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Explicit Rieffel induction module for quantum groups

Damien Rivet

Abstract. For G an algebraic (or more generally, a bornological) quantum group and B a closed
quantum subgroup of G, we build in this paper an induction module by explicitly defining, on the
convolution algebra of G, an inner product which takes its value in the convolution algebra of B,
as in the original approach of Rieffel. In this context, we study the link with the induction functor
defined by Vaes. In the last part, we illustrate our result with parabolic induction of complex semi-
simple quantum groups. We first show that our induction functor coincides with the one already
defined in the case of parabolic induction. Then we use the tools developed in this paper to give
a geometric interpretation to the parabolic induction functor, following the approach suggested by
Clare in the classical case.

1. Introduction

Let G be a locally compact group and B a closed subgroup of G. One can build unitary
representations of G from those of B with the unitary induction procedure due to Mackey
[13], who also developed the concept of imprimitivity. Rieffel [19] gave an alternative
and more general formulation in the C �-algebraic setting by using C �-Hilbert modules.
In short, there exists a Hilbert C �u .B/-module E.G/, with a left representation of C �u .G/,
such that for a unitary representation of B on any Hilbert module V , E.G/ ˝C�u .B/ V

corresponds to the induced unitary representation of G.
In the case where G is a locally compact quantum group and B a closed quantum

subgroup, induction procedures have been developed by Kustermans [8] and Vaes [21].
Vaes was able to formulate this in a wide framework and to state imprimitivity theorems.
In this paper, we develop an approach closer to the original one of Rieffel, by directly
defining the induction module E.G/.

The main difficulty is that, unless B is also an open subgroup of G (the case treated in
[7]), we do not have an inclusion of C �u .B/ into C �u .G/ and so it is not possible to define a
conditional expectation from C �u .G/ to C �u .B/. In his original paper, Rieffel avoided this
issue by considering the convolution algebra Cc.G/ of compactly supported functions
on G, instead of the full space C �.G/. Then he defined a weak conditional expectation
Cc.G/! Cc.B/.
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The bornological setting for quantum groups developed by C. Voigt [23] allows us to
consider algebras with similar properties and then to define an analogue of the weak con-
ditional expectation. One of the main goals of this paper is to show that, in this particular
case, the induction functor we obtain is the same as the one defined by Vaes. We thus get
a more direct way to compute induced representations for regular bornological quantum
groups and to apply the powerful imprimitivity theorems. We remark that the class of
bornological quantum groups is a large subclass of locally compact quantum groups. The
only known obstruction to being bornological is non-regularity and regularity is already
a necessary condition in Vaes imprimitivity theorem. The class of bornological quantum
groups includes compact quantum groups, algebraic quantum groups [22] (and in par-
ticular complex semi-simple quantum groups) and classical locally compact groups. We
remark that our results are new even in the case of algebraic quantum groups.

In the last part, we illustrate the general construction with the example of principal
series representations of a semi-simple complex quantum group Gq [25]. First, we show
that our induction functor coincides with the one already defined in the case of parabolic
induction [1,25]. After that, in analogy to the classical case in [3], we build a module using
a Gq-space Gq=Nq , which implements the parabolic induction. The notation Gq=Nq is
meant to suggest a homogeneous space with respect to a quantum analogue of the classical
unipotent subgroup although we do not actually use any such subgroup in its definition. As
well as giving a noncommutative geometry perspective on the parabolic induction functor
for Gq (similar to the approach of [18] in the case Gq D SLq.2;C/), we can thus provide
a new description of the structure of the reduced C �-algebra C �r .Gq/ following the results
of [16, 24].

In our proofs, we will make certain assumptions on the bornological quantum groups
we consider. To begin with, we will assume that the scaling constants of G and B are 1,
as well as the scaling constant associated to the restriction �.ıG/ of the modular ele-
ment of G to B, see Remark 3.2. These hypotheses are almost certainly unnecessary,
but they greatly simplify the constructions and in any case, at present, we do not know
any examples of bornological quantum groups for which they do not hold. More signifi-
cantly, we will suppose that the closed quantum subgroup is amenable, so that C �u .B/ D
C �r .B/. This hypothesis is made for a technical reason, namely to prove positivity of a the
C �.B/-valued inner product on the Rieffel induction module. Again, we suspect this is
not necessary, but we do not currently have a proof of positivity in the general case.

2. Bornological quantum groups

Bornological quantum groups, defined by Voigt [23], are a generalization of algebraic
quantum groups introduced by Van Daele [22] where most of the interesting properties
stay valid. In this section, we recall the definition of a bornological quantum group and
state some of the important properties. Many of the properties which we shall need in
this paper, particularly concerning the relationship between Voigt’s theory of bornologi-
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cal quantum groups [23] and Kustermans and Vaes’ theory of locally compact quantum
groups [10], are analogues of well-known properties of algebraic quantum groups which
had not previously been proven in the bornological context. This void is filled by the arti-
cle [20]. We will make much use of that article as well as Voigt’s original article. But in
order to keep this article self-contained, we will summarize the necessary results here.

For the reader interested only in algebraic quantum groups, it is possible to read this
entire article replacing “bornological quantum groups” with “algebraic quantum groups.”
Then bounded maps become arbitrary maps, bornological tensor products become alge-
braic tensor products, and so on; see Example 2.1. In this case, the prerequisite results are
all well known from the works of Van Daele, Kustermans, and De Commer [5, 9, 11, 22].

We begin with the basic definitions of bornological vector spaces. For more details see
[6, 15].

A bornology on a vector space V is a covering family B of subsets of V , called
bounded sets, which is stable under taking subsets and finite unions, and such that the
vector space operations map bounded sets to bounded sets. The guiding example is the set
of bounded subsets of a topological vector space. We will always impose the convexity
condition that B is stable under taking balanced convex hulls, often called disks. Each
bounded diskD gives rise to a seminorm on its linear span VD D span.D/ for which xD is
the unit ball. Then V is called complete if every bounded set is contained in some bounded
disk D for which VD is a Banach space.

A map between bornological vector spaces is called bounded if it maps bounded sets
to bounded sets. If V and W are complete bornological vector spaces, then there exists a
bornological tensor product V y̋ W which is a universal target for bounded bilinear maps
from V � W . One of the nice features of bornological vector spaces is the Hom-tensor
adjunction

Hom.V y̋ W;X/ Š Hom
�
V;Hom.W;X/

�
;

where Hom denotes the bounded linear maps. In order to avoid pathologies, one should
add the approximation property, which says that the identity map of V can be approx-
imated uniformly on compact subsets by finite-rank operators; see [14]. This technical
condition will be true of all our examples, and we will not make mention of it.

A bornological algebra is a complete bornological vector space A equipped with a
bounded algebra product A � A ! A. It therefore extends to the bornological tensor
product A y̋ A! A. It is called essential if the product induces a bornological isomor-
phism A y̋A A Š A.

The space of two-sided multipliers of a bornological algebra A is denoted by M.A/.
See [23, Section 3] for the precise definition. A bounded algebra morphism f WA!M.B/

is called essential if it induces bornological isomorphisms A y̋A B Š B Š B y̋A A. In
this case, f extends uniquely to the multiplier algebra of A.

We modify Voigt’s original definition of a bornological quantum group by adding a
�-structure. A �-structure on a bornological algebra is a bounded involutive anti-automor-
phism on A. For more details, see [20].
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Example 2.1. Any vector space V can be equipped with the fine bornology, for which
the bounded subsets are precisely the bounded subsets (in the usual sense) of finite dimen-
sional subspaces of V . Any linear map from V to a bornological vector space W is
bounded with respect to the fine bornology, and the bornological tensor product V ˝ V is
just the algebraic tensor product.

Thus any essential �-algebra A is an essential bornological algebra with the fine
bornology. The bornological multiplier algebra is just the algebraic multiplier algebra.

Let � W A!M.A y̋ A/ be a �-homomorphism. The maps A y̋ A!M.A y̋ A/


l W f ˝ g 7! �.f /.g ˝ 1/; 
r W f ˝ g 7! �.f /.1˝ g/

are called left Galois maps associated to � and

�l W f ˝ g 7! .f ˝ 1/�.g/; �r W f ˝ g 7! .1˝ f /�.g/

the right Galois maps.

Remark 2.2. Since in our case we consider �-algebras, note that right Galois maps can
be recovered from left ones by composing with the involution �.

If we suppose that� WA!M.A y̋ A/ is essential, then one can define .� y̋ id/ ı�
and .id y̋ �/ ı� as maps from A to M.A y̋ A y̋ A/. If these maps coincide, then we
say that the homomorphism � is coassociative.

Definition 2.3. An essential �-homomorphism � W A!M.A y̋ A/ is called a comulti-
plication if it is coassociative.

Definition 2.4. Let � W A!M.A y̋ A/ be a comultiplication such that all Galois maps
associated to � define bounded linear maps from A ˝ A into itself. A bounded linear
functional � W A! C is called left invariant if for all a 2 A, .� y̋ �/.�.a// D �.a/1.
Similarly, a bounded linear functional � WA! C is called right invariant if for all a 2A,
.� y̋ �/.�.a// D �.a/1:

Definition 2.5. A bornological quantum group is an essential bornological �-algebra
A.G/ satisfying the approximation property, together with a �-preserving comultipli-
cation � W A.G/! M.A.G/ y̋ A.G//, such that all Galois maps associated to � are
isomorphisms, and a faithful left invariant positive functional �G .

According to [23, Theorem 4.8], the hypothesis on Galois maps ensures that there
exists a uniquely determined bounded homomorphism � W A.G/! C and a linear iso-
morphism S WA.G/!A.G/ which is both an algebra and coalgebra antihomomorphism
such that

.� y̋ �/ ı� D � D .� y̋ �/ ı�

and
�.S y̋ �/ ı 
r D � y̋ � and �.� y̋ S/ ı 
l D � y̋ �;
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where � WA.G/ y̋ A.G/!A.G/ designates the multiplication of A.G/. The functional
�G is called a left Haar integral.

We will often use Sweedler notation �.f / D f.1/ ˝ f.2/ to denote the coproduct of
f 2A. For bornological quantum groups, this is a purely formal notation to designate the
position of the multiplier �.a/ in the legs of a tensor product expression.

Example 2.6. IfG is a Lie group, then A.G/D C1c .G/ is a bornological quantum group
when equipped with the bornology of its usual LF -topology, the pointwise product, the
coproduct given by pullback along the group lawG �G!G, and where �G is integration
with respect to left Haar measure.

Example 2.7. An algebraic quantum group is a bornological quantum group with the
fine bornology (where the bounded sets are the compact subsets of finite dimensional
subspaces).

Proposition 2.8. There is a unique bounded algebra automorphism � WA!A such that
�.ab/ D �G.b�.a// for all a; b 2 A.

See [23, Proposition 5.3] for details on this automorphism. We also give two properties
that will be used later in this paper.

Proposition 2.9. We have � ı � D .S2 ˝ �/ ı� and �. Na/ D ��1.a/ for all a 2 A.

The modular element.

Proposition 2.10. There exists an invertible self-adjoint element ıG 2M.A.G//, called
the modular element associated with the Haar state �G , defined by the property

.�G y̋ �/
�
�.f /

�
D �G.f /ıG 2M

�
A.G/

�
; 8f 2 A.G/:

We also mention the notable property

�G

�
S.f /

�
D �G.f ıG/:

Theorem 2.11. For all z 2 C, there exists a unique bounded multiplier of A.G/ denoted
by ızG such that

(1) for any z 2 C, ızG D ı
Nz
G;

(2) for any y; z 2 C, ıyGı
z
G D ı

yCz
G ;

(3) for any t 2 R; ıitG is unitary in M.A.G//;

(4) for any t 2 R, ıtG is a positive element, in the sense that ıtG D ı
t=2
G ı

t=2
G and ıt=2G

is a self adjoint element.

This result is Theorem 3.27 in [20]. In the present paper, we will only use the element
ı
1=2
G .

Remark 2.12. We recall that in [20], we have made the hypothesis that �G.ıG/ D ıG;
that is the scaling constant equals 1. This assumption is also made in this paper.
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Proposition 2.13. There exists an automorphism jS j of A.G/ such that jS j2 D S2,
�G ı jS j D �G , and jS j. Nf / D jS j�1.f / for all f 2 A.G/.

Pontryagin duality. We Recall that we define the space A. yG/ as a subspace of bounded
linear functionals on A. yG/:

A. yG/ D
®
�G.�f /; f 2 A. yG/

¯
:

Proposition 2.14. The bornological space A. yG/ is a bornological quantum group when
it is equipped with the multiplier Hopf structure defined by duality: let x; y 2 A. yG/,
f; g 2 A.G/. We have that

.xy; f / D
�
x ˝ y;�.f /

�
;�

y�.x/; f ˝ g
�
D .x; gf /;

y�.x/ D .x; 1/;�
yS.x/; f

�
D
�
x; S�1.f /

�
;

x�.f / D x
�
S.f /�

�
:

Moreover, it admits a left invariant integral defined by � yG.F .f // D �.f /.

The following result is Theorem 2.7 from [23, Section 7].

Theorem 2.15. The double dual quantum group of A.G/ is canonically isomorphic to
A.G/.

In order to do calculations similar to the classical case when one considers the convo-
lution algebra of a locally compact group G, we introduce the following notations.

Definition 2.16. We consider the �-bornological algebra D.G/ with D.G/ D A.G/ as
a bornological vector space, and with product and involution given by

f � g D .id˝ �G/
��
1˝ S�1.g/

��
�.f /

��
; 8f; g 2 D.G/;

f � D S.f /ıG:

In what follows, we will use f 7! Nf to denote the �-involution of A.G/ to avoid
confusion with the �-involution of D.G/.

Proposition 2.17. The map F W D.G/ ! A. yG/ is an isomorphism of �-bornological
algebras.

Remark 2.18. The reader should be careful that in the whole paper we juggle with both
A.G/ and D.G/ using everywhere both algebra structures, which can be confusing.

Proposition 2.19. For any f; g 2 A.G/ we have �.f � � g/ D �. Nf g/.
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Lemma 2.20. For any f; g 2 A.G/ we have the formal equalities

�.f � g/ D f.1/ ˝ .f.2/ � g/ D .f � g.1//˝ g.2/:

More precisely, for any a 2 A.G/ we have

.a˝ 1/�.f � g/ D af.1/ ˝ .f.2/ � g/; �.f � g/.a˝ 1/ D f.1/a˝ .f.2/ � g/;

.1˝ a/�.f � g/ D .f � g.1//˝ ag.2/; �.f � g/.1˝ a/ D .f � g.1//˝ g.2/a;

where the right-hand side of the first equation is understood by first applying a Galois
map to a˝ f and then taking the convolution with g in the second leg, and similarly for
the others.

Modules over a bornological quantum group. If A.G/ is a unital bornological quantum
group, then an essential left corepresentation of A.G/ (also called a left coaction of G or
an essential left A.G/-comodule) is a bounded linear map

˛ W V ! A.G/˝ V

which satisfies the coassociativity and essentiality conditions

.id˝ ˛/˛ D .�˝ id/˛;

.� ˝ id/˛ D id:

If A.G/ is not unital, this definition needs to be adjusted. A corepresentation is then
defined as a linear map

˛ W V ! HomA.G/

�
A.G/;A.G/˝ V

�
;

where A.G/ and A.G/˝ V are given the natural left A.G/-actions. The required coasso-
ciativity relation on ˛ is given as a pentagonal equation as follows. Using the Hom-tensor
adjunction, we can view ˛ as an element of Hom.A.G/ ˝ V IA.G/ ˝ V /. Then we
require

˛23 ˛13 .�l /12 D .�l /12 ˛23;

where �l is the Galois map from above, and we are using the standard leg-numbering
notation for maps on A.G/˝A.G/˝ V . Essentiality is the requirement that ˛ define a
linear isomorphism from A.G/˝ V to itself.

Associated locally compact quantum group. Before moving to the next section, we
briefly summarize results of [20] that establish the link between a bornological quantum
group and its associated C �-algebraic quantum group.

There exists a Hilbert space L2.G/ and a C �-algebra C r0 .G/ � B.L
2.G// together

with a linear mapƒ WA.G/!L2.G/ and a bounded algebra homomorphismm WA.G/!
C r0 .G/ both with dense images such that f; g 2 A.G/:

• hƒ.f /;ƒ.g/i D �G. Nf g/,

• m.f /ƒ.g/ D ƒ.fg/.
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Furthermore, C r0 .G/ is equipped with a comultiplication � and a left Haar weight which
extend the comultiplication and Haar integral of A.G/.

In [20], it is shown that this defines a locally compact quantum group in the sense of
Kustermans and Vaes [10]. That article requires an additional technical hypothesis, namely
that A.G/ admits an approximate unit .en/ such that both .en/ and �i=2.en/ converge to
1 in the bornology of the multiplier algebra, and we shall impose this assumption here as
well. We do not know whether this hypothesis is necessary, although it is easily checked
in the natural examples, including all examples to be discussed here. If ultimately, as
we expect, this condition is shown to be unnecessary for obtaining the locally compact
quantum group C ur .G/, then it can be removed from the present article as well. All we
require is that the C �-completion C 0r .G/ of A.G/ is a locally compact quantum group.

The dual reduced quantum group is denoted by C �r .G/, and C u0 .G/ and C �u .G/ refer
to the associated universal locally compact quantum groups. Further, L1.G/ and L.G/
refer to the associated von Neumann algebraic quantum groups.

3. Closed quantum subgroups

Definition 3.1. A bornological quantum group A.B/, equipped with a bounded surjec-
tive �-morphism of bornological quantum groups � W A.G/! A.B/ is called a closed
quantum subgroup of A.G/.

Let A.B/ be such a quantum subgroup with a left Haar integral �B.

Remark 3.2. In general, we have �B.�.ıG// D ��.ıG/ for some complex number �
with modulus 1. As for the scaling constant, we make the hypothesis here that this constant

equals 1. We thus have �B.�.ı
1
2

G// D �.ı
1
2

G/.

The convolution algebras D.G/ and D.B/ are, by definition, identified as linear
spaces with the spaces A.G/ and A.B/. Therefore, the map � W A.G/! A.B/ can also
be seen as a map from D.G/ to D.B/. However, as it stands, this map does not have
the properties of what we will call a generalized conditional expectation. Instead, we first
define


 D �.ı
� 12
G /ı

1
2

B 2M
�
A.B/

�
;

which is a group-like element. Then we modify the map � to

E W D.G/! D.B/; E.f / D �.f /
:

In order to describe the relevant properties of E, we must start with some preliminaries
concerning the action of D.B/ on D.G/. We consider the dual morphism y� W D.B/!
M.D.G// and set for all f in D.G/ and for all h 2 D.B/,

f � h D f � y�.h
/:
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Proposition 3.3. The map f 7! f � h defines a right action of the algebra D.B/ on the
space D.G/.

Proof. Let h; k 2D.B/. Since 
 is group-like, we have .h � k/
 D h
 � k
 and thus for
f 2 D.G/ we have

f � .h � k/ D f � y�.h
/ � y�.k
/ D .f � h/ � k:

We are going to prove that E preserves the �-involution and has a “conditional expec-
tation” property with respect to this action.

Lemma 3.4. The two multipliers ıB and �.ıG/ commute.

Proof. We know that we have

�B

�
S.h/

�
D �B.hıB/;

for all h 2 A.B/. By our hypothesis in Remark 3.2 we also have that �B.�.ı
�1
G // D

�.ı�1G /. Let then h 2 A.B/. We have �B.S.�.ıG/h// D �B.S.h�.ıG///. On the one
hand, this gives

�B

�
S
�
�.ıG/h

��
D �B

�
�.ıG/hıB

�
D �B

�
hıB�.ıG/

�
;

and on the other
�B

�
S
�
h�.ıG/

��
D �B

�
h�.ıG/ıB

�
:

Therefore, ıB�.ıG/ D �.ıG/ıB.

Lemma 3.5. Let h 2 D.H/. The convolution multiplier y�.h/ 2M.D.G// is given by

y�.h/ � f D �H

�
S�1

�
�.f.1//

�
h
�
f.2/;

f � y�.h/ D f.1/ �H

�
�
�
ıGS.f.2//

�
h
�
D f.1/ �H

�
S�1.h/�.f.2//�.ı

�1
G /ıH

�
;

for all f 2 D.G/.

Proof. Let f 2 D.G/, h 2 D.B/, and a 2 A.G/. Using the duality between A.G/ and
D.G/ and taking into account the left invariance of �G and the definition of y� , we get�

y�.h/ � f; a
�
D
�
y�.h/; a.1/

�
.f; a.2//

D
�
h; �.a.1//

�
.f; a.2//

D �B

�
�.a.1//h

�
�G.a.2/f /

D �B

�
�
�
S�1.f.1//

�
h
�
�G.af.2//

D
�
�B

�
�
�
S�1.f.1//

�
h
�
f.2/; a

�
:
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Similarly, using this time the right relative invariance, we get�
f � y�.h/; a

�
D .f; a.1//

�
y�.h/; a.2/

�
D �G.a.1/f /�B

�
�.a.2//h

�
D �G.af.1//�B

�
�
�
ıGS.f.2//

�
h
�

D �G.af.1//�B

�
S
�
S�1.h/�.f.2/ı

�1
G /

��
D �G.af.1//�B

�
S�1.h/�.f.2/ı

�1
G /ıB

�
D
�
�B

�
S�1.h/�.f.2//�.ı

�1
G /ıB

�
f.1/; a

�
:

Remark 3.6. Note that since �.ıG/ and ıB commute, we have �.ı�1G /ıB D 

2.

Proposition 3.7. The map E W D.G/! D.B/, E.f / D �.f /
 , has the two following
properties :

(1) E.f �/ D E.f /�, for all f 2 D.G/,

(2) E.f � h/ D E.f / � h, for all f 2 D.G/ and h 2 D.B/.

The map E is the generalized conditional expectation we were looking to build.

Proof. Let f 2 D.G/. We have

E.f �/ D E
�
S.f /ıG

�
D S

�
�.f /

�
�.ıG/


D S
�
�.f /

�
�
�
ı
1
2

G

�
ı
1
2

B

D S
�
�.f /


�
ıB D E.f /

�:

Now let h 2 D.B/. Using that �.
�1/ D 
�1, we get

E.f � h/ D E
�
f � y�.h
/

�
D .id y̋ �B/

��
1˝ 
�1S�1.h/

�
.� y̋ �/

�
�.f /

�
.1˝ 
2/

�



D .id y̋ �B/
��
1˝ S�1.h/

�
.� y̋ �/

�
�.f /

�
.
 ˝ 
/

�
D E.f / � h:

4. The induction module E.G/

We now make the assumption that the quantum subgroup B is amenable; that is, C �u .B/D
C �r .B/. The goal of this section is to define a Hilbert C �.B/-module with a left C �u .G/-
action by completing D.G/. We equip the space D.G/ with the right action of D.B/
defined as in Proposition 3.3.
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Definition 4.1. Let V be a right D.B/-module. A D.B/-valued inner product on V will
mean a sesquilinear map h�; �i W V � V ! D.B/ such that for all v;w 2 V and h 2 D.B/
we have that

(1) hv;w � hi D hv;wi � h,

(2) hv;wi� D hw; vi.

(3) �B.hv; vi/ is a positive element of C �.B/ and hv; vi D 0, v D 0.

Such a module V endowed with a D.B/-valued inner product will be called a D.B/-inner
product space.

Remark 4.2. The fact that we have to call on the regular representation �B is not very
aesthetic but this is because the notion of positivity in the bornological quantum group
D.B/ cannot be defined intrinsically. Below, we will prove positivity in the reduced C �-
algebra, but in fact we would want to prove positivity in the universal C �-algebra. In the
classical case, Rieffel [19] uses the existence of a Bruhat section to prove positivity of the
scalar product in the universal C �-algebra. Because we do not have a suitable analogue of
this in the quantum world we will content ourselves with the case of amenable quantum
subgroups. Nonetheless, we expect that the construction could be extended to any quantum
subgroups.

Proposition 4.3. The sesquilinear map h ; iD.B/ defined for f; g 2 D.G/ by

hf; giD.B/ D E.f
�
� g/

defines a D.B/-valued inner product.

To prove the previous proposition, we note first that the D.B/-linearity and com-
patibility with the involution of the above sesquilinear map follow immediately from
Proposition 3.7. It only remains to check the strict positivity, which will be a consequence
of Proposition 4.6 below.

Remark 4.4. Let f; g 2 D.G/. We have

E.f � � g/ D �G

�
S�1.g.1//S.f /ıG

�
�.g.2//
 D �G. Nf g.1//�.g.2//
:

Remark 4.5. In what follows, we will often use the maps ƒG W A.G/! L2.G/, �G W

D.G/! B.L2.G// and the analogous maps ƒB and �B, but we will only write ƒ and
�. Their relation to B or G will depend on the context.

Proposition 4.6. The linear map �� W D.G/! B.L2.B/; L2.G// defined by f 7! �f ,
where

�f
�
ƒ.�/

�
D ƒ.f � �/; 8f 2 D.G/; 8� 2 D.B/;

satisfies
�B

�
hf; giD.B/

�
D ��f �g :
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Proof. First we claim that, as an operator from L2.G/ to L2.B/, .�f /� acts on elements
of ƒ.A.G// as

.�f /
�
W ƒ.g/ 7! ƒ

�
hf; giD.B/

�
:

For this, note that using �B.E.x//D �G.x/, for any x 2D.G/, we obtain �B.E.x � y//D

�G.x
� � y/D hx;yiL2.G/ for any x;y 2D.G/. Therefore, for all � 2A.B/ and � 2A.G/

we have ˝
�fƒ.�/;ƒ.�/

˛
L2.G/

D
˝
ƒ.f � �/;ƒ.�/

˛
L2.G/

D �B

�
hf � �; �iD.B/

�
D �B

�
�� � hf; �iD.B/

�
D
˝
ƒ.�/;ƒ

�
hf; �i

�˛
L2.B/

:

We, therefore, have

ƒ
�
hf; giD.B/ � �

�
D ƒ

�
hf; g � �iD.B/

�
D ��f �gƒ.�/:

This concludes the proof of Proposition 4.3. We also record the explicit formula

hf; giD.B/ D .�G y̋ id/
�
. Nf ˝ 1/�.g/.1˝ 
/

�
:

Definition 4.7. The Hilbert C �.B/-module obtained by completing D.G/ with respect
to the inner product above is denoted by E.G/ and we call it the induction module (asso-
ciated to B).

See [12] for details about the completion. The space E.G/ is innately equipped with a
left C �u .G/-action, which commutes with the right C �.B/-action. We then get our induc-
tion bi-module

C�u .G/E.G/C�.B/:

Now, for ˛ a representation of C �.B/ on an A-Hilbert module K (where A is any C �-
algebra) we consider, following Rieffel’s definition for induced representations in [19],
the A-Hilbert module

IndG
B V D E.G/ y̋ C�.B/ V;

where the tensor product is completed with respect to the interior inner product [12, Propo-
sition 4.5].

5. Link with Vaes’ approach to induction

We consider in this section our bornological quantum groups G and B as locally compact
quantum groups, as described at the end of Section 2, and we assume that B is a closed
quantum subgroup of G in the sense of the following definition.
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Definition 5.1. Let � W C u0 .G/! M.C u0 .B// be a homomorphism. We say that � iden-
tifies B as a closed quantum subgroup of G in the sense of Vaes if there exists a faithful,
normal, unital �-homomorphism y� WL.B/!L.G/ such that the following diagram com-
mutes:

C �u .B/
y� //

�B
��

M
�
C �u .G/

�
�G
��

L.B/
y� // L.G/

where the vertical maps are the regular representations.

Remark 5.2. This definition is the notion used by Vaes in this work on induction for
locally compact quantum groups [21]. There is another potentially weaker definition of
closed quantum group that can be found in [4].

Let us summarize the induction procedure of [21] for locally compact quantum groups.
We begin with some definitions and results from [21, Section 3]. We consider .A; �/ a
locally compact quantum group with von Neumann algebraM and GNS Hilbert spaceH .
We also fix a C �-algebra B . If V is a C �-B-module, we write L.V/ for the �-algebra of
adjointable B-linear operators.

Definition 5.3. Let N be a von Neumann algebra and V a C �-B-module. A unital �-
homomorphism ˇ W N ! L.V/ is said to be strict (or normal) if it is strong* continuous
on the unit ball of N .

Definition 5.4. Let M and N be von Neumann algebras. We say that a C �-B-module V

is a B-correspondence from N to M if we have

• a strict �-homomorphism ˇl WM ! L.V/,

• a strict �-antihomomorphism ˇr WN !L.V/, such that ˇl .M/ and ˇr .N / commute.

Remark 5.5. In [21], the notation � is used instead of ˇ. Here we keep � to designate
the morphism from A.G/ to A.B/.

We will denote x � v D ˇl .x/v and v � y D ˇr .y/v for all x 2M , y 2 N , and v 2 V

and this correspondence will be denoted by M V N .

Proposition 5.6 ([21, Proposition 3.4]). LetX 2L.A y̋ V/ be a unitary corepresentation
on a C �-B-module V . There is a B-correspondence yM H y̋ V yM

given by

x � v D X.x ˝ 1/X�v and v � y D . yJGy
� yJG ˝ 1/v for x; y 2 yM; v 2 H y̋ V :

Definition 5.7 ([21, Definition 3.5]). Let yM F yM
be a B-correspondence from yM to yM

and suppose that ˇ WM 0!L.F / is a strict �-homomorphism. We say that ˇ is bicovariant
when

.ˇl y̋ id/
�
y�.x/

�
D .ˇ y̋ id/. yV /

�
ˇl .x/˝ 1

�
.ˇ y̋ id/. yV �/;

.ˇr y̋ yR/
�
y�.x/

�
D .ˇ y̋ id/. yV /

�
ˇl .x/˝ 1

�
.ˇ y̋ id/. yV �/;
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where yV D .J y̋ J /W.J y̋ J / and yR denotes the unitary antipode of yM ; see [21, Pre-
liminaries]. In this case, we call F a bicovariant B-correspondence and we write

M 0

yM
F yM

:

Remark 5.8. We give this definition because we will need to deal with bicovariantB-cor-
respondences. However, its technical aspect does not concern us directly. The core of this
section is to show the equivalence between two different bicovariant B-correspondences,
where their structure is already provided by the results of [21]. Showing such an equiv-
alence is simply a matter of showing that the morphisms satisfy the right commutation
relations.

According to [21, Remark 3.6], we have a structure of bicovariant B-correspondence

M 0

yM
H y̋ V yM

where the B-correspondence is given by Proposition 5.6 and ˇ W M 0 ! L.H y̋ V/ is
given by ˇ.x/ D x ˝ 1.

Remark 5.9. It should be noted that there is a slight difference in conventions between
the current work and the article of Vaes. Namely, the skew-pairing between A. yG/ and
A.G/ is such that the coproduct on A. yG/ is reversed in our conventions, while it is the
multiplication which is reversed in Vaes’ conventions. Given that the modules discussed
here are defined primarily in terms of D.G/-actions, this means that the action of the
function algebraM 0 D L1.G/0 in the bicovariant modules we define below will be inter-
twined by the unitary antipode R. This forces us to slightly modify the definition of the
morphism ˇ so that ˇ.x/ D R.Jx�J /˝ 1.

In practice, this means the following. If a 2 A.G/, then the action of m0.a/ 2M 0 on
the GNS space H D L2.G/ in our conventions needs to be defined as

m0.a/ �ƒ.�/ D ƒ
�
R.a/�

�
;

where � 2 A.G/ and R designates the unitary antipode of M . The fact that R stabilizes
the bornological algebra A.G/ is a consequence of [20].

The following proposition is crucial to Vaes’ induction procedure. It will be the key
result that we use to establish the equivalence between our approach to induction and
Vaes’.

Proposition 5.10 ([21, Proposition 3.7]). If

M 0

yM
F yM

is a bicovariant B-correspondence, there exists a canonically determined C �-B-module
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E and a corepresentation X 2 L.A y̋ E/, unique up to equivalence, such that

M 0

yM
F yM

Š

M 0

yM
H y̋ E yM

as bicovariant correspondences. So, we get a bijective relation between unitary corepre-
sentations on C �-B-module and bicovariant B-correspondences.

Note that from the corepresentation X 2 L.A y̋ V/, we obtain a �-morphism ˛ W
yAu ! L.V/ which verifies

.id y̋ ˛/.W u/ D X;

where W u designates the universal multiplicative unitary of the quantum group .A;�/.
We now setADC r0 .G/ and thus we haveHDL2.G/,M DL1.G/, and yM DL.G/.

Let X 2 L.C r0 .G/ y̋ V/ be a corepresentation of G on a Hilbert B-module V . We still
denote by ˛ the corresponding �-morphism ˛ W C �u .G/! L.V/, as well as its bornolog-
ical version, ˛ W D.B/! L.V/, which can be defined by restriction of the original ˛ to
�u.D.G//.

Remark 5.11. One can describe explicitly the structure of the bicovariant B-correspon-
dence

L1.G/0

L.G/ L
2.G/ y̋ V L.G/:

Let f 2 D.G/, � 2 A.G/, and v 2 V . We have

• �.f / � .ƒ.�/˝ v/ D .�˝ ˛/.y�.f //.ƒ.�/˝ v/,

• .ƒ.�/˝ v/ � �0.f / D ƒ.� � f /˝ v,

• ˇ.m0.f //.ƒ.�/˝ v/ D ƒ.R.f /�/˝ v.

Let us remark that if our conventions were coherent with those of Vaes, we would have a
flipped coproduct y�op in first point. This is because in Proposition 5.6, the left action is
defined by x �vDX.x˝1/X�v, for x2 yM , v2H y̋ V and we haveW.x˝1/W �D y�op.x/.

From now we consider X 2 L.C r0 .B/ y̋ V/ a corepresentation of B on a Hilbert B-
module V , accompanied by the �-morphism ˛ W C �.B/ ! L.V/. The aim of the next
paragraphs is to build the induced corepresentation of V with Vaes’ technique. Following
[21, Lemma 4.5] we consider the B-correspondence L.B/ L

2.G/ y̋ V L.G/.

Remark 5.12. The morphisms in this structure ofB-correspondence can be made explicit
as is the previous remark. Let f 2 D.G/, h 2 D.B/, � 2 A.G/, and v 2 V . We have

• �.h/ � .ƒ.�/˝ v/ D .� ı y� ˝ ˛/.y�.h//.ƒ.�/˝ v/,

• .� ˝ v/ � �0.f / D .� � f /˝ v.

The second point does not differ from the formula in Remark 5.11. The first point requires
justification. It is claimed in [21, Lemma 4.5] that the morphism

ˇl W L.B/! L.L2.G/ y̋ V/
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is characterized by the property

ˇl .a/.u˝ 1/� D .u˝ 1/X.a˝ 1/X
��;

for every a 2 L.B/, � 2 L2.B/ y̋ V , and u 2 B.L2.B/; L2.G// satisfying ux D y�.x/u
for all x 2L.B/. Let then u 2 B.L2.B/;L2.G// satisfying ux D y�.x/u for all x 2L.B/
and let h 2 D.B/, � 2 A.B/, and v 2 V . According to Remark 5.11, we have

X.a˝ 1/X�
�
ƒB.�/˝ v

�
D .�B ˝ ˛/

�
y�.h/

��
ƒB.�/˝ v

�
:

Therefore, since �.h/ 2 L.B/, we have�
.u˝ 1/X

�
�.h/˝ 1

�
X�
��
ƒ.�/˝ v

�
D .u˝ 1/

�
.�˝ ˛/

�
y�.h/

���
ƒ.�/˝ v

�
D .y� ı �˝ ˛/

�
y�.h/

�
.u˝ 1/

�
ƒ.�/˝ v

�
D .� ı y� ˝ ˛/

�
y�.h/

�
.u˝ 1/

�
ƒ.�/˝ v

�
D .� ı y� ˝ ˛/

�
y�.h/

��
.u˝ 1/

�
ƒ.�/˝ v

��
and thus it coincides with what we claimed. Finally, we note that we also have a �-mor-
phism ˇL2.G/ y̋V W L

1.G/0! L.L2.G/ y̋ V/ given by ˇL2.G/ y̋V .m
0.f //.ƒ.�/˝ v/D

ƒ.R.f /�/˝ v.

We introduce the space 	 from [21, Definition 4.2]:

	 D
®
u 2 B

�
L2.B/; L2.G/

�
; ux D y� 0.x/u 8x 2 L.B/0

¯
;

where y� 0 refers to the natural action of L.B/0 on L2.G/ given by

y� 0.x/ D yJG y�. yJBx yJB/ yJG:

The space 	 is endowed with

• its natural L.G/ left action by composition,

• its natural L.B/ right action by composition,

• an L.B/-inner product given by hu; viL.B/ D u�v, for all u; v 2 	,

• a �-morphism ˇ	 W L
1.G/0 ! L.	/ given by ˇ	.m

0.f //u D m.R.f //u, for all
f 2 A.G/ and u 2 	.

With this structure the space 	 is a bicovariant W �-bimodule (see [21, Section 3.2]).
Let K be a B-Hilbert module endowed with a left L.B/-action. One can consider

the space 	 ˝L.B/ K, which is a B-Hilbert module when it is endowed with the interior
inner product [21, Section 12.3] as follows. Let u; v 2 	 and x;y 2K. The interior tensor
product is given by

hu˝ x; v ˝ yiB D
˝
x; hu; viL.B/ � y

˛
B
:

Now, following Vaes’ induction procedure, we setKDL2.G/ y̋ V , as in Remark 5.12.
Vaes builds a bicovariant B-correspondence

L1.G/0

L.G/ 	 ˝L.B/

�
L2.G/ y̋ V

�
L.G/:
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Remark 5.13. On this balanced tensor product, the left action of L.G/ is done via
the left action of L.G/ on 	. The right action of L.G/ is done via its right action
on .L2.G/ y̋ V/, as specified in Remark 5.12. Finally, the morphism ˇ W L1.G/0 !
L.	˝L.B/.L

2.G/ y̋ V// is given by ˇD.ˇ	 y̋ ˇL2.G/y̋V /ı�. Specifically, let f2D.G/,
� 2 A.G/, and v 2 V . We have

• �.g/ � .�.f /˝ƒ.�/˝ v/ D �.g � f /˝ƒ.�/˝ v,

• .�.f /˝ƒ.�/˝ v/ � �0.g/ D �.f /˝ƒ.� � g/˝ v,

• ˇ.m0.g//.�.f /˝ƒ.�/˝ v/ D �.R.g.2//f /˝ƒ.R.g.1//�/˝ v.

Then, using Proposition 5.10, we have the existence of a corepresentation of C r0 .G/
on a B-Hilbert module Ind V such that there is an isomorphism of B-correspondences

L1.G/0

L.G/ 	 y̋L.B/

�
L2.G/˝ V

�
L.G/ Š

L1.G/0

L.G/ L
2.G/ y̋ Ind V L.G/:

The aim of this section is therefore to establish an equivalence of corepresentations

Ind V Š E.G/ y̋ C�.B/ V :

According to Proposition 5.6, there exists a structure of bicovariant B-correspondence

L1.G/0

L.G/ L
2.G/˝ E.G/˝D.B/ V L.G/:

Specifically, let g 2 D.G/, �; f 2 A.G/, and v 2 V . We have

• �.g/ � .ƒ.�/˝ f ˝ v/D .ƒ˝ id/.y�.g/� .�˝ f //˝ v, where � refers to the product
of D.G/ y̋ D.G/,

• .ƒ.�/˝ f ˝ v/ � �0.g/ D ƒ.� � g/˝ f ˝ v,

• ˇ.m0.g//.ƒ.�/˝ f ˝ v/ D ƒ.R.g/�/˝ f ˝ v.

Proposition 5.14. We have an equivalence of bicovariant B-correspondences

L1.G/0

L.G/ 	 y̋L.B/

�
L2.G/ y̋ V

�
L.G/ Š

L1.G/0

L.G/ L
2.G/ y̋ E.G/ y̋ C�.B/ V L.G/:

To prove this we need several results.

Lemma 5.15. Let h 2D.B/. We have that y�.h/ı
1
2

G is a well defined element ofM.D.G//

and we have y�.h/ı
1
2

G D y�.h�.ı
1
2

G//.

Proof. First, observe that, since ı
1
2

G is group-like, f 7! f ı
1
2

G is a bijective homomor-
phism of the algebra D.G/. As a consequence, this map extends to a map M.D.G//!
M.D.G// defined for m 2M.D.G// and f 2 D.G/ by

.mı
1
2

G/ � f D
�
m � .f ı

� 12
G /

�
ı
1
2

G:
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Then, setting m D y�.h/, we get�
y�.h/ı

1
2

G

�
� f D

�
y�.h/ � .f ı

� 12
G /

�
ı
1
2

G

D �B

�
�
�
S�1.f.2/ı

� 12
G /

�
h
�
f.1/ı

� 12
G ı

1
2

G

D �B

�
�
�
S�1.f.2//

�
h�B

�
�.ı

1
2

G/
��
f.1/

D y�
�
h�.ı

1
2

G/
�
� f;

where the last equality follows from the hypothesis we made in Remark 3.2 which gives

�B.�.ı
1
2

G// D �.ı
1
2

G/.

Lemma 5.16. Let h 2 D.B/ and � 2 D.G/. We have that y� 0.�0.h//ƒ.�/ D ƒ.�/ � h.

Proof. Let h 2 D.B/. We recall that we have the polar decomposition of the operator
yTB W ƒ.f / 7! ƒ.f �/ as yTB D yJB yr

1
2

B D
yr
� 12
B
yJB, so

yJB�
0.h/ yJB D

yr
1
2

B�
0.h�/yr

� 12
B :

Recall also that yrBƒ.�/ D ƒ.S
2.�/ı�1B /. We thus have

yJB�
0.h/ yJB D �

�
jS j.h/�ı

1
2

B

�
;

where jS j is the automorphism introduced in Proposition 2.13. Of course the same result
stays true if we replace B by G. We use in the next calculation that the automorphisms jS j
are intertwined by y� and that jS j.ıB/ D ıB. We also have

.hı
1
2

B /
�
D S.hı

1
2

B /ıB D h
�ı
� 12
B :

One can now calculate

y� 0
�
�0.h/

�
D yJG y�

�
�.jS j.h/�ı

� 12
B /

�
yJG

D yJG y�
�
�
�
jS j.hı

1
2

B /
�
��
yJG

D yJG�
�
jS j
�
y�.hı

1
2

B /
��� yJG

D yJG�
�
jS j
�
y�.hı

1
2

B /
��
ı
1
2

Gı
� 12
G / yJG

D yJG�
�
jS j
�
y�.hı

1
2

B /ı
� 12
G

��
ı
� 12
G

�
yJG

.�/
D yJG�

�
jS j
�
y�.h
/�ı

� 12
G

��
yJG

D yJG yJG�
0
�
y�.h
/

�
yJG yJG

D �0
�
y�.h
�1/

�
;

where for .�/ we used Lemma 5.15. The result follows from the definition of the right
action.
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Lemma 5.17. The map �� from Proposition 4.6 defines an injection with dense image
E.G/! 	 (with respect to the weak topology of B.L2.B/;L2.G//). Its image is denoted
by 	0.

Proof. Let f 2 D.G/, h 2 D.B/, and � 2 D.B/. We have

�f
�
�0.h/ƒ.�/

�
D ƒ

�
f � .� � h/

�
D ƒ

�
.f � �/ � h

�
D y� 0

�
�0.h/

�
�f
�
ƒ.�/

�
:

Thus the operator �f belongs to 	. It remains to show that the image of E.G/ in 	 is
dense. Let � 2 L2.G/ and � 2 L2.B/. Suppose we have˝

ƒ.�/; �f
�
ƒ.�/

�˛
D 0

for all f 2 E.G/. Let then u 2 	; we want to obtain that h�; u.ƒ.�//i D 0. Let " > 0;
there exist

(1) a 2 A.B/ s.t. kƒ.� � a/kL2.B/ � " (density of A.B/),

(2) b 2 A.B/ s.t. kƒ.b � a � a/kL2.B/ � " (essentialness),

(3) c 2 A.G/ s.t. ku.ƒ.b// �ƒ.c/kL2.G/ � " (density of A.G/).

Now, there exist k1; k2; k3 > 0 (depending only on the norms of ƒ.�/, ƒ.�/, and u such
that

(1) jhƒ.�/; u.ƒ.�//i � hƒ.�/; u.ƒ.a//ij � k1",

(2) jhƒ.�/; u.ƒ.a//i � hƒ.�/; u.ƒ.b � a//ij � k2", and we note that

u
�
ƒ.b � a/

�
D �0.a/u

�
ƒ.b/

�
;

(3) jhƒ.�/; u.ƒ.b// � �.a/i � hƒ.�/;ƒ.c � �/ij � k3",

Finally, since h�; c � �i D 0, we haveˇ̌˝
�; u.�/

˛ˇ̌
� .k1 C k2 C k3/";

So h�; u.�/i D 0 and we are done.

Lemma 5.18. Let V be a representation ofC �u .G/ on any Hilbert module. One can endow
V with its von Neumann bornology and consider the bornological space

V1 D D.G/ y̋D.G/ V ;

equipped with the left convolution action of D.G/ is a bornological D.G/-module. More-
over, it is dense subspace of V .

Proof. First, from the associativity of the bornological tensor product we have that

D.G/ y̋D.G/

�
D.G/ y̋D.G/ V

�
D D.G/ y̋D.G/ V ;

and thus V1 is a bornological D.G/-module.
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Now consider the linear map D.G/˝D.G/ V ! C �u .G/˝ V defined by f ˝ v 7!
�.f / ˝ v. This map is bounded since bounded subspaces of V are precisely bounded
subspaces of V with respect to its Hilbert topology. Furthermore, this map leads to an
injective map D.G/ y̋D.G/ V ! C �u .G/ y̋ C�u .G/ V Š V which has dense range.

Remark 5.19. Using the duality between modules and comodules at the bornological
level, we obtain that V1 is also a comodule.

Lemma 5.20. Let x; y 2 A.G/. We have

xy D �G.xy
.1//y.2/;

where the notation y.1/, y.2/ refers to the legs of the coproduct y�.y/.

Proof. By duality, it is enough to show that f � g D �.f � g.1//g.2/ for all f; g 2A.G/.
We have

�.f � g.1//g.2/ D �G

�
S�1.g.1//f

�
g.2/ D f � g:

Lemma 5.21. Let V1 be a D.B/-module and let h 2 D.B/, � 2 A.G/, and w 2 V1.
We have

�.h/ �
�
ƒ.�/˝ w

�
D ƒ.�.2// y̋ �

�
S�1.�.1//

�
h � w;

where “ �” on the left-hand side stands for the diagonal action of D.B/ on V1.

Proof. We use ˛ to denote the action of D.B/ on V1. We have

�.h/ �
�
ƒ.�/˝ w

�
D �.h/ �

�
ƒ.�/˝ w

�
D .� ı y� y̋ ˛/

�
y�.h/

��
ƒ.�/˝ w

�
D �

�
y�.h.1//

�
ƒ.�/ y̋ h.2/ � w

D �B

�
�
�
S�1.�.1//

�
h.1/

�
ƒ.�.2// y̋ h

.2/
� w

D ƒ.�.2// y̋ �
�
S�1.�.1//

�
h � w:

Proof of Proposition 5.14. Lemma 5.17 allows us to consider the linear map

‰ W A.G/˝D.G/˝ V1 ! 	 ˝
�
L2.G/˝ V

�
� ˝ f ˝ v 7! .� y̋ ƒ/

�
�.�/.f ˝ 1/

�
˝ v;

where � stands for the injection D.G/! 	 from Proposition 4.6.
Let �; � 2 A.G/, f; g 2 D.G/, and v;w 2 V1. We consider elements�
�.�.1/f /˝ƒ.�.2//˝ v

�
and

�
�.�.1/g/˝ƒ.�.2//˝ w

�
of 	 ˝L.B/

�
L2.G/˝ V

�
(where we use the notation Œ � � to refer to a class of elements in the balanced tensor prod-
uct). Using Lemma 5.21 in the equality .�/ below, and the definition of the interior inner



Explicit Rieffel induction module for quantum groups 475

product, we obtain˝�
�.�.1/f /˝ƒ.�.2//˝ v

�
;
�
�.�.1/g/˝ƒ.�.2//˝ w

�˛
	˝L.B/.L

2.G/˝V/

D
˝
ƒ.�.2//˝ v; �

�
h�.1/f; �.1/giD.B/

�
� .ƒ.�.2//˝ w/

˛
L2.G/˝V

D
˝
ƒ.�.2//˝ v; �G.�.1/f �.1/g.1//�

�
�.�.2/g.2/
/

�
�
�
ƒ.�.3//˝ w

�˛
L2.G/˝V

.�/
D
˝
ƒ.�.2//˝ v; �G.�.1/f �.1/g.1//ƒ.�.4//˝

�
�
�
S�1.�.3//

�
�.�.2/g.2/
/

�
� w
˛
L2.G/˝V

D
˝
ƒ.�.2//˝ v; �G. Nf �.1/�.1/g.1//ƒ.�.2//˝

�
�.g.2/
/ � w

�˛
L2.G/˝V

D �G.�.2/�.2//
˝
v; �G. Nf �.1/�.1/g.1//

�
�.g.2/
/ � w

�˛
V

D
˝
ƒ.�/˝ v;ƒ.�/˝ hf; giD.B/ � w

˛
L2.G/˝V

D
˝
ƒ.�/˝ Œf ˝ v�;ƒ.�/˝ Œg ˝ w�

˛
L2.G/˝E.G/˝D.B/V

:

In particular, this shows that elements in the kernel of the quotient

A.G/˝D.G/˝ V1 ! A.G/˝D.G/˝D.B/ V

have null image in 	 ˝L.B/ .L
2.G/˝ V/ so the map ‰ descends to a unitary map to the

balanced tensor product.
Now we can consider the associated map

z‰ W L2.G/˝ E.G/˝C�.B/ V ! 	 ˝L.B/

�
L2.G/˝ V

�
:

Let us check that ‰ intertwines the bicovariant B-correspondence structure. We start with
the left action of L.G/. Let g 2D.G/ and � ˝ f ˝ v 2A.G/˝D.G/˝V1. We have

�.g/ �
�
ƒ.�/˝ Œf ˝ v�

�
D
�
.�˝ id/

�
y�.g/˝ id

���
ƒ.�/˝ Œf ˝ v�

�
D �G

�
S�1.�.1/f.1//g

�
ƒ.�.2//˝ Œf.2/ ˝ v�;

and

�G

�
S�1.�.1/f.1//g

�
z‰
�
ƒ.�.2//˝ Œf.2/ ˝ v�

�
D �G

�
S�1.�.1/f.1//g

��
�.�.2/f.2//˝ƒ.�.3//˝ v

�
D
�
�.g � �.1/f /˝ƒ.�.2//˝ v

�
D �.g/ �

�
�.�.1/f /˝ƒ.�.2//˝ v

�
:

For the right action of L.G/0 consider again

g 2 D.G/ and � ˝ f ˝ v 2 A.G/˝D.G/˝ V1:

We have

z‰
�
ƒ.� � g/˝ Œf ˝ v�

�
� �.g/ D

�
�.�.1/f /˝ƒ.�.2/ � g/˝ v

�
D ‰

�
ƒ.�/˝ Œf ˝ v�

�
� �0.g/;
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where we use Lemma 2.20. Let now g 2 L1.G/0. We have

z‰
�
ˇ.g/

�
ƒ.�/˝ Œf ˝ v�

��
D z‰

�
ƒ
�
R.g/�

�
˝ Œf ˝ v�

�
D �

�
R.g.2//�.1/f

�
˝ƒ

�
R.g.1//�.2/

�
D ˇ.g/z‰

�
ƒ.�/˝ Œf ˝ v�

�
;

where we use that R is an anti coalgebra homomorphism.
We finish with the surjectivity of z‰. Let f 2 D.G/, g 2 A.G/, and v 2 V1 and

consider the element �.f /˝ Œƒ.g/˝ v� of 	 ˝L.B/ .L
2.G/˝ V/. We observe that the

element Œƒ.g.2// ˝ S�1.g.1//f ˝ v� of L2.G/ ˝ E.G/ ˝C�.B/ V is an antecedent of
�.f /˝ Œƒ.g/˝ v� for z‰. We conclude with a density argument.

Theorem 5.22. The representations Ind V and E.G/˝C�.B/ V are equivalent.

Proof. From Propositions 5.14 and 5.10, we obtain an isomorphism of bicovariant corre-
spondence

L2.G/˝
�
E.G/˝C�.B/ V

�
Š L2.G/˝ Ind V :

The result follows.

6. Parabolic induction

In this section, we give an explicit Rieffel induction module associated to the functor
of parabolic induction for complex semi-simple quantum groups. In particular, we show
that our induction functor coincides with the classical definition in the case of parabolic
induction [1, 25]. Finally, we give a geometric presentation of this parabolic induction
module, in a similar way to what Clare did in [2] for classical semi-simple Lie groups.

6.1. Preliminaries

We follow the notations and conventions of [25]. Let g be a complex semisimple Lie
algebra and let Gq be the associated simply connected complex semisimple quantum
group and Kq its maximal compact quantum subgroup, with its multiplicative unitary
W 2 M.A.cKq/ ˝ A.Kq//. We write Uq.g/ for the associated quantized enveloping
algebra and UR

q .k/ for the same algebra equipped with the involution �, seen as the com-
plexification of the quantized enveloping algebra of the compact form Kq . We recall that
the algebra of representative functions on the Drinfeld double Gq D Kq ‰ cKq is defined
by

A.Gq/ D A.Kq/˝A.cKq/;
with coproduct

�Gq .a˝ f / D W
�1
32 .a.1/ ˝ f.1/ ˝ a.2/ ˝ f.2//W32:
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This idea is originally due to Podleś and Woronowicz [17]. For a complete discussion, see
[25, Definition 3.18].

Let .u�ij / 2 A.Kq/ denote the matrix coefficient associated to a weight basis of an

irreducible representation � of Kq and let .!�ij / 2 A.cKq/ denote the elements of the dual
basis. We have

W D
X
i;j;�

u�ij ˝ !
�
ij ; W �1 D

X
i;j;�

S.u�ij /˝ !
�
ij ;

where the sums run over all equivalent classes of irreducible representations. In practice,
we only write W D u�ij ˝ !

�
ij .

The multiplier Hopf algebra A.Gq/ is equipped with a left Haar state �Kq ˝  bKq ,

where �Kq is the Haar state on A.Kq/ and  bKq the right Haar state on A.cKq/. Note that
this is also a right Haar state, so that ıGq D 1.

Let P be the weight lattice associated to g and UR
q .t/ D span¹K�; � 2 Pº. For each

� 2 P, we define e� 2 UR
q .t/

0 by

e�.K�/ D q
.�;�/:

In this way, we can identify the algebra of functions on the torus subgroup T of Kq as

A.T / D span¹e�; � 2 Pº � UR
q .t/

0;

where P is the weight lattice.

Remark 6.1. The classical torus subgroup T is naturally identified with spec.A.T // and
we note that for any � 2 t� we obtain a character of the �-algebra A.T / by

.K�; e
�/ D qi.�;�/:

This yields an identification T Š i.t�= 2�
log.q/

Q_/, where Q_ D Hom.P;Z/ is the coroot
lattice; see [25, Section 5.11]. We will not use this identification in what follows.

We define the restriction map � W A.Kq/! A.T / via

�.a/ D ajUR
q .t/

:

The Borel subgroup Bq D T ‰ cKq is defined via A.Bq/ D A.T / ˝ A.cKq/ (see
[25, Section 4.7]) with coproduct

�.a˝ f / D zW �132 .a.1/ ˝ f.1/ ˝ a.2/ ˝ f.2//
zW32;

twisted by the bicharacter zW D .� ˝ id/.W /. It is a closed subgroup ofGq with restriction
map

� ˝ id W A.Gq/! A.Bq/:
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We denote by �T the Haar functional on A.T /. The functional �T ˝  bKq , which will be
denoted by �Bq , is left invariant on A.Bq/. We have

ıBq D 1˝K�4�;

for the associated modular element (see the proof of [25, Proposition 4.19]). We thus
obtain our conditional expectation E W D.Gq/! D.Bq/, E.a ˝ f / D �.a/˝ fK�2�,
for all a˝ f in D.Kq/˝D.cKq/.

Let .�; �/ 2 P � t�. We recall that the principal series representation associated to
.�; �/ is defined to be the space

IndGqBq C�;� D
®
� 2M

�
A.Gq/

�
j .id˝ �Bq /�Gq .�/ D � ˝ .e

�
˝K2�C�/

¯
;

with a coaction induced by the comultiplication of Gq . The notation IndGqBq C�;� here
is inspired by analogy with the classical induction procedure; see [25, Section 6.4.2].
Our goal here is to show that this coincides with the induction functor which we have
introduced here.

Finally, we notice that Bq is amenable and that the condition �Bq .�.ıGq // is trivially
verified since ıGq D 1.

6.2. The quotient map

In the classical case, with G D KAN , principal series representations are induced from
characters of the Borel subgroup B DMAN . Explicitly, we choose first a character � of
M and � of A and then the identification MA D B=N allows us to extend � ˝ � to a
character of B . In this way, we obtain the principal series representation

IndGB �˝ �:

In the quantum case, we do not have an analog for the subgroup N . But, as we now
explain, we do have a “quotient” map

cKq � Aq :

Let us make this explicit. There are two versions of the map �T . Firstly, with the
canonical identification of �-algebras A.Kq/ D D.cKq/ and A.T / D D.Aq/, one can
consider

�T W D.cKq/! D.Aq/;

which is a �-morphism and comes with its dual morphism y�T WA.Aq/!M.A.cKq//. Sec-
ondly, using the identifications of vector spaces A.cKq/ŠD.cKq/ and A.Aq/ŠD.Aq/,
the same map can be interpreted as a map

�T W A.cKq/! A.Aq/:
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This is a conditional expectation in the sense of Proposition 3.7, observing that Kq and T
are unimodular. In particular, �.fK�/ D �.f /K� for all f 2 A.cKq/, � 2 P. This is the
map �T W A.cKq/! A.Aq/ that we call the quotient map. This map has also the notable
property

�bKq .f / D �Aq ��T .f /�:
Indeed we have for all a 2 A.Kq/

�bKq �FKq .a/� D �Kq .a/ D �T ��T .a/� D �Aq ��T �FKq .a/��:
Remark 6.2. In the rest of this paper, we extensively use Sweedler notation. Since one
considers both A.Kq/ and A.cKq/, this can be confusing. The convention is as follows. If
we write f 2A.Hq/ or f 2D.Hq/ (whereHq DGq ,Kq , cKq , T orAq) then f.1/˝ f.2/
always refers to the coproduct of A.Gq/.

Lemma 6.3. Let f 2 A.cKq/. We have

�T .f.2//˝ f.1/ D �T .f /.2/ ˝ y�T
�
�T .f /.1/

�
:

In particular, this means that the map A.Aq/!M.A.cKq/˝A.Aq// given by �T .f / 7!
f.1/ ˝ �T .f.2// is well defined.

Proof. Let f; g 2 D.cKq/. On the one hand, we have

�T .g � f / D �T .f.2//�bKq �S�1.f.1//g� D �T .f.2//�g; S�1.f.1//�:
And, on the other hand,

�T .g/ � �T .f / D �T .f /.2/�Aq
�
S�1

�
�T .f /.1/

�
�T .g/

�
D �T .f /.2/

�
g; y�T

�
S�1

�
�T .f /.1/

���
D �T .f /.2/

�
g; S�1

�
y�T
�
�T .f /.1/

���
:

One can thus identify the legs and we obtain

�T .f.2//˝ f.1/ D �T .f /.2/ ˝ y�T
�
�T .f /.1/

�
:

We denote by ˛Aq W A.Aq/! M.A.cKq//˝A.Aq/ the A.cKq/ coaction we obtain
on A.Aq/. That is, for h 2 A.Aq/ we have

˛Aq .h/ D y�T .h.1//˝ h.2/;

and for f 2 A.cKq/ one can also write

˛Aq
�
�T .f /

�
D f.1/ ˝ �T .f.2//:
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6.3. The parabolic induction module

The goal here is to build a Hilbert module which implements the parabolic induction
functor. We define this module in this section as a balanced tensor product E.Gq/˝C�.Bq/
C �.Lq/, where E.Gq/ is the induction module built from the closed quantum subgroup
Bq and where we note Lq D T � Aq .

Lemma 6.4. The linear map .id˝ �T / W D.Bq/! D.Lq/ is a �-Hopf homomorphism.

Proof. We first show that .id˝ y�T / W A.Lq/!M.A.Bq// is a �-Hopf homomorphism,
then we conclude with a duality argument. Before we start, we recall that

y�T W A.Aq/!M
�
A.cKq/�

is a Hopf �-morphism. We have that

�Bq .a˝ f / D a.1/ ˝ !
�
iif.1/!

�
rr ˝ �T

�
u�iiS.u

�
rr /
�
a.2/ ˝ f.2/;

for all a˝ f 2 A.Bq/. Let a˝ h 2 A.Lq/. We have, on the one hand,�
.id˝ y�T /˝ .id˝ y�T /

��
�Lq .a˝ h/

�
D a.1/ ˝ y�T .h.1//˝ a.2/ ˝ y�T .h.2//:

And, on the other hand,

�Bq
�
a˝ y�T .h/

�
D a.1/ ˝ !

�
ii y�T .h.1//!

�
rr ˝ �T

�
u�iiS.u

�
rr /
�
a.2/ ˝ y�T .h.2//;

and since y�T maps A.Aq/ into the set of diagonal elements of A.cKq/, we obtain

�Bq
�
a˝ y�T .h/

�
D a.1/ ˝ !

�
ii y�T .h.1//˝ �T

�
u�iiS.u

�
ii /
�
a.2/ ˝ y�T .h.2//

D a.1/ ˝ y�T .h.1//˝ a.2/ ˝ y�T .h.2//:

Thus .id˝ y�T / is compatible with the coproducts. The �-algebra structure of A.Bq/ is
not twisted so there is no difficulty to see that .id˝ y�T / is a �-algebra homomorphism.
To conclude, we just notice that since the pairing between D.Bq/ and A.Bq/ is defined
leg by leg, it is clear that the dual morphism of id˝ y�T is id˝ �T .

Let .�; �/ 2 P � t�q . One can build the one-dimensional representation of Lq on
C�;� D C� ˝C� via

.� ˝ h/ � 1 D �T .e
���/�Aq .K��h/;

for all h 2D.Aq/, � 2D.T /. Since D.Lq/ is essential, we have D.Lq/˝D.Lq/ C�;� Š
C�;�. Furthermore, since D.Lq/ is a left D.Bq/-module, one can consider the action
of D.Bq/ on D.Lq/ ˝D.Lq/ C�;�, which happens to be exactly the character of Bq
associated to .�; �/, according to the previous lemma. In particular, this shows that such
a character can be factorized through the morphism .id˝ �T / W D.Bq/! D.Lq/.

We now confirm that the classical definition of a parabolically induced representation
agrees with the general induction method we developed.
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Lemma 6.5. Let a˝ f 2 A.Gq/. We have

.a˝ f /.1/ ˝ .�T ˝ �T /
�
.a˝ f /.2/

�
D a.1/ ˝ f.1/ ˝ .�T ˝ �T /.a.2/ ˝ f.2//;

where .a˝ f /.1/ ˝ .a˝ f /.2/ refers to the coproduct of A.Gq/.

Proof. Let a˝ f 2 A.Gq/. We have

.a˝ f /.1/ ˝ .�T ˝ �T /
�
.a˝ f /.2/

�
D a.1/ ˝ !

�
ijf.1/!

�
rs ˝ �T

�
S.u�ij /a.2/u

�
rs

�
˝ �T .f.2//

D a.1/ ˝ !
�
iif.1/!

�
rr ˝ �T

�
u�iiS.u

�
rr /
�
�T .a.2//˝ �T .f.2//

.�/
D a.1/ ˝ !

�
ii y�T

�
�T .f.1//

�
!�rr ˝ �T

�
u�iiS.u

�
rr /
�
�T .a.2//˝ �T .f.2//

D a.1/ ˝ f.1/ ˝ �T .a.2//˝ �T .f.2//;

where at equality .�/ we used Lemma 6.3.

We now consider the D.Bq/-inner product on D.Gq/, given by Proposition 4.3.
According to [25, Lemma 4.17], we have ıBq D 1˝K�4�.

Lemma 6.6. Let a˝ f; b ˝ g 2 D.Gq/. We have

.id˝ �T /
�
ha˝ f; b ˝ giD.Bq/

�
D �T .a

�
� b/˝ �T .f

�
� g/K�2�:

Proof. a˝ f; b ˝ g 2 D.Gq/. Using Remark 4.4, we obtain

.id˝ �T /
�
ha˝ f; b ˝ giD.Bq/

�
D .id˝ �T /

�
�Gq

�
.a˝ f /.b ˝ g/.1/

�
.�T ˝ id/

�
.b ˝ g/.2/

�
.1˝K�2�/

�
D �Gq

�
.a˝ f /.b ˝ g/.1/

�
.�T ˝ �T /

�
.b ˝ g/.2/

�
.1˝K�2�/

.�/
D �Gq

�
. Na˝ Nf /.b.1/ ˝ g.1//

�
�T .b.2//˝ �T .g.2//.1˝K�2�/

D �T .a
�
� b/˝ �T .f

�
� g/K�2�;

where for the equality .�/ we use the previous lemma, and that the involution on A.Gq/ is
leg-wise. For the last line, we simply use that �Gq D �Kq ˝ bKq and identify convolutions
on each leg.

Proposition 6.7. The unitary representations D.Gq/ ˝D.Bq/ C�;� and IndGqBq C�;� of
D.Gq/ are isomorphic.

Proof. We consider the map ‰ such that

‰ W D.Gq/! IndGqBq C�;�

.a˝ f / 7! a � y�T .e
�/˝ �bKq .fK���2�/K�C2�:
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We will show that this map is surjective, intertwines the A.Gq/ coactions, and descends
to the balanced tensor product D.Gq/˝D.Bq/ C�;�. Let a˝ f 2 D.Gq/. We first show
that a � y�T .e�/ ˝ �bKq .fK��C2�/K�C2� belongs to IndGqBq C�;�. It is enough to show
that .id˝ �T /.�Kq .a � y�T .e

�/// D .a � y�T .e
�//˝ e�. For this, since e� is group-like

we have

.id˝ �T /
�
�Kq

�
a � y�T .e

�/
��
D �T

�
e���T .a.3//

�
a.1/ ˝ �T .a.2//

D �T
�
e���T .a.2//

�
a.1/ ˝ e

�:

Next, let a˝ f , b ˝ g be in D.Gq/ and consider the elements Œa˝f ˝1�, Œb˝g˝1�
of D.Gq/˝D.Bq/ C�;�. We have˝�
.a˝ f /˝ 1

�
;
�
.b ˝ g/˝ 1

�˛
D ha˝ f; b ˝ giD.Bq/ � 1

D .id˝ �T /
�
ha˝ f; b ˝ giD.Bq/

�
� 1

D
�
�T .a

�
� b/˝ �T .f

�
� g/K�2�

�
� 1

D �T
�
�T .a

�
� b/e��

�
�bKq �.f � � g/K�2����

D �T
�
�T .a

�
�b/e��

�
�bKq .f �K�2���/�bKq .gK�2���/;

where at the last line we used that �bKq .x � y/ D �bKq .x/�bKq .y/, 8x; y 2 D.cKq/. Note
also that

�bKq .f �K�2���/ D .K��2���f �/
since K�2��� is self-adjoint and �bKq .K�2���/ D K�2���. For the calculation on the
right-hand side, we will use that .e�/� D e� and that e� � e� D e�. We also use Lemma
2.19. We have˝
a � y�T .e

�/˝K�C2�; b � y�T .e
�/˝K�C2�

˛
D
˝
a � y�T .e

�/; b � y�T .e
�/
˛

D �Kq
��
a � y�T .e

�/
��
� b � y�T .e

�/
�

D �T
�
�T
�
y�T .e

�/� � a�
��
�
�
b � y�T .e

�/
�

D �T
�
e� � �T .a

�
� b/ � e�

�
D �T

�
�T .a

�
� b/ � .e�/�

�
D �T

�
�T .a

�
� b/e�

�
D �T

�
�T .a

�
� b/e��

�
:

This then shows that ‰ descends to a unitary map on the balanced tensor product

D.Gq/˝D.Bq/ C�;� ! IndGqBq C�;�:
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To conclude, we show that ‰ is surjective. To this end, we first notice that IndGqBq C�;�
is spanned by elements of type a˝K�C2� for a 2 �.E�;�/, where �.E�;�/ is defined in
[25, Section 6.4.2]. This follows from the fact that the map ext W �.E�;�/! IndGqBq C�;�
from [25, Lemma 6.18] is an isomorphism and we have ext.a/ D a ˝ K�C2� for all
a 2 �.E�;�/. Let then a 2 �.E�;�/. We have that a � y�T .e�/ D a; thus the element
a˝ �Kq ˝ 1 of D.Gq/˝D.Bq/ C�;� is an antecedent of a˝K�C2�.

One can now consider the D.Lq/-inner product module D.Gq/˝D.Bq/ D.Lq/ and
we have

D.Gq/˝D.Bq/ D.Lq/˝D.Lq/ C�;� Š D.Gq/˝D.Bq/ C�;�:

As a consequence, D.Gq/˝D.Bq/ D.Lq/ is the parabolic induction module.

6.4. Geometric presentation of the induction module

We consider the linear space

A.Gq=Nq/ D A.Kq/˝A.Aq/;

equipped with its natural structure of untwisted �-algebra. We endow A.Gq=Nq/ with a
left A.Gq/-coaction given, for a˝ h 2 A.Gq=Nq/, by

�Gq=Nq .a˝ h/ D W
�1
32

�
�Kq .a/˝ ˛Aq .h/

�
W32 2M

�
A.Gq/

�
˝A.Gq=Nq/;

where the coaction ˛Aq is defined after Lemma 6.3. Let f 2 A.cKq/. We have

�Gq=Nq
�
a˝ �T .f /

�
D W �132

�
a.1/ ˝ f.1/ ˝ a.2/ ˝ �T .f.2//

�
W32:

From this we see that �Gq=Nq .a ˝ �T .f // D .id˝ id˝ id˝ �T /.�Gq .a˝ f // and it
directly follows that the map �Gq=Nq is coassociative. This remark also implies the next
proposition.

Proposition 6.8. The map id˝ �T W A.Gq/! A.Gq=Nq/ intertwines the left-A.Gq/-
coactions where A.Gq/ is considered with its natural comodule structure given by the
coproduct.

We now define a right A.Lq/-coaction on A.Gq=Nq/, denoted by�0
Gq=Nq

. For a˝h2
A.Gq=Nq/, we set

�0Gq=Nq .a˝ h/ D a.1/ ˝ h.1/ ˝ �T .a.2//˝ h.2/ 2 A.Gq=Nq/˝A.Lq/:

Proposition 6.9. The coactions �0
Gq=Nq

and �Gq=Nq commute.

Proof. We first claim that we have

.id˝ y�T ˝ id˝ y�T /
�
�0Gq=Nq .a˝ h/

�
D .id˝ id˝ �T ˝ id/

�
�Gq

�
a˝ y�T .h/

��
:
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We calculate

.id˝ id˝ �T ˝ id/
�
�Gq

�
a˝ y�T .h/

��
D a.1/ ˝ !

�
ij y�T .h.1//!

�
rs ˝ �T

�
S.u�ij /a.2/u

�
rs

�
˝ y�T .h.2//

D a.1/ ˝ y�T .h.1//˝ �T .a.2//˝ y�T .h.2//

D .id˝ y�T ˝ id˝ y�T /
�
�0Gq=Nq .a˝ h/

�
:

We have also that

.id˝ id˝ id˝ y�/
�
�Gq=Nq .a˝ h/

�
D �Gq

�
a˝ y�.h/

�
:

Now we can prove the proposition. First, we rewrite above equalities using the leg
notation (we will write � and y� instead of �T and y�T )

.y� ˝ y�/24 ı�
0
Gq=Nq

D �3 ı�Gq ı y�2;

y�4 ı�Gq=Nq D �Gq ı y�2:

Now observe that we have, on the one hand,

.y� ˝ y�/46 ı .�
0
Gq=Nq

/34 ı�Gq=Nq D
�
.y� ˝ y�/24 ı�

0
Gq=Nq

�
34
ı�Gq=Nq

D .�3 ı�Gq ı y�2/34 ı�Gq=Nq

D �5 ı .�Gq /34 ı�Gq ı y�2

and, on the other hand,

.y� ˝ y�/46 ı .�Gq=Nq /12 ı�
0
Gq=Nq

D .�Gq /12 ı .y� ˝ y�/24 ı�
0
Gq=Nq

D .�Gq /12 ı �3 ı�Gq ı y�2

D �5 ı .�Gq /12 ı�Gq ı y�2

and we conclude the proof using the coassociativity of �Gq and injectivity of y�T .

Observe now A.Gq=Nq/ D D.Kq/ ˝ D.Aq/ as a linear space. On the one hand,
D.Kq/ can be considered as a D.T /-inner product module, since T is a closed quan-
tum subgroup of Kq . On the other hand, K2� is a self-adjoint and group-like element of
M.A.Aq//; thus D.Aq/ has a structure of D.Aq/-inner product module with right action

h � l D h � .lK2�/;

and the sesquilinear map defined by

hh; kiD.Aq/ D .h
�
� k/K�2�;

for all h; k; l 2 D.Aq/. One can thus endow A.Gq=Nq/ D D.Kq/ ˝D.Aq/ with the
structure of a .D.T /˝D.Aq//-inner product module induced by the tensor product. Let
a˝ h, b ˝ k 2 A.Gq=Nq/, and � ˝ l 2 D.Lq/. We have

ha˝ h; b ˝ kiD.Lq/ D �T .a
�
� b/˝ .h� � k/K�2�;

.a˝ k/ � .� ˝ l/ D a � y�T .�/˝ k � .lK2�/:
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Lemma 6.10. The left action of D.Kq/ on A.Gq=Nq/ induced by �Gq=Nq commutes
with the right D.Lq/ action.

Proof. This is almost equivalent to Proposition 6.9. Observe that if one precomposes the
right D.Lq/ action by the �-algebra homomorphism of D.Lq/ given by x 7!x.1˝K2�/,
we obtain exactly the action induced by the coaction �0

Gq=Nq
.

Proposition 6.11. The map defined by

ˆ W D.Gq/˝D.Lq/! A.Gq=Nq/

.a˝ f /˝ .� ˝ h/ 7!
�
a˝ �T .f /

�
� .� ˝ h/

is a D.Lq/-linear map which intertwines the left action of D.Gq/ and descends to a
unitary isomorphism on the balanced tensor product D.Gq/˝D.Bq/ D.Lq/.

Proof. The D.Lq/-linearity of ˆ is immediate from the definition since the right D.Lq/

action on A.Gq=Nq/ is associative. The intertwining property directly follows from Propo-
sition 6.8 and the previous proposition. Let .a˝ f /˝ .� ˝ h/ and .b˝ g/˝ .�˝ k/ be in
D.Gq/˝D.Lq/ and consider the elements Œ.a˝ f /˝ .� ˝ h/� and Œ.b˝ g/˝ .�˝ k/�
of the balanced tensor product D.Gq/˝D.Bq/ D.Lq/. We have˝�

.a˝ f /˝ .� ˝ h/
�
;
�
.b ˝ g/˝ .� ˝ k/

�˛
D.Lq/

D
˝
.� ˝ h/; ha˝ f; b ˝ giD.Bq/ � .� ˝ k/

˛
D.Lq/

D
˝
.� ˝ h/;

�
�T .a

�
� b/˝ �T .f

�
� g/K�2�

�
� .� ˝ k/

˛
D.Lq/

D
˝
.� ˝ h/;

�
�T .a

�
� b/ � �

�
˝
�
�T .f

�
� g/K�2�

�
� k
˛
D.Lq/

D
�
�� � �T .a

�
� b/ � �

�
˝
�
h� � �T

�
.f � � g/K�2�

�
� k
�

D
�
�T
�
a � y�T .�/

��
� b � y�T .�/

�
˝
�
h� � �T .f

�
� g/K�2� � k

�
D
�
�T
�
a � y�T .�/

��
� b � y�T .�/

�
˝
�
h� � �T .f /

�K2� � �T .g/K2� � k
�
K�2�

D
˝�
a˝ �T .f /

�
� .� ˝ h/;

�
b ˝ �T .g/

�
� .� ˝ k/

˛
D.Lq/

:

Thus the map ‰ descends to a unitary map on the balanced tensor product. With regard
to the surjectivity, it is enough to observe that the right D.Lq/-action on A.Gq=Nq/ is
essential.

The following theorem is now immediate.

Theorem 6.12. The pre-Hilbert D.Lq/-module A.Gq=Nq/ can be completed into a
Hilbert C �.Lq/-module E.Gq=Nq/ and we have

E.Gq=Nq/ Š E.Gq/˝C�.Bq/ C
�.Lq/

as Gq-representations. The tensor product E.Gq=Nq/˝C�.Lq/ � defines a functor from
the category of unitary C �.Lq/-representations to the category of unitary C �u .Gq/-repre-
sentations which coincides with parabolic induction.



D. Rivet 486

By the Fourier transform, we have

C �.Lq/ Š C0.cLq/ D C0.P � T /;
such that the characters of C �.Lq/ become the evaluation maps

ev.�;�/ W C0.P � T /! C�;�:

According to [25, Theorem 7.1] we have

C �r .Gq/ Š C0
�
P � t�q ;K.H/

�W
;

whereH is a countable dimensional Hilbert space, and the action of the Weyl groupW is
a lifting of its action by reflections on P � t�q to an action on the bundle of C �-algebras.
More precisely, the Hilbert spaceH at the parameter .�;�/ 2 P� t�q is identified with the
parabolically induced representation of Gq ,

H D H�;� D IndGqBq C�;� Š H� D IndKqT C�

D
®
� 2 A.Kq/ j �.�/ D � ˝ e�

¯k�kL2.Kq/
;

which is a trivial Hilbert bundle on each connected component ¹�º � t�q of the parameter
space. The action of W is via intertwiners of principal series representations. In this way,
we have

C �r .Gq/ D

�
K
�M
�2P

C0.t
�
q ;H�/

��W
;

where K denotes compact operators on the right Hilbert C0.P � t�q /-module.
By Theorem 6.12, we have

H�;� Š E.Gq/˝C�.Bq/ C�;�

as left C �u .Gq/-module. Therefore,

C0.t
�
q ;H�/ Š E.Gq=Nq/˝C�.Lq/ C0.t

�
q /�

as left C �u .Gq/-module and right C0.t�q /-Hilbert module, where C0.t�q /� denotes C0.t�q /
equipped with the left action of C �.Lq/ D C �.T / y̋ C �.Aq/ D C0.P/ y̋ C0.t�q / such
that C0.t�q / acts by pointwise multiplication and C0.P/ acts by evaluation at �. We thus
obtain M

�2P

C0.t
�
q ;H�/ D E.Gq=Nq/˝C�.Lq/ C0.P � t�q / D E.Gq=Nq/:

We have therefore proven the following result.
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Corollary 6.13. Let Gq be a complex semi-simple quantum group. Then

C �r .Gq/ Š K
�
E.Gq=Nq/

�W
;

where K indicates the algebra of compact operators in the sense of Hilbert modules.

In the classical case, this result has been first obtained in [26] and reformulated in [3]
with the Rieffel induction framework.

References

[1] Y. Arano, Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. 742
(2018), 157–186 Zbl 1396.81117 MR 3849625

[2] P. Clare, Hilbert modules associated to parabolically induced representations. J. Operator The-
ory 69 (2013), no. 2, 483–509 Zbl 1289.46084 MR 3053351

[3] P. Clare, T. Crisp, and N. Higson, Parabolic induction and restriction via C�-algebras and
Hilbert C�-modules. Compos. Math. 152 (2016), no. 6, 1286–1318 Zbl 1346.22005
MR 3518312

[4] M. Daws, P. Kasprzak, A. Skalski, and P. M. Sołtan, Closed quantum subgroups of locally
compact quantum groups. Adv. Math. 231 (2012), no. 6, 3473–3501 Zbl 1275.46057
MR 2980506

[5] K. De Commer and A. Van Daele, Multiplier Hopf algebras imbedded in locally compact
quantum groups. Rocky Mountain J. Math. 40 (2010), no. 4, 1149–1182 Zbl 1226.16023
MR 2718809

[6] H. Hogbe-Nlend, Bornologies and Functional Analysis: Introductory Course on the Theory of
Duality Topology-Bornology and its use in Functional Analysis. North-Holland Math. Stud.
26, North-Holland, Amsterdam, 1977 Zbl 0359.46004 MR 0500064

[7] M. Kalantar, P. Kasprzak, A. Skalski, and P. M. Sołtan, Induction for locally compact quantum
groups revisited. Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 1071–1093
Zbl 1446.46050 MR 4080471

[8] J. Kustermans, Induced corepresentations of locally compact quantum groups. J. Funct. Anal.
194 (2002), no. 2, 410–459 Zbl 1038.46057 MR 1934609

[9] J. Kustermans, The analytic structure of algebraic quantum groups. J. Algebra 259 (2003),
no. 2, 415–450 Zbl 1034.46064 MR 1955527

[10] J. Kustermans and S. Vaes, Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4)
33 (2000), no. 6, 837–934 Zbl 1034.46508 MR 1832993

[11] J. Kustermans and A. van Daele, C�-algebraic quantum groups arising from algebraic quan-
tum groups. Internat. J. Math. 8 (1997), no. 8, 1067–1139 Zbl 1009.46038 MR 1484867

[12] E. C. Lance, Hilbert C�-Modules: A Toolkit for Operator Algebraists. London Math. Soc.
Lecture Note Ser. 210, Cambridge University Press, Cambridge, 1995 Zbl 0822.46080
MR 1325694

[13] G. W. Mackey, Induced representations of locally compact groups. I. Ann. of Math. (2) 55
(1952), 101–139 Zbl 0046.11601 MR 44536

[14] R. Meyer, Bornological versus topological analysis in metrizable spaces. In Banach Algebras
and their Applications, pp. 249–278, Contemp. Math. 363, Amer. Math. Soc., Providence, RI,
2004 Zbl 1081.46004 MR 2097966

https://zbmath.org/?q=an:1396.81117&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3849625
https://zbmath.org/?q=an:1289.46084&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3053351
https://zbmath.org/?q=an:1346.22005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3518312
https://zbmath.org/?q=an:1275.46057&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2980506
https://zbmath.org/?q=an:1226.16023&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2718809
https://zbmath.org/?q=an:0359.46004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0500064
https://zbmath.org/?q=an:1446.46050&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4080471
https://zbmath.org/?q=an:1038.46057&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1934609
https://zbmath.org/?q=an:1034.46064&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1955527
https://zbmath.org/?q=an:1034.46508&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1832993
https://zbmath.org/?q=an:1009.46038&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1484867
https://zbmath.org/?q=an:0822.46080&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1325694
https://zbmath.org/?q=an:0046.11601&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=44536
https://zbmath.org/?q=an:1081.46004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2097966


D. Rivet 488

[15] R. Meyer, Smooth group representations on bornological vector spaces. Bull. Sci. Math. 128
(2004), no. 2, 127–166 Zbl 1037.22011 MR 2039113

[16] A. Monk and C. Voigt, Complex quantum groups and a deformation of the Baum–Connes
assembly map. Trans. Amer. Math. Soc. 371 (2019), no. 12, 8849–8877 Zbl 1472.46074
MR 3955567
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