '
t
2� is said to be continuous if

t 7! 'ti .a/ is strongly continuous and t 7! '1.a/ � '2.a/ is norm continuous for
any a 2 A. If Œ'1; '2� D Œ'01; '

0
2�, then K.H˚H/-valued quasi-homomorphisms

Œ'1 ˚ 0; '2 ˚ 0� and Œ'01 ˚ 0; '
0
2 ˚ 0� are homotopic. This is a consequence of

[9, Proposition 2.4] and Kasparov’s stabilization theorem [25, Theorem 2].

Proposition 4.9. There is a group homomorphism

˛
alg
� WK0.X/! K0;30

�
K.H/˝ C �.�/

�
such that �C�.�/.˛

alg
� .�// D ˛�.�/ 2 K0.C �.�// for any � 2 K0.X/.

Proof. Let Œ'1; '2� be a quasi-homomorphism representing � 2 KK.C.X/;C/. Let P1 WD
'1.PV / and P2 WD '2.PV /. Then, the Kasparov product ŒPV �˝C.X/ � 2 K0.K˝ C ��/
is represented by a pair of projections ŒP1; P2� by Remark 4.8 (2).

Set

V WD

�
P2 1I � P2

1I � P2 P2

�
2M2

�
B.H/˝ C �.�/1 ˝MI

�
:

Then, V is a self-adjoint unitary and V diag.P2; 1I � P2/V D diag.1I ; 0/ holds. This
implies that

V

�
P1 0

0 1I � P2

�
V �

�
1I 0

0 0

�
2M2

�
K.H/˝ C �.�/3 ˝MI

�
I

that is, the pair .V diag.P1; 1I � P2/V; diag.1I ; 0// determines a difference class�
V diag.P1; 1I � P2/v; diag.1I ; 0/

�
2 K0

�
K.H/˝ C �.�/

�
:
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Moreover, we have the equality of difference classes as

ŒP1; P2� D

��
P1 0

0 1I � P2

�
;

�
P2 0

0 1I � P2

��
D

�
V

�
P1 0

0 1I � P2

�
V ;

�
1I 0

0 0

��
2 K0.K˝ C ��/:

Now, we define the map ˛alg
� as

˛
alg
� .�/ WD

�
V diag.P1; 1I � P2/V; jI j

�
0;3
:

Then, the above discussion means that this ˛alg
� satisfies �C�.�/ ı ˛

alg
� D ˛� . Note that

the definition of ˛alg
� is well defined since it is independent of the choice of a repre-

sentative Œ'1; '2�. To see this, let Œ'01; '
0
2� be another representative of �, to which the

.0; 3/-projection V 0 diag.P 01; 1I � P
0
2/V

0 is associated. By Remark 4.8 (3), there is a con-
tinuous path Œ't1; '

t
2� connecting Œ'1 ˚ 0; '2 ˚ 0� and Œ'01 ˚ 0; '

0
2 ˚ 0�. Now, the same

construction for Œ't1; '
t
2� provides a desired norm continuous path of .0; 3/-projections

connecting V diag.P1; 1I � P2/V ˚ 1I with V 0 diag.P 01; 1I � P
0
2/V

0 ˚ 1I .

Definition 4.10. We call the map ˛alg
� as in Proposition 4.9 the algebraic Mishchenko–

Fomenko higher index. For r > 3, we call the composition ˛ı;r� WD �
";r
0;3 ı ˛

alg
� WK0.X/!

Kı;r0 .C ��/ the quantitative higher index.

Now, we reformulate [12, Theorem 3.2] in the framework of quantitative K-theory.

Theorem 4.11. There is a constant C1 D C1.U/ depending only on U that the following

holds: for 0 < " < .4C1/
�1, a self-adjoint quasi-representation � 2 qRep

";G 3�
P .�/, and

� 2 K0.X/, one has

�B ı .idK.H/˝�/]
�
˛

alg
� .�/

�
D
˝
Œˇ.�/�; �

˛
2 K0.B/:

Remark 4.12. Here, we discuss the usage of Theorem 4.11 for the study of the K-theory
of group C �-algebras. For any .ı; r/ with jG r� j

2"C .1C 3jG r� j
2"/ı < 1=4, .idK.H/˝�/]

is defined on Kı;r0 .K.H/˝C ��/. Hence, the left-hand side of Theorem 4.11 is written as
�B ı .idK.H/˝�/] ı ˛

ı;r
� .�/. Let � 2 K0.X/ be a K-homology class satisfying ˛�.�/D 0.

Then, there is .ı; r/ with ı < 1=4 such that ˛ı;r� .�/ D 0, and hence

�B ı .idK.H/˝�/] ı ˛
ı;r
� .�/ D 0

for any � 2 qRep
";G r�
P .�/ with " <min¹ 1

4C1
; 1=4�ı

jG r� j
2.1C3"/

º. By Theorem 4.11, we obtain
hŒˇ.�/�; �i D 0. This is a quantitative version of the Hanke–Schick theorem [17, Theo-
rem 3.9].

For the proof of Theorem 4.11, first of all, let Œ'1; '2�WC.X/! B.H/ F K.H/ be a
quasi-homomorphism representing � 2K0.X/ such that '1 is ample; i.e., '�11 .K.H//D 0.
Set

D WD K.H/C '1
�
C.X/

�
:
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Remark 4.13. Note that D is quasi-diagonal. Indeed, let pn be an increasing sequence
of finite rank projections on H such that kŒ'1.f /; pn�k ! 0 as n ! 1. There exists
such pn by Voiculescu’s theorem (see, for example, [4, Theorem 7.2.5]) and the fact that
any commutative C �-algebra is quasi-diagonal [4, Proposition 7.1.5]. This sequence of
projections also satisfies kŒpn; x�k ! 0 for any x 2 K.H/.

Let � denote a self-adjoint .";G�/-representation of � and let v WD ˇ.�/. Let P1, P2,
and V be as in the proof of Proposition 4.9. Set

p� WD
�

idC.X/˝MI
˝�

�
.PV / 2 C.X/˝ B ˝MI :

Moreover, let p�;i WD .'i ˝ id/.p�/, pv;i WD .'i ˝ id/.pv/ 2D ˝B ˝MI (for i D 1;2),
and

v� WD

�
p�;2 1n � p�;2

1n � p�;2 p�;2

�
; vv WD

�
pv;2 1n � pv;2

1n � pv;2 pv;2

�
:

Lemma 4.14. For 0 < " < .60jG 3� j
2/�1, both .idD ˝�/.V diag.P1; 1 � P2/V / and

v� diag.p�;1; 1 � p�;2/v� are .15jG 3� j"; 3/-projections and�
.idD ˝�/

�
V diag.P1; 1 � P2/V

�
; jI j

�
15jG 3� j";3

D
�
v� diag.p�;1; 1 � p�;2/v� ; jI j

�
15jG 3� j

3";3

holds.

Proof. By Lemma 4.4, idD ˝� is a .jG 3� j
2"; 3; 1/-�-homomorphism. Hence, by Proposi-

tion 4.5, we have

.idD ˝�/
�
V diag.P1; 1 � P2/V

�
2 P
jG 3� j

2";3

jI j

�
K.H/˝ B

�
:

Moreover, since

.idD ˝�/.'i ˝ idC�.�// D .'i ˝ idC�.�//.idC.X/˝�/

as completely bounded maps, we have .idD ˝�/.V / D v� and .idD ˝�/.Pi / D p�;i for
i D 1; 2. Therefore, Proposition 4.7 implies that.idD ˝�/

�
V diag.P1; 1 � P2/V

�
� v� diag.p�;1; 1 � p�;2/v�


�
.idD ˝�/

�
V diag.P1; 1 � P2/V

�
� .idD ˝�/

�
V diag.P1; 1 � P2/

�
.idD ˝�/.V /


C
.idD ˝�/

�
V diag.P1; 1�P2/

�
v��.idD ˝�/.V /.idD ˝�/

�
diag.P1; 1�P2/

�
v�


�
V diag.P1; 1 � P2/

 � kV k � jG 3� j2"C kv�k �  diag.P1; 1 � P2/
 � kV k � jG 3� j2"

� 3jG 3� j
2":

This shows the lemma by [30, Lemma 1.7], which claims that if p is a ."; r/-projection
and kp � qk < ", then q is a .5"; r/-projection and Œp�5";r D Œq�5";r .
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Lemma 4.15. For 0 < " < .800jI j2/�1, both the elements v� diag.p�;1; 1I � p�;2/v�
and vv diag.pv;1; 1I � pv;2/vv are .200jI j2"; 3/-projections and�

v� diag.p�;1; p�;2/v� ; jI j
�
200jI j2"

D
�
vv diag.pv;1; pv;2/vv; jI j

�
200jI j2";r

holds.

Proof. As recalled in Remark 2.16, the Čech 1-cocycle v D ˇ.�/ satisfiesv��.x/ � �.��/ < 4":
Then, we havep�.x/ � pv.x/

 D X
�;�

��.x/��.x/
�
�.��/ � v��.x/

�
˝ e��

 � 4jI j2": (4.16)

This implies that kp�;i � pv;ik D k'i .p� � pv/k � 4jI j
2" and hence

kv� � vvk D

�p�;2 � pv;2 pv;2 � p�;2
pv;2 � p�;2 p�;2 � pv;2

� � 2 � 4jI j2" D 8jI j2":
Therefore, we getv� diag.p�;1; 1I � p�;2/v� � vv diag.pv;1; 1I � pv;2/vv


�
.v� � vv/ diag.pv;1; 1I � pv;2/vv

C v� diag.pv;1; 1I � pv;2/.vv � v�/


C
v� diag.p�;1 � pv;1; pv;2 � p�;2/v�


� kv� � vvk C kv�k � kv� � vvk C kv�k

2 max
®
kp�;1 � pv;1k; kp�;2 � pv;2k

¯
� 8jI j2"C 2 � 8jI j2"C 22 � 4jI j2" D 40jI j2":

Here, we use the fact that kpv;ik D 1, kvvk D 1, and kv�k � 2, which follows from
kv2� � 12Ik � 4jI j

2" � 1. Now, [30, Lemma 1.7] concludes the proof since the element
vv diag.pv;1; 1I � pv;2/vv is a projection.

Proof of Theorem 4.11. Let C1 WD max¹15jG 3� j
2; 200jI j2º. Then, Lemmas 4.14 and 4.15

conclude the proof as

�B.idD ˝�/]
�
˛

alg
� .�/

�
D �B

�
�
�
V diag.P1; 1 � P2/V

�
; jI j

�
C1";3

D �B
�
v� diag.p�;1; 1 � p�;2/v� ; jI j

�
C1";3

D �B
�
vv diag.pv;1; pv;2/vv; jI j

�
C1";3

D Œpv;1; pv;2� D
˝
Œpv�; �

˛
D
˝
Œˇ.�/�; �

˛
;

where Œpv;1; pv;2� 2 K0.B/ denotes the difference class.

Theorem 4.11 is related to the Connes–Gromov–Moscovici index formula [8, Théo-
rème 10], which is generalized in [12]. Let � be a tracial state on a C �-algebra A. For
a bundle E of finitely generated Hilbert A-modules, let ch� .E/ 2 �even.M/ denote the
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Chern character defined in [33, Definition 5.1]. In particular, ifADC and � is the identity
map, then ch� .E/ is the usual Chern character.

Corollary 4.17 (cf. [12, Theorem 3.6]). Let � 2 qRep
";G 3�
P .�/ be a self-adjoint ."; G 3� /-

representation for " < .4C1/�1 and let � be a trace on A. Then, for any elliptic operator
D on M with the principal symbol �.D/, one has

.� ı �]/
�
˛
ı;r
�;ƒ

�
ŒM �

��
D

Z
T �M

ch� .Eˇ.�// ch
�
�.D/

�
Td.TCM/:

Proof. Apply Schick’s L2-index theorem [33, Theorem 6.10] for the index pairing
�.hv; ŒM �i/ D �.indDEˇ.�//.

4.3. Relative quantitative index pairing

Now, we establish a relative version of the quantitative index pairing in Section 4.2. Let
G D .G� ; Gƒ/ be a finite symmetric generating set of .�; ƒ/ in the sense of Definition
2.23. We write G r WD .G r� ; G

r
ƒ/ and jG r j WD max¹jG r� j; jG

r
ƒjº. Let l� and lƒ denote the

word length function on � and ƒ with respect to G� and Gƒ, respectively. Then, the
assumption �.Gƒ/ � Gƒ implies that �.C �.ƒ/r / � C �.�/r . We put the structure of a
filtered C �-algebra on C� as

.C�/r WD
®
.a; bs/ 2 C� j a 2 C

�.ƒ/r ; bs 2 C
�.�/r

¯
:

Let .X; Y / be a pair of connected finite CW-complexes. As in Lemma 2.5, let

UW WD �e
��i�0PW C 1 � PW 2

�
C0
�
.Y 02/

ı
�
˝ C �.ƒ/1 ˝MI

�C
;

VV ;s WD �e
��i�sPV C 1 � PV 2

�
C0.X

ı
2 /˝ .C

��/1 ˝MI

�C
:

Then, .UW ; VV ;s/ is a .0; 1/-unitary of .C0.Xı2 /˝ C�/
C such that Œ.UW ; VV ;s/� D `�;ƒ.

Proposition 4.18. There is a group homomorphism

˛
alg
�;ƒWK0.X; Y /! K0;21

�
K.H/˝ C�

�
such that �C�.˛

alg
�;ƒ.�// D ˛�;ƒ.�/ for any � 2 K0.X; Y /.

Proof. Let Œ'1; '2�W C0.Xı2 / ! B.H/ F K.H/ be a quasi-homomorphism representing
� 2 K0.X; Y /. Let Ui WD 'i .UW / and Vi;s WD 'i .VV ;s/ for i D 1; 2. Then,

.U1U
�
2 ; V1;sV

�
2;s/ 2

�
K.H/˝ C�

�C
is a .0; 2/-unitary. Now, we define the map ˛alg

�;ƒ as

˛
alg
�;ƒ.�/ WD

�
.U1U

�
2 ; V1;sV

�
2;s/

�
2 K0;21

�
K.H/˝ C�

�
:

Then, it is straightforward to check that ˛alg
�;ƒ satisfies �C� ı ˛

alg
�;ƒ D ˛�;ƒ in a similar

fashion to Proposition 4.9. It is also checked in the same way as in Proposition 4.9 that
the map ˛alg

�;ƒ is well defined since it is independent of the choice of a representative
Œ'1; '2�.
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Definition 4.19. We call ˛alg
�;ƒ as in Proposition 4.18 the algebraic relative Mishchenko–

Fomenko higher index. For r >2, we call the composition ˛ı;r�;ƒ WD �
";r
0;2 ı ˛

alg
�;ƒWK0.X;Y /!

Kı;r1 .K.H/˝ C�/ the quantitative relative higher index.

Next, we construct a complete ."; r; �/-�-homomorphism from C� to a certain C �-
algebra associated to a stably relative quasi-representation. Hereafter, let .X; Y / be a pair
of connected finite CW-complexes with a good open cover U. Let � WD �1.X/ and ƒ WD
�1.Y /. Moreover, we choose a collection of translation functions ¹��º�;�2I of zX and
¹���º�;�2I of zY such that �.���/ D �� for �; � 2 I such that U�� \ Y ¤ ;. Let G� D

¹��º and Gƒ D ¹���º. We write G r WD .G r� ;G
r
ƒ/ and jG r j WD max¹jG r� j; jG

r
ƒjº.

Let

� WD

 
C0Œ�1; 1/ C0Œ�1; 0/

C0Œ�1; 0/ C Œ�1; 0�

!
; �0 WD

 
C0.�1; 1/ C0.�1; 0/

C0.�1; 0/ C0.�1; 0/

!
and let y� WD ¹.f; g/ 2 � ˚ � j f � g 2 �0º. Then, the embedding C0.�1; 1/! �0 to
the left upper component induces a KK-equivalence and hence K�.�0 ˝D/ Š K��1.D/
for any C �-algebra D. We write � for the quasi-homomorphism Œpr1; pr2�W y� ! � F �0,
where pri (for i D 1; 2) denotes the projection to the i th component.

Let � D .�1; �2; �0; u/ 2 qRep";G
r

P;Q.�; ƒ/ be a self-adjoint stably relative ."; G r /-
representation (we say that � is self-adjoint if each �i is a self-adjoint representation).
Pick a continuous path ¹ Nusºs2Œ1;2� of unitaries in U.B..P ˚ Q/˚2// such that Nu1 D
diag.u; u�/ and Nu2 D 1. We associate to � continuous families of maps z�1;s; z�2;s WG rƒ !
B..P ˚Q/˚2/ parametrized by s 2 Œ1; 2� defined as

z� 01;s./ WD .s � 1/
�

diag
�
�1
�
�./

�
; �0./; 1P˚Q

��
C .2 � s/ Nu�1

�
diag

�
�2
�
�./

�
; �0./; 1P˚Q

��
Nu1;

z�2;s./ WD Nu
�
s

�
diag

�
�2
�
�./

�
; �0./; 1P˚Q

��
Nus;

and z�1;s./ WD z� 01;s./.z�
0
1;s./

�z� 01;s.//
�1=2. Then,

x�.a; b/.s/ WD

´ �
�1.bs/; �2.bs/

�
s 2 .0; 1/;�

z�1;2Cs.a/; z�2;2Cs.a/
�
s 2 .�1; 0�

determines a linear map x� W .C�/r ! B ˝ y� .

Lemma 4.20. For any � 2 qRep";G
r

P;Q.�;ƒ/ that is self-adjoint, the above x� is a complete
.10jG r j2"; r; 1/-�-homomorphism.

Proof. Since kz�1;2./ � z� 01;s./k < ", we have k1 � z� 01;s./
�z� 01;s./k < 2" and hencez�1;s./ � z�1;2./ � z� 01;s./ � z�1;2./C 1 � �z� 01;s./�z� 01;s./��1=2

< 3":
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Then, we obtain thatz�1;2Cs./z�1;2Cs. 0/ � z�1;2Cs. 0/
�
z�1;2Cs./z�1;2Cs. 0/ � z�1;2./z�1;2. 0/
C
z�1;2./z�1;2. 0/ � z�1;2. 0/

C
z�1;2Cs. 0/ � z�1;2. 0/

� 2 � 3"C "C 3" D 10"I (4.21)

that is, each z�i;2Cs is a .10";G r /-representation.
Now, Lemma 4.7 implies that each evaluation evs ıx� W .C�/r !M2 ˚M2 is a com-

plete .10jG r j2"; r; 1/-�-homomorphism, which finishes the proof.

Therefore, by Proposition 4.5 we get a homomorphism

� ı �B ı .id˝x�/]WK
ı;r
1 .C�/! K1.�0 ˝ B/ Š K0.B/

for ı > 0 such that "C .1C 3"/ı < 1=4 and r > 0.

Theorem 4.22. There is a constant C2 D C2.U/ depending only on U so that the follow-
ing holds: for 0 < " < .4C2/�1, � 2 qRep";G

2

P;Q .�;ƒ/, and � 2 K0.X; Y /, one has�
� ı �B ı .idK˝x�/]

��
˛

alg
�;ƒ.�/

�
D
˝�
ˇ.�/

�
; �
˛
2 K0.B/:

Remark 4.23. Here is a remark parallel to Remark 4.12. For any .ı; r/ with 10jG r j2"C
.1C40jG r j2"/ı<1=4, the left-hand side of Theorem 4.22 is written as �B ı.idK.H/˝�/]ı

˛
ı;r
�;ƒ.�/. Hence, if a K-homology class � 2K0.X/ satisfies ˛�;ƒ.�/D 0, then there is .ı; r/

with ı < 1=4 such that ˛ı;r� .�/ D 0. By Theorem 4.22, we have hŒˇ.�/�; �i D 0 for any
� 2 qRep";G

r

P;Q .�; ƒ/ with " < min¹ 1
4C2

; 1=4�ı

10jG r� j
2.1C3"/

º. This is a quantitative version of
Theorem 3.5.

Let Œ'1; '2�WC0.Xı2 /! B.H/ F K.H/ be a quasi-homomorphism representing � 2
K0.X; Y / such that '1 is ample and let D WD K.H/C '1.C0.Xı2 //. Then, D is nuclear
and quasi-diagonal as is mentioned in Remark 4.13. Let U i , V is be as in the proof of
Proposition 4.18. We consider the element

u� D .u�;s/s2.�1;1/ WD .idC0.Xı2 /˝MI
˝x�/.U; Vs/ 2 C0.X

ı
2 /˝

y� ˝ B ˝MI

and set ui� WD .'i ˝ id/.u�/ for i D 1; 2.

Lemma 4.24. For 0 < " < .160jG 2j2/�1, both .idK ˝x�/..U
1; V 1s /.U

2; V 2s /
�/ and

u1�.u
2
�/
� are .40jG 2j2"; 2/-unitaries and�
.idK˝x�/

�
.U1; V1;s/.U2; V2;s/

�
��
40jG 2j2";2

D
�
u1�;s.u

2
�;s/
�
�
40jG 2j2";2

holds.
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Proof. By Proposition 4.5 and Lemma 4.20, the element

.idK˝x�/
�
.U1; V1;s/.U2; V2;s/

�
�

is a 10jG 2j2"-unitary. By Lemma 4.4, the tensor product .idD ˝x�/ is well defined as a
completely bounded map and .idD ˝x�/.U

i ; V is /.s/ D u
i
�;s holds for s 2 .�1; 1/. Hence,

we have .idK˝x�/
�
.U1; V1;s/.U2; V2;s/

�
�
� u1�;s.u

2
�;s/
�
 � 10jG 2j2":

This shows the lemma by [30, Lemma 1.7], which claims that if u is a ."; r/-unitary and
ku � vk < " holds, then v is a .4"; r/-unitary and Œu�4";r D Œv�4";r .

For the proof of Theorem 4.22, it is convenient to rephrase the proof of Theorem 3.3
in terms of unitaries .UW ; VV ;s/. Let

C.X; Y / WD

 
C.X2/ C0

�
Y.1; 2�

�
C0
�
Y.1; 2�

�
C0
�
Y Œ1; 2�

�! ; C0.X; Y / WD

 
C0.X

ı
2 / C0..Y

0
2/
ı/

C0
�
.Y 02/

ı
�
C0
�
.Y 02/

ı
�!

and let yC.X;Y / WD ¹.f;g/ 2 C.X;Y /˚C.X;Y / j f � g 2 C0.X;Y /º. Then, the embed-
ding C0.Xı2 / ! C0.X; Y / to the left upper component induces a KK-equivalence. Let
�X;Y denote the quasi-homomorphism Œpr1; pr2�W yC.X; Y /! C.X; Y / F C0.X; Y /. Then,
the continuous map f and � as in Theorem 3.3 induce

�� ı f
�
WC0.X; Y /.0; 1/! C0.X

ı
2 /˝ �0;

which extends to a �-homomorphism from C.X; Y /.0; 1/ to C0.Xı2 /˝ � denoted by the
same letter �� ı f �.

Let v WD ˇ.�/, vj WD ˇ.�j /, and vj;s WD ˇ.z�j;s/ for j D 1; 2 and s 2 Œ1; 2�. Let
Qpv;j 2 C.X1; Y1/˝ B ˝MI for j D 1; 2 denote the projections

Qpv;j .x/ WD

´
pvj .x/ x 2 Xı1 ;

pvj;r .y/ x D .y; r/ 2 Y 02:

Then, Qpv;1 � Qpv;2 2 C0.X; Y /˝ B ˝MI ; that is, Qpv WD . Qpv;1; Qpv;2/ is a projection in
yC.X; Y /˝ B ˝MI , such that �X;Y Œ. Qpv;1; Qpv;2/� D Œv�. Now, the element

uv;s WD .�� ı f
�/. Qpve

2�i�s C 1 � Qpv/ 2 C.X
ı
2 /˝

y� ˝ B ˝MI

is a unitary satisfying

�Œuv� D .�� ı f
�/Œv�˝ ˇ 2 K1

�
C0.X

ı
2 /˝ �0 ˝ B

�
:

Lemma 4.25. For 0 < " < .1280jI j2/�1, both the elements u1�;s.u
2
�;s/
� and u1v;s.u

2
v;s/
�

are .320jI j2"; 2/-unitaries and�
u1�;s.u

2
�;s/
�
�
320jI j2";2

D
�
u1v;s.u

2
v;s/
�
�
320jI j2";2

holds.
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Proof. By the definitions of f , u�;s , and uv;s , we have

u�;s.x/ D �e
��i�.s;r/

�
�1.PV /; �2.PV /

�
.x/C 1 �

�
�1.PV /; �2.PV /

�
.x/;

uv;s.x/ D �e
��i�.s;r/.pv1 ; pv2/.x/C 1 � .pv1 ; pv2/.x/;

for .x; s/ 2 X2.0; 1/ and

u�;s.y; r/ D e
2�i.r�1/

�
z�1;2Cs.PW /; z�2;2Cs.PW /

�
.y/

C 1 �
�
z�1;2Cs.PW /; z�2;2Cs.PW /

�
.y/;

uv;s.y; r/ D e
2�i.r�1/.pv1;2Cs ; pv2;2Cs /.y/C 1 � .pv1;2Cs ; pv2;2Cs /.y/;

for .y; r; s/ 2 Y 02.�1; 0�. Hence, (4.16) and (4.21) imply thatu�;s � ��f
�.uv;s/

 � e2�i.r�1/�z�1;2Cs.PW /; z�2;2Cs.PW /
�
� .pv1;2Cs ; pv2;2Cs /


C
�1� �z�1;2Cs.PW /; z�2;2Cs.PW /

��
�
�
1 � .pv1;2Cs ; pv2;2Cs /

�
� 2 � 4jI j2 � 10" D 80jI j2"

for s 2 .�1; 0�. By the same argument, we also see that ku�;s � ��f
�.uv;s/k < 80jI j

2"

for s 2 Œ0; 1/. Again by [30, Lemma 1.7], this concludes the proof.

Proof of Theorem 4.22. Let C2 WD max¹320jI j2; 40jG 2j2º. Then, Lemmas 4.24 and 4.25
prove the theorem as

� ı �B.id˝x�/]
�
˛

alg
�;ƒ.�/

�
D � ı �B

�
.idK˝x�/

�
.U1; V1;s/.U2; V2;s/

�
��
C2";2

D � ı �B
�
u1�;s.u

2
�;s/
�
�
C2";2

D � ı �B
�
u1v;s.u

2
v;s/
�
�
C2";2

D �
�
u1v;s.u

2
v;s/
�
�
D �

˝
Œuv�; �

˛
D
˝
.�� ı f

�/Œv�˝ ˇ; �
˛

D
˝
Œv�; �

˛
˝ ˇ 2 K1.B ˝ S/:

Corollary 4.26. Let D be an elliptic differential operator on M , let " < .4C2/
�1, let

� 2 qRep";G
2

P;Q .�;ƒ/ be a self-adjoint stably relative .";G 2/-representation, and let � be a
trace on A. Then, one has�

� ı � ı �C� ı .idK˝x�/]
��
�
�;ƒ
0

�
ŒD�

��
D

Z
T �M

ch�
�
ˇ.�/

�
ch
�
�.D/

�
Td.TCM/:

Proof. Let yD be an elliptic operator on the invertible double yM DM tN .�M/ with the
principal symbol �. yD/j˙M D �.D/. Let i WM ı!M denote the open embedding and let
E1,E2 be vector bundles on yM such that i�ˇ.�/D ŒE1�� ŒE2�. Then, Theorem 4.22 and
the L2-index theorem [33, Theorem 6.10] for the index pairing

�
�˝
ˇ.�/; ŒD�

˛�
D �

�˝
i�ˇ.�/; Œ yD�

˛�
D �.ind yDE1 � ind yDE2/

show the corollary since the Chern character form ch� .i�ˇ.�// D ch� .E1/ � ch� .E2/ is
a compactly supported differential form onM ı cohomologous to ch� .ˇ.�// inH�c .M

ı/.
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5. Dual assembly map and almost flat bundles

In this section, we relate the dual higher index map ˇ�;ƒ defined in Proposition 2.3 with
the almost monodromy correspondence, i.e., Theorem 2.24. The goal of this section is
to show that the index pairing with elements of the subgroup K0s-af.X; Y / of almost flat
K-theory class (in the sense of Definition 2.21) has rich information enough to detect the
non-vanishing of the relative higher index under certain assumptions on the fundamental
groups.

5.1. K-homology group of mapping cone C �-algebras

Let A and B be separable C �-algebras and let �WA! B be a �-homomorphism. Let us
choose unital �-representations of unitization C �-algebras � WAC ! B.H/ and � WBC !
B.K/ such that � and x� WD � ˚ � ı � are ample representations; that is, ��1.K.K// D
0 and x��1.K. xH// D 0 (where xH WD H ˚ K). Note that we can choose � as the zero
representation if � is injective.

For a C �-algebra D, let Cu.T ; D/ denote the C �-algebra of bounded D-valued uni-
formly continuous functions on T WD Œ0;1/. Hereafter, we identify T with Œ0; 1/ by a
reparametrization t 7! s D t .1C t2/�1=2. Following [14], we define the C �-algebras

D.A/ WD
®
T 2 B. xH/ j

�
T; x�.a/

�
2 K. xH/ 8a 2 A

¯
;

D.B/ WD
®
T 2 B.K/ j

�
T; �.b/

�
2 B.K/ 8b 2 B

¯
;

C.A/ WD
®
T 2D.A/ j T x�.a/ 2 K. xH/ 8a 2 A

¯
;

DL.A/ WD
®
Ts 2 Cu

�
T ;D.A/

�
j
�
Ts; x�.a/

�
2 C0

�
Œ0; 1/;K. xH/

�
8a 2 A

¯
;

CL.A/ WD Cu
�
T ;C.A/

�
\DL.A/;

D0
L.A/ WD

®
Ts 2DL.A/ j T0 D 0

¯
;

C0L.A/ WD
®
Ts 2 CL.A/ j T0 D 0

¯
:

(5.1)

Note that D.B/ �D.A/ as C �-subalgebras of B. xH/. We write �D for this inclusion.

Lemma 5.2. The inclusions

� �1WC
0
L.A/! CL.A/,

� �2WC
0
L.A/!D0

L.A/, and

� �3WD.A/.0; 1/!D0
L.A/

induce isomorphisms of K-groups.

Proof. Note that �3 is homotopic to the inclusion of D.A/.0;1/ŠD.A/.0; 1
2
/ into D0

L.A/.
They follow from the vanishing of K-groups of CL.A/=C

0
L.A/ Š C.A/, D0

L.A/=C
0
L.A/,

and D0
L.A/=D.A/.0;

1
2
/ Š DL.A/, which are proved in [23, Proposition 5.3.7], [14,

Proposition 4.3 (b)], and [14, Proposition 4.3 (a)], respectively.

We consider two homomorphisms

‚A;�WK1��
�
D0
L.A/

�
! KK�

�
A;C0.0; 1/

�
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for � D 0; 1 given by

‚A;0
�
Œus�

�
WD

�
xH.0; 1/˚ xH.0; 1/op; � ˚ �;

�
0 u�s
us 0

��
;

‚A;1
�
Œps�

�
WD
�
xH.0; 1/; x�; 2ps � 1

�
;

for us 2 U.MN .DL.A/
0/C/ and ps 2 P.MN .D

0
L.A/

C//.

Lemma 5.3. The above ‚A;0 and ‚A;1 are isomorphisms.

Proof. By Lemma 5.2, it suffices to show that the composition

‰A;�WK1��
�
D.A/.0; 1/

� .�3/�
����! K1��

�
D0
L.A/

� ‚A;�
����! KK�

�
A;C0.0; 1/

�
is an isomorphism.

For a locally compact space X , let

D.A;X/ WD
®
T 2 C st

b

�
X;B. xH/

�
j
�
T; �.a/

�
2 C0

�
X;K. xH/

�¯
;

D0.A;X/ WD C0.X/ �D.A;X/;

where C st
b
.X;B.H// denotes the C �-algebra of bounded strictly continuous B.H/-valued

functions on X , which is isomorphic to the bounded operator algebra on the Hilbert
C0.X/-module H ˝ C0.X/. By Kasparov’s generalized Voiculescu theorem [25, The-
orem 5], the representation x� ˝ 1WA! B. xH ˝ C0.X// Š C st

b
.X;B. xH// is absorbing.

Hence, the duality of KK-theory [35, Theorem 3.2] implies that the homomorphisms
z‚A;X;�WK1��.D.A;X//! KK�.A; C0.X// given by

z‚A;X;0
�
Œux �

�
WD

�
C0.X; xH˚ xH

op/; � ˚ �;

�
0 u�x
ux 0

��
;

z‚A;X;1
�
Œpx �

�
WD
�
C0.X; xH/; �; 2px � 1

�
;

are isomorphic.
The remaining task is to show that the inclusions

(1) D.A/.0; 1/!D0.A; .0; 1// and

(2) D0.A; .0; 1//!D.A; .�1; 2//

induce isomorphisms of K-groups. Indeed, the composition of these two inclusions is
homotopic to the inclusion D.A/.0; 1/!D.A; .0; 1//.

For (1), apply the five lemma for the map between long exact sequences of K-groups
associated to

0 // D.A/.0; 1/ //

��

D.A/Œ0; 1/ //

��

D.A/ // 0

0 // D0

�
A; .0; 1/

�
// D0

�
A; Œ0; 1/

�
// D.A/ // 0:
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Note that D.A/Œ0; 1/ and D0.A; Œ0; 1// have trivial K-groups since they are contractible
(indeed, the continuous path of �-endomorphisms t .T /.s/ WD T .max¹sC t;1º/ connects
the identity and the zero map). For (2), observe that

D
�
A; .�1; 2/

�ı
D0

�
A; .0; 1/

�
ŠD

�
A; .�1; 0�

�
˚D

�
A; Œ1; 2/

�
and

K�
�
D
�
A; Œ0; 1/

��
Š KK1��

�
A;C0Œ0; 1/

�
D 0:

It is proved in [14, Proposition 4.2] that DL.A/=CL.A/ is canonically isomorphic to
Cu.T ;D.A//=Cu.T ;C.A//. Hence, the �-homomorphism D.A/! Cu.Œ0; 1/;D.A//

mapping T 2D.A/ to the constant function with the value T induces a �-homomorphism

cWD.A/! Cu
�
T ;D.A/

�ı
C 0u
�
T ;C.A/

�
ŠDL.A/=C

0
L.A/;

where C 0u .T ;C.A// WD ¹Ts 2 Cu.T ;C.A// j T0 D 0º. Set

DL.�/ WD
®
Ts 2DL.A/ j T0 2D.B/; Ts � T0 2 C.A/

¯
:

Then, there is a commutative diagram of exact sequences

0 // C0L.A/
// DL.�/

��

// D.B/ //

cı�D

��

0

0 // C0L.A/
// DL.A/ // DL.A/=C

0
L.A/

// 0:

Let �4 denote the inclusion C0L.A/ ! DL.�/ and let q denote the quotient DL.�/ !

D.B/.

Lemma 5.4. The diagram

K�
�
D.B/.0; 1/

� @ //

‰B;�

��

K�
�
C0L.A/

�
‚A;�ı.�2/�

��

KK1��
�
B;C0.0; 1/

� ��
// KK1��

�
A;C0.0; 1/

�
commutes.

Proof. Let kWC0L.A/!DL.�/ denote the inclusion. We regard an element f 2 Ck as a
D.A/-valued continuous function on Œ0; 1�t � Œ0; 1/s such that f .0; �/ 2 C0L.�/, f .t; �/ 2
DL.�/ for t 2 .0; 1/ and f .1; �/ D 0. Let

'WCk !
�
DL.�/=C

0
L.A/

�
.0; 1/ ŠD.B/.0; 1/
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denote the quotient (in other words, the evaluating homomorphism at s D 0) and let
l W Ck ! C0L.A/ denote the evaluating �-homomorphism at t D 0. Since '� is an iso-
morphism and l� ı .'�/�1 D @, it suffices to show that the diagram

K�.Ck/
l� //

'�

��

K�
�
C0L.A/

�
.�2/�

��

K�
�
D.B/.0; 1/

� �3ı�D //

‰A;�

��

K�
�
D0
L.A/

�
‚A;�

��

K�
�
D
�
B; .0; 1/

�� ��
// K�

�
D.A; .0; 1/

��
commutes. The lower square commutes by definition. Since the continuous path

��.f /.s/ D

´
f .s; 2�s/ � 2 Œ0; 1=2�;

f .2�s; s/ � 2 Œ1=2; 1�

of �-homomorphisms from Ck to D0
L.A/ for � 2 Œ0; 1� satisfies �0 D �2 ı l and �1 D

�3 ı �D ı ', we obtain that the upper square also commutes.

Let zH denote the Hilbert C0.�1; 1/-module H.�1; 0/˚K.�1; 1/. We define the �-
homomorphism z� WC� ! B. zH/ by

�.a; bs/.s/ D

´
x�.a/ s 2 .�1; 0/;

�.bs/ s 2 Œ0; 1/;

and the group homomorphism

‚� WK1
�
DL.�/

�
! KK

�
C�;C0.R/

�
by

‚�
�
Œus�

�
WD

�
zH˚ zHop; � ˚ �;

�
0 u��s
u�s 0

��
: (5.5)

Here, we extend us to .�1; 1/ as us D u0 for s < 0.

Lemma 5.6. The diagram

K1
�
C0L.A/

� .�4/� //

‚A;0ı.�2/�

��

K1
�
DL.�/

� q�.�/ y̋C ˇ //

‚�

��

K0
�
D.B/.0; 1/

�
‰B;1

��

KK
�
A;C0.�1; 1/

� �� // KK
�
C�;C0.�1; 1/

�̌ y̋C0.0;1/ �.�/// KK1
�
B;C0.�1; 1/

�
commutes.
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Proof. Let us 2MN .C
0
L.A//

C be a unitary. Then, we have

�
�� ı .�2/� ı‚A;0

��
Œus�

�
D

�
xH.0; 1/˚ xHop.0; 1/; x� ˚ x�;

�
0 u�s
us 0

��
D �

�
xH.�1; 0/˚ xHop.�1; 0/; x� ˚ x�;

�
0 u��s
u�s 0

��
D �

�
zH˚ zHop; z� ˚ z�;

�
0 u��s
u�s 0

��
D �

�
‚� ı .�4/�

��
Œus�

�
:

This means that the left square commutes.
Next, let vs 2 MN .DL.�// be a unitary. Let z� denote the �-homomorphism from

B.0; 1/ to B.K.�1; 1// given by z�.b/.s/D �.bs/ for b D .bs/s2.0;1/ 2 B.0; 1/. Then, we
have

. � ı‚�/
�
Œvs�

�
D

�
zH˚ zHop; z� jB.0;1/ ˚ z� jB.0;1/;

�
0 v��s
v�s 0

��
D

�
K.0; 1/˚K.0; 1/op; z� ˚ z�;

�
0 v�0
v0 0

��
D z‚B;pt;0

�
Œv0�

�
˝ j� 2 KK

�
B.0; 1/; C0.�1; 1/

�
;

where j WC0.0; 1/! C0.�1; 1/ is the inclusion (note that j induces a KK-equivalence).
Now, we recall that

‰B;1
�
Œv0�˝ ˇ

�
D z‚B;pt;0

�
Œv0�

�
˝ ˇ 2 KK�1

�
B;C0.�1; 1/

�
by the definition of z‚B;pt;0 and ‰B;1. Therefore, we get

ˇ y̋ C0.0;1/. 
�
ı‚�/

�
Œvs�

�
D z‚B;�;0

�
Œv0�

�
˝ ˇ D ‰B;1

�
q�
�
Œvs�

�
˝ ˇ

�
:

This means that the right square commutes.

Theorem 5.7. The homomorphism ‚� is an isomorphism.

Proof. Here, we write S WDC0.�1;1/ and SD WDD.�1;1/ for any C �-algebraD. Apply
the five lemma to the diagram of exact sequences

K1
�
SD.B/

�
//

‰B;0

��

K1
�
C0L.A/

�
//

‚A;0ı.�2/�

��

K1
�
DL.�/

�
//

‚�

��

K0
�
SD.B/

�
//

‰B;1

��

K0
�
C0L.A/

�
‚A;1ı.�2/�

��

KK.B; S/ // KK.A; S/ // KK.C�; S/ // KK1.B; S/ // KK1.A; S/;

which commutes by Lemmas 5.4 and 5.6.
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Lastly, we consider the case that A and B are unital and �WA! B preserves the unit.
Let .�;H/ and .�;K/ be unital ample �-representations of A and B , respectively, and
.x�; xH/ WD .� ˚ �;H˚K/. Then, the �-representations �C WD � ˚ 0H onto HC WDH˚2

and �C WD � ˚ 0K onto KC WD K˚2 (where 0H is the zero representation to H) extend
to unital ample representations of AC and BC, respectively. Here, we use �C and �C for
the definition of C �-algebras as in (5.1). We also define the C �-algebras Du

L.�/ as

Du
L.�/ WDDL.�/ \ Cu

�
T ;B. xH/

�
D pDL.�/p;

where p denotes the projection onto the first direct summand xH � xHC; i.e., p D x�.1/.

Lemma 5.8. The corner embedding Du
L.�/ ! DL.�/ induces an isomorphism of K-

theory.

Proof. Since the commutators Œ�.1B/;T0� and Œx�.1A/;Ts� 2K. xH/ are compact operators,
the off-diagonal part pDL.�/.1 � p/ is of the form

C WD
®
Ts 2 C0Œ0; 1/˝K. xH/ j T0 2 K.H/

¯
;

which has trivial K-groups. Similarly, the corner subalgebra .1 � p/DL.�/.1 � p/ is of
the form

B WD
®
Ts 2 Cu

�
T ;B. xH/

�
j Ts � T0 2 K.H/

¯
:

By the six-term exact sequence associated to the extension

0!
®
Ts 2 Cu

�
T ;K.H/

�
j T0 D 0

¯
! B! B.H/! 0;

the K-group of B turns out to be zero. Hence, the composition

Du
L.�/!DL.�/!DL.�/=M2C Š

�
Du
L.�/=C 0

0 B=C

�
induces an isomorphism of K-theory. This finishes the proof since the quotient DL.�/!

DL.�/=M2C also induces the isomorphism of K-theory.

5.2. Range of the dual assembly map

Let .X; Y / be a pair of connected finite CW-complexes. Now, we determine the ratio-
nal relative and (stably) almost flat K0-groups K0af.X; Y /Q and Ks-af.X; Y /Q under the
assumption that � WD �1.X/ and ƒ WD �1.Y / satisfy (2.6), (2.70), and (2.8) and

(5.9) Both � and ƒ are residually amenable.

A discrete group � is said to be residually amenable (cf. [7, Definition 1.3]) if for any non-
trivial element  2 � there is a homomorphism from � to an amenable group � 0 which
maps  to a non-trivial element. For example, all residually finite groups are residually
amenable. In particular, all finitely generated linear groups [28] and 3-manifold groups
[21] (thanks to Perelman’s proof of the geometrization theorem) are examples of residu-
ally amenable groups (note that they also satisfy the condition (2.6)).
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Lemma 5.10. Let � be a residually amenable group and let A denote the family of unitary
representations of � factoring through amenable quotients of � . Then, the completion
C �A.�/ of CŒ�� by the norm kxkA WD sup�2A k�.x/k is an intermediate completion; that
is, there are quotient maps

C �max.�/
��max;A
�����! C �A.�/

��A;r
���! C �r .�/

such that ��A;r ı �
�
max;A D �

� .

Proof. Since � is residually amenable, there is a decreasing sequence Nn of normal sub-
groups of � such that �n WD �=Nn is amenable and

T
n Nn D ¹eº (for the proof, see

[7, Section 1]). Let �n denote the left regular representation � ! U.`2.�n// and let �
denote the left regular representation � ! U.`2.�//. Now, it suffices to show that � is
weakly contained in

L
n �n. (Again we refer to [2, Appendix F.4] for group C �-algebras

and weak containment of representations.)
Let " > 0, let F � � be a finite subset, and let � 2 L2.�/. Pick a compactly supported

function � 2 cc.�/ � `2.�/ such that k�k � k�k and k� � �k < .2k�k/�1". For a suffi-
ciently large n, the restriction of the quotient qnW� ! �n to .supp �/�1 � F � .supp �/ is
injective. Let us choose a section sW qn.supp �/! supp � of qn. Then, we haveˇ̌�

�./�; �
�
�
�
�n./s

��; s��
�ˇ̌
D
ˇ̌�
�./�; �

�
�
�
�./�; �

�ˇ̌
� 2k�k �

�
2k�k

��1
" D "

for any  2 F . This concludes the proof.

Lemma 5.11. For a residually amenable group � , the intermediate completion C �A.�/
is quasi-diagonal. Moreover, a homomorphism �Wƒ! � between residually amenable
groups induces the �-homomorphism �AWC

�
A.ƒ/! C �A.�/.

Proof. Let �n and �n be as in Lemma 5.10. By the Tikuisis–White–Winter theorem
[36], the group C �-algebra C �.�n/ is quasi-diagonal. Pick a dense sequence ¹anºn2N

of C �A.�/. Then, for each n 2N, there is an increasing sequence ¹pn;m 2 B.`2.�n//ºn�m
of finite rank projections such that kŒ�n.al /; pn;m�k < 2�m for all l � m. Now, pm WDL
pn;m is an increasing sequence of finite rank projections in

L
`2.�n/ such that

kŒ
L
n �n.al /; pm�k! 0 for all l 2N. Since

L
n �n is a faithful representation of C �A.�/,

the proof of the first part of the lemma is completed.
The second part follows from the fact that ��.A�/ � Aƒ since amenability is passed

to subgroups [2, Corollary G.3.4].

Theorem 5.12 ([13, Corollary 4.4]). Let � be a residually amenable group. Then, for any
finite CW-complex X with a reference map f WX ! B� , any element in Im.ˇ� ı ��/ �
K0.X/ is almost flat. Moreover, if � has the  -element (e.g., � is coarsely embeddable
into a Hilbert space), any element of Im.f �Q/ � K0.X/Q is almost flat.
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Proof. By Lemma 5.11, any element in the image of

.��A/
�
WKK

�
C �A.�/;C

�
! KK.C ��;C/

is quasi-diagonal in the sense of [13, Definition 2.2] and hence is mapped to an almost flat
element in K�.X/ by [13, Corollary 4.4]. Now, Remark 2.11 concludes the proof.

Now, we develop the relative version of Theorem 5.12. Let us define the intermediate
relative group C �-algebra

C �A.�;ƒ/ WD SC.�AWC
�
Aƒ! C �A�/;

where �A is a �-homomorphism given in Lemma 5.11. We discuss finite rank approxima-
tion of a representative of each element x 2 KK.C �A.�; ƒ/;C/. Let .�;H/ and .�;K/
be unital �-representations of C �A.ƒ/ and C �A.�/, respectively, such that � and x� WD
� ˚ � ı �A are ample. By Theorem 5.7 and Lemma 5.8, the KK-group KK.C �A.�;ƒ/;C/
is isomorphic to the K-group of Du

L.�A/ by the map ‚� .
As in Remark 4.8, let B WD B. xH/˚Q. xH/ B. xH/. Note that the inclusion �WK. xH/!B

to the first component induces the isomorphism of K-groups. Let p; q 2 B. xH/ denote
the projection onto H and K and set P WD .p; p/B, Q WD .q; q/B (note that Q D 0 if
� is the zero representation). Let …u WD .�1; �2; �0; z�; 1/ denote the stably h-relative
representation of .�;ƒ/ on .P;Q/ defined by �1 WD .Ad.u0/ ı �; �/, �2 WD .�; �/, �0 WD
.�; �/ and z�� is a continuous family of representations of ƒ onto P ˚Q defined as

z��./ WD

´ �
u0x�./u

�
0 ; x�./

�
� D 1;�

u0u
�
2��x�./u2��u

�
0 ; x�./

�
� 2 .1; 2�:

We write…u for the element of KK.C�;B.�1; 1// associated to …u as in (3.2). Since �
and � factor throughC �A.�/ andC �A.ƒ/, respectively, the Kasparov bimodule representing
…u actually determines an element of KK.C�A;B.�1; 1//.

Lemma 5.13. One has ‚� Œus�˝ � D …u.

Proof. Firstly, the unitary adjoint Ad diag.u0; u0u��s/ identifies ‚�.Œus�/ with the KK-
element represented by the quasi-homomorphism�

Ad.u0/ ı z�;Ad.u0u��s/z�
�
WC� ! B. zH/ FK. zH/:

At the same time,…u is also represented by a quasi-homomorphism Œ…1;…2� associ-
ated to…u defined as in (3.2); that is,…1 D .Ad.u0/ ı z�; z�/ and…2 D .Ad.u0u��s/z�; z�/.
This is observed as

…u D

�
zP1 ˚ zP2;…1 ˚…2;

�
0 1

1 0

��
D Œ…1;…2� 2 KK

�
C�A;B.�1; 1/

�
;

since the operator U as in (3.2) satisfies U � 1 2 K. zP / in our setting, namely, in the case
that Nu D 1.
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Now, we have �.Ad.u0/z�.a/�Ad.u0u��s/z�.a//D…1.a/�…2.a/ for any a 2 C�A.
That is, ŒAd.u0/ ı z�;Ad.u0u��s/z�� and Œ…1; …2� coincide as �-homomorphisms from
q.C ��A/ (following [11], qA denotes the kernel of A �A! A, where A �A denotes the
free product C �-algebra). Consequently, ‚� Œus�˝ � and…u determine the same element
by the description of the KK-group given in [11, Definition 1.5].

On the other hand, for a sufficiently large s 2 Œ0; 1/, we haveusu�0�u0x�./u�0�u0u�s � x�./ < "
for all  2 Gƒ. That is, �u;" WD .�1; �2; �0; usu�0/ is a stably relative .";G /-representation
of .�; ƒ/ onto .P; Q/. Note that �1; �2; �0 are genuine representations and only the
intertwiner usu�0 breaks the condition of genuine stable relative representation.

Lemma 5.14. For a unitary u 2 U.MN .D
u
L.�A/// and any " < .4C 4jI j2/�1, the KK-

cycle…u satisfies

`�;ƒ ˝C�.�;ƒ/ …u D
�
ˇ.�u;"/

�
2 K0.X; Y IB/:

Proof. We write vi for the Čech 1-cocycle ˇ.�i / for i D 1; 2; 0, where ˇ is as in (2.15),
and let pvi be the corresponding projection as in Remark 2.14. Since z�� D Ad.u0u�2��/ ı
.�2 ˚ �0/, Ad.u0u�2�� ˝ 1MI

/.pv2 ˚ pv0/ gives a continuous family of projections con-
necting pv1 ˚ pv0 and pv2 ˚ pv0 . Therefore, by a standard argument in C �-algebra K-
theory (see, for example, [31, Proposition 2.2.6]), we obtain a continuous path of partial
isometries .vs/s2Œ1;2� such that

� vsv
�
s D pv2 ˚ pv0 ,

� v�s vs D Ad.u0u�2�s ˝ 1MI
/.pv2 ˚ pv0/ for s 2 .1; 2�,

� v�1v1 D pv1 ˚ pv0 , and

� v2 D pv2 ˚ pv0 .

By the continuity of vs , there is s0 2 .1; 2� such that kvs1 � vs2k< " for any s1; s2 2 Œ1; s0�.
Set

ws WD

´
.pv2 jY ˚ pv0/.u2�su

�
0 ˝ 1MI

/ s 2 Œs0; 2�;

.pv2 jY ˚ pv0/.u2�s0u
�
0 ˝ 1MI

/v�s0vs s 2 Œ1; s0�:

Then, ws also satisfies wsw�s D pv2 jY ˚ pv0 , w�sws D Ad.u0u�2�s ˝ 1MI
/.pv2 jY ˚ pv0/

for s 2 .1; 2�, w�1w1 D pv1 jY ˚ pv0 , and w2 D pv2 jY ˚ pv0 .
Let Evi denote the P -bundle pviP

I
X D

zX ��i P . Then,

`�;ƒ ˝C�.�;ƒ/ …u D ŒEv1 ; Ev2 ; Ev0 ; w1� 2 K0.X; Y IB/

by Theorem 3.3. At the same time, we also have�
ˇ.�u;"/

�
D ŒEv1 ; Ev2 ; Ev0 ; w1�:
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Indeed, as is mentioned in (2.25) we have ˇ.�u;"/ D .v1; v2; v0; �I .usu�0//. Hence,
Œˇ.�u;"/� D Œ.Ev1 ; Ev2 ; Ev0 ; Nw/�, where Nw 2 C.Y / ˝ B.P ˚ Q/ ˝MI is the partial
isometry constructed in Remark 2.20 (3). In particular, Nw satisfies the inequality Nw � .pv2jY˚v0/.u2�s0u

�
0 ˝ 1MI

/
 < jI j2":

On the other hand, we havew1 � .pv2 jY ˚ pv0/.u2�s0u
�
0 ˝ 1MI

/


D
.pv2 jY ˚ pv0/.u2�s0u

�
0 ˝ 1MI

/.v�s0v1 � 1/


� kv�s0v1 � 1k < ";

and hence kw1 � Nwk < .1C jI j2/" < 1=4. This shows that w1 and Nw are homotopic as
unitary isomorphisms of B-module bundles.

Theorem 5.15. Let �Wƒ! � be a homomorphism between countable discrete groups.
Assume that .�; ƒ/ satisfies (2.6), (2.70), and (5.9). Let .X; Y / be a pair of finite
CW-complexes with a reference map f W .X; Y / ! .B�; Bƒ/. Then, any element x 2
Im.ˇ�;ƒ ı j�.�// � K0.X; Y / is stably almost flat. Moreover, it is almost flat if � is
injective.

Proof. By the assumption (2.70), the reduced relative group C �-algebra C �r .�; ƒ/ is de-
fined as in (2.9). TheC �-algebraC �A.�;ƒ/ is an intermediate completion of relative group
C �-algebras in the sense that there are quotient maps

C �max.�;ƒ/
�
�;ƒ
max;A
�����! C �A.�;ƒ/

�
�;ƒ
A;r

���! C �r .�;ƒ/:

By Theorem 2.10 (2), it suffices to show that any element of Im.ˇ�;ƒ ı �
�;ƒ
max;A/�K0.X;Y /

is stably almost flat. By Theorem 5.7 and Lemmas 5.8, 5.13, and 5.14, any element
of Im.ˇ�;ƒ ı �

�;ƒ
max;A/ is of the form Œˇ.�u;"/� by some unitary u 2 U.MN .D

u
L.�A///

and small " > 0, under the identification K0.X; Y IB/ Š K0.X; Y /. Here, we show that
Œˇ.�u;"/� is represented by a .5Cam";U/-flat stably relative vector bundle v on .X; Y / for
any small " > 0.

By Lemma 5.11 and the fact that u WD u2�s0u
�
0 satisfies u� 1 2K. xH/, there are finite

rank projections e 2 K.H/ and f 2 K.K/ such that

� kŒ�1./; e�k < " for  2 G� ,

� k.�1./ � �2.//e
?k < " and ke?.�1./ � �2.//k < " for any  2 G� ,

� kŒ�0./; f �k < " for  2 Gƒ,

� kŒu; e ˚ f �k < " and k.e? ˚ f ?/.u � 1/.e? ˚ f ?/k < ".

We define the map �ei W G� ! eBe D B.eB/ as �ei ./ WD e�i ./e 2 eBe. Similarly,

we also define �e
?

i , �f0 , and �f
?

0 . Let ue˚f denote the unitary component of the polar
decomposition of .e ˚ f /u.e ˚ f /; namely,

ue˚f WD .e ˚ f /u.e ˚ f /
�
.e ˚ f /u�.e ˚ f /u.e ˚ f /

��1=2
2 .e ˚ f /B.e ˚ f /:
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Similarly, we also define ue
?˚f ? WD .e? ˚ f ?/u.e? ˚ f ?/. Then, we have

(i) �ei and �e
?

i are .2";G�/-representation of � for i D 1; 2,

(ii) �
f
0 and �f

?

0 are .2";Gƒ/-representation of ƒ,

(iii) ue˚f 2 Hom5".�
e
1� ˚ �

f
0 ; �

e
2� ˚ �

f
0 / and

ue
?˚f ? 2 Hom5".�

e?

1 � ˚ �
f ?

0 ; �e
?

2 � ˚ �
f ?

0 /,

(iv) k�e
?

1 ./ � �e
?

2 ./k < " for any  2 � and kue
?˚f ? � 1k < ".

(i), (ii), and (iv) are straightforward. Here, we check (iii). For simplicity of notations, let
Ne WD e ˚ f . Since kNeu� Neu Ne � Nek < ", we haveue˚f � Neu Ne D  Neu Ne�1 � . Neu� Neu Ne/�1=2� � ":
This inequality and Neu Ne�.�1� ˚ �0/./� Neu� Ne � Ne�.�2� ˚ �0/./� Ne

� 2
Œu; Ne�C  Ne�u.�1� ˚ �0/./u� � .�2� ˚ �0/./� Ne < 3"

conclude thatue˚f �.�e1� ˚ �f0 /./�.ue˚f /� � Ne�.�e2� ˚ �f0 /./� Ne
� 2kue˚f � Neu Nek C

 Neu Ne�.�1� ˚ �0/./� Neu� Ne � Ne�.�2� ˚ �0/./� Ne < 5":
Now, (i), (ii), and (iii) say that

�e;f WD .�e1 ; �
e
2 ; �

f
0 ; u

e˚f /;

�e
?;f ?

WD .�e
?

1 ; �e
?

2 ; �
f ?

0 ; ue
?˚f ?/

are stably relative .5";G /-representations of .�;ƒ/ and

d.�u;";�
e;f
˚ �e

?;f ?/ < ":

Moreover, (iv) implies that

d
�
�e
?;f ? ; .�e

?

1 ; �e
?

1 ; �
f ?

0 ; 1/
�
< ":

By Theorem 2.24, we obtain that ˇ.�e;f / is a .5Cam";U/-flat stably relative bundle on
.X; Y / and

d
�
ˇ.�u;"/;ˇ.�

e;f /˚ ˇ.�e
?;f ?/

�
< 5Cam";

d
�
ˇ.�e

?;f ?/; .ˇ.�e
?

1 /; ˇ.�e
?

1 /; ˇ.�
f ?

0 /; 1/
�
< 5Cam":

The second inequality together with Remark 2.18 and Remark 2.20 (2) implies that�
ˇ.�e

?;f ?/
�
D
��
ˇ.�e

?

1 /; ˇ.�e
?

1 /; ˇ.�
f ?

0 /; 1
��
D 0
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if " > 0 is sufficiently small. Consequently, we obtain that�
ˇ.�u;"/

�
D
�
ˇ.�e;f /

�
C
�
ˇ.�e

?;f ?/
�
D
�
ˇ.�e;f /

�
for sufficiently small " > 0.

Since e and f are finite rank projections in K. xH/ � B, the quadruple .�e1 ; �
e
2 ; �

f
0 ;

ue˚f / also determines a .5"; G /-representation of .�; ƒ/ on a pair of finite rank vector
spaces .eH; fK/, which is denoted by � 0. Now,

��
�
ˇ.� 0/

�
D
�
ˇ.�e;f /

�
D
�
ˇ.�u;"/

�
2 K0.X; Y IB/

finishes the proof.
As is remarked at the beginning of Section 5, we can choose � as the zero representa-

tion if � is injective. Then, the projection f in the above argument is the zero projection,
and hence the obtained ˇ.� 0/ is a .";U/-flat relative vector bundle on .X; Y /. Therefore,
a given element x 2 Im.ˇ�;ƒ ı j�.�// is almost flat.

For a pair of connected (not necessarily finite) CW-complexes .X; Y /, we say that an
element x of K0.X; Y / or K0.X; Y /Q is (resp. stably) almost flat if f �x is (resp. sta-
bly) almost flat for any continuous map f from a pair of connected finite CW-complexes
.Z;W / to .X; Y /.

Then, Theorem 5.15, together with Theorem 2.10 (2), implies the following.

Corollary 5.16. Let �Wƒ! � be a homomorphism between countable discrete groups.
Assume that .�;ƒ/ satisfy (2.6), (2.70), (2.8), and (5.9).

(1) Any element x 2 K0.B�;Bƒ/Q is stably almost flat.

(2) If � is injective, any element x 2 K0.B�;Bƒ/Q is almost flat.

Equivalently, we characterize infiniteness of K-area by the characteristic class.

Corollary 5.17. Let M be a compact spin manifold with a boundary N such that � WD
�1.M/ andƒ WD �1.N / satisfies (2.6), (2.70), (2.8), and (5.9). Let f denote the reference
map from .M;N / to .B�;Bƒ/.

(1) Then, .M;N / has an infinite stably relative K-area if and only if ch.f�ŒM;N �/D
0 2 Hev.B�;BƒIQ/.

(2) If �Wƒ! � is injective, then .M;N / has an infinite relative K-area if and only if
ch.f�ŒM;N �/ D 0 2 Hev.B�;BƒIQ/.

Proof. It immediately follows from Corollary 5.16. We only remark that the Chern char-
acter gives an isomorphism between K0.B�;Bƒ/Q and

H ev.B�;BƒIQ/ WD
Y
n2N

H 2n.B�;BƒIQ/ Š
�M
n2N

H2n.B�;BƒIQ/
��
:
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