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Slice regular functions and orthogonal complex structures
over R8

Riccardo Ghiloni, Alessandro Perotti, and Caterina Stoppato

Abstract. This work looks at the theory of octonionic slice regular functions through the lens of
differential topology. It proves a full-fledged version of the open mapping theorem for octonionic
slice regular functions. Moreover, it opens the path for a possible use of slice regular functions in
the study of almost-complex structures in eight dimensions.

1. Introduction

The theory of slice regular functions was introduced over quaternions in [12, 13] and
largely developed in the following years. The monograph [11] and subsequent works
describe its many resemblances to the theory of holomorphic functions of one complex
variable, as well as new interesting phenomena due to the noncommutative setting.

The theory soon found useful applications to open problems in other areas of math-
ematics, including the problem of classifying orthogonal complex structures (OCSs) on
open dense subsets R4 nƒ of R4. For the definition of OCS, see Section 2.3. The works
[24, 29] had provided a classification for the case when ƒ has Hausdorff dimension less
than 1 and the case when ƒ is a circle or a straight line. At those times, the only function
class available for classification was the class of conformal maps between open subsets
of R4. In contrast with the case of R2, by a famous theorem due to Liouville, this class
consists only of quaternionic linear fractional transformations composed with reflections.
This made even the case whenƒ is a parabola unapproachable. The work [9] significantly
widened the panorama by making the class of injective slice regular functions available
as a tool for classification. This required a detailed study of the differential topology of
quaternionic slice regular functions.

In the present work, we look at the theory of octonionic slice regular functions, intro-
duced in [14] and briefly described in Section 2, through the lens of differential topology.
This study has an independent interest because of the peculiar features of the nonassocia-
tive setting of octonions. We obtain a full-fledged version of the open mapping theorem
for octonionic slice regular functions, after the partial results of [21, 27]. Moreover, we
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open the path for a possible use of slice regular functions in the study of almost-complex
structures in eight dimensions.

The paper is structured as follows.
Section 2 is devoted to preliminaries. It recalls the definition and properties of the alge-

bra of octonions and of the class of octonionic slice regular functions. It reviews known
properties of constant OCSs on R2n, specializing them to the cases n D 1; 2; 4 of the
division algebras C, H, O of complex numbers, quaternions, and octonions. Then some
instrumental results are proven, which play a crucial role throughout the paper. Finally,
the standard orthogonal almost-complex structure J of OnR'CC�S6 is presented.

Section 3 is a first study of the real differential and of the real Jacobian of octonionic
slice regular functions.

Section 4 studies the possibility to induce, by pushing J forward through a slice regu-
lar function f at a point x0, an almost-complex structure on the tangent space at f .x0/.

Section 5 studies the singular sets Nf of slice regular functions f and proves the
quasi-open mapping theorem for these functions.

Section 6 studies the fibers of octonionic slice regular functions and proves the afore-
mentioned open mapping theorem.

In Section 7, the branch set of an octonionic slice regular function f is proven to
coincide with its singular set Nf . This makes it possible to push J forward through any
injective slice regular function f W �! O and induce an almost-complex structure on
f .� nR/.

2. Preliminaries

2.1. The real algebra of octonions

Let O denote the �-algebra of octonions, built by iterating the so-called Cayley–Dickson
construction:

• C D R C iR, .˛ C iˇ/.
 C iı/ D ˛
 � ˇı C i.˛ı C ˇ
/, .˛ C iˇ/c D ˛ � iˇ

8˛; ˇ; 
; ı 2 R;

• HDCC jC, .˛C jˇ/.
 C jı/D ˛
 � ˇcıC j.˛cıC ˇ
/, .˛C jˇ/c D ˛c � jˇ
8˛; ˇ; 
; ı 2 C;

• O DHC `H, .˛C `ˇ/.
 C `ı/D ˛
 � ıˇc C `.˛cıC 
ˇ/, .˛C `ˇ/c D ˛c � `ˇ
8˛; ˇ; 
; ı 2 H.

We will now quickly overview the properties of O, referring the reader to [1,6,25,28] for
more details.

O is a non-commutative and non-associative unitary real algebra. The associative
nucleus and the center of O both coincide with the subalgebra generated by 1, which
is denoted simply by R. Although O is not associative, it is alternative: the associator
.x; y; z/ D .xy/z � x.yz/ of three elements vanishes whenever two of them coincide.
Alternativity implies several properties, including the following.
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• [Moufang identities] For all elements a; x; y of an alternative algebra,

.xax/y D x
�
a.xy/

�
; (1)

y.xax/ D
�
.yx/a

�
x; (2)

.xy/.ax/ D x.ya/x: (3)

• [Artin’s theorem] In an alternative algebra, the subalgebra generated by any two ele-
ments is associative.

• [Power associativity] For all x in an alternative algebra, .x; x; x/ D 0, so that the
expression xn can be written unambiguously for all n 2 N.

O is a �-algebra over R because the map x 7! xc is a �-involution, i.e., an R-linear
transformation with the following properties: .xc/c D x and .xy/c D ycxc for every x,
y; xc D x for every x 2 R. We point out that .r C v/c D r � v for all r 2 R and all v
in the Euclidean orthogonal complement of R. The norm function n.x/ WD xxc coincides
with the squared Euclidean norm kxk2 and n.xy/ D n.x/n.y/ for all x; y 2 O; the trace
function t .x/ WD x C xc has t .xyc/ equal to twice the standard scalar product hx; yi of
O D R8.

O is a division algebra because every nonzero element x has a multiplicative inverse;
namely x�1 D n.x/�1xc D xcn.x/�1. For all x; y 2 O:

• if x ¤ 0, then .x�1; x; y/ D 0;

• if x; y ¤ 0, then .xy/�1 D y�1x�1.

Well-known results due to Frobenius and Zorn state that R, C, H, and O are the only
(finite-dimensional) alternative division algebras.

The set of octonionic imaginary units

S D SO WD
®
x 2 O j t .x/ D 0; n.x/ D 1

¯
D
®
w 2 O j w2 D �1

¯
(4)

is a 6-dimensional sphere. The �-subalgebra generated by any J 2 S, i.e., CJ WDRC JR,
is �-isomorphic to the complex field C (endowed with the standard multiplication and
conjugation) through the �-isomorphism

�J W C ! CJ ; ˛ C iˇ 7! ˛ C ˇJ:

It holds that
O D

[
J2S

CJ (5)

and CI \CJ DR for every I;J 2 S with I ¤˙J . As a consequence, every element x of
O nR can be written as follows: x D ˛C ˇJ , where ˛ 2 R is uniquely determined by x,
while ˇ 2 R and J 2 S are uniquely determined by x, but only up to sign. If x 2 R, then
˛ D x, ˇ D 0, and J can be chosen arbitrarily in S. Therefore, it makes sense to define the
real part Re.x/ and the imaginary part Im.x/ by setting Re.x/ WD t .x/=2D .xC xc/=2D
˛ and Im.x/ WD x � Re.x/D .x � xc/=2D ˇJ . It also makes sense to call the Euclidean



R. Ghiloni, A. Perotti, and C. Stoppato 640

norm kxk D
p
n.x/ D

p
a2 C ˇ2 the modulus of x and to denote it as jxj. The vector

product of two elements v;w 2 Im.O/ is defined as v �w WD Im.vw/D hv;wiC vw. For
all x;y;z 2O, the associator .x;y;z/D .xy/z � x.yz/ has the property Re..x;y;z//D 0
(see [1, p. 188]). The algebra O has the following useful property.

• [Splitting property] For each imaginary unit J 2 S, there exist J1; J2; J3 2 O such
that ¹1; J; J1; JJ1; J2; JJ2; J3; JJ3º is a real vector basis of O, called a splitting
basis of O associated to J . We call a splitting basis ¹1; J; J1; JJ1; J2; JJ2; J3; JJ3º
of O distinguished if there exists a real �-algebra isomorphism O ! O mapping
1; J1; J2; J3; J to 1; i; j; k; `, respectively.

The existence, for each J 2 S, of a distinguished splitting basis ¹1; J; J1; JJ1; J2; JJ2;
J3; JJ3º of O follows from [14, Propositions 2.5 and 2.6].

On the 8-dimensional real vector space O, we consider the natural Euclidean topology
and differential structure. The relative topology on each CJ with J 2 S clearly agrees
with the topology determined by the natural identification between CJ and C; i.e., �J
is a homeomorphism. Given a subset E of C, its circularization �E is defined as the
following subset of O:

�E WD ¹x 2 O j 9˛; ˇ 2 R; 9J 2 S s.t. x D ˛ C ˇJ; ˛ C iˇ 2 Eº:

A subset of O is termed circular if it equals �E for some E � C. For instance, given
x D ˛ C ˇJ 2 O, we have that

Sx WD ˛ C ˇS D ¹˛ C ˇI 2 O j I 2 Sº

is circular, as it is the circularization of the singleton ¹˛ C iˇº � C. We observe that
Sx D ¹xº if x 2 R. On the other hand, for x 2 O n R, the set Sx is obtained by real
translation and dilation from the sphere S. IfD is a non-empty subset of C that is invariant
under the complex conjugation z D ˛ C iˇ 7! xz D ˛ � iˇ, then for each J 2 S the map
�J naturally embedsD into a “slice” of�D D

S
J2S �J .D/, that is, �J .D/D�D \CJ .

2.2. Slice regular functions

We now overview the definition of slice regular function given in [15] and recall some
useful properties of these functions. Consider the complexified �-algebra OC D O ˝R

C D ¹x C {y j x; y 2 Oº, with

.x C {y/.x0 C {y0/ WD xx0 � yy0 C {.xy0 C yx0/; .x C {y/c WD xc C {yc :

We also set x C {y WD x � {y. The center of OC is the real �-subalgebra RC D RC {R.
If we identify C with RC , then, for all J 2 S, the previously defined map �J W C ! CJ
extends to

�J W OC ! O; x C {y 7! x C Jy:

Definition 2.1. LetD be a non-empty subset of C preserved by complex conjugation and
consider its circularization�D . A function F WD!OC is a stem function if F.xz/DF.z/
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for every z 2 D. A function f W �D ! O is a (left) slice function if there exists a stem
function F W D ! OC such that the diagram

D OC

�D O

�J

F

�J

f

(6)

commutes for each J 2 S. In this situation, we say that f is induced by F and we write
f D 	.F /. If F is RC-valued, then we say that the slice function f is slice preserving.
If � WD �D , we denote by �.�/ the set of all slice functions from � to O; we denote by
�R.�/ the subset of �.�/ formed by all slice preserving functions.

The term “slice preserving” is justified by the following property (cf. [15, Proposi-
tion 10]): a stem function F is RC-valued if, and only if, the slice function f D 	.F /

maps every “slice” �J .D/ into CJ . We point out that each slice function f is induced by
a unique stem function F .

The algebraic structure of slice functions can be described as follows; see [19, §2].

Proposition 2.2. The set Stem.D;OC/ of all stem functions fromD to OC is an alterna-
tive �-algebra over R with pointwise addition .F CG/.z/D F.z/CG.z/, multiplication
.FG/.z/ D F.z/G.z/, and conjugation F c.z/ D F.z/c . The center of this �-algebra
comprises all stem functions from D to RC . Let � WD �D and consider the mapping

	 W Stem.D;OC/! �.�/:

Besides the pointwise addition .f; g/ 7! f C g, there exist unique operations of multi-
plication .f; g/ 7! f � g and conjugation f 7! f c on �.�/ so that the mapping 	 is
a �-algebra isomorphism. The center of this �-algebra coincides with the �-subalgebra
�R.�/ of slice preserving functions.

If f is slice preserving, then .f � g/.x/D .g � f /.x/D f .x/g.x/ but neither equality
holds in general. The pointwise product x 7! f .x/g.x/ is denoted by fg. The normal
function of f in �.�/, defined as

N.f / D f � f c D 	.FF c/;

is a slice preserving function. It coincides with f 2 if f is slice preserving.
It is also useful to define the spherical value, f ıs W �! O, and the spherical deriva-

tive, f 0s W � nR! O, of any f 2 �.�/ by setting

f ıs .x/ WD
1

2

�
f .x/C f .xc/

�
and f 0s .x/ WD

1

2
Im.x/�1

�
f .x/ � f .xc/

�
:

The original article [15] and subsequent papers used the notations vsf and @sf , respec-
tively, and remarked that f ıs 2 �.�/, f 0s 2 �.� nR/. For all x 2 � nR, it holds that

f .x/ D f ıs .x/C .Im �f
0
s /.x/ D f

ı
s .x/C Im.x/f 0s .x/; (7)
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where the second equality holds because Im is a slice preserving element of �.O/. Notice
that f is slice preserving if, and only if, f ıs and f 0s are real-valued.

Among octonionic slice functions, we consider a special class having nice properties
that recall those of holomorphic functions of a complex variable. This class of functions
was introduced in [14], although we follow here the presentation of [15]. If � D �D is
open, then for any J 2S the slice�J WD�\CJ D �J .D/ is open in the relative topology
of CJ ; therefore, D itself is open. In this case, within the �-algebra of stem functions we
can consider the �-subalgebras of continuous, continuously differentiable, real analytic,
and holomorphic stem functions F W D ! OC , the last being defined by the condition
@F
@xz
� 0 with

@F

@xz
WD

1

2

�
@F

@˛
C {

@F

@ˇ

�
:

These four �-subalgebras induce, through the �-isomorphism 	, four �-subalgebras of
�.�/ that we denote by �0.�/, �1.�/, �!.�/, and �R.�/, respectively. A function f W
�! O is called slice regular if it belongs to �R.�/. Equivalently, f D 	.F / 2 �1.�/

is slice regular if
@f=@xc WD 	.@F=@xz/

vanishes identically in �. The analogously defined function

f 0c D @f=@x WD 	.@F=@z/

on � is called the slice derivative (or complex derivative) of f . The following Leibniz
rules hold:

.f � g/0c D f
0
c � g C f � g

0
c ; (8)

.f � g/ıs D f
ı
s � g

ı
s C Im2 f 0s � g

0
s; .f � g/0s D f

0
s � g

ı
s C f

ı
s � g

0
s; (9)

where we point out that Im2.˛ C ˇJ / D �ˇ2 for all ˛; ˇ 2 R and all J 2 S. For all
x 2 � nR, it also holds that

.f c/ıs.x/ D f
ı
s .x/

c ; .f c/0s.x/ D f
0
s .x/

c ; (10)�
N.f /

�ı
s
.x/ D n

�
f ıs .x/

�
C Im.x/2n

�
f 0s .x/

�
;

�
N.f /

�0
s
.x/ D t

�
f ıs .x/f

0
s .x/

c
�
; (11)

Because we are now working with an open D, we can decompose it into a disjoint
union of open subsets Dt � C, each of which either

(1) intersects the real line R, is connected and preserved by complex conjugation or

(2) does not intersect R and has two connected components DCt ; D
�
t , switched by

complex conjugation.

In the former case, the resulting �Dt is called a slice domain because each intersection
�Dt \ CJ with J 2 S is a domain in the complex sense (more precisely, it is an open
connected subset of CJ ). In case 2, we will call�Dt a product domain as it is homeomor-
phic to the topological product between the complex domain DCt and the sphere S. Thus,
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any mention of �R.�/ will imply that � is a disjoint union of slice domains and product
domains within the algebra O.

Polynomials and convergent power series are examples of slice regular functions; see
[14, Theorem 2.1].

Proposition 2.3. Every polynomial of the form
Pn
mD0 x

mam D a0 C xa1 C � � � C x
nan

with coefficients a0; : : : ; an 2 O is a slice regular function on O. Every power series of
the form

P
n2N x

nan converges in a ball B.0; R/ D ¹x 2 O j kxk < Rº. If R > 0, then
the sum of the series is a slice regular function on B.0;R/.

Actually, �R.B.0; R// coincides with the �-algebra of power series converging in
B.0;R/ with the operations�X

n2N

xnan

�
�

�X
n2N

xnbn

�
D

X
n2N

xn
nX
kD0

akbn�k ;�X
n2N

xnan

�c
D

X
n2N

xnacn:

This is a consequence of [14, Theorem 2.12]. With the same operations, the polynomials
over O form a �-subalgebra of the �-algebra �R.O/ of octonionic entire functions. Any
octonionic (convergent) power series or polynomial is slice preserving if, and only if, its
coefficients are real.

Example 2.4. If we fix an octonion y, the binomial f .x/ WD x � y is a slice regu-
lar function on O. The conjugate function is f c.x/ D x � yc and the normal function
N.f /.x/ D .x � y/ � .x � yc/ D x2 � x.y C yc/ C yyc coincides with the slice pre-
serving quadratic polynomial

�y.x/ WD x
2
� xt.y/C n.y/:

If y0 2 O, then �y0 D �y if and only if Sy0 D Sy .

The next result, concerning the zero set V.f /D ¹x 2� j f .x/D 0º of f , was proven
for power series in [16] and extended to all f 2 �.�/ in [21].

Theorem 2.5. If f 2 �.�/, then for every x 2 � the sets Sx \ V.f / and Sx \ V.f c/
are both empty, both singletons, or both equal to Sx . Moreover,

V
�
N.f /

�
D

[
x2V.f /

Sx D
[

x2V.f c/

Sx :

Finally, for all g 2 �.�/, [
x2V.f �g/

Sx D
[

x2V.f /[V.g/

Sx :
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Example 2.6. If f .x/ WD x � y, whence f c.x/ D x � yc and N.f / D �y.x/ WD x2 �
xt.y/C n.y/, then

V.f / D ¹yº; V .f c/ D ¹ycº; V
�
N.f /

�
D Sy :

For all constant functions g � c, we have .f � g/.x/ D xc � yc, whence V.f � g/ is ¹yº
when c ¤ 0 and it is O when c D 0.

The same works studied in greater detail V.f � g/ for f; g 2 �.�/. For slice regular
functions, zeros can be factored out as follows (see [15, Theorem 22]).

Theorem 2.7. Let f W �! O be a slice regular function and let y 2 �. The zero set
V.f / includes y if, and only if, there exists g 2 �R.�/ such that

f .x/ D .x � y/ � g.x/:

The zero set V.f / contains Sy if, and only if, there exists h 2 �R.�/ such that

f .x/ D �y.x/ � h.x/ D �y.x/h.x/:

As a consequence, y 2 V.f / if, and only if, �y divides N.f /.

If f 6� 0, then, by [20, Remark 11.2], there exists a largest m 2 N such that �my di-
vides f . The even number 2m is called the spherical multiplicity of f at Sy , if y 2� nR.
If, instead, y 2 � \ R, there exists a largest n 2 N such that .x � y/n divides f .x/; the
number n is called the classical multiplicity of f at y. If f � 0, all spherical and classical
multiplicities of f are set toC1.

If N.f / 6� 0, then, for all y 2 �, the largest m such that �my divides N.f / is called
the total multiplicity of f at Sy . If N.f / � 0, we may set to C1 the total multiplicities
of f at all y 2 �.

We conclude this section by recalling two properties of the zeros of octonionic slice
regular functions, namely, [21, Theorem 3.5 and Proposition 3.7]. We use the notations
CCJ WD ¹˛ C ˇJ j ˛; ˇ 2 R; ˇ > 0º and �CJ WD � \CCJ .

Theorem 2.8. Assume that� is a slice domain or a product domain and let f 2 �R.�/.

• If f 6� 0, then the intersection V.f /\CCJ is closed and discrete in �J for all J 2 S
with at most one exception J0, for which it holds that fj

�C
J0

� 0.

• If, moreover, N.f / 6� 0, then V.f / is a union of isolated points or isolated spheres
Sx .

Proposition 2.9. Let f 2 �R.�/. The equalityN.f /� 0 implies that f � 0 if, and only
if, � is a union of slice domains.

The work [15] provided the following example of slice regular function f over a
product domain with f 6� 0 but N.f / � 0.
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Example 2.10. Fix J0 2 S. We define �J0 W O nR! O by the formula

�J0.x/ WD
1

2
C

Im.x/ˇ̌
Im.x/

ˇ̌ J0
2
:

Then �J0 is slice regular in O nR and its zero set V.�J0/ is CCJ0 . By direct computation,
�cJ0 D ��J0 and N.�J0/ D �J0 � ��J0 � 0.

More properties of octonionic slice functions and slice regular functions can be found
in [21, 27].

2.3. Orthogonal almost-complex structures over the octonions

In this work, we will thoroughly use constant OCSs on O D R8, according to the next
definition. We denote the standard scalar product of R2n by the symbol h; i. As usual,
MB

B0
.F / denotes the matrix associated to any linear map F with respect to a real vector

basis B of its domain and a basis B 0 of its codomain.

Definition 2.11. A constant complex structure on R2n is an R-linear endomorphism J0 W

R2n!R2n such that .J0 ı J0/.u/D�u for all u 2R2n. If, moreover, hJ0.u/;J0.v/i D
hu; vi for all u; v 2 R2n, then J0 is termed orthogonal.

Definition 2.12. An orthogonal almost-complex structure (OACS) on a Riemannian man-
ifold .M; g/ is an almost-complex structure J on M such that gx0.Jx0.u/; Jx0.v// D
gx0.u; v/ for all x0 2 M and all u; v 2 Tx0M . If J is also integrable, then it is called an
orthogonal complex structure (OCS).

The interested reader may find a friendly introduction to OCSs in [23]. The same
article uses the notationZn for the Hermitian symmetric space SO.2n/

U.n/ of all constant OCSs
on R2n that induce the standard orientation. The lower-dimensional cases are described
as follows: Z1 is a singleton because SO.2/ D U.1/; there exist isomorphisms

'2 W CP1 ! Z2;

'3 W CP3 ! Z3;

'4 W Q
6
! Z4;

where Q6 is a quadric in CP7. The chart C ! Z2, � 7! '2Œ1 W �� is portrayed in Table 1
and the chart C3!Z3, .�1; �2; �3/ 7! '3Œ1 W �1 W �2 W �3� in Table 2, in accordance with [2,
Proposition 3.4]. As explained in [2, p. 129], the orientation induced on R2n by a constant
OCS J0 is determined by the Pfaffian, Pf.M/, of the matrix M DME

E
.J0/ associated to

J0 with respect to the standard basis E D E2n. The determinant is, instead, det.M/ D 1

irrespective of orientation. For the definition and basic properties of the Pfaffian, see [4,
§8.5]. According to the convention adopted in the latter reference, J0 induces a positive
orientation on R2n if, and only if, Pf.M/ D �1, while a negative orientation corresponds
to Pf.M/ D 1. By [4, §8.5, formula (7)], an orthogonal basis B of R2n is positively
oriented if, and only if, the Pfaffian of MB

B
.J0/ equals the Pfaffian of ME

E
.J0/.
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0 �1C j�j2 �2ˇ 2˛

1 � j�j2 0 2˛ 2ˇ

2ˇ �2˛ 0 �1C j�j2

�2˛ �2ˇ 1 � j�j2 0

1CCCA
Table 1. The matrix associated to '2Œ1 W �� with respect to the standard basis of R4. Here, � D
˛ C iˇ.

0BBBBBBBBBBBBBB@

0 �1Cj�1 j
2Cj�2 j

2�j�3 j
2 �2.ˇ1�˛3ˇ2C˛2ˇ3/ 2.˛1C˛2˛3Cˇ2ˇ3/ �2.˛3ˇ1Cˇ2�˛1ˇ3/ �2.�˛2C˛1˛3Cˇ1ˇ3/

1�j�1 j
2�j�2 j

2Cj�3 j
2 0 2.˛1�˛2˛3�ˇ2ˇ3/ 2.ˇ1C˛3ˇ2�˛2ˇ3/ 2.˛2C˛1˛3Cˇ1ˇ3/ 2.�˛3ˇ1Cˇ2C˛1ˇ3/

2.ˇ1�˛3ˇ2C˛2ˇ3/ 2.�˛1C˛2˛3Cˇ2ˇ3/ 0 �1Cj�1 j
2�j�2 j

2Cj�3 j
2 �2.�˛2ˇ1C˛1ˇ2Cˇ3/ 2.˛1˛2C˛3Cˇ1ˇ2/

�2.˛1C˛2˛3Cˇ2ˇ3/ �2.ˇ1C˛3ˇ2�˛2ˇ3/ 1�j�1 j
2Cj�2 j

2�j�3 j
2 0 �2.˛1˛2�˛3Cˇ1ˇ2/ 2.˛2ˇ1�˛1ˇ2Cˇ3/

2.˛3ˇ1Cˇ2�˛1ˇ3/ �2.˛2C˛1˛3Cˇ1ˇ3/ 2.�˛2ˇ1C˛1ˇ2Cˇ3/ 2.˛1˛2�˛3Cˇ1ˇ2/ 0 �1�j�1 j
2Cj�2 j

2Cj�3 j
2

2.�˛2C˛1˛3Cˇ1ˇ3/ �2.�˛3ˇ1Cˇ2C˛1ˇ3/ �2.˛1˛2C˛3Cˇ1ˇ2/ �2.˛2ˇ1�˛1ˇ2Cˇ3/ 1Cj�1 j
2�j�2 j

2�j�3 j
2 0

1CCCCCCCCCCCCCCA

Table 2. The matrix associated to '3Œ1 W �1 W �2 W �3� with respect to the standard basis of R6. Here,
�t D ˛t C iˇt .

Using the division algebras C, H, O, the spaces Z1, Z2, Z4 can also be described as
follows.

• In C D R2, the standard orientation is induced by multiplication by i . With respect to
the standard basis E2 D ¹1; iº, the associated matrix is

H WD

 
0 �1

1 0

!
:

It holds that Pf.H/ D �1 according to [4, §8.5]. There are no other constant OCSs
inducing the same orientation. The matrix associated to multiplication by �i with
respect to the standard basis ¹1; iº is �H , which has Pf.�H/ D 1 D �Pf.H/.

• In H D R4, the standard orientation is induced by left multiplication by i , so that the
standard basis E4 D ¹1; i; j; kº (with k D ij ) is positively oriented. Each constant
OCS J0 on H can be identified with a point I of the 2-sphere SH of unit elements of
Im.H/, or quaternionic imaginary units, as follows. Since J0 is orthogonal, it holds
that J0.1/ D I 2 SH. On the vector space orthogonal to 1 and I in H ' R4, say
the span of J; IJ for some J 2 SH orthogonal to I , there is only one constant OCS
compatible with the given orientation. Thus, J0 is left multiplication by a fixed I 2 SH

and the matrix associated to J0 with respect to the basis ¹1; I; J; IJ º is 
H 0

0 H

!
;

whose Pfaffian is �1 according to [4, §8.5].

• In O D R8, the standard orientation is induced by left multiplication by i . It can be
checked by direct computation that the standard basis E8 D ¹1; i; j; k; `; `i; j̀; `kº
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is positively oriented. Now consider a constant OCS J0 on O. As before, J0 maps
1 to an octonionic imaginary unit J 2 S. If B D ¹1; J; v1; : : : ; v6º is any positively
oriented orthogonal basis starting with 1 and J , then the matrix MB

B
.J0/ associated

to J0 with respect to B has the form 
H 0

0 S

!
;

where S is the 6 � 6 real matrix associated to an arbitrary constant OCS (compatible
with the chosen orientation) on the 6-dimensional vector space C?J , with respect to
the basis ¹v1; : : : ; v6º.

It is clear from the previous list that, for n D 2; 4, the space Zn is a fiber bundle over
S2n�2 with fiber Zn�1. This statement is also true for n D 3: if we fix a vector v0 2 R6,
choosing a constant OCS J0 on R6 means choosing a value J0.v0/ D w0 in the unit
4-sphere of ¹v0º? and then choosing a constant OCS on the 4-dimensional vector space
¹v0; w0º

?, compatible with the chosen orientation. For instance, by taking a second look
at Table 2, it is not hard to spot the matrix associated to '2Œ1 W �� in the upper left 4 � 4
minor of the matrix associated to '3Œ1 W � W 0 W 0�.

In the previous list, when we considered H, we only mentioned left multiplication
by a constant I 2 SH. Right multiplication by such an I induces a negative orientation.
Indeed, with respect to a positively oriented orthogonal basis ¹1; I; J; IJ º, the associated
matrix is

�
H 0
0 �H

�
, whose Pfaffian is 1.

We now focus on the case of octonions O, treated in [3]. The next result subsumes
some results of [28, §4.6, p. 205] on octonionic rotations and a statement from [3, p. 190],
namely, that left multiplications by octonionic imaginary units form a subclass of Z4,
while right multiplications do not. Both for the sake of completeness and because our
choice of orientation is different from the choice of [3], we include a proof of this result.

Theorem 2.13. For each p 2O, let us set Lp.x/ WD px and Rp.x/ WD xp for all x 2O.

(1) Lp , Rp are transformations of O if, and only if, p ¤ 0. In this case, they are
orientation-preserving conformal transformations with scaling factor jpj and
L�1p D Lp�1 , R�1p D Rp�1 .

(2) Lp , Rp are (special) orthogonal transformations of O if, and only if, jpj D 1.

(3) Lp , Rp are (constant) orthogonal complex structures on O if, and only if, p 2 S.

(4) For every imaginary unit J 2 S, LJ induces a positive orientation of O, while
RJ induces a negative orientation.

Proof. By direct computation,

Re
�
Lp.x/

cLp.y/
�
D Re

�
.xcpc/.py/

�
D Re

�
.xc ; pc ; py/

�
C Re

�
xc
�
n.p/y

��
D jpj2 Re.xcy/;
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Re
�
Rp.x/Rp.y/

c
�
D Re

�
.xp/.pcyc/

�
D Re

�
.x; p; pcyc/

�
C Re

�
x
�
n.p/yc

��
D jpj2 Re.xyc/:

Thus, hLp.x/; Lp.y/i D jpj2hx; yi and hRp.x/; Rp.y/i D jpj2hx; yi. By direct compu-
tation, det.Lp/ D jpj8 D det.Rp/. The first two statements immediately follow.

The third statement follows from the fact that Lp ı Lp D Lp2 and Rp ı Rp D Rp2

equal �idO if, and only if, p2 D �1.
We can prove the fourth statement as follows. Consider the standard basis E D E8 D

¹1; i; j; k; `; `i; j̀; `kº. The map S ! ¹˙1º, J 7! Pf.ME
E
.LJ // is continuous, whence

constant. So is the map S ! ¹˙1º, J 7! Pf.ME
E
.RJ //. Moreover, for J D i , we can

explicitly compute

ME
E .Li / D

0BB@
H 0 0 0

0 H 0 0

0 0 �H 0

0 0 0 �H

1CCA ; ME
E .Ri / D

0BB@
H 0 0 0

0 �H 0 0

0 0 H 0

0 0 0 H

1CCA :
The former matrix has Pfaffian �1, while the latter has Pfaffian 1.

As a byproduct, we can make the following remark.

Remark 2.14. Every distinguished splitting basis B D ¹1; J; J1; JJ1; J2; JJ2; J3; JJ3º

is a positively oriented orthogonal basis. Indeed, by direct computation, MB
B
.LJ / is0BB@

H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

1CCA ;
and Pf.MB

B
.LJ // D �1 D Pf.ME

E
.LJ //.

Theorem 2.13 showed that L WD ¹LJ ºJ2S is a 6-dimensional subset of the 12-dimen-
sional space Z4. Further examples of elements of Z4 can be found by conjugation with
the conformal transformations Lp or Rp (in contrast with the quaternionic case, when
such conjugations produce other left multiplications by imaginary units). This is done in
the next two propositions. The two propositions and the subsequent lemma are probably
well known to experts, but we have not been able to find these specific results explicitly
stated in the literature.

Proposition 2.15. For all J 2 S and all p 2 O n ¹0º, the composed transformation

.Lp ı LJ ı Lp�1/.x/ D p
�
J.p�1x/

�
belongs toZ4. If p2CJ , thenLp ıLJ ıLp�1DLJ . If p2 Im.O/, thenLp ıLJ ıLp�1 D
LJ 0 with J 0D pJp�1 2 S. For all p 2O n .CJ [ Im.O//, it holds thatLp ıLJ ıLp�1 ¤
LJ 0 for all J 0 2 S.



Slice regular functions and orthogonal complex structures over R8 649

Proof. Let p 2 O n ¹0º. To prove that Lp ı LJ ı Lp�1 is a constant complex structure, it
suffices to observe that

.Lp ıLJ ıLp�1/ ı .Lp ıLJ ıLp�1/ D Lp ıLJ ıLJ ıLp�1 D �Lp ıLp�1 D �idO;

where the first equality follows from Artin’s theorem. Since Lp is an orientation-preserv-
ing conformal transformation with scaling factor jpj, it follows at once that Lp ı LJ ı
Lp�1 is a constant OCS that induces the standard orientation.

Now let us prove the last statements. If p 2CJ , then p, J , p�1 associate and commute,
whence Lp ı LJ ı Lp�1 D LJ . Now suppose that p 2 O n CJ , and let V denote the 4-
dimensional associative subalgebra of O generated by J and p. For all v 2 V , it holds that

.Lp ı LJ ı Lp�1/.v/ D p
�
J.p�1v/

�
D .pJp�1/v

by Artin’s theorem. For all w 2 V ?, it holds that

.Lp ı LJ ı Lp�1/.w/ D p
�
J.p�1w/

�
D .p�1Jp/w:

To prove the last equality, we may assume without loss of generality V D H and w D `q
for some q 2 H. It holds that

p
�
J
�
p�1.`q/

��
D p

�
J
�
`
�
.p�1/cq

���
D p

�
`
�
J c.p�1/cq

��
D `

�
pcJ c.p�1/cq

�
D .p�1Jp/.`q/:

To conclude, we observe that

pJp�1 D p�1Jp, p2J D Jp2, p2 2 CJ , p 2 Im.O/;

where the last equivalence follows from the assumption p 2 O nCJ .

The subset of Z4 described in Proposition 2.15 admits an alternative representation,
described in the next result.

Proposition 2.16. For all J 2 S and all p 2 O n ¹0º, the composed transformation

.Rp ı LJ ıRp�1/.x/ D
�
J.xp�1/

�
p

belongs toZ4. If p2CJ , thenRp ıLJ ıRp�1DLJ . Now assume that p2OnCJ . It holds
that Rp ıLJ ıRp�1¤LJ 0 for all J 0 2S; moreover, Rp ıLJ ıRp�1 DLs�1 ıLsJs�1 ıLs ,
where˙s are the solutions of x2 D p.

Proof. As in the previous corollary, Rp ı LJ ı Rp�1 is a constant OCS that induces the
standard orientation.

If p 2 CJ , then the algebra generated by J , p and any x 2 O is associative, whence
Rp ıLJ ıRp�1 DLJ . Now suppose that p 2O nCJ and let V denote the 4-dimensional
associative subalgebra of O generated by J and p. For all v 2 V , it holds that

.Rp ı LJ ıRp�1/.v/ D
�
J.vp�1/

�
p D Jv
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by Artin’s theorem. For all w 2 V ?, it holds that

.Rp ı LJ ıRp�1/.w/ D
�
J.wp�1/

�
p D .pJp�1/w:

To prove the last equality, we may assume without loss of generality that V D H and
w D `q for some q 2 H. It holds that�

J
�
.`q/p�1

��
p D

�
J
�
`.p�1q/

��
p D

�
`.J cp�1q/

�
p D `.pJ cp�1q/

D
�
.p�1/cJpc

�
.`q/ D .pJp�1/.`q/:

We observe that the units J and pJp�1 2 S are distinct because we have assumed that
p 2 O nCJ . As a consequence, Rp ı LJ ıRp�1 ¤ LJ 0 for all J 0 2 S.

The assumption p 2 O n CJ also implies that the equation x2 D p has exactly two
solutions˙s, not belonging to R and included in the 2-dimensional subalgebra generated
by 1 and p. This implies that the 4-dimensional associative subalgebra of O generated
by J 0 WD sJs�1 and by s�1 equals V . An inspection of the proof of Proposition 2.15
reveals that Ls�1 ı LJ 0 ı Ls acts as Ls�1J 0s on V and as LsJ 0s�1 on V ?. The equalities
s�1J 0s D s�1.sJs�1/s D J and sJ 0s�1 D s.sJs�1/s�1 D s2Js�2 D pJp�1 imply that
Ls�1 ı LJ 0 ı Ls acts as LJ on V and as LpJp�1 on V ?, whence Ls�1 ı LJ 0 ı Ls D
Rp ı LJ ıRp�1 .

We point out that O n ¹0º is not a multiplicative group but only a loop and that conju-
gation with the conformal transformation Lp (for p 2 O n ¹0º) is no analog of an action
on Z4. Indeed, Lq ı .Lp ıLJ ıLp�1/ ıLq�1 may be different from Lqp ıLJ ıL.qp/�1 .

Example 2.17. The value�
L` ı .Li ı Lj ı Li�1/ ı L`�1

�
.1/ D `

�
i
�
j.i�1`�1/

��
D `

�
i
�
j.`i/�1

��
is different from the value

.L`i ı Lj ı L.`i/�1/.1/ D .`i/
�
j.`i/�1

�
:

Indeed, j.`i/�1 D �j.`i/ D `.j i/ D �`k and it holds that

�`
�
i.`k/

�
D `

�
`.ik/

�
D j ¤ �j D �ki D �.`i/.`k/:

Similar considerations apply to conjugation with Rp . Thus, further examples of con-
stant OCSs on O can be produced.

Proposition 2.16 allows us to establish the next lemma, which will prove extremely
useful throughout the paper.

Lemma 2.18. Let a; b 2 O and let J 2 S. For all v 2 CJ , it holds that

hab; vi D
˝
.Ja/b; J v

˛
;

˝
.Ja/b; v

˛
D
˝
J.ab/; v

˛
:

Moreover, the orthogonal projection � W .CJa/b ! CJ fulfills the equality �..Ja/b/ D
J�.ab/. As a consequence, � is surjective if, and only if, ab 62C?J . Finally, .CJa/bDCJ
if, and only if, ab 2 CJ n ¹0º.
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Proof. The thesis is obvious if b D 0. Thus, we may assume that b ¤ 0. It holds that

.Ja/b D Rb
�
LJ .a/

�
D Rb

�
LJ
�
Rb�1.ab/

��
and

Jv D Rb
�
.J v/b�1

�
D Rb

�
J.vb�1/

�
D Rb

�
LJ
�
Rb�1.v/

��
;

where we have applied Artin’s theorem. Thus,˝
.Ja/b; J v

˛
D
˝
.Rb ı LJ ıRb�1/.ab/; .Rb ı LJ ıRb�1/.v/

˛
D hab; vi;

where the last equality is a consequence of Proposition 2.16. Now,˝
.Ja/b; v

˛
D
˝
.�1/.ab/; J v

˛
D �

˝
J.ab/;�v

˛
D
˝
J.ab/; v

˛
;

where the first and second equalities are repeated applications of the formula we already
proved.

We can prove the second statement as follows. Let v WD �.ab/ and w WD �..Ja/b/.
Combining the equalities we have just proven with Artin’s theorem, we obtain

hw; 1i D
˝
.Ja/b; 1

˛
D �hab; J i D �hv; J i;

hw; J i D
˝
.Ja/b; J

˛
D hab; 1i D hv; 1i:

This proves that w D Jv, as desired.
The third statement follows from the second one by observing that the image of � is

the span of the mutually orthogonal vectors v and w D Jv. This image is CJ if, and only
if, v ¤ 0, which is equivalent to ab 62 C?J .

Finally, we can prove the fourth statement as follows. The equality .CJa/b D CJ
implies that ab 2 CJ n ¹0º; indeed, it implies that .1a/b 2 CJ (because 1 2 CJ ) and that
ab ¤ 0 (by dimensional considerations). Conversely, suppose that ab 2 CJ n ¹0º. Then
�..Ja/b/ D J.ab/, whence j.Ja/b � J.ab/j2 D j.Ja/bj2 � jJ.ab/j2 D 0 and .Ja/b D
J.ab/ 2 CJ n ¹0º; thus, .CJa/b, which is the span of ab; .Ja/b, equals CJ .

A relevant example of a nonconstant OACS can be constructed on O nR.

Definition 2.19. The standard almost-complex structure J on O nR is defined by setting

Jx0.v/ WD
Im.x0/ˇ̌
Im.x0/

ˇ̌v
for all x0 2 O nR and for all v 2 Tx0.O nR/ D O.

Remark 2.20. If x0 2 CCJ n R, then Jx0 W Tx0.O n R/ ! Tx0.O n R/ is the same as
LJ WO!O. As a consequence, the almost-complex structure J on O nR is orthogonal.

Endowing O nR with J is equivalent to considering the decomposition

O nR D RCRCS ' CC � S6;

where S6 is endowed with its standard almost-complex structure, introduced in the cele-
brated work [22] and proven to be non-integrable in [7, 8].
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3. Real differentials of octonionic slice regular functions

This section is devoted to a first study of the real differential and of the real Jacobian
of octonionic slice regular functions. This study will be applied in Section 4 and further
refined in Section 5.

Every slice regular function f W �! O is automatically real analytic. The same is
true for its spherical value f ıs W �! O and for its spherical derivative f 0s W � nR! O.
The interested reader may find a proof in [15, Proposition 7]. In the next proposition, and
in the rest of the paper, any mention of J will automatically imply that J 2 S.

Proposition 3.1. Let f W �! O be a slice function.

(1) If x0 2 � \R and f is slice regular, then

dfx0.v/ D v f
0
c .x0/

for all v 2 Tx0� D O.

(2) If x0 2 � nR and x0 2 CJ , let us split Tx0� D O as CJ ˚C?J . For all w in the
6-dimensional vector space C?J , the partial derivative of f in the w direction at
x0 exists and it equals wf 0s .x0/. If, moreover, f is slice regular, then

dfx0.v C w/ D v f
0
c .x0/C w f

0
s .x0/

for all v 2 CJ , w 2 C?J .

Proof. First suppose that x0 2�\R; the thesis follows from the definition of slice regular
function.

Now suppose that x0 2 � n R. Let us consider formula (7) and take into account the
fact that f ıs ; f

0
s are constant in Sx0 . If w 2 Tx0Sx0 D C?J , we immediately conclude that

the partial derivative of f in thew direction at x0 exists and equalswf 0s .x0/. If, moreover,
f is slice regular, then for each v 2 CJ the partial derivative of f in the v direction at x0
equals vf 0c .x0/.

Now let us look at the range of the differential.

Theorem 3.2. Let f W �! O be a slice regular function.

(1) If x0 2�\R, then the range of dfx0 is either ¹0º or O, depending on whether or
not f 0c .x0/ D 0. As a consequence, dfx0 is invertible if, and only if, f 0c .x0/ ¤ 0.
In such a case, dfx0 is an orientation-preserving conformal transformation.

(2) If we fix x0 2 �J n R, then the range of dfx0 is the sum V C W with V WD
CJf 0c .x0/, W WD C?J f

0
s .x0/. Moreover,

(a) V CW D ¹0º if f 0s .x0/ D 0 D f
0
c .x0/,

(b) V CW D V is a 2-dimensional vector space if f 0s .x0/ D 0 ¤ f
0
c .x0/,

(c) V CW D W is a 6-dimensional vector space if

f 0s .x0/ ¤ 0 and f 0c .x0/f
0
s .x0/

�1
2 C?J ;
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(d) V ˚ W D O if f 0s .x0/ ¤ 0 and f 0c .x0/f
0
s .x0/

�1 62 C?J . The direct sum is
orthogonal if, and only if, f 0c .x0/f

0
s .x0/

�1 2 CJ n ¹0º.

As a consequence, dfx0 is invertible if, and only if,

f 0s .x0/ ¤ 0 and f 0c .x0/f
0
s .x0/

�1
62 C?J :

It is an orientation-preserving conformal transformation if, and only if,

f 0s .x0/ ¤ 0; f 0c .x0/f
0
s .x0/

�1
2 CJ ; and

ˇ̌
f 0c .x0/f

0
s .x0/

�1
ˇ̌
D 1:

Proof. The first statements immediately follow from Proposition 3.1. As for the others,
let a WD f 0c .x0/ and b WD f 0s .x0/, so that V D CJa, W D C?J b.

(a) If a D 0 D b, then V D W D ¹0º.

(b) If a ¤ 0 D b, then V is a 2-dimensional vector space and W D ¹0º.

(c) Suppose that b ¤ 0 and ab�1 2 C?J . By Lemma 2.18, .Ja/b�1 belongs to C?J ,
too. Thus,

Vb�1 CW b�1 D .CJa/b
�1
CC?J D R ab�1 CR.Ja/b�1 CC?J D C?J ;

whence V CW is the 6-dimensional vector space C?J b D W .

(d) Suppose that b ¤ 0 and ab�1 62 C?J . By Lemma 2.18, the orthogonal projection
� W .CJa/b�1 ! CJ is surjective. Thus,

Vb�1 CW b�1 D .CJa/b
�1
CC?J D CJ ˚C?J D O:

Moreover, the direct sum V ˚W is orthogonal if, and only if, Vb�1D .CJa/b�1

equals CJ . By Lemma 2.18, this happens if, and only if, ab�1 2 CJ n ¹0º. The
thesis now follows from the fact that Rb is an orientation-preserving conformal
transformation of O mapping Vb�1 to V and W b�1 to W .

Corollary 3.3. Let f W �! O be a slice regular function. Consider its singular set

Nf WD ¹x0 2 � j dfx0 is not invertibleº

and its degenerate set Df WD V.f 0s /. Then Nf includes Df and

Nf nDf D
®
x0 2 � \R j f 0c .x0/ D 0

¯
[

[
J2S

®
x0 2 �J nR j f 0s .x0/ ¤ 0; f

0
c .x0/f

0
s .x0/

�1
2 C?J

¯
: (12)

The previous results can be reread in appropriate coordinates. We begin with a useful
technical lemma.

Lemma 3.4. Let B D ¹1; J; J1; JJ1; J2; JJ2; J3; JJ3º be a distinguished splitting basis
of O and let us denote the real components of any vector v with respect to B as v0; : : : ; v7.
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Fix octonions a; b with b ¤ 0; ab�1 62 C?J and set

B.a; b/ WD
®
a; Ja; J1b; .JJ1/b; J2b; .JJ2/b; J3b; .JJ3/b

¯
:

Then B.a; b/ is a basis of O and

M
B.a;b/

B
.id/ D

0BBBBBBBBBBB@

a0 �a1 �b2 �b3 �b4 �b5 �b6 �b7
a1 a0 b3 �b2 b5 �b4 b7 �b6
a2 �a3 b0 b1 b6 �b7 �b4 b5
a3 a2 �b1 b0 �b7 �b6 b5 b4
a4 �a5 �b6 b7 b0 b1 b2 �b3
a5 a4 b7 b6 �b1 b0 �b3 �b2
a6 �a7 b4 �b5 �b2 b3 b0 b1
a7 a6 �b5 �b4 b3 b2 �b1 b0

1CCCCCCCCCCCA
:

Moreover,
detMB.a;b/

B
.id/ D jbj4

�
Re2.abc/C Re2

�
J.abc/

��
:

Proof. The first formula is proven by direct computation, using the fact that B is a distin-
guished splitting basis and the equalities

a D

3X
tD0

.a2t C a2tC1J /Jt ;

Ja D

3X
tD0

.�a2tC1 C a2tJ /Jt ;

b D

3X
tD0

.b2t C b2tC1J /Jt ;

where J0 WD 1. To prove the second formula, let us introduce a third basis of O. We define

C WD
®
ab�1; .Ja/b�1; J1; JJ1; J2; JJ2; J3; JJ3

¯
:

By Lemma 2.18, C is a basis of O. We notice that B.a; b/D Rb.C/, where Rb WO!O
is the right multiplication by b. Thus, B.a; b/ is a basis of O and

M
B.a;b/

B
.id/ DMC

B .id/M
B.a;b/

C
.id/ DMC

B .id/M
C
C .Rb/:

By Theorem 2.13, we conclude that detMC
C
.Rb/ D jbj

8. Moreover,

MC
B .id/ D

0BBBBBBBBBBB@

.ab�1/0
�
.Ja/b�1

�
0

0 0 0 0 0 0

.ab�1/1
�
.Ja/b�1

�
1

0 0 0 0 0 0

.ab�1/2
�
.Ja/b�1

�
2

1 0 0 0 0 0

.ab�1/3
�
.Ja/b�1

�
3

0 1 0 0 0 0

.ab�1/4
�
.Ja/b�1

�
4

0 0 1 0 0 0

.ab�1/5
�
.Ja/b�1

�
5

0 0 0 1 0 0

.ab�1/6
�
.Ja/b�1

�
6

0 0 0 0 1 0

.ab�1/7
�
.Ja/b�1

�
7

0 0 0 0 0 1

1CCCCCCCCCCCA
;
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where, according to Lemma 2.18,

.ab�1/0 D hab
�1; 1i D Re.ab�1/;�

.Ja/b�1
�
1
D
˝
.Ja/b�1; J

˛
D hab�1; 1i D Re.ab�1/;

.ab�1/1 D hab
�1; J i D �Re

�
J.ab�1/

�
;�

.Ja/b�1
�
0
D
˝
.Ja/b�1; 1

˛
D �hab�1; J i D Re

�
J.ab�1/

�
:

As a consequence,

detMB.a;b/

B
.id/ D detMC

B .id/ detMC
C .Rb/

D
�

Re2.ab�1/C Re2
�
J.ab�1/

��
jbj8

D jbj4
�

Re2.abc/C Re2
�
J.abc/

��
:

We are now ready to prove the next result.

Theorem 3.5. Let f W�!O be a slice regular function. Fix x0 2�J and a distinguished
splitting basis B D ¹1; J; J1; JJ1; J2; JJ2; J3; JJ3º of O.

(1) Suppose that x0 62 R. If f 0s .x0/ ¤ 0 and f 0c .x0/f
0
s .x0/

�1 62 C?J , then

MB
B .dfx0/ DM

B.f 0c .x0/;f
0
s .x0//

B
.id/

and

det.dfx0/ D
ˇ̌
f 0s .x0/

ˇ̌4�Re2
�
f 0c .x0/f

0
s .x0/

c
�
C Re2

�
J
�
f 0c .x0/f

0
s .x0/

c
���
:

The last equality also holds true when either f 0s .x0/ D 0 or f 0c .x0/f
0
s .x0/

�1 2

C?J , in which cases both hands of the equality vanish.

(2) Suppose that x0 2 R. If f 0c .x0/ ¤ 0, then

MB
B .dfx0/ DM

B.f 0c .x0/;f
0
c .x0//

B
.id/

and
det.dfx0/ D

ˇ̌
f 0c .x0/

ˇ̌8
:

The last equality also holds true when f 0c .x0/ D 0, in which case both hands of
the equality vanish.

Proof. Assume that x0 62 R and let a WD f 0c .x0/ and b WD f 0s .x0/.
First suppose that b ¤ 0, ab�1 62 C?J . By Proposition 3.1, MB

B.a;b/
.dfx0/ is the 8 � 8

identity matrix. Thus,

MB
B .dfx0/ DM

B.a;b/

B
.id/MB

B.a;b/.dfx0/ DM
B.a;b/

B
.id/;

which is the first formula in the statement. The second formula now follows from Lemma
3.4.



R. Ghiloni, A. Perotti, and C. Stoppato 656

Now suppose that either b D 0 or ab�1 2 C?J . In both cases, clearly

jbj4
�

Re2.abc/C Re2
�
J.abc/

��
D 0:

Moreover, in both cases, det.dfx0/ D 0 by Theorem 3.2.
The case x0 2 R can be treated similarly.

Corollary 3.6. Let f W � ! O be a slice regular function. If x0 2 �J n R, then
det.dfx0/ D 0 if, and only if, hf 0c .x0/f

0
s .x0/

c ; 1i D 0 and hf 0c .x0/f
0
s .x0/

c ; J i D 0.

4. Almost-complex structures induced by octonionic slice regular
functions

The results of Section 2.3 allow us to explore whether slice regular functions are holo-
morphic with respect to appropriate almost-complex structures. In this section, we study
holomorphy on the tangent space at a single point x0. We will further this study in Sec-
tion 7.

Theorem 4.1. Let f W�!O be a slice regular function and fix x02�J nR. If f 0s .x0/¤0
and f 0c .x0/f

0
s .x0/

�1 62 C?J , then setting

J0.p C q/ WD Jp C
�
J
�
qf 0s .x0/

�1
��
f 0s .x0/

for all p 2 CJf 0c .x0/ and all q 2 C?J f
0
s .x0/ defines a constant complex structure on

O D CJf
0
c .x0/˚C?J f

0
s .x0/

such that
J0 ı dfx0 D dfx0 ı Jx0 :

The structure J0 coincides with the constant orthogonal complex structure Rf 0s .x0/ ıLJ ı
Rf 0s .x0/�1 if, and only if, .x0; f 0c .x0/; f

0
s .x0// D 0. It coincides with the constant orthog-

onal complex structure LJ if, and only if, f 0s .x0/ 2 CJ .

Proof. Let a WD f 0c .x0/ and b WD f 0s .x0/, so that dfx0.v C w/ D va C wb. We already
proved that b ¤ 0, ab�1 62C?J imply that CJa˚C?J b DO (the sum being direct, though
not necessarily orthogonal). Thus, setting J0.pC q/D JpC .J.qb

�1//b for all p 2CJa
and all q 2 C?J b leads to a well-defined endomorphism of O.

For all v 2 CJ and all w 2 C?J , we have

.J0 ı dfx0/.v C w/ D J0.vaC wb/ D J.va/C
�
J.wbb�1/

�
b D .J v/aC .Jw/b;

where we have taken into account Artin’s theorem. This formula coincides with

.dfx0 ı Jx0/.v C w/ D dfx0.J v C Jw/ D .J v/aC .Jw/b:

The fact that J0D dfx0 ı Jx0 ı df
�1
x0

, where Jx0 is a complex structure on O, immediately
implies that J0 is a complex structure on O.
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Finally, the equality J0.p C q/ D .J.pb
�1//b C .J.qb�1//b is equivalent to Jp D

.J.pb�1//b. This happens for all p 2 CJa if, and only if, .J; a; b/ D 0. On the other
hand, the equality J0.p C q/ D Jp C Jq is equivalent to .J.qb�1//b D Jq. We claim
that this happens for all q 2 C?J b if, and only if, b 2 CJ .

To prove our claim, without lost of generality we can assume that J D ` and prove
the following assertion: the equality .`w/b D `.wb/ holds for all w 2 H if, and only if,
b 2 C`. Suppose that b D b1 C `b2 with b1; b2 2 H. Then

.`w/b D .`w/.b1 C `b2/ D �b2w
c
C `.b1w/;

`.wb/ D `
�
w.b1 C `b2/

�
D `

�
wb1 C `.w

cb2/
�
D �wcb2 C `.wb1/:

It holds that b2wc D wcb2 and b1w D wb1 for all w 2 H if, and only if, b1; b2 2 R.
We immediately derive our thesis: .`w/b D `.wb/ holds for all w 2 H if, and only if,
b 2 C`.

When the push-forward of J via fj�nR is well defined, it coincides at each point f .x0/
with the structure defined in Theorem 4.1. We will determine when the push-forward is
well defined in Section 7. We can characterize orthogonality as follows.

Theorem 4.2. Let f W �! O be a slice regular function and fix x0 2 �J nR. Suppose
that f 0s .x0/ ¤ 0 and f 0c .x0/f

0
s .x0/

�1 62 C?J . The structure J0 defined in Theorem 4.1 is
orthogonal if, and only if, .x0; f 0c .x0/; f

0
s .x0// D 0.

Proof. Let a WD f 0c .x0/ and b WD f 0s .x0/, so that J0.p C q/ D Jp C .J.qb�1//b for
all p 2 CJa and all q 2 C?J b. According to Theorem 4.1, we have to prove that J0 is
orthogonal if, and only if, it coincides with Rb ı LJ ıRb�1 . By Theorem 2.13, this is the
same as proving that the transformation F WD Rb�1 ı J0 ı Rb is orthogonal if, and only
if, F D LJ . We note that, for all u 2 .CJa/b�1 and all w 2 C?J ,

F.uC w/ D
�
J.ub/

�
b�1 C Jw:

If we fix any distinguished splitting basis

B D ¹1; J; J1; JJ1; J2; JJ2; J3; JJ3º

of O and we consider the basis

C WD
®
ab�1; .Ja/b�1; J1; JJ1; J2; JJ2; J3; JJ3

¯
;

then we have

MC
C .F / D

0BBB@
H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

1CCCA ;



R. Ghiloni, A. Perotti, and C. Stoppato 658

where H WD
�
0 �1
1 0

�
. We already computed

MC
B .id/ D

0BB@
A 0 0 0

B I2 0 0

C 0 I2 0

D 0 0 I2

1CCA ;
0BB@
A

B

C

D

1CCA WD

0BBBBBBBBBBBBB@

.ab�1/0
�
.Ja/b�1

�
0

.ab�1/1
�
.Ja/b�1

�
1

.ab�1/2
�
.Ja/b�1

�
2

.ab�1/3
�
.Ja/b�1

�
3

.ab�1/4
�
.Ja/b�1

�
4

.ab�1/5
�
.Ja/b�1

�
5

.ab�1/6
�
.Ja/b�1

�
6

.ab�1/7
�
.Ja/b�1

�
7

1CCCCCCCCCCCCCA
:

Since we already proved that

A D

�
Re.ab�1/ Re

�
J.ab�1/

�
�Re

�
J.ab�1/

�
Re.ab�1/

�
;

the matrix A is invertible and it commutes with H . By direct computation,

MB
B .F / DM

C
B .id/M

C
C .F /M

B
C .id/

D

0BB@
A 0 0 0

B I2 0 0

C 0 I2 0

D 0 0 I2

1CCA
0BB@
H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

1CCA
0BB@

A�1 0 0 0

�BA�1 I2 0 0

�CA�1 0 I2 0

�DA�1 0 0 I2

1CCA

D

0BB@
AH 0 0 0

BH H 0 0

CH 0 H 0

DH 0 0 H

1CCA
0BB@

A�1 0 0 0

�BA�1 I2 0 0

�CA�1 0 I2 0

�DA�1 0 0 I2

1CCA

D

0BB@
H 0 0 0

.BH �HB/A�1 H 0 0

.CH �HC/A�1 0 H 0

.DH �HD/A�1 0 0 H

1CCA :
Visibly, MB

B
.F / is an orthogonal matrix if, and only if, it coincides with0BB@

H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

1CCA DMB
B .LJ /;

as desired.

The necessary and sufficient condition for orthogonality is fulfilled by a nontrivial
class of functions.
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Remark 4.3. Let f W � ! O be a slice regular function. If there exists J 2 S such
that f .�J / � CJ , then .x0; f 0c .x0/; f

0
s .x0// D 0 for all x0 2 � n R. Indeed, under this

hypothesis, for all x0 2 � the spherical derivative f 0s .x0/ belongs to CJ and the slice
derivative f 0c .x0/ belongs to the associative subalgebra of O generated by x0 and CJ .

5. Singular sets and quasi-openness

This section studies the singular set Nf of any slice regular function f and proves the
quasi-open mapping theorem for slice regular functions.

In Corollary 3.3, we saw that Nf includes the degenerate set Df and we determined
Nf nDf by means of equality (12). By definition, Nf is a real analytic subset of �. We
recall that, for any open U � O, a real analytic subset of U is a set of the form  �1.0/

for some real analytic function  W U ! R. In particular, a real analytic subset of U is a
closed subset of U . After recalling the next definition and stating a technical lemma, we
can add the subsequent properties of Nf .

Definition 5.1. A slice regular function f on � is called slice constant if fj�J is locally
constant for each J 2 S. The subset of �R.�/ that comprises slice constant functions is
denoted by �C.�/.

Lemma 5.2. Let f W �! O be a slice regular function and fix I 2 S. It holds that

@f ıs .˛ C ˇI/

@˛
D .f 0c /

ı

s.˛ C ˇI/;

@f 0s .˛ C ˇI/

@˛
D .f 0c /

0
s.˛ C ˇI/;

@f ıs .˛ C ˇI/

@ˇ
D �ˇ.f 0c /

0
s.˛ C ˇI/;

@f 0s .˛ C ˇI/

@ˇ
D �ˇ�1f 0s .˛ C ˇI/C ˇ

�1.f 0c /
ı

s.˛ C ˇI/:

(13)

As a consequence,

@f ıs .˛ C ˇI/

@˛
D f 0s .˛ C ˇI/C ˇ

@f 0s .˛ C ˇI/

@ˇ
;

@f ıs .˛ C ˇI/

@ˇ
D �ˇ

@f 0s .˛ C ˇI/

@˛
:

(14)

Proof. Using the definition of f ıs .˛ C ˇI/, f
0
s .˛ C ˇI/ and the equality @f .˛CˇI/

@˛
D

�I @f .˛CˇI/
@ˇ

D f 0c .˛ C ˇI/, we can prove our first statement by direct computation:

@f ıs .˛ C ˇI/

@˛
D
1

2

�
f 0c .˛ C ˇI/C f

0
c .˛ � ˇI/

�
D .f 0c /

ı

s.˛ C ˇI/;

@f 0s .˛ C ˇI/

@˛
D .2ˇI /�1

�
f 0c .˛ C ˇI/ � f

0
c .˛ � ˇI/

�
D .f 0c /

0
s.˛ C ˇI/;
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@f ıs .˛ C ˇI/

@ˇ
D
1

2

�
If 0c .˛ C ˇI/ � If

0
c .˛ � ˇI/

�
D �ˇ.f 0c /

0
s.˛ C ˇI/;

@f 0s .˛ C ˇI/

@ˇ
D �.2ˇ2I /�1

�
f .˛ C ˇI/ � f .˛ � ˇI/

�
C .2ˇI /�1

�
If 0c .˛ C ˇI/C If

0
c .˛ � ˇI/

�
D �ˇ�1f 0s .˛ C ˇI/C ˇ

�1.f 0c /
ı

s.˛ C ˇI/:

Our second statement immediately follows.

Proposition 5.3. Let� be either a slice domain or a product domain and let f W �!O
be a slice regular function.

(1) If f is constant, then Nf D V.f 0c / D � and Df D � nR.

(2) If f is slice constant but f is not constant, then Nf D V.f 0c / D � while Df is a
circular proper real analytic subset of � nR.

(3) If f is not slice constant, then Nf and V.f 0c / are proper real analytic subsets of
� and Df is a circular proper real analytic subset of � nR.

In particular, Nf has dimension 8 if, and only if, Nf D �, which in turn happens if, and
only if, f is slice constant.

Proof. Since f 0s W � n R! O is a real analytic function, constant on each 6-sphere of
the form Sx0 , either Df D V.f 0s / is a circular proper real analytic subset of � n R or
Df D � n R. In the latter case, f coincides with f ıs throughout � and formulas (14)
imply that f ıs is constant in � nR. It follows that f is constant in �.

Now let us consider V.f 0c /. By the definition of f 0c , its zero set equals � if, and only
if, f is slice constant. Otherwise, it is a proper real analytic subset of �.

We are left with proving that if Nf D �, then f 0c or f 0s vanish identically. This can be
argued using different techniques for slice domains and product domains.

• Suppose that� is a slice domain andNf D�. Then, by Theorem 3.5, f 0c .x0/D 0 for
all x0 2 � \R. As a consequence, f 0c vanishes identically in �.

• Suppose that � is a product domain and Nf D �. According to Corollary 3.6, for all
x0 2 � and all J 2 S it holds that8<: 0 D

˝
f 0c .x0/f

0
s .x0/

c ; 1
˛
D
˝
a1b

c C .Ja2/b
c ; 1

˛
;

0 D
˝
f 0c .x0/f

0
s .x0/

c ; J
˛
D
˝
a1b

c C .Ja2/b
c ; J

˛
;

where we have set a1 WD .f 0c /
ı

s.x0/, a2 WD .f
0
c /
0
s.x0/, b WD f

0
s .x0/. By Lemma 2.18,

the previous system is equivalent to8<:Re.a1bc/ �
˝
Im.a2bc/; J

˛
D 0;˝

Im.a1bc/; J
˛
C Re.a2bc/ D 0:
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Since J 2 S is arbitrary, it follows that a1bc D 0 D a2bc . As a consequence of this
reasoning, either f 0s vanishes identically or f 0c vanishes in a non-empty open subset
of �, whence throughout �.

The next example shows that Nf may well have dimension 7.

Example 5.4. Consider the octonionic polynomial f .x/Dx2. Its slice derivative f 0c .x/D
2x vanishes exactly at 0 and its spherical derivative f 0s .x/ D t .x/ vanishes exactly in
Im.O/ n ¹0º, while for ˛ ¤ 0

f 0c .˛ C ˇJ /f
0
s .˛ C ˇJ /

�1
D 2.˛ C ˇJ /.2˛/�1 D 1C ˇ˛�1J

never belongs to C?J . Thus,

Nf D Df [ V.f
0
c / D Im.O/:

We are now in a position to prove that octonionic slice regular functions are quasi-
open, according to theory presented in [26].

Definition 5.5. A map f W A! B between topological spaces is quasi-open if, for each
b 2 B and for each open neighborhood U of a compact connected component of f �1.b/
in A, the point b belongs to the interior of f .U /.

Theorem 5.6. Let � be either a slice domain or a product domain and let f W �! O
be a slice regular function. If f is not slice constant, then f is quasi-open.

Proof. By Theorem 3.5, det.dfx0/� 0 for all x0 2�. Moreover, if f is not slice constant,
thenNf D¹x0 2� j det.dfx0/D 0º has dimension less than 8 by the previous proposition.
By [26, pp. 91–92], f is quasi-open.

6. Fibers and openness

In this section, we are able to improve the open mapping theorem for octonionic slice
regular functions obtained in [21, Theorem 5.7] (see also [27, Theorem 5.4]). We begin
by studying the fibers of slice regular functions.

Theorem 6.1. Let � be either a slice domain or a product domain. Let f W �! O be a
nonconstant slice regular function and take c 2 f .�/.

(1) If N.f � c/ 6� 0, then f �1.c/ consists of isolated points or isolated 6-spheres of
the form Sx0 . Moreover, the union of such 6-spheres is f �1.c/ \Df .

(2) If N.f � c/ � 0, then f �1.c/ includes a real analytic subset of �, namely a
2-surface Wf;c , such that

f �1.c/ nDf D Wf;c nDf ;

while f �1.c/ \Df is a (possibly empty) union of isolated 6-spheres of the form
Sx0 . Clearly, Wf;c � Nf .

Case (2) is excluded if � is a slice domain.
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Proof. Let us set g WD f � c.
To prove property (1), we observe that if N.g/ 6� 0, then V.g/ D f �1.c/ consists

of isolated points or isolated 6-spheres of the form Sx by Theorem 2.8. Moreover, when
x0 2 V.g/, the inclusion Sx0 � V.g/ holds if, and only if, x0 2 Dg D Df .

Now let us prove property (2). If N.g/ � 0, then, by Theorem 2.5, each 6-sphere
Sx0 � � includes some zero of g. If Sx0 � V.g/, then Sx0 � Dg D Df . Otherwise,
by [19, Theorem 4.1], g0s.x0/ D f

0
s .x0/ ¤ 0 and the function g has exactly one zero in

Sx0 ; namely,

Re.x0/ � gıs .x0/g
0
s.x0/

�1
D Re.x0/C

�
c � f ıs .x0/

�
f 0s .x0/

�1:

Thus, V.g/ nDg D f �1.c/ nDf is a real analytic 2-surface †. Moreover, the circular
closed subset V.g/ \Dg D f �1.c/ \Df is a union of isolated 6-spheres of the form
Sx0 because its intersection with CCI is discrete for some I 2 S (see Theorem 2.8). We
can now prove that † extends analytically through each 6-sphere Sx0 � V.g/ \Dg D
f �1.c/\Df . Indeed, since g 6� 0, the spherical multiplicity of g at Sx0 is a finite positive
natural number 2n and

g.x/ D �nx0.x/h.x/

for some h 2 �R.�/ that does not vanish identically in Sx0 . Since N.g/ vanishes iden-
tically in �, so does N.h/. In particular, h has a unique zero w0 in Sx0 and h0s.x0/ ¤ 0.
Let U be a circular neighborhood of Sx0 , where h0s never vanishes. Then h vanishes iden-
tically on the real analytic 2-surface patch ‡ formed by the points Re.x/� hıs.x/h

0
s.x/

�1

for x 2 U . Now, ‡ includes both the unique zero w0 of h in Sx0 and the 2-surface†\U .
Thus, we have extended † analytically through Sx0 .

Our final remark is the following. If � is a slice domain, then Proposition 2.9 tells us
thatN.g/�0 only when g�0. In this case, f�c, which is excluded by our hypothesis.

Definition 6.2. Let� be either a slice domain or a product domain and let f W�!O be a
slice regular function. If, for some c 2 f .�/, case (2) of the previous theorem applies, we
say that f has a wing Wf;c and we denote the union of all wings of f by Wf . Otherwise,
we say that f has no wings and we set Wf WD ;.

The function in Example 5.4 has fibers of type (1), but no wings.

Example 6.3. For f .x/ D x2, if c belongs to the real half-line .�1; 0/, then the fiber
f �1.c/ is the 6-sphere

p
�cS; the fiber f �1.0/ over 0 is the singleton ¹0º; all other fibers

f �1.c/ consist of two points.

If f is slice constant, then every half-plane CCJ is a wing for f . This is the case for
the function

�J0.x/ WD
1

2
C

Im.x/ˇ̌
Im.x/

ˇ̌ J0
2

that appeared in Example 2.10. Less trivial examples of wings can be constructed by
means of the next remark, as done over quaternions in [18, Examples 5.9].
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Remark 6.4. Let � be a product domain and let g 2 �R.�/. Fix J0 2 S and set f WD
g � �J0 . By [19, Theorem 3.1],

N.f / D N.g/N.�J0/ � 0:

Thus, f has a wing Wf;0.

Example 6.5. The function f W O nR! O defined by

f .x/ WD 2x � ��i .x/ D x � x
Im.x/ˇ̌
Im.x/

ˇ̌ i
has

Nf D Wf;0 D CC
�i :

Indeed, it has a wing Wf;0 D CC
�i . Moreover, by direct computation, the following equal-

ities hold for all ˛; ˇ 2 R with ˇ > 0 and for all J 2 S:

f .˛ C ˇJ / D ˛ C ˇi C J.ˇ � ˛i/;

f 0s .˛ C ˇJ / D 1 �
˛

ˇ
i;

f 0c .˛ C ˇJ / D 1 � J i;

f 0c .˛ C ˇJ /f
0
s .˛ C ˇJ /

c
D 1C

˛

ˇ
.i C J / � J i:

By Corollary 3.6, det.dfx0/ only vanishes when x0 2 CC
�i .

The unionWf of all wings may well have dimension 7, as shown in the next example.
Here and later in this work, we will use the notation h�2.x/ D h.x/�2 WD h.x/ � h.x/.

Example 6.6. The slice regular function on O nR defined by

f .x/ WD x � �i .x/ � x
�1
� ��i .x/

has a wingWf;c for every c in the unit 5-sphere in C?i D jRC kRC `RC `iRC j̀RC
`kR. Indeed,

N.f /.x/ D
�
x � �i .x/ � x

�1
� ��i .x/

�
�
�
� x�1 � �i .x/C x � ��i .x/

�
D ���2i .x/ � �

�2
�i .x/ D ��i .x/ � ��i .x/

� �1

and

N.f � c/.x/ D N.f /.x/ � f .x/ � cc � c � f c.x/C n.c/

D n.c/ � 1 � 2
˝
f ıs .x/; c

˛
� 2 Im.x/

˝
f 0s .x/; c

˛
:

Thus,N.f � c/� 0 if, and only if, hf ıs .x/; ci �
n.c/�1
2

and hf 0s .x/; ci � 0. Noticing that
f ıs , f 0s are nonconstant and real analytic functions O n R! Ci , the last two equalities
are equivalent to c 2 C?i , n.c/ D 1.
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As a consequence of Theorem 6.1, any slice regular function f can be restricted to
fulfill the next definition (see [26]).

Definition 6.7. A map f W A! B between topological spaces is light if, for each b 2 B ,
f �1.b/ is totally disconnected.

This allows us to prove the announced new version of the open mapping theorem
for octonionic slice regular functions. In the statement, xDf denotes the closure in � of
Df � � nR.

Theorem 6.8. Let � be either a slice domain or a product domain and let f W �! O
be a slice regular function. If f is not slice constant, then its restriction to

� n . xDf [Wf /

is an open map. Moreover, if Wf D ;, then the image f .U / of any circular open subset
U of � is open; in particular, f .�/ is open.

Proof. Let�0 WD� n . xDf [Wf / and observe that fj�0 is a light function as a consequence
of Theorem 6.1. Moreover, fj�0 is of class C! and det.dfx0/� 0 for all x0 2�0 as proven
in Theorem 3.5. By [26, Theorem 2], it follows that fj�0 is an open map.

Now let us take the additional assumption that Wf D ;. Pick any circular open subset
U of � and any b 2 f .U /. At least one connected component C of f �1.b/ intersects U .
Moreover, by Theorem 6.1, C is a compact set entirely contained in the circular open set
U . Now, Theorem 5.6 implies that b is an interior point of f .U /.

We point out that closing Df means adding to it a discrete set at most.

Remark 6.9. Under the hypotheses of the previous theorem, Nf is a closed subset of �
and V.f 0s / is a closed subset of � nR, included in Nf . As a consequence,

xDf nDf � Nf \R D V.f 0c / \R:

If f is not slice constant, then xDf nDf is a closed and discrete subset of � \R.

The present version of the open mapping theorem is sharp. In the next example, f is
not an open mapping unless xDf is removed from �. The same was true over quaternions;
see [10, p. 814].

Example 6.10. The function f .x/ D x2 of Examples 5.4 and 6.3 has xDf D Im.O/. The
ball B.i; 1/ includes i 2 xDf , but it does not intersect CJ for any J 2 S, J ? i . Thus,
while f .B.i; 1// includes �1, it does not include any point of CJ n R for any J 2 S,
J ? i . As a consequence, f .B.i; 1// is not an open subset of O.

In the following example, f is not an open mapping, unless Wf is removed from �,
and f .�/ is not an open subset of O.
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Example 6.11. The map f .x/ WD 2x � ��i .x/ of Example 6.5 has� DO nR and Nf D
Wf D Wf;0 D CC

�i . It fulfills the following equalities for all ˛; ˇ 2 R with ˇ > 0, for all
J 2 S, and for J 0 WD J � hJ; iii :

f .˛ C ˇJ / D ˛ C ˇi C ˇJ � ˛J i D ˛
�
1C hJ; ii

�
C ˇ

�
1C hJ; ii

�
i C ˇJ 0 � ˛J 0i:

The open set f .� n Wf / is included in the half-space ¹x 2 O j hx; ii > 0º, while
f .Wf / D ¹0º. Thus, f .�/ D f .� nWf / [ ¹0º is not an open set.

For the sake of completeness, we include in this section a study of the wings of a slice
regular function.

Remark 6.12. We saw in Theorem 6.1 that a wing Wf;c can only exist if f is a slice
regular function on a product domain, i.e., an �D , where D is an open subset of C that
does not intersect R and has two connected components DC; D�, switched by complex
conjugation. By direct inspection in the proof, there exists an injective real analytic map
! W DC ! �D such that !.DC/ D Wf;c . The map ! can be constructed as follows: fix
any I 2 S and set, for each ˛ C iˇ 2 DC,

!.˛ C iˇ/ WD ˛ C
�
c � f ıs .˛ C ˇI/

�
f 0s .˛ C ˇI/

�1 (15)

if f 0s .˛ C ˇI/ ¤ 0 and

!.˛ C iˇ/ WD ˛ � hıs.˛ C ˇI/h
0
s.˛ C ˇI/

�1 (16)

if, instead, f .x/ D c C�n
˛CˇI

.x/h.x/ for some n > 0 and some h 2 �R.�D/ that does
not vanish identically in ˛C ˇS. We note that, by construction, the map ! is independent
of the choice of I 2 S.

Wings are studied in further detail in the next theorem.

Theorem 6.13. Let f W �D ! O be a slice regular function admitting a wing Wf;c and
let ! W DC ! �D be the map described in the previous remark.

(1) ! is a real analytic embedding and the wing Wf;c intersects transversally each
sphere ˛0 C ˇ0S in �D at the point !.˛0 C iˇ0/.

(2) If x0 D ˛0 C ˇ0J 2 Wf;c , then d!˛0Ciˇ0 maps the vectors 1; i to the vectors

1 � ab�1; J � .Ja/b�1 2 Tx0Wf;c ;

where a WD f 0c .x0/;b WD f
0
s .x0/ if x0 62Df and a WD h0c.x0/;b WD h

0
s.x0/ if instead

f .x/ D c C �nx0.x/h.x/ for some n > 0 and some h 2 �R.�D/ that does not
vanish identically in ˛0 C ˇ0S. In particular, a ¤ b.

(3) If, for each x0 D ˛0 C ˇ0J 2 Wf;c , we define Jx0 to be the restriction of Rb�1 ı
LJ ı Rb to Tx0Wf;c , then ! is a biholomorphism between the Riemann surfaces
.DC; i/ and .Wf;c ;J/.
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Proof. We prove one fact at a time.
(1) We may construct a commutative diagram

DC DC � S

�D

!

ˆ

‰

by settingˆ.z/D .z;�.z//with �.˛C iˇ/ WD .!.˛C iˇ/� ˛/ˇ�1 and‰.˛C iˇ;J / WD
˛C ˇJ . Clearly,ˆ is a real analytic embedding and‰ is a real analytic isomorphism with
inverse ‰�1.x/D .Re.x/C i jIm.x/j; Im.x/jIm.x/j�1/. Moreover, ‰ maps each product
¹˛ C iˇº � S onto the 6-sphere ˛ C ˇS. It follows that ! is an embedding and Wf;c is
transverse in �D to each sphere ˛ C ˇS at !.˛ C iˇ/.

(2) We first consider x0 D !.˛0C iˇ0/ 2Wf;c nDf . Fix I 2 S. From (15), we derive
the equality

!.˛ C iˇ/f 0s .˛ C ˇI/ D f̨ 0s .˛ C ˇI/C c � f
ı
s .˛ C ˇI/;

whence

@!

@˛
.˛ C iˇ/f 0s .˛ C ˇI/ D f

0
s .˛CˇI/C

�
˛�!.˛Ciˇ/

�@f 0s .˛CˇI/
@˛

�
@f ıs .˛CˇI/

@˛
;

@!

@ˇ
.˛ C iˇ/f 0s .˛ C ˇI/ D

�
˛ � !.˛ C iˇ/

�@f 0s .˛ C ˇI/
@ˇ

�
@f ıs .˛ C ˇI/

@ˇ
:

Using formulas (13), we conclude that

@!

@˛
.˛ C iˇ/f 0s .˛ C ˇI/ D f

0
s .˛ C ˇI/ � .f

0
c /
ı

s.˛ C ˇI/

C
�
˛ � !.˛ C iˇ/

�
.f 0c /

0
s.˛ C ˇI/

D f 0s .˛ C ˇI/ � f
0
c

�
!.˛ C iˇ/

�
;

@!

@ˇ
.˛ C iˇ/f 0s .˛ C ˇI/ D

!.˛ C iˇ/ � ˛

ˇ
f 0s .˛ C ˇI/

C
˛�!.˛Ciˇ/

ˇ
.f 0c /

ı

s.˛CˇI/Cˇ.f
0
c /
0
s.˛CˇI/

D
!.˛ C iˇ/ � ˛

ˇ

�
f 0s .˛ C ˇI/ � f

0
c

�
!.˛ C iˇ/

��
:

At ˛0 C iˇ0, using the equalities !.˛0 C iˇ0/ D x0 and f 0s .˛0 C ˇ0I / D f 0s .x0/, we
conclude that

@!

@˛
.˛0 C iˇ0/ D 1 � f

0
c .x0/f

0
s .x0/

�1
D 1 � ab�1;

@!

@ˇ
.˛0 C iˇ0/ D J �

�
Jf 0c .x0/

�
f 0s .x0/

�1
D J � .Ja/b�1;

with a WD f 0c .x0/, b WD f
0
s .x0/.
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Now we consider x0D!.˛0C iˇ0/ 2Wf;c \Df , so that f .x/D cC�nx0.x/h.x/ for
some n > 0 and some h 2 �R.�D/ that does not vanish identically in ˛C ˇS. From (16),
we derive the equality

!.˛ C iˇ/h0s.˛ C ˇI/ D ˛h
0
s.˛ C ˇI/ � h

ı
s.˛ C ˇI/:

Reasoning as before, we can prove that @!
@˛
.˛0 C iˇ0/ D 1 � ab

�1 and @!
@ˇ
.˛0 C iˇ0/ D

J � .Ja/b�1 with a WD h0c.x0/, b WD h
0
s.x0/.

(3) Since ! WDC!Wf;c is a real analytic isomorphism, we can consider the complex
structure J defined on Wf;c as the push-forward of the standard complex structure on DC

via !. By construction,
! W .DC; i/! .Wf;c ;J/

is a biholomorphism. Taking into account our previous computations, at each x0 D

˛0 C ˇ0J 2 Wf;c the structure Jx0 maps @!
@˛
.˛0 C iˇ0/ D 1 � ab

�1 to @!
@ˇ
.˛0 C iˇ0/ D

J � .Ja/b�1 and the latter to � @!
@˛
.˛0 C iˇ0/D �1C ab

�1. In other words, Jx0 coin-
cides with the restriction of Rb�1 ı LJ ıRb to Tx0Wf;c .

Example 6.14. The slice regular function on O nR defined by

f .x/ WD 2.x2 C xj C `/ � ��i .x/

has a wingWf;0 by Remark 6.4. If g.x/D x2 C xj C `, then, for all ˛;ˇ 2 R with ˇ > 0
it holds that

gıs .˛ C ˇJ / D ˛
2
� ˇ2 C j̨ C `;

g0s.˛ C ˇJ / D 2˛ C j;

.2��i /
ı
s.˛ C ˇJ / � 1;

.2��i /
0
s.˛ C ˇJ / D �ˇ

�1i;

f ıs .˛ C ˇJ / D ˛
2
� ˇ2 C 2˛ˇi C j̨ � ˇk C `;

f 0s .˛ C ˇJ / D 2˛ � .˛
2
� ˇ2/ˇ�1i C j C ˛ˇ�1k � ˇ�1`i;

where the last two equalities take into account formulas (9). The parametrization ! W
CC ! Wf;0 can be computed explicitly as

!.˛ C iˇ/

D ˛ �
ˇ

1C r C r2

�
.�1 � r C r2/i C 2ˇrj � 2˛rk C 4˛ˇ`C 2.˛2 � ˇ2/`i

�
;

where r WD ˛2 C ˇ2. We notice that the linear span of the elements of Wf;0 is the 6-
dimensional vector space RC iRC jRC kRC `RC `iR, whence there is no subalge-
bra of O isomorphic to H that includes Wf;0.
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7. Octonionic slice regular functions and branching

In this section, we prove that the branch set of a slice regular function is its singular
set. This allows us to complete the results of Section 4 about induced almost-complex
structures. We begin with three preliminary results. The first one is the octonionic analog
of [9, Remark 3.5].

Lemma 7.1. Fix x0 D ˛0 C ˇ0J with ˛0; ˇ0 2 R, ˇ0 > 0, and J 2 S. Consider the map

‚ W Sx0 n ¹x
c
0º ! C?J ; x 7! .x � x0/.x � x

c
0/
�1

and the affine transformation � WC?J ! ˛0CC?J , x 7! ˛0 � ˇ0Jx. Then‚ is an orienta-
tion-preserving conformal transformation and � ı‚ is the stereographic projection of Sx0
from the point xc0 to ˛0 CC?J , which is the affine plane tangent to Sx0 at x0.

Proof. For J 2 S fixed, consider the map from S n ¹�J º to C?J defined as

L 7! .L � J /.LC J /�1 D
J � L

1C hJ;Li
:

When composed with the rotation x 7! �Jx of C?J , it is the stereographic projection of
S from the point �J to the tangent plane C?J at J . Indeed, every L 2 S n ¹�J º can be
expressed asLD sin.�/I C cos.�/J for some I 2 S orthogonal to J and some � 2 Œ0;�/.
Now, for x D J�L

1ChJ;Li
D

sin.�/
1Ccos.�/JI , the points �J; L;�Jx are aligned: �Jx C J D

sin.�/IC.1Ccos.�//J
1Ccos.�/ is a real rescaling of LC J D sin.�/I C .1C cos.�//J .

Our thesis follows by applying a real dilation and a real translation to transform S
into Sx0 .

The second preliminary result is a nonassociative generalization of [9, Proposition
3.6].

Theorem 7.2. Let f W �! O be a slice regular function and fix x0 2 �. The point x0
belongs to the singular set Nf if, and only if, there exists Qx0 2 Sx0 such that

f .x/ D f .x0/C .x � x0/ �
�
.x � Qx0/ � h.x/

�
for some slice regular function h on �.

Proof. By [20, Theorem 7.2] (which generalized [17]), an expansion

f .x/ D A0 C .x � x0/ � A1 C�x0.x/ � A2 C�x0.x/ � .x � x0/ � A3 C � � �

with A0; A1; A2; A3; : : : 2O is possible. The series on the right-hand side of the previous
equality converges absolutely and uniformly on compact sets in an open neighborhood of
Sx0 in �, where its sum equals f .x/. Thus, there exists a slice regular function f1 W �!
O such that f .x/DA0C .x � x0/ � f1.x/ in�. By Theorem 2.7, f .x0/DA0. Moreover,
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there exists a slice regular function f2 W�!O such that f1.x/D A1 C .x � xc0/ � f2.x/
in � and it holds that f1.xc0/ D A1 (which yields f 0s .x0/ D A1 in case x0 62 R). Finally,
there exists a slice regular function f3 W�!O such that f2.x/D A2 C .x � x0/ � f3.x/
in � and it holds that f2.x0/ D A2. Overall,

f .x/ D f .x0/C .x � x0/ � A1 C�x0.x/ � A2 C�x0.x/ � .x � x0/ � f3.x/

in �. As a byproduct, we get that

f .x/ D f .x0/C .x � x0/ �
�
A1 C 2 Im.x0/A2

�
C .x � x0/

�2
�
�
A2 C .x � x

c
0/ � f3.x/

�
in �. Using the Leibniz rule (8) and Theorem 2.7, we conclude that f 0c .x0/ D A1 C

2 Im.x0/A2.
It holds that x0 2 Df (or x0 2 Nf \R) if, and only if, A1 D 0; i.e.,

f .x/ D f .x0/C�x0.x/ � A2 C�x0.x/ � .x � x0/ � f3.x/

D f .x0/C .x � x0/ �
�
.x � xc0/ �

�
A2 C .x � x0/ � f3.x/

��
:

We now characterize the case x0 2Nf nDf . For x0 2CJ , that condition is equivalent
to f 0c .x0/f

0
s .x0/

�1 2 C?J by Theorem 3.2. This is, in turn, equivalent to

1C
�
2 Im.x0/A2

�
A�11 2 C?J

or, taking into account Lemma 2.18, 1 C 2 Im.x0/.A2A�11 / 2 C?J . By Lemma 7.1, the
latter happens if, and only if, there exists Qx0 2 Sx0 n ¹x

c
0º such that

1C 2 Im.x0/.A2A�11 / D . Qx0 � x0/. Qx0 � x
c
0/
�1
I

i.e., A2A�11 D .x
c
0 � Qx0/

�1. The latter is equivalent to

f .x/ D f .x0/C .x � x0/ �
�
.x � Qx0/ � A2 C�x0.x/ � f3.x/

�
D f .x0/C .x � x0/ �

�
.x � Qx0/ �

�
A2 C .x � Qx

c
0/ � f3.x/

��
:

This concludes the proof.

Alternate proof of Theorem 7.2. Since Qf .x/ WD f .x/� f .x0/ vanishes at x D x0, Theo-
rem 2.7 guarantees that there exists a slice regular function g W �! O such that

Qf .x/ D .x � x0/ � g.x/:

For all x 2 �, the Leibniz rule (8) yields

f 0c .x/ D
Qf 0c .x/ D g.x/C .x � x0/ � g

0
c.x/; f 0c .x0/ D g.x0/;

where the last equality is true by Theorem 2.7. For all x 2 � n R, the Leibniz rule (9)
yields

f 0s .x/ D
Qf 0s .x/ D g

ı
s .x/C

�
Re.x/ � x0

�
g0s.x/; f 0s .x0/ D g

ı
s .x0/ � Im.x0/g0s.x0/:
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If x 2 � \R, then the real differential dfx0 is singular if, and only if, 0 D f 0c .x0/ D
g.x0/. This is, in turn, equivalent to the existence of a slice regular h W �! O such that

g.x/ D .x � x0/ � h.x/I

i.e.,
Qf .x/ D .x � x0/ �

�
.x � x0/ � h.x/

�
;

as desired.
Suppose, instead, that x0 2 � n R. By Corollary 3.6, the real differential dfx0 is sin-

gular if, and only if, hf 0c .x0/f
0
s .x0/

c ; 1i D 0 and hf 0c .x0/f
0
s .x0/

c ; Im.x0/i D 0. Let us
express these two scalar products in a different form. We compute

f 0c .x0/f
0
s .x0/

c
D g.x0/

�
gıs .x0/ � Im.x0/g0s.x0/

�c
D
�
gıs .x0/C Im.x0/g0s.x0/

��
gıs .x0/

c
C g0s.x0/

c Im.x0/
�

D n
�
gıs .x0/

�
C Im.x0/2n

�
g0s.x0/

�
C 2 Im

��
Im.x0/g0s.x0/

�
gıs .x0/

c
�
:

Now, ˝
f 0c .x0/f

0
s .x0/

c ; 1
˛
D n

�
gıs .x0/

�
C Im.x0/2n

�
g0s.x0/

�
D
�
N.g/

�ı
s
.x0/;

where we have applied formulas (11) to g. Moreover,˝
f 0c .x0/f

0
s .x0/

c ; Im.x0/
˛
D 2

˝�
Im.x0/g0s.x0/

�
gıs .x0/

c ; Im.x0/
˛

D 2
ˇ̌
Im.x0/

ˇ̌2˝
g0s.x0/g

ı
s .x0/

c ; 1
˛

thanks to Lemma 2.18. By applying formulas (11) to g, we conclude that˝
f 0c .x0/f

0
s .x0/

c ; Im.x0/
˛
D
ˇ̌
Im.x0/

ˇ̌2
t
�
g0s.x0/g

ı
s .x0/

c
�

D
ˇ̌
Im.x0/

ˇ̌2�
N.g/

�0
s
.x0/:

Thus, dfx0 is singular if, and only if, .N.g//ıs.x0/D 0D .N.g//
0
s.x0/, which is equivalent

to N.g/jSx0 � 0. The last equality holds true if, and only if, there exist Qx0 2 Sx0 and a
slice regular function h W �! O such that

g.x/ D .x � Qx0/ � h.x/:

This equality is, in turn, equivalent to

Qf .x/ D .x � x0/ �
�
.x � Qx0/ � h.x/

�
;

which is our thesis.

In other words, a point x0 belongs to the singular set Nf if, and only if, the total
multiplicity of f � f .x0/ at Sx0 is greater than 1.
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Lemma 7.3. Let � be either a slice domain or a product domain and let f W �! O be
a slice regular function. If x0 2 Nf nWf , then the total multiplicity of f � f .x0/ at Sx0
is a finite number n � 2. If, moreover, x0 62Df and if U0 is any neighborhood of x0 in�,
then there exist neighborhoods U1, U2 of x0 with U0 � U1 � U2 and with the following
property: for all x1 2 U2, the function f � f .x1/ has finitely many zeros in U1, with total
multiplicities whose sum equals n.

Proof. Since x0 62Wf , Theorem 6.1 guarantees thatN.f � f .x0// 6� 0, whence the total
multiplicity of f � f .x0/ at Sx0 is a finite number n. On the other hand, since x0 2 Nf ,
Theorem 7.2 implies that n � 2.

Now suppose that x0 62Df and let U0 be any neighborhood of x0 D ˛0Cˇ0J0 in �.
For all r > 0, consider the closed disc Dr WD �.˛0 C iˇ0; r/ � C and its circulariza-
tion T r D �Dr , which is a neighborhood of Sx0 . Let us also consider the cone C r DS
jJ�J0j<r

CJ . We use different arguments depending on whether or not x0 belongs to
the real axis.
� Suppose that x0 2 � n R. There exists r0 such that the inclusions T r0 � � n R,

T r0 \C 2r0 � U0 hold,N.f � f .x0// never vanishes in T r0 n Sx0 , and f 0s never vanishes
in T r0 . Let

m WD min
x2T r0

ˇ̌
Im.x/f 0s .x/

ˇ̌
:

There exists r1 with 0 < r1 � r0 such thatˇ̌
f ıs .˛ C ˇJ / � f

ı
s .˛

0
C ˇ0J 0/

ˇ̌
C
ˇ̌
f̌ 0s .˛ C ˇJ / � ˇ

0f 0s .˛
0
C ˇ0J 0/

ˇ̌
� r0m

for all ˛ C ˇJ , ˛0 C ˇ0J 0 2 T r1 with ˇ; ˇ0 � 0.
We claim that there exists r2 with 0 < r2 � r1 having the following property: for

each x1 2 T r2 \ C r2 , the distinct zeros x1; : : : xh of the function f � f .x1/ in T r1 have
multiplicities whose sum equals n.

Our claim can be proven as follows. Let us denote the restriction of N.f � f .x1// to
.T r1/CJ by �x1 and think of it as a holomorphic function of one complex variable. Since
�x0 has multiplicity n at x0 and no other zeros, there exists r2 with 0 < r2 � r1 such
that the sum of the multiplicities of the zeros of �x1 equals n for all x1 2 T r2 \ C r2 . If
this were not true, we could construct a sequence of holomorphic functions contradicting
Hurwitz’s theorem [5, Theorem 2.5]. Thus, the sum of the total multiplicities of the zeros
of f � f .x1/ in T r1 equals n for any x1 2 T r2 \ C r2 .

The claim thus established, for each k 2 ¹1; : : : ; hº, let ˛k ; ˇk 2 R (with ˇk � 0) be
such that xk D ˛k C Jkˇk . Each equality f .xk/ D f .x1/ implies that

Jk D
�
f ıs .x1/ � f

ı
s .xk/C ˇ1J1f

0
s .x1/

��
ˇkf

0
s .xk/

��1
;

whence

Jk � J1 D
�
f ıs .x1/ � f

ı
s .xk/C J1

�
ˇ1f

0
s .x1/ � ˇkf

0
s .xk/

���
ˇkf

0
s .xk/

��1
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and jJk � J1j < r0mm�1 D r0. It follows that

jJk � J0j � jJk � J1j C jJ1 � J0j < r0 C r2;

whence x1; : : : ; xk all belong to T r1 \ C r0Cr2 . Now consider the neighborhoods U1 WD
T r1 \ C r0Cr2 and U2 WD T r2 \ C r2 of x0. It holds that

U0 � T
r0 \ C 2r0 � U1 � U2;

as desired.
� If x0 2�\R, then Sx0 D¹x0º and each T r is the Euclidean ball of radius r centered

at x0. There exists r0 such that T r0 is included in U0 and such that N.f � f .x0// never
vanishes in T r0 n ¹x0º. Arguing as above, we can prove that there exist r1, r2 with 0< r2 �
r1 � r0 with the following property: for all x1 2 T r2 , the distinct zeros x1; : : : xh of the
function f � f .x1/ in T r1 have multiplicities whose sum equals n. If we set U1 WD T r1

and U2 WD T r2 , the thesis immediately follows.

We are now in a position to prove the result we announced at the beginning of this
section.

Theorem 7.4. Let � be either a slice domain or a product domain and let f W �! O
be a slice regular function. Then Nf is the branch set of f . More precisely,

(1) for every point x0 2� nNf , there exists an open neighborhood U of x0 in� such
that f .U / is open and fjU W U ! f .U / is a diffeomorphism; and

(2) for every point x0 2 Nf and for every neighborhood U of x0 in �, fjU is not
injective.

If, moreover, the restriction fj�nNf W � nNf ! f .� nNf / is proper, then f W�! f .�/

is a branched covering.

Proof. If f is slice constant, then property (2) holds at each point of Nf D�. We assume
henceforth f not to be slice constant. Then its singular set Nf is a closed subset of �
whose interior is empty by Proposition 5.3. If x0 2� nNf , then the implicit function theo-
rem implies that there exists an open neighborhoodU of x0 in� such that fjU W U!f .U /
is a diffeomorphism. Let us prove that every x0 2 Nf is a branch point, i.e., property (2).

If x0 belongs to Df � Nf , then it is a branch point because f is constant on the
6-sphere Sx0 through x0.

If x0 belongs to Wf � Nf , then it is a branch point because f is constant on the wing
Wf;f .x0/, which is a 2-surface through x0.

If x0 2 Nf n .Df [Wf /, we can prove that x0 is a branch point as follows. If U0 is
any neighborhood of x0 in �, then, by the previous lemma, there exist a number n � 2
and neighborhoods U1; U2 of x0 (with U0 � U1 � U2) such that, for all x1 2 U2, the sum
of the total multiplicities of the zeros of f � f .x1/ in U1 equals n. We can observe that,
for all x1 2 U2 n Nf , the total multiplicity of f � f .x1/ at x1 equals 1 by Theorem 7.2.
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Thus, f � f .x1/ vanishes not only at x1 but also at some other point of U1. In particular,
f is not injective in U0. Since the fibers of the restriction fj�nNf are discrete, if this
restriction is a proper map from � n Nf to f .� n Nf /, then it is a covering. In such a
case, f W �! f .�/ is a branched covering with branch set Nf .

We can draw the following consequence about the push-forwards of the almost-com-
plex structure J presented in Definition 2.19.

Corollary 7.5. Let g W �! O be a slice regular function and pick an open subset U of
� nR. The push-forward

Jf
f .x0/

WD dfx0 ı Jx0 ı df
�1
x0

of the structure JjU through f WD gjU is well defined on f .U / if, and only if, f is injective.

This allows us to complete the results of Section 4 about induced almost-complex
structures. Indeed, Theorem 4.1, Theorem 4.2, and Remark 4.3 have the following conse-
quence.

Corollary 7.6. Let g W �! O be a slice regular function that is not slice constant and
pick an open subset U of � n R such that f WD gjU is injective. If x0 2 UJ , then the
equality

Jf
f .x0/

.p C q/ WD Jp C
�
J
�
qf 0s .x0/

�1
��
f 0s .x0/

holds for all p 2 CJf 0c .x0/ and all q 2 C?J f
0
s .x0/. The push-forward Jf is an almost-

complex structure on f .U / and f is a holomorphic map between the almost-complex
manifolds .U; J/ and .f .U /; Jf /. Moreover, Jf is orthogonal if, and only if,�

x0; f
0
c .x0/; f

0
s .x0/

�
D 0 for all x0 2 U

(which is always the case if g.�J / � CJ for some J 2 S). Finally, Jf D J if g is slice
preserving (and the converse implication holds when U D � nR).

We point out that, since J is not integrable, the induced structure Jf is not integrable
in general.

We conclude our work with an explicit example, which extends to the octonions the
main example of [9].

Example 7.7. Consider the octonionic polynomial x2 C xi , which maps R bijectively
into a parabola 
 � C � O. By direct computation,

f 0s .x/ D t .x/C i; f 0c .x/ D 2x C i:

In particular, Df D ; and

f 0c .˛ C ˇJ /f
0
s .˛ C ˇJ /

�1
D
1C 4˛2 C 2ˇhJ; ii C 4˛ˇJ � 2ˇJ � i

1C 4˛2
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belongs to C?J if, and only if, ˛ D 0 and ˇhJ; ii D �1
2

. Thus,

Nf D �
i

2
C jRC kRC `RC `iRC j̀RC `kR:

For all x0 2 O n Nf , the preimage of f .x0/ includes exactly two points: x0 and x1 D
i � x0. On the other hand, f is one-to-one from Nf to � WD f .Nf /. Let us denote by f C

the restriction of f to OC D ¹x 2 O W Re.x/ > 0º minus R and by f � the restriction of
f to O� D ¹x 2 O W Re.x/ < 0º minus R. The functions f C and f � are injective and
their ranges both equal

O n .
 [G/;

where G is the image f .Im.O// of the 7-dimensional vector space Im.O/ bounding OC

and O�. The induced Jf
C

; Jf
�

are distinct almost-complex structures on O n .
 [G/.
They are orthogonal because f .Ci / � Ci .
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