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Lifting theorems for completely positive maps
James Gabe

Abstract. We prove lifting theorems for completely positive maps going out of exact C *-algebras,
where we remain in control of which ideals are mapped into which. A consequence is, that if X
is a second countable topological space, 2 and B are separable, nuclear C *-algebras over X, and
the action of X on 2 is continuous, then E(X; 2, B) = KK(X; A, B) naturally. As an application,
we show that a separable, nuclear, strongly purely infinite C *-algebra 2 absorbs a strongly self-
absorbing C *-algebra D if and only if 3 and 3 ® D are K K -equivalent for every two-sided, closed
ideal ¥ in 2. In particular, if 2 is separable, nuclear, and strongly purely infinite, then A ® @2 = A
if and only if every two-sided, closed ideal in 2 is K K-equivalent to zero.

1. Introduction

Arveson was perhaps the first to recognise the importance of lifting theorems for com-
pletely positive maps. In [1], he uses a lifting theorem to give a simple and operator
theoretic proof of the fact that the Brown—Douglas—Fillmore semigroup Ext(X) is actually
a group. This was already proved by Brown, Douglas, and Fillmore in [5], but the proof
was somewhat complicated and very topological in nature. All the known lifting theorems
at that time were generalised by Choi and Effros [8], when they proved that any nuclear
map going out of a separable C *-algebra is liftable. This result, together with the dilation
theorem of Stinespring [31] and the Weyl-von Neumann type theorem of Voiculescu [33],
was used by Arveson [2] to prove that the (generalised) Brown-Douglas—Fillmore semi-
group Ext(2) defined in [6] is a group for any unital, separable, nuclear C *-algebra 2.
When doing this, Arveson included a simplified proof of the lifting theorem of Choi and
Effros, a proof which in many ways illustrates, that the Choi—Effros lifting theorem is a
non-commutative analogue of the selection theorems of Michael [25].

Kasparov [18] used the same idea as Arveson to prove that for any separable, nuclear
C *-algebra 2 and any o-unital C *-algebra B, the semigroup Ext(2, B) is in fact a group.
It was also an application of the Choi-Effros lifting theorem, which allowed Kasparov to
prove that the functor KK (2, —) is half-exact for any separable, nuclear C *-algebra 2,
and thus induces a six-term exact sequence for any short exact sequence of o-unital C *-
algebras. This fails if one does not assume 2 to be nuclear, which is basically due to the
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fact, that we can not lift completely positive maps in general. So K K-theory lacks certain
desirable properties such as excision, i.e. that short exact sequences of C *-algebras induce
six-term exact sequences of K K-groups. In an attempt to fix this “defect” of K K-theory,
Higson [16] constructed E-theory, which resembles K K -theory quite a bit, but which is
always half-exact. As a consequence of the half-exactness of KK (2, —) for separable,
nuclear C *-algebras 2, it follows that E (2, 8) =~ KK (2, B) naturally, for such 2.

We say that a topological space X acts on a C *-algebra 2, if there is an order pre-
serving map from the lattice Q(X) of open subsets of X, to the lattice I(2) of two-sided,
closed ideals in 2. A map between such C*-algebras is X-equivariant, if it respects the
action. Kirchberg introduced a modified version of K K-theory for C *-algebras with an
action of X, and proved the very deep result [20] (see also [13]), that all separable, nuclear,
strongly purely infinite C *-algebras with a tight action of X, are classified by K K(X)-
theory. Here tight refers to the action Q(X) — I(2) being a lattice isomorphism. As it
turns out, the functor K K(X; 2, —) is not half-exact in general, not even when I is nu-
clear. This is mainly due to the lack of lifting theorems for completely positive maps, for
which we preserve the action of X.

In [10], Dadarlat and Meyer construct a version of E-theory for C*-algebras with
an action of X, which is half-exact, and which also possesses other nice properties which
K K (X)-theory does not enjoy. Thus, it would be desirable to find sufficient criteria for
when E(X; U, B) = KK(X; 2, B) naturally, as it is known that nuclearity of 2 does not
suffice. This is the main motivation of this paper. We show that if 2 and B are nuclear,
and if the actions of X on 2 and B satisfy certain continuity properties, then E(X; 2, B) =~
KK(X; %, B) naturally. This is done by proving that we may lift X-equivariant completely
positive maps, while preserving the X-equivariant structure.

Combining this result with the deep classification result of Kirchberg [20], it follows
that all separable, nuclear, strongly purely infinite C *-algebras with a tight action of X,
are classified by E(X)-theory. We apply this to show that if 2 is a separable, nuclear,
strongly purely infinite C*-algebra, and D is a strongly self-absorbing C *-algebra, then
A=A®Difand only if I and I ® D are K K-equivalent for every two-sided, closed
ideal 3 in 2L.

In particular, let 2 be a separable, nuclear, strongly purely infinite C *-algebra, let
M, denote the UHF algebra of type n°°, @ denote the universal UHF algebra, and O,
denote the Cuntz algebra. We show that:

o If all two-sided, closed ideals in 2 satisfy the UCT, then 2 =~ % ® M, ~ if and only
if K«(3) is uniquely n-divisible for every two-sided, closed ideal 3 in 2L.

o If all two-sided, closed ideals in 2 satisfy the UCT, then % =~ A ® @ if and only if
K. (3) is uniquely divisible for every two-sided, closed ideal 3 in 2L.

o A = AR O, if and only if every two-sided, closed ideal in 2 is K K-equivalent to
Zero.
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The author has been made aware that Eberhard Kirchberg announced results partially
overlapping with results presented here, at the 2009 Oberwolfach meeting “C*-Algebren”,
cf. [21], and thanks Ralf Meyer for pointing this out.

2. A Hahn-Banach separation theorem for closed operator convex
cones

Definition 2.1. Let 2 and B be C *-algebras and let CP (2, B) denote the convex cone
of all completely positive (c.p.) maps from 2l to 2B. A subset C of CP (2, B) is called an
operator convex cone if it satisfies the following:

(1) Cis aconvex cone,
(2) if ¢ € Cand b in B then b*¢p(—)b € C,
3) ifpeCay,...,a, €A, and by,...,b, € B then the map

n
Y big(ar(—)a)b; Q.1
i,j=1
isin C.
We equip € with the point-norm topology, and say that it is a closed operator convex cone,
if it is closed as a subspace of CP (X, B).

We will almost only be considering operator convex cones which are closed.

Example 2.2. A c.p. map is called factorable if it factors through a matrix algebra by
c.p. maps. The set C P (A, B) € CP (A, B) of all factorable maps is an operator convex
cone.

Checking (1) in the definition amounts to the observation, that there exists a condi-
tional expectation My; — My & M;j, so if two c.p. maps factor through My and M;
respectively, then their sum factors through Mj ;. Condition (2) is obvious, so only
(3) remains to be checked. Let ay,...,a, € A and by, ..., b, € B be given, and ¢(”):
M, (A) — M,(®8) be the amplification of ¢. Let r € M; , () be the row vector r =
(ay -+ ap),and ¢ € My 1 (B) be the column vector (b; --- by,)". The map in equation (2.1)
is exactly ¢*¢ (r*(—)r)c, which is factorable since ¢ is (clearly) factorable. Hence
C P, (%, B) is an operator convex cone.

A c.p. map is called nuclear if it can be approximated point-norm by factorable maps,
i.e. if it is in the point-norm closure of C P, (2, 9B). Thus, the set C Py (2, B) of nuclear
c.p. maps is a closed operator convex cone.

The above definition of nuclearity agrees with the one often used in the literature (for
contractive maps), e.g. the definition used in the book by Brown and Ozawa [7, Defini-
tion 2.1.1], in which the maps going in and out of the matrix algebras are assumed to be
contractive. This has been well known for a long time, and a proof of this is presented in
[14, Lemma 2.3] (alternatively, see [13, Lemma 3.7]).
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Observation 2.3. Note that by our definition of a nuclear map, it follows immediately
that the composition of any c.p. map with a nuclear map, is again nuclear. We will use this
fact several times without mentioning.

The following is a well-known, very basic result on c.p. maps using the Hahn—Banach
separation theorem.

Lemma 2.4. Let C C CP(U,B) be a point-norm closed convex subset. If p € CP (N, B) is
in the point-weak closure @pl_weak C CP(U,B**), then ¢ € C, i.e. if foreveryay,...,a, €
A, every f1,..., fn € B* (or in the state space S(B)) and every ¢ > 0 there is a Y € C,

such that
| fi(p(ai) — fi(¥(ai))| <&, fori=1,....n,
then ¢ € C.

Proof. This is an easy Hahn—Banach separation argument. In fact, leta;, . ..,a, € 2. The
set

{W@)..... W) ¥ e}

is a norm-closed convex subset of B". Hence, by the Hahn—Banach separation theorem

(since we can not separate (¢(ay), ..., ¢(ay)) from the above set by linear functionals)
we must have (¢ (ay), ..., ¢(ay)) is in the above set. Now the result follows trivially since
C is point-norm closed. ]

Kirchberg and Rgrdam show in [23, Proposition 4.2], that if € € CP (2, B) is a closed
operator convex cone, where  is separable and nuclear, and ¢: 2l — B is any c.p. map,
then ¢ € C if and only if ¢(a) € B{Y(a) : ¥ € C}'B for every a € A. We refer to this
as a Hahn—Banach separation theorem for closed operator convex cones, as one obtains a
separation of ¢ from a closed operator convex cone, and since the result relies heavily on
the Hahn—Banach separation theorem.

We generalise the result of Kirchberg and Rgrdam to exact C*-algebras and nuclear
c.p. maps, and where we only take positive elements in 2. The proof is virtually identical
to the proof of [23, Proposition 4.2], but we fill in the proof for completion.

Theorem 2.5. Let A and B be C*-algebras with N exact, and let @ € CP (U, B) be a
closed operator convex cone. Suppose that C C CPy (A, B) and let ¢ € CPpy (A, B).
Then ¢ € Cifand only if p(a) € B{Y(a) : ¥ € C}B for every positive a € .

Proof. “Only if” is obvious. For “if”, suppose ¢ (a) € B{y¥(a) : ¥ € C}B for every pos-
itive a € 2. By Lemma 2.4 it suffices to show, that given ay,...,a, € %A, ¢ > 0 and
f1s..., fn € B, thereis a ¥ € C such that

| fi(p(ai)) — fi(¥(ai))| <e, fori=1,...,n.

By [22, Lemma 7.17 (i)] we may find a cyclic representation 7: 5 — B(F) with cyclic
vector £ € J¢, and elements cq,...,c, € w(B) NB(H), such that f;(b) = (m(b)c;&, E)
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fori =1,...,n.Let € = C*(cy,...,cy) and t: € < B(H) be the inclusion. For any
c.p. map p: A — B there is an induced positive linear functional on A Q.x € given by
the composition

A Dmax € 229 B @ € 25 B(H) =5 C,

where wg is the vector functional induced by £, i.e. we(T) = (TE, §). If p is nuclear,
then p ® idg above factors through the spatial tensor product 2 ® € (see e.g. [7, Lemma
3.6.10]), so if p is nuclear it induces a positive linear functional 7, on A ® €.

Let X be the weak-* closure of {ny : ¢ € C} C (A @ €)*. It suffices to show that
ne € X since, if [ng(a; ® ¢;) — ny(a; ® ¢;)| < e for some ¥ € C, then

Ji(@(ai)) = (m($(ai))ci§. §) = ng(ai ® ci)
~e Ny (ai ® ¢;) = (t(Y(ai))ci&, §) = fi(Y(ai)),

fori = 1,...,n, which is what we want to prove. It is easily verified (e.g. by checking
on elementary tensors a ® ¢) that ny, + 7y, = Ny, +y,, and that tny = 9.y forz € Ry,
Hence X is a weak-* closed convex cone of positive linear functionals.

We want to show thatif ne K andd € A ® €, then d*nd :=n(d*(—)d) € K. Since KX
is weak-x* closed, it suffices to show this for n = 7y where ¢y € C,and d = Z};l Xj ® yj
where x1,...,xx € Wand y1,...,yx € €. Fora € A and ¢ € € we have

k

k
ny(d*@®cyd) = Y ny((xfax) ® (yFey)) = Y (m(p(xfax))eyi§, yi§).

Jil=1 Jl=1

Since £ is cyclic for 7 we may, for any § > 0, find by, ..., by € B such that ||7(b;)§ —
v;€|l < é. Thus, by choosing § sufficiently small we may approximate d*7nyd in the
weak-* topology by

k k

(W (Fax))embE wb)g) = (x( D bFw(fax)b )t €) = nyola @ o).
=1 Jl=1
where Yo = Zf‘,l:l F Y (x7(—)x)by € €. Thus,d*nd € X forany n€ X andd € A® €.
Let & be the subset of 2 ® € consisting of elements d such that n(d*d) = 0 for all n € X.
By [22, Lemma 7.17 (ii)] it follows that § is a closed two-sided ideal in 2 ® €, and that
ne € Kifng(d*d) =0foralld € J.

Since 2 is exact,  is the closed linear span of all elementary tensors x ® y for which
X®y € (seee.g. [7, Corollary 9.4.6]). Recall that the left kernel of 74, i.e. the set of all
d such that ng(d*d) = 0, is a closed linear subspace of & ® €. Hence it suffices to show,
that when x € W and y € € are such that x ® y € J, then ny(x*x ® y*y) = 0. Fix such
x and y.
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By assumption ¢ (x*x) € B{Y (x*x) : ¥ € C}B. Thus, for any § > 0 we may choose
Yi,...,¥m € Cand by, ..., by € B such that

oo (Spustenom,)| <5
j=1

Let ¥ = 7., b¥y;(—)b; which is in €, such that [|¢(x*x) — ¥ (x*x)| < §. Since
Ny (x*x ® y*y) = O we get that

N(x*x ® y*y)| = [np(x* x ® y*y) — ny (x*x @ y*y)|
= [(m(p(x*x) — ¥ (x*x))yE, yE)|
< 8|lyE|>.

Since § was arbitrary we get that 74 (x*x ® y*y) = 0 which finishes the proof. L]

2.1. An abstract lifting result

The main goal of this paper, is to obtain lifting results for c.p. maps, where we remain in
control of the lift, in the sense that we may choose a lift in a given closed operator convex
cone. This can be obtained as an application of the Hahn—Banach type theorem. First we
need a lemma, which is essentially due to Arveson.

Lemma 2.6. Let 2,8 and € be C*-algebras with A separable, and let 7:B — € be a
surjective x-homomorphism. Let C C CP (U, B) be a closed operator convex cone. Then

7(@):={moyy:y €C}
is a closed operator convex cone.

Proof. Clearly r(C) is an operator convex cone. That 7 (C) is point-norm closed is essen-
tially the same proof as [2, Theorem 6] (that the set of c.p. maps with contractive c.p. lifts is
point-norm closed). However, to run Arveson’s argument we must show that if ¢: %l — €
is a contractive c.p. map which is a point-norm limit of a net of (not necessarily con-
tractive) maps 7 o Y, with ¥, € C, then there is a sequence of contractive maps 1/7,, €
C such that 7w o 1/7,1 — ¢ point-norm. Let (a,)nen and (e,)nen be a dense sequence
and an approximate identity respectively in 2. For each n € N we fix A, such that
|7 (Y2, (enxen)) — d(enxen)| < 1/n for x € {1,ay,...,a,}. We may pick a positive
contraction fn € ker 7 such that [[(1 — fu)¥a,(e2)(1 — f)ll < (D) + 1/n < =L
Let ¢, := it (1= fa) ¥, (en(—)en)(1 — fu) € C which is contractive. It is easy to check
that 7w o w,, — ¢ point-norm. Now the exact same proof as [2, Theorem 6] (alternatively,
see [7, Lemma C.2]) provides ¥ € C such that 7 o Y = ¢. ]

Proposition 2.7. Let U be a separable, exact C*-algebra, let 6 be a C*-algebra with a
two-sided, closed ideal §, and let w:B — B/ be the quotient map. Let C C C Py (U, B)
be a closed operator convex cone. A c.p. map ¢: 0 — B/ lifts to a c.p. map in C if and
only if ¢ is nuclear and ¢ (a) € w(B{Y(a) : ¥ € C}B), for every positive a € U.
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Proof. 1f ¢ lifts to amap ¥ € C, then ¢ = 7 o ¥ is nuclear (as ¢ is nuclear), and ¢ (a) =
7 (Y(a)) € (B{Y'(a) : ¥’ € C}B) for every positive a € 2.

Suppose that ¢ is nuclear, and that ¢ (a) € 7 (B{Y (a) : ¥ € C}*B) for every positive
a € 2. By Lemma 2.6, the set 7(C) of c.p. maps that lift to C, is a closed operator convex
cone consisting only of nuclear maps. Thus, by our Hahn—-Banach type separation theorem
(Theorem 2.5), ¢ € m(C) if and only if

¢(a) € (B/3){n(a) :n € n(€)}(B/J)
=n(®B){moy(a): ¥ € Cin(B)
= n(%{w(a) VNS 8}58) |

3. Exact C *-algebras and nuclear maps

In this short section, we prove a few well-known results about exact C *-algebras. For
a C*-algebra B, we let M(B) denote its multiplier algebra, and Q(*B) := M(B)/B its
corona algebra.

Definition 3.1. Let 2 and B be C *-algebras, and ¢: 2L — M(B) be a c.p. map. We say
that ¢ is weakly nuclear if the c.p. maps b*¢p(—)b: A — B are nuclear for all b € B.

Recall, that a C*-algebra is exact if and only if the C*-algebra has a faithful rep-
resentation on a Hilbert space which is nuclear. By Arveson’s extension theorem, this is
equivalent to any representation on a Hilbert space being nuclear. We need the following
other characterisation of exactness.

Proposition 3.2. A C*-algebra U is exact if and only if it holds that for any o-unital
C*-algebra B and any weakly nuclear map ¢: % — M(B), ¢ is nuclear.

Proof. Suppose that any weakly nuclear map from 2l into a multiplier algebra of a o-unital
C *-algebra is nuclear. To show that 2 is exact, it suffices to show that every separable C *-
subalgebra is exact. Let 2y € 2 be a separable C *-subalgebra, and let 7: 2y — M(K)
be a faithful representation. By Arveson’s extension theorem, we may extend this map to
ac.p. map 7: A — M(K), which is nuclear by assumption. Thus, 7 is nuclear and hence
A, is exact. It follows that 2 is exact.

Now suppose that 2l is exact, that B is any o-unital C *-algebra and ¢: 2L — M(B) is
weakly nuclear. By standard arguments we may assume that 2l and ¢ are unital. It suffices
to show that for any unital, separable C *-subalgebra 2, the restriction ¢|g, is nuclear. Let
t: Ay — M(K) be a unital inclusion. Since U is a C *-subalgebra of an exact C *-algebra,
it is itself exact, and thus ¢ is nuclear. Let ® be the composition

Ao 5 MEK) 25 M(B) @ MK) < M(B & K),

which is nuclear. It basically follows from a result of Kasparov in [17] (see [9] for details
on generalising Kasparov’s result to the case which we are considering) that ® absorbs
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any unital weakly nuclear c.p. map. In particular, it absorbs the map ¢y, defined as the
composition

dlar, id ®e11
Ay —— M(B) —— M(B)  M(K) — M(B ® K).

Thus, there is a sequence of isometries (v,) in M(8 ® K) such that v,y &(—)v, converges
point-norm to ¢g. Since @ is nuclear it follows that ¢¢ is nuclear. There is a conditional
expectation W given by the composition

M(®B @ K) 2 OUEU ) @ eqy = M(B)

such that W o ¢ = ¢ |9, and thus ¢|g, is nuclear. |

Recall, that when 0 — B — € — 2 — 0 is an extension of C *-algebras, there is an
induced *-homomorphism 7: 20 — Q(B) := M(B)/B called the Busby map. Also, there
is a canonical isomorphism from € onto the pull-back

A Do) M(DB) := {(a,m) € A D M(B) : t(a) = m + B}.

An interesting observation can be made on extensions of exact C *-algebras by nuclear
C *-algebras. This will be used in Theorem 5.6 to prove an Effros—Haagerup type lifting
result, cf. [12].

Corollary 3.3. Let 0 — B — € — A — 0 be an extension of C*-algebras with Busby
map t. Suppose that N is exact and *B is o -unital and nuclear. Then € is exact if and only
if T is nuclear:

Proof. If @ is non-unital we may consider the unitised extension 0 — 8 — &1 — AT — 0.
Since 7 is nuclear if and only if the unitisation v is nuclear, and & is exact if and only if
&1 is exact, we may assume that € is unital. It is well known (see e.g. [7, Exercise 3.9.8])
that the extension algebra of an extension of exact C*-algebras is exact if the extension
is locally split. The converse is also true, and follows from [12]. If t is nuclear then for
any finite dimensional operator system £ C 2, there is a c.p. lift 7: E — M(B) of t|g
by the Choi-Effros lifting theorem [8]. If t: E — U is the inclusion, then (¢, 7): E —
A Bop) M(B) = € is a c.p. lift of «. Hence the extension is locally split and thus € is
exact.

If € is exact then it is locally split as noted above. Since B is nuclear it follows from
[12] that for any separable C *-subalgebra A, C A there is a c.p. lift 7: Ay — M(B)
of t|g,. Since B is nuclear it follows that T is weakly nuclear, and since 2 is exact it
follows from Proposition 3.2 that 7 is nuclear. Hence 7|y, = 7 o 7 is nuclear. Since 2
was arbitrarily chosen, it follows that 7 is nuclear. [
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4. Ideal related completely positive selections

In this section, we prove ideal related selection results for completely positive maps, where
we by ideal related mean X-equivariant as defined below. The purpose of these selection
results, is to construct “many” X-equivariant c.p. maps between two X-C *-algebras, which
is important when one wishes to lift X-equivariant c.p. maps to X-equivariant c.p. maps.

4.1. Actions of topological spaces on C *-algebras

When X is a topological space, we let Q(X) denote the complete lattice of open subsets
of X. Also, for a C*-algebra 2, we let I(2) denote the complete lattice of two-sided,
closed ideals in 2L.

Definition 4.1. Let X be a topological space. An action of X on a C*-algebra 2 is an order
preserving map ¥ : O (X) — I(2), i.e. a map such that if U C Vin O (X) then ¢ (U) C ¢ (V).
A C*-algebra U together with an action ¥ of X on 2, is called an X-C *-algebra.
It is customary to suppress the action ¥ in the notation, by simply saying that 2l is an
X-C *-algebra, and defining 2L(U) := (V) for U € O(X).
A map ¢: A — B of C *-algebras with actions of X is called X-equivariant if ¢ (2 (U)) C
B (V) for every U € O(X).

Remark 4.2. If X is a space acting on the C *-algebras 2 and B, then the set CP (X; 2, B)
of X-equivariant c.p. maps 2 — B is a closed operator convex cone.

In particular, the set of all nuclear, X-equivariant c.p. maps 2l — 8 is a closed operator
convex cone, as this is the set CP(X; 2, B) N C Py (A, B), and since being a closed
operator convex cone is preserved under intersections.

It is often necessary to impose stronger conditions on our actions.

Definition 4.3. Let U be an X-C *-algebra. We say that 2 is

* finitely lower semicontinuous if 2(X) = 2, and if it respects finite infima, i.e. for open
subsets U and V of X we have

A(U) N AV) = AU N V),

* lower semicontinuous if A(X) = A, and if it respects arbitrary infima, i.e. for any
family (U, ) of open subsets of X we have

() 2(Us) = A),
A

where U is the interior of (), U,

» finitely upper semicontinuous if (@) = 0, and if it respects finite suprema, i.e. for
open subsets U and V of X we have

A(U) + AV) = AU U V),
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* monotone upper semicontinuous if it respects monotone suprema, i.e. for any increas-
ing net (U, ) of open subsets of X we have

Uawn =a(Ju).

* upper semicontinuous if it is finitely and monotone upper semicontinuous.

Note that an upper semicontinuous X-C *-algebra € satisfies €(@) = 0. This condition
ensures that the map W: [(€) — O(X) given by

@) = J{ueom:cu) c3}

is well defined. This will be used in the proof of Proposition 4.11. That a lower semicon-
tinuous X-C *-algebra € satisfies €(X) = €, is for a similar reason.

Definition 4.4. Let 2 be an X-C *-algebra, a € % and U € O(X). We say that a is U-full, if
U is minimal amongst open sets V € O (X) for which a € 2(V), i.e. a € A(U) and whenever
V € O(X) such that a € (V) then U C V.

If a is U-full, then the set U is unique.
Notation 4.5. Whenever a € 2 is U-full for some U € O(X), then we denote by U, := U.

Any element a € 2 in a C*-algebra generates a two-sided closed ideal 2a 2 which
corresponds uniquely to an open subset U of Prim 2I. If 2 is equipped with the canonical
action O (Prim 21) — I(), then a is U-full for this set U € O (Prim (), so A(U,) = Aa .
If 2 is a general X-C *-algebra, and a € 2 is U,-full, then one should think of U, as being
the open subset of X generated by a.

We will use the following result from [14]. For the sake of completion, we give a
proof.

Proposition 4.6. Let 2L be an X-C *-algebra. Then 2 is lower semicontinuous if and only
if every element a € N is Uy-full for some (unique) U, € O(X).

Proof. If A is lower semicontinuous and a € 2, let U, be the interior of the intersection
of all open sets U C X for which a € A(U). As 2(X) = 2, this construction is well defined.
By lower semicontinuity, a € 2(U,), so a is U,-full, as U, is minimal amongst U € O (X)
for which a € 2A(U).

Suppose every a € U is U,-full, let (Uy) be a family of sets in O(X), and U be the
interior of the intersection of (Uy). Clearly 20(U) € (| 2(Uy). Leta € (A(Uy). Asa €
A(Uy) for all A, it follows that U, C U, for all A, and thus U, € U. So a € A(V) and thus
A(U) = 2A(U,). Finally, suppose a € 2 \ 2(X). Thena € A(U,) C A(X), a contradiction,
so A = A(X). ]

Example 4.7. Let X be a locally compact Hausdorff space. A Cy(X)-algebra is a C *-alge-
bra 2 together with an essential x-homomorphism ® from Cy(X) into the centre of M(20).
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Essential means that ®(Cy(X))% = A. As described in [24, Section 2.1] there is a one-
to-one correspondence between such x-homomorphisms, and actions of X on 2l which are
finitely lower semicontinuous and upper semicontinuous. The induced action is given by
AU) = AD(Cp(V)) for U € O(X). A Co(X)-algebra is called continuous if for every a € A,
the set Uy :={x € X: |ja + A (X \ {x})|| > 0} is open. If this is the case it is easily seen that
a is Ug-full, and conversely, if a is U, -full, then U, = {x € X: ||a + A(X\ {x})| > 0}. Thus,
A as an X-C *-algebra is continuous if and only if 2l as a Cy(X)-algebra is continuous.

Observation 4.8. Let 2l and 2B be X-C *-algebras with 2 lower semicontinuous. Then a
map ¢: A — B is X-equivariant if and only if for all (positive) a € U, ¢(a) € B(U,).

When B is an X-C *-algebra and © is any C *-algebra, then the spatial tensor product
B ® D is canonically an X-C *-algebra by the action U — B(U) ® D.

Lemma 4.9. Let B be an X-C*-algebra and © be a C*-algebra. Whenever B is mono-
tone (resp. finitely) upper semicontinuous, then so is B ® .

Suppose, moreover, that 6 or © is exact. If B is (finitely) lower semicontinuous, then
s0isB R D.

Proof. Monotone upper semicontinuity: this is clearly preserved when tensoring with .

Finite upper semicontinuity: Clearly (B ® ©)(@) = 0. If I and J§ are two-sided,
closed ideals in B, then (3 + §) ® D is the closed linear span of elementary tensors.
Since any element in I + § can be written as x 4+ y with x € 3 and y € {J it easily follows
that (3 +3) R D =3I QD+ F ® D. Thus, finite upper semicontinuity is preserved
when tensoring with .

(Finite) lower semicontinuity: Clearly (B ® D)(X) = B ® . Let () be a fam-
ily of two-sided, closed ideals in B, let § = (| 3, and let I = [(F1 ® D). Clearly
g ® D C 3I.By[7, Corollary 9.4.6], 3 is the closed linear span of all elementary tensors
b®dwithb e®B,de®andb®d € 3. For such b, d it easily follows that b € J,
s0 3 = J ® D. It clearly follows that (finite) lower semicontinuity is preserved when
tensoring with . |

4.2. Selection results

In this subsection, we will be applying a variation of one of the remarkable selection
theorems of Michael [25]. To do this we need some notation. Let Y and Z be topological
spaces. A carrier from Y to Z is a map I': Y — 2%, where 27 is the set of non-empty subsets
of Z. We say that I is lower semicontinuous if for every open subset U of Z, the set

{y eY:T(y)NuU # 0}

is open in Y. One of Michael’s selection theorems [26, Theorem 1.2] implies that if Y is
a paracompact 77-space (e.g. a second countable, locally compact Hausdorff space), if
(z*); is the unit ball of the dual space of a separable Banach space Z, and if T is a lower
semicontinuous carrier from Y to (Z*); such that I'(y) is a weak*-closed convex set in
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(z*); for all y €, then there exists a continuous map y:Y — (Z*); such that y(y) € I'(y)
for all y.

When Y is a locally compact Hausdorff space, y € Y we letevy,: Co(Y) — C denote the
*-homomorphism which is evaluation in y.

We will use the following ideal related selection result. A very similar result can be
found in the preprint [15, Lemma A.15].!

Lemma 4.10. Let Y be a second countable, locally compact Hausdorff space, and let N
be a lower semicontinuous Y-C *-algebra. For any distinct points y1, ..., yn €Y, and any
quasi-states g on A/AN \ {yx}), there is a contractive Y-equivariant c.p. map ¢: A —
Co(Y), such that

evy, (¢(a)) = ni(a + AV \ {yr})
foralla € .

Proof. First note that the forced unitisation AT has a canonical lower semicontinuous
action of Y given by AT(V) = (V) when V # Y and AT (Y) = AT, Let P(A") be the space
of pure states on AT, Let 1Y — 2° ") be the carrier given by

T(y) = {ne PN n@T(\{y)) =0} = {ne PN : A\ {y})) = 0}.

We claim that I" is lower semicontinuous. To see this, first recall (e.g. [28, Theorem 4.3.3])
that the continuous map P(AT) — Prim AT given by n +> ker ,), where 7, is the GNS
representation, is an open map. Thus, this induces a map

OPAY)) > OPrim AT = 1(AT).
We may construct a map I(A") — Q(Y), by

o
veo(y),
JcAt W)

Since 2T is lower semicontinuous, § is mapped to the unique smallest open subset V of Y
for which § € AT(V). Let ® denote the composition

OP @A) > OPrim AT) = (AT — O(Y).

The map ® can be described as follows: Let U € O (P(2AT)). Then there is a unique two-
sided, closed ideal §y in At such that

{kerﬂn ‘ne U} = {p € Prim AT : Su g p},

and ®(U) is the unique smallest open subset of Y such that §y € AT (D(U)).

'In [15, Lemma A.15] they assume that 2! is separable and Y is any locally compact Hausdorff space.
In their proof they use an unspecified selection theorem of Michael from [25]. The selection theorem with
weakest preliminary conditions in [25] requires Y to be normal. However, there are examples of locally
compact Hausdorff spaces (not second countable) which are not normal. Thus, the proof of [15, Lemma
A.15] requires more arguments than are given, if one should apply the selection theorems of Michael.



Lifting theorems for completely positive maps 403

We claim that for any U € O (P (")) we have

{yeY:T(y)NU#0} = )
and thus I" is a lower semicontinuous carrier. That this is true follows from

I'(y) NU =0 & forevery n € U we have ATY\ ) ¢ ker ;)
& {pePrim¥AT: 3, € p} S {p e Prim AT : AT(Y\ {y}) Z p}

& SucqT v\ {y)
& ®U) SY\{y}
< y ¢ O(U).

Let Q(A) € A* denote the quasi-state space of 2 and

Ky = {n € Q@) : n(AY\ {y})) = 0}

for every y € Y. Recall, that the restriction map (27)* — 2* induces a homeomorphism
P(A") — {0} U P(2). Moreover, under this identification, the closed convex hull of I'(y)
is exactly K. Thus, it follows from [25, Propositions 2.3 and 2.6] that the carrier I';: Y —
2@ given by Ty (y) = K, is lower semicontinuous.

Let A= {y1,...,ys} €Y which is (obviously) a closed subspace, and let ): oA —
A/AY \ {y}) be the quotient map for each y € Y. The map go: A — Q() given by
go(¥k) = ng o my, is clearly continuous and go(yx) € Ky, = I't(yx). Thus, it follows
from [25, Example 1.3*] that the carrier I'p:Y — 21 given by

DG = {{go(y)}, ify €A

Ky, otherwise

is lower semicontinuous. Since Y is a paracompact T7-space, and I';(y) is a closed convex
space for every y €Y, it follows from [26, Theorem 1.2] that there exists a continuous
map g:Y — (A*)y, such that g(y) € ['2(y) forall y €.

Now, let $: A — Cp(Y) be given by ev,, o qAS(a) = g(y)(a). Since ev, o qAS is a contrac-
tive c.p. map (a quasi-state) for every y €, it follows that ¢A> is a contractive c.p. map. Pick
a positive contraction f in Cy(Y) suchthat f(yx) =1fork =1,...,n. Then ¢: A — Cy(Y)
given by ¢(a) = f - ¢A>(a) is again a contractive c.p. map. Moreover, we clearly have

evy, (9(@) = f(yi) - gvi)(@) = n(a + A \ {yx})).

Thus, it remains to show that ¢ is Y-equivariant.

LetVe O(Y) anda € A(V). Forevery y ¢ Vwe have V C Y\{y} and thus a € A(Y\ {y}).
Since evy, o ¢ (a) € K, it follows that ev, o ¢(a) = 0, and thus ¢(a) € Co(Y \ {y}). Hence
we have

¢(@) € () Co(¥ \ {y}) = Co(V),
yEv
which implies that ¢ is Y-equivariant. ]
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The above lemma lets us prove the following selection result for X-equivariant maps.
Recall, that when 2 is a lower semicontinuous X-C *-algebra and a € 2, then U, denotes
the unique smallest open subset of X for which a € 2(U,).

Proposition 4.11. Let A be a lower semicontinuous X-C*-algebra and let € be a sepa-
rable, commutative, upper semicontinuous X-C *-algebra. For every positive a €  there
exists an X-equivariant c.p. map ¢: A — € such that ¢(a) is strictly positive in €(Uy).

Proof. LetY = Prim € such that € = Cy(Y). To avoid confusion, we will write € when we
are using the X-C *-algebra structure, and write Cy(Y) when we consider € = Cy(Y) with
the tight Y-C *-algebra structure. The idea of the proof, is to construct a lower semicon-
tinuous action W of Y on 2, such that a c.p. map A — € is X-equivariant if and only if the
same map (2, U) — Co(Y) is Y equivariant. When this is done we can apply Lemma 4.10
to construct X-equivariant c.p. maps A — €.

Construct a map ¥: O (Y) — O(X) given by

(V) = J{ue 0 : €u) S Co(v)}.

Since the action of X on € is upper semicontinuous, W(V) is the unique largest open subset
of X such that €(¥(V)) € Cy(V), in the sense that €(¥(V)) € Co(V) and if U € O(X)
satisfies €(U) € Cy(V) then U € W (V). We clearly have that W is order preserving and that
W(Y) = X. We want to show that whenever (V) is a family of open subsets of Y, and V is
the interior of () V, then W(V) is the interior of (") ¥ (V). For now, we let W denote the
interior of (| W (Vy).

Since W is order preserving we clearly have that W (V) € W. For the converse inclusion
we have that €(W) € C(¥(Vy)) C Co(Vy) for each . Hence C(W) € (1) Co (V) = Co (V).
It follows from the definition of ¥ that W € W(V), and thus we have equality.

Let U: O(Y) — I(A) be the action of Y on A given by \TJ(V) = A(Y(V)). It follows
that E’(Y) = 91, and since the action of X on 2 is lower semicontinuous, so is the action W,
by what we have proven above. Thus, (2, CI”) is a lower semicontinuous Y-C *-algebra.

We will prove that CP(X; 2, €) = CP(Y; (¥, \i), Co(Y)). To see this, first note that
C(¥(V)) C Co(V) for all V € O(Y). Thus, if ¢ is X-equivariant then

P (V) = $(A(¥ (V) C C(¥(V)) C Co(V)

and thus ¢ is Y-equivariant. For U € Q(X) let VY € Q(Y) be such that €(U) = Co(VY).
Since W(VY) is the unique largest open subset of X such that €(¥(V)) € Co(VY) = €(U)
it follows that U € W(VY). Thus, if v is Y-equivariant then

Y(AU)) S ¥ EAEVY) = Y(TW) € Co(W) = EU).

Hence it follows that CP(X; &, €) = CP(Y; (U, U), Co(Y)).
Fix a positive a € U. Recall that U, is the open subset of X such that a is U,-full, when
considering 2 with the X-C *-algebra structure. Since (2, V) is a lower semicontinuous
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Y-C *-algebra, we may find a unique open subset V, of Y such that a is V,-full when
considered with the Y-C *-algebra structure. We will show that €(U,) = Co(V,).

Since a € U(V,) = A(W¥(V,)) it follows from U,-fullness that U, € W(V,) and thus
C(Uy) € C(W(Vq)) C Co(Vy). Let W € O(Y) be such that Co(W) = €(Uy). Then U, C
W (W) by the definition of W. This implies that a € A (U,) < A(¥(W)) = T(W). By V-
fullness it follows that V, € W and thus Cy(V,) € Co(W) = €(U,). This shows that
6:(Ua) = CO(Va)-

Our goal is to construct an X-equivariant c.p. map ¥: 2L — € such that ¥ (a) is strictly
positive in €(U,). Equivalently, by what we have shown above, we should construct a
Y-equivariant c.p. map : (2, \3) — Cy(Y) such that ¥ (a) is strictly positive in Cg(Vy).

Suppose that V, = @. Then Cy(V,) = 0, and thus letting 1 be the zero map will suffice.
Thus, suppose that V, # @. For each y € V, we have that ||a + 2(Y \ {y})]| > 0. In fact,
ifa € A(Y \ {y}) then we would have

a € AWVa) NANV\{y}D = AVa \ {¥})

which contradicts that a is V,-full. Let 7, be a state on 2[/2(Y \ {y}) such that 1, (a +
ANY\ {¥}) = lla + A(Y \ {y})|l- By Lemma 4.10 there is a contractive Y-equivariant
c.p. map ¥y: (A, U) — Co(Y) such that ev, o ¥, (a) = ny(a + A \ {y})) > 0. Let
W,, C V, be an open neighbourhood of y such that ev; o ¥y, (a) > 0 for all z € W,,. Then
(Wy)yev, is an open cover of V,. Since Y is second countable (as € is separable) V, is
o-compact, so we may find a sequence (y,) of points in V, such that (W,,, ),eN covers V.
Let ¥ = > o2, 27"y, which is clearly a contractive Y-equivariant c.p. map. Clearly
0 < evy(y¥(a)) for every y € V,. Since ¥ (a) € Cy(V,) by Y-equivariance, it follows that
Y (a) is strictly positive in Co(Vy). [

4.3. Property (UBS)

Definition 4.12. Let B be an X-C *-algebra. If € is a separable, commutative, upper semi-
continuous X-C *-algebra, we will say that B has Property (UBS) with respect to € if there
exists a c.p. map ®: € — M(®8) such that B(U) = BO(C(V))B for all U € O(X).

We will say that 8 has Property (UBS) if it has Property (UBS) with respect to € for
some separable, commutative, upper semicontinuous X-C *-algebra €.

Remark 4.13. If ®B in the above definition is o-unital, then we may assume that the
c.p. map P factors through B. In fact, one may simply replace ® in the above definition
with b®(—)b for some strictly positive element b € ‘8.

The name (UBS) has been chosen, since these X-C *-algebras resemble the upper semi-
continuous C *-bundles over a second countable, locally compact Hausdorff space, as seen
in the following example.

Example 4.14. Let X be a second countable, locally compact Hausdorff space. It was
shown in [27] that any upper semicontinuous C *-bundle over X, may be considered,
in a natural way, as a Co(X)-algebra, i.e. as a C*-algebra B together with an essential
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*-homomorphism ®: Cy(X) — ZM(B), where ZM(B) is the centre of the multiplier
algebra. This induces an action of X on B given by

B(U) = BP(Co(V)) = BP(Co(V)B.
Thus, B with this action has Property (UBS) with respect to Cyp(X).

Example 4.15. Let X be a finite space, and 9B be an upper semicontinuous X-C *-algebra
such that B(U) is o-unital for each U € O (X). Then B has Property (UBS). Such X-C *-
algebras are considered in [14].

To see that B has Property (UBS), let € = P, C with the action of X given by
CU) = P,y C for U € O(X). This is easily seen to be an upper semicontinuous X-
C *-algebra. For x € X let U* be the smallest open subset of X containing x and let /i
be a strictly positive element in B(U*). The c.p. map ®: € — B, which maps 1 in the
coordinate corresponding to x to /i, satisfies the condition in Definition 4.12.

The following is the reason that we are interested in Property (UBS).

Proposition 4.16. Ler A be a lower semicontinuous X-C *-algebra and B be a o-unital
X-C*-algebra with Property (UBS). For any positive a € U, there exists a nuclear, X-
equivariant c.p. map ¢: N — B such that B (a)B = B(U,).

Proof. As *8 has Property (UBS), we may find a separable, commutative, upper semicon-
tinuous X-C *-algebra €, and a c.p. map ®: € — B such that B(U) = BD(E(V))B for all
U € O(X). Clearly ® is X-equivariant.

Fix a € U positive. By Proposition 4.11, there is an X-equivariant c.p. map ¢: % — €
such that v () is strictly positive in €(U, ). Let ¢ = ® o ¥, which is X-equivariant as both
Y and @ are, and nuclear since it factors through a commutative C *-algebra. Also,

Bp(@)B = BB(C(Ug)B = B(Uy). -

To give (many) more examples of X-C *-algebras with Property (UBS), we will use the
following lemma. Recall, that we let ® denote the spatial tensor product.

Lemma 4.17. Let © be a separable, exact C*-algebra. Then there exists a state n on
© with the following property: for any C*-algebra %6 and any two-sided, closed ideal &
in B, it holds for any x € B ® D that x € § ® DO if and only if id ®n)(x*x) € J.

Proof. Let (1,) be a weak-+ dense sequence in the state space of D and =Y > ; 27" ,.
Let §,®B and x be given. By [3, Corollary IV.3.4.2], we have x € § ® ® if and only
if (id ®n)(x*x) € § for every state ' on . Clearly it suffices to only consider the
case where 7’ runs through all 5, since these sit densely in the state space. But since
(id ®1n, ) (x*x) is positive for each n, and J is a hereditary C *-subalgebra of B, it follows
that (id ®7,)(x*x) € J for all n if and only if

22_"(id ®nn)(x*x) = (([d®n)(x*x) € §. ]

n=1
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Proposition 4.18. Ler °8 be a o-unital X-C*-algebra, let © be a separable, exact C*-
algebra, and let € be a separable, commutative, upper semicontinuous X-C*-algebra.
Then B has Property (UBS) with respect to C if and only if 5 ® © has Property (UBS)
with respect to C.

Proof. 1f B has Property (UBS) with respect to €, and P: 6 — M(B) is a c.p. map as in
Definition 4.12, then

d =3 R lyo): € = M(B) @M(D) = M(B ® D)

is a c.p. map satisfying (B ® D)P(C(U))(B R D) =B) ® DO.

Conversely, suppose that B ® © has Property (UBS) with respect to €. Clearly B ®
® is o-unital since it has a countable approximate identity, so we may find P:C>BRD
as in Remark 4.13. Let 7 be a state on ® as given by Lemma 4.17. Define ®: € — B to
be the composition

c v 2% g

Let Jy := BP(C(V))B. Since
P(C(U)) = (idp ®n)(P(E(V))) C (ids ®N(BU) ® D) = B(V).

it follows that §y € B(U). By Lemma 4.17 any element in ED(CS(U)) will be in §y ® D.
This implies that B(U) @ D C Jy ® D. It follows that B(U) = Jy which finishes the
proof. ]

The following proposition, which uses somewhat heavy machinery of Kirchberg and
Rgrdam, shows that almost all X-C *-algebras of interest have Property (UBS).

Proposition 4.19. Any separable, nuclear, upper semicontinuous X-C *-algebra has Prop-
erty (UBS). Moreover, we may choose that it has Property (UBS) with respect to a €, where
the covering dimension of Prim € is at most 1.

Although we do not need the covering dimension of € to be at most 1 in this paper,
the author believes that this could be important in future applications.

Proof. Let B be a separable, nuclear, upper semicontinuous X-C *-algebra. A C *-subalge-
bra € € Biscalled regularif (ENI)+(CENF)=CNE +J),andifCNI=CENJF
implies 3 = § forall 3, § € 1(B). By [23, Theorem 6.11]>, B ® 9, contains a regular,
commutative C *-subalgebra € such that Prim € has covering dimension at most 1. Clearly
€ is separable since B is. Equip € with the action of X given by €(U) = € N B) @ O,
for U € O(X).

Since € is a regular C *-subalgebra of B ® ,, which is upper semicontinuous by
Lemma 4.9, € is clearly upper semicontinuous.

2Note that the proof of [23, Theorem 6.11] does not require any of the classification results of [20]
although other results in the paper do. Thus, if one’s goal is to reprove the results in [20], one may still use
this result.
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Let 3 € I("B ® O3) and let § be the two-sided, closed ideal in B ® O, generated by
€ NJ.Then € N T = €N J which implies that I = . Thus,

BU)® Oz = (B R O2)CUV)(B R O)

for all U € O(X), so B ® O, has Property (UBS) with respect to €. By Proposition 4.18,
B has Property (UBS) with respect to €. ]

5. The ideal related lifting theorems

In this section, we prove X-equivariant versions of the Choi-Effros lifting theorem and
of the Effros—Haagerup lifting theorem. As a consequence, we show that extensions of
nuclear X-C*-algebras have X-equivariant c.p. splittings, as long as the actions on the
ideal and the quotient are sufficiently nice. Such results are closely related to ideal related
K K-theory.

If B is a C*-algebra, and J is a closed, two-sided ideal in 9B, then there are induced
ideals in the multiplier algebra and the corona algebra, given by

M8, 3) = {x € M(B) : xB < 3}
9B, 3) = 7 (M(B.J))

where : M(®B) — Q(B) is the quotient map.

If B is a stable C *-algebra, then there exist isometries s1, 52, ... € M(B) such that
Y heys 51 converges strictly to 1y (). By an infinite repeat X of an element x € M(B),
we mean Xoo = Zzozl skxs]’: , for some 51, 52, ... as above. Infinite repeats are unique up
to unitary equivalence. In fact, if #1, t5, ... € M(B) are also isometries as above, then
u =Y Rl st is aunitary in M(B) satisfying u* (3 _p_, s, x50)u = Y _p_; 1, xt;".

Lemma 5.1. Let § be a 6-unital ideal in a stable C*-algebra 8. Then M (8, &) contains
a (norm-)full projection P.

Proof. As & is an essential ideal in M(®8, &) there is an induced embedding ¢: M(°8, §) —
M(&). The image of ¢ is easily seen to be a hereditary C*-subalgebra of M(®B). In fact,
let x1,x2 € M(B, &) and y € M(S). We define a multiplier z € M(*B, &) by

zb = x1(y(x2b)), bz := ((bx1)y)x2, beB.

Then ¢(z) = t(x1)yt(x2), so t(M(B, §)) is hereditary in M().

As B is stable, B = B ® (%(N), as Hilbert B-modules. By Kasparov’s stabilisation
theorem [17, Theorem 2], the Hilbert B-module § @ B is isomorphic to B. Thus, there is
aprojection Q € B(®8) = M(*B) (correspondingto 1 & 0 € B(J & B)), suchthat 0B = §
as Hilbert B-modules. As (OB, 0B) = J, it follows that 0B QO = K(QB) is full in .
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Let P be an infinite repeat of Q in M(B). Clearly P € M (B, &), and it is easy to see’
that ¢((P) is an infinite repeat of t(Q) in M(J). Thus, it follows from a result of Brown
[4, Lemma 2.5], that ¢ (P) is Murray—von Neumann equivalent to 1y¢g). As t(M(B, ))
is a hereditary C *-subalgebra of M(), it follows that P is full in M(?B, ). |

For a positive element x in a C *-algebra, we let (x — €)+ := g¢(x) defined by func-
tional calculus, where g,: [0, c0) — [0, 00) is given by g.(¢) = max{0, ¢ — &}.

Lemma 5.2. Let B be a separable, stable C*-algebra, x € M(®8) be a positive element,
and let X0 denote an infinite repeat of x. For any ¢ > 0, let 3. = B(x — &)+ B. Then the
ideal M(B)xooM(B) contains the ideal M(B, Je).

Proof. Fix an ¢ > 0, and let f;: [0, 00) — [0, c0) be the continuous function
0, t =0,

Je() =1 1, t >,
affine, 0 <t <e¢.

Lety = (x —¢&)4 and 3; = ByB. As B is separable, J; is o-unital, so we may fix a full
projection P € M(®8, J.) by Lemma 5.1. Fix a strictly positive element & € 8 of norm 1.
We wish to recursively construct integers n; < np < --- < ng anday,...,a,, € B such
thatif zx = Y /% a¥ya; then |z| < 1and |[(1 — z¢) Ph| < 1/k.

Suppose we have constructed such up to the stage k. As (1 — zx)/2Ph € s, we
may choose a positive element e € 3, with |le|| < 1, such that ||(1 — e)(1 — zx) /2 Ph]|| <
1/(k +1). Let 8§ > 0 be small enough so that |le]| + & < 1 and ||(1 —e)(1 — zx) /2 Ph|| +
§<1/(k+1).Wemayfindm e N,and cy,...,c, € B suchthatz’' := Z:":] cl?“yci g e.
In particular, ||z’]| < 1 and

11— z)Y2(1 = 2/)(1 — z) Y2 Ph| < 1/(k + 1).

Letting nj41 = ng +m and an, +; = ¢; (1 — z;)'/? does the trick.

Then [|hP(1 — Y 7%, afya;) Ph|| — 0 for k — co. As hP(1 — Y}, a*ya;)Ph is
monotonely decreasing and has a subsequence tending to 0, the sequence itself will tend
to zero for n — co. Thus, ||(P — Y 7_, b*ybi)h|| — 0 for n — co where b; := a; P. As
h is strictly positive it follows that Y ;o ; b yb; converges strictly to P.

Let sy, 82, .. be isometries in M (%) such that ) ;= 5,57 converges strictly to 1)
Then (up to unitary equivalence) Xoo = ¥ ;o 8; X85, and fo(Xoo) = Y joq 8i fe(X)s].

Define the element d = Z;’il S;y 1/ 2p; (strict convergence). We check that this is well
defined, i.e. that Y 72 s;y 12, converges strictly. To see that dh converges, note that

- “ 1/2
| sy 2] =[5 bewbi|”* = 0. fornm > o
i=n i=n

3The embedding ¢ extends to a strictly continuous, unital *-homomorphism 1: M(8) — M(&), and if
$1, 82, ... are isometries in M(B) defining an infinite repeat, then ¢(s1), ¢(s2), . . . are isometries in M(&)
which induce an infinite repeat by strict continuity.
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Thus, Y /1 5y 12p; h is a Cauchy sequence, and thus converges. As / is strictly positive,
2 siy'/2b;b converges for every b € h'B = B.
Similarly, let i := Y 5o, 27% skhsi. We get that

m m m
0 3 syt 2| = | 30 2 sy 20| = 37 2K Im; o2
k=n k=n k=n

m
<> 27k > 0
k=n

for n,m — oo. Here we used that b yb; <> 72, b¥ yby < 1. Asabove, b ) 72, siyY/2b;
converges for b € Bhy. Thus, if &y is strictly positive, it will follow that d is well defined.
To see that hy is strictly positive, let § > 0, pick N € N such that

[e'e) N
* * ~ * *
E 5;S; hsys; ~s Z 5;8; hsy sy
J.k=1 J.k=1

and pick cjx € B such that ¢jxh ~5/ N2 s;‘hsk, which is doable as 4 is strictly positive.
Then

o0 o0 o0
h= (Zsjs_f)h(Zsks,’:) = Z 587 s sy
j=1 k=1

Jk=1

N N

* * *

~s Z 887 hsysg ~s Z 8jCjichsg
k=1 k=1

N
= ( Z ZijCj’ks;:)ho.
Jk=1

As § > 0 was arbitrary, it follows that i € Bho which implies that Ay is strictly positive,
since £ is strictly positive. Hence d is well defined.
Then, as f;(x)y'/? = y/2, we get

o0 o0 o0
d* fo(xeo)d = (Zb;‘yl/zs;f)(Zsk];(x)s;)(zs,yl/%,)
j=1 k=1 =1
o0
= > bFy'? f(x)y'?b;
i=1
= biybi = P.

i=1

As P was full in M(®8, §:), and as xo, and f(xoo) generate the same ideal in M(®B), it
follows that M(B, =) € M(B)xccM(B). L]
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Given any c.p. map ¢: 2 — B with 2 separable, and ®B o-unital and stable, Kasparov
showed in [17, Theorem 3] that there is a Stinespring-type dilation, in the sense that there
is a *-homomorphism ®: A —M(®B) and an element V e M(B) such that V*O(—)V =¢.
The pair (®, V) is called the Kasparov-Stinespring dilation of ¢, and the construction
could be done as follows:

Construct the (right) Hilbert B-module E := U ®4 B, by defining a pre-inner product
on the algebraic tensor product A ®c B given on elementary tensors by (a1 ® b1,d2 ®
by) = bi¢(a}a2)b,, quotienting out length zero vectors, and completing to obtain E. Let
- A — B(E) € B(E @ B) be the x-homomorphism given by left multiplication on the
left tensors. As 9B is stable, B = B ® ¢2(N) as Hilbert B-modules. Thus, by Kasparov’s
stabilisation theorem [17, Theorem 2], there is a unitary u € B(®B, E & B). We let

O = u*d(—)u: A — B(B) = M(D).

If W e B(B, E @ B) is the adjointable operator W(b) = (1 ® b,0), and V := u*W, then
V*O(—)V = ¢.
Whenever X acts on B, there is an induced action on M(®8) and Q(B) given by

M(B)(U) := M(B,BU)),  QB)(U) := B, B()).

Lemma 5.3. Let 2 be a separable, exact X-C*-algebra, and B be a o-unital, stable X-
C*-algebra. Suppose that ¢: 0 — B is a nuclear, X-equivariant c.p. map, and let ($, V)
be the Kasparov-Stinespring dilation constructed above. Then ®: 0 — M(B) is nuclear
and X-equivariant.

Proof. An element x € M(B) is in M(B, J) if and only if b*xb € J for every b € B.
Thus, ® is X-equivariant if and only if b* ®(—)b: A — B is X-equivariant for every b € B.
Moreover, as 2 is exact and B is o-unital, @ is nuclear if and only if ® is weakly nuclear,
i.e. the maps b*®(—)b are nuclear for every b € 9B, by Proposition 3.2. Thus, it suffices
to prove that 5* ®(—)b is nuclear and X-equivariant for every b € B. Clearly it suffices to
check this latter condition only on for b in dense subset of 8.

Note that b*®(—)b = b*u*(1 & 0)®(—)(1 & O)ub for any b € B. As any element
(1 ® 0)ub € K(B, E @ B) can be approximated* by an element of the form

n
T = Z 0xi,0),¢:+
i=1

where x; = Y a,(ci) ® b,(ci) € E (as such elements are dense in £) and ¢; € 8. Thus, it
suffices to check that T*ED(—)T is nuclear and X-equivariant for such 7 € K(B, E & ‘B).

“We let 0y, € K(F, F’) denote the “rank 1" operator 6y ,(z) = x(y,z),forx € F’and y,z € F (F
and F’ Hilbert modules), and recall that any element in K(F, F’) can be approximated by sums of such
“rank 1” operators.
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Observe, that
mi Mj

(01, 0), ()0, 0) = 3° 3’ ® b, (e @ )5
k=11=1

=Y 0 pa* (-)a)by). .1

k=11=1

An easy computation shows that 05 ,S0, ,, = 0y(x sz).w, S0

n
T*®)T = 3 0 0.6 P00,
iJ=1

n
= 2 00300
ij=1
n.oomj mj

&b , . N
= 202 2 00 g a0y

i,j=lk=1I=1

Under the canonical identification of K(®B8) and B, the “rank 1” operator 64, 4, corres-
ponds to d1d; . Thus, the map above, under this identification, is exactly the map

n m; Mmj
T*d(-)T = Z Z Zcib,(;)*qb(a,(c’)*(—)al(”)bl(’)c}": A — B.

i,j=lk=1I=1

As ¢ is nuclear and X-equivariant, and as the set of nuclear, X-equivariant c.p. maps is a
closed operator convex cone, it follows that the above map is nuclear and X-equivariant
from Definition 2.1 (3). Because T was chosen arbitrarily in a dense subset of (1 & 0)
K(B, E @ B), and as ® = (1 ® 0)B(—)(1 & 0), it follows that b*®(—)b is nuclear and
X-equivariant for all b € °B. As seen above, this implies that ® is nuclear and X-equivariant.

L]

Proposition 5.4. Let X be a topological space, N be a separable, exact, lower semicon-
tinuous X-C *-algebra, and let B be a separable X-C *-algebra with property (UBS). Then
any nuclear, X-equivariant c.p. map n: 20 — Q(°B) lifts to a nuclear, X-equivariant c.p. map
7: 2 — M(B).

Proof. We start by proving the result under the additional assumption that 9B is stable.
Let € denote the set of all nuclear, X-equivariant c.p. maps 2 — M(*8), which is a closed
operator convex cone. By Proposition 2.7, it suffices to show that

n(a) € 1 (MB){Y (a) : ¥ € CIM(B)) (52)

for every positive a € 2. Fix a € 2. By Proposition 4.16, there are nuclear, X-equivariant
c.p.maps ¢,: A — B forn € N, such that B(Ug—1/n), ) = B ((a — 1/n)4))®B for every
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n € N. We may assume that each map ¢, is contractive. Let ¢ := Y 7 | 27" ¢, which is
nuclear and X-equivariant, and for which B(Ug—1/s),) = Bp((@ — 1/n))B forn € N.

Let (&, V') be the Kasparov—Stinespring dilation of ¢. By Lemma 5.3, ®: A — M(*8)
is a nuclear, X-equivariant *-homomorphism. We get B®((a — 1/1n)1)B S B(Uu—-1/n),)
since @ is X-equivariant. Also,

BD((a—1/n)+)B CBV*0((a—1/n))VB
=Bp((a—1/n)4)B = BU@-1/n),)>

so it follows that B(Ug—1/n),) = BP((a — 1/n)4)B foreachn € N.
Let sy, sz, ... € M(B) be isometries such that Z,‘:"Zl sks,’(k converges strictly to 1y (),
and let &, = Z,‘f’:l 5, @(=)sy; (convergence strictly). As 2 is exact, and

o0
b*®oo(—)b = Y b*s; D(—)spb: A — B
k=1
is nuclear and X-equivariant for all b € ‘B, it follows from Proposition 3.2 that ®, is
nuclear and (clearly) X-equivariant.
Recall, that our goal is to show (5.2). It suffices to show that

n((a—1/n)+) € 7 (M(B) Poo(a)M(B)).

for every n € N. As 7 is X-equivariant,

n((@—1/n)+) € AB)(U@a-1/n),) = 7(M(B,BU@a-1/n);)))-

So, it suffices to show that M (B, B(Ug—1/n),)) S M(B) P (a)M(B) for every n € N.
However, as

B(@(@) — 1/m)+B = B((a — 1/m))B = BUg-1/n),).

this follows from Lemma 5.2, and finishes the proof, under the assumption that 5 is stable.

If B is not stable, consider the nuclear, X-equivariant map n ® e¢11: % — Q(B) Y K —
9(*8 ® K). By what we proved above, this lifts to a nuclear, X-equivariant map 7": 2 —
M @K).Let P = L) ® e11. Themap 7 := P/ (=) P: A - M(B) ® e11 = M(B)
is a nuclear and X-equivariant lift of 7. ]

An extension of X-C*-algebras is a short exact sequence 0 > 8 - € - © — 0
in the category of X-C *-algebras such that for every open subset U of X, the sequence
0 — BU) - &) - D(U) — 0is a short exact sequence.

When 0 — B — € — D — 0 is an extension of C*-algebras, and 7: © — Q(*B) is
the Busby map, we can construct the pull-back

M(B) Boes) D = {(x,d) € M(B) & D : 7(x) = t(d)}.
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It is well known that (o, p): € = M(B) ®g(m) D is an isomorphism, where p: € — ©
is the quotient map, and o: € — M(®B) is the canonical *-homomorphism.

It was shown in [14, Proposition 5.20], that 0 — 8 — & - 2 — 0 is an extension
of X-C *-algebras if and only if 7 is X-equivariant and (o, p): € = M(B) Do(m) Disan
isomorphism of X-C *-algebras (i.e. the map and its inverse are X-equivariant). Here we
equipped the pull-back with the action

M(B) Baep) D)(V) 1= (M(B) Baep) D) N MB)(U) @ D(V)), U e OX),

which is well defined whenever t is X-equivariant. We fill in the proof for completion.

Proposition 5.5. Let 0 — B — € — D — 0 be a short exact sequence in the category
of X-C*-algebras. The sequence is an extension of X-C *-algebras if and only if the Busby
map v is X-equivariant and the canonical isomorphism € — M(B) @q(m) O is an iso-
morphism of X-C *-algebras.

Proof. If the sequence is an extension of X-C*-algebras, then B(U) = B - €(U), and
D) = p(€&(U)), where p: € — D is the quotient map. It follows that o: € — M(°B)
is X-equivariant and thus t is also X-equivariant. We have

(M(B) ®om) D)) = M(B)(U) Docs)u) D)
Y MBU)) Do) D). (5.3)

for U € O(X), where (x) is easily verified, e.g. by uniqueness of pull-backs, and is left
for the reader. It follows that the isomorphism & = M(B) Bo(m) D restricts to an iso-
morphism €(U) = (M(B) @) D)(U) for every U. Thus, it is an isomorphism of
X-C *-algebras.

Conversely, suppose t is X-equivariant, and € — M(B) @q(p) O is an isomorphism
of X-C*-algebras. As (5.3) holds, it follows that 0 — B(U) - €(U) - D) — 0 is
exact, 0 0 > B — € — D — 0 is an extension of X-C *-algebras. n

We can now prove an ideal related lifting theorem. Part (i) in the theorem is an X-
equivariant version of the Choi-Effros lifting theorem [8], and part (ii) is an X-equivariant
version of the Effros—Haagerup lifting theorem [12].

Theorem 5.6. Let X be a topological space, let 0 — B — € — D — 0 be an exten-
sion of X-C*-algebras, for which B is separable and has Property (UBS) (in particular,
B could be upper semicontinuous and nuclear), and let % be a separable, exact, lower
semicontinuous X-C *-algebra. Let ¢: A — D be an X-equivariant c.p. map. There exists
an X-equivariant c.p. lift (}5: A — €, if one of the following hold:

(1) ¢ is nuclear,

(ii) € is exact and *B is nuclear.
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Proof. Let T denote the Busby map of our given extension. By Proposition 5.5, 7 is X-
equivariant and € — M(B) @o(p) U is an isomorphism of X-C *-algebras.

Suppose that 7 o ¢ is nuclear. As t o ¢ is X-equivariant, we may lift T o ¢ to an X-
equivariant c.p. map ¥: A — M(°8), by Proposition 5.4. The c.p. map

¢=.0):A—> M(B) Bom) A =EC
is an X-equivariant lift of ¢. So it suffices to show that t o ¢ is nuclear if either (i) or (ii)
holds. If ¢ is nuclear (i.e. (i) holds), then t o ¢ is nuclear, as compositions of a nuclear
c.p. map with any c.p. map is nuclear. If € is exact and *B is nuclear (i.e. (ii) holds), then
D is exact, as quotients of exact C *-algebras are exact [19]. Thus, by Corollary 3.3, 7 is
nuclear and thus t o ¢ is nuclear.
The “in particular” part follows from Proposition 4.19. ]

A consequence of Theorem 5.6 is the following result, which says that in most cases
of interest, an extension of X-C *-algebra will be semisplit, i.e. it will have an X-equivariant
c.p. splitting, as long as the quotient is lower semicontinuous.

Theorem 5.7. Let X be a topological space, and 0 — B — & — A — 0 be an extension
of separable, nuclear X-C*-algebras. Suppose that 6 is upper semicontinuous and U is
lower semicontinuous. Then there is an X-equivariant c.p. splitting A — €.

Proof. Apply Theorem 5.6, with 2 = ® and ¢ = idg, to find the X-equivariant c.p. split-
ting. ]

Remark 5.8. It is well known that the above theorem fails if we remove the lower semi-
continuity assumption of 2. E.g., the extension 0 — Cy((0, 1]) — C([0,1]) > C — 0 of
[0, 1]-C *-algebras (with the obvious actions) can never have an [0, 1]-equivariant c.p. split-
ting (or even [0, 1]-equivariant non-c.p. splitting), as the only [0, 1]-equivariant map C —
C ([0, 1]) is the zero map.

6. Comparing ideal related K K -theory and E -theory

Recall, that a C *-algebra over X, is an X-C *-algebra for which the action is finitely lower
semicontinuous and upper semicontinuous. In [10], Dadarlat and Meyer construct E-
theory for separable C *-algebras over X when X is second countable. We will sketch the
construction.

An asymptotic morphism from 2 to B is a map ¢: A — Cp ([0, 00), B), such that the
composition of this map with the quotient map onto B := Cp ([0, 00),B)/ Co ([0, 00),B),
call this composition ¢, is a x-homomorphism. If ¢ and ¢’ are asymptotic morphisms, we
say that they are equivalent if ¢ = ¢'. If A and B are X-C *-algebras, then Boo is an
X-C *-algebra by

Cp([0, 00), B(V)) + Co([0, 00), B)
Cp([0, 00),®)

Boo(U) =
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We say that an asymptotic morphism ¢ is approximately X-equivariant if the induced
*-homomorphism qb is X-equivariant. Note that this does not imply that the asymptotic
morphism is X-equivariant. We say that two approximately X-equivariant asymptotic mor-
phisms ¢o, ¢1 from A to B are homotopic if there is an approximately X-equivariant
asymptotic morphism ® from % to C([0, 1],*8) such that ev; o & = ¢; fori = 0, 1. We
let 2, B]x denote the set of homotopy classes of approximately X-equivariant asymptotic
morphisms.
For separable C*-algebras 2 and B over X, where X is second countable, we define

EXAB) = [Co(R) ® AR K, Co(R) ® B ® K]x.

This comes equipped with an abelian group structure, as well as a bilinear composi-
tion product. Thus, E(X; —, —) is a bivariant functor from the category of separable C *-
algebras over X to the category of abelian groups.

Similarly, consider asymptotic morphisms ¢: 2l — Cp (][0, 00), ®B), such that ¢ is an
X-equivariant contractive c.p. map. Note that these are actually X-equivariant and not just
approximately X-equivariant. By again taking homotopies only of this form we may con-
struct the set [2[, B]’ of homotopy classes of such asymptotic morphisms.

By [10, Theorem 5.2], when X is second countable, and 2l and B are separable C*-
algebras over X, there is a natural isomorphism

KKX: U, B) = [Co(R) ® AR K, Co(R) ® B @ K.

Remark 6.1. Although C*-algebras over X are commonly thought of as the “correct”
generalisation of C*-algebras when one wants to incorporate ideal structure, there are
given examples in [14] of why it is not always convenient only to consider C*-algebras
over X instead of more general X-C *-algebras. E(X)-theory can easily be generalised to
monotone upper semicontinuous X-C *-algebras (which will be important in future work
by the author), however, for simplicity we will mainly work with C *-algebras over X in
this section.

Recall, that an X-C *-algebra (or a C *-algebra over X) is called continuous if it is lower
and upper semicontinuous.

Theorem 6.2. Let X be second countable, and let A and B be separable, nuclear C*-
algebras over X. If A is continuous, then E(X; A, B) = KK(X; A, B) naturally.

Proof. Let ¢ be an approximately X-equivariant asymptotic morphism from 2l to %8, and

: Cp([0,00),B
¢: A — By := —b([ 00). %)
Co([0,00),"8)
be the induced X-equivariant *x-homomorphism. Consider the pull-back diagram
0 —— Co([0, 0),B) G A 0

| P

0 —— Co([0,00),B) —— Cp(]0,0),B) — B, — 0,
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and observe that the top row is an extension of X-C*-algebras. By Lemma 4.9, we have
that Cy ([0, 00), B) is a C *-algebra over X. Thus, by Theorem 5.7, there is an X-equivariant
contractive c.p. split ¥: 2 — €. It follows that o o ¥ is an X-equivariant, contractive
c.p. asymptotic morphism which is equivalent to ¢. By replacing B with C([0, 1], B), it
follows that any approximately X-equivariant asymptotic homotopy may be replaced by
an X-equivariant, contractive c.p. asymptotic homotopy. Thus,

[20, B]x = [, B

Let Ay = Co(R, ) ® K and By = Co(R, B) ® K, which are nuclear C *-algebras over X.
By what we proved above and by [10, Theorem 5.2] it follows that

KK(X%,B) = [Uo, Bo]y = [Ao, Bolx = EX; A, B),
where the isomorphism is natural. ]

Remark 6.3. The proof above can easily be modified so that we only require that 5 has
Property (UBS) instead of being nuclear. Thus, if X is finite or if it is locally compact and
Hausdorff, we do not need nuclearity of B in Theorem 6.2.

7. Absorption of strongly self-absorbing C *-algebras

In this section, we give a few easy applications of Theorem 6.2. Using this result we can
weaken the deep classification result of Kirchberg [20]. A proof of this theorem can be
found in [13] by the author.

A C*-algebra is called strongly purely infinite, if it has a certain comparability prop-
erty defined by Kirchberg and Rgrdam in [22, Definition 5.1]. As we do not need the
exact definition in this paper, we simply mention that a separable, nuclear C *-algebra 2 is
strongly purely infinite if and only if & ® O = U, by [22, Theorem 8.6] and [32, Corol-
lary 3.2].

Recall that an action O (X) — [() is fight if it is a lattice isomorphism.

Theorem 7.1. Let U and B be separable, nuclear, stable, strongly purely infinite, tight
X-C*-algebras. Then any invertible element in E(X; U, B) lifts to an X-equivariant
k-isomorphism A — ‘B.

Proof. By Theorem 6.2, E(X; 2, 8) = KK(X; U, B) and E(X; B, A) = KK(X;B, A)
naturally. Thus, any invertible element in E(X; 2, ®B) lifts to an invertible element in
KK(X; 2, B), which in turn lifts to an X-equivariant x-isomorphism 2 — ‘8 by a very
deep theorem of Kirchberg [20] (alternatively, see [13, Theorem GJ). ]

It turns out (cf. [10, Theorem 4.6]) that ideal related E-theory is (a priori) much more
well-behaved with respect to K-theory than ideal related K K-theory, and thus it should
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be easier to apply the above theorem for K-theoretic classification than the original result
of Kirchberg.

As is customary, we say that a separable C*-algebra satisfies the UCT, if it satisfies
the universal coefficient theorem of Rosenberg and Schochet [29]. This is equivalent to
the C *-algebra being K K-equivalent to a commutative C *-algebra.

Forany @ € E(X; 2, B) there is an induced element ary € E (2 (U), B(V)). In particular,
this also induces a homomorphism in K-theory Ky (ay): K« (A(U)) - K«(B(U)). The
following result of Dadarlat and Meyer gives a very effective way of determining when an
E(X)-element is invertible as a “point-wise” condition.

Theorem 7.2 ([10, Theorems 3.10 and 4.6]). Let X be a second countable space, and let
A and B be separable C*-algebras over X. An element a € E(X; 2, B) is invertible if and
only if the induced element oy € E((V), B(V)) is invertible for each U € O(X).

In particular, if (V) and B (V) satisfy the UCT of Rosenberg and Schochet for each
Ue O(X), thena € E(X; U, B) is invertible if and only if K« (oy): K« (A(U)) = K« (B(U))
is an isomorphism for each U € O (X).

Definition 7.3 (Toms—Winter [32]). A separable, unital C*-algebra D is called strongly
self-absorbing if D 2 C and if there exists an isomorphism ¢: D — D ® D which is
approximately unitarily equivalent to the x-homomorphism idp ®1p: D — D ® D.

The following are all known examples of strongly self-absorbing C*-algebras: the
Cuntz algebras (O, and O, all UHF algebras of infinite type, the Jiang—Su algebra Z, and
any UHF algebra of infinite type tensor Q. Any strongly self-absorbing C *-algebra that
satisfies the UCT of Rosenberg and Schochet is one of the above. For more information,
see [35] for a good overview.

Proposition 7.4. Let U be a separable, nuclear, strongly purely infinite C*-algebra, and
let D be a strongly self-absorbing C*-algebra. Then A =~ A ® D if and only if I and
3 ® D are K K-equivalent for every two-sided, closed ideal 3 in 2.

Proof. If A = A R D, then I = I ® D for every two-sided, closed ideal I in 2. In
particular, ¥ and 3 ® D are K K-equivalent.

Suppose that 3 and 3 ® D are K K-equivalent, and let @« € KK(3,3 ® D) be invert-
ible. The Kasparov product (composition)

343D B e pep T gD

is exactly idy ®1p: 3 — 3 ® D. Clearly « and o' ® idp are invertible. By [11, The-
orem 2.2], idp @ lp: D — D ® D is asymptotically unitarily equivalent to an isomor-
phism ¢ (as any strongly self-absorbing C *-algebra is K-injective by [34, Remark 3.3]).
Thus, idg ® idp ® 1 is invertible in K K -theory, and hence idg ® 1:3 — 3 ® D induces
a K K-equivalence, as it is a composition of K K-equivalences.

Let X = Prim 2. Equip & ® D with the action O(X) — I(A ® D) given by (A ®
D)(U) = A(U) ® D. By [32, Theorem 1.6], D is simple and nuclear, and thus A ® D is a
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separable, nuclear, strongly purely infinite, tight X-C *-algebra. Note that idy ® lp: A —
A ® D is X-equivariant, and thus induces an E(X)-element @ € E(X; A, A ® D). As

idgr(uy ®1p: AV) > ARK)(V)®D

induces an invertible K K-element, and thus also an invertible E-element, which is «ay,
for every U € O(X), it follows from Theorem 7.2 that « is invertible. Using Theorem 7.1
and the fact that ideal-related E-theory is stable, we obtain an isomorphism A ® K =~
A ® D R K. By [32, Corollary 3.2], A =~ A ® D. n

Definition 7.5. We say that an abelian group G is uniquely n-divisible for an integer
n > 2, if for every g € G there is a unique element 2 € G suchthatn -h = g.
We say that G is uniquely divisible if it is uniquely n-divisible for every n > 2.

Note that an abelian group G is uniquely n-divisible if and only if G ~ G ® Z[%].
For any n > 2 we let Moo = M,, ® M,, ® --- denote the UHF algebra of type n°°. We
let @ = Qyen Mk denote the universal UHF algebra.

Theorem 7.6. Let 2 be a separable, nuclear, strongly purely infinite C*-algebra, for
which every two-sided, closed ideal satisfies the UCT. For n > 2, it holds that A = A ®
M, if and only if K« (3) is uniquely n-divisible for every two-sided, closed ideal 3 in .

In particular, N = N ® Q if and only if K«(3) is uniquely divisible for every two-
sided, closed ideal S in .

Proof. f A = A @ My then I = I ® M, for every two-sided, closed ideal J in 2,
and thus
KR z=KRFQ®OMx) =K (J)® Z[%]

by the Kiinneth theorem [30] for i = 0, 1. Hence K«(3) is uniquely n-divisible.

Conversely, suppose that K, (3) is uniquely n-divisible for every two-sided, closed
ideal 3 in 2. Then, as above, K;(3) = K;(J3) ® Z[%] ~ Ki(3® Mys) fori =0,1. As
3 and ¥ ® M, satisfy the UCT, it follows that ¥ and ¥ ® My~ are KK-equivalent.
Thus, A = A ® M~ by Proposition 7.4.

The “in particular” part follows since A = A ® @ if and only if A = A @ My~ for
every n > 2. |

Recall, that a separable C*-algebra is K K -contractible if it is K K-equivalent to 0.
Note that 2 is K K-contractible if and only if it satisfies the UCT and K. () = 0.

Theorem 7.7. Let % be a separable, nuclear, strongly purely infinite C*-algebra. Then
A =~ A ® O, if and only if every two-sided, closed ideal in A is K K -contractible.

Proof. If A = A ® O, then I =~ I ® O, for every closed, two-sided ideal 3 in 2. It
follows that 3 is K K -contractible.

Conversely, if 3 is K K-contractible for each two-sided, closed ideal ¥ in 2, then
idy ®1p,: I - I ® O, induces a KK-equivalence. Hence ¥ =~ A ® O, by Proposi-
tion 7.4. [ ]
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