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A variant of Roe algebras for spaces with cylindrical ends
with applications in relative higher index theory

Mehran Seyedhosseini

Abstract. In this paper, we define a variant of Roe algebras for spaces with cylindrical ends and use
this to study questions regarding existence and classification of metrics of positive scalar curvature
on such manifolds which are collared on the cylindrical end. We discuss how our constructions are
related to relative higher index theory as developed by Chang, Weinberger, and Yu and use this
relationship to define higher rho-invariants for positive scalar curvature metrics on manifolds with
boundary. This paves the way for the classification of these metrics. Finally, we use the machinery
developed here to give a concise proof of a result of Schick and the author, which relates the relative
higher index with indices defined in the presence of positive scalar curvature on the boundary.

1. Introduction

The question of whether a given manifold admits a metric of positive scalar curvature has
spurred much activity in recent years. One of the main approaches to partially answer this
question is index theory. On a closed spin manifold M; the Schrödinger–Lichnerowicz
formula implies that the nonvanishing of the Fredholm index of the Dirac operator is an
obstruction to the existence of a positive scalar curvature metric. However, this does not
tell the whole story, since there exist spin manifolds with vanishing Fredholm index of the
Dirac operator which however do not admit metrics with positive scalar curvature. One
way to obtain more refined invariants from the Dirac operator is to not only consider the
dimensions of its kernel and cokernel, but also to consider the action of the fundamental
group on them. This gives rise to a higher index for the Dirac operator which is an element
of the K-theory of the group C �-algebra of the fundamental group. In general, one can
associate a class in the K-homology of the manifold to the spin Dirac operator and the
higher index is obtained as the image of this class under the index map

��1.M/
W K�.M/! K�

�
C �
�
�1.M/

��
:

The nonvanishing of the higher index gives an obstruction to the existence of positive
scalar curvature metrics. In order to prove this, one can use the fact that the index map fits
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in the Higson–Roe exact sequence

� � � ! S�1.M/
� .M/! K�.M/! K�

�
C �
�
�1.M/

��
! � � �

and that the positivity of the scalar curvature allows the definition of a lift of the funda-
mental class in S�1.M/

� .M/. Given two positive scalar curvature metrics on M; one can
also define an index difference in K�C1.C �.�1.M///. These secondary invariants can
then also be used for classification of positive scalar curvature metrics up to concordance
and bordism. More concretely, in [10,11] the authors use these invariants to prove concrete
results on the size of the space of positive scalar metrics on closed manifolds.

In [1] Chang, Weinberger, and Yu recently considered the question on compact spin
manifolds with boundary. Let M be a compact spin manifold with boundary N . They
constructed a relative index map

��1.M/;�1.N/ W K�.M;N /! K�
�
C �
�
�1.M/; �1.N /

��
;

whereK�.M;N / and C �.�1.M/;�1.N // denote the relativeK-homology group and the
so-called relative group C �-algebra. One can define a relative class for the Dirac operator
on M in the relative K-homology group. The relative index is then the image of the latter
relative class under the relative index map. Given a positive scalar curvature metric on
M which is collared at the boundary, it was shown in [1] that the relative index vanishes.
A general Riemannian metric which is collared at the boundary and has positive scalar
curvature there also defines an index in K�.C �.�1.M///, which vanishes if the metric
has positive scalar curvature everywhere. It was shown in [2, 9] that the latter index maps
to the relative index under a certain group homomorphism. Apart from relating previously
defined indices to the relative index, this fact also gives a conceptual proof that the relative
index is an obstruction to the existence of positive scalar curvature metrics which are
collared at the boundary.

The relative index map fits into an exact sequence

� � � ! S�1.M/;�1.N/
� .M;N /! K�.M;N /! K�

�
C �
�
�1.M/; �1.N /

��
! � � � ;

where S�1.M/;�1.N/
� .M;N / is the relative analytic structure group and has different real-

isations. The main aim of this paper is to answer the following natural question: given a
positive scalar curvature metric, which is collared at the boundary, can one define expli-
citly a secondary invariant in S�1.M/;�1.N/

� .M; N / which lifts the relative fundamental
class and is useful for classification purposes? Here, note that the exactness of the above
sequence immediately implies the existence of some lift or lifts which, however, do not
necessarily give us any information about the positive scalar curvature metric at hand.
Using the machinery we develop in this paper, we will be able to answer the latter ques-
tion in the positive. Furthermore, the same machinery allows us to define a higher index
difference associated to positive scalar curvature metrics on manifolds with boundary. The
definition of such secondary invariants paves the way for generalisations of the known res-
ults, such as those of [10, 11], on the size of the space of positive scalar curvature metrics
to manifolds with boundary.
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Closely related to the question of existence and classification of positive scalar
curvature metrics on manifolds with boundary which are collared at the boundary is the
question of existence and classification of positive scalar curvature metrics on manifolds
with cylindrical ends which are collared on the cylindrical end. The usual coarse geo-
metric approach to index theory cannot be applied in this case, since the Roe algebras of
spaces with cylindrical ends tend to have vanishing K-theory. We deal with this problem
by introducing a variant of Roe algebras for such spaces with more interesting K-theory.
The operators in the new Roe algebras are required to be asymptotically invariant in the
cylindrical direction. Such operators can then be evaluated at infinity in a sense to be
described later. Let X be a space with cylindrical end and denote by Y1 its cylindrical
end. Let ƒ and � be discrete groups and ' W ƒ ! � a group homomorphism. ' then
induces a map Bƒ! B� of the classifying spaces of the groups which we can assume
to be injective. Given a map .X; Y1/! .B�; Bƒ/ of pairs, we construct a long exact
sequence

� � � ! K�
�
C �L;0.

zX/�;RC;ƒ
�
! K�

�
C �L.
zX/�;RC;ƒ

�
! K�

�
C �. zX/�;RC;ƒ

�
! � � � :

In the above sequence, zX denotes the �-cover of X associated to the map X ! B� and
C �. zX/�;RC;ƒ consists, roughly, of operators on zX which are asymptotically invariant
and whose evaluation at infinity results in operators admitting ƒ-invariant lifts. For a spin
manifold X we associate a fundamental class to the Dirac operator inK�.C �L. zX/

�;RC;ƒ/.
The index of the Dirac operator on the manifold with cylindrical end is then defined as the
image of the latter class under the map K�.C �L. zX/

�;RC;ƒ/! K�.C
�. zX/�;RC;ƒ/. Given

a positive scalar curvature metric on X which is collared on Y1, we define a lift of the
fundamental class inK�.C �L;0. zX/

�;RC;ƒ/, which proves that the nonvanishing of the new
index is an obstruction to the existence of positive scalar metrics on X and paves the way
for classification of such metrics. By removing Y1 we obtain a manifold with boundary,
which we denote by xX . We prove that there is a commutative diagram of exact sequences

K�
�
C �L;0.

zX/�;RC;ƒ
�

K�
�
C �L.
zX/�;RC;ƒ

�
K�
�
C �. zX/�;RC;ƒ

�
S
�;ƒ
� . xX; @ xX/ K�. xX; @ xX/ K�

�
C �.�;ƒ/

�
;

where the lower sequence is the relative Higson–Roe sequence mentioned above. Further-
more, we show that the fundamental class of zX maps to the relative fundamental class
under the middle vertical map. This shows that the relative index can be obtained from the
new index defined in K�.C �. zX/�;RC;ƒ/ and allows us to define secondary invariants in
S
�;ƒ
� . xX; @ xX/.

As another application of the machinery developed here, we give a short proof of the
main statement of [9].
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The paper is organised as follows. The second section is a very short reminder of the
picture of K-theory for graded C �-algebras due to Trout. In the third section, we recall
basic notions from coarse geometry and the coarse geometric approach to index theory on
manifolds with and without boundary. In the fourth section, we introduce variants of Roe
algebras for spaces with cylindrical ends and cylinders and define the evaluation at infinity
map, which plays an important role in the rest of the paper. In the final sections, we define
indices for Dirac operators on manifolds with cylindrical ends and discuss applications to
the existence and classification problem for metrics with positive scalar curvature on such
manifolds. This is followed by a discussion of the relationship with the relative index for
manifolds with boundary and a short proof of a statement on the relationship between the
relative index and indices defined in the presence of a positive scalar curvature metric on
the boundary.

2. K -theory for graded C �-algebras

In this paper, we will use the approach of Trout to K-theory of graded C �-algebras. This
description of K-theory was used by Zeidler in [13], where he proves product formulas
for secondary invariants associated to positive scalar curvature metrics. We quickly recall
the basics and refer the reader to [13, Section 2] for more details.

Let H be a Real Z2-graded Hilbert space and denote by K the Real C �-algebra of
compact operators on H . The Z2-grading on H induces a Z2 grading on K by declaring
the even and odd parts to be the set of operators preserving and exchanging the parity
of vectors, respectively. The Clifford algebra Cln;m will be the C �-algebra generated by
¹e1; : : : ; en; "1; : : : ; "mº subject to the relations eiej C ej ei D �2ıij , "i"j C "j "i D 2ıij ,
ei"j C "j ei D 0; e

�
i D �ei , and "�i D "i . The Real structure and the Z2-grading of Cln;m

are defined by declaring these generators to be real and odd. Denote by � the C �-algebra
C0.R/ endowed with a Real structure given by a complex conjugation and a Z2-grading
defined by declaring the odd and even parts to be the set of odd and even functions. Given
Real, Z2-graded C �-algebras A and B , denote by Hom.A; B/ the space of C �-algebra
homomorphisms between A and B respecting the Real structures and the Z2-gradings, by
ŒA; B� the set �0.Hom.A; B//, and by A y̋B their maximal graded tensor product. The
n-th K-theory group of the Real graded C �-algebra A is defined to be

yKn.A/ WD �n
�

Hom.� ; A y̋K/
�

and turns out to be isomorphic to Œ� ; †nA y̋K�, where †nA denotes the n-th suspension
of A. Any Real graded homomorphism of C �-algebras ' W � ! A gives rise to a class
Œ'� WD Œ' y̋ e11� 2 yK0.A/ with e11 some rank one projection.

Denote by �.�"; "/ the Real graded C �-subalgebra of � consisting of functions van-
ishing outside .�"; "/. For our discussion of secondary invariants, we will make use of the
fact that the inclusion �.�"; "/! � is a homotopy equivalence.



A variant of Roe algebras for spaces with cylindrical ends 599

Remark 2.1. From now on, following [13], we use the notation Kn.A/ instead of yKn.A/
for the K-theory of a graded Real C �-algebra A. Indeed, if we ignore the Real structure
and the grading, yKn.A/ coincides with the usual complex K-theory of the C �-algebra. If
there is a Real structure, we obtain the real K-theory of the real part of A (see also the
appendix of [13]).

3. Roe algebras and the relative index map

In the following, a metric space X is said to have bounded geometry if

• there exist a subset D of X and c > 0 such that any point of X has distance less than
c to some point of D and

• for any r > 0 there exists a natural number Nr such that the cardinality of D \ Ur .x/
is less than Nr for any x 2 X . Here Ur .x/ denotes the open r-ball with centre x.

Throughout this section X , Y , and Z will denote locally compact metric spaces with
bounded geometry.

3.1. Roe algebras

Let � be a discrete group acting freely and properly on Z by isometries. Pulling back
functions along the action gives rise to an action ˛ W � ! Aut.C0.Z//. Let .�; U W� !
U.H// be an ample covariant representation of the C �-dynamical system .C0.Z/; �; ˛/

on a Hilbert spaceH ; i.e., �WC0.Z/! L.H/ is a representation of C0.Z/ onH , U W�!
U.H/ is a unitary representation of � on H , and the covariance condition

�
�
˛
 .f /

�
D U
�.f /U

�



is satisfied for all 
 2 � and f 2 C0.Z/. Here ample means that no non-zero element of
C0.Z/ acts as a compact operator. The space H will be referred to as a Z-module. We
will also make use of Cln-linear Z-modules which are defined analogously by replacing
the Hilbert space H with a Real, graded Hilbert Cln-module H and by requiring the rep-
resentation � to be by adjointable operators. In the following, we will denote �.f / simply
by f .

Definition 3.1. An operator T 2L.H/ is called locally compact if for all f 2C0.Z/ both
Tf and f T are compact. T is called a finite propagation operator if there exists R > 0

with the property that f Tg D 0 for all f; g 2 C0.Z/ with dist.supp f; supp g/ > R. The
smallest such R is called the propagation of T and is denoted by prop T . T is called
�-equivariant if T D U �
 T U
 for all 
 2 � . Similarly, one defines the notions of local
compactness and finite propagation for adjointable operators on H.

Definition 3.2. The equivariant algebraic Roe algebra is the �-algebra of locally com-
pact, finite propagation, �-equivariant operators on H and is denoted by R.Z/�� . The
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equivariant Roe algebra is a C �-completion of the algebraic Roe algebra and is denoted
by C �

.d/
.Z/�� . Here .d/ is a placeholder for the chosen completion. Similarly, one defines

the Cln-linear equivariant (algebraic) Roe algebra by using finite propagation, locally
compact, and equivariant operators on H. These algebras will be denoted by R.ZICln/��
and C �

.d/
.ZICln/�� .

Remark 3.3. It follows from Proposition 3.9 below that the K-theory groups of the Roe
algebra are independent of the chosen ample representation. We will therefore drop � from
the notation.

Remark 3.4. Examples of possible completions are

• the reduced completion C �red.Z/
� , i.e., the closure of R.Z/� in L.H/,

• the maximal completion C �max.Z/
� obtained by taking the completion using the uni-

versal C �-norm, and

• the quotient completion C �q .Z/
� introduced in [9].

In the following, we will denote the Roe algebras obtained by the quotient completion
simply by C �.Z/� and C �.ZICln/� . Most of what will follow will be valid for all of the
above completions, however we will state all of our results only for the quotient comple-
tion.

Later in the paper, we will introduce variants of Roe algebras which are suitable for
spaces with cylindrical ends and show that the K-theory groups of these algebras define
functors on a certain category of spaces. Our proofs of the functoriality of theK-theory of
the new Roe algebras and their independence from the chosen ample modules make use
of the analogues of these results for the classical Roe algebras. Hence, we quickly recall
the latter results in the following. Analogues of the results mentioned below hold for the
Cln-linear versions of the algebras introduced and we will later make use of them.

Definition 3.5 (See [7, Chapter 2]). Let X and Y be locally compact separable proper
metric spaces endowed with a free and proper action of a discrete group � by isometries.
A map f W X ! Y is called coarse if the inverse image of each bounded set of Y under
f is bounded and for each R > 0 there exists S > 0 such that dX .x; x0/ < R implies
dY .f .x/; f .x

0// < S .

Definition 3.6. Let X and Y be as in Definition 3.5. Let H and H 0 denote an X - and
Y -module, respectively. The support of an operator T W H ! H 0 is the complement of
the union of all sets V � U � Y �X with the property that f Tg D 0 for all f 2 C0.V /
and g 2 C0.U /. It will be denoted by Support.T /.

Definition 3.7. Let X and Y be as in Definition 3.5. Let f W X ! Y be a coarse map. Let
H andH 0 denote an X - and Y -module, respectively. An isometry V W H ! H 0 is said to
cover f if there exists an R > 0 such that dY .f .x/; y/ < R for all .y; x/ 2 Support.T /.
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Lemma 3.8 ([4, Lemma 6.3.11]). Let f; X; Y; H , and H 0 be as in Definition 3.7. If an
isometry V covers f , then T 7! V T V � defines a map from R.X/� to R.Y /� which
extends to a map C �.X/� ! C �.Y /� .

Proposition 3.9 ([4, Proposition 6.3.12]). Let f; X; Y; H , and H 0 be as in Definition
3.7. There exists an isometry which covers f and thus induces a map K�.C �.X/�/!
K�.C

�.Y /�/. The latter map is independent of the choice of the isometry covering f . In
particular, the group K�.C �.X/�/ is independent of the choice of the X -module up to a
canonical isomorphism.

For the rest of the section, we consider a space Z with a chosen Z-module H . In the
case the action of � on Z is cocompact, we have the following proposition.

Proposition 3.10. If the action of � onZ is cocompact, thenK�.C �.Z/�/ŠK�.C �q .�//,
where C �q .�/ is the quotient completion of the group ring of � as introduced in [9].

Proof. In the proof of [4, Lemma 12.5.3], an isomorphism R.X/� Š CŒ��ˇ K.H 0/ is
given. Here, CŒ�� denotes the complex group ring of � andK.H 0/ denotes the algebra of
compact operators on a suitable Hilbert spaceH 0. This isomorphism becomes an isometry
if the left-hand side is endowed with the norm of C �.X/� and the right-hand side is
endowed with the norm of C �q .�/˝ K.H

0/ and thus extends to an isomorphism of the
latter two algebras. The claim then follows from the stability of K-theory.

Given a �-invariant subset S �Z, it will be useful to look at the �-algebra of operators
in R.Z/� which are supported near S in the sense of the following definition.

Definition 3.11. Given a subset S � Z, T is said to be supported near S if there exists an
R > 0 with the property that supp T � UR.S/ � UR.S/. Here UR.S/ denotes the open
R-neighbourhood of S .

Definition 3.12. Let S be a �-invariant subset of Z. The equivariant algebraic Roe
algebra of S relative to Z is the subalgebra of R.Z/� consisting of operators suppor-
ted near S and will be denoted by R.S � Z/� . The equivariant Roe algebra of S relative
to Z is the closure of R.S � Z/� in C �.Z/� and is denoted by C �.S � Z/� .

Since S is itself a �-space, it has its own Roe algebra. This is related to the Roe algebra
of S relative to Z by the following proposition.

Proposition 3.13 ([5, Section 5, Lemma 1]). K�.C �.S/�/ Š K�.C �.S � Z/�/.

We will also need the notion of support of a vector in H .

Definition 3.14. Let v 2 H . The support of v is the complement of the union of all open
subsets U with the property that f v D 0 for all f 2 C0.U /.

3.2. Yu’s localisation algebras

Given a C �-algebra A, we denote by TA the C �-algebra of all uniformly continuous
functions f W Œ1;1/! A endowed with the supremum norm.



M. Seyedhosseini 602

Definition 3.15. The equivariant localisation algebra of Z is defined to be the C �-
subalgebra of TC �.Z/� generated by elements f satisfying

• propf .t/ <1 for all t 2 Œ1;1/,

• propf .t/
t!1
����! 0.

It will be denoted by C �L.Z/
� .

Remark 3.16. Replacing the quotient completion of the Roe algebra with the maximal
(respectively reduced) completion in Definition 3.15, we can define the maximal (respect-
ively reduced) version of the equivariant localisation algebra C �L;max.Z/

� (respectively
C �L;red.Z/

� ).

Remark 3.17. The K-theory of the localisation algebra, obtained by using any of the
discussed completions, provides a model for the equivariant locally finite K-homology.
Yu constructed an isomorphism IndL WK�� .Z/!K�.C

�
L;red.Z/

�/, whereK�� .Z/ denotes
the equivariant KK-group KK�� .C0.Z/;C/. We refer the reader to [6, 12] for the proof
of the isomorphism in the reduced case. See the proof of [9, Theorem 2.34] and the rest
of the discussion in [9, Section 2] for a proof of the result for an arbitrary completion.

Definition 3.18. A �-cover Z of a locally compact metric space M is called nice if there
exists an " > 0 such that the restriction of Z to every "-ball in M is trivial.

Note that any cover of a compact metric space is nice. The following example is more
important for us. Given a compact Riemannian manifold M with boundary N such that
the Riemannian metric is collared near N , M1 WDM [N .N �RC/ can be made into a
Riemannian manifold in a natural way (endowing N �RC with the product metric). Any
Galois cover of M1 is nice.

Proposition 3.19. Let Z !M be a nice �-cover. Then there is an isomorphism

K�
�
C �L.Z/

�
�
Š K�

�
C �L.M/

�
induced by lifting operators on M with small propagation to equivariant operators on Z.
In particular, IndL gives rise to an isomorphism K�.M/ Š K�.C

�
L.Z/

�/.

Remark 3.20. In the following, we will assume all covers to be nice.

Given a �-invariant subset S of Z, it will be useful to define the localisation algebra
of S relative to Z.

Definition 3.21. The equivariant localisation algebra of S relative to Z is defined as the
C �-subalgebra of C �L.Z/

� generated by elements f with the property that there exists a
continuous functionB W Œ1;1/!R vanishing at infinity such that suppf .t/�UB.t/.S/�
UB.t/.S/. It will be denoted by C �L.S � Z/

� .

Proposition 3.22 ([13, Lemma 3.7]). K�.C �L.S/
�/ Š K�.C

�
L.S � Z/

�/.
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Definition 3.23. Consider the evaluation-at-1map ev1WC �L.Z/
�!C �.Z/� sending f to

f .1/. The equivariant structure algebra ofZ is the kernel of the homomorphism ev1; i.e.,
it is the C �-subalgebra of C �L.Z/

� consisting of C �.Z/� -valued functions f on Œ1;1/
with f .1/ D 0. It is denoted by C �L;0.Z/

� .

Given a �-cover Z ! M induced by a map M ! B� , with M compact, the index
map �� W K�.M/! K�.C

�.�// can be defined by

K�.M/ Š K�
�
C �L.Z/

�
� .ev1/�
����! K�

�
C �.Z/�

�
Š K�

�
C �q .�/

�
:

Clearly, it fits into a long exact sequence

� � � ! S�� .M/! K�.M/! K�
�
C �.�/

�
! � � � ;

where S�� .M/ denotes K�.C �L;0.Z/
�/ and is called the analytic structure group. This

long exact sequence is called the Higson–Roe analytic surgery sequence.

3.2.1. Fundamental class of Dirac operators. Now suppose thatZ is an n-dimensional
spin manifold. We assume that � acts by spin structure preserving isometries. Denote
by =S D PSpin.Z/ �Spin Cln the Cln-spinor bundle on Z. Recall that the Cln-linear Dirac
operator =DZ on Z (acting on sections of =S) gives rise to a class in K�.Z/� . Under the
isomorphism of Proposition 3.19, this class corresponds to the class

Œ =DZ � 2 yK0
�
C �L.ZICln/�

�
Š Kn

�
C �L.Z/

�
�

defined by ' =DZ
W � ! C �L.ZICln/� sending f 2 � to .t 7! f .1

t
=DZ// 2 C

�
L.ZICln/� .

3.3. The relative index map

Letƒ and � be discrete groups and ' Wƒ! � a group homomorphism. The homomorph-
ism ' gives rise to a continuous mapB' WBƒ!B� . It also induces a map ' WC �max.ƒ/!

C �max.�/. We can and will assume that B' is injective. Given a compact space X , a subset
Y � X , and a map f W .X; Y /! .B�;Bƒ/, Chang, Weinberger, and Yu [1] define a rel-
ative index map ��;ƒ W K�.X; Y /! K�.C

�
max.�;ƒ//. Here C �max.�;ƒ/ WD SC' denotes

the suspension of the mapping cone of ' and is called the (maximal) relative group C �-
algebra. If X is not compact, then their construction gives rise to a relative index map
targeting the K-theory group of a relative Roe algebra. Here, we quickly recall the con-
struction of the relative index map. Denote by zX and zY the � and ƒ coverings of X and
Y associated to f and f jY , respectively. Denote by Y 0 the restriction of zX to Y . Using
particular zX; Y 0, and zY -modules, Chang, Weinberger, and Yu construct a morphism of
C �-algebras

 W C �max.
zY /ƒ ! C �max.Y

0/
ƒ

ker� ,! C �max.
zX/� :

We will later discuss the morphism  in more detail. Applying  pointwise, we obtain a
morphism

 L W C
�
L;max.

zY /ƒ ! C �L;max.Y
0/

ƒ
ker� ,! C �L;max.

zX/� :
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See Remark 3.16 above for the definition of C �L;max. We denote by C L the mapping cone
of the homomorphism  L and by SC L its suspension. Analogous to the absolute case,
there is a map Indrel

L W K�.X; Y /! K�.SC L/.

Proposition 3.24. Indrel
L is an isomorphism. If, furthermore, X is compact, then

K�.SC / Š K�
�
C �max.�;ƒ/

�
:

Evaluation at 1 gives rise to morphisms

ev1 W C �L;max.
zY /ƒ ! C �max.

zY /ƒ and ev1 W C �L;max.
zX/� ! C �max.

zX/� :

The diagram

C �L;max.
zY /ƒ C �max.

zY /ƒ

C �L;max.
zX/� C �max.

zX/�

ev1

 L  

ev1

is commutative. Hence, the evaluation-at-1 maps give rise to a morphism SC L ! SC ,
which we also denote by ev1.

Definition 3.25. The relative index map ��;ƒ is defined to be the composition

K�.X; Y /
Indrel

L
����! K�.SC L/

.ev1/�
����! K�.SC /:

Remark 3.26. IfX is compact, the isomorphismK�.SC /ŠK�.C
�
max.�;ƒ// allows us

to consider ��;ƒ as a map with values in the K-theory of the relative group C �-algebra.

Remark 3.27. We note that the map  is first defined at the level of algebraic Roe algeb-
ras. The latter map is continuous only if the algebraic Roe algebras are endowed with a
suitable norm (for example the maximal norm). This is the technical reason for the use of
maximal completion by Chang, Weinberger, and Yu.

Remark 3.28. Instead of the maximal completion of the group rings and the Roe algebras,
one can consider the quotient completion introduced in [9] and obtain a similar relative
index map. If the group homomorphism ' W ƒ! � is injective, then one can also use the
reduced completion of the group rings and Roe algebras. From now on we will only make
use of the quotient completion and will most of the time drop the subscript indicating the
chosen completion.

Analogous to the absolute case, the relative index map fits into a long exact sequence.
The map  L gives rise, by restriction, to a map  L;0 W C �L;0. zY /

ƒ ! C �L;0.
zX/� . We have

a short exact sequence of C �-algebras

0! SC L;0 ! SC L
ev1
��! SC ! 0;
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which gives rise to a long exact sequence of K-theory groups

� � � ! K�.SC L;0/! K�.X; Y /
��;ƒ

����! K�.SC /! � � � :

Remark 3.29. Similarly, one defines maps C �
.L/
. zY ICln/ƒ ! C �

.L/
. zX ICln/� , which we

will also denote by  .L/.

3.3.1. The relative index of Dirac operators on manifolds with boundary. Given a
compact spin manifold M with boundary N with a metric on M which is collared at
the boundary, consider the manifold M1 obtained by attaching N1 WD N � Œ0;1/ to
M along N . Extend the metric on M to a metric on M1 using the product metric on the
half-cylinder (the metric on RC is the usual one). Denote by Œ =DM1 � the fundamental class
of the Dirac operator on M1 in K�.M1/. Given a map f W .M; N /! .B�; Bƒ/, the
construction of the previous section gives rise to a relative index map ��;ƒ WK�.M;N /!
K�.C

�.�;ƒ//.

Definition 3.30. The relative index of the Dirac operator onM is defined to be the image
of Œ =DM1 � under the composition

K�.M1/ �! K�.M1; N1/
Š
��! K�.M;N /

��;ƒ

����! K�
�
C �.�;ƒ/

�
:

where the isomorphism K�.M1; N1/
Š
�! K�.M;N / is given by excision.

The nonvanishing of the relative index obstructs the existence of positive scalar
curvature metrics on M .

Proposition 3.31 ([1, Proposition 2.18], [9, Theorem 5.1], [2, Theorem 4.12]). If there
exists a positive scalar curvature metric on M which is collared at the boundary, then the
relative index of the Dirac operator on M vanishes.

4. Coarse spaces with cylindrical ends

Let X be a locally compact metric space with a free and proper action of a discrete group
� by isometries. For a �-invariant subset Y of X we can endow Y � R with a �-action
by setting 
.y; t/ D .
y; t/.

Definition 4.1. Let X and Y be as above. The space X is said to have a cylindrical end
with base Y if there exists a �-equivariant isometry � W Y � Œ0;1/! X satisfying

• �..y; 0// D y,

• limR!1 dist.�.Y � ŒR;1//; X � Y1/ D1.

Here Y1 denotes �.Y � Œ0;1//, and Y � Œ0;1/ is endowed with the product metric.

Definition 4.2. Let .X; Y; �/ and .X 0; Y 0; �0/ be spaces with cylindrical ends. A map f W
X ! X 0 is called a coarse map of spaces with cylindrical ends if it is a coarse map and
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satisfies

• f .X n Y1/ � X
0 n Y 01 and

• f .�.y; t// D �0.g.y/; t/ with g WD f jY .

4.1. Roe algebras for spaces with cylindrical ends

Using the isometry �, one can define an action of RC on C0.Y1/ by setting

Ls.f /
�
�
�
.y; t/

��
D

´
f
�
�.y; t � s/

�
for t � s;

0 otherwise:

We would like to define a variant of Roe algebras for spaces with cylindrical ends. In order
to do this, we use modules which are equipped with an action of RC by partial isometries,
which is compatible with the action of RC on C0.Y1/. Before making this precise, we
introduce some notation. Let HY be a Y -module. The Hilbert space L2.RCIHY / can be
endowed with the structure of Y1-module in a natural way. On L2.RCIHY /, one can
define a family of partial isometries P st

s by

P st
s .f /.t/ D

´
f .t � s/ for t � s;

0 otherwise:

Definition 4.3. Let .X; Y; �/ be a space with cylindrical end. A Hilbert space is called an
X -module tailored to the end if there is a tuple .�; U; ¹Psºs2RC/ satisfying the following
properties:

• .�; U / is a covariant ample representation of C0.X/ on H ;

• Ps is a strongly continuous family of partial isometries on H satisfying

– P�s D P
�
s ,

– P �s Ps D z�.��.Y�Œ0;1/// for all s > 0,

– PsP
�
s D z�.��.Y�Œs;1/// for all s > 0,

– �.f /Ps D Ps�.Ls.f // for all f 2 C0.Y1/;

• for some Y -moduleHY , there is a �-equivariant unitary:W W �Y1H !L2.RCIHY /,
which covers the identity and satisfies WPs D P st

s W .

Here the tuple .�; U; ¹Psº/ is part of the structure of the X -module and z� is the extension
of the representation � to the bounded Borel functions.

Similarly, one can define Cln-linear modules tailored to the end. The following defin-
itions generalise in an obvious manner to the Cln-linear context. In the rest of the section,
.X;Y; �/will be a space with cylindrical end (endowed with a �-action) andH will denote
an X -module tailored to the end. We will construct a variant of Roe algebras for spaces
with cylindrical ends. Since H is in particular an X -module, it can be used to construct
the usual equivariant algebraic Roe algebra R.X/� .
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Definition 4.4. An operator T 2 L.H/ is called asymptotically RC-invariant if

lim
R!1

sup
s>0



.P�sTPs � T /��.Y�ŒR;1//

 D 0:
Lemma 4.5. The set of operators in R.X/� , which are asymptotically RC-invariant, is
an �-subalgebra.

Proof. Let S; T 2 R.X/� be asymptotically RC-invariant. Set R0 WD prop T . In the fol-
lowing, �R will denote ��.Y�ŒR;1//. Since PsP�s D �s (for all s > 0) and elements in the
image of TPs�R are supported in �.Y � ŒR �R0 C s;1//, we have, for R > R0, that

.P�sSTPs/�R D .P�sSPsP�sTPs/�R:

Furthermore, since elements in the image of the operator .P�sTPs/�R are supported in
�.Y � ŒR �R0;1//, we have that

.P�sSPsP�sTPs/�R D .P�sSPs�R�R0P�sTPs/�R:

From the asymptotic RC-invariance, it follows that

P�sSPs�R�R0 D S�R�R0 CER�R0;s.S/ and P�sTPs�R D T�R CER;s.T /

with
lim
R!1

sup
s>0



ER�R0;s.S/

 D 0 D lim
R!1

sup
s>0



ER;s.T /

: (�)

Therefore, .P�sSTPs � ST /�R is equal to

S�R�R0T�R C S�R�R0ER;s.T /CER�R0;s.S/T�R CER�R0;s.S/ER;s.T / � ST�R

D S�R�R0ER;s.T /CER�R0;s.S/T�R CER�R0;s.S/ER;s.T /:

The latter equality and (�) imply that ST is asymptotically RC-invariant. We now show
that T � is also asymptotically RC-invariant. We have that

.P�sT
�Ps � T

�/�R D
�
�R.P�sTPs � T /

��
:

Furthermore, since the propagation of T is R0, the right-hand side is equal to�
�R.P�sTPs � T /�R�R0

��
D
�
�RER�R0;s.T /

��
:

This shows that T � is asymptotically RC-invariant. The fact that the set of asymptotically
RC-invariant operators is closed under addition is clear.

Definition 4.6. The equivariant algebraic Roe algebra of X tailored to the end is the
�-subalgebra of R.X/� consisting of asymptotically RC-invariant operators. It will be
denoted by R.X/�;RC . The equivariant Roe algebra of X tailored to the end is the closure
of R.X/�;RC in C �

.d/
.X/� and will be denoted by C �

.d/
.X/�;RC . Similarly, using a Cln-

module tailored to the end, one defines R.X ICln/�;RC and C �
.d/
.X ICln/�;RC .
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Remark 4.7. Note that the algebraic and C �-algebraic Roe algebras defined above de-
pend, a priori, on the chosen modules tailored to the end. We will see later, that the
K-theory groups of the C �-algebras defined using different modules are canonically iso-
morphic.

Remark 4.8. The equivariant Roe algebra of X tailored to the end obtained by using the
quotient completion will simply be denoted by C �.X/�;RC . In the following, we will only
make use of the quotient completion; however, most of the results are also valid for the
reduced and maximal completions.

Let .X 0; Y 0; �0/ be another space with a cylindrical end and H 0 an X 0-module tailored
to the end given by the data .�0; U 0; ¹P 0sº/.

Definition 4.9. Let f W X ! X 0 be a map of spaces with cylindrical ends. An isometry
V W H ! H 0 is said to cover f if it covers f in the sense of [4, Definition 6.3.9] and
satisfies VPs D P 0sV .

Lemma 4.10. Let f and V be as in Definition 3.7. Then T ! V T V � defines a map
C �.X/�;RC ! C �.X 0/�;RC .

Proof. The fact that conjugation by V gives a map C �.X/� ! C �.X 0/� is the content of
[4, Lemma 6.3.11]. We show that if T 2 R.X/� is asymptotically RC-invariant, then so
is V T V �. In the following, z� and z�0 will denote the extension of � and �0 to the bounded
Borel functions on X and X 0, respectively. Using the fact that V intertwines the families
¹Psº and ¹P 0sº, we get

.P 0�sV T V
�P 0s � V T V

�/�0.�R/ D V.P�sTPs � T /V
��0.�R/

DV.P�sTPs�T /V
�P 0sP

0
�sDV.P�sTPs � T /PsP�sV

�
DV.P�sTPs � T /z�.�R/V

�;

which proves the claim.

Proposition 4.11. Let f W X ! X 0 be a map of spaces with cylindrical ends. Then there
is an isometry V WH !H 0 which covers f . Conjugation by V induces a homomorphism
K�.C

�.X/�;RC/! K�.C
�.X 0/�;RC/ which does not depend on the choice of the cov-

ering isometry V . In particular, K�.C �.X/�;RC/ does not depend on the choice of the
X -module tailored to the end up to a canonical isomorphism.

Proof. We prove the existence of an isometry covering f . The proof that the induced map
on the K-theory groups by conjugation with V does not depend on the choice of V is the
same as that of [4, Lemma 5.2.4]. We have that

H Š �XnY1H ˚ �Y1H Š �XnY1H ˚
�
HY ˝ L

2.RC/
�
:

Similarly, H 0 Š �X 0nY 01H
0 ˚ .H 0Y 0 ˝ L

2.RC//. By Proposition 3.9, there are isomet-
ries V1 W �XnY1H ! �XnY1H

0 and V2 W HY ! H 0Y 0 covering the restrictions of f to
X n Y1 and Y , respectively. We use the above decompositions of H and H 0 and set
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V D V1 ˚ .V2 ˝ Id/. Since the isomorphisms �Y1H Š HY ˝ L
2.RC/ and �Y 01H

0 Š

H 0Y 0 ˝ L
2.RC/ cover the identity maps on Y1 and Y 01, respectively, V , seen as an iso-

metry from H to H 0, covers f in the sense of Definition 3.7. Furthermore, the latter
isomorphisms intertwine the families ¹Psº and ¹P 0sº with the standard families of partial
isometries ¹P st

s º onHY ˝L2.RC/ andHY 0 ˝L2.RC/, which implies that V intertwines
¹Psº and ¹P 0sº. Thus, V covers f in the sense of Definition 4.9.

One can also define localisation and structure algebras tailored to the end.

Definition 4.12. The equivariant localisation algebra of X tailored to the end is defined
to be the C �-subalgebra of TC �.X/�;RC generated by elements f satisfying

• propf .t/ <1 for all t 2 Œ1;1/,

• propf .t/
t!1
����! 0.

It will be denoted by C �L.X/
�;RC . The equivariant structure algebra of X is defined to be

the subalgebra of C �L.X/
�;RC generated by f which further satisfy f .1/ D 0. It will be

denoted by C �L;0.X/
�;RC .

Remark 4.13. One can also prove the existence of families of isometries covering a given
map in a suitable sense and inducing maps between localisation and structure algebras
tailored to the end. One can then deduce an analogue of Proposition 4.11 for structure
and localisation algebras tailored to the end. These statements can be proved by using the
approach of the proof of Proposition 4.11 and slight modifications of the proofs for the
classical structure and localisation algebras.

4.2. Roe algebras for cylinders

One of our main goals in the following is to evaluate asymptotically RC-invariant oper-
ators on a space .X; Y; �/ with cylindrical end and obtain R-invariant operators on the
cylinder over Y . In this section, we define a Roe algebra for cylinders which will be
the target of the aforementioned “evaluation at infinity map.” In the following, Y will
denote a locally compact separable metric space endowed with a free and proper action
of a discrete group � by isometries. Endow Y �R with the product metric. Furthermore,
L0s.f /.y; t/ D f .y; t � s/ defines an action of R on C0.Y �R/. LetHY be a Y -module.
The space L2.R;HY / can then be endowed with the structure of a Y �R-module. There
is a family ¹Qst

s º of unitaries on L2.R; HY / given by the shift of functions in the R-
direction.

Definition 4.14. A Hilbert space H is called a cylindrical Y � R-module if there is a
tuple .�; U; ¹Qsº/ satisfying the following properties:

• .�; U / is a covariant ample representation of C0.Y �R/ on H ;

• ¹Qsº is a strongly continuous group of unitaries commuting with the representation
U of � on H and satisfying �.f /Qs D Qs�.L0s.f //;
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• for some Y -module HY , there is a unitary isomorphism W W H ! L2.R;HY / which
covers the identity map of Y �R in the sense of Definition 3.7, intertwines the families
¹Qsº and ¹Qst

s º, and does not shift the support of vectors in the R-direction.

A cylindrical Y �R-module is, in particular, a Y �R-module and allows us to define
the usual Roe algebras R.Y �R/� and C �.Y �R/� .

Definition 4.15. An operator T 2 R.Y �R/� is called R-invariant if

Q�sTQs � T D 0;

for all s 2 R. The closure of the �-algebra of such elements in C �.Y � R/� will be
denoted by C �.Y �R/��R. Similarly, using a cylindrical Y �R-Cln-module, one defines
C �.Y �RICln/��R.

Now let Y 0 be another space. Let f W Y � R! Y 0 � R be a coarse map, which is
the suspension of a map g W Y ! Y 0. Let H and H 0 be cylindrical Y � R- and Y 0 � R-
modules, respectively. A slight modification of the proof of Proposition 4.11 proves the
following proposition.

Proposition 4.16. Let f , H , and H 0 be as above. There exists an isometry V W H ! H 0

which covers f in the sense of Definition 3.7 and intertwines the families ¹Qsº and ¹Q0sº.
Conjugation by V induces a homomorphism

K�
�
C �.Y �R/��R

�
! K�

�
C �.Y 0 �R/��R

�
:

The latter homomorphism is independent of the choice of the isometry V satisfying the
above properties. In particular, K�.C �.Y � R/��R/ does not depend on the chosen cyl-
indrical Y �R-module.

4.3. The evaluation at infinity map

Let .X; Y; �/ be a space with cylindrical end on which � acts as above. Asymptotically,
RC-invariant operators can be “evaluated at infinity” in the sense of Propositions 4.19 and
4.20 to give R-invariant operators on Y � R. In order to do this, we first introduce the
notion of .X; Y; �/ modules, which is given by a pair consisting of an X -module tailored
to the end and a cylindrical Y �R-module which are related in a special way.

Definition 4.17. Let .X; Y; �/ be a space with cylindrical end. A pair .H;H 0/ of Hilbert
spaces is called an .X;Y; �/-module if there is a tuple .�;�0;U;U 0; ¹Psº; ¹Qsº; i/ satisfying
the following properties:

• .�; U; ¹Psº/ and .�0; U 0; ¹Qsº/ endow H and H 0 with the structure of an X -module
tailored to the end and a cylindrical Y �R-module, respectively;

• i is a unitary �Y1H ! �Y�RCH
0 intertwining the �-representations and the repres-

entations of C0.Y1/ and C0.Y �RC/ on �Y1H and �Y�RCH
0, respectively;

• Qs ı i D i ı Ps��Y1H for all s > 0.
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Remark 4.18. Note that �0.f /Qs D Qs�0.L0s.f // in particular implies that Qs , applied
to vectors in H 0 which are supported in Y � ŒR;1/, results in vectors with support in
Y � ŒRC s;1/. This observation will be used in the proof of Proposition 4.19.

In the following, we will call an element v 2 H 0 compactly supported if its support
in the sense of Definition 3.14 is a compact subset of Y � R. The nondegeneracy of �0

implies that compactly supported vectors are dense in H 0.

Proposition 4.19. For T 2 R. zX/�;RC and a compactly supported vector v 2 H 0, the
limit T1v WD lims!1Q�siT i

�Qsv exists in H 0 and the mapping v 7! T1v extends to
a continuous linear map T1 onH 0. Furthermore, the operator T1 defined in this way is
an element of R.Y �R/��R.

Proof. In the following, �R will denote ��.Y�ŒR;1// and will be seen as an operator on
H . �0R will denote �Y�ŒR;1/ and will act as an operator on H 0.

• The limit exists: for " > 0 choose zR such that sups>0 k.P�sTPs � T /�Rk < " for all
R � zR. Let Qs be such thatQs.v/ is supported on Y �RC for all s � Qs. Set s0 D zRC Qs.
Then we have that

kQ�1s0CsiT i
�Qs0Csv �Q

�1
s0
iT i�Qs0vk D



Q�1s0 .Q�1s iT i�Qs � iT i
�/Qs0v



:
Note that .Q�1s iT i�Qs � iT i

�/Qs0v D i.P�sTPs � T /� zRi
�Qs0v; hence

Q�1s0 .Q�1s iT i�Qs � iT i�/Qs0v



 < 

.P�sTPs � T /� zR

kvk;
where we use thatQs0 is a unitary. The latter inequality shows that ¹Q�1s iT i�Qsvºs�Qs
is a Cauchy net and thus has a limit.

• T1 is a bounded operator onH 0: we clearly have kT1vk� kT kkvk for all compactly
supported v which shows that v 7! T1v is a bounded operator on the dense subspace
of compactly supported vectors in H 0 and thus extends to a bounded operator on H 0.

• T1 is an R and �-invariant operator: for t 2 R we have that

Q�tT
1Qtv D Q�t

�
lim
s!1

Q�siT i
�QsQtv

�
D lim
s!1

Q�s�t iT i
�QsCtv

D lim
s!1

Q�siT i
�Qsv D T

1v;

for all compactly supported v. Therefore, Q�tT1Qt D T
1. A similar computation

and the fact that the R-action and the �-action onH 0 commute prove the �-invariance.

• T1 is locally compact: we show that for 2Cc.Y �R/, T1 is compact. The proof
of the compactness of T1 is similar and even more straightforward. There exists
M>0 such that the support of is contained in Y �Œ�M;1/. SetR0 WDpropT . If v is
compactly supported with support in Y �.�1;�M�R0/, then  Q�siT i�QsvD 0.
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We thus have a commutative diagram

H 0 H 0

�0
�M�R0

H 0 �0
�M�R0

H 0:

 T1

�0
�M�R0

 T1

Therefore, it suffices to show that the restriction of  T1 to �0
�M�R0

H 0 is compact.
First, we show that ¹�0

�M�R0
Q�siT i

�Qs�
0
�M�R0

ºs�MCR0 is a norm convergent net
of operators on �0

�M�R0
H 0. Set s1 WD zRCM CR0. Then, similar to the above com-

putation, we have that

k�0�M�R0Q
�1
s1Cs

iT i�Qs1Cs�
0
�M�R0

� �0�M�R0Q
�1
s1
iT i�Qs1�

0
�M�R0

k

D


�0�M�R0Q�1s1 .Q�1s iT i�Qs � iT i

�/Qs1�
0
�M�R0



:
Furthermore,

.Q�1s iT i�Qs � iT i
�/Qs1�

0
�M�R0

D i.P�sTPs � T /� zRi
�Qs1�

0
�M�R0

;

which implies that

�0�M�R0Q�1s1 .Q�1s iT i�Qs � iT i
�/Qs1�

0
�M�R0



 < ":
Hence, ¹ �0

�M�R0
Q�siT i

�Qs�
0
�M�R0

ºs�MCR0 is norm convergent and converges
strongly to  T1 in L.�0

�M�R0
H 0/. Thus  T1 restricted to �0

�M�R0
H 0 is actually

the norm limit of

 �0�M�R0Q�siT i
�Qs�

0
�M�R0

D �0�M�R0Q�sL
0
s. /iT i

�Qs�
0
�M�R0

D �0�M�R0Q�siLs. /T i
�Qs�

0
�M�R0

as s tends to infinity. The compactness of  T1��0
�M�R0

H 0 then follows from that of
Ls. /T .

Proposition 4.20. The map ev1 W R. zX/�;RC ! R.Y � R/��R given by T 7! T1 is
continuous if the domain and target space are endowed with the norms of C �. zX/�;RC

and C �.Y �R/��R, respectively. Thus it gives rise to a morphism of C �-algebras ev1 W
C �. zX/�;RC ! C �.Y �R/��R.

Proof. If we endow R. zX/�;RC with the reduced norm, the continuity of the map ev1 W
R. zX/�;RC!C �red.Y �R/��R follows from the proof of the previous proposition. Indeed,
we already saw that this map is a contraction. The continuity of this map for the quotient
completion follows from its continuity for the reduced completion, the commutativity of
the diagram

R.X/�;RC R.Y �R/��R

R.X=N/�=N;RC R.Y=N �R/�=N�R

ev1

ev1
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for all normal subgroups N of � and the definition of the quotient completion in [9,
Section 4]. It remains to show that it is a morphism of �-algebras. Let S and T be in
R. zX/�;RC and let v 2 H 0 be compactly supported. We have that

.TS/1v D lim
s
Q�1s iTSi�Qsv D lim

s
Q�1s iT i�QsQ

�1
s iSi�Qsv

D lim
s
Q�1s iT i�Qs

�
S1v CE.s/

�
D T1.S1v/:

The last equality follows from the fact that kQ�1s iT i�Qs.E.s//k � kT kkE.s/k. The rest
is clear.

Thus an .X; Y; �/-module allows us to define an evaluation at infinity map. Next, we
will prove a functoriality result, which in particular shows that the induced map on K-
theory is independent of the chosen .X; Y; �/-module. Let . yX; yY ;y�/ be another space with
cylindrical end (and a �-action). Let . yH; yH 0/ be an . yX; yY ;y�/-module. Let f W .X;Y; �/!
. yX; yY ;y�/ be a map of spaces with cylindrical ends. In particular, the suspension of the
restriction of f to Y defines a map Y � R! yY � R. In this situation, we have the fol-
lowing proposition.

Proposition 4.21. There are isometries V W H ! yH and V 0 W H 0 ! yH 0 which satisfy
the conditions of Definition 4.9 and Proposition 4.16, respectively, and which make the
diagram

C �.X/�;RC C �.Y �R/��R

C �. yX/�;RC C �. yY �R/��R

ev1

AdV AdV 0

ev1

commutative. In particular, the map .ev1/� W K�.C �.X/�;RC/! K�.C
�.Y � R/��R/

does not depend on the choice of the .X;Y; �/-module up to the usual canonical isomorph-
isms.

Proof. Let V 0 W H 0 ! yH 0 satisfy the conditions of Proposition 4.16 and such that V 0 and
.V 0/� map vectors which are supported in Y � RC and yY � RC to vectors which are
supported in yY �RC and Y �RC, respectively. We have decompositions

H Š �XnY1H ˚ �Y1H and yH D � yXn yY1
yH ˚ � yY1

yH:

Using these decompositions, we define V to be the isometry�
V1 0

0 Oi�V 0i

�
;

where V1 W �XnY1H ! � yXn yY1
yH is any isometry covering the restriction of f toX n Y1

and Oi is the unitary from the definition of an . yX; yY ;y�/-module identifying � yY1
yH and

� yY�RC
yH 0. Now we show that for T 2 R.X/�;RC , .AdV 0 ı ev1/.T / D .ev1 ıAdV /.T /.
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This then finishes the proof of the proposition. Let v 2 yH 0 be compactly supported. We
have that

.AdV 0 ı ev1/.T /v D V 0 lim
s
Q�siT i

�QsV
0�v D lim

s
yQ�sV

0iT i�V 0
� yQsv:

On the other hand, .ev1 ıAdV /.T /v D lims
yQ�s OiV T V

�Oi� yQsv. Set R0 D prop T . For
s sufficiently large, yQsv is supported in Y � .R0;1/. Therefore,

lim
s
yQ�s OiV T V

�Oi� yQsv D lim
s
yQ�s Oi Oi

�V 0iT i�V 0
�Oi Oi� yQsv

D lim
s
yQ�sV

0iT i�V 0
� yQsv:

Hence, .AdV 0 ı ev1/.T / D .ev1 ıAdV /.T /.

4.4. .�; ƒ/-equivariant Roe algebras

Let .X; Y; �/ be a space with cylindrical end. We do not assume the existence of an action
of � on X . Let ƒ, � , and ' be as in Section 3.3. Suppose there exists a map of pairs
� W .X; Y1 WD �.Y � RC// ! .B�; Bƒ/ satisfying �.�..y; t/// D �.�..y; 0/// for all
t 2 RC. This allows us to define �-coverings zX; Y 0

.1/
of X; Y.1/ and a ƒ-covering zY.1/

of Y.1/. We obtain in this way new spaces with cylindrical ends . zX;Y 0; �0/ and . zY1; zY ;z�/.
In this section, the Roe algebras will be constructed using fixed . zX;Y 0; �0/- and . zY1; zY ;z�/-
modules. The construction of the previous section gives rise to evaluation-at-infinity maps
C �.eY1/ƒ;RC!C �. zY �R/ƒ�R andC �. zX/�;RC!C �.Y 0 �R/��R. As seen in Section
3.3, Chang, Weinberger, and Yu constructed a map C �. zY �R/ƒ ! C �.Y 0 �R/� 1. It is
easy to see that this map respects the R-invariance and asymptotic RC-invariance of oper-
ators. Thus we get, by restriction, a map C �. zY � R/ƒ�R ! C �.Y 0 � R/��R. We abuse
the notation and denote all such “change of group maps” by  . If necessary, the domain
and range will be specified to avoid confusion. The corresponding maps at the levels of
the localisation and structure algebras will be denoted by  L and  L;0, respectively.

Definition 4.22. T 2 C �. zX/�;RC is called asymptotically ƒ-invariant if ev1.T / is con-
tained in the image of . The pullback of C �. zX/�;RC and C �. zY �R/ƒ�R along ev1 and
 is called the .�;ƒ/-equivariant Roe algebra ofX and will be denoted by C�. zX/�;RC;ƒ.

Remark 4.23. By definition, we have a commutative diagram

C �. zX/�;RC;ƒ C �. zY �R/ƒ�R

C �. zX/�;RC C �.Y 0 �R/��R

 

ev1

1They constructed the map between the maximal Roe algebras. In [9], the quotient completion was
introduced and it was shown that one has a similar map between the quotient completions of the equivariant
algebraic Roe algebras.
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and elements of C �. zX/�;RC;ƒ are given by pairs .S; T / with S 2 C �. zX/�;RC , T 2
C �. zY �R/ƒ�R with ev1.S/ D  .T /.

Definition 4.24. The .�; ƒ/-equivariant localisation algebra (respectively the .�; ƒ/-
equivariant structure algebra) of X is defined to be the pullback of the diagram

C �
L;.0/

. zY �R/ƒ�R

C �
L;.0/

. zX/�;RC C �
L;.0/

.Y 0 �R/��R:

 

ev1

It will be denoted by C �
L;.0/

. zX/�;RC;ƒ.

We obtain an analogue of the Higson–Roe sequence for spaces with cylindrical ends:
the short exact sequence

0! C �L;0.
zX/�;RC;ƒ ! C �L.

zX/�;RC;ƒ ! C �. zX/�;RC;ƒ ! 0

gives rise to a long exact sequence

� � � ! K�
�
C �L;0.

zX/�;RC;ƒ
�
! K�

�
C �L.
zX/�;RC;ƒ

�
! K�

�
C �. zX/�;RC;ƒ

�
! � � � :

5. Index of Dirac operators on manifolds with cylindrical ends

Let X be an n-dimensional spin manifold with a cylindrical end with base Y . By this we
mean that .X; Y; �/ is a space with cylindrical end, � is smooth, and X n �.Y � .0;1// is a
smooth codimension zero submanifold with boundary Y . We fix a map � W .X; Y1 WD
�.Y � RC// ! .B�; Bƒ/ satisfying �.�..y; t/// D �.�..y; 0/// for all t 2 RC which
gives rise to certain covers of X and Y , which we will denote as in the previous sec-
tion. Denote by L2. =S zX /, L

2. =SY 0�R/, L2. =S zY1/ and L2. =S zY�R/ the square integrable
sections of the Cln-spinor bundles on zX , Y 0 � R, zY1, and zY � R, respectively. The
pairs .L2. =S zX /;L

2. =SY 0�R// and .L2. =S zY1/;L
2. =S zY�R// can be given the structure of an

. zX; Y 0; �0/Cln-module and an . zY1; zY ;z�/Cln-module in the natural way, respectively. In
particular, the families of unitaries on L2. =SY 0�R/ and L2. =S zY�R/ needed in the defini-
tion of cylindrical Y 0 �R- and zY �R-modules will be given by the shift of sections in the
R-direction and will be denoted by ¹Q0sº and ¹ zQsº, respectively. We will use these mod-
ules to construct the relevant C �-algebras in the following section. As in Section 3.2.1,
we obtain classes Œ =D zX � and Œ =D zY�R� in yK0.C �L. zX I Cln/�/ and yK0.C �L. zY � RI Cln/ƒ/,
respectively. Note that zY � R is a manifold with cylindrical end with base zY . In the fol-
lowing, we will define a fundamental class for the Dirac operators onX and its cylindrical
end in the K-theory groups of the .�; ƒ/-equivariant localisation algebra and discuss
indices and secondary invariants obtained from it. We will need the following lemma.
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Lemma 5.1. The following diagrams are commutative:

� C �. zX ICln/�;RC

C �.Y 0 �RICln/��R;

ev1

� C �. zY �RICln/ƒ�R

C �.Y 0 �RICln/��R:

 

Here � ! C �. zX ICln/�;RC , � ! C �.Y 0 � RICln/��R, and � ! C �. zY � RICln/ƒ�R

denote the functional calculi for =D zX , =DY 0�R, and =D zY�R, respectively.

Proof. First, note that the isometry �0 allows us to identify the Cln-spinor bundles over
Y 0 �RC and Y 01, which in turn gives rise to the unitary

i 0 W �Y 01L
2. =S zX /! �Y�RCL

2. =SY 0�R/:

Let v 2 L2. =SY 0�R/ be compactly supported. For f 2 � whose Fourier transform is sup-
ported in .�r; r/, it is well known that f . =D zX / and f . =DY 0�R/ have propagation less
than r and depend on the r-local geometry in the sense that f . =D zX /w and f . =DY 0�R/v

depend only on the Riemannian metric in the r-neighbourhood of the supports of w
and v, respectively. For v 2 L2. =SY 0�R/ with compact support, pick s0 such that Q0sv
is supported in Y 0 � Œ2r;1/ for all s > s0. The previous observation then implies that
if . =D zX /i

�Q0sv D f . =DY 0�R/Q
0
sv for all s > s0. Hence

lim
s
Q0�sif . =D zX /i

�Q0sv D lim
s
Q0�sf . =DY 0�R/Q

0
sv:

However, because the Riemannian metric on Y 0 �R is R-invariant,Q0s commutes with the
Dirac operator and its functions. This implies thatQ0�sf . =DY 0�R/Q

0
sv D f . =DY 0�R/v and

shows that for f with compactly supported Fourier transform ev1.f . =D zX //D f . =DY 0�R/.
The commutativity of the left diagram then follows from the fact that the functions in �

with compactly supported Fourier transform form a dense subset.
Now we show the commutativity of the right diagram. First we need to recall one of the

main properties of the map  W C �. zY �RICln/ƒ! C �.Y 0 �RICln/� . Since all the cov-
ers are assumed to be nice, one has bijections C �. zY �RICln/ƒ�R

" Š C �.Y �RICln/R"
and C �.Y 0 � RICln/��R

" Š C �.Y � RICln/R" , where C �.Y � RICln/R is constructed
using L2. =SY�R/ as the Y �R-module, " is a sufficiently small positive real number, and
C �.�/�" denotes the set of elements in the corresponding Roe algebra which have propaga-
tion less than ". The bijections are given by pushdowns and lifts of operators on different
covers. Furthermore,  makes the diagram

C �. zY �RICln/ƒ�R
" C �.Y 0 �RICln/��R

"

C �.Y �RICln/R"

Š

 

Š

commutative. Let f 2 � have a Fourier transform which is supported in .�"0; "0/, with "0

sufficiently small. The observation that f applied to the different Dirac operators depends
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only on the "0-local geometry and the niceness of covers imply that f . =D zY�R/, f . =DY�R/,
and f . =DY 0�R/ correspond to each other under the pushdown/lift maps. The commutativ-
ity of the latter diagram then implies that, for f with the above property,  .f . =D zY�R//D

f . =DY 0�R/. The commutativity of the right diagram in the claim of the lemma then follows
from the fact that the C �-subalgebra of � generated by functions whose Fourier transform
is supported in a fixed interval .�C;C / is the whole of � , since it separates points.

Lemma 5.1 allows us to make the following definition.

Definition 5.2. The .�;ƒ/-fundamental class of X is the class

Œ =D zX; zY � 2
yK0
�
C �L.
zX ICln/�;RC;ƒ

�
Š Kn

�
C �L.
zX/�;RC;ƒ

�
defined by

' =D zX; zY
W � ! C �L.

zX ICln/�;RC;ƒ; f 7!

�
t 7!

�
f

�
1

t
=D zX

�
; f

�
1

t
=D zY�R

���
:

The .�;ƒ/-index of the Dirac operator associated to the map

� W
�
X; Y1 WD �.Y �RC/

�
! .B�;Bƒ/

as above is defined to be the image of Œ =D zX; zY � under the map

.ev1/� W K�
�
C �L.
zX/�;RC;ƒ

�
! K�

�
C �. zX/�;RC;ƒ

�
:

5.1. Application to existence and classification of positive scalar curvature metrics

Suppose that the scalar curvature of the metric g on X is bounded from below by ". The
same then holds for the lifts of g to various covers of X and Y.1/. This implies that
the spectra of the various Dirac operators considered here do not intersect the interval
.�
p
"

4
;
p
"

4
/. Let h be a homotopy inverse to the inclusion �.�

p
"

4
;
p
"

4
/! � .

Definition 5.3. Let g be as above. The .�;ƒ/-rho-invariant of g is the class in

K0
�
C �L;0.

zX ICln/�;RC;ƒ
�
Š Kn

�
C �L;0.

zX/�;RC;ƒ
�

defined by the morphism

' =D zX; zY
ı h W � ! C �L;0.

zX/�;RC;ƒ

and will be denoted by ��;ƒ.g/.

Clearly, ��;ƒ.g/ lifts ŒD zX; zY � and by the exactness of the sequence

� � � ! K�
�
C �L;0.

zX/�;RC;ƒ
�
! K�

�
C �L.
zX/�;RC;ƒ

�
! K�

�
C �. zX/�;RC;ƒ

�
! � � �

we have the following proposition.

Proposition 5.4. If the metric on X has positive scalar curvature, then the .�; ƒ/-index
of the Dirac operator vanishes.
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One can define a notion of concordance for positive scalar curvature metrics on mani-
folds with cylindrical ends. Let g and g0 be such metrics onX . They are called concordant
if there exist a positive scalar curvature metricG onX �R and a map j W Y �R�RC!
Y1 � R which makes .X � R; Y � R; j / a manifold with cylindrical end and such that
G restricted to X � .1;1/ is g C dt2 and restricted to X � .�1; 0/ is g0 C dt2. Using
the strategy of Zeidler in [13] and by replacing the usual Roe, localisation, and structure
algebras by their .�; ƒ/-invariant counterparts, one can without much difficulty prove
a partitioned manifold index theorem for secondary invariants for manifolds with cyl-
indrical ends and prove the concordance invariance of the .�;ƒ/-rho-invariant. However,
we refrain from discussing this, since it does not entail any novelties.

More generally, following the approach of [13] we define partial .�;ƒ/-rho-invariants
associated to metrics having positive scalar curvature outside of a given subset Z of X .
Denote by Z0 and Z00 the preimages of Z and .Z \ �.Y � ¹1º// � R under the covering
maps zX ! X and zY �R! Y �R, respectively. Denote by C �.Z0 � zX/�;RC;ƒ the C �-
subalgebra of C �. zX/�;RC;ƒ consisting of elements .T1; T2/ with T1 2 C �.Z0 � zX/� and
T2 2C

�.Z00 � zY �R/ƒ. Denote byC �L;Z0. zX/
�;RC;ƒ the preimage ofC �.Z0� zX/�;RC;ƒ

under the evaluation-at-1 map. The justification for the following definition is provided in
[8, Lemma 2.3].

Definition 5.5. Given a metric g on X which is collared at the boundary whose scalar
curvature is bounded below by " > 0 outside of a subset Z, define the class ��;ƒZ .g/ by
the morphism

' =D zX; zY
ı h W � ! C �L;Z0.

zX/�;RC;ƒ:

Another higher index theoretic notion which has been successfully used to obtain
information about the size of the space of positive scalar curvature metrics on closed man-
ifolds is the higher index difference, which gives rise to a map from the space of positive
scalar curvature metrics to theK-theory of the group C �-algebra of the manifold. We now
show that one can easily define a .�;ƒ/-index difference of two positive scalar curvature
metrics for manifolds with cylindrical ends. This becomes particularly interesting after we
discuss the application of the above machinery to relative higher index theory in the next
section. Let g0 and g1 be two metrics on X with scalar curvature bounded below by " > 0
which are collared on the cylindrical end. Define a metric G on X � R which restricts
to g0 ˚ dt2 and g1 ˚ dt2 on X � Œ0;1/ and X � .�1;�1/, respectively, and which is
collared on the cylindrical end in the X -direction.

Definition 5.6. Let g0, g1, and G be as above. The .�;ƒ/-index difference of g0 and g1
is the image of ��;ƒ

X�Œ0;1�
.G/ under the composition

KnC1
�
C �
L; zX�Œ0;1�

. zX/�;RC;ƒ
� .ev1/�
����! KnC1

�
C �
�
zX � Œ0; 1� � zX �R

��;RC;ƒ�
����! KnC1

�
C �. zX/�;RC;ƒ

�
;

where the last map is induced by projection on zX . It will be denoted by ind�;ƒ.g0; g1/.
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5.2. Relationship to the relative index of Chang, Weinberger, and Yu

As mentioned above, the relative index map of Chang, Weinberger, and Yu for manifolds
with boundary takes values in mapping cones of equivariant Roe algebras. Note that given
a manifold .X; Y; �/ with cylindrical end, xX WD X n �.Y � .0;1// is a manifold with
boundary Y . By restriction, we obtain a map � W . xX;Y /! .B�;Bƒ/. To avoid confusion,
in the following we denote the “change-of-group map”

C �.L;.0//.
zY /ƒ ! C �.L;.0//.

zxX/� (?)

introduced in Section 3.3 by ˇ.L;.0//. All the other change-of-group maps will still be
denoted by  .L;.0//. In the following, we will see that there exists a commutative diagram
of exact sequences:

K�
�
C �L;0.

zX/�;RC;ƒ
�

K�
�
C �L.
zX/�;RC;ƒ

�
K�
�
C �. zX/�;RC;ƒ

�
K�.SCˇL;0/ K�.SCˇL/ K�.SCˇ /:

Remark 5.7. In the following, we will denote by . ; ev1/ the homomorphism

C �. zY1/
ƒ;RC ! C �. zX/�;RC;ƒ T 7!

�
 .T /; ev1.T /

�
;

where we have used the realisation of C �. zX/�;RC;ƒ as a subalgebra of C �. zX/�;RC �
C �. zY �R/ƒ�R (see Remark 4.23). By pointwise application of . ; ev1/, we also define
maps

. L; ev1L/WC �L. zY1/
ƒ;RC ! C �L.

zX/�;RC;ƒ;

. L; ev1L;0/WC �L;0. zY1/
ƒ;RC ! C �L;0.

zX/�;RC;ƒ:

Furthermore, the arrows

C �. zX/�;RC;ƒ ! C �. zY �R/ƒ�R and C �. zxX � zX/� ! C �. zX/�;RC;ƒ

will always denote the projection map .S; T /! T and the injection map S 7! .S; 0/,
respectively (again we refer the reader to Remark 4.23).

Proposition 5.8. The following is a commutative diagram of short exact sequences:

0 C �. zY � zY1/
ƒ C �. zY1/

ƒ;RC C �. zY �R/ƒ�R 0

0 C �. zxX � zX/� C �. zX/�;RC;ƒ C �. zY �R/ƒ�R 0:

 

ev1

. ;ev1/ id

Analogous diagrams exist when C � is replaced by C �L and C �L;0.
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Proof. We first show that the first row is exact. It follows immediately from the definition
of ev1 that R. zY � zY1/ƒ is in its kernel. By continuity, we get that C �. zY � zY1/ is in
the kernel of ev1. Furthermore, [3, Lemma 3.12] implies that the kernel of ev1 is exactly
C �. zY � zY1/

ƒ. It remains to show that ev1 is surjective. For T 2 R. zY � R/ƒ�R, the
operator � zY�RC

T� zY�RC
maps to T under ev1. The surjectivity then follows from the fact

that the image of a homomorphism of C �-algebras is closed. The exactness of the second
row can be proven using similar arguments. However, we note that the exactness in the
middle uses the fact that limR!1 dist.�.Y 0 � ŒR;1//; zX � Y 01/ D 1 (see Definition
4.1). The commutativity of the diagram is a direct consequence of the definitions of the
involved maps.

Remark 5.9. Denote by C
C�. zY�fY1/ƒ!C�. zxX� zX/� , C. ;ev1/, and Cid the mapping cones

of the homomorphisms

 WC �. zY �eY1/ƒ ! C �. zxX � zX/� ;

. ;ev1/, and the identity map idWC �. zY �R/ƒ�R!C �. zY �R/ƒ�R, respectively. From
the commutativity of the diagram of Proposition 5.8, we obtain the exact sequence

0! C
C�. zY�fY1/ƒ!C�. zxX� zX/� ! C. ;ev1/ ! Cid ! 0:

Analogous exact sequences exist when C � is replaced by C �L and C �L;0.

Proposition 5.10. The inclusion

C
C�. zY�fY1/ƒ!C�. zxX� zX/� ! C. ;ev1/

gives rise to isomorphisms of K-theory groups. Analogous statements hold when C � is
replaced by C �L and C �L;0.

Proof. Note that the mapping cone of the identity map on C �. zY �R/ƒ�R is contractible
and thus has trivialK-theory. The statement then follows from the long exact sequence of
K-theory groups associated to the short exact sequence of mapping cones:

0! C
C�. zY�fY1/ƒ!C�. zxX� zX/� ! C. ;ev1/ ! Cid ! 0:

Remark 5.11. Recall that, associated to a homomorphism f W A! B of C �-algebras,
there is a mapping cone short exact sequence

0! SB ! Cf ! A! 0;

where Cf denotes the mapping cone of f and S denotes the suspension. Up to applying
Bott periodicity, the inclusion SB ! Cf gives rise to group homomorphisms K�.B/!
K�.SCf /. In the following, we apply these observations to the homomorphisms ˇ, ˇL,
and ˇL;0 (see (?)) and the maps . ; ev1/, . L; ev1L/, and . L;0; ev1L;0/ introduced in
Remark 5.7.
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Remark 5.12. Using the inclusions zY ! zY1 and zxX ! zX and Propositions 3.13 and
3.22, we obtain isomorphisms

K�.Cˇ.L;.0///
Š
��! K�.C

C�
.L;.0//

. zY�zY1/ƒ!C
�
.L;.0//

. zxX� zX/�
/:

Proposition 5.13. There is a commutative diagram of long exact sequences:

K�
�
C �L;0.

zX/�;RC;ƒ
�

K�
�
C �L.
zX/�;RC;ƒ

�
K�
�
C �. zX/�;RC;ƒ

�
K�.SCˇL;0/ K�.SCˇL/ K�.SCˇ /;

where the vertical maps are given by the compositions

K�
�
C �.L;.0//.

zX/�;RC;ƒ
�
! K�.SC. .L;.0//;ev1.L;.0////

Š K�.SC
C�
.L;.0//

. zY�zY1/ƒ!C
�
.L;.0//

. zxX� zX/�
/ Š K�.SCˇ.L;.0///:

See Remark 5.12 for the definition of the last isomorphism.

Proof. The diagram in the claim of the proposition is obtained by composing the diagrams

K�
�
C �L;0.

zX/�;RC;ƒ
�

K�
�
C �L.
zX/�;RC;ƒ

�
K�
�
C �. zX/�;RC;ƒ

�
K�.SC. L;0;ev1L;0// K�.SC. L;ev1L// K�.SC. ;ev1//;

K�.SC. L;0;ev1L;0// K�.SC. L;ev1L// K�.SC. ;ev1//

K�.SCˇL;0/ K�.SCˇL/ K�.SCˇ /;

Š Š Š

where . .L;.0//; ev1.L;.0/// denotes the map C �
.L;.0//

.eY1/ƒ;RC ! C �
.L;.0//

. zX/�;RC;ƒ

introduced in Remark 5.7. The commutativity of the first diagram is due to the natur-
ality of the mapping cone exact sequence and the commutativity of the second diagram is
clear.

Denote the image of the fundamental class of the Dirac operator on zX under the com-
position

K�
�
C �L.
zX/�

�
! K�.SCC�L.fY1/ƒ!C�L. zX/� / Š K�.SCC�L. zY�fY1/ƒ!C�L. zxX� zX/� /

by ŒD zxX; zY �.
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Lemma 5.14. The class ŒD zX; zY � maps to ŒD zxX; zY � under the map K�.C �L. zX/
�;RC;ƒ/!

K�.SC L/ of Proposition 5.13.

Proof. We first note that the commutativity of the diagram

K�
�
C �L.

eY1/ƒ;RC
�

K�
�
C �L.
zX/�;RC;ƒ

�
K�
�
C �L.

eY1/ƒ
�

K�
�
C �L.
zX/�

�
;

where the second vertical map is given by the composition of the projection onto the
C �L.
zX/�;RC component followed by the inclusion, implies that of

K�
�
C �L.
zX/�;RC;ƒ

�
K�.SCC�L.fY1/ƒ;RC!C�L. zX/�;RC;ƒ/

K�
�
C �L.
zX/�

�
K�.SCC�L.fY1/ƒ!C�L. zX/� /:

Furthermore, the diagram

K�.SC
C�L.
zY�fY1/ƒ!C�L. zxX� zX/� / K�.SCC�L.fY1/ƒ;RC!C�L. zX/�;RC;ƒ/

K�.SCC�L.fY1/ƒ!C�L. zX/� /;
where all the arrows are isomorphisms, is commutative. The claim then follows from the
commutativity of the latter two diagrams and the fact that ŒD zX; zY � lifts the fundamental
class of zX

Corollary 5.15. The .�;ƒ/-index of the Dirac operator associated to .X;Y; �/maps to the
relative index of the Dirac operator on xX underK�.C �. zX/�;RC;ƒ/! K�.SC / defined
in Proposition 5.13.

Combining Lemma 5.14 and Proposition 5.4 gives a new (and very natural) proof of
the following proposition.

Proposition 5.16. The nonvanishing of the relative index of the Dirac operator on a man-
ifold with boundary is an obstruction to the existence of a positive scalar metric which is
collared at the boundary.

5.3. Localised indices and the relative index

Given a metric g on X which has positive scalar curvature outside xX , one can define a
localised coarse index in Kn.C �. zxX/�/. In [9], it was shown that this index maps to the
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relative index of xX . We quickly recall the construction of the localised index and use the
machinery developed previously to give a short proof of the latter statement.

Definition 5.17. Denote by C �
L; zxX

. zX/� the preimage of C �. zxX � zX/� under

ev1 W C �L. zX/
�
! C �. zX/� :

Suppose that the scalar curvature of the metric restricted to the complement of xX is
bounded from below by " > 0. The following proposition is well known. As in [13], one
can define a partial �-invariant ��

xX
.g/ 2 Kn.C

�

L; zxX
. zX/�/ using the morphism

'D zX ı  W � ! C �
L; zxX

. zX ICln/� :

Definition 5.18. The localised coarse index ind�
zxX
.g/ is the image of ��

xX
.g/ under .ev1/� W

Kn.C
�

L; zxX
. zX/�/! Kn.C

�. zxX � zX/�/.

Remark 5.19. Note that in the above situation we can also define ��;ƒ
xX
.g/. Furthermore,

we note that the commutativity of the diagram

K�
�
C �
L; zxX

. zX/�;RC;ƒ
�

K�
�
C �
L; zxX

. zX/�
�

K�
�
C �. zxX � zX/�

�
;

.ev1/�

and the fact that ��;ƒ
xX
.g/ is a lift of ��

xX
.g/ under the horizontal map imply that ind�

zxX
.g/ is

the image of ��;ƒ
xX
.g/ under the map K�.C �

L; zxX
. zX/�;RC;ƒ/! K�.C

�. zxX � zX/�/.

The following lemma is a simple observation.

Lemma 5.20. The following diagram is commutative:

K�
�
C �
L; zxX

. zX/�;RC;ƒ
�

K�
�
C �. zxX � zX/�

�
K�.SC

C�. zY�fY1/ƒ!C�. zxX� zX/� /
K�
�
C �L.
zX/�;RC;ƒ

�
K�
�
C �. zX/�;RC;ƒ

�
K�.SCC�.fY1/ƒ;RC!C�. zX/�;RC;ƒ/:

Suppose that xX is compact. Then K�.C �. zxX � zX/�/ Š K�.C �.�//. Using the pre-
vious remark and lemma, we obtain the following corollary, which was one of the main
statements of [9].

Corollary 5.21. Suppose that xX is compact. Then ind�
zxX
.g/ maps to the relative index of

Chang, Weinberger, and Yu under the map K�.C �.�//! K�.C
�.�;ƒ//.
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