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Spectral triples with multitwisted real structure

Ludwik Dąbrowski and Andrzej Sitarz

Abstract. We generalize the notion of spectral triple with reality structure to spectral triples with
multitwisted real structure, the class of which is closed under the tensor product composition. In
particular, we introduce a multitwisted first-order condition (characterizing the Dirac operators as
an analogue of first-order differential operator). This provides a unified description of the known
examples, which include rescaled triples with the conformal factor from the commutant of the alge-
bra and (on the algebraic level) triples on quantum disc and on quantum cone, that satisfy twisted
first-order condition of Brzeziński et al. (2016, 2019), as well as asymmetric tori, non-scalar confor-
mal rescaling and noncommutative circle bundles. In order to deal with them, we allow twists that
do not implement automorphisms of the algebra of spectral triple.

1. Introduction

Spectral triples were introduced in [3] as a setup to generalize differential geometry to
noncommutative algebras, that carries topological information and allows explicit analytic
computations of index parings [8]. The concept of real spectral triples [4] was motivated
by successful applications to the Standard Model of particle physics and also by the quest
for the equivalence in the commutative case with the geometry of spin manifolds, culmi-
nating in the reconstruction theorem [5]. The role of the real structure in noncommutative
examples became evident in the relation between the classes of equivariant real spectral
triples and the spin structures on noncommutative tori [17].

While the theory of real spectral triples gained more and more examples [7, 10, 15],
some interesting noncommutative geometries did not fit into the original set of axioms for
real spectral triples (unbounded K-cycles). Remarkable ones were the twisted (or modular)
spectral triples on the curved noncommutative torus [9], intensively studied afterwards
(see [14] for a review of results of curvature computations). A scheme to incorporate the
noncommutative analogue of conformally rescaled geometries in the framework of usual
spectral triples was proposed in [1]. Therein the Dirac operator is rescaled by a positive
element from the commutant of the algebra, thus maintaining the bounded commutator
with elements of the algebra, but leading to a twisted reality structure, together with a
generalized first-order condition. This construction was further studied in [2], where the
relation between spectral triples with twisted real structure and real twisted spectral triples
[16] was uncovered.
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Yet even these generalizations do not embrace the recent examples of partially rescaled
conformal torus [13] and spectral triples over a circle bundle with the Dirac operator
compatible with a given connection [12]. Moreover, neither the class of spectral triples
with a twisted first-order condition nor the twisted spectral triples is closed under the
tensor product composition of spectral triples. We propose here a construction which com-
plies with tensor product of spectral triples, allows for fluctuations, and covers almost all
known interesting and geometrically motivated examples. To avoid confusion with twisted
spectral triples (and real twisted spectral triples), we use the name spectral triples with
(multi)twisted real structure or, for brevity, (multi)twisted-real spectral triples.

2. Multitwisted real structure for spectral triples
Consider a spectral triple .A;H;D/, where A is an �-algebra identified with a subalgebra
of bounded operators B.H/ on a Hilbert spaceH , andD is a densely defined self-adjoint
operator on H such that D has a compact resolvent and for each a 2 A the commutator
ŒD; a� is bounded. Let J be an antilinear isometry on H , such that J 2 D ˙1 and

Œa; J bJ�1� D 0; (2.1)

in which case (with a slight abuse of terminology) we call .A; H; D; J / a real spectral
triple. If in addition there is a grading 
 of H , 
2 D 1, such that D
 D �
D, Œ
; a� D 0
for all a in A and 
J D ˙J
 , we call .A;H;D; J; 
/ a real even spectral triple.

Definition 2.1. We say that a real spectral triple .A; H; D; J / is a spectral triple with
multitwisted real structure if there are N densely defined operators D`, ` D 1; : : : ; N ,
the domains of which contain the domain of D, such that

PN
`D1D` D D and for every `

there exists an operator �` 2 B.H/, with bounded inverse, such that for every a; b 2 A,
the multitwisted zero-order condition holds:�

a; J N�`.b/J
�1
�
D 0 D

�
a; J N��1` .b/J�1

�
; (2.2)

where N�` WDAd�` 2Aut.B.H//. Additionally, if the spectral triple is even, we assume that


�2` D �
2
` 
; 8`: (2.3)

We say that multitwisted first-order condition holds if

ŒD`; a�J N�`.b/J
�1
D J N��1` .b/J�1ŒD`; a�; (2.4)

and that multitwisted "0-condition holds if

D`J�` D "
0�`JD`; where "0 D ˙1; (2.5)

and we call the multitwisted real spectral triple regular if

�`J�` D J; (2.6)

for each `.

Remark 2.2. We assumed that the domain of the full Dirac operator D is contained in
the domains of all operatorsD` so the decomposition makes sense at least on this domain.
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However, in principle it is not required that individually eachD` is self-adjoint with com-
pact resolvent and each ŒD`; a� is bounded as in order to obtain a spectral triple only the
sumD of allD` is required to have these properties. It will be interesting to find examples
of this situation.

Remark 2.3. The notion of a spectral triple with a twisted real structure in [1, 2] fits this
definition as a special case when N D 1 and N�1 is an automorphism of A, since then
the multitwisted zero-order condition (2.2) is equivalent with (2.1), and the relation (2.4),
though it appears slightly different, is equivalent with the previous twisted first-order con-
dition by taking b D N�.c/. Definition 2.1 is, however, slightly more general as we do
not assume that N�` are automorphisms of the algebra A, and in order that the multitwisted
first-order condition (2.4) be satisfied for all one-forms, that is if !` D

P
i ai ŒD`; bi �, then

!`J N�`.b/J
�1 D J N��1

`
.b/J�1!`, we require that besides (2.1) also Œa; J N�`.b/J�1� D 0

holds. Furthermore, the consistency with the A-bimodule structure of one-forms requires
also that Œa; J N��1

`
.b/J�1�D 0; however, thanks to the consistency under the adjoint oper-

ation in A, if ��
`
D �`, it suffices to impose one of these two conditions.

2.1. Properties of spectral triples with multitwisted real structure

The important feature of the spectral triples which are multitwisted real is that they are
closed under the product.

Proposition 2.4. Let .A0; H 0; D0; J 0; 
 0/ and .A00; H 00; D00; J 00/ be spectral triples with
multitwisted real structure (the first one even and satisfying J 0
 0 D 
 0J 0), with D0 DPN 0

jD1D
0
j andD00 D

PN 00

kD1D
00
k

, for the twists �0j 2 B.H
0/ and �00

k
2 B.H 00/, respectively.

Then
.A0 ˝ A00;H 0 ˝H 00;D0 ˝ idC 
 0 ˝D00; J 0 ˝ J 00/ (2.7)

is a multitwisted real spectral triple with the Dirac operator decomposing as a sum of

D` D

´
D0
`
˝ id; 1 � ` � N 0;


 0 ˝D00
`�N 0

; N 0 C 1 � ` � N 0 CN 00;
(2.8)

for the twists

�` D

´
�0
`
˝ id; 1 � ` � N 0;

id˝ �00
`�N 0

; N 0 C 1 � ` � N 0 CN 00:
(2.9)

Furthermore, if both triples satisfy the multitwisted zero- or first-order conditions, and are
regular, then this holds for their tensor product.

Proof. It is well known that (2.7) is a real spectral triple. The first equality in condition
(2.2) for 1 � ` � N 0 follows from (2.2) for the first spectral triple and (2.1) for the second
one

.a0 ˝ a00/
�
J 0 N�`.b

0/J 0�1 ˝ J 00b00J 00�1
�
D
�
J 0 N�`.b

0/J 0�1 ˝ J 00b00J 00�1
�
.a0 ˝ a00/

and analogously for N 0 C 1 � ` � N 0 CN 00, and similarly for the second equality.
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Condition (2.4) for 1 � ` � N 0 reads�
ŒD`; a

0�˝ a00
��
J 0 N�`.b

0/J 0�1 ˝ J 00b00J 00�1
�

D
�
J 0 N�`.b

0/J 0�1 ˝ J 00b00J 00�1
��
ŒD`; a

0�˝ a00
�

and is satisfied by (2.4) for the first spectral triple and (2.1) for the second one, and
analogously for N 0 C 1 � ` � N 0 C N 00 using the properties of 
 0. Condition (2.5) for
1� `�N 0 (respectively,N 0C 1� `�N 0CN 00) follows from (2.2) for the first (respec-
tively, second) spectral triple. Finally, (2.6) is immediate.

Remark 2.5. Note that the resulting spectral triple is not even (as a product of an even
and an odd triple). All other cases of the product of even and odd spectral triples can be
also considered and we postpone the full discussion till future work.

In [1] we have demonstrated that, with an appropriate definition of the fluctuated Dirac
operator, a perturbation ofD by a one form and its appropriate image in the commutant of
the algebra A yields the Dirac operator with the same properties. This functorial property
holds also in the multitwisted case.

Proposition 2.6. Assume that .A; H; D; J /, where D D
PN
`D1D`, is a spectral triple

with multitwisted real structure satisfying the twisted zero- and first-order conditions (2.2),
(2.4). Let ! D

P
i ai ŒD; bi � be a self-adjoint one-form. Then .A;H;D! ; J /, whereD! D

D C !, is again a multitwisted real spectral triple satisfying the twisted zero- (2.2) and
first-order conditions (2.4), withD! D

PN
`D1.D!/`, where .D!/` DD` C !` and !` DP

i ai ŒD`; bi �, and with the same twists. Moreover, if .A;H;D; J / is regular, then so is
.A;H;D! ; J /.

Proof. Observe that neither (2.2) nor the regularity condition (2.6) changes, so we need
to verify only the multitwisted first-order condition. Further, for any !` we have that

!`J N�`.b/J
�1
D

X
i

ai ŒD`; bi �J N�`.b/J
�1
D

X
i

aiJ N�
�1
` .b/J�1ŒD`; bi �

D

X
i

J N��1` .b/J�1ai ŒD`; bi � D J N�
�1
` .b/J�1!`:

Since Œ!`; a�D
P
i ai ŒD`; bia��

P
i .aibi /ŒD`; a�� a

P
i ai ŒD`; bi �, for any a 2 A, then

it is of the same form as !`, and, in consequence, we have that�
.D!/`; a

�
J N�`.b/J

�1
D ŒD` C !`; a�J N�`.b/J

�1

D ŒD`; a�J N�`.b/J
�1
C Œ!`; a�J N�`.b/J

�1

D J N��1` .b/J�1ŒD`; a�C J N�
�1
` .b/Œ!`; a�

D J N��1` .b/
�
.D!/`; a

�
:

Remark 2.7. Note that the above construction does not preserve the multitwisted "0-
condition (2.5). To cure this problem, we modify the manner of fluctuations of D.
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Proposition 2.8. Let .A; H; D; J / be a spectral triple with multitwisted real structure
satisfying (2.2) and (2.4). Let ! be a one-form as in Proposition 2.6. If the sum

NX
`D1

�`J.!`/J
�1�` (2.10)

is bounded, then taking

.D!/
0
` D D` C !` C "

0�`J.!`/J
�1�`; (2.11)

and

D0! D

NX
`D1

.D!/
0
`; (2.12)

.A;H;D0! ; J / is a spectral triple with a multitwisted real structure, with the same twists,
satisfying the conditions (2.2), (2.4), and (2.5). Moreover, for each a 2 A;�

.D!/
0
`; a

�
D
�
.D!/`; a

�
: (2.13)

Proof. Let us take !` D
P
i ai ŒD`; bi �. Then for any a 2 A,

�`J.!`/J
�1�`a D �`J

�X
i

ai ŒD`; bi �
�
J�1�`a

D �`J
�X

i

ai ŒD`; bi �
��
J�1 N�`.a/J

�
J�1�`

D �`J
�
J�1 N��1` .a/J

��X
i

ai ŒD`; bi �
�
J�1�`

D a�`J
�X

i

ai ŒD`; bi �
�
J�1�`;

where, again, we have used (2.2) and (2.4). This shows that for any !` and any a (2.13)
holds and as a consequence the bimodule of one-forms remains unchanged if we pass
from D! to D0! .

To see the multitwisted "0-condition (2.5), we check that

D0`J�` D
�
D` C !` C "

0�`J.!`/J
�1�`

�
J�`

D "0�`JD` C !`J�` C "
0�`J.!`/J

�1�`J�`

D "0�`JD` C !`J�` C "
0�`J!`

D "0�`J.D` C "
0�`J

�1!`J�` C !`/;

where we have used (2.6), "02 D 1, and J 2 D 1.
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Remark 2.9. Observe that the additional assumption in (2.10) was necessary only to guar-
antee that the additional term is bounded. If this is not the case, all properties of the
modified Dirac operator that were demonstrated in the proof above will still hold; how-
ever, since the fluctuation is not by a bounded operator, spectral properties of .D!/0 (like
the compactness of the resolvent) may be modified.

It is also worth noting that one can extend the possible fluctuations of the Dirac oper-
ator to the sums of partial fluctuations, that is, fluctuating each of D` by !`, which may
differ from each other, provided that the resulting full Dirac operator D0! is a bounded
perturbation of D.

The notion of a spectral triple with a twisted real structure in [1, 2] was largely moti-
vated by spectral triples conformally rescaled by a positive element in JAJ�1. Below we
propose a generalization of this construction.

Proposition 2.10. Suppose that .A;H;D; J / is a real spectral triple andD D
PN
`D1D`

such that each D` satisfy the first-order condition for every ` D 1; : : : ; N . Let k` be
positive elements from A with bounded inverses. Then .A;H; zD;J /, where

zD WD .D1/k1 C � � � C .DN /kN ; (2.14)

with .D`/k` D .Jk`J
�1/D`.Jk`J

�1/ satisfying multitwisted zero- (2.2) and first-order
(2.4) conditions with

�` D k
�1
` Jk`J

�1;

is regular (2.6) with the multitwisted "0-condition (2.5). Furthermore, if D has a compact
resolvent, it is a spectral triple with a multitwisted real structure.

Proof. Since the original real spectral triple satisfies the zero-order condition (2.1), so
does the multitwisted-real spectral triple. Next, if all k` 2 A, then �`.a/ D k�1` ak` 2 A

for every a 2 A and (2.2) holds as well. We compute further using the first-order condition
for the spectral triple:�

.D`/k` ; a
�
J N�`.b/J

�1
D .Jk`J

�1/ŒD`; a�.Jk`J
�1/J N�`.b/J

�1

D .Jk`J
�1/ŒD`; a�.Jk`J

�1/.Jk�1` bk`J
�1/

D .Jk`J
�1/ŒD`; a�.J bJ

�1/.Jk`J
�1/

D .Jk`J
�1/.J bJ�1/ŒD`; a�Jk`J

�1

D J N��1` .b/J�1Jk`J
�1ŒD`; a�Jk`J

�1

D J N��1` .b/J�1
�
.D`/k` ; a

�
;

which proves (2.4). The regularity condition (2.6) follows directly:

�`J�` D .k
�1
` Jk`J

�1/J.k�1` Jk`J
�1/ D k�1` Jk`k

�1
` Jk`J

�1
D J;

using J 2 D " so that J D "J�1.
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The multitwisted "0-condition is again a simple consequence of the "0-condition of the
real spectral triple:

.D`/k`J�` D .D`/k`J.k
�1
` Jk`J

�1/

D .Jk`J
�1/D`.Jk`J

�1/J.k�1` Jk`J
�1/

D Jk`J
�1D`k`J D "

0Jk`D`.Jk`J
�1/

D "0Jk`.Jk
�1
` J�1/.D`/k`

D "0.k�1` Jk`J
�1/J.D`/k` D "

0�`J.D`/k` :

Remark 2.11. It is worth noticing that the above construction mimics the conformal
rescaling of the Dirac operator from [1], however, additionally one still has to assume
that the resulting Dirac operator has a compact resolvent. It is an interesting problem to
investigate whether and under what conditions on the operators D` this occurs for a spec-
tral triple that allows such a splitting of D.

3. Examples

3.1. Multiconformally rescaled spectral triples

A specific example of the above construction was given by the asymmetric torus in [13].
It was motivated by the search of spectral triples over the noncommutative torus which
can be interpreted as arising from a non-flat metric. In fact, in a certain precise sense it has
a non-vanishing local scalar curvature, yet obeying a generalized Gauss–Bonnet theorem.
We will supplement the construction in [13] by discussion of the real structure and twisted
reality properties.

Let @1 and @2 denote the operators that extend the standard derivations of C1.T 2
�
/ to

H DL2.T 2
�
/˝C2 as self-adjoint (unbounded) operators and let J be the usual antilinear

isometry on H . Then, for any positive invertible k1; k2 2 C1.T 2� /, the Dirac operator

zD D Jk1J
�1�1@1Jk1J

�1
C Jk2J

�1�2@2Jk2J
�1; (3.1)

where �1 and �2 are the usual Pauli matrices, makes .C1.T 2
�
/; L2.T 2

�
/ ˝ C2; zD; J /

a multitwisted real spectral triple satisfying by Proposition 2.10 all conditions including
(2.2), (2.4), and (2.6). In [13] we considered a particular case with k1 D 1 (which is not
a product spectral triple). A four-dimensional generalization (of product type) with two
different scalings was studied in [6].

3.2. Conformal rescaling without an automorphism

Consider the following situation, which further generalizes the construction of confor-
mally rescaled spectral triples1 allowing conformal rescaling of the Dirac operator by an
element, which is still from the commutant of A but not from JAJ�1. We have the fol-
lowing proposition.

1Note that here conformally rescaled spectral triples are indeed spectral triples and not twisted spectral
triples. We still call them conformally rescaled as they are such in the classical (commutative) situation.
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Proposition 3.1. Let .A;H;D; J / be a real spectral triple, which satisfies the usual first-
order condition, regularity, and "0-condition. Let ClD.A/ be the algebra generated by A
and ŒD;A� and let k 2 ClD.A/ be an invertible element with bounded inverse. Then, with
� D k�1JkJ�1 andDk D JkJ�1DJkJ�1, .A;Dk ;H; J; �/ with a twist � is a spectral
triple with a twisted (and thus a multitwisted, in the sense of Definition 2.1) real structure,
which satisfies the twisted zero- and first-order conditions, twisted regularity, and twisted
"0-condition.

Proof. First of all, observe that since k 2 ClD.A/ and the spectral triple satisfies the
first-order condition, then N�.b/ D k�1bk for any b 2 A; however, N� is not necessarily
an automorphism of A. Still, a simple computation using the first-order condition and the
fact that k 2 ClD.A/ shows that

aJ N�.b/J�1 D aJk�1bkJ�1 D J.J�1aJ /.k�1bk/J�1

D J.k�1bk/J�1a D J N��1.b/J�1a;
(3.2)

which is (2.2). Further, using again zero- and first-order conditions for the spectral triple
we have that

ŒDk ; a�J N�.b/J
�1
D J N��1.b/J�1ŒDk ; a�; (3.3)

for any a; b 2 A, which is precisely (2.4). Unlike in the case of the usual conformal rescal-
ing, one cannot write this condition replacing b with c D N�.b/ as c is not guaranteed to be
in A. The proof of regularity and the twisted "0-condition are the same as in the standard
situation of conformally rescaled spectral triple.

The above construction is, of course, a case of single twisting; however, it can be easily
extended to the situation of multitwisting and multiconformal scaling, which provides
new examples of multitwisted real spectral triples. Interestingly, such objects do have a
deep geometric motivation, arising from the Dirac operators over noncommutative circle
bundles [11].

An example is a three-dimensional noncommutative torus T3
�

seen as the noncommu-
tative U.1/-bundle over the two-dimensional noncommutative torus T2

�
. We consider the

usual equivariant Dirac operatorD over T3
�

and the bimodule of one-forms in the Clifford
algebra ClD.T3

�
/. There exists a canonical action of U.1/ on T3

�
, as described in [11], the

invariant subalgebra of which is T2
�

. A U.1/-connection over C1.T3
�
/ can be given by a

one-form, which as an element of ClD.T3
�
/ is

! D �1!1 C �
2!2 C �

3; (3.4)

where !1; !2 2 T2
�

are U.1/-invariant elements of the algebra C1.T3
�
/.

In [11] we have shown that for any self-adjoint connection ! (3.4) there exists a com-
patible (in the sense defined therein) Dirac operator over A D C1.T3

�
/, which has the

form
D! D �

1@1 C �
2@2 C JwJ

�1@3; (3.5)
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where J is the usual real structure on C1.T3
�
/, @i , i D 1; 2; 3, are the usual derivations

represented on the Hilbert space of the spectral triple, and the one-form w is

w D �3 � �1!1 � �
2!2:

Although D! does not satisfy a twisted first-order condition, we have the following propo-
sition.

Proposition 3.2. The spectral triple .C1.T3
�
/;H;D! ; J / is a multitwisted real spectral

triple, with splitting D! D D.2/ CDw and twists:

�1 D id; �2 D w
� 12 Jw

1
2 J�1:

Proof. The decomposition of D is natural, with

D.2/ D �
1@1 C �

2@2

being the usual Dirac operator over the noncommutative two-torus. Clearly, it satisfies the
first-order condition and the "0-condition for the trivial twist �1 D id. The second part of
the splitting

Dw D JwJ
�1@3

can be rewritten as
Dw D Jw

1
2 J�1@3Jw

1
2 J�1;

since w is invariant with respect to the U.1/-action and therefore commutes with @3. Note
that sincew is Hermitian, it has a square root and we can use it to writeDw in a convenient
form. It is easy to see that the decomposition and the twists satisfy

ŒD.2/; a�J bJ
�1
D JbJ�1ŒD.2/; a�;

ŒDw ; a�J N�.b/J
�1
D J N��1.b/J�1ŒDw ; a�;

(3.6)

where N�.x/Dw�
1
2 xw

1
2 and hence the requirements of Definition 2.1. Note that condition

(2.2) is also satisfied since w belongs to the completion of Clifford algebra and therefore
J N�.a/J�1 is in the commutant of A.

Note that since by construction w … C1.T3
�
/, this multitwisted spectral triple is not

of the same type as the example discussed in Section 3.1.

4. Conclusions and outlook

The new notion of spectral triples with a multitwisted real structure, which we propose
here, has some major advantages. Firstly, it is consistent with the usual definition of spec-
tral triples (unbounded Fredholm modules), thus allowing to use the power of Connes–
Moscovici local index theorem. Secondly, it vastly extends the realm of examples, cover-
ing almost all known spectral triples, including those motivated by geometrical construc-
tions, like conformal rescaling or noncommutative principle fiber bundles. Moreover, it is
closed under the tensor product operation.
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In particular, the multitwisted first-order condition may provide a better understanding
of the notion of first-order differential operators in noncommutative geometry, which we
hope will allow to finer apprehend the examples arising from the quantum groups and
quantum homogeneous spaces as constituting noncommutative manifolds.

Funding. Research of the first author supported in part by H2020-MSCA-RISE-2015-
691246-QUANTUM DYNAMICS. Research of the second author supported in part by
the Polish National Science Centre grant 2016/21/B/ST1/02438.
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