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Polarization and deformations of generalized
dendriform algebras

Cyrille Ospel, Florin Panaite, and Pol Vanhaecke

Abstract. We generalize three results of M. Aguiar on Loday’s dendriform algebras to dendriform
algebras associated with algebras satisfying any given set of relations. We adapt the concept of
polarization to such algebras, and use it to generalize Aguiar’s results on deformations and filtra-
tions of dendriform algebras. We introduce weak Rota–Baxter operators and use them to prove a
generalization of another result by Aguiar, which provides an interpretation of the natural relation
between infinitesimal bialgebras and pre-Lie algebras in terms of dendriform algebras.

1. Introduction

Dendriform algebras were introduced by J.-L. Loday in [20] as a dichotomized version
of associative algebras: if .A;�;�/ is a dendriform algebra, an associative algebra .A; ?/
is obtained by setting a ? b WD a � b C a � b for all a; b 2 A. In [2], M. Aguiar intro-
duced the notion of deformation for a commutative dendriform algebra .A;�;�/, where
commutativity means that a � b D b � a for all a; b 2 A. He shows that such a deforma-
tion makes .A;�;ı/ into a pre-Poisson algebra, where ı is constructed from the first
order deformation terms of� and� and establishes a similar result for filtered dendriform
algebras; both results are dendriform versions of two well-known results in deformation
theory. Even if these results can easily be proven by a direct computation, these computa-
tions lack a conceptual understanding, which we will provide in this paper by generalizing
these results to arbitrary dendriform algebras.

We define generalized dendriform algebras as follows. Let C denote the category of
all algebras .A;�/ which satisfy a given set of relations R1 D 0; : : : ;Rk D 0. An algebra
.A;�;�/ is said to be a C -dendriform algebra if .A �A;�/ 2 C , where� is defined for
.a; x/; .b; y/ 2 A � A, by .a; x/� .b; y/ WD .a � b C a � b; a � y C x � b/. The C -
dendriform algebras form a category Cdend with algebra homomorphisms as morphisms.
Generalized dendriform algebras have already been considered from the operadic point of
view in [4], but we will not use this formalism since the phenomena and properties which
we present are most naturally expressed in terms of the basic algebraic language which
we use.
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The notion of polarization, which was first introduced in [22] for algebras with one
operation, is easily generalized to dendriform algebras. We use it to prove the following,
above-mentioned result: suppose that .AŒŒ���;�;�/ is a deformation of a commutative
algebra .A;�0;�0/ in Cdend and consider the algebra .A;�0;ı/, whereı is defined for
a; b 2 A by

aı b WD
a � b � b � a

2�

ˇ̌̌
�D0

:

We show that .A;�0;ı/ 2 Cdend
pol , where Cdend

pol is the category of all polarized dendriform
algebras .A;�; ı/ satisfying for each relation R D 0 of Cdend

pol the relation R D 0; here, R

stands for the lowest weight part of R, where the weight of a monomial in A is defined as
being the number of operations ı that it contains. For the case in which .A;�0;�0/ is a
Loday dendriform algebra, we recover Aguiar’s result. A similar result holds for filtered
commutative algebras in Cdend. Both applications admit also an anticommutative version.

In order to construct (interesting) examples of generalized dendriform algebras, we
introduce the notion of a weak Rota–Baxter operator. Given any algebra A, a linear map
R W A ! A is said to be a weak Rota–Baxter operator of A if, for all a; b 2 A, the
element R.aR.b/ C R.a/b/ � R.a/R.b/ commutes with all elements of A; when it
is zero it is a Rota–Baxter operator. As an application, we generalize to coboundary "-
bialgebras another result by M. Aguiar [3], which states that the natural functor which
associates to any "-bialgebra .A;�;�/ the corresponding pre-Lie algebra .A;ı/, restricted
to the category of quasi-triangular "-bialgebras, admits a natural factorization through the
category of dendriform algebras; in our generalization, dendriform algebras are replaced
by A3-dendriform algebras.

The structure of the paper. We introduce in Section 2 the notion of a C -dendriform
algebra and show how to obtain the relations in Cdend from the ones in C . (Weak) Rota–
Baxter operators are shown in Section 3 to provide C -dendriform algebras, and applied to
"-bialgebras. The notion of polarization for dendriform algebras is introduced in Section 4.
As an application, we give a conceptual proof of the generalization to C -dendriform alge-
bras of Aguiar’s results. All results extend to C -tridendriform algebras; throughout the
paper, we will indicate these generalizations in some short remarks.

Conventions. All algebraic structures are defined over a commutative ring R in which 2
is invertible and we write ˝R for ˝. By “R-algebra” or “algebra,” we mean an .nC 1/-
tuple .A;�1; : : : ;�n/, where A is anR-module and each �i W A˝A! A is a linear map.
An algebra homomorphism between .A;�1; : : : ; �n/ and .A0; �01; : : : ; �

0
n/ is a linear map

f W A! A0 such that f .�i .a˝ b// D �0i .f .a/˝ f .b// for all a; b 2 A and 1 6 i 6 n.
In the case of an algebra .A; �/ with one product, we usually write ab for �.a˝ b/.

2. Dendriform algebras

In this section, we show that the notion of a Loday dendriform algebra naturally gener-
alizes to algebras defined by any finite collection of relations. We show that the relations
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which hold in a dendriform algebra are easily determined from the ones in the original
algebra, when they are multilinear.

2.1. Loday’s dendriform algebras

We first recall from [20] the notion of a Loday dendriform algebra.

Definition 2.1. A Loday dendriform algebra is an algebra .A;�;�/ satisfying for all
a; b; c 2 A the following relations:

.a � b/ � c D a � .b � c C b � c/; (2.1)

.a � b/ � c D a � .b � c/; (2.2)

.a � b C a � b/ � c D a � .b � c/: (2.3)

Loday’s dendriform algebras can be characterized as follows (see [11]).

Proposition 2.2. Let .A;�;�/ be an algebra and let ? denote the sum of � and �. Then
.A;�;�/ is a Loday dendriform algebra if and only if

(1) .A; ?/ is an associative algebra;

(2) .A;�;�/ is an .A; ?/-bimodule.

In this characterization, the notion of bimodule (over an associative algebra) is the
standard one; see the lines following Definition 2.3 below for the more general concept of
a bimodule over other types of algebras.

Conditions (1) and (2) can be restated by demanding that .A � A;�/ is associative,
where the product� is defined, for .a; x/; .b; y/ 2 A � A, by

.a; x/� .b; y/ WD .a ? b; a � y C x � b/: (2.4)

The proof of the equivalence is a direct consequence of the following formulas, valid for
all .a; x/; .b; y/; .c; z/ 2 A � A:�
.a; x/� .b; y/

�
� .c; z/ D

�
.a ? b/ ? c; .a ? b/ � z C .a � y/ � c C .x � b/ � c

�
;

.a; x/�
�
.b; y/� .c; z/

�
D
�
a ? .b ? c/; a � .b � z/C a � .y � c/C x � .b ? c/

�
:

It follows that a Loday dendriform algebra can equivalently be defined as an algebra
.A;�;�/ such that .A � A;�/ is associative, where � is defined by (2.4). It is this more
conceptual definition which we will generalize.

2.2. C -dendriform algebras

Let R1 D 0; : : : ;Rk D 0 be given relations and denote by C the category of all alge-
bras which satisfy these relations, called the relations of C . Morphisms in C are algebra
homomorphisms. If .A; �/ is an object of C , we write .A; �/ 2 C .
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� b0 b1

a0 a ? b0 a � b1

a1 a � b1 .0; 0/

Table 1. The product� for generators of A � A.

Definition 2.3. An algebra .A;�;�/ is said to be a C -dendriform algebra if .A�A;�/ 2
C , where� is defined for .a; x/; .b; y/ 2 A � A, by

.a; x/� .b; y/ WD .a � b C a � b; a � y C x � b/: (2.5)

Taking x D y D 0 in (2.5), it is clear that if .A;�;�/ is a C -dendriform algebra, then
.A; ?/ 2 C , where ? denotes the sum of � and �. In the general language of bimodules
(see [26]), the property that .A � A;�/ belongs to C , where � is defined by (2.5), is by
definition the condition that .A; ?/ 2 C and that .A;�;�/ is an .A; ?/-bimodule with
respect to C .

Remark 2.4. Definition 2.3 admits the following natural generalization: using the nota-
tions and under the assumptions of that definition, an algebra .A;�;�; �/ is said to be a
C -tridendriform algebra if .A � A;�/ 2 C , where � is now defined for .a; x/; .b; y/ 2
A � A, by

.a; x/� .b; y/ WD .a � b C a � b C a � b; a � y C x � b C x � y/: (2.6)

In the particular case when a � b D 0 for all a; b 2 A, one recovers the above definition of
a C -dendriform algebra. Also, taking for C the category of all associative algebras, one
recovers the classical notion of a tridendriform algebra, as first introduced by J.-L. Loday
and M. Ronco in [21] (for a proof, see [6] in which our definition of a C -tridendriform
algebra appears in the associative case as a characterization of a tridendriform algebra).

2.3. Algebras defined by multilinear relations

The relations which we will consider are multilinear and we will show how for such
relations we can easily obtain the corresponding relations which must be satisfied by the
corresponding dendriform algebras; we do this for one relation at a time. Our method is
based on the fact that, by multilinearity, the condition that .A � A;�/ belongs to C is
equivalent to the conditions obtained by demanding that the relations are satisfied for all
possible n-tuplets (for an n-linear relation) of elements of A �A, taken from a generating
set of A � A. We take this generating set to be the union of A0 WD A � ¹0º and A1 WD
¹0º �A. We will find it convenient to use for any a 2A the following notation: a0 WD .a;0/
and a1 WD .0; a/; also, when we consider elements a0 2 A0 or a1 2 A1 we implicitly
assume that a 2 A. In this notation, (2.5) is equivalenty described by Table 1, in which a
and b stand for arbitrary elements of A. We explain the procedure in the case of a trilinear
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relation, the case of a bilinear relations being too simple to illustrate how it works; see
Remark 2.5 below for the case of an n-linear relation. A general trilinear relation is of the
form R D 0, where

R.a1; a2; a3/ D
X
�2S3

�� .a�.1/a�.2//a�.3/ C
X
�2S3

�0�a�.1/.a�.2/a�.3//: (2.7)

The 12 constants �� and �0� belong to R. The associativity relation is a prime example;
we will see many other examples below.

Let R D 0 be a trilinear relation and let us denote by R� (resp. R?) the formula R in
which the product � is replaced by� (resp. ?). We show how to obtain the corresponding
relations for a C -dendriform algebra.
� If we take three arbitrary elements a0; b0; c0 in A0, then

.a0 � b0/� c0 D .a ? b/ ? c0 and a0 � .b0 � c0/ D a ? .b ? c/0;

so that R�.a0; b0; c0/ D R?.a; b; c/0
, for all a; b; c 2 A. Therefore, the relation which

we find is that R? D 0, i.e., that .A; ?/ 2 C . As we will see in the next item, this relation
needs not be stated explicitly, because it follows from the other relations.
�When we take two elements in A0 and one in A1, we get from R� D 0 three non-

trivial relations which may be linearly dependent. Notice that

.a0 � b0/� c1 C .a0 � b1/� c0 C .a1 � b0/� c0
D .a ? b/ � c C .a � b/ � c C .a � b/ � c

1
D .a ? b/ ? c

1
;

for any a; b; c 2 A, and similarly with the opposite parenthesizing,

a0 � .b0 � c1/C a0 � .b1 � c0/C a1 � .b0 � c0/ D a ? .b ? c/1:

If we write R as in (2.7), then it follows from these two equations that

R�.a10; a20; a31/CR�.a10; a21; a30/CR�.a11; a20; a30/

D

X
�2S3

�� .a�.1/ ? a�.2// ? a�.3/
1
C

X
�2S3

�� .a�.1/ ? a�.2// ? a�.3/
1

C

X
�2S3

�0�a�.1/ ? .a�.2/ ? a�.3//1
C

X
�2S3

�0�a�.1/ ? .a�.2/ ? a�.3//1

D R?.a1; a2; a3/1
; (2.8)

and so the sum of the three relations which we just found for � and � is precisely the
corresponding relation for their sum ?, as stated above.
� Taking at most one element in A0 and the other ones in A1 gives trivial relations,

because a triple product in .A�A;�/ vanishes as soon as at least two of its factors belong
to A1, as follows at once from the definition of�.

The upshot is that a trilinear relation R D 0 gives rise to at most three independent
relations, which are found by considering R� for a triplet of elements in A � A, where
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two of them are arbitrary elements in A0 and the third one is in A1. As we will see in the
examples below, when R has some symmetry, only one or two such triplets need to be
considered.

Remark 2.5. The above analysis is also valid for n-linear relations, with n > 3. First, it
follows again from Table 1 that one always gets zero when substituting in any monomial at
least two elements fromA1. Also, the relation which is obtained by substituting n elements
from A0 follows from the n relations which are obtained by substituting n � 1 elements
from A0 and one element from A1. To show this, consider a monomial a1a2 � � � an in A,
with some parenthesizing, and denote for i D 1; 2; : : : ; n,

X WD a10 � a20 � � � �� an0 D a1 ? a2 ? � � � ? an0 2 A0;

Xi WD a10 � a20 � � � �� ai�10 � ai 1 � aiC10 � � � �� an0 2 A1;

with the same parenthesizing. Defining a 2 A by X D a0, we show that
Pn
iD1Xi D a1.

We do this by induction on n, the case of nD 3 already being proven above. We can write
X (uniquely, as dictated by the parenthesizing) as X D X 0 �X 00, where

X 0 D a10 � a20 � � � �� am0; X 00 D amC10
� amC20 � � � �� an0;

with 1 6 m < n, and both X 0 and X 00 come with a parenthesizing inherited from the one
of X . We define for i D 1; : : : ; m (resp. for i D mC 1; : : : ; n) the element X 0i (resp. X 00i )
analogously to the definition of Xi above. If we apply the induction hypothesis to X 0 and
X 00, we get

Pm
iD1 X

0
i D a

0
1 and

Pn
iDmC1 X

00
i D a

00
1, where X 0 D a00 and X 00 D a000. It

follows that

nX
iD1

Xi D

mX
iD1

X 0i �X
00
CX 0 �

nX
iDmC1

X 00i D a
0
1 � a

00
0 C a

0
0 � a

00
1

D a0 � a001 C a
0
� a001 D a

0 ? a001;

while X D X 0 � X 00 D a00 � a000 D a0 ? a000, so that
Pn
iD1Xi D a1 where X D a0. It

proves the announced property for n-linear relations, for all n.

Remark 2.6. For relations which are sums of k-linear relations, with k varying from 1 to
n, the above procedure can be adapted, but there is no need to do this since for kD 1; : : : ;n
the k-linear part of such a relation R D 0 is itself a relation. To show this, one shows that
the leading (n-linear) part is a relation, which follows by substituting successively ai D 0
for i D 1; : : : ; n.

Remark 2.7. For C -tridendriform algebras (see Remark 2.4), where C is defined by mul-
tilinear relations, it can similarly be shown that the relation, obtained by substituting in
R� only elements from A0, is the sum of all 2n � 1 relations obtained by substituting in
R� at least one element from A1 and the other elements from A0. In general, this is the
only dependency between the 2n relations obtained by the above procedure.
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2.4. Examples

We illustrate the above procedure in a few examples.

Example 2.8. We start with the example of a Loday dendriform algebra, recalled above:
we show how the relations of Definition 2.1 are obtained from the associativity of�. First,
take a0; b0 in A0 and c1 in A1. Then, by the associativity of� and by Table 1,

.a ? b/ � c
1
D .a0 � b0/� c1 D a0 � .b0 � c1/ D a � .b � c/1;

so that .a ? b/ � c D a � .b � c/, which is (2.3). Taking a0; c0 in A0 and b1 in A1 (resp.
b0; c0 in A0 and a1 in A1), one obtains similarly (2.2) and (2.1).

Example 2.9. A pre-Lie algebra .A;�/ is an algebra for which the associator .a; b; c/ WD
.ab/c � a.bc/ is symmetric in its first two variables. Thus, the trilinear relation which
defines pre-Lie algebras is given by

.ab/c � a.bc/ D .ba/c � b.ac/: (2.9)

Let CpL denote the category of all pre-Lie algebras. We obtain the relations which any
CpL-dendriform algebra .A;�;�/ must satisfy, by substituting in�

.a; x/� .b; y/
�
� .c; z/ � .a; x/�

�
.b; y/� .c; z/

�
D
�
.b; y/� .a; x/

�
� .c; z/ � .b; y/�

�
.a; x/� .c; z/

�
(2.10)

two elements from A0 and one from A1. Substituting a0, b0, and c1 in (2.10), we get,
using Table 1,

.a ? b/ � c
1
� a � .b � c/

1
D .b ? a/ � c

1
� b � .a � c/

1
;

which leads to the relation

.a ? b/ � c � a � .b � c/ D .b ? a/ � c � b � .a � c/: (2.11)

Similarly, substituting a0, b1, and c0 in (2.10), we get

.a � b/ � c � a � .b � c/ D .b � a/ � c � b � .a ? c/: (2.12)

Since (2.9) is invariant under the transposition which permutes a and b, we have obtained
all relations, and so the relations for a CpL-dendriform algebra are given by (2.11) and
(2.12). Such dendriform algebras are known as L-dendriform algebras (see [7], where
they have been introduced).

Example 2.10. The defining relation for an A3-associative algebra .A; �/ is

.ab/c C .bc/aC .ca/b D a.bc/C b.ca/C c.ab/: (2.13)

It can be written in terms of associators in the compact formX
�2A3

.a�.1/; a�.2/; a�.3// D 0; (2.14)
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where a1; a2; a3 2 A and where A3 stands for the alternating group of degree 3. The
symmetric form of (2.14) is at the origin of the terminology “A3” (see [13]); this form is
often useful in computations, as we will see below. Since (2.14) is invariant under a cyclic
permutation of a1; a2; a3, the corresponding dendriform algebras, which we will call A3-
dendriform algebras, need to satisfy only one relation. We obtain it by substituting a0, b0,
and c1 for .a1; x1/, .a2; x2/, and .a3; x3/, in the relationX

�2A3

�
.a�.1/; x�.1//; .a�.2/; x�.2//; .a�.3/; x�.3//

�
�
D 0;

where .�; �; �/
�

stands for the associator of the product �. The resulting relation defining
A3-dendriform algebras is given by

a � .b � c/ � .c � a/ � b C c � .a ? b/

D .a ? b/ � c � b � .c � a/C .b � c/ � a: (2.15)

Notice that, upon defining a ı b WD a � b � b � a for all a; b 2 A, the latter relation can
be rewritten in the simple form

.a ? b/ ı c � b ı .c � a/ � a ı .b � c/ D 0: (2.16)

We determine for this case also the relations of the corresponding tridendriform algebras.
To do this, we need to substitute in R�D 0 at least one element fromA1 and the other ones
from A0. Notice that, if one substitutes only one element from A1, one obtains exactly the
dendriform relations, with ? standing now for a ? b WD a � b C a � b C a � b, so these
relations do not have to be computed again. Also, as above, there is only one relation
obtained by substituting two elements from A1 and one from A0; namely,

.a � b/ � c C .b � c/ � aC .c � a/ � b D a � .b � c/C b � .c � a/C c � .a � b/: (2.17)

A final relation is obtained by substituting three elements from A1. It is clear that the
found relation just says that .A; �/ is A3-associative.

Example 2.11. A Lie-admissible algebra (or LA-algebra) is an algebra .A; �/ for which
the anticommutative product Œ�; ��, defined as the commutator Œa; b� WD ab � ba, is a Lie
bracket, i.e., satisfies the Jacobi identity. The trilinear relation which characterizes Lie-
admissible algebras is therefore given byX

�2A3

�
.a�.1/; a�.2/; a�.3// � .a�.2/; a�.1/; a�.3//

�
D 0: (2.18)

It is invariant under the symmetry group S3, so that LA-dendriform algebras are defined
by a single relation, as in the case of A3-dendriform algebras. It is obtained in the same
way as in that case and is given by

a � .b � c � c � b/ � .b � c � c � b/ � a � b � .a � c � c � a/

C .a � c � c � a/ � b C c � .a ? b � b ? a/ � .a ? b � b ? a/ � c D 0; (2.19)
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where ? stands again for the sum of� and�. As above, we define a ı b WD a � b � b � a
for all a; b 2 A and observe that a ? b � b ? a D a ı b � b ı a, for all a; b 2 A. It follows
that the relation defining LA-dendriform algebras can be rewritten in the simple form

a ı .b ı c/ � b ı .a ı c/ � .a ı b � b ı a/ ı c D 0: (2.20)

It is equivalent to saying that .A; ı/ is a pre-Lie algebra (see Example 2.9).

Example 2.12. An associative-admissible algebra (or AA-algebra) is defined as an alge-
bra .A; �/ for which the anticommutator Œa; b�C WD ab C ba is associative. AA-algebras
are characterized by the trilinear relation

.ab C ba/c C c.ab C ba/ D a.bc C cb/C .bc C cb/a: (2.21)

The relation (2.21) is again S3-invariant, so AA-dendriform algebras are defined by a sin-
gle relation. It is most easily obtained from the compact form ŒŒa; b�C; c�C D Œa; Œb; c�C�C

of the relation (2.21). Indeed, let us denote by Œ�; ��C
�

the anticommutator of �, and let
a � b WD a � bC b � a for all a; b 2 A (not to be confused with a ? b D a � bC a � b).
Using the obvious identity a ? bC b ? aD a � bC b � a, it is easy to derive from Table 1
that Œa0; b0�

C

�
D a � b C b � a

0
and that Œa0; b1�

C

�
D a � b1, for a; b 2 A. Substituted in

ŒŒa0;b0�
C

�
; c1�

C

�
D Œa0; Œb0; c0�

C

�
D�C
�

, we obtain the following relation for AA-dendriform
algebras, known as the Zinbiel property (see [20]):

.a � b C b � a/ � c D a � .b � c/: (2.22)

Example 2.13. Our last example is closely related to Poisson algebras (see Examples 4.3
and 4.9; see also [14] where P-algebras are shown to be A3-associative). Consider the
relation

3.ab/c D 3a.bc/C .ac/b C .bc/a � .ba/c � .ca/b: (2.23)

We call any algebra satisfying this relation a P-algebra and denote the category of all P-
algebras by P . The three relations for P-dendriform algebras are given by the following
formulas, where the first one is obtained by substituting a0, b0, and c1 for a, b, and c
in (2.23), where the product � has been replaced by �, and similarly for the other two,
where one substitutes a0; b1; c0 and a1; b0; c0 respectively:

3.a ? b/ � c D 3a � .b � c/C .a � c/ � b C .b � c/ � a

� .b ? a/ � c � .c � a/ � b; (2.24)

3.a � b/ � c D 3a � .b � c/C .a ? c/ � b C .b � c/ � a

� .b � a/ � c � .c ? a/ � b; (2.25)

3.a � b/ � c D 3a � .b ? c/C .a � c/ � b C .b ? c/ � a

� .b � a/ � c � .c � a/ � b: (2.26)

In these formulas, ? stands again for the sum of � and �.
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2.5. Commutative and anticommutative dendriform algebras

Many algebras of interest are commutative or anticommutative; i.e., they satisfy the rela-
tion ab D ba or ab D �ba, besides satisfying some other relations. It follows at once
from the defining relations that

(1) associative, pre-Lie, AA, and P-algebras, which are commutative, are precisely
commutative associative algebras;

(2) A3-associative and LA-algebras, which are commutative, are just arbitrary (com-
mutative) algebras; similarly, AA-algebras which are anticommutative are arbi-
trary (anticommutative) algebras;

(3) A3-associative, pre-Lie, LA, and P-algebras, which are anticommutative, are pre-
cisely Lie algebras;

(4) associative algebras, which are anticommutative, are precisely 2-step nilpotent
algebras, i.e., satisfying .ab/c D a.bc/ D 0 for all a; b; c 2 A.

It is clear from (2.5) that the corresponding dendriform algebras must satisfy the relation
a � b D b � a, respectively, a � b D �b � a.

Definition 2.14. A C -dendriform algebra .A;�;�/ is said to be commutative (resp. anti-
commutative) if it satisfies b � a D a � b (resp. b � a D �a � b) for all a; b 2 A.

It is then natural to view A as an algebra with only one product, by setting for all
a; b 2 A, a � b WD a � b.

Example 2.15. We start with (1) above: to obtain the relations of a commutative asso-
ciative dendriform algebra, we substitute a � b for a � b and for b � a in the relations
(2.1)–(2.3), to find the relations

.a � b C b � a/ � c D a � .b � c/; c � .a � b/ D a � .c � b/: (2.27)

The first property is the Zinbiel property (see Example 2.12). The second property is
known as the NAP property; see [19]. Since the Zinbiel property implies the NAP prop-
erty, commutative associative dendriform algebras are, when written in terms of a single
product, the same as Zinbiel algebras.

Example 2.16. For (2) above, arbitrary (anti-) commutative algebras, one only gets the
dendriform relation a � b D ˙b � a, with no relation for �.

Example 2.17. For Lie algebras (case (3) above), the quickest way to obtain the relation
which � must satisfy is by substituting 2a � b (or just a � b) for a ı b in (2.20), so we
get the pre-Lie relation (2.9). Thus, Lie dendriform algebras are, when written in terms of
a single product, pre-Lie algebras.

Example 2.18. By definition, 2-step nilpotent algebras (case (4) above) satisfy .ab/c D
a.bc/ D 0. Their dendriform algebras satisfy the following six relations:
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.a � b/ � c D .a � b/ � c D .a � b/ � c D 0;

c � .b � a/ D c � .b � a/ D c � .b � a/ D 0:

It follows that anticommutative associative dendriform algebras are, in terms of a single
product, also 2-step nilpotent algebras, as they satisfy the relation .a � b/ � c D a �

.b � c/ D 0.

Example 2.19. The defining relations of a Jordan algebra are .aab/a D .aa/.ba/ and
ab D ba (commutativity). The former relation is not 4-linear but becomes so after lin-
earization and the relations which�must satisfy can again be easily obtained by the above
procedure. Written in terms of a single product, these relations are given in [17, equations
(4.1) and (4.2)], where the proposed relations are shown to be equivalent to a bimodule
property; the resulting algebras are there called pre-Jordan algebras. See [16] for the den-
driform algebra associated with a pre-Jordan algebra.

Remark 2.20. Similarly, a tridendriform algebra is said to be commutative or anticom-
mutative if it satisfies the relations a � b D ˙b � a and a � b D ˙b � a, with the plus
sign of course corresponding to the commutative case. Such tridendriform algebras are
naturally seen as algebras with two operations “�” and “�”, upon setting a � b WD a � b,
while keeping “�”.

Example 2.21. We give an example of an anticommutative tridendriform algebra: a Lie
tridendriform algebra. We obtain the relations from the relations of an A3-tridendriform
algebra, given in Example 2.10, by replacing in them a � b and �b � a by a � b and
using a � b D �b � a. After some trivial simplifications, one finds that a Lie tridendriform
algebra is a Lie algebra, satisfying the following two relations, obtained from (2.16) and
(2.17):

.a � b/ � c D a � .b � c/ � .a � b/ � c � b � .a � c/C .b � a/ � c;

c � .a � b/ D .c � b/ � a � .c � a/ � b:

Lie tridendriform algebras are known as Post-Lie algebras (see [5, 28]).

2.6. Categories of generalized dendriform algebras

Let C denote, as before, the category of all algebras satisfying a given set of relations
R1 D 0; : : : ;Rk D 0. Clearly, the class of all C -dendriform algebras (over R) also form a
category Cdend, with the algebra homomorphisms as morphisms. By the above, we have a
(faithful) functor Cdend!C which, on objects .A;�;�/, is defined by .A;�;�/ 7! .A;?/,
where ? denotes the sum of the products � and �; on morphisms, the functor is just the
identity in the sense that it sends the map underlying a morphism to itself.

Let C 0 be the category of all algebras verifying another collection of relations R01 D

0; : : : ;R0
`
D 0, where every Ri is a linear combination of R01; : : : ;R

0
`
. Then C 0 is a

subcategory of C , and C 0dend is a subcategory of Cdend, since the relations R0i D 0 can
be seen as a subset of the relations Rj D 0. Thus, we have the following commutative
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diagram of categories:

C 0; �0 C ; �

C 0dend;�0;�0 Cdend;�;�

a�0bCa�0b a�bCa�b

As a first application, we denote by Ccom (resp. by Cdend
com ) the subcategory of C (resp.

of Cdend) consisting of all commutative algebras in the respective category. Then we have
the following commutative diagram of categories:

Ccom; � C ; �

Cdend
com ;�;� Cdend;�;�

a�bCa�b a�bCa�b

Indeed, we can view the commutative algebras in C as being those which satisfy the
extra condition of commutativity, and this relation leads to the condition of commutativity
for the corresponding C -dendriform algebras, by the above observation. The same applies,
of course, to anticommutative algebras.

As a second application, we show how the above examples of C -dendriform algebras
are related. We have the following strict inclusion relations between the original category
of algebras on the left; they lead to inclusion relations between their corresponding cate-
gories of dendriform algebras on the right:

P Assoc P dend Assocdend

A3-assoc pre-Lie Adend
3 Ldend

LA LAdend

We have not included AA-algebras and their dendriform algebras, because there are no
apparent inclusion relations between the category of AA-algebras and any of the other
categories that we considered.

Table 2 shows that the induced inclusions in the rightmost diagram are also strict and
that there is no inclusion relation betweenAdend

3 or P dend and Ldend. In the table, the algebra
.A;�;�/ is a free module of rank at least two and a and b are elements of a basis of A.
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� � ? of type not of type

a � a D �b
a � a D aC b

b � a D b

a ? a D a

b ? a D b
A3-dendri

L-dendri
P-dendri

a � b D b
b � a D b

b � b D b

a ? b D b

b ? a D b

b ? b D b

LA-dendri
A3-dendri
L-dendri

— b � a D a b ? a D a L-dendri
A3-dendri

dendri

a � b D �a b � a D a
a ? b D �a

b ? a D a
P-dendri L-dendri

a � a D aC b — a ? a D aC b dendri P-dendri

Table 2. Some examples of generalized dendriform algebras.

The first two columns describe the products � and � on some of the basis elements; it is
understood that all other products between elements of the basis are zero.

3. (Weak) Rota–Baxter operators

In this section, we introduce the notion of a weak Rota–Baxter operator. We show how
such operators can be used to construct generalized dendriform algebras and present an
application of this. Throughout this section, we denote by C the category of all algebras
satisfying a given collection of multilinear relations R1 D 0; : : : ;Rk D 0.

3.1. Dendriform algebras from Rota–Baxter operators

We start with the definition of a Rota–Baxter operator (on an arbitrary algebra), which
first appeared in the works of [8, 24, 25]; see [15] for additional information.

Definition 3.1. Let .A;�/ be any algebra, let R W A! A be a linear map, and let � 2 R.
One says that R is a Rota–Baxter operator of weight � of A if R satisfies the Rota–Baxter
equation

R
�
aR.b/CR.a/b C �ab

�
�R.a/R.b/ D 0; (3.1)

for all a; b;2 A. When � D 0, one simply speaks of a Rota–Baxter operator.

We first show that a Rota–Baxter operator on any algebra .A; �/ of C leads to a C -
dendriform algebra .A;�;�/. This was first observed by Aguiar [2] in the associative
case.

Proposition 3.2. Let R be a Rota–Baxter operator on an algebra .A; �/ which belongs
to C . For a; b 2 A, let a � b WD R.a/b and a � b WD aR.b/. Then .A;�;�/ is a C -
dendriform algebra.
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Proof. We will give the proof for a trilinear relation R D 0; it is easily generalized to
n-linear relations. Recall that R D 0 leads to 3 dendriform relations which are obtained
by substituting two elements from A0 and one element from A1 in R� D 0, where � is
the product on A � A, defined by (2.4). Recall also that we write a0 for .a; 0/ and a1 for
.0; a/, where a 2 A.

We show that this amounts to writing R for three elements of A, on two of which R

has been applied, and rewriting the result in terms of the dendriform operations. To show
this, we compare the effect of these substitutions on the monomials .ab/c and a.bc/,
where each time we consider the three possible substitutions. In view of Table 1, the
definition of � and �, and (3.1), we get for the first type the correspondence

.a1 � b0/� c0 D .a � b/ � c1 D
�
aR.b/

�
R.c/

1
;

.a0 � b1/� c0 D .a � b/ � c1 D
�
R.a/b

�
R.c/

1
;

.a0 � b0/� c1 D .a ? b/ � c1 D
�
R.a/R.b/

�
c
1
;

and similarly for the other type. In the third line, we have used (3.1) with � D 0, which
says that R W .A; ?/! .A; �/ is a morphism.

Remark 3.3. Our proof shows that the C -dendriform relations can also formally be ob-
tained from the relations Ri D 0 by formally applying R to two of the variables and
rewriting the resulting expression in terms of the dendriform operations (using the Rota–
Baxter equation). Our proof also explains where the particular form of the Rota–Baxter
equation comes from.

As a direct consequence of Proposition 3.2, we have the following result, which is well
known in the case of an associative or Lie algebra.

Corollary 3.4. Let R be a Rota–Baxter operator on an algebra .A;�/ in C . For a;b 2A,
let a ? b WD aR.b/CR.a/b. Then .A; ?/ also belongs to C .

Remark 3.5. Proposition 3.2 and its proof are easily adapted to prove case of arbitrary
weights: if R is a Rota–Baxter operator of weight � on an algebra .A; �/ which belongs
to C , then .A;�;�; �/ is a C -tridendriform algebra, upon defining a � b WD R.a/b and
a� b WD aR.b/ and a � b WD �ab, for all a;b 2A. In fact, it suffices to change in the proof
the meaning of a ? b, which should now stand for a � b C a � b C a � b. For associative
algebras, this was first observed by Ebrahimi-Fard [12].

Remark 3.6. In the case of Lie algebras, one encounters also the following equation,
generalizing the Rota–Baxter equation (of weight 0):

R
�
aR.b/CR.a/b

�
D R.a/R.b/C �ab; (3.2)

where � 2 R is a constant. Equation (3.2) is known as the modified Yang–Baxter equation
and has many applications in the theory of integrable systems (see [27]). The statement
and proof of Proposition 3.2, and hence also Corollary 3.4, generalize easily to this case:
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in the display in the proof of the proposition, we only need to replace, in line 3, R.a/R.b/

by R.a/R.b/C �ab. For the rest the proof is unchanged: these extra terms will disappear
because the original product � satisfies the relation R D 0.

Example 3.7. The prime example of a solution to the modified Yang–Baxter equation is
based on the notion of a Lie algebra splitting (see [27]). It naturally generalizes as follows.
A C -algebra splitting of .A;�/ 2 C is a module direct sum decomposition AD AC˚A�
of A, where AC and A� are subalgebras of A. If one denotes by PC and P� projection on
AC and A�, then R WD PC � P� is a solution to (3.2), with � D 1. The proof is the same
as in the classical case.

3.2. Dendriform algebras from weak Rota–Baxter operators

We now introduce the more general notion of a weak Rota–Baxter operator. For any alge-
bra .A; �/, we denote by C.A/ the submodule1 of A consisting of those elements which
commute with all elements in A.

Definition 3.8. Let R W A! A be a linear map and let � 2 R. One says that R is a weak
Rota–Baxter operator of weight � of A if, for all a; b 2 A,

R
�
aR.b/CR.a/b C �ab

�
�R.a/R.b/ 2 C.A/: (3.3)

When � D 0, one simply speaks of a weak Rota–Baxter operator of A.

We show how Proposition 3.2 can be generalized to weak Rota–Baxter operators,
which we do for trilinear relations. A trilinear relation R D 0 has a commutator form if it
can be written as a linear combination of terms of the form Œab; c� D .ab/c � c.ab/, i.e.,
if R is of the form

R.a1; a2; a3/ D
X
�2S3

c� Œa�.1/a�.2/; a�.3/�; (3.4)

for some c� 2 R. A set of trilinear relations has a commutator form if it is linearly gener-
ated by a set of trilinear relations having a commutator form.

Proposition 3.9. Suppose that the relations R1 D 0; : : : ;Rk D 0 are trilinear and have
a commutator form. Let R be a weak Rota–Baxter operator on an algebra .A; �/ which
belongs to C . For a; b 2 A, define a � b WD R.a/b and a � b WD aR.b/. Then .A;�;�/
is a C -dendriform algebra.

Proof. Let R D 0 be a relation which has a commutator form. As in the proof of Propo-
sition 3.2, we need to show that � and � verify the dendriform relations corresponding
to R. We can repeat this proof, except that we need to show how to express the terms of
the forms .R.a/R.b//c and c.R.a/R.b// in terms of the dendriform operations and that

1In general, C.A/ is not a subalgebra of A and strictly contains the center Z.A/, whose elements are
required to have the extra property that any associator containing them vanishes.
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by this procedure the same terms are obtained as by substituting in R� two terms fromA0
and one term from A1. To do this, first observe that (3.3) can (for � D 0) be equivalently
written as the condition that ŒR.a ? b/; c�D ŒR.a/R.b/; c�, where a ? bDa�bCa�bD
aR.b/CR.a/b, leading to the following correspondence:

Œa0 � b0; c1�� D .a ? b/ � c � c � .a ? b/1 D ŒR.a/R.b/; c�1;

where Œ�; ��� stands for the commutator of�. For the two other substitutions, the commu-
tator form is not needed and the claim follows.

The proposition can be applied toA3-associative algebras and Lie admissible algebras,
since (2.13) and (2.18) can be respectively rewritten as

Œab; c�C Œbc; a�C Œca; b� D 0; (3.5)X
�2A3

Œa�.1/a�.2/ � a�.2/a�.1/; a�.3/� D 0: (3.6)

However, many relations cannot be written in a commutator form. The associativity rela-
tion, a.bc/ D .ab/c, is a prime example; other examples are the derivation property
a.bc/D .ab/cC b.ac/, the Zinbiel property a.bc/D .abC ba/c, and the NAP property
a.bc/D b.ac/, just to mention a few. In such cases, when the relations of C imply a rela-
tion RD 0 which can be written in a commutator form, any dendriform algebra .A;�;�/
obtained by using a weak Rota–Baxter operator on an algebra .A; �/ in C will satisfy
(at least) the C -dendriform relation, derived from R D 0. Moreover, any relation R D 0

which does not involve a product of two of the variables leads to a (single) dendriform
relation. We illustrate this in the following example, on which we will elaborate in the
following subsection.

Example 3.10. The associativity relation, a.bc/D .ab/c, cannot be written in a commu-
tator form. Summing up three instances of this relation, we get .ab/c C .bc/aC .ca/b D
a.bc/C b.ca/C c.ab/, which is the relation of A3-associativity (3.5), which has a com-
mutator form. Therefore, if R is a weak Rota–Baxter operator on an associative algebra
.A;�/, then .A;�;�/, with � and � defined by a � b WD aR.b/ and a � b WDR.a/b, is
a priori not a Loday dendriform algebra but an A3-dendriform algebra. The associativity
relation a.bc/ D .ab/c does not contain a product of a and c, so we do not need to use
the weak Rota–Baxter equation to rewrite R.a/.bR.c// D .R.a/b/R.c/ in terms of the
dendriform products. The resulting relation a � .b � c/ D .a � b/ � c of .A;�;�/ is
called inner-associativity.

It follows that a weak Rota–Baxter operator on an associative algebra leads to an
inner-associative A3-dendriform algebra.

Example 3.11. LetA be a commutative associative algebra. Every linear map R WA!A

is a weak Rota–Baxter operator since C.A/ D A, and hence leads to an inner-associative
A3-dendriform algebra. To see that it may not be a Loday dendriform algebra, take R D

IdA. Then a � b D a � b D ab and (2.1) cannot be satisfied unless abc D 0 for all
a; b; c 2 A.
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Remark 3.12. The proof of Proposition 3.9 is easily adapted to prove the following gen-
eralization: under the same assumptions on the relations of C , any weak Rota–Baxter
operator R of weight � on an algebra .A; �/ 2 C leads to a C -tridendriform algebra,
upon setting a � b WD R.a/b, a � b WD aR.b/, and a � b WD �ab, for all a; b 2 A.
Again, it suffices to change in the proof the meaning of a ? b, which should now stand for
a � b C a � b C a � b.

Remark 3.13. If we denote by C 0.A/ the set of elements c of A which anticommute
with all elements of A, i.e., ac D �ca for all a 2 A, we can also consider operators R

satisfying (3.3), with C.A/ replaced by C 0.A/. The results of this section, in particular
Proposition 3.9, are easily adapted to the case of such operators. An example of a relation
having an anticommutator form is the relation (2.21) defining AA-algebras.

3.3. Application: coboundary "-bialgebras

As an application of weak Rota–Baxter operators, we now generalize a result obtained by
M. Aguiar in [3], which we will recall. We first recall the definition of a "-bialgebra.

Definition 3.14. A "-bialgebra is a triple .A; �; �/, where A is an R-module and � W
A˝ A! A and � W A! A˝ A are linear maps, such that

(1) � is associative;

(2) � is coassociative;

(3) � is a derivation: �.ab/ D a ��.b/C�.a/ � b, for all a; b 2 A.

In item (3), we have used a dot to denote the natural left, resp. right, action of A on
A˝ A; later on in this section, it will also be used for the natural left and right actions of
A on A˝ A˝ A.

Let .A;�;�/ be a "-bialgebra and let us write �.a/ D
P
.a/ a.1/ ˝ a.2/ for all a 2 A

(Sweedler’s notation). It is shown in [3] that if one defines a ı b WD
P
.b/ b.1/ab.2/ for all

a; b 2 A, then .A; ı/ is a pre-Lie algebra. This yields a functor which associates to any
"-bialgebra .A; �;�/ the corresponding pre-Lie algebra .A; ı/, and which is identity on
morphisms. The fundamental observation of Aguiar is that the restriction of this functor
to quasi-triangular "-bialgebras factors in a natural way through the category of Loday’s
dendriform algebras, as in the diagram

QT "-bialg; �; r "-bialg; �;�

Assocdend;�;� pre-Lie; ı

P
i auibvi ;

P
i uiavib

r �a�a�r

P
.b/ b.1/ab.2/

a�b�b�a

(3.7)

In order to explain this diagram, we first recall from [3] that a quasi-triangular "-bialgebra
is a triple .A;�; r/, where .A;�/ is an associative algebra and r 2 A˝ A is a solution of
the associative Yang–Baxter equation

AYB.r/ WD r13r12 � r12r23 C r23r13 D 0:
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Let .A; �; r/ be a quasi-triangular "-bialgebra and let r D
P
i ui ˝ vi . On the one hand,

setting �r .a/ WD r � a � a � r for all a 2 A, we get a "-bialgebra .A;�;�r /. On the other
hand, the map R W A! A, defined for all a 2 A by R.a/ D

P
i uiavi , is a Rota–Baxter

operator for A, and so, by Proposition 3.2, we get a Loday dendriform algebra .A;�;�/
by setting for all a; b 2 A

a � b WD
X
i

auibvi ; a � b WD
X
i

uiavib: (3.8)

The next proposition gives a natural generalization of this construction.

Proposition 3.15 ([1]). Let .A; �/ be an associative algebra and let r 2 A ˝ A. Then
.A;�;�r/ is a "-bialgebra if and only if AYB.r/ is invariant; i.e., a �AYB.r/DAYB.r/ �a,
for all a 2 A. One then says that .A; �; r/ is a coboundary "-bialgebra.

The natural question arises to generalize Aguiar’s construction to coboundary "-bial-
gebras, which we do in the following proposition.

Proposition 3.16. Let .A; �; r D
P
i ui ˝ vi / be a coboundary "-bialgebra.

(1) The linear map R W A! A, defined for all a 2 A by R.a/ WD
P
i uiavi , is a weak

Rota–Baxter operator for A.

(2) For a;b 2A, let a� b WDR.a/bD
P
i uiavib and a� b WD aR.b/D

P
i auibvi .

Then .A;�;�/ is an inner-associative A3-dendriform algebra.

Proof. In view of Example 3.10, we only need to prove (1). To do this, we show that the
linear map ! WA˝A!A, defined for a;b 2A by !.a˝ b/ WDR.a/R.b/�R.aR.b/C

R.a/b/ satisfies !.a˝ b/c D c!.a˝ b/ for all a; b; c 2 A. We do this by relating ! with
AYB.r/. Without loss of generality, we may assume that A has a unit 1A.

AYB.r/ D r13r12 � r12r23 C r23r13

D

X
i;j

.ui ˝ 1A ˝ vi /.uj ˝ vj ˝ 1A/ �
X
i;j

.ui ˝ vi ˝ 1A/.1A ˝ uj ˝ vj /

C

X
i;j

.1A ˝ ui ˝ vi /.uj ˝ 1A ˝ vj /

D

X
i;j

.uiuj ˝ vj ˝ vi � ui ˝ viuj ˝ vj C uj ˝ ui ˝ vivj /I

!.a˝ b/ D
X
i;j

uiaviuj bvj �R

�X
i

auibvi C
X
i

uiavib

�
D �

X
i;j

.ujauibvivj C ujuiavibvj � uiaviuj bvj /

D �

X
i;j

.uiujavj bvi � uiaviuj bvj C ujauibvivj /:
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If we compare these two expressions and we write AYB.r/ as AYB.r/D
P
kXk˝Yk˝Zk ,

then we see that !.a ˝ b/ D �
P
k XkaYkbZk . The invariance of AYB.r/, which can

be written as
P
k cXk ˝ Yk ˝ Zk D

P
k Xk ˝ Yk ˝ Zkc for all c 2 A therefore yields

!.a˝b/cD�
P
kXkaYkbZkcD�

P
kcXkaYkbZkDc!.a˝b/, as was to be shown.

It leads to the following commutative diagram, generalizing (3.7):

Cob-"-bialg; �; r "-bialg; �;�

Adend
3 ;�;� pre-Lie; ı

P
i auibvi ;

P
i uiavib

r �a�a�r

P
.b/ b.1/ab.2/

a�b�b�a

3.4. Curved Rota–Baxter systems

We show in this paragraph that curved Rota–Baxter systems also provide examples of
inner-associative A3-dendriform algebras. We first recall the definition of such systems
(see [9]).

Definition 3.17. LetA be an associative algebra endowed with linear maps R;S WA!A

and ! W A˝ A! A. The 4-tuple .A;R;S; !/ is called a curved Rota–Baxter system if
the following conditions are satisfied, for all a; b 2 A:

R.a/R.b/ D R
�
R.a/b C aS.b/

�
C !.a˝ b/; (3.9)

S.a/S.b/ D S
�
R.a/b C aS.b/

�
C !.a˝ b/: (3.10)

The definition is easily generalized to arbitrary algebras, but not the results which
follow; this is why we consider only the case of associative algebras. Notice that weak
Rota–Baxter operators on an associative algebra A correspond to curved Rota–Baxter
systems .A;R;S; !/ with R D S and having the property that ! takes values in Z.A/,
the center of A (which coincides with C.A/ because A is associative). Under this corre-
spondence, the following proposition generalizes item (2) of Proposition 3.16.

Proposition 3.18. Let .A;R;S; !/ be a curved Rota–Baxter system. Define two new
products on A by setting a � b WD R.a/b and a � b D aS.b/, for all a; b 2 A. Then
.A;�;�/ is an A3-dendriform algebra if and only if ! takes values in Z.A/. In any case,
.A;�;�/ is inner-associative.

Proof. .A;�;�/ is inner-associative, since for all a; b; c 2 A,

.a � b/ � c D
�
R.a/b

�
� c D R.a/bS.c/ D a �

�
bS.c/

�
D a � .b � c/:

Using (3.10), we find that

.a � b/ � c � a � .b � c C b � c/ D aS.b/S.c/ � aS
�
bS.c/CR.b/c

�
D a!.b ˝ c/;
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and similarly, using (3.9), b � .c � a/�.b � cCb � c/� aD!.b˝c/a. So, (2.15) is sat-
isfied (i.e., .A;�;�/ is an A3-dendriform algebra) if and only if a!.b˝ c/D !.b˝ c/a,
for all a; b; c 2 A; in turn, this is equivalent to !.b ˝ c/ 2 Z.A/, for all b; c 2 A.

The proof also shows that when ! D 0, the A3-dendriform algebra which is obtained
is a Loday dendriform algebra; this was already observed in [10].

It was proven in [9] that, if .A;R;S;!/ is a curved Rota–Baxter system and we define
a new product on A by a ı b D R.a/b � bS.a/, then .A; ı/ is a pre-Lie algebra if and
only if !.a˝ b � b˝ a/ 2Z.A/, for all a;b 2A. In particular, .A;ı/ is a pre-Lie algebra
when ! takes values in Z.A/. We recover this result as a direct consequence of Example
2.10 and Proposition 3.18.

Example 3.19. Let A be an associative algebra and let R;S W A ! A be a left (resp.
right) Baxter operator; i.e., R.a/R.b/ D R.R.a/b/ and S.a/S.b/ D S.aS.b//, for all
a; b 2 A, satisfying the extra condition that

R.a/S.b/ D R
�
aS.b/

�
D S

�
R.a/b

�
for all a;b 2A. Then .A;R;S;!/ is a curved Rota–Baxter system, where ! WA˝A!A

is defined by !.a ˝ b/ D �R.a/S.b/. If moreover R.a/;S.a/ 2 Z.A/ for all a 2 A,
then ! takes values inZ.A/, and hence Proposition 3.18 can be applied to yield an (inner-
associative) A3-dendriform algebra. A particular case of this example already appears in
[9], where it is shown that if r D

P
i xi ˝ yi and s D

P
j zj ˝wj are invariant, then the

linear maps R;S W A! A and ! W A˝ A! A, defined for a 2 A by

R.a/ WD
X
i

xiayi ; S.a/ WD
X
j

zjawj ; !.a˝ b/ D �R.a/S.b/;

make .A;R;S; !/ into a curved Rota–Baxter system.

4. Dendriform algebras in polarized form

We now introduce the notion of a dendriform algebra for polarized algebras and relate it
to the one of dendriform algebra, introduced in Section 2.

4.1. Polarized algebras

We first define the notion of a polarized algebra. The choice of the terminology polarized
will become clear in Section 4.4.

Definition 4.1. An algebra .A; �; Œ�; ��/ is said to be a polarized algebra when “�” is com-
mutative and Œ�; �� is anticommutative.

Example 4.2. If .A; �/ is a commutative algebra, any anticommutative product Œ�; �� on A
makes it into a polarized algebra .A; �; Œ�; ��/.
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Example 4.3. Recall (for example from [18]) that an algebra .A; �; ¹�; �º/ is a Poisson
algebra if .A; �/ is a commutative associative algebra, .A; ¹�; �º/ is a Lie algebra, and the
two products are compatible in the sense that ¹a � b; cº D a � ¹b; cº C ¹a; cº � b for all
a; b; c 2 A. Clearly, every Poisson algebra .A; �; ¹�; �º/ is a polarized algebra.

4.2. Polarized C -dendriform algebras

In analogy with Definition 2.3, we now define the notion of a dendriform algebra for a
polarized algebra. Here, R1 D 0; : : : ;Rk D 0 are given relations involving the products
“�” and Œ�; �� (only). The category of all polarized algebras satisfying these relations is
denoted by Cpol. The morphisms in Cpol are the algebra homomorphisms.

Definition 4.4. An algebra .A; �; ı/ is said to be a polarized C -dendriform algebra if
.A � A;ˇ; ŒŒ�; ���/ 2 Cpol, whereˇ and ŒŒ�; ��� are defined, for .a; x/ and .b; y/ in A � A, by

.a; x/ˇ .b; y/ WD .a � b C b � a; a � y C b � x/; (4.1)

ŒŒ.a; x/; .b; y/�� WD .a ı b � b ı a; a ı y � b ı x/: (4.2)

The category of all polarized C -dendriform algebras (overR) is denoted by Cdend
pol . The

morphisms in this category are the algebra homomorphisms. Setting x D y D 0 in (4.1)
and in (4.2), we see that we have again a faithful functor Cdend

pol ! Cpol, defined on objects
by .A;�; ı/ 7! .A; �; Œ�; ��/, where the two new products on A are defined, for all a; b 2 A,
by

a � b WD a � b C b � a and Œa; b� WD a ı b � b ı a: (4.3)

Remark 4.5. The above definition of a polarized C -dendriform algebra admits the fol-
lowing natural generalization. An algebra .A; �; ı; j;�/ is said to be a polarized C -
tridendriform algebra if .A; j;�/ is a polarized algebra and .A�A;ˇ; ŒŒ�; ���/2Cpol, where
ˇ and ŒŒ�; ��� are defined for .a; x/ and .b; y/ in A � A, by

.a; x/ˇ .b; y/ WD .a � b C b � aC a j b; a � y C b � x C x j y/; (4.4)

ŒŒ.a; x/; .b; y/�� WD .a ı b � b ı aC a� b; a ı y � b ı x C x� y/: (4.5)

We have a functor from the category C trid
pol of all polarized C -tridendriform algebras to

Cpol, defined on objects by .A;�; ı; j;�/ 7! .A; �; Œ�; ��/, where

a � b WD a � b C b � aC a j b and Œa; b� WD a ı b � b ı aC a� b;

for all a; b 2 A. It is the identity on morphisms.

4.3. Algebras defined by multilinear relations

In the case of multilinear relations, the relations which every polarized C -dendriform alge-
bra must satisfy can be easily computed, as we show for a trilinear relation RD 0. Thanks



C. Ospel, F. Panaite, and P. Vanhaecke 582

ˇ b0 b1

a0 a � b C b � a
0

a � b1

a1 b � a1 .0; 0/

ŒŒ�; ��� b0 b1

a0 a ı b � b ı a0 a ı b1

a1 �b ı a1 .0; 0/

Table 3. The productsˇ and ŒŒ�; ��� for generators of A � A.

to commutativity and anticommutativity, R is of the form

R.a1; a2; a3/ D
X
�2A3

�� .a�.1/ � a�.2// � a�.3/ C
X
�2A3

�0�
�
a�.1/; Œa�.2/; a�.3/�

�
C

X
�2A3

�00� Œa�.1/; a�.2/� � a�.3/ C
X
�2A3

�000� Œa�.1/ � a�.2/; a�.3/�;

where the 12 constants �� ; : : : ; �000� belong to R. In Table 3, we exhibit the productsˇ and
ŒŒ�; ��� in terms of a generating set of A � A.

The observations made in the case of algebras with one product are, mutatis mutan-
dis, also valid here; namely, the relations are trivially satisfied when one takes at least
two elements in A1, and the relation which is obtained by taking all elements in A0 is a
consequence of the relations which are obtained by taking two elements in A0 and taking
the other element in A1. To see the latter claim, it suffices to consider, as in (2.8), the
following formulas, which follow easily from Table 3:

.a0 ˇ b0/ˇ c1 C .a0 ˇ b1/ˇ c0 C .a1 ˇ b0/ˇ c0 D .a � b/ � c0
;

ŒŒa0; b0��ˇ c1 C ŒŒa0; b1��ˇ c0 C ŒŒa1; b0��ˇ c0 D Œa; b� � c1
;

ŒŒa0 ˇ b0; c1��C ŒŒa0 ˇ b1; c0��C ŒŒa1 ˇ b0; c0�� D Œa � b; c�1
;

ŒŒŒŒa0; b0��; c1��C ŒŒŒŒa0; b1��; c0��C ŒŒŒŒa1; b0��; c0�� D ŒŒa; b�; c�1
;

together with the four formulas corresponding to the other parenthesizing. We have used
(4.3) to write the above formulas in a compact form.

Example 4.6. We return to the example of a Poisson algebra and show how to obtain the
relations in the corresponding dendriform category, which we denote by P dend

pol . We start
with associativity ofˇ, taking first a0; b0 2 A0 and c1 2 A1, from which we find that

.a � b C b � a/ � c
1
D .a0 ˇ b0/ˇ c1 D a0 ˇ .b0 ˇ c1/ D a � .b � c/1

;

so that
a � .b � c/ D .a � b C b � a/ � c; (4.6)

for all a; b; c 2 A, which means that .A; �/ is a Zinbiel algebra (see Example 2.15).
Similarly, taking a0; c0 2 A0 and b1 2 A1, we find c � .a � b/ D a � .c � b/ for all
a; b; c 2 A, which means that .A; �/ is a NAP algebra. Since every Zinbiel algebra is a
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NAP algebra, we do not need to state the NAP condition for �. By symmetry we do not
need to consider the case of b0; c0 2 A0 and a1 2 A1. Similarly, the derivation property
Œa � b; c�D Œa; c� � b C a � Œb; c� is symmetric in a and b, so we get by the above procedure
only two equations, which can be written in the following symmetric form:

.a � b C b � a/ ı c D a � .b ı c/C b � .a ı c/; (4.7)

.a ı b � b ı a/ � c D a � .b ı c/ � b ı .a � c/: (4.8)

Finally, because the Jacobi identity is symmetric in all of its variables, we get only one
equation from the Jacobi identity, namely the pre-Lie condition

.a ı b � b ı a/ ı c D a ı .b ı c/ � b ı .a ı c/: (4.9)

It follows that (4.6)–(4.9) are the four relations of P dend
pol . An algebra .A; �; ı/ which

satisfies (4.6)–(4.9) (i.e., an algebra in P dend
pol ) is exactly what M. Aguiar in [2] calls a pre-

Poisson algebra. Thus, our general procedure to obtain Cdend
pol from Cpol yields a canonical

way to obtain the concept of a pre-Poisson algebra from the concept of a Poisson algebra.

Remark 4.7. The above procedure also applies to polarized C -tridendriform algebras and
the comments in Remark 2.7 also apply here.

Example 4.8. We continue Example 4.6 and give the relations which an algebra .A;�; ı;
j;�/must satisfy in order to be a polarized P -tridendriform algebra. We get the following
three equations from associativity, where the first one is obtained using the same substi-
tutions as (4.6), while the two other equations are obtained respectively by substituting in
the associativity relation two or three elements from A0:

a � .b � c/ D .a � b/ � c C .b � a/ � c C .a j b/ � c;

a � .b j c/ D .a � b/ j c;

a j .b j c/ D .a j b/ j c:

By symmetry, the Jacobi identity implies that we only get three relations from it, by sub-
stituting respectively one, two or three elements from A0:

a ı .b ı c/ � b ı .a ı c/ D .a ı b � b ı aC a� b/ ı c;
.a ı b/� c D a ı .b� c/C .a ı c/� b;

0 D .a� b/� c C b� .c� a/C c� .a� b/:

Finally, the derivation property leads to the following five relations:

a � .b ı c/C b � .a ı c/ D .a � b C b � aC a j b/ ı c;

a � .b ı c/ � b ı .a � c/ D .a ı b � b ı aC a� b/ � c;
.a � b/� c D a � .b� c/C b j .a ı c/;
c ı .a j b/ D a j .c ı b/C b j .c ı a/;

.a j b/� c D a j .b� c/C b j .a� c/:
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These 11 equations are, together with the commutativity and anticommutativity of j and
�, precisely the 13 relations [23, equations (48)–(60)] which define the notion of a post-
Poisson algebra.

4.4. Polarization

We now show how the two notions of dendriform algebras of Sections 2.2 and 4.2 are
related. Following [22], given an algebra .A;�/, two new products “�” and Œ�; �� are defined
on A by setting

a � b WD
1

2
.ab C ba/ and Œa; b� WD

1

2
.ab � ba/; (4.10)

for all a; b 2 A. This procedure is called polarization. We can easily reconstruct � from
these products, because ab D a � bC Œa; b�, for all a; b 2 A; this is what is called depolar-
ization. So we have a natural way to associate to each algebra .A; �/ a polarized algebra
.A; �; Œ�; ��/ and vice-versa.

Example 4.9. The P-algebras introduced in Example 2.13 correspond by polarization/de-
polarization to Poisson algebras; see [22]. This explains why we call the latter P-algebras.

For given relations R1 D 0; : : : ;Rk D 0 (in one operation), we have constructed four
categories C , Cpol, Cdend, and Cdend

pol and three functors, as in the following diagram, which
we completed into a square by adding a pair of inverse arrows between Cdend and Cdend

pol ;
the commutativity of the diagram is easily established.

C ; � Cpol; �; Œ�; ��

Cdend;�;� Cdend
pol ;�; ı

.abCba/=2;.ab�ba/=2

a�bCŒa;b�

a�bCa�b

a�bCb�a
2 ; a�b�b�a2

a�bCb�a;aıb�bıa

b�a�bıa;a�bCaıb

(4.11)

In analogy with the upper arrows, we call the lower arrows polarization and depolariza-
tion. Since polarization and depolarization are inverse operations, the horizontal arrows
define functors which are isomorphisms of categories.

Notice that by commutativity of the diagram, a polarized C -dendriform algebra can
also be defined as an algebra .A; �; ı/ whose depolarizated algebra .A;�;�/ is a C -
dendriform algebra (which justifies the terminology). Indeed, according to the definition
and by depolarization, .A;�; ı/ 2 Cdend

pol if and only if .A � A; �/ 2 C , with

.a; x/ � .b; y/ D .a; x/ˇ .b; y/C ŒŒ.a; x/; .b; y/��

D .b � a � b ı aC a � b C a ı b; a � y C a ı y C b � x � b ı x/

D .a � b C a � b; a � y C x � b/:

We have obtained exactly the condition that the depolarized form .A;�;�/ of .A; �; ı/
belongs to Cdend (see Definition 2.3), showing our claim.
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Remark 4.10. Polarization and depolarization can also be defined for tridendriform and
polarized tridendriform algebras, leading, for any category of algebras C as above, to an
isomorphism of the category C trid of C -tridendriform algebras and the category C trid

pol of
polarized C -tridendriform algebras. On objects, the pair of inverse isomorphisms is given
by

C trid;�;�; � C trid
pol ;�; ı; j;�

a�bCb�a
2 ; a�b�b�a2 ; abCba2 ; ab�ba2

b�a�bıa;a�bCaıb;ajbCa�b
: (4.12)

They extend the pair of lower arrows in (4.11) and lead to a commutative diagram, as in
(4.11).

Example 4.11. In the case of P-algebras and Poisson algebras, the above results can be
summarized in the following commutative diagram, in which the horizontal arrows are
given by the horizontal arrows in (4.11) and (4.12):

P ; � Ppol; �; Œ�; ��

P trid;�;�; � P trid
pol ;�; ı; j;�

P dend;�;� P dend
pol ;�; ı

a�bCa�bCa�b a�bCb�aCajb;aıb�bıaCa� b

a�b;a�b;0 a�b;aıb;0;0

It was already pointed out by M. Aguiar in [2] that, if .A; �; ı/ 2 P dend
pol , i.e., if it is

a pre-Poisson algebra, and we define new operations on A by a � b D a � b C b � a and
¹a;bº D a ı b � b ı a, for all a;b 2A, then .A; �; ¹�; �º/ is a Poisson algebra. It corresponds
to the composition of the two right arrows in the diagram.

4.5. Application I: deformations of dendriform algebras

In [2], M. Aguiar introduced the notion of deformation for a commutative Loday dendri-
form algebra .A;�;�/ and he showed that such a deformation makes .A;�;ı/ into a
pre-Poisson algebra, where � stands for � and where the productı on A is constructed
from the first-order deformation terms of the products � and �. In this section, we gener-
alize this result to arbitrary C -dendriform algebras, giving a conceptual proof of Aguiar’s
result.

As before, C denotes in this section the category of all R-algebras satisfying a fixed
set of relations R1 D 0; : : : ;Rk D 0. Let � be an indeterminate and let R� denote the ring
of formal power series RŒŒ���. More generally, for any R-module A we denote by A� the
R�-module of formal power series in � with coefficients in A. For a formal power series
X 2 A� , its evaluation at 0, which is the constant term of X , is denoted by X0.
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Definition 4.12. Let .A;�0;�0/ be a commutative C -dendriform algebra and denote
a � b WD a �0 b D b �0 a for all a; b 2 A. An R�-algebra .A� ;�;�/ is said to be a
formal deformation of .A;�0;�0/ if .A� ;�;�/ is a C -dendriform algebra over R� and
for any a; b 2 A,

.a � b/0 D a �0 b and .a � b/0 D a �0 b:

We can then define a new product on A by setting, for all a; b 2 A,

aı b WD
a � b � b � a

2�

ˇ̌̌
�D0

: (4.13)

The algebra .A;�;ı/ is called the infinitesimal algebra of the deformation.

The question which we study here is to which category .A;�;ı/ belongs. When C

is the category of associative algebras, the answer is provided by Aguiar [2], who showed
that .A;�;ı/ is a pre-Poisson algebra.

Let M be a monomial which involves the products “�” and Œ�; �� only. We define the
weight of M as the number of operations Œ�; �� in M . Similarly, for a monomial zM in
the products � and ı, its weight is the number of operations ı in zM . A sum of such
monomials is said to be homogeneous of weight m if each of its terms has weight m. The
lowest weight part of R is denoted by R. Finally, we denote by Cpol (resp. by Cdend

pol ) the
category of all R-algebras satisfying all relations R D 0, where R runs through the linear
space of relations of Cpol (resp. of Cdend

pol ).

Proposition 4.13. Let .A� ;�;�/ be a formal deformation of a commutative algebra
.A;�0;�0/ 2 Cdend, with deformation algebra .A;�;ı/. Then

.A;�;ı/ 2 Cdend
pol : (4.14)

In particular, when the relations of Cdend
pol are generated by weight homogeneous relations,

then .A;�;ı/ 2 Cdend
pol . Also, when the relations of C are multilinear, Cdend

pol D .Cpol/
dend,

so that .A;�;ı/ 2 .Cpol/
dend.

Proof. We prove here only that .A;�;ı/ 2 Cdend
pol , leaving the more technical proof that

Cdend
pol D .Cpol/

dend to the end of the section.
Given a formal deformation .A� ;�;�/, we can construct by polarization an algebra

.A� ; �; ı/, which is a polarized dendriform algebra over R� . We define new products �i
and ıi on A by setting for all a; b 2 A,

a � b D a �0 b C a �1 b� C a �2 b�
2
C � � � ;

a ı b D a ı0 b C a ı1 b� C a ı2 b�
2
C � � � : (4.15)

Since, by polarization, a ı b D .a � b � b � a/=2 and a � b D .a � b C b � a/=2 (see
(4.11)), we have by commutativity of .A;�;�/ that a �0 b D a � b and that a ı0 b D 0;
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also, the definition ofı implies that a ı1 b D aı b for all a; b 2 A. Hence, (4.15) can
be rewritten as

a � b D a � b C a �1 b� C a �2 b�
2
C � � � ; (4.16)

a ı b D aı b� C a ı2 b�2 C � � � ; (4.17)

where the dots stand for terms containing �i with i > 2. Suppose now that R D 0 is a
relation of Cdend

pol . Writing R as R�;ı to indicate the products which are involved, we may
also consider R�;ı. We need to show that R�;ı.a1; : : : ; an/ D 0 for all a1; : : : ; an 2 A.
To do this, consider the relation R�;ı.a1; : : : ; an/ D 0. In view of (4.16) and (4.17),

R�;ı.a1; a2; : : : ; an/ D R�;ı.a1; a2; : : : ; an/�
d
C � � � ; (4.18)

where d denotes the lowest weight of the terms of R, i.e., the weight of R. It follows that
.A;�;ı/ satisfies the relation R�;ı D 0, as was to be shown.

Example 4.14. Let C be the category of all associative algebras (overR). Then, by polar-
ization, the following are the relations in Cpol (see [22]):

Œa � b; c� D a � Œb; c�C Œa; c� � b; (4.19)�
Œa; b�; c

�
D .b � c/ � a � .c � a/ � b: (4.20)

Recall that (4.20) implies the Jacobi identity, which is weight homogeneous (of weight
2), just like the derivation property (4.19) (of weight 1). Notice that the lowest weight
part of (4.20) is .b � c/ � a D .c � a/ � b, which is associativity (since “�” commutative).
It follows that Cpol is the category of Poisson algebras, hence that Cdend

pol is the category
of pre-Poisson algebras. This shows that the infinitesimal algebra of a deformation of a
Loday dendriform algebra is a pre-Poisson algebra, as was first shown by Aguiar [2].

Example 4.15. The relations which define Poisson algebras (see Example 4.3) are 3-lin-
ear and homogeneous: associativity is of weight 0, the derivation property is of weight 1,
and the Jacobi identity is of weight 2. For A3-associative algebras and LA-algebras in
polarized form, the relations are also easily written in a homogeneous form. It follows
that the second part of Proposition 4.13 can be applied to these algebras: in each of these
cases, the infinitesimal algebra .A;�;ı/ of the deformation belongs to Cdend

pol .

Remark 4.16. Proposition 4.13 is easily adapted to the classical case of formal defor-
mations .A; �/ of commutative algebras .A; �0/ 2 C . The infinitesimal algebra is then
defined as .A; �0;˘/, where

a ˘ b WD
�.a; b/ � �.b; a/

2�

ˇ̌̌
�D0

:

One shows as in the proof of Proposition 4.13 that .A;�0;˘/2Cpol. In the case of associa-
tive algebras, Cpol is the category of Poisson algebras (see Example 4.14), so we recover
the classical result that the infinitesimal algebra of a deformation of an associative algebra
is a Poisson algebra.
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Remark 4.17. One may also consider more generally deformations of C -tridendriform
algebras. Recall that in a commutative C -tridendriform algebra .A; �; �; �/, one also
requires the last product to be commutative. The weight of a relation R D R�;ı;j;� is
now defined such that � and j have weight 0, while ı and � have weight 1. It is clear
that all the above results generalize to this case. The infinitesimal algebra has now four
operations. For example, when C is the category of associative algebras, the infinitesimal
algebra is a post-Poisson algebra (see Example 4.8).

Remark 4.18. We have considered deformations of commutative dendriform algebras,
but everything can be easily adapted to anticommutative dendriform algebras: the roles of
� and ı are exchanged in the sense that one will have now that �0 D 0, that �1 D �, and
ı0 Dı, where .A;ı/ is the original anticommutative dendriform algebra (written as an
algebra with one operation). As we have seen in Section 2.5, A3-associative, LA, and P-
algebras which are anticommutative are Lie algebras, so there are many natural examples
of this case.

To finish this section, we prove that when the relations of C are multilinear, Cdend
pol D

.Cpol/
dend, as stated in Proposition 4.13. The property says that the lowest weight parts of

all relations in Cdend
pol are obtained by dendrifying the lowest weight parts of all relations in

Cpol. Notice that since each dendrification of a monomial of weight k (involving the prod-
ucts “�” and Œ�; �� only) is homogeneous of weight k, one has that all algebras in .Cpol/

dend

are also algebras of Cdend
pol . We therefore only need to prove the reciprocal inclusion.

We may restrict ourselves to n-linear relations, for a fixed n, since the dendrification
of a k-linear relation is k-linear; i.e., we may suppose that all relations R1; : : : ;Rk of
Cpol, and hence also of Cdend

pol , are n-linear.

For 0 6 ` 6 n, consider the free R-modules M` and zM`, generated by all `-linear
monomials M involving only the (commutative and anticommutative) products “�” and
Œ�; ��, respectively generated by all `-linear monomials zM involving only the products �
and ı in n variables, say x1; : : : ; xn. Their direct sums are denoted by M and zM, respec-
tively. Elements of M` and zM` are also said to be of length `; notice that the weight of a
monomial of length ` is between 0 and ` � 1 (included). The modules M` and zM` admit
natural decompositions

M` DM0
` ˚ � � � ˚M`�1

` and zM` D
zM0
` ˚ � � � ˚

zM`�1
` ;

where Mi
`
� M` and zMi

`
� zM` are the submodules generated by the monomials of

weight i . Each monomial M of M` of length at least two can be decomposed as M D
M1 �M2 or M D ŒM1;M2�; this decomposition is unique up to the order of the factors.

We describe the process of dendrification of multilinear relations of Cpol, introduced
and studied in Section 4.3, in terms of the linear maps

'0; '1; : : : ; 'n WM! zM;
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which we define on monomials M , using induction on the length of M :

'0.M/ WD

8̂̂<̂
:̂
xi if M D xi ;

'0.M1/ � '0.M2/C '0.M2/ � '0.M1/ if M DM1 �M2;

'0.M1/ ı '0.M2/ � '0.M2/ ı '0.M1/ if M D ŒM1;M2�;

and for p D 1; : : : ; n we define

'p.M/ WD

8̂̂̂̂
<̂
ˆ̂̂:
0 if M is independent of xp;

xp if M D xp;

'0.M1/ � 'p.M2/ if M DM1 �M2 and M2 depends on xp;

'0.M1/ ı 'p.M2/ if M D ŒM1;M2� and M2 depends on xp:

It is clear that these maps are well defined and that they preserve the length and the weight
of a monomial. Notice that, by construction, in all terms of 'p.M/ the variable xp is
located at the last position. Therefore, the images of the maps '1; : : : ; 'n are in direct
sum.

To see the relation with dendrification, let R D 0 be an n-linear relation of Cpol. Then
R 2M and for p D 1; : : : ; n, the relation 'p.R/D 0 is precisely the relation obtained by
substituting in R�;Œ�;�� for the pth variable .0; xp/ and for the qth variable .xq; 0/, where
q ¤ p.

Lemma 4.19. The maps '0; : : : ; 'n are injective.

Proof. Let zM be a monomial of zM. We show that there exists a unique monomialM 2M

such that zM is a term of '0.M/; from it the injectivity of '0 is clear.
We do this by induction on the length of zM . When zM is of length 1, the claim is

trivially true, so let us assume that the claim is true for monomials of length strictly less
than some ` > 2. Let zM be a monomial of zM of length `. We can write zM uniquely
as zM D zM1 � zM2 or zM D zM1 ı zM2, up to the order of the factors. By the induction
hypothesis there exists a unique couple .M1; M2/ such that zM1 and zM2 are terms of
'0.M1/ and '0.M2/, respectively, and hence such that zM is a term of '0.M1/ � '0.M2/

or '0.M1/ ı '0.M2/, depending on whether zM D zM1 � zM2 or zM D zM1 ı zM2. It follows
that, if we defineM WDM1 �M2 orM WD ŒM1;M2�, depending on whether zM D zM1 � zM2

or zM D zM1 ı zM2, then '0.M/ D zM . Since the decomposition of zM is unique up to the
order of the factors, M is unique. This shows the claim, and hence the injectivity of '0.

In order to show the injectivity of the other maps '1; : : : ; 'n, one proceeds in a similar
way: one shows as above that given any monomial zM of zM there exists a unique monomial
M of M and a unique integer p 2 ¹1; : : : ; nº such that zM is a term of 'p.M/.

Lemma 4.20. Let R1; : : : ;Rk 2 Mn. For any constants �pi 2 R .1 6 i 6 k and p D
1; : : : ; n/, not all equal to zero,

kX
iD1

nX
pD1

�
p
i 'p.Ri / D

nX
pD1

'p

0@ kX
iD1

�
p
i Ri

1A : (4.21)
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Proof. For i D 1; : : : ; k, let Ri DR0
i C � � � CRn�1

i be the weight decomposition of Ri .
By R-linearity of the maps 'p ,

kX
iD1

nX
pD1

�
p
i 'p.Ri / D

n�1X
`Dm

A`; where A` D
nX

pD1

'p

� kX
iD1

�
p
i R`

i

�
;

and where m is chosen such that A0; : : : ; Am�1 D 0 and Am ¤ 0. Since the maps 'p
are weight-preserving, A` is homogeneous of weight `, and so Am is equal to the left-
hand side of (4.21). Let 0 6 ` < m. Then

Pn
pD1 'p.

Pk
iD1 �

p
i R`

i / D A` D 0, so that
'p.

Pk
iD1 �

p
i R`

i / for all p, since the images of the maps '1; : : : ; 'n are in direct sum.
Since the maps 'p are injective (Lemma 4.19), this implies that

Pk
iD1 �

p
i R`

i D 0 for
` D 0; : : : ; m � 1. Also,

Pk
iD1 �

p
i Rm

i ¤ 0 since Am ¤ 0. It follows that

kX
iD1

�
p
i Ri D

kX
iD1

n�1X
`D0

�
p
i R`

i D

kX
iD1

�
p
i Rm

i ;

so that Am is also equal to the right-hand side of (4.21).

We use Lemma 4.20 to show that all algebras in Cdend
pol are also algebras of .Cpol/

dend,
so that Cdend

pol D .Cpol/
dend. Suppose that R1 D 0; : : : ;Rk D 0 is a basis for the module

of all n-linear relations of Cpol. Let R D 0 be a relation of Cdend
pol . By definition, R is

the lowest weight part of
Pk
iD1

Pn
pD1 �

p
i 'p.Ri /, for some constants �pi . In view of the

lemma, R is obtained by dendrification of some relations in Cpol, namely the p relationsPk
iD1 �

p
i Ri D 0, for p D 1; : : : ; n. This shows that R D 0 is a relation of .Cpol/

dend.

4.6. Application II: filtered dendriform algebras

As a second application of polarized dendriform algebras, we generalize another result
of Aguiar [2], which is itself an analogue for Loday’s dendriform algebras of the well-
known result which says that the graded algebra associated to an almost commutative
filtered associative algebra is a Poisson algebra.

Let .A;�;�/ be an algebra. An (increasing) filtration on A is an increasing sequence
of subspaces A0 � A1 � A2 � � � � such that

A D
[
i>0

Ai and .Ai � Aj C Ai � Aj / � AiCj ;

for all i; j > 0. Then A is called a filtered algebra. It is convenient to set Ai WD ¹0º for
i < 0. The associated graded algebra is, as an R-module,

gr.A/ WD
M
i>0

Ai

Ai�1
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and inherits two products from � and �, which are still denoted by � and �. They are
(well-) defined by setting, for a 2 Ai and b 2 Aj , with i; j > 0,

.aC Ai�1/ � .b C Aj�1/ WD .a � b C AiCj�1/ 2
AiCj

AiCj�1
;

and similarly for �. As in the case of algebras with one operation, A and gr.A/ are canon-
ically isomorphic as R-modules, but not as algebras. It is however clear that any n-linear
relation which is satisfied by the original products� and�will be satisfied by the induced
products.

We will be interested in almost commutative filtered algebras, which have the property
that the associated graded algebra is commutative, i.e., that a � b D b � a for all a; b 2
gr.A/. As before, we then view gr.A/ as an algebra with one operation� (setting, as usual,
� equal to �), and gr.A/ can be equipped with another product, defined for a 2 Ai and
b 2 Aj , with i; j > 0 by

.aC Ai�1/ı .b C Aj�1/ WD .a � b � b � aC AiCj�2/ 2
AiCj�1

AiCj�2
: (4.22)

The question is now again to which category .gr.A/; �;ı/ belongs. When C is the
category of associative algebras, Aguiar’s answer is that .gr.A/;�;ı/ is a pre-Poisson
algebra, as in the case of deformations (see [2]). We will give here the answer for arbi-
trary algebras; as we will see, the result is very similar to the result which we obtained
for deformations (Section 4.5). The definitions and assumptions are the same as in the
latter section, except that the relations of C (and hence of Cpol) are supposed here to be
multilinear.

Proposition 4.21. Suppose that the relations of C are multilinear. Let .AD
S
i Ai ;�;�/

be a commutative filtered algebra in Cdend. On gr.A/, consider the product �, defined for
a; b 2 gr.A/ by a � b WD a � b, as well as the productı, defined by (4.22). Then�

gr.A/;�;ı
�
2 Cdend

pol D .Cpol/
dend:

Proof. As in the proof of Proposition 4.13, we use polarization to transform the defor-
mation into an algebra of Cdend

pol . Namely, by polarization, we have a filtered algebra
.A;�; ı/ 2 Cdend

pol , having the property that

Ai � Aj � AiCj and Ai ı Aj � AiCj�1: (4.23)

In terms of � and ı, the above definitions of � andı now amount to setting, for a 2 Ai
and b 2 Aj ,

.aC Ai�1/ � .b C Aj�1/ WD a � b C AiCj�1; (4.24)

.aC Ai�1/ı .b C Aj�1/ WD a ı b C AiCj�2: (4.25)
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Suppose now that R D R�;ı is an n-linear relation of Cdend
pol and recall that we denote the

lowest weight part of R by R. The weight of R is denoted by d . Let a1; a2; : : : ; an 2 A
with ai 2 Aji for i D 1; : : : ; n. Then

R�;ı.a1 C Aj1�1; : : : ; an C Ajn�1/

D R�;ı.a1; : : : ; an/C Aj1C���Cjn�d�1

D R�;ı.a1; : : : ; an/C Aj1C���Cjn�d�1

D Aj1C���Cjn�d�1;

where we used in the last step that .A; �; ı/ satisfies R. It follows that .gr.A/; �;ı/
satisfies the relation R D 0. Therefore, .gr.A/;�;ı/ satisfies all relations of Cdend

pol , and
so .gr.A/;�;ı/ 2 Cdend

pol .

Example 4.22. We return once more to the case where C is the category of associative
algebras. We have already analyzed the relations defining Cdend

pol in Example 4.14 where
we have shown that the lowest weight terms of the relations are the relations which define
a pre-Poisson algebra. Hence, we find that if .A;�;�/ is an almost commutative fil-
tered Loday dendriform algebra, then .gr.A/;�;ı/ is a pre-Poisson algebra. We thereby
recover Aguiar’s result, cited above.

The strong similarity between our results on filtrations and on deformations is not
accidental. Indeed, let .A� ; �; �/ be a formal deformation of a commutative algebra
.A;�0;�0/ 2 Cdend, where we assume that the relations which define C are multilin-
ear. Setting A�i WD �

iA� for all i 2 N it is clear that .A� ;�;�/ is a filtered C -dendriform
algebra. Notice that the filtration is descending, so that gr.A�/ is now defined as gr.A�/ WDL
i>0 A

�
i =A

�
iC1, and that gr.A�/ is commutative. Though ascending and descending fil-

trations (indexed by N) are from many points of view different, it is easily verified that
the above results on ascending filtrations hold also for descending filtrations. In partic-
ular, .gr.A�/;�;ı/ 2 Cdend

pol , as in Proposition 4.21. Under the canonical isomorphisms
A�i =A

�
iC1 ' A, valid for all i 2 N, we get that .A;�;ı/ 2 Cdend

pol , where the latter prod-
ucts on A are inherited from the products on gr.A/. It is easily checked that .A;�;ı/ is
the deformation algebra of .A� ;�;�/. This shows that under the extra assumption that
the relations defining Cdend

pol are multilinear, Proposition 4.13 is a consequence of Proposi-
tion 4.21. It should now be clear that all remarks made in Section 4.5 also apply to almost
commutative (or anticommutative) filtered algebras (always under the assumption that the
relations defining Cdend

pol are multilinear).

Acknowledgments. Parts of this paper have been written while the second author was a
visiting professor at the University of Poitiers in June 2018.
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