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Lorentzian fermionic action by twisting Euclidean
spectral triples

Pierre Martinetti and Devashish Singh

Abstract. We show how the twisting of spectral triples induces a transition from a Euclidean to
a Lorentzian noncommutative geometry at the level of the fermionic action. More specifically,
we compute the fermionic action for the twisting of a closed Euclidean manifold, then that of a
two-sheet Euclidean manifold, and finally the twisting of the spectral triple of electrodynamics in
Euclidean signature. We obtain the Weyl and the Dirac equations in Lorentzian signature (and in
the temporal gauge). The twisted fermionic action is then shown to be invariant under an action
of the Lorentz group. This permits us to interpret the field of 1-form that parametrises the twisted
fluctuation of a manifold as the (dual) of the energy-momentum 4-vector.

1. Introduction

Noncommutative geometry [12] offers various ways to build models beyond the standard
model (SM) of elementary particles, recently reviewed in [6, 21]. One of them [22, 23]
consists in twisting the spectral triple of SM by an algebra automorphism, in the sense of
Connes–Moscovici [17]. This provides a mathematical justification to the extra scalar field
introduced in [7] to both fit the mass of the Higgs and stabilise the electroweak vacuum.
A significant difference from the construction based on usual spectral triples without first-
order condition [9, 10] is that the twist does not only yield an extra scalar field, but also a
supplementary 1-form field (in [23], this field was improperly called vector field) whose
meaning was rather unclear so far.

Connes’ theory of spectral triples provides a spectral characterisation of compact
Riemannian manifolds [15] along with the tools for their noncommutative generalisa-
tion [14]. Extending this program to the pseudo-Riemannian case is notoriously difficult.
Although several interesting results in this context have been obtained recently, see e.g. [2,
24, 25, 36], there is no reconstruction theorem for pseudo-Riemannian manifolds in view,
and it is still unclear how the spectral action should be handled in a pseudo-Riemannian
signature.

Quite unexpectedly, the twist of the SM,which has been introduced in a purelyRieman-
nian context, has something to do with the transition from the Euclidean signature to the
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Lorentzian one. In fact, the inner product induced by the twist on the Hilbert space of
Euclidean spinors on a four-dimensional manifold M coincides with the Krein product
of Lorentzian spinors [20]. This is not so surprising, for the twist � coincides with the
automorphism that exchanges the two eigenspaces of the grading operator (in physicist’s
words: that exchanges the left and the right components of spinors). And this is nothing but
the inner automorphism induced by the first Dirac matrix 0D c.dx0/. This explains why,
by twisting, one is somehow able to single out the x0 direction among the four Rieman-
nian dimensions of M. However, the promotion of this x0 to a “time direction” is not fully
accomplished, at least not in the sense of Wick rotation [19]. Indeed, regarding the Dirac
matrices, the inner automorphism induced by 0 does not implement the Wick rotation
(which maps the spatial Dirac matrices j to W.j / WD ij ) but actually its square:

�.j / D 0j 0 D �j D W 2.j /; for j D 1; 2; 3: (1.1)

Nevertheless, a transition from the Euclidean to the Lorentzian does occur, and the x0
direction gets promoted to a time direction, but this happens at the level of the fermionic
action. This is the main result of this paper, summarised in Propositions 4.5, 5.13, and
their lorentz invariant version propositions 6.7 and 6.11.

More specifically, starting with the twisting of a Euclidean manifold, then that of a
two-sheet Euclidean manifold, and finally the twisting of the spectral triple of electro-
dynamics in Euclidean signature [37], we show how the fermionic action for twisted
spectral triples, proposed in [20], actually yields the Weyl and the Dirac equations in
Lorentzian signature. In addition, the extra 1-form field acquires a clear interpretation as
the dual of the energy-momentum 4-vector.

The following three aspects of the twisted fermionic action explain the change of
signature.

• First, in order to guarantee that the fermionic action is symmetric when evaluated
on Graßmann variables (which is an important requirement for the whole physical
interpretation of the action formula, also in the non-twisted case [8]), one restricts the
bilinear form that defines the action to the C1-eigenspace HR of the unitary operator
R that implements the twist; whereas in the non-twisted case, the restriction is to the
C1-eigenspace of the grading, in order to solve the fermion doubling problem. This
different choice of eigenspace had been noticed in [20], but the physical consequences
were not drawn. As already emphasised above, in the models relevant for physics,
RD 0, and once restricted to HR, the bilinear form no longer involves a derivative in
the x0 direction. In other words, the restriction to HR projects the Euclidean fermionic
action to what will constitute its spatial part in Lorentzian signature.

• Second, the twisted fluctuations of the Dirac operator of a four-dimensional Rieman-
nian manifold are not necessarily zero [23, 28], in contrast with the non-twisted case
where those fluctuations always vanish. These are parametrised by the above-men-
tioned 1-form field. By interpreting the zeroth component of this field as an energy,
one recovers a derivative in the x0 direction, but now in a Lorentzian signature.
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• Third, we show that the twisted fermionic action is invariant under an action of the
Lorentz group. From that follows the interpretation of the whole 1-form field (not
only its zeroth component) as the dual of the energy-momentum 4-vector.

All this is detailed as follows. In Section 2, we review the known material regarding
twisted spectral triples, their compatibility with the real structure (Section 2.1) and the
new inner product they induce on the initial Hilbert space (Section 2.2). We discuss what
a covariant Dirac operator is in the twisted context, and the corresponding gauge invari-
ant fermionic action it defines (Section 2.3). We finally recall how to associate a twisted
partner to graded spectral triples (Section 2.4).

In Section 3, we investigate the fermionic action for the minimal twist of a closed
Euclidean manifold, that is, the twisted spectral triple having the same Hilbert space and
Dirac operator as the canonical triple of the manifold, but whose algebra is doubled in
order to make the twisting possible (Section 3.1). In Section 3.2, we show that twisted
fluctuations of the Dirac operator are parametrised by a 1-form field of components X�,
first discovered in [23]. In Section 3.3, we recall how to deal with gauge transformations
in a twisted context, along the lines of [29]. We then compute the twisted fermionic action
in Section 3.4 and show that it yields a Lagrangian density similar to that of the Weyl
equations in Lorentzian signature, as soon as one interprets the zeroth component of X�
as the time component of the energy-momentum 4-vector of fermions. However, there are
not enough spinor degrees-of-freedom to deduce the Weyl equations for this Lagrangian
density.

That is why in Section 4 we double the twisted manifold (Section 4.1), compute the
twisted-covariant Dirac operator (Section 4.2), and obtain Weyl equations from the fermi-
onic action (Section 4.3).

In Section 5, we apply the same construction to the spectral triple of electrodynamics
proposed in [37]. Its minimal twist is written in Section 5.1, the twisted fluctuations are
calculated in Section 5.2, for both the free part and the finite parts of the Dirac operator.
The gauge transformations are studied in Section 5.3 and, finally, the Dirac equation in
Lorentzian signature (and in the temporal gauge) is obtained in Section 5.4.

Section 6 deals with Lorentz invariance.
We conclude with some outlook and perspective. The appendices contain all the re-

quired notations for the Dirac matrices and for the Weyl and Dirac equations.
The Lorentz metric is .C1;�1;�1;�1/. We use Einstein convention for summing on

alternate (up/down) indices: for instance, �@� stands for
P
� 

�@�.

2. Fermionic action for twisted spectral geometry

After an introduction to twisted spectral triples (Section 2.1), we recall how the inner
product induced by the twist on the Hilbert space (Section 2.2) permits building a fermi-
onic action (Section 2.3). The key difference with the usual (i.e., non-twisted) case is that
one no longer restricts to the positive eigenspace of the grading � , but rather to that of
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the unitary R implementing the twist. Finally, we emphasise the twist-by-grading proced-
ure that associates a twisted partner to any graded spectral triple whose representation is
sufficiently faithful (Section 2.4).

2.1. Real twisted spectral triples

Twisted spectral triples have been introduced to build noncommutative geometries from
type III algebras [17]. Later, they found applications in high energy physics describing
extensions of SM, such as the Grand Symmetry model [22, 23].

Definition 2.1 (from [17]). A twisted spectral triple .A;H ;D/� is a unital �-algebra A

that acts faithfully on a Hilbert space H as bounded operators,1 along with a self-adjoint
operator D on H with compact resolvent, called the Dirac operator, and an automorphism
� of A such that the twisted commutator, defined as

ŒD ; a�� WD Da � �.a/D ; (2.1)

is bounded for any a 2A (that is, ŒD ; a�� is well defined on the domain of D and extends
to a bounded operator on H ).

A graded twisted spectral triple is one endowed with a self-adjoint operator � on H

such that
�2 D I; �D CD� D 0; �a D a�; 8a 2 A: (2.2)

The real structure [13] easily adapts to the twisted case [28]: as in the non-twisted case,
one considers an antilinear isometry J W H ! H , such that

J 2 D "I; JD D "0DJ; J� D "00�J; (2.3)

where the signs "; "0; "00 2 ¹˙1º determine the KO-dimension of the twisted spectral
triple. In addition, J is required to implement an isomorphism between A and its opposite
algebra Aı,

b 7! bı WD Jb�J�1; 8b 2 A: (2.4)

One requires this action of Aı on H to commute with that of A (the zero-order condition),

Œa; bı� D 0; 8a; b 2 A; (2.5)

in order to define a right representation of A on H :

 a WD aı D Ja�J�1 ; 8 2 H : (2.6)

1Wherever applicable, we use a to mean its representation �.a/. Thus a� denotes �.a�/ D �.a/�,
where � is the involution of A and � is the Hermitian conjugation on H .
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The part of the real structure that is modified is the first-order condition. In the non-
twisted case, it reads ŒŒD;a�; bı�D 0, 8a;b 2A; while in the twisted case, it becomes [23,
28] �

ŒD ; a��; b
ı
�
�ı
WD ŒD ; a��b

ı
� �ı.bı/ŒD ; a�� D 0; 8a; b 2 A; (2.7)

where �ı is the automorphism induced by � on the opposite algebra:

�ı.bı/ D �ı.J b�J�1/ WD J�.b�/J�1: (2.8)

Definition 2.2 (from [28]). A real twisted spectral triple is a graded twisted spectral triple,
along with a real structure J satisfying (2.3), the zeroth and the first-order conditions (2.5),
(2.7).

In case the automorphism � coincides with an inner automorphism of B.H /, that is,

�
�
�.a/

�
D R�.a/R�; 8a 2 A; (2.9)

where R 2 B.H / is unitary, then � is said to be compatible with the real structure J , as
soon as

JR D "000RJ; for "000 D ˙: (2.10)

The inner automorphism, hence the unitary R, is not necessarily unique. In that case, �
is compatible with the real structure if there exists at least one R satisfying the above
conditions.

Remark 2.3. In the original definition [17, eq. (3.4)], the automorphism is not required
to be an �-automorphism, but rather to satisfy the regularity condition �.a�/ D ��1.a/�.
If, however, one requires � to be an �-automorphism, then the regularity condition implies
that

�2 D Id: (2.11)

Other modifications of spectral triples by twisting the real structure have been pro-
posed [4]. Interesting relations with the above real twisted spectral triples have been
worked out in [5].

2.2. Twisted inner product

Given a Hilbert space .H ; h�; �i/ and an automorphism � of B.H /, a �-product h�; �i� is an
inner product satisfying

h�;O�i� D
˝
�.O/��; �

˛
�
; 8O 2 B.H / and �; � 2 H ; (2.12)

where � is the Hermitian adjoint with respect to the inner product h�; �i. One calls

OC WD �.O/� (2.13)
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the �-adjoint of the operator O. If � is inner and implemented by a unitary operator R on
H – that is, �.O/ D ROR� for any O 2 B.H / – then, a canonical �-product is

h�; �i� D h�;R�i: (2.14)

The �-adjointness is not necessarily an involution. If � is an �-automorphism (for
instance, when � is inner), then C is an involution iff (2.11) holds, for

.OC/C D �.OC/� D �
�
.OC/�

�
D �

�
�.O/

�
: (2.15)

Remark 2.4. The regularity condition in Remark 2.3 (written as �.b/� D ��1.b�/ for
any b D a� 2 A) is equivalent to the �-adjointness aC WD �.a/� being an involution, for

.aC/C D
�
�.a/�

�C
D
�
�
�
�.a/�

���
D
�
�
�
��1.a�/

���
D .a�/� D a: (2.16)

Given a twisted spectral triple .A;H ;D/� whose twisting automorphism � coincides
with an automorphism of B.H /, any choice of the unitary R implementing this auto-
morphism induces a natural twisted inner product (2.14) on H . These products are useful
to define a gauge invariant fermionic action.

2.3. Twisted fermionic action

The fermionic action for a real spectral triple .A; H ;D I J; �/ is [1, 8] S.D!/ WD

AD!
.z�; z�/, where

AD!
.�; �/ WD hJ�;D!�i; �;  2 H ; (2.17)

is a bilinear form defined by the covariant Dirac operator D! WDD C!C "0J!J�1 [14],
where ! is a self-adjoint element of the set of generalised 1-forms

�1D.A/ WD
°X

i

ai ŒD ; bi �; ai ; bi 2 A
±
I (2.18)

while z is a Graßmann vector in the Fock space zHC of classical fermions, corresponding
to the positive eigenspace HC � H of the grading �; that is,

zHC WD ¹z�; � 2 HCº; where HC WD ¹� 2 H ; �� D �º: (2.19)

The fermionic action is invariant under a gauge transformation, that is, the simultaneous
adjoint action of the group U.A/ of unitaries of A, both on H 3  ,

.Adu/ WD u u� D u.u�/ı D uJuJ�1 u 2 U.A/ (2.20)

and on the covariant Dirac operator: D! ! .Adu/D!.Adu/�.

Remark 2.5. The form (2.17) is antisymmetric in KO-dimensions 2; 4 (Lemma 2.7
below), so AD!

.�; �/ vanishes when evaluated on vectors. However, it is non-zero when
evaluated on Graßmann vectors [16, §I.16.2]. In particular, for the spectral triple of SM (of
KO-dimension 2), the fermionic action contains the coupling of matter with fields (scalar,
gauge, and gravitational).
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In twisted spectral geometry, the fermionic action is constructed [20] substituting D!

with a twisted covariant Dirac operator

D!� WD D C !� C "
0J!�J

�1; (2.21)

where !� is an element of the set of twisted 1-forms [17],

!� 2 �
1
D.A; �/ WD

°X
j

aj ŒD ; bj ��; aj ; bj 2 A
±
; (2.22)

such that D!� is self-adjoint,2 and by replacing the inner product with the �-product (2.12).
Instead of (2.17), one thus considers the bilinear form

A
�
D!�

.�; �/ WD hJ�;D!��i�: (2.23)

A gauge transformation is given by the same action (2.20) of U.A/ on H , but the
Dirac operator transforms in the following twisted manner [29]:

D!� !
�
Ad �.u/

�
D!�.Adu

�/: (2.24)

The r.h.s. of (2.24) is still a twisted covariant Dirac operator D!u� , where [29, Prop. 4.2]

!u� WD �.u/
�
ŒD; u��� C !�u

�
�
: (2.25)

The transformation !� ! !u� is the twisted version of the law of transformation of the
gauge potential in noncommutative geometry [14].

In case the twist � is compatible with the real structure in the sense of (2.10) for
some unitary R, the bilinear form (2.23) is invariant under the simultaneous transform-
ation (2.20)–(2.24) [20, Prop. 4.1]. However, the antisymmetry of the form A

�

D!�
is not

guaranteed, unless one restricts to the positive eigenspace of R, that is,

HR WD ¹� 2 DomD ; R� D �º: (2.26)

This has been discussed in [20, Prop. 4.2] and led to the following definition.

Definition 2.6. For a real twisted spectral triple .A;H ;D IJ /�, the fermionic action is

S�.D!�/ WD A
�

D!�
.z�; z�/; (2.27)

where z� is the Graßmann vector associated to � 2 HR.

2The domain of D!� coincides with the one of D (being !� C J!�J
�1 in B.H /). By Kato–Relish

theorem, D!� is self-adjoint iff !�C J!�J�1 is self-adjoint. In [23], we required !�C J!�J�1 to be self-
adjoint without necessarily imposing the self-adjointness of !�. This is discussed in detail after Lemma 3.2
below.
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In the spectral triple of SM, the restriction to HC is there to solve the fermion doubling
problem [30]. It also selects out the physically meaningful elements of H D L2.M;�/˝

HF , that is, those spinors whose chirality in L2.M; �/ coincides with their chirality as
elements of the finite-dimensional Hilbert space HF . In the twisted case, the restriction
to HR is there to guarantee the antisymmetry of the bilinear form A

�

D!�
. However, the

eigenvectors of R may not have a well-defined chirality. If fact, they cannot have it when
the twist comes from the grading (see Section 2.4 below), since the unitary R implement-
ing the twist (given in (2.35)) anticommutes with the chirality � D diag.IHC ;�IH�/, so
that

HC \HR D ¹0º: (2.28)

From a physical standpoint, by restricting to HR rather than HC, one loses a clear
interpretation of the elements of the Hilbert space: a priori, an element of HR is not phys-
ically meaningful since its chirality is ill-defined. However, we show in what follows that
– at least in two examples: a manifold and the almost-commutative geometry of electro-
dynamics – the restriction to HR is actually meaningful, for it allows to obtain the Weyl
and Dirac equations in the Lorentzian signature, even though one starts with a Riemannian
manifold.

Before that, we conclude this section with two easy but useful lemmas. The first recalls
how the symmetry properties of the bilinear form AD D hJ �; D�i do not depend on the
explicit form of the Dirac operator, but solely on the signs "0; "00 in (2.3). The second
stresses that once restricted to HR, the bilinear forms (2.17) and (2.23) differ only by a
sign.

Lemma 2.7. Let J be an antilinear isometry on the Hilbert space .H ; h�; �i/ such that
J 2 D "I, and D a self-adjoint operator on H such that JD D "0DJ . Then

hJ�;D�i D ""0hJ �;D�i; 8�; � 2 H : (2.29)

Proof. By definition, an antilinear isometry satisfies hJ�; J �i D h�; �i D h�; �i. Thus

hJ�;D�i D "hJ�; J 2D�i D "hJD�; �i D ""0hDJ�; �i D ""0hJ �;D�i:

In particular, for KO-dimensions 2; 4 one has that " D �1, "0 D 1, so AD is antisym-
metric. The same is true for AD!

in (2.17), because the covariant operator D! satisfies
the same rules of sign (2.3) as D .

Lemma 2.8. GivenD, and a unitary R compatible with J in the sense of (2.10), one has
that

A
�
D.�; �/ D "

000AD.�; �/; 8�; � 2 HR: (2.30)

Proof. For any �; � 2 HR, we have that

A
�
D.�; �/ D hJ�;RD�i D hR

�J�;D�i D "000hJR��;D�i D "000hJ�;D�i; (2.31)

where we used (2.10) as R�J D "000JR� and (2.26) as R�� D �.
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2.4. Minimal twist by grading

The twisted spectral triples recently employed in physics are built by minimally twisting
a usual spectral triple .A;H ;D/. The idea is to substitute the commutator ŒD ; �� with a
twisted one ŒD ; ���, while keeping the Hilbert space and the Dirac operator intact, because
they encode the fermionic content of the theory and there is, so far, no experimental indic-
ations of extra fermions beyond those of the SM. However, for the spectral triples relevant
for physics, ŒD ; �� and ŒD ; ��� cannot be simultaneously bounded [28, §3.1]. So in order
to be able to twist the commutator, one needs to play with the only object that remains
available, namely the algebra.

Definition 2.9 (from [28]). A minimal twist of a spectral triple .A; H;D/ by a unital �-
algebra B is a twisted spectral triple .A˝ B;H;D/�, where the initial representation �0
of A on H is related to the representation � of A˝B on H by

�.a˝ IB/ D �0.a/; 8a 2 A; (2.32)

where IB is the identity of the algebra B.

If the initial spectral triple is graded, a natural minimal twist may be obtained as
follows. The grading � commutes with the representation of A, so the latter is actu-
ally a direct sum of two representations on the positive and negative eigenspaces HC,
H� of � (see (2.19)). Therefore, one has enough space on H D HC ˚ H� to rep-
resent twice the algebra A. It is tantamount to taking B D C2 in Definition 2.9, with
A˝C2 ' A˚A 3 .a; a0/ represented on H as

�.a; a0/ WD pC�0.a/C p��0.a
0/ D

�
�C.a/ 0

0 ��.a
0/

�
; (2.33)

where p˙ WD
1
2
.IH ˙ �/ and �˙.a/ WD �0.a/jH˙ are, respectively, the projections on

H˙ and the restrictions on H˙ of �0. If �˙ are faithful, then .A˝ C2;H ;D/�, with �
the flip automorphism

�.a; a0/ WD .a0; a/; 8.a; a0/ 2 A˝C2; (2.34)

is indeed a twisted spectral triple, with grading � . Furthermore, if the initial spectral triple
is real, then so is this minimal twist, with the same real structure [28].3

The flip � is an �-automorphism that satisfies (2.11), and coincides on �.A ˝ C2/

with the inner automorphism of B.H / implemented by the unitary

R D

�
0 IHC

IH� 0

�
with IH˙ the identity operator in H˙: (2.35)

3The requirement that �˙ are faithful was not explicit in [28]. If it does not hold, then .A ˝ C2;

H ; D/� still satisfies all the properties of a twisted spectral triple, except that � in (2.33) might not be
faithful.
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As recalled in the next section, the canonical �-product (2.14) associated to the min-
imal twist of a closed Riemannian spin manifold of dimension 4 turns out to coincide
with the Lorentzian Krein product on the space of Lorentzian spinors [20]. The aim of this
paper is to show that a similar transition from the Euclidean to the Lorentzian also occurs
for the fermionic action.

We first investigate how this idea comes about by studying in the next section the
simplest example of the minimal twist of a manifold. Then, in the following sections,
we show how to obtain the Weyl equations in the Lorentzian signature by doubling the
twisted manifold and, finally, the Dirac equation by minimally twisting the spectral triple
of electrodynamics in [37].

3. Preliminary: minimally twisted manifold

We compute the fermionic action for the minimal twist of a closed Euclidean spin mani-
fold M. Since we aim at finding back the Weyl and Dirac equations, we work in dimen-
sion 4, assuming that gravity is negligible (hence the flat metric). This is tantamount to
choosing in (2.3)

" D �1; "0 D 1; "00 D 1: (3.1)

3.1. Minimal twist of a Riemannian manifold

The minimal twist of M is the real, graded, twisted spectral triple�
C1.M/˝C2; L2.M; �/; Ä

�
�
; (3.2)

where C1.M/ is the algebra of smooth functions on M, L2.M; �/ is the Hilbert space
of square integrable spinors with inner product (d� the volume form)

h ; �i D

Z
M

d� ��; for  ; � 2 L2.M; �/; (3.3)

and Ä WD�i�@� is the Euclidean Dirac operator with � the self-adjoint Euclidean Dirac
matrices (see (A.2)). The real structure and grading are (cc denotes complex conjugation)

J D i02cc D i

�
z�2 0

0 �2

�
cc; 5 D 1230 D

�
I2 0

0 �I2

�
: (3.4)

The representation (2.33) ofC1.M/˝C2 onL2.M;�/DL2.M; �/C˚L
2.M; �/�

is

�M.f; f
0/ D

�
f I2 0

0 f 0 I2

�
; (3.5)

where each of the two copies of C1.M/ acts independently and faithfully by pointwise
multiplication on the eigenspacesL2.M;�/˙ of 5. The automorphism � ofC1.M/˝C2

is the flip
�.f; f 0/ D .f 0; f /; 8f; f 0 2 C1.M/: (3.6)
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It coincides with the inner automorphism of B.H / implemented by the unitary

R D

�
0 I2
I2 0

�
; (3.7)

which is nothing but the Dirac matrix 0 (this choice is not unique, as will be investig-
ated in [3]). It is compatible with the real structure (2.10) with

"000 D �1: (3.8)

Lemma 3.1. For any a D .f; f 0/ 2 C1.M/˝C2 and � D 0; 1; 2; 3, one has that

�a D �.a/�; ��.a/ D a�; �J D �"0J�: (3.9)

Proof. The first equation is checked by direct calculation, using the explicit form of �,
along with (3.5) and (writing �.a/ for �M.�.a//)

�.a/ D

�
f 0 I2 0

0 f I2

�
: (3.10)

The second follows from (2.11) and the third from (2.3), noticing that J commutes with
@�, having constant components:

0 D JÄ � "0ÄJ D i
�
J� C "0�J

�
@�:

Corollary 3.1.1. The boundedness of the twisted commutator follows immediately:

ŒÄ; a�� D�i
�
�@�a � �.a/

�@�
�
D�i�Œ@�; a�D�i

�.@�a/ 8a 2 C
1.M/˝C2:

(3.11)

3.2. Twisted fluctuation for a manifold

Substituting, in a twisted spectral triple, D with the twisted covariant D!� (2.21) is called
a twisted fluctuation. The minimally twisted manifold (3.2) has non-vanishing self-adjoint
twisted fluctuations (2.21) of the form

ÄX WD ÄC X; (3.12)

where

X WD �i�X�; with X� WD f�5; for some f� 2 C1.M;R/: (3.13)

This has been shown in [28, Prop. 5.3]; in contrast with the non-twisted case, where the
self-adjoint fluctuation of Ä always vanishes, irrespective of the dimension of the manifold
M [14].

In [28], the self-adjointness of ÄX was guaranteed by imposing the self-adjointness of
!� C J!�J

�1, but not necessarily the one of !�. One may worry that the non-vanishing
of X is an artefact of this choice, and that X might actually vanish as soon as !� D !

�
� .

The following lemma clarifies this point.
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Lemma 3.2. The twisted 1-forms !� (2.18) and the twisted fluctuations !� C J!�J
�1 of

a minimally twisted four-dimensional closed Euclidean manifold are all of the kind

!� D �i
�W�; with W� D diag.h�I2; h

0
�I2/; (3.14)

!� C J!�J
�1
D �i�X�; with X� D diag.f�I2; f

0
�I2/; (3.15)

where h�;h0� 2C
1.M/, f�D 2<h�, and f 0�D 2<h

0
�. They are self-adjoint, respectively,

iff
h0� D �

Nh� and f 0� D �f�: (3.16)

Proof. By Lemma 3.1 and its corollary, one obtains for ai WD .fi ; f 0i /, bi WD .gi ; g
0
i / 2

C1.M/˝C2,

!� D
X
i

bi ŒÄ; ai �� D �i�
X
i

�.bi /.@�ai /

D �i�
X
i

�
g0iI2 0

0 giI2

��
.@�fi /I2 0

0 .@�f
0
i /I2

�
;

which is of the form (3.14) with h� WD
P
i g
0
i .@�fi / and h0� WD

P
i gi .@�f

0
i /. The adjoint

is
!�� D iW

�
�

�
D i��.W �

� /; (3.17)

where the last equality follows from (3.9), applied to W� viewed as an element of
C1.M/ ˝ C2. Thus !� is self-adjoint iff ��.W �

� / D �
�W�, that is, going back to

the explicit form of �,

�� Nh� D ��
�h0� and z�� Nh0� D �z�

�h�: (3.18)

Multiplying the first equation by �� and using Tr.����/ D 2ı�� yield the first part of
(3.16). Obviously, the latter implies both equations of (3.18). Hence,!�D!

�
� is equivalent

to the first equation of (3.16).
Further, we have that

J!�J
�1
D J.�i�W�/J

�1
D iJ.�W�/J

�1
D �i�JW�J�1 D �i�W �

� ; (3.19)

using J� D ��J (from (3.1) and (3.9)), along with JW � D W
�
�J (from (3.4) and the

explicit form (3.14) of W�). Therefore,

!� C J!�J
�1
D �i�.W� CW

�
� /; (3.20)

which is nothing but (3.15), identifyingX� WDW�CW
�
�Ddiag..h�C Nh�/I2; .h0�C Nh

0
�/I2/.

One checks as above that !� C J!�J
�1 is self-adjoint iff the second equation of (3.16)

holds.

Consequently, imposing that !� ¤ 0 is self-adjoint, that is, imposing (3.16) with
h� ¤ 0, does not imply that X� vanishes (it does vanish only if h� is purely imagin-
ary). In other words, as long as h� … iR, the self-adjointness of !� does not forbid a
non-zero twisted fluctuation.
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3.3. Gauge transformation

For a minimally twisted manifold, not only is the fermionic action (2.27) invariant under
a gauge transformation (2.20), (2.24), but so is the operator D!� (in dimensions 0; 4)
[29, Prop. 5.4]. We check it explicitly by studying how the field h� parametrising !� in
(3.14) transforms.

A unitary of C1.M/ ˝ C2 is u WD .ei� ; ei�
0

/ with �; � 0 2 C1.M;R/. It (and its
twist) acts on H according to (3.5) as (we omit the symbol of representation)

u D

�
ei�I2 0

0 ei�
0

I2

�
; �.u/ D

�
ei�
0

I2 0

0 ei�I2

�
: (3.21)

Proposition 3.3. Under a gauge transformation with unitary u 2 C1.M/ ˝ C2, the
fields h� and h0� parametrising the twisted 1-form !� in (3.14) transform as

h� ! h� � i@��; h0� ! h0� � i@��
0: (3.22)

Proof. Under a gauge transformation, the twisted 1-form !� is mapped to (see (2.25))

!u� D �i�.u/
�
Œ�@�; u

��� C 
�W�u

�
�
D �i�.u/�.@� CW�/u

�

D �i�.u@�u
�
CW�/;

where we used (3.11) for a D u�; namely

Œ�@�; u
��� D 

�.@�u
�/; (3.23)

as well as (3.9) for a D u, together with uW�u� D W� since u commutes with W�.
Therefore, W� ! W� C u@�u

�, which with the explicit representation of W� (3.14) and
u (3.21) reads �

h�I2 0

0 h0�I2

�
!

�
.h� � i@��/I2 0

0 .h0� � i@��
0/I2

�
:

Although h�, h0� transform in a nontrivial manner, their real parts 1
2
f�, 1

2
f 0� remain in-

variant. This explains why the fluctuation X in (3.14) is invariant under a gauge transform-
ation (2.24). Furthermore, by simultaneously transforming spinors according to (2.20), the
twisted fermionic action is invariant by construction. So one expects that any  2 HR is
unchanged under the adjoint action of Ad u. This is true, as one checks from (3.4) that
uJuJ�1 D I for any unitary u.

3.4. Twisted fermionic action for a manifold

Let us first work out the positive eigenspace HR (2.26) for R D 0 as in (3.7).

Lemma 3.4. An eigenvector � 2 HR is of the form � WD
�
'
'

�
, where ' is a Weyl spinor.
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Proof. TheC1-eigenspace of 0 is spanned by �1 D
�
1
0

�
˝
�
1
1

�
, �2 D

�
0
1

�
˝
�
1
1

�
. There-

fore, a generic vector � D �1�1 C �2�2 in HR is as in the lemma, with ' WD
�
�1
�2

�
.

We now compute the fermionic action (2.27) for a minimally twisted manifold.

Proposition 3.5. Let ÄX be the twist-fluctuated Dirac operator (3.12). The bilinear form
(2.23) restricted to HR (antisymmetric by Lemma 2.8) is

A
�
ÄX
.�; �/ D 2

Z
M

d� x'��2

 
if0 �

3X
jD1

�j @j

!
�; (3.24)

where ', � are, respectively, the Weyl components of the Dirac spinors �, � 2HR, and f0
is the zeroth component of the twisted fluctuation f� in (3.13).

Proof. One has that

J� D i02 cc

�
'

'

�
D i

�
z�2 0

0 �2

��
x'

x'

�
D i

�
z�2 x'

�2 x'

�
; (3.25)

Ä� D �i�@�
�
�

�

�
D �i

�
0 ��

z�� 0

��
@��

@��

�
D �i

�
��@��

z��@��

�
; (3.26)

X� D �i�X�
�
�

�

�
D �i

�
0 ��

z�� 0

��
f�I2 0

0 �f�I2

��
�

�

�
D �i

�
�f��

��

f�z�
��

�
: (3.27)

Hence, noticing that .z�2/� D �i�2 and �2� D i�2 (see Appendix B), and using

�� C z�� D 2I2ı
�0; �� � z�� D �2iı�j�j ; (3.28)

one gets

AÄ.�; �/ D hJ�; Ä�i D �
�
x'�z�2�; x'��2�

� ���@��
z��@��

�
(3.29)

D i

Z
M

d� x'��2.�� � z��/@�� D 2
Z

M

d� x'��2
3X

jD1

�j @j �I (3.30)

AX.�; �/ D hJ�;X�i D �
�
x'�z�2�; x'��2�

� ��f����
f�z�

� �

�
(3.31)

D �i

Z
M

d� x'��2f�.�� C z��/@�� D �2i
Z

M

d�f0x'��2 �: (3.32)

From Lemma 2.8 and (3.8), it follows that

A
�
ÄX
.�; �/ D �AÄX.�; �/ D �AÄ.�; �/ �AX.�; �/: (3.33)

Hence the result.
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The fermionic action is then obtained by substituting � D � in (3.24) and replacing
the components � of � by the associated Graßmann variable z�; z':

S�.ÄX/ D A
�
ÄX
.z�; z�/ D 2

Z
M

d�

"
zx���2

�
if0 �

3X
jD1

�j @j

�
z�

#
: (3.34)

The striking fact about (3.34) is the disappearance of the derivative in the x0 direction,
and the appearance, instead, of the zeroth component of the real field f� parametrising
the twisted fluctuation X. This derivative, however, can be restored by interpreting �if0�
as @0�, i.e., assuming that

�.x0; xi / D exp.�if0x0/ �.xi / (3.35)

with f0 independent of x0. Denoting by ��M D ¹I2; �j º the upper-right components of the
Minkowskian Dirac matrices (see (A.4)), the integrand in the fermionic action then reads
(with summation on the � index)

�
zx���2M .�

�
M@�/

z�; (3.36)

which reminds of the Weyl Lagrangian densities (B.7)

Lr
M D i‰

�
r .�

�
M@�/‰r ; (3.37)

but with the �2M matrix that prevents to simultaneously identify z� with ‰r and �zx���2M
with i‰�r .

To make such an identification possible, one needs more spinorial degrees of freedom.
They are obtained in the next section, multiplying the manifold by a two-point space.

4. Doubled manifold and Weyl equations

In constructing a spectral triple for electrodynamics, the authors of [37, §3.2] first con-
sider, as an intermediate step, the product of a manifold with the finite-dimensional spec-
tral triple

AF D C2; HF D C2; DF D 0: (4.1)

This model describes a U.1/ gauge theory, but fails to describe classical electrodynamics
for two reasons, discussed at the end of [37, §3]: first, the finite Dirac operator is zero, so
the electrons are massless; second, HF is not big enough to capture the required spinor
degrees-of-freedom.

However, none of the above arises as an issue if one wishes to obtain the Weyl Lag-
rangian, since the Weyl fermions are massless anyway, and they only need half of the
spinor degrees-of-freedom as compared to the Dirac fermions.
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4.1. Minimal twist of a two-point almost-commutative geometry

The product – in the sense of spectral triple – of a four-dimensional closed Euclidean
manifold M with the two-point space (4.1) is

A D C1.M/˝C2; H D L2.M; �/˝C2; D D Ä˝ I2; (4.2)

with real structure J D J ˝ JF and grading � D 5˝ F , where Ä, J, 5 are as in (3.4),
while

JF D

�
0 1

1 0

�
cc; F D

�
1 0

0 �1

�
; (4.3)

in the orthonormal basis ¹e; Neº of HF D C2. The algebra A 3 a WD .f; g/ acts on H as

�0.a/ WD

�
f I4 0

0 gI4

�
; 8f; g 2 C1.M/: (4.4)

Following Section 2.4, the minimal twist of (4.2) is given by the algebra A ˝ C2,
acting on H as

�.a; a0/ D

0BBB@
f I2 0 0 0

0 f 0I2 0 0

0 0 g0I2 0

0 0 0 gI2

1CCCA DW
�
F 0

0 G0

�
; (4.5)

for a WD .f; g/, a0 WD .f 0; g0/ 2 A; with twist

�
�
�.a; a0/

�
D �.a0; a/ D

0BBB@
f 0I2 0 0 0

0 f I2 0 0

0 0 gI2 0

0 0 0 g0I2

1CCCA DW
�
F 0 0

0 G

�
: (4.6)

In both of the equations above, we have denoted

F WD �M.f; f
0/; F 0 WD �M.f

0; f /;

G WD �M.g; g
0/; G0 WD �M.g

0; g/;
(4.7)

where �M is the representation (3.5) of C1.M/˝C2 on L2.M; �/.

4.2. Twisted fluctuation of a doubled manifold

We begin with some notations and a technical lemma. Following (3.13) and (4.7), given
any Z� D �M.f�; f

0
�/ with f�; f 0� 2 C

1.M/, we denote Z0� D �M.f
0
�; f�/ and

Z WD �i�Z�; Z0 WD �i�Z0�; xZ WD �i� xZ�: (4.8)



Lorentzian fermionic action by twisting Euclidean spectral triples 529

Notice that xZ is not the complex conjugate of Z, since in (4.8), the complex conjugation
acts neither on i nor on the Dirac matrices. This guarantees that N and 0 commute not
only for Z�, i.e., Z0� D . xZ�/

0 D �M.f 0�; f�/, but also for Z, i.e.,

.xZ/0 D xZ0: (4.9)

The notation xZ0 is thus unambiguous and denotes indistinctly the two members of (4.9).

Lemma 4.1. For any F , G, Z� as in (4.7), (4.8), one has that

F ŒÄ; G�� D �i�F 0@�G; JZJ�1 D xZ; Z� D �xZ0: (4.10)

Proof. Equation (3.11) for a D G yields ŒÄ; G�� D �i�@�G, while (3.9) for a D F 0

gives
F� D �F 0: (4.11)

Thus F ŒÄ;G��D�iF �@�GD�i�F 0@�G. The second equation in (4.10) follows from

JZJ�1 D iJ�Z�J�1 D �i�JZ�J�1 D �i� xZ� D xZ; (4.12)

where we used (3.9) as well as (recalling that inKO-dimension 4, one has that J�1D�J)

JZ�J�1 D �i

�
z�2 0

0 �2

�
cc

�
f� I2 0

0 f 0� I2

�
i

�
z�2 0

0 �2

�
cc; (4.13)

D �

�
z�2 0

0 �2

��
Nf� I2 0

0 Nf 0� I2

��
xz�2 0

0 x�2

�
D

�
Nf� I2 0

0 Nf 0� I2

�
D xZ�; (4.14)

noticing that xz�2 D z�2 and x�2 D �2, so that z�2xz�2 D �2x�2 D �I2. The third equation in
(4.10) follows from

Z� D iZ��
�
D i xZ�

�
D i�. xZ�/

0
D i�Z0� D �

xZ0; (4.15)

where we notice that Z�� D xZ�, from the explicit form (3.5) of �M, then use (4.11).

With this lemma, it is easy to compute the twisted fluctuation !� C J!�J
�1 for a

generic twisted 1-form

!� WD �.a; a
0/
�
Ä˝ I2; �.b; b

0/
�
�

(4.16)

for a D .f; g/, a0 D .f 0; g0/, b D .v; w/, and b0 D .v0; w0/ in A.

Lemma 4.2. One has that

!� C J!�J
�1
D X˝ I2 C iY˝ F ; (4.17)

with X D �i�X�, Y D �i�Y� for

X� D �M.f�; f
0
�/; Y� D �M.g�; g

0
�/; (4.18)

where f�, f 0� and g�, g0� denote, respectively, the real and the imaginary parts of

z� WD f
0@�v C Ng@� Nw

0 and z0� D f @�v
0
C Ng0@� Nw

0: (4.19)
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Proof. Define

V WD �M.v; v
0/; V 0 WD �M.v

0; v/; W WD �M.w;w
0/; W 0 D �M.w

0; w/: (4.20)

From (4.5)–(4.6), one gets�
Ä˝ I2; �.b; b

0/
�
�
D

�
ŒÄ; V �� 0

0 ŒÄ; W 0��

�
; (4.21)

so that, for .a; a0/ as in (4.5) and using (4.10), one finds that

!� WD

�
F 0

0 G0

��
ŒÄ; V �� 0

0 ŒÄ; W 0��

�
D

�
�i�P� 0

0 �i�Q0�

�
D

�
P 0

0 Q0

�
; (4.22)

with
P� WD F

0@�V; Q0� WD G@�W
0: (4.23)

The explicit form of the real structure and its inverse,

J D J ˝ JF D

�
0 J

J 0

�
; J�1 D

�
0 J�1

J�1 0

�
; (4.24)

along with the second equation of (4.10), yield

J!�J
�1
D

�
JQ0J�1 0

0 JPJ�1

�
D

�
xQ0 0

0 xP

�
: (4.25)

Summing up (4.22) and (4.25), one obtains (4.29)

!� C J!�J
�1
D

�
Z 0

0 xZ

�
; (4.26)

where Z WD PC xQ0 D �i�Z� with

Z� D P� C xQ
0
� D F

0@�V C xG@� xW
0

D

 
.f 0@�v C Ng@� Nw

0/I2 0

0 .f @�v
0 C Ng0@� Nw/I2

!
(4.27)

(the last equation follows from the explicit form (4.20) of V , W 0 and (4.7) of F 0, G). By
(4.19), this reads as

Z� D �M.z�; z
0
�/ D �M.f�; f

0
�/C i�M.g�; g

0
�/ D X� C iY�: (4.28)

Similarly, xZ D �i� xZ� with xZ� D X� � iY�. Hence, (4.26) yields

!� C J!�J
�1
D

�
�i�.X� C iY�/ 0

0 �i�.X� � iY�/

�
; (4.29)

which is nothing but (4.17).
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Proposition 4.3. The self-adjoint twisted fluctuations of the Dirac operator of the doubled
manifold are parametrised by two real fields f� and g� in C1.M;R/, and are of the form

ÄX ˝ I2 C g�
�
˝ F ; (4.30)

where ÄX is the twisted-covariant operator (3.12) of a manifold.

Proof. A generic twisted fluctuation (4.26) (adding a summation index i and redefining
Z D

P
i Zi ) is self-adjoint iff Z D Z� and xZ D xZ�. By (4.9), and the third equation in

(4.10), both conditions are equivalent to Z D �xZ0; that is, �i�.Z� C xZ0�/ D 0. As
discussed below (3.18), this is equivalent to Z� D �xZ0�. From (4.27), this last condition
is equivalent to z� D �Nz0�; that is,

f� D �f
0
� and g� D g

0
�: (4.31)

Substituting in (4.18), one obtains

X� D �M.f�;�f�/ D f�
5; Y� D �M.g�; g�/ D g�I4; (4.32)

so that (4.17) gives

!� C J!�J
�1
D �i�f�

5
˝ I2 C g�

�
˝ F : (4.33)

The result follows adding Ä˝ I2.

Self-adjointness is illustrated directly into the bold notation: by (4.31), X ˝ I2 C
iY˝ F is self-adjoint iff X0 D �X and Y0 D Y. Since X D xX, Y D xY by construction,
this is equivalent by the third equation of (4.10) to X D X� and Y D �Y�.

4.3. Weyl equations from the twisted fermionic action

We show that the action defined by the component ÄX ˝ I2 of the twisted covariant Dirac
operator (4.30) of the doubled manifold (i.e., we assume that g� D 0) yields the Weyl
equations. Non-vanishing g� will be taken into account in the spectral triple of electro-
dynamics.

Following the choice made in (3.7), we take as a unitary implementing the action of �
on H

R D 0 ˝ I2: (4.34)

It has eigenvalues ˙1 and is compatible with the real structure in the sense of (2.10)
with "000 D �1. A generic element � in theC1-eigenspace HR is

� D � ˝ e C � ˝ Ne; with � WD
�
'

'

�
; � WD

�
�

�

�
; (4.35)

where �; � 2 L2.M; �/ are Dirac the eigenspinors of 0 (Lemma 3.4), with Weyl com-
ponents ', �.
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Proposition 4.4. The twisted fermionic action induced by Ä˝ I2 on the doubled manifold
is

S�.ÄX ˝ I2/ D 2A
�
ÄX
.z�; z�/ D 4

Z
M

d�

"
xz'��2

�
if0 �

3X
jD1

�j @j

�
z�

#
: (4.36)

Proof. For �; �0 2HR given by (4.35), remembering that JF e D Ne and JF Ne D e, one has
that

J� D J� ˝ Ne C J� ˝ e; .ÄX ˝ I2/�
0
D ÄX�0 ˝ e C ÄX� 0 ˝ Ne:

So, Lemma 2.8 with "000 D �1 yields

A
�
ÄX˝I2

.�; �0/ D �
˝
J�; .ÄX ˝ I2/�

0
˛
D �hJ�; ÄX� 0i � hJ�; ÄX�0i; (4.37)

D �AÄX.�; �
0/ �AÄX.�; �

0/ D A
�
ÄX
.�; � 0/CA

�
ÄX
.�; �0/; (4.38)

where the first inner product is in H and the second is in L2.M; S/. The action is then
obtained substituting �0 D � and promoting �, ' to Graßmann variables. The antisymmet-
ric bilinear form A

�
ÄX

becomes symmetric when evaluated on Graßmann variables (as in
the proof of [37, Prop. 4.3]), hence

A
�
ÄX˝I2

.z�; z�/ D 2A
�
ÄX
.z�; z�/: (4.39)

The result then follows from Proposition 3.5.

Identifying the physical Weyl spinors as

 WD z�;  � WD ˙i xz'��2 (4.40)

(the sign is discussed below), the Lagrangian density in the action (4.36) becomes

L D �4i �
�
if0 �

X
j

�j @j

�
 : (4.41)

The Euler–Lagrange equation for  � yields the equation of motion�
if0 �

X
j

�j @j

�
 D 0: (4.42)

Proposition 4.5. For f0, a non-zero constant, a plane wave solution of (4.42) coincides
with the left-handed solutions of the Weyl equation with momentum p0 D�f0, or with the
right-handed solution with momentum p D f0.

Proof. A plane wave solution (B.8) of (4.42) satisfies .f0 C
P
j �jpj / l D 0. This is

equivalent to the first equation of (B.9) with p0 D �f0, or to the second one of (B.9) with
p0 D f0.

One may also identify directly the Lagrangian (4.41) with the Weyl Lagrangians Ll
M ,

Lr
M (B.6). Choosing the minus sign in (4.40) (that is the plus sign in (4.41)), then L
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coincides (up to a global factor 4) with Ll
M as soon as one imposes @0 D if0 (meaning,

for a plane wave solution, p0 D �f0). Choosing instead the plus sign, then L coincides
with Lr

M , as soon as one imposes @0 D �if0 (meaning p0 D f0).
Proposition 4.5 gives weight to the observation made after Proposition 3.5: identifying

x0 with the time coordinate of Minkowski spacetime, then the fermionic action S�.Ä˝I2/
of a twisted doubled manifold – without fluctuation – yields the spatial part of the Weyl
equations (that is the Lagrangian (4.36) with f0 D 0). For a non-zero but constant f0,
the twisted fluctuation does not only bring back a fourth component, but allows its inter-
pretation as a time direction. It also provides a clear interpretation of f0 as the zeroth
component of the momentum, that is, an energy.

Even though the Lagrangian density is Lorentzian, one may argue the action is not the
Weyl one, for the manifold over which one integrates is still Riemannian. We come back
to this in the conclusion.

In these two examples – manifold and doubled manifold – the main difference between
the twisted and the usual fermionic actions does not lay so much in the twist of the inner
product than in the restriction to different subspaces. Indeed, by Lemma 2.8 the twist of
the inner product just amounts to a global sign. As stressed in the following remark, this
is the restriction to HR instead of HC that explains the change of signature.

Remark 4.6. The disappearance of @0 has no analogous counterpart in the non-twisted
case. In that case,  2 HC and there is no fluctuation X, so that

• for a manifold, the usual fermionic action hJ z ; Ä z i vanishes since Ä 2 H� while
J 2 HC;

• for a doubled manifold, HC is spanned by ¹� ˝ e; � ˝ Neº with � D
�
c�
0

�
, � D

�
c0
'

�
.

Then
S.Ä˝ I2/ D 2hJ z�; Äz�i D �2

Z
M

d� zx'��2z��@�z�: (4.43)

By (4.40), the integrand is the Euclidean version Ll
E WD i‰

�

l
z��@�‰l of the Weyl

Lagrangian Ll
M .

Following the result of Section 3.3, one expects that the field f� remains invariant
under a gauge transformation. In order not to make the paper too long, we do not check
this here, but we will do it for the spectral triple of electrodynamics in Section 5.3. We will
also give there the meaning of the other field g� that parametrises the twisted fluctuation
in Proposition 4.3. As in the non-twisted case, this will identify with the U.1/ gauge field
of electrodynamics.

5. Minimal twist of electrodynamics and Dirac equation

We first introduce the spectral triple of electrodynamics (as formalised in [37, 38]), then
write down its minimal twist (Section 5.1) following the recipe prepared in Section 2.4.
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We compute the twisted fluctuation in Section 5.2. Gauge transformations are investigated
in Section 5.3: in addition to the X� field encountered already for the minimal twist of the
(doubled) manifold, we obtain a U.1/ gauge field. Finally, we compute the fermionic
action in Section 5.4 and derive the Lorentzian Dirac equation.

5.1. Minimal twist of electrodynamics

The spectral triple of electrodynamics is the product of a Riemannian manifold M (still
assumed to be four-dimensional) by a two-point space like (4.1), except that DF is no
longer zero (since fermions are massive). In order to satisfy the axioms of noncommutative
geometry, this forces to enlarge HF from C2 to C4 (see [37, 38] for details). Hence

AED D C
1.M/˝C2; H D L2.M; �/˝C4; D D Ä˝ I4 C 

5
˝DF I

J D J ˝ JF ; � D 5 ˝ F ;
(5.1)

where Ä, J, 5 are as in (3.4), d 2 C is a constant parameter, and

DF D

0BBB@
0 d 0 0

Nd 0 0 0

0 0 0 Nd

0 0 d 0

1CCCA ;

JF D

0BBB@
0 0 cc 0

0 0 0 cc

cc 0 0 0

0 cc 0 0

1CCCA ;

F D

0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1CCCA ;

(5.2)

written in an orthonormal basis ¹eL; eR; eL; eRº of HF D C4. The algebra AED 3 a WD

.f; g/ acts on H as

�0.a/ WD

0BBB@
f I4 0 0 0

0 f I4 0 0

0 0 gI4 0

0 0 0 gI4

1CCCA ; 8f; g 2 C1.M/: (5.3)

Inner fluctuations are parametrised by a single U.1/ gauge field Y� 2 C1.M;R/ [37,
eq. (4.3)]:

D ! D! D D C 
�
˝ B�; B� WD diag.Y�; Y�;�Y�;�Y�/; (5.4)



Lorentzian fermionic action by twisting Euclidean spectral triples 535

carrying an adjoint action of a unitary u WD ei� 2 C1.M; U.1// on D! , implemented by

Y� ! Y� � iu@�u
�
D Y� � @��; � 2 C1.M;R/: (5.5)

Computing the action (fermionic and bosonic, via the spectral action formula), one gets
that this field is the U.1/ gauge potential of electrodynamics.

A minimal twist is obtained by replacing AED by A D AED ˝ C2 along with its flip
automorphism � (2.34), with the representation �0 of A defined by (2.33). Explicitly,

� D 5 ˝ F D

�
I2 0

0 �I2

�
˝

0BB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1CCA

D

0BBBBBBBBBBB@

I2 0 0 0 0 0 0 0

0 �I2 0 0 0 0 0 0

0 0 �I2 0 0 0 0 0

0 0 0 I2 0 0 0 0

0 0 0 0 �I2 0 0 0

0 0 0 0 0 I2 0 0

0 0 0 0 0 0 I2 0

0 0 0 0 0 0 0 �I2

1CCCCCCCCCCCA
; (5.6)

so that the projections p˙ D
1
2
.I16 ˙ �/ on the eigenspaces H˙ of H are

pC D diag.I2; 02; 02; I2; 02; I2; I2; 02/;

p� D diag.02; I2; I2; 02; I2; 02; 02; I2/:
(5.7)

Therefore, for .a; a0/ 2 A, where a WD .f; g/, a0 WD .f 0; g0/ with f; g; f 0; g0 2 C1.M/,
one has that

�.a; a0/ D pC�0.a/C p��0.a
0/

D

0BBBBBBBBBBB@

f I2 0 0 0 0 0 0 0

0 f 0I2 0 0 0 0 0 0

0 0 f 0I2 0 0 0 0 0

0 0 0 f I2 0 0 0 0

0 0 0 0 g0I2 0 0 0

0 0 0 0 0 gI2 0 0

0 0 0 0 0 0 gI2 0

0 0 0 0 0 0 0 g0I2

1CCCCCCCCCCCA

DW

0BB@
F 0 0 0

0 F 0 0 0

0 0 G0 0

0 0 0 G

1CCA ; (5.8)
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where F , F 0, G, and G0 are as in (4.7). The image of .a; a0/ 2 A under the flip � is
represented by

�
�
�.a; a0/

�
D �.a0; a/ D

0BB@
F 0 0 0 0

0 F 0 0

0 0 G 0

0 0 0 G0

1CCA : (5.9)

In agreement with (3.7), we choose as unitary R 2 B.H / implementing the twist

R D 0 ˝ I4 D

�
0 I2
I2 0

�
˝ I4: (5.10)

It is compatible with the real structure in the sense of (2.10) with "000 D �1, as before.

5.2. Twisted fluctuation of the Dirac operator

The twisted commutator ŒD;a�� being linear inD, we treat separately the free part Ä˝ I4
and the finite part 5 ˝DF of the Dirac operator. The results are summarised in Propos-
ition 5.6.

5.2.1. The free part. We show (Proposition 5.3 below) that self-adjoint twisted fluctu-
ations of Ä˝ I4 are parametrised by two real fields: X� arising from the minimal twist
of a manifold (3.12) and the U.1/ gauge field Y� of electrodynamics. To arrive there, we
need a couple of lemmas.

Lemma 5.1. For a D .f; g/, b D .v;w/ in AED, and similar definition for a0, b0, one has
that

!�M
WD �.a; a0/

�
Ä˝ I4; �.b; b

0/
�
�
D

0BB@
P 0 0 0

0 P0 0 0

0 0 Q0 0

0 0 0 Q

1CCA ; (5.11)

where we use the notation (4.8) for

P� WD F
0@�V; P 0� WD F@�V

0; Q� WD G
0@�W; Q0� WD G@�W

0; (5.12)

with F , F 0, G, G0 as in (4.7), and V , V 0, W , W 0 as in (4.20).

Proof. Using (5.8)–(5.9) written for .b; b0/, one computes

�
Ä˝ I4; �.b; b

0/
�
�
DW

0BBB@
ŒÄ; V �� 0 0 0

0 ŒÄ; V 0�� 0 0

0 0 ŒÄ; W 0�� 0

0 0 0 ŒÄ; W ��

1CCCA : (5.13)

The result follows multiplying by (5.8), then using (4.10).
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Lemma 5.2. With the same notations as in Lemma 5.1, one has that

Z WD !�M
C J!�M

J�1 D

0BB@
Z 0 0 0

0 Z0 0 0

0 0 xZ 0

0 0 0 xZ0

1CCA ; (5.14)

with Z WD PC xQ0, Z0 WD P0 C xQ, xZ WD xPCQ0, and xZ0 WD xP0 CQ.

Proof. From (5.11), Lemma 4.1 and the explicit form of J D J ˝ JF with JF as in (5.2),
one gets

J!�M
J�1 D

0BB@
0 0 J 0

0 0 0 J

J 0 0 0

0 J 0 0

1CCA
0BB@

P 0 0 0

0 P0 0 0

0 0 Q0 0
0 0 0 Q

1CCA
0BB@
0 0 J�1 0

0 0 0 J�1

J�1 0 0 0

0 J�1 0 0

1CCA ;

D

0BB@
JQ0J�1 0 0 0

0 JQJ�1 0 0

0 0 JPJ�1 0

0 0 0 JP0J�1

1CCA D
0BB@
xQ0 0 0 0

0 xQ 0 0

0 0 xP 0

0 0 0 xP0

1CCA : (5.15)

Adding up with (5.11), the result follows.

Proposition 5.3. A self-adjoint twisted fluctuation (5.14) of the free Dirac operator Ä˝I4
is of the form

Z D X˝ I0 C iY˝ I00; (5.16)

where X D �i�X�, Y D �i�Y�, I0 WD diag.1;�1; 1;�1/; I00 WD diag.1; 1;�1;�1/
with

X� WD f�
5; Y� WD g�I4; f�; g� 2 C

1.M;R/: (5.17)

Proof. From (5.14), it follows that Z is self-adjoint iff Z D Z�, Z0 D Z0�, xZ D xZ�, and
xZ0 D xZ0�. From (4.9) and the third equation of (4.10), these four conditions are equivalent
to Z D �xZ0; i.e.,

Z� D �xZ
0
�: (5.18)

By Lemma 5.2, one knows that

Z� D P� C xQ
0
� D

�
z�I2 0

0 z0�I2

�
(5.19)

with z� D f 0@�v C Ng@� Nw
0 and z0� D f @�v

0 C Ng0@� Nw. Denoting f�, g� the real and
imaginary parts of z� (and similarly for z0�), then (5.18) is equivalent to f 0� D �f� and
g0� D g�; that is,

Z� D

�
.f� C ig�/I2 0

0 .�f� C ig�/I2

�
: (5.20)

In other terms, Z� D X� C iY� with X� WD f�5, Y� WD g�I4.



P. Martinetti and D. Singh 538

Going back to (5.14), one obtains

ZD

0BB@
Z 0 0 0

0 �xZ 0 0

0 0 xZ 0

0 0 0 �Z

1CCA D
0BB@
�i�Z� 0 0 0

0 i� xZ� 0 0

0 0 �i� xZ� 0

0 0 0 i�Z�

1CCA

D

0BB@
�i�.X� C iY�/ 0 0 0

0 i�.X�� iY�/ 0 0

0 0 �i�.X�� iY�/ 0

0 0 0 i�.X�CiY�/

1CCA (5.21)

D�i�X� ˝ I0 C i.�i�Y�/˝ I00:

Remark 5.4. Imposing the self-adjointness of the twisted 1-form !�M
amounts to

P� D P; Q�
D Q: (5.22)

This implies – but is not equivalent – to imposing the self-adjointness of!�MCJ!�MJ�1,

Z� D Z: (5.23)

As discussed below Lemma 3.2 for the minimal twist of a manifold, the relevant point
is that the stronger condition (5.22) does not imply that the twisted fluctuation Z is zero.
The final form of the twist-fluctuated operator is the same, whether one requires (5.22) or
(5.23).

5.2.2. The finite part. In the spectral triple of electrodynamics, the finite part 5 ˝DF

of the Dirac operator D (5.1) does not fluctuate [37], for it commutes with the represent-
ation �0 (5.3) of AED. The same is true for the minimal twist of electrodynamics.

Proposition 5.5. The finite Dirac operator 5 ˝DF has no twisted fluctuation.

Proof. With the representations (5.8)–(5.9), one calculates that�
5 ˝DF ; �.a; a

0/
�
�
D .5 ˝DF / �.a; a

0/ � �.a0; a/ .5 ˝DF /

D

0BBB@
0 d5 0 0

Nd5 0 0 0

0 0 0 Nd5

0 0 d5 0

1CCCA
0BBB@
F 0 0 0

0 F 0 0 0

0 0 G0 0

0 0 0 G

1CCCA

�

0BBB@
F 0 0 0 0

0 F 0 0

0 0 G 0

0 0 0 G0

1CCCA
0BBB@
0 d5 0 0

Nd5 0 0 0

0 0 0 Nd5

0 0 d5 0

1CCCA
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D

0BB@
0 dŒ5; F 0� 0 0

NdŒ5; F � 0 0 0

0 0 0 NdŒ5; G�

0 0 d Œ5; G0� 0

1CCA D 0;
where F , F 0, G, G0 (denoted in (4.7)) being diagonal, commute with 5.

The results of this section summarise as follows.

Proposition 5.6. The Dirac operator D D Ä˝ I4C 5˝DF of electrodynamics, under
the minimal twist (5.8)–(5.10), twist fluctuates to

DZ WD D CZ; (5.24)

where Z is given by Proposition 5.3.

Remark 5.7. Expectedly, substituting � D Id, one returns to the non-twisted case: the
triviality of � is tantamount to equating (5.8) with (5.9), that is, to identify the “primed”
functions with their “unprimed” partners. Hence, Z0 D Z. Imposing self-adjointness, the
third equation of (4.10) gives ZD�xZ. Going back to (5.20), this yields f�D 0. Therefore,
X� vanishes and remains only the U.1/ gauge field Y. The latter is

iY˝ I00 D �Y� ˝ I00 D � ˝ g�I00 (5.25)

and coincides with the gauge potential � ˝ B� of the spectral triple of electrodynamics
(5.4) in the non-twisted case.

5.3. Gauge transformation

We discuss the transformation of the fields X and Y parametrising the twisted fluctu-
ation Z, along the lines of Section 3.3. A unitary u of AED ˝ C2 is of the form u D

.v; v0/, where v WD .ei˛; eiˇ /, v0 WD .ei˛
0

; eiˇ
0

/ are unitaries of AED, with ˛; ˛0; ˇ; ˇ0 2
C1.M;R/. It (and its twist) acts on L2.M; S/˝C4 as

�.u/ D

0BB@
A 0 0 0

0 A0 0 0

0 0 B 0 0

0 0 0 B

1CCA ; �
�
�.u/

�
D �.v0; v/ D

0BB@
A0 0 0 0

0 A 0 0

0 0 B 0

0 0 0 B 0

1CCA ; (5.26)

where we denote

A WD �M.e
i˛; ei˛

0

/; A0 WD �.A/ D �M.e
i˛0 ; ei˛/;

B WD �M.e
iˇ ; eiˇ

0

/; B 0 WD �.B/ D �M.e
iˇ 0 ; eiˇ /:

(5.27)

Proposition 5.8. Under a gauge transformation (2.24), X remains invariant while Y is
mapped to

� i�

 
Y � �

 
@��I2 0

0 @��
0I2

!!
(5.28)

for � WD ˛ � ˇ0, � 0 D ˛0 � ˇ.
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Proof. Since F ˝DF twist commutes with the algebra, in the transformation (2.25) of
the gauge potential it is enough to consider Ä˝ I4. So !�M

in (5.14) transforms to

!w�M
D �.u/

�
ŒÄ˝ I4; u

��� C !�M
u�
�
D �.u/

�
Ä˝ I4 C !�M

�
u�; (5.29)

where we used ŒÄ˝ I4; u��� D .Ä˝ I4/u� as in (3.23). By (5.26) and Lemma 5.1, this
transformation writes0BB@

P 0 0 0

0 P0 0 0

0 0 Q0 0

0 0 0 Q

1CCA!
0BB@
A0.ÄC P/ xA 0 0 0

0 A.ÄC P0/ xA0 0 0

0 0 B.ÄCQ0/ xB 0 0

0 0 0 B 0.ÄCQ/ xB

1CCA :
Since A0, B 0 twist commute with � and A commutes with P� (and B with Q�), one has
that P� is mapped to P� C A@� xA and Q0� to Q� C B 0@� xB 0. Thus Z� D P� C xQ0� in
(5.18) is mapped to Z� C .A@� xAC xB 0@�B 0/. With the representations (5.19) of Z� and
(5.27) of A;B , this means�

z�I2 0

0 z0�I2

�
!

�
.z� � i@��/I2 0

0 .z0� � i@��
0/I2

�
:

The result follows remembering that X� and Y � are the real and imaginary parts of Z�.

By imposing that both Z and its gauge transform are self-adjoint, that is, by Lemma
4.1, z0�D�Nz� and z0� � i@��

0D�z� � i@�� , one is forced to identify � 0D � C constant.
Then (5.28) means that Y� D g�I4 undergoes the transformation

g� ! g� � @��; � 2 C1.M;R/: (5.30)

This is a U.1/ gauge field, formally similar to the one in (5.5) of the (Euclidean) non-
twisted case. By computing the twisted fermionic action, we show that this actually iden-
tifies with the U.1/ of electromagnetism, but now in Lorentzian signature.

Remark 5.9. For � 0 � � , a non-zero constant, the gauge transformation preserves the self-
adjointness of the twisted fluctuation, even though u is not invariant by the twist. This is
because such a u satisfies the weaker condition for preserving self-adjointness – pointed
out in [29, §5.1] – namely �.u/�u twist commutes with D .

5.4. Lorentzian Dirac equation from twisted fermionic action

To calculate the action, we first identify the eigenvectors of the unitary R implementing
the twist.

Lemma 5.10. Any � in the positive eigenspace HR (2.26) of the unitary R (5.10) is of
the form

� D �1 ˝ eL C �2 ˝ eR C �1 ˝ eL C �2 ˝ eR; (5.31)

where �kD1;2 WD
�'k
'k

�
and �kD1;2 WD

��k
�k

�
are Dirac spinors with Weyl components 'k , �k .
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Proof. R has eigenvalues˙1 and its eigenvectors corresponding to the eigenvalueC1 are

"1 D �1 ˝ eL; "2 D �2 ˝ eL; "3 D �1 ˝ eR; "4 D �2 ˝ eR;

"5 D �1 ˝ eL; "6 D �2 ˝ eL; "7 D �1 ˝ eR; "8 D �2 ˝ eL;

where �1 WD
�
1
0

�
˝
�
1
1

�
, �2 WD

�
0
1

�
˝
�
1
1

�
denote the eigenvectors of 0. Thus

� D

8X
jD1

�j "j D .�1�1 C �2�2/˝ eL C .�3�1 C �4�2/˝ eR

C .�5�1 C �6�2/˝ eL C .�7�1 C �8�2/˝ eR;

D �1 ˝ eL C �2 ˝ eR C �1 ˝ eL C �2 ˝ eR;

with '1 WD
�
�1
�2

�
, '2 WD

�
�3
�4

�
, �1 WD

�
�5
�6

�
, �2 WD

�
�7
�8

�
.

The following lemma is useful to compute the contribution of 5 ˝DF and Y to the
action.

Lemma 5.11. For Dirac spinors � WD
�
'
'

�
, � WD

�
�
�

�
in L2.M; �/, one has that

AiY.�; �/ D 2i

Z
M

d� x'��2
�X

j

�jgj

�
�; A5.�; �/ D �2

Z
M

d� x'��2�: (5.32)

Proof. Using (5.17) for Y� and (A.2) for the Dirac matrices, one gets

iY� D �Y�
�
�

�

�
D

 
0 ��

z�� 0

! 
g�I2 0

0 g�I2

!�
�

�

�
D

 
g��

��

g�z�
��

!
:

Along with (3.25), recalling that �2� D i�2 and z�2� D �i�2 yields

AiY.�; �/ D .J�/
�.iY�/ D �i

 
z�2x'

�2x'

!�  
g��

��

g�z�
��

!
D �i

Z
M

d� x'�
�
z�2��� C �2�z��

�
g��

D

Z
M

d� x'��2.��� C z��/g��

D 2i

Z
M

d� x'��2
�X

j

�jgj

�
�;

where we used (3.28) and obtained the first equation of (5.32). The second one follows
from

A5.�; �/ D .J�/
�.5�/ D �i

 
z�2x'

�2x'

!� �
�

��

�
D �i

Z
M

d�
�
x'�z�2�� � x'��2��

�
D �2

Z
M

d� x'��2�:
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Proposition 5.12. The fermionic action of the minimal twist of electrodynamics is the
integral

S�.DZ/ D A
�
DZ
.z�; z�/ D 4

Z
M

d�L

of the Lagrangian density

L WD xz'
�
1�2

�
if0 �

X
j

�jDj

�
z�1 � xz'

�
2�2

�
if0 C

X
j

�jDj

�
z�2

C
�
Nd xz'
�
1�2
z�2 C d xz'

�
2�2
z�1
�
; (5.33)

with D� WD @� � ig� the covariant derivative associated to the electromagnetic four-
potential (5.30).

Proof. Let A
�

DZ
be the antisymmetric bilinear form (2.23) defined by the twisted-covariant

Dirac operator (5.24). It breaks down into four terms:

A
�
DZ
D A

�
Ä˝I4
CA

�
X˝I0 CA

�
iY˝I00 CA

�

5˝DF
: (5.34)

For �; �0 2 HR as in (5.31) one gets

J� D J�1 ˝ eL C J�2 ˝ eR C J�1 ˝ eL C J�2 ˝ eR;

.Ä˝ I4/�
0
D Ä�01 ˝ eL C Ä�02 ˝ eR C Ä� 01 ˝ eL C Ä� 02 ˝ eR;

.X˝ I0/�0 D X�01 ˝ eL � X�02 ˝ eR C X� 01 ˝ eL � X� 02 ˝ eR;

.iY˝ I00/�0 D iY�01 ˝ eL C iY�
0
2 ˝ eR � iY�

0
1 ˝ eL � iY�

0
2 ˝ eR;

.5 ˝DF /�
0
D 5�01 ˝

NdeR C 
5�02 ˝ deL C 

5� 01 ˝ d eR C 
5� 02 ˝

Nd eL;

(5.35)

where the first and last equations come from the explicit forms (5.2) of JF andDF , while
the third and fourth follow from the explicit form (5.16) of X and Y. These equations allow
to reduce each of the four terms in (5.34) to a bilinear form on L2.M; �/ rather than on
the tensor product L2.M; �/˝ C4. More precisely, recalling Lemma 2.8 with "000 D �1
(and noticing that Ä˝ I4, X˝ I0, iY˝ I00, 5 ˝DF are all self-adjoint), one computes

A
�
Ä˝I4

.�; �0/ D �AÄ˝I4.�; �
0/ D �

˝
J�; .Ä˝ I4/�

0
˛
;

D �hJ�1; Ä� 01i � hJ�2; Ä�
0
2i � hJ�1; Ä�

0
1i � hJ�2; Ä�

0
2i;

D �AÄ.�1; �
0
1/ �AÄ.�2; �

0
2/ �AÄ.�1; �

0
1/ �AÄ.�2; �

0
2/I (5.36)

A
�
X˝I0.�; �

0/ D �AX˝I0.�; �
0/ D �

˝
J�; .X˝ I0/�0

˛
;

D �hJ�1;X� 01i C hJ�2;X�
0
2i � hJ�1;X�

0
1i C hJ�2;X�

0
2i;

D �AX.�1; �
0
1/CAX.�2; �

0
2/ �AX.�1; �

0
1/CAX.�2; �

0
2/I (5.37)

A
�
iY˝I00.�; �

0/ D �AiY˝I00.�; �
0/ D �

˝
J�; .iY˝ I00/�0

˛
;

D hJ�1; iY� 01i C hJ�2; iY�
0
2i � hJ�1; iY�

0
1i � hJ�2; iY�

0
2i;

D AiY.�1; �
0
1/CAiY.�2; �

0
2/ �AiY.�1; �

0
1/ �AiY.�2; �

0
2/I (5.38)
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A
�

5˝DF
.�; �0/ D �A5˝DF

.�; �0/ D �
˝
J�; .5 ˝DF /�

0
˛

D � Nd hJ�1; 
5� 02i � d hJ�2; 

5� 01i � d hJ�1; 
5�02i �

Nd hJ�2; 
5�01i;

D � Nd A5.�1; �
0
2/ � d A5.�2; �

0
1/ � d A5.�1; �

0
2/ �

Nd A5.�2; �
0
1/:

(5.39)

Substituting � D �0, then going to Graßmann variables, the sum of (5.36), (5.37), and
(5.39) is

� 2AÄ.z�1; z�1/ � 2AÄ.z�2; z�2/ � 2AX.z�1; z�1/C 2AX.z�2; z�2/

� 2 Nd A5.z�1; z�2/ � 2d A5.z�2; z�1/; (5.40)

where we used that AÄ, AX, and A5 are antisymmetric on vectors (by Lemma 2.7, since
Ä, X, 5 all commute with J: Ä and 5 by (2.3) inKO-dimension 4; and X by (4.10)), and
so symmetric when evaluated on Graßmann variables. On the other hand, (5.38) is sym-
metric on vectors (since iY anticommutes with J), while it is antisymmetric in Graßmann
variables, so that (5.38) is equal to

2AiY.z�1; z�1/C 2AiY.z�2; z�2/: (5.41)

The Lagrangian (5.33) follows substituting all the bilinear forms in (5.40) and (5.41)
with their explicit expressions given in (3.29), (3.31), and Lemma 5.11.

In order to get Dirac equations, we have two possibilities for identifying the physical
spinors:

either ‰ D

 
 l

 r

!
WD

 
z�1

z�2

!
; ‰� D

�
 
�

l
;  

�
r

�
WD

�
�i xz'

�
1�2; i xz'

�
2�2

�
(5.42)

or ‰0 D

 
 0
l

 0r

!
WD

 
z�2

z�1

!
; ‰0

�
D

�
 0
l
�
;  0r

�
�
WD

�
i xz'
�
2�2; �i

xz'
�
1�2

�
: (5.43)

Imposing the complex parameter d to be purely imaginary as d D im, m 2 R� (in agree-
ment with the non-twisted case [37, Rem. 4.4]), the Lagrangian (5.33) becomes

either L D i 
�

l

�
if0 �

X
j

�jDj

�
 l C i 

�
r

�
if0 C

X
j

�jDj

�
 r

Cm
�
 
�

l
 r C  

�
r l

�
(5.44)

or L0 D i 0
�
r

�
if0 �

X
j

�jDj

�
 0r C i 

0�

l

�
if0 C

X
j

�jDj

�
 0l

Cm
�
 0r

�
 0l C  

0
l
�
 0r
�
: (5.45)

The Euler–Lagrange equations for  �
l

,  �r and  0
l
�,  0r

� yield the equation of motion

i
�
if0 �

X
j

�jDj

�
 l Cm r D 0; i

�
if0 C

X
j

�jDj

�
 r Cm l D 0; (5.46)
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i
�
if0 C

X
j

�jDj

�
 0l Cm 

0
r D 0; i

�
if0 �

X
j

�jDj

�
 0r Cm 

0
l D 0: (5.47)

Which identification (5.42) or (5.43) is meaningful is fixed by the sign of m.

Proposition 5.13. If m < 0 (resp. m > 0), then a plane wave solution of (5.46) (resp.
(5.47)) coincides with a plane wave solution of the Dirac equation with electromagnetic
potential g�, in Lorentzian signature and within Weyl temporal gauge (i.e., D0 D @0),
with momentum p such that p0 D �f0 (resp. p0 D f0).

Proof. A plane wave solution (B.3) of (5.46) satisfies

i
�
if0 C i

X
j

�j .pj C gj /
�
 l D �m r ; i

�
if0 � i

X
j

�j .pj C gj /
�
 r D �m l :

(5.48)
For f0 D�p0, this is equivalent to the system of equations (B.5) satisfied by a plane wave
solution of the Dirac equation with mass �m > 0, having previously substituted in (B.2)
the spatial derivative @j with the covariant one Dj . Similarly, a plane wave solution of
(5.47) satisfies

i
�
if0 � i

X
j

�j .pj C gj /
�
 0l D �m 

0
r ; i

�
if0 C i

X
j

�j .pj C gj /
�
 0r D �m 

0
l :

(5.49)
For f0 D p0, this is equivalent to the Dirac equations (B.5) for mass m > 0.

Identifying x0 with the time direction t of Minkowski space, then p0 is the energy of
the plane wave. As for the double manifold, the zeroth component of the twisted fluctu-
ation of the spectral triple of electrodynamics gets interpreted as an energy.

As for the Weyl equations, one may directly identify the Lagrangian density (5.33)
of the twisted fermionic action of Euclidean electrodynamic with the Lorentzian Dirac
Lagrangian (B.1) (with covariant derivative D�, in the temporal gauge D0 D @0):

– either considering (5.42) and imposing that @0 D if0 , so that (5.44) coincides
with (B.1)

– or using (5.43) and imposing that @0 D�if0 , so that (5.45) coincides with (B.1).

Remark 5.14. The physical interpretation of f0; g� is gauge invariant. From (5.26), one
gets

U WD �.u/J�.u/J�1 D

0BB@
A 0 0 0

0 A0 0 0

0 0 B 0 0

0 0 0 B

1CCA
0BB@
xB 0 0 0 0

0 xB 0 0

0 0 xA 0

0 0 0 xA0

1CCA

D

0BB@
‚ 0 0 0

0 ‚0 0 0

0 0 x‚ 0

0 0 0 x‚0

1CCA ; (5.50)
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where‚ WD diag.ei� ei�
0

/,‚0 WD diag.ei�
0

ei� /with �; � 0 as in (5.28). Imposing the gauge
transformation to preserve self-adjointness, that is, � D � 0 (disregarding the constant), then
U is simply the multiplication by a phase. This means that U� is still in HR, so that the
computation of the fermionic action A

�
D�.U /ZU

.fU�;fU�/ is similar as above.

5.5. Identification of the physical degrees of freedom

The relation between the components � WD
�
�
�

�
, � WD

�
'
'

�
of the eigenvector � of R and

the physical spinors ‰ D
�
 l
 r

�
, ‰� D

�
 
�
l

 
�
r

�
is encoded within the rule of identification

(4.40) (with the sign discussed below Proposition 4.5) for the double manifold, that we
write equivalently as

‰ D z�; ‰� D i.J z�/�; (5.51)

and within the rules (5.42), (5.43) for the spectral triple of electrodynamics, that we write
equivalently

‰ D z„; ‰� D i.J z�/�;

‰0 D 0 z„; ‰0� D i.J z�/�0 D �i.J0 z�/�;
with „ WD

 
�1

�2

!
; � WD

�
'1
'2

�
: (5.52)

In any case, the physical spinors are completely determined by the projection �C of � on
theC1 eigenspace HC of the grading operator; that is,

�C D

�
'

0

�
˝ e C

�
0

�

�
˝ Ne projecting (4.35); (5.53)

�C D

�
'1
0

�
˝ eL C

�
0

'2

�
˝ eR

C

�
0

�1

�
˝ eL C

�
�2
0

�
˝ eR projecting (5.31): (5.54)

This is similar to the non-twisted case, where the physical spinors are determined by an
eigenvector in HC.

6. Lorentz invariance

So far, our results do not say anything on the components fi of the twisted fluctuation for
i D 1; 2; 3, because they do not appear in the Lagrangian (5.33). Since f0 identifies with
an energy, it is tempting to identify fi with a momentum. This is actually achieved by
acting with Lorentz transformations on the twisted fermionic action.

More precisely, we first define in (Section 6.1) an action of Lorentz boosts on the twis-
ted spectral triple, which leaves the twisted fermionic action invariant. We then investigate
the action from the point of view of boosted observers, both for the double manifold in
Section 6.2 and for electrodynamics in Section 6.3. In both cases, we obtain equations of
motion in which the components fi of the twisted fluctuation get interpreted as momenta.
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6.1. Lorentz invariance of the twisted fermionic action

As recalled in Appendix C, the Dirac equation on Minkowski spacetime is invariant under
the action (C.3) of boosts simultaneously on spinors and on the Dirac operator. From a
mathematical point of view, this action makes sense on a Euclidean spin manifold M as
well: although this might seem physically non-relevant at first sight, we let boosts act on
Euclidean spinors and on the Euclidean Dirac operator as

� ! �ƒ WD SŒƒ��; 8� 2 L2.M; �/; (6.1)

Ä! Äƒ WD SŒƒ� ÄSŒƒ��1: (6.2)

As an element of B.L2.M; S//, the boost operator SŒƒ� is acted upon by the inner
automorphism � induced by R D 0 given in (3.7); namely

�
�
SŒƒ�

�
D 0

�
ƒ� 02
02 ƒC

�
0 D

�
ƒC 02
02 ƒ�

�
: (6.3)

Since ƒC, ƒ� are inverse of one another and self-adjoint, one has that

�
�
SŒƒ�

�
D SŒƒ��1; SŒƒ�C D SŒƒ��1: (6.4)

Lemma 6.1. The real structure J (introduced in (3.4)) twist commutes with boosts:

JSŒƒ� D SŒƒ��1J: (6.5)

Proof. Since �2 anticommutes with �1, �3 and commutes with itself, one has that

.n � � /�2 D �2.�n1�1 C n2�2 � n3�3/ D ��2.n � � /; (6.6)

where we use �1;�3Dx�1;x�3, x�2D��2. Hence,ƒ˙�2D�2xƒ�. With JDdiag.��2;�2/cc,
one gets

JSŒƒ� D

 
��2 xƒ� 0

0 �2 xƒC

!
cc D

 
�ƒC�2 0

0 ƒ��2

!
cc D SŒƒ��1J:

The inner product on L2.M; S/ is not invariant by (6.1); the twisted product is˝
SŒƒ��; SŒƒ��

˛
�
D
˝
�; SCŒƒ� SŒƒ��

˛
�
D
˝
�; SŒƒ��1SŒƒ��

˛
�
D h�; �i� (6.7)

for any  ; � 2 L2.M; S/. This is not a surprise, being the twisted product of the Krein
product of Lorentzian spinors (see Section 2). Yet, the bilinear form A

�
Ä

is not invariant:

A
�

Äƒ
.�ƒ; �ƒ/ D

˝
J SŒƒ��; ÄƒSŒƒ��

˛
�
D
˝
SŒƒ��1 J�; SŒƒ�Ä�

˛
�

D
˝
J�; SŒƒ�2Ä�

˛
�
¤ A

�
Ä
.�; �/:
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This can be corrected by making boosts act on the physical spinors‰,‰� (5.51). Namely,

‰ ! SŒƒ�‰ D SŒƒ�z�; (6.8)

‰� ! ‰�SŒƒ�� D i.J z�/�SŒƒ�� D i
�
SŒƒ�J z�

��
D i

�
JSŒƒ��1 z�

��
: (6.9)

Consequently, in order to “boost the fermionic action,” instead of �ƒ one should consider

��ƒ WD SŒƒ��1�: (6.10)

As a matter of fact, one checks that

A
�

Äƒ
.��ƒ; �ƒ/ D

˝
J SŒƒ��1�; ÄƒSŒƒ��

˛
�

D
˝
SŒƒ�J�; SŒƒ�Ä�

˛
�

D hJ�; Ä�i� D A
�
Ä
.�; �/; (6.11)

and the same holds true for the operator

ÄƒX WD SŒƒ� ÄX SŒƒ�
�1
D Äƒ C Xƒ with Xƒ WD SŒƒ�XSŒƒ��1; (6.12)

obtained by the action of boosts on the twisted-covariant Dirac operator ÄX . Therefore,
the following proposition holds.

Proposition 6.2. The twisted fermionic action on a Euclidean manifold (3.34) is invariant
under the boost action

� ! �ƒ; � ! ��ƒ; ÄX ! ÄƒX ; (6.13)

followed by the identification �ƒ D �ƒ; that is,

A
�
ÄX

�
z�; z�

�
D A

�

ÄƒX

�
z��ƒ; z�ƒ

�
: (6.14)

Our claim is that the right-hand side of the equation above is the action as seen from
a boosted observer. Of course, in order to get the Weyl and Dirac equations, one needs
to double the manifold as before, then add a mass matrix. Still, the main features of the
boosting are visible on (6.14). In particular, by computing explicitly the bilinear form
A
�

ÄƒX
, one sees all the components f� of the twisted fluctuation appearing in the action. To

this aim, we use the following notations for the boosted spinors.

Definition 6.3. Given � D
�
c�
�

�
, � D

�
c'
'

�
in HR, we let 'l;r , �l;r be the components of

�ƒ D SŒƒ�� D

�
ƒ��

ƒC�

�
DW

�
�l
�r

�
;

J��ƒ D SŒƒ�J� D

�
�ƒ��2 x'

ƒC�2 x'

�
DW

�
x'l
x'r

�
:
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Proposition 6.4. Let ��ƒ WD ƒ��
�ƒ� and z��ƒ WD ƒCz�

�ƒC. Then

A
�

ÄƒX

.��ƒ; �ƒ/ D �i

Z
M

d� x'�
l
z�
�
ƒ.@� C f�/�l C x'

�
r �

�
ƒ.@� � f�/�r : (6.15)

Proof. Defining


�
ƒ WD SŒƒ�

� SŒƒ��1 D

 
0 ƒ��

�ƒ�

ƒCz�
�ƒC 0

!
D

 
0 �

�
ƒ

z�
�
ƒ 0

!
; (6.16)

one has (remembering that @� and 5 commute with SŒƒ�) that

Äƒ�ƒ D �i�ƒ@��
ƒ
D �i

 
�
�
ƒ@��r

z�
�
ƒ@��l

!
;

Xƒ�ƒ D �i�ƒf�
5�ƒ D �if�

 
��

�
ƒ�r

z�
�

�
�l

!
:

Since .J�/ƒ D J��ƒ, one gets with (3.7)

A
�
Äƒ
.��ƒ; �ƒ/ D

˝
.J�/ƒ;RÄƒ�ƒ

˛
D �i

Z
M

d�
�
x'
�

l
; z'�r

�
0

 
�
�
ƒ@��r

x�
�
ƒ@��l

!
D �i

Z
M

d�
�
x'
�

l
z�
�
ƒ@��l C x'

�
r �

�
ƒ@��r

�
;

A
�

Xƒ.�
�ƒ; �ƒ/ D

˝
.J�/ƒ;RXƒ�ƒ

˛
D �i

Z
M

d�
�
x'
�

l
; x'�r

�
0

 
��

�
ƒf��r

z�
�
ƒf��l

!
D �i

Z
M

d�
�
x'
�

l
z�
�
ƒf��l � x'

�
r �

�
ƒf��r

�
:

The results follow summing these two equations.

Remark 6.5. One checks that for SŒƒ� D I (no boost), Proposition 6.4 gives back Pro-
position 3.5. One then has that �l;r D � while x'�

l
D �x'��2 and x'r D x'��2, so by (3.28)

A
�

ÄƒX
.��ƒ; �ƒ/ D �i

Z
M

d� � x'��2 z��.@� C f�/� C x'��2 ��.@� � f�/�

D �i

Z
M

d� x'��2
�
.�� � z��/@� � .z�

�
C ��/f�

�
�

D 2

Z
M

d� x'��2

 
�

3X
jD1

�j @j C if0

!
�:

The twisted fermionic action (6.14) on a Euclidean manifold, as seen from a boosted
observer, is obtained putting ��ƒ D ��ƒ in (6.15), then turning the entries of the spinors
into Graßmann variables. As in Section 3.4, there is not enough spinor degrees of freedom
to identify a physically meaningful action. We thus consider the boost of the action (4.36)
of the doubled manifold.
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6.2. Weyl equations for boosted observers

In agreement with (6.8) and (6.10), we define the action of a boost on L2.M; S/˝C2 as
� ˝ e C  ˝ Ne ! .SŒƒ��1�/˝ e C .SŒƒ� /˝ Ne, in such a way that � 2 HR in (4.35)
is mapped to

�ƒ D ��ƒ ˝ e C �ƒ ˝ Ne: (6.17)

Proposition 6.6. The action of a double manifold (4.36), as seen from a boosted observer,
is

A
�

ÄƒX
.z�ƒ; z�ƒ/ D 2A

�

ÄƒX
.z��ƒ; z�ƒ/

D �2i

Z
M

d� z'�
l
z�
�
ƒ.@� C f�/�l C z'

�
r �

�
ƒ.@� � f�/�r : (6.18)

Proof. Following the analysis below Proposition 6.2, the twisted fermionic action from a
boosted observer is A

�

ÄƒX˝I2
.z�ƒ; z�ƒ/. By a calculation similar to the one of Proposition

4.4, one obtains

A
�

ÄƒX˝I2
.�ƒ; �0ƒ/ D A

�

ÄƒX
.��ƒ; � 0ƒ/CA

�

ÄƒX
.�ƒ; �0�ƒ/: (6.19)

By boost invariance (6.11), the terms in the r.h.s. have the same symmetry as the corres-
ponding expression without ƒ, that is, symmetric on graßmanian vectors. Thus, similar
to (4.39), one gets A

�

ÄƒX˝I2
.z�ƒ; z�ƒ/ D 2A

�

ÄƒX
.z��ƒ; z�ƒ/. The result follows from Proposi-

tion 6.4.

We identify the boosted physical degrees of freedom‰DSŒƒ�z�,‰�D i.JSŒƒ��1 z�/�

following (6.8), (6.9). In components (see Definition 6.3), one has that

 l;r D z�l;r ;  
�

l;r
D i z'

�

l;r
: (6.20)

The Lagrangian density in (6.18) then reads

Lƒ D �2
�
 
�

l
z�
�
ƒ.@� C f�/ l C  

�
r �

�
ƒ.@� � f�/ r

�
: (6.21)

Treating  l ,  r ,  
�

l
, and  �r as independent fields, the corresponding equations of motion

are

z�
�
ƒ.@� C f�/ l D 0; �

�
ƒ.@� � f�/ r D 0: (6.22)

Proposition 6.7. For a constant twisted fluctuation f�, a plane wave solution of the first
(resp. the second) equation of (6.22) coincides with a plane wave solution of the left- (resp.
right-) handed Weyl equation whose (dual) momentum p] has components p0� D ƒ

�
� p�

in the boosted frame, where

p0 D �f0; pj D fj ; resp. p0 D f0; pj D �fj : (6.23)
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Proof. By (C.5), (C.6), a plane wave solution (B.8) of the first equation of (6.22) satisfies

0 D z�
�
ƒ.�ip� C f�/ l D

�
ƒ0�z�

�
M .�ip0 C f0/ � iƒ

j
� z�

�
M .�ipj C fj /

�
 l ; (6.24)

D �z��M
�
ƒ0�.ip0 � f0/Cƒ

j
� .pj C ifj /

�
 l : (6.25)

Similarly, a plane wave solution  r of the second equation of (6.22) satisfies

0 D ���M
�
ƒ0�.ip0 C f0/Cƒ

j
��

�
M.pj � ifj /

�
 r : (6.26)

If (6.23) holds, these two equations become

0 D �.1C i/z��M
�
ƒ0�p0 Cƒ

j
�pj

�
 0l D �.1C i/z�

�
M p0� 0l ; (6.27)

0 D �.1C i/��M .ƒ
0
�p0 Cƒ

j
�pj / 0r D �.1C i/�

�
Mp
0
� 0r ; (6.28)

which coincide, up to a constant factor, with the Weyl equations of motion (B.9) for a
boosted observer.

Proposition 6.7 is the boosted version of Proposition 4.5: now, the whole field f�dx�

(and not only its zeroth component) identifies with the dual p] of the energy-momentum
4-vector. Nevertheless, the interpretation of the Lagrangian density (6.21) is delicate,
because of the sign difference in (6.23):

f0 D �i@0; fj D i@j versus f0 D i@0; fj D �i@j : (6.29)

Substituting the first (resp. second) of these equations in the left- (resp. right-) handed part
of (6.21), one obtains

2.i � 1/
�
 
�

l
z�
�
M@
0
� l C  

�
r �

�
M@
0
� r

�
with @0� WD ƒ

�
� @�: (6.30)

This agrees with the equations of motion (6.27), (6.28), remembering that @0� D �ip
0
� and

the factor �2 that was ignored from (6.21) to (6.22), thus suggesting that Lƒ is the sum –
up to a complex factor – of the two Weyl lagrangians Ll

M
;Lr

M
(B.6). The point is that

 l ;  r come from the action of ƒ� on the same Weyl spinor ', and this action leaves the
exponential part of the plane wave unaltered. So  l ,  r should describe two plane waves
with the same momenta, in contradiction with (6.29). We comment on this point in the
conclusion.

Remark 6.8. The no-boost limit of the action (6.18) yields back the action (4.36) of the
double manifold (along the lines of remark (6.5)). As well for the Lagrangian: identifying
 l ;  r ! � with  in (4.40),  �

l
D i x'

�

l
! �i x'��2 with  �, and  �r D i x'

�
r ! i x'��2

with � �, then (6.21) becomes 4i. �.if0 �
P
j �j @j //, in agreement with (4.41) (the

expression with the opposite sign is obtained identifying the no-boost limit of  �r with  ,
and the one of  �

l
with � ).
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6.3. Dirac equation for boosted observers

A boost SŒƒ� acts on the twisted covariant Dirac operator DZ of electrodynamics (5.24)
to give

Dƒ
Z WD SŒƒ�DZSŒƒ�

�1
D Äƒ ˝ I4 C 

5
˝DF C Xƒ ˝ I0 C iYƒ ˝ I00; (6.31)

where Äƒ, Xƒ are defined in (6.12); we used SŒƒ�5SŒƒ��1 D I and defined (using
notations (6.16))

Yƒ WD SŒƒ�YSŒƒ��1 D �iSŒƒ��g�I4SŒƒ�
�1
D �i

�
ƒg�I4: (6.32)

Similarly to what has been done for the double manifold in (6.17), we make the boost acts
on L2.M; S/˝C4 in such a way that � 2 HR in (5.31) is mapped to

�ƒ D ��ƒ1 ˝ eL C �
�ƒ
2 ˝ eR C �

ƒ
1 ˝ eL C �

ƒ
2 ˝ eR: (6.33)

Proposition 6.9. The fermionic action from the minimal twist of electrodynamics, as seen
from a boosted observer, is the integral

A
�

DZ
.z�ƒ; z�ƒ/ D �2

Z
M

d�Lƒ (6.34)

of the Lagrangian density

Lƒ D i
�
zx'
�

1l
z�
�
ƒ.D� C f�/ z�1l C zx'

�
1r �

�
ƒ.D� � f�/z�1r

�
C d

�
zx'
�

2l
z�1r � zx'

�
2r
z�1l
�

C i
�
zx'
�

2l
z�
�
ƒ.D��f�/ z�2lCzx'

�
2r �

�
ƒ.D�Cf�/z�2r

�
C Nd

�
zx'
�

1l
z�2r�zx'

�
1r
z�2l
�
; (6.35)

where D� D @� � ig�.

Proof. The computation is similar to the one of Proposition 5.12. One obtains

A
�

DZ
.z�ƒ; z�ƒ/ D 2A

�

Äƒ
.z��ƒ1 ; z�ƒ1 /C 2A

�

Äƒ
.z��ƒ2 ; z�ƒ2 /C 2A

�

Xƒ.
z��ƒ1 ; z�ƒ1 /

� 2A
�

Xƒ.
z��ƒ2 ; z�ƒ2 / � 2A

�

iYƒ.
z��ƒ1 ; z�ƒ1 / � 2A

�

iYƒ.
z��ƒ2 ; z�ƒ2 /

C 2 Nd A
�

5
.z��ƒ1 ; z�ƒ2 /C 2dA

�

5
.z��ƒ2 ; z��ƒ1 /;

where we used that the bilinear forms A
�

Äƒ
, A

�

Xƒ , A
�

5
, and A

�

iYƒ valued on z��ƒi , z�ƒj
have the same symmetry properties of the corresponding expressions without ƒ (by the
invariance (6.11), that holds also for Xƒ, 5, and iYƒ). Substituting A

�

Äƒ
and A

�

Xƒ with
their explicit form given in the proof of Proposition 6.4 and calculating (with J��ƒ D

.J�/ƒ given in Definition 6.3)

A
�

iYƒ.�
�ƒ; �ƒ/ D hJ��ƒ; 0iYƒ�ƒi D

�
x'l
x'r

��
0
�
g��

�
ƒ�r

g�z�
�
ƒ�l

�
D

Z
M

d�g�
�
x'
�

l
z�
�
ƒ�l C x'r�

�
ƒ�r

�
;

A
�

5
.��ƒ; �ƒ/ D hJ��ƒ; 5�ƒi D

�
x'l
x'r

��
05

�
�l
�r

�
D �

Z
M

d�
�
x'
�

l
�r � x'

�
r �l
�
;

one obtains the result.
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Again, taking the no-boost limit as in Remark 6.5, one checks that (6.34) yields back
the fermionic action (5.33) for the minimal twist of the spectral triple of electrodynamics.

Boosting the rule of identification (5.52) in the line of (6.9), one identifies the physical
spinors

‰ WD

�
 l
 r

�
D SŒƒ� z„ D

 
z�1l

z�2r

!
;

‰� WD

 
 
�

l

 
�
r

!
D i

�
SŒƒ�J z�

��
D

 
i z'
�

1l

i z'
�
2r

!
;

(6.36)

‰0 WD

�
 0
l

 0r

�
D SŒƒ�0 z„ D

 
z�2l

z�1r

!
;

‰0
�
WD

 
 0
l
�

 0r
�

!
D �i

�
SŒƒ�J0 z�

��
D

 
�i z'

�

2l

�i z'
�
1r ;

!
;

(6.37)

using Definition 6.3 to write the components. The Lagrangian density (6.35) becomes

Lƒ D  
�

l
z�
�
ƒ.D� C f�/  l C  

�
r �

�
ƒ.D� C f�/ r C id. 

�

l
 r C  

�
r l /

�  
0�

l
z�
�
ƒ.D� � f�/  

0
l �  

0�
r �

�
ƒ.D� � f�/ 

0
r � i

Nd. 
0�
r  
0
l C  

0�

l
 0r /: (6.38)

Remark 6.10. In the no-boost limit,  l;r ,  
�

l;r
in (6.36) coincide with  l;r ,  

�

l;r
in (5.42),

and  0
l;r

,  
0�

l;r
in (6.37) with  r;l ,  

�

r;l
in (5.42). This allows to retrieve (5.44) as the no-

boost limit of (6.38), imposing d D im and taking into account the factor �2 in (6.34) and
4 in Proposition 5.12. Conversely,  0

l;r
,  �0l;r in (6.36) and  l;r ,  

0�

l;r
in (6.37) coincide

with  0
l;r

,  
0�

l;r
and  0

r;l
,  

0�

r;l
in (5.42), allowing to retrieve (5.47) as the no-boost limit of

(6.38).

Treating all the fields independently, one obtains the two pairs of equations of motion:

z�
�
ƒ.D� C f�/ l D id r ; �

�
ƒ.D� C f�/ r D m l I (6.39)

z�
�
ƒ.D� � f�/ 

0
l D �i

Nd 0r ; �
�
ƒ.D� � f�/ 

0
r D �i

Nd 0l : (6.40)

The generalised energy-momentum 4-vector P WD p C g[ is the sum of the energy
momentum p with the musical dual of the 1-form g D g�dx

�. In practical, this means
that

D� e
�ix�p� D �iP�; (6.41)

where P� are the components of P [. This leads to our final proposition.

Proposition 6.11. For a constant fluctuation f�, a plane wave solution of (6.39) (resp.
(6.40)) coincides with a plane wave solution of the Dirac equation with mass m D
�.1C i/d

2
(resp. m D .1C i/ Nd

2
), whose (dual) generalised momentum P has compon-

ents P 0� D ƒ
�
� P� in the boosted frame, where

P0 D �f0; Pj D fj ; resp. P0 D f0; Pj D �fj : (6.42)
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Proof. From (C.5) and (C.6), a plane wave solution (B.3) of (6.39) satisfies

id r D z�
�
ƒ.D� C f�/ l D z�

�
ƒ.�iP� C f�/ l

D z��M
�
ƒ0�.�iP0 C f0/ � iƒ

j
� .�iPj C fj /

�
 l ;

and a similar equation with ��, inverting  l and  r . If the first part of (6.42) holds, then
these equations are equivalent to z��MP

0
� l D

�id
1Ci

 r and a similar equation for ��. These
coincide with the Dirac equation (B.5), with mass m D �.1 C i/d

2
. Similarly, a plane

wave solution of (6.40) satisfies

�i Nd 0r D z�
�
ƒ.D� � f�/ 

0
l D z�

�
ƒ.�iP� � f�/ 

0
l

D z��M
�
ƒ0�.�iP0 � f0/ � iƒ

j
� .�iPj � fj /

�
 0l ;

which becomes z��MP
0
� 
0
l
D

i Nd
1Ci

 0r if the second part of (6.42) holds. Together with a
similar equation for ��, these coincide with the Dirac equations (B.5), with mass m D
.1C i/

Nd
2

.

To guarantee a positive mass, one should impose that d D m.i ˙ 1/ with m 2 RC.
Identifying the imaginary/real axis of the complex plane with the space/time directions of
two-dimensional Minkowski space, the set of all physically acceptable values of d is the
future light cone, while in the non-boosted case, it was the imaginary axis d D im,m 2R.

7. Conclusion and outlook

The twisted fermionic action associated to the minimal twist of a doubled manifold and
that of the spectral triple of electrodynamics yield, respectively, the Weyl and the Dirac
equations in Lorentzian signature, although one started with a Euclidean manifold. The 1-
form field parametrising the twisted fluctuation gets interpreted as an energy-momentum
4-vector. It was known that fluctuations of the geometry generate the bosonic content
of the theory (including the Higgs sector). What is new here is that they generate also
the energy momentum. In other terms, the dynamics is obtained as a fluctuation of the
geometry.

It should be checked that a similar transition from the Riemannian to the pseudo-
Riemannian also takes place for the minimal twist of the SM. This will be the subject of
future works, as well as the extension of these results to curved Riemannian manifolds.

Some points that deserve to be better understood are the following.

• Is the twisted fermionic action really Lorentzian, since the manifold M under which
one integrates remains Riemannian? Actually, this is not a problem if one takes as
domain of integration a local chart (as in quantum field theory: the Wick rotation is
usually viewed as a local operation), up to a change of the volume form (see [19]
for details). Nevertheless, one may hope that the twist actually changes the metric on
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the manifold, through Connes distance formula for instance (relations between causal
structure and this distance have already been worked out in [26, 27, 33], but without
taking into account the twist).

• The twisted fermionic action is invariant under an action of the Lorentz group, and the
equations of motions in the boosted frame coincide with those derived from the Weyl
and Dirac equations in the boosted frame as well. But the boosted Lagrangians do
not agree, because of the difference of sign in the definition of the physical left/right
spinors. As stated in the text, this sign difference is not compatible with the initial
restriction to HR. To overcome this difficulty, one may relax this restriction. Whether
this still permits to define an antisymmetric bilinear form, that yields a physically
meaningful action, will be investigated elsewhere.
In any case, the results presented here suggest an alternative attack to the problem of

extending the theory of spectral triples to Lorentzian geometries. That the twist does not
fully implement the Wick rotation (it does it only for the Hilbert space but not for the
Dirac operator) is not so relevant after all. More than being able to spectrally characterise
a pseudo-Riemannian manifold, what matters most for the physics is to obtain an action
that makes sense in a Lorentzian context. The present work shows that this happens for
the fermionic action.

The spectral action in the twisted context is still an open problem. The interpretation
of the 1-form field f�dx� as the energy-momentum 4-vector might be relevant in this
context as well.

Contrary to most approaches in the literature (e.g., [1,35]), we do not obtain a Lorent-
zian action by implementing a Lorentzian structure on the geometry. The latter somehow
“emerges” from the Riemannian one. This actually makes sense, remembering that the
regularity condition imposed by Connes and Moscovici (see Remark 2.3) has its origin in
Tomita’s modular theory. More precisely, the automorphism � that defines a twisted spec-
tral triple should be viewed as the evaluation, at some specific value t , of a one-parameter
group of automorphism �t . For the minimal twist of spectral triples, the flip came out as
the only automorphism that makes the twisted commutator bounded. It is not yet clear
what would be the corresponding one-parameter group of automorphisms. Should it exist,
this will indicate that the time evolution in the SM has its origin in the modular group.
This is precisely the content of the thermal time hypothesis of Connes and Rovelli [18].
So far, this hypothesis has been applied to algebraic quantum field theory [31, 32], and
for general considerations in quantum gravity [34]. Its application to the SM would be a
novelty.

A. Gamma matrices in chiral representation

Let �jD1;2;3 be the Pauli matrices:

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
: (A.1)
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In a four-dimensional Euclidean space, the Dirac matrices (in chiral representation) are

� D

�
0 ��

z�� 0

�
; 5 WD 1230 D

�
I2 0

0 �I2

�
; (A.2)

where, for � D 0; j , we define

�� WD ¹I2;�i�j º; z�� WD ¹I2; i�j º: (A.3)

In Minkowski spacetime with signature .C;�;�;�/, the Dirac matrices are


�
M D

�
0 �

�
M

x�
�
M 0

�
; 5M WD 

1
M

2
M

3
M

0
M D �i

5; (A.4)

where, for � D 0; j , we define

�
�
M WD ¹I2; �j º; x�

�
M WD ¹I2;��j º: (A.5)

B. Weyl and Dirac equations

A Dirac spinor ‰ D
�
 l
 r

�
2 L2.M; �/ is the direct sum of two Weyl spinors  l and  r .

With our definition of the chiral representation, a left-handed spinor is an eigenspinor of
the C1-eigenspace L2.M; S/C of the grading operator 5, and a right-handed spinor an
eigenspinor of the �1 eigenspace L2.M; S/� (in the physics literature, the convention is
usually opposite).

The Dirac Lagrangian in Minkowski spacetime is

LM D �x‰.ÄM Cm/‰

D

�
 
�

l
 
�
r

�� 0 I2
I2 0

�" 
0 i�

�
M@�

iz�
�
M@� 0

!
�m

#�
 l
 r

�
D i 

�

l
z�
�
M@� l C i 

�
r �

�
M@� r �m

�
 
�

l
 r C  

�
r l

�
; (B.1)

where x‰ WD‰�0 and ÄD�i�@�. The equations of motion are derived by a variational
principle, treating  l=r and their Hermitian conjugates  �

l=r
as independent variables. In

particular, the Euler–Lagrange equations for  �
l

,  �r yield Dirac equations (written in
components)

iz�
�
M@� l D m r ; i�

�
M@� r D m l : (B.2)

By (A.5) one retrieves the familiar form [11, Section 19.77]:

i
�
@0 �

X
j

�j @j

�
 l=r D m r=l :

A plane wave solution of (B.2) is

‰.x0; xj / D ‰0 e
�ip�x

�

with ‰0 D
�
 0l
 0r

�
; (B.3)
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where p� WD ���p� are the components of the 1-form p], dual of the energy-momentum
4-vector .p0; pj / induced by the Lorentz metric, and ‰0 is a constant spinor solution of

i

�
� ip0 C i

3X
jD1

�jpj

�
 0l D m 0r ; i

�
� ip0 � i

3X
jD1

�jpj

�
 r D m l : (B.4)

The components  l=r D  0l=re�ip�x
�

of the plane wave (B.3) are solutions of

z�
�
Mp� l D

�
p0 �

3X
jD1

�jpj

�
 l D m r ;

�
�
Mp� r D

�
p0 C

3X
jD1

�jpj

�
 r D m l :

(B.5)

For m D 0, the Dirac Lagrangian is the sum of two independent pieces, the Weyl
Lagrangians

Ll
M D i 

�

l
z�
�
M@� l D i 

�

l

�
@0 �

3X
jD1

�j @j

�
 l ;

Lr
M D i 

�
r �

�
M@� r D i 

�
r

�
@0 C

3X
jD1

�j @j

�
 r ;

(B.6)

that describe Weyl fermions (massless spin-1
2

particle). The corresponding Weyl equations
of motion are [11, eq. (19.40), (19.41)]

z�
�
M@� l D

�
@0 �

3X
jD1

�j @j

�
 l D 0; �

�
M@� r D

�
@0 C

3X
jD1

�j @j

�
 r D 0: (B.7)

Their plane wave solutions,

 l .x
0; xj / D  0l e

�ip�x
�

;  r .x
0; xj / D  0r e

�ip�x
�

; (B.8)

with  0l ,  0r momentum-dependant spinors satisfying (B.4) for m D 0, are solutions of�
p0 �

3X
jD1

�jpj

�
 0l D 0;

�
p0 C

3X
jD1

�jpj

�
 0r D 0: (B.9)

C. Spin representation of boosts

The spinor representation of a boost of rapidity b=2 in the direction n is given by

SŒƒ� D

�
ƒC 0

0 ƒ�

�
; where ƒ˙ WD exp.˙a � � / with a WD

b

2
n: (C.1)
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Collecting the terms with even and odd powers in the expansion of exp.˙a � � /, one
checks that ƒ˙ D ƒ1 ˙ƒ2, where ƒ1 WD .cosh jaj/I2, ƒ2 WD .sinh jaj/n � � . Thus ƒC,
ƒ� are both self-adjoint and inverse of one another. Meaning that SŒƒ� is self-adjoint but
not unitary,

SŒƒ�� D SŒƒ� ¤ SŒƒ��1: (C.2)

Under such a boost, a Lorentzian spinor and the Lorentzian Dirac operator transform
as

 M ! SŒƒ� M ; ÄM ! SŒƒ� ÄM SŒƒ��1: (C.3)

By construction, the spin representation of the Lorentz group is such that (see e.g. [11,
Section 20.78])

.z�
�
M /ƒ WD SŒƒ�z�

�
MSŒƒ�

�1
D ƒ�� z�

�
M ; .�

�
M /ƒ D SŒƒ��

�
MSŒƒ�

�1
D ƒ�� �

�
M ; (C.4)

where ¹ƒ�� º is the matrix representation of the Lorentz group on Minkowski space. Since
z�0 D z�0M , �0 D �0M and z�j D �iz�jM , �j D �iz�jM for j D 1; 2; 3, one gets

z�0ƒ WD SŒƒ� z�
0 SŒƒ��1 D ƒ0� z�

�
M ; �0ƒ WD SŒƒ��

0SŒƒ��1 D ƒ0��
�
M ; (C.5)

z�
j
ƒ WD SŒƒ�z�

jSŒƒ��1 D �iƒj� z�
�
M ; �

j
ƒ WD SŒƒ�z�

jSŒƒ��1 D �iƒj��
j
M : (C.6)
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