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Covariant derivatives of eigenfunctions along parallel
tensors over space forms and a conjecture motivated by

the vertex algebraic structure

Fei Qi

Abstract. We study the covariant derivatives of an eigenfunction for the Laplace–Beltrami opera-
tor on a complete, connected Riemannian manifold with nonzero constant sectional curvature. We
show that along every parallel tensor, the covariant derivative is a scalar multiple of the eigenfunc-
tion. We also show that the scalar is a polynomial depending on the eigenvalue and prove some
properties. A conjecture motivated by the study of vertex algebraic structure on space forms is also
announced, suggesting the existence of interesting structures in these polynomials that awaits further
exploration.

1. Introduction

The study is motivated by Yi-Zhi Huang’s construction of a meromorphic open-string
vertex algebra (MOSVA hereafter) and its modules over a Riemannian manifold in [3].
Roughly speaking, a MOSVA is an algebraic structure of vertex operators that are asso-
ciative, but not necessarily commutative (see [2, 9] for more details). To give a rough
description on Huang’s construction, let

• M be a Riemannian manifold;

• TM be the tangent bundle with Levi-Civita connection;

• TMC be the complexified tangent bundle C ˝R TM with the natural connection;

• .TMC/˝r be the tensor product bundle of TMC of degree r ;

• Ten.TMC/ be the tensor algebra bundle, i.e., Ten.TMC/ D
L1
rD0.TM

C/˝r ;

• …..TMC/˝r / be the space of parallel r-tensors, i.e., parallel sections of the tensor
bundle .TMC/˝r with respect to the natural connection;

• ….Ten.TMC// be the space of all parallel tensors, i.e., parallel sections of the tensor
algebra bundle Ten.TMC/ with respect to the natural connection.

• C1.U /C be the space of complex-valued smooth functions defined on an open subset
U of M .
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In [3], Huang constructed a MOSVA on the space of parallel sections of certain affinized
bundle of TMC . On the space C1.U /C , using the Levi-Civita connection r on M ,
Huang defined an action of ….Ten.TMC// by

 U .X/f D .r
mf /.X/

for every X 2 …..TMC/˝m/ of degree m. In other words,  U .X/f is the degree-m
covariant derivative of f along X . Huang also showed that

 U .X ˝ Y / D  U .X/ U .Y / (1)

for every X; Y 2 ….Ten.TMC//. In other words, the space C1.U /C is a module for the
associative algebra….Ten.TMC//. An induced module construction can then performed,
giving a module for the MOSVA.

Of specific interest are the submodules generated by an eigenfunction for the Laplace–
Beltrami operator. Huang showed that the Laplace–Beltrami operator appears as a com-
ponent of some vertex operator in the MOSVA he constructed. Thus, starting from an
eigenfunction f of the Laplace–Beltrami operator, we can induce the ….Ten.TMC//-
submodule of C1.U /C generated by f to a module for the MOSVA. As eigenfunctions
can be understood as quantum states in quantum mechanics, the modules they generate
can be understood as the string-theoretic excitement to the quantum states. It is Huang’s
idea that the modules for the MOSVA generated by the eigenfunctions and the yet-to-be-
defined intertwining operators among these modules may lead to a mathematical construc-
tion of the quantum two-dimensional nonlinear � -model.

Therefore, to understand the module for the MOSVA generated by an eigenfunction f ,
the first step is to understand the….Ten.TMC//-submodule of C1.U /C generated by f ,
which is simply the space spanned by the covariant derivatives of f along all parallel sec-
tions. In [10], the author studied the example of MOSVA and its eigenfunction modules
for a two-dimensional orientable, complete, connected Riemannian manifold whose sec-
tional curvature is constant and nonzero (or for short, a two-dimensional orientable space
form with nonzero curvature), and was surprised to find that all such covariant derivatives
are scalar multiples of the function f . In other words, the ….Ten.TMC//-submodule in
C1.U /C generated by f is simply the one-dimensional Cf . Moreover, the scalar is a
polynomial depending on the eigenvalue of f . Using properties of the polynomials, we
discovered that the irreducible modules for the MOSVA generated by eigenfunctions with
eigenvalues � D Kp.p C 1/ (p D 0; 1; 2; : : :) differ from those with generic eigenvalues.

This paper serves as the first step of higher-dimensional generalization of results
in [10]. We show that over higher-dimensional orientable and non-orientable space forms
with nonzero curvature, every covariant derivative of an eigenfunction along a parallel
tensor is a scalar multiple of the function. We also prove that the scalar is a polynomial
in eigenvalues and discussed some combinatorial properties of these polynomials. Since
O.n;R/ and SO.n;R/ are non-abelian, their invariant theories are more complicated than
that for the commutative SO.2;R/. So are the proofs in this paper.
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It is also expected that irreducible modules generated by eigenfunctions of eigenvalue
Kp.p C n � 1/ (p D 0; 1; 2; : : :) are different and possess similar properties as in [10].
However, our limited understanding of these polynomials obstructs the study. We summa-
rize the obstruction as a conjecture, which suggests the existence of interesting structures
in these polynomials that requires further exploration.

This paper is organized as follows:
In Section 2, we discuss the holonomy group of the tensor bundles .TMC/˝r and the

tensor algebra bundle Ten.TMC/. The discussion reduces the problem of finding parallel
tensors to the invariant theory of O.n;R/ and SO.n;R/. We then use the results in [6]
and [1] to give a spanning set of the space …..TMC/˝r /, thus characterizing the space
….Ten.TMC//.

In Section 3, we discuss the fundamental lemma of covariant derivatives to be used in
this work. The lemma was proved in [10]. The proof is repeated here for the convenience
of the reader.

In Section 4, using the fundamental lemma of covariant derivatives extensively, we
give a proof to the main result. In particular, for orientable space forms, the results in
Section 2 gives two different types of parallel tensors for orientable space forms, one type
isO.n;R/-invariant, and the other is not. We show that only thoseO.n;R/-invariant ones
can have nonzero actions. All parallel tensors that are notO.n;R/-invariant annihilates f .

In Section 5, we encode the O.n;R/-invariant tensors by certain words and graphs.
We derive a recursion to compute the scalar, which is a polynomial depending on the
eigenvalue. We exhibit these polynomials for all parallel tensors of degrees 2, 4, and 6,
together with the proof of some combinatorial properties.

In Section 6, we announce the conjecture that obstructs the study of the MOSVAs
and modules on higher-dimensional space forms. A linking operator is introduced on the
graphs representing the parallel tensor. For the special graph whose polynomials has the
“largest” highest degree component, we consider the linear combination of polynomials
obtained from all possible ways of linking the right half of the graph. The coefficients are
determined by a linear system, consisting of vanishing condition obtained from linking
the left half of all the graphs. We conjecture that the polynomial is a polynomial that
vanishes when the eigenvalues are Kp.p C n � 1/ (p D 0; 1; 2; : : :). Numerical evidence
and explanation of motivations are also provided.

2. Parallel tensors

Let M be an n-dimensional Riemannian manifold with constant sectional curvature K.
For convenience, we assume M is connected and complete. We will also focus on the
case K ¤ 0 and n � 2.
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2.1. The curvature tensor

Fix p 2U , let ¹e1; : : : ; enº be an orthonormal basis of TpM . Then, for some neighborhood
U of p, let X1; : : : ; Xn W U ! TM be local sections such that Xi jp D ei and for every
q 2 U , .Xi jq; Xj jq/ D ıij . For convenience, we will not distinguish the tangent vectors
at a point and the sections over an open set when there is no confusion.

Since the section curvature is constant and equal to K, for every q 2 U and every
v1; v2; v3 2 TqM , we have

R.v1; v2/v3 D �K.g.v1; v3/v2 � g.v2; v3/v1/

(see [8, Proposition 3.1.3]). In particular, for mutually distinct i; j; k, we have

R.Xi ; Xj /Xk D 0; R.Xi ; Xj /Xi D �KXj ; R.Xi ; Xj /Xj D KXi :

Regarded as a linear endomorphism on TqM , the matrix of R.Xi ; Xj / with respect to
the basis ¹X1; : : : ; Xnº is the skew-symmetric matrix KEij �KEj i , where Eab is n � n-
matrix with .a; b/-entry being one, and all other entries being zero. In the caseK ¤ 0, the
subspace spanned by the matrices ofR.Xi ;Xj / in End.TqM/ coincides with the subspace
spanned by the skew-symmetric matrices, which is precisely the Lie algebra of SO.n;R/.

2.2. Holonomy of the tangent bundle

Recall that the holonomy group of a bundle E based at a point p 2 M is the subgroup
generated by all the parallel translations along piecewise smooth loops based on p. To
determine the holonomy group of TM , we will use the following version of the Ambrose–
Singer theorem over vector bundles.

Lemma 2.1 ([4, Theorem 2.4.3(a)]). LetM be a manifold,E a vector bundle overM , and
r a connection on E. Fix p 2 M , so that holp.TM/ is a Lie subalgebra of End.TpM/.
Then holp.TM/ is the vector subspace of End.TpM/ spanned by all elements of
End.TpM/ of the form P�1 ŒR.v; w/�P where R is the curvature tensor, p 2 M is a
point,  W Œ0;1�!M is piecewise smooth with .0/D p and .1/D q, P W TpM ! TqM

is the parallel translation map, and v;w 2 TqM .

Lemma 2.2. For every p 2 M , the holonomy group Holp.TM/ of the tangent bundle
TM is

Holp.TM/ D

´
SO.n;R/ if M is orientable,

O.n;R/ if M is non-orientable.

Proof. From Lemma 2.1 with .t/ D p being the trivial loop, we see that the Lie alge-
bra holp.TM/ contains all R.v; w/ for v; w 2 TpM . It follows from the discussion in
Section 2.1 that holp.TM/ contains the Lie algebra of SO.n;R/. Thus, Holp.TM/ �

SO.n;R/. The conclusion then follows from the fact that M is orientable if and only if
Holp.TM/ � SO.n;R/ (see [8]).



Covariant derivatives of eigenfunctions along parallel tensors over space forms 721

Lemma 2.3. For every p 2 M , the holonomy group Holp.TMC/ of the complexified
tangent bundle TM is

Holp.TMC/ D

´
SO.n;R/ if M is orientable,

O.n;R/ if M is non-orientable.

Proof. This essentially follows from the fact that as a bundle,

TMC
D TM ˚

p
�1TM:

For every r 2 ZC, let …..TMC/˝r / be the space of parallel sections of the tensor
bundle .TMC/˝r . For convenience, elements of…..TMC/˝r / will simply be called par-
allel tensors. It is well known that …..TMC/˝r / can be identified with the fixed point
subspace ..TpMC/˝r /Holp..TMC/˝r / in .TpMC/˝r . We start by explicitly determining
the holonomy group of .TMC/˝r .

Lemma 2.4. There is a natural surjective homomorphism

Holp.TMC/! Holp..TMC/˝r /

of holonomy groups, where g2Holp.TMC/ is mapped to g˝r W .TpMC/˝r!.TpM
C/˝r

defined by

.g˝r /.v1 ˝ � � � ˝ vr / D gv1 ˝ � � � ˝ gvr ; for v1; : : : ; vr 2 TpM:

A tensor X 2 .TpMC/˝r is fixed by every element in Holp..TMC/˝r / if and only if
g˝rX D X for every g 2 Holp.TMC/.

Proof. For any piecewise smooth path  W Œ0; 1�!M with .0/ D p, let P.t/ W TpM !
T.1/M be the parallel transport along  on the bundle E; let P r

.t/
W .TpM

C/˝r !

T.1/M
˝r be the parallel transport along  with respect to the bundle .TMC/˝r . Then,

from the definition of the connection on .TMC/˝r ,

r.X1 ˝ � � � ˝Xn/ D

nX
iD1

X1 ˝ � � � ˝ r.Xi /˝ � � � ˝Xn;

it follows that
P r.t/.v1 ˝ � � � ˝ vr / D P.t/v1 ˝ � � � ˝ P.t/vr :

In the case that .t/ is a loop based at p, this essentially realizes every element of
Holp..TMC/˝r / as g˝r for g 2 Holp.TMC/. So the map g 7! g˝r gives a natural sur-
jective homomorphism Holp.TMC/!Holp..TMC/˝r /. The second conclusion follows
directly from this realization.

Therefore, to identify …..TMC/˝r /, it suffices to identify ..TpMC/˝r /SO.n;R/ if M
is orientable; ..TpMC/˝r /O.n;R/ if M is non-orientable.
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2.3. Parallel tensors

We now use the first fundamental theorem of invariant theory of orthogonal groups to give
a spanning set of the space of parallel tensors. We will state the theorem of O.n;C/ and
SO.n;C/, then apply Weyl’s unitary trick to reduce to O.n;R/ and SO.n;R/.

For every integer r , we denote the symmetric group of ¹1; : : : ; rº by Symr , which acts
naturally on .TpMC/˝r by permutation

�.v1 ˝ � � � ˝ vr / D v��1.1/ ˝ � � � ˝ v��1.r/:

Consider now the tensors

� D

nX
iD1

Xi ˝Xi ;

ƒ D
X

�2Symn

.�1/�X�.1/ ˝ � � � ˝X�.n/:

Roughly speaking, � corresponds to the metric form; ƒ corresponds to the volume form.

Lemma 2.5 ([1, Theorem 5.3.3]). For every r 2 ZC,

..TpM
C/˝r /O.n;C/ D

´
spanC¹�r .�

˝k/; �r 2 Symrº if r D 2k is even,

0 otherwise.

Lemma 2.6 ([6, Theorem 2.1]). For every r 2 ZC, the space ..TpMC/˝r /SO.n;C/ can
be decomposed as

..TpM
C/˝r /O.n;C/ ˚ ..TpM

C/˝r /O.n;C/;det

where ..TpMC/˝r /O.n;C/ is defined as in Lemma 2.5, and

..TpM
C/˝r /O.n;C/;det

D

´
spanC¹�r .�

˝k ˝ƒ/; �r 2 Symrº if r D nC 2k � 0 is even,

0 otherwise.

Proposition 2.7. ..TpMC/˝r /SO.n;R/ D ..TpM
C/˝r /SO.n;C/.

Proof. Since SO.n;R/ � SO.n;C/, the left-hand side contains the right-hand side. A
standard application of the unitary trick shows that the left-hand side is included in the
right-hand side. In greater detail, let X be an element in the left-hand side. Then X is
annihilated by every element in the Lie algebra so.n;R/. Since so.n;C/ D so.n;R/˝R

C, X is also annihilated by every element in the Lie algebra so.n;C/. Thus, X is fixed
by every element in SO.n;C/.

Roughly speaking, the parallel tensors are generated by applying the permutations to
�k and �k �ƒ. For convenience, the permutations of �k will be called O.n;R/-invariant
tensors, and the permutations of �k ˝ƒ will be called non-O.n;R/-invariant tensors.
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3. Fundamental lemma of covariant derivatives

Theorem 3.1. Let f W U ! C be a complex-valued smooth function. Then for n � 3, we
have

.rnf /.Z1; : : : ; Zn�1; Zn/ � .r
nf /.Z1; : : : ; Zn; Zn�1/ D 0;

and for i D 1; : : : ; n � 2,

.rnf /.Z1; : : : ; Zi ; ZiC1; : : : ; Zn/ � .r
nf /.Z1; : : : ; ZiC1; Zi ; : : : ; Zn/

D

nX
jDiC2

.rn�2f /.Z1; : : : ;�R.Zi ; ZiC1/Zj ; : : : ; Zn/

D .rn�2f /.Z1; : : : ;�R.Zi ; ZiC1/ZiC2; ZiC3; : : : ; Zn/

C .rn�2f /.Z1; : : : ; ZiC2;�R.Zi ; ZiC1/ZiC3; : : : ; Zn/C � � �

C .rn�2f /.Z1; : : : ; ZiC2; ZiC3; : : : ;�R.Zi ; ZiC1/Zn/:

Proof. We prove the first equation by induction on n. For n D 3, we have

.r3f /.Z1; Z2; Z3/

D .rZ1.r
2f //.Z2; Z3/

D rZ1..r
2f /.Z2; Z3// � .r

2f /.rZ1Z2; Z3/ � .r
2f /.Z2;rZ1Z3/

(note that r2f .X; Y / D r2f .Y;X/)

D rZ1..r
2f /.Z3; Z2// � .r

2f /.Z3;rZ1Z2/ � .r
2f /.rZ1Z3; Z2/

D .r3f /.Z1; Z3; Z2/:

Assume the equation holds for n � 1, so we have

.rnf /.Z1; : : : ; Zn�1; Zn/

D .rZ1.r
n�1f //.Z2; : : : ; Zn�1; Zn/

D rZ1

�
.rn�1f /.Z2; : : : ; Zn�1; Zn/

�
� .rn�1f /.rZ1Z2; : : : ; Zn�1; Zn/

� � � � � .rn�1f /.Z2; : : : ;rZ1Zn�1; Zn/ � .r
n�1f /.Z2; : : : ; Zn�1;rZ1Zn/

(by induction hypothesis)

D rZ1

�
.rn�1f /.Z2; : : : ; Zn; Zn�1/

�
� .rn�1f /.rZ1Z2; : : : ; Zn; Zn�1/

� � � � � .rn�1f /.Z2; : : : ; Zn;rZ1Zn�1/ � .r
n�1f /.Z2; : : : ;rZ1Zn; Zn�1/

D .rnf /.Z1; : : : ; Zn; Zn�1/:

So the first equation is proved.
For the second equation, we first consider the case i D 1,

.rnf /.Z1; Z2; Z3; : : : ; Zn/ D .rZ1.r
n�1f //.Z2; Z3; : : : ; Zn/

D rZ1

�
.rn�1f /.Z2; Z3; : : : ; Zn/

�
� .rn�1f /.rZ1Z2; Z3; : : : ; Zn/

�

nX
jD3

.rn�1f /.Z2; : : : ;rZ1Zj ; : : : ; Zn/
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D rZ1rZ2..r
n�2f /.Z3; : : : ; Zn//

�

nX
jD3

rZ1..r
n�2f /.Z3; : : : ;rZ2Zj ; : : : ; Zn// (2)

� rrZ1Z2
..rn�2f /.Z3; : : : ; Zn// (3)

C

nX
jD3

.rn�2f /.Z3; : : : ;rrZ1Z2Zj ; : : : ; Zn/ (4)

�

� nX
jD3

rZ2.r
n�2f /.Z3; : : : ;rZ1Zj ; : : : ; Zn/ (5)

�

nX
jD3

j�1X
kD3

.rn�2f /.Z3; : : : ;rZ2Zk ; : : : ;rZ1Zj ; : : : ; Zn/
�

(6)

�

� nX
jD3

�.rn�2f /.Z3; : : : ;rZ2rZ1Zj ; : : : ; Zn/ (7)

�

nX
jD3

nX
kDjC1

.rn�2f /.Z3; : : : ;rZ1Zj ; : : : ;rZ2Zk ; : : : ; Zn/
�
: (8)

Similarly,

.rnf /.Z2; Z1; Z3; : : : ; Zn/ D .rZ2.r
n�1f //.Z1; Z3; : : : ; Zn/

D rZ2rZ1..r
n�2f /.Z3; : : : ; Zn// (9)

�

nX
jD3

rZ2..r
n�2f /.Z3; : : : ;rZ1Zj ; : : : ; Zn// (10)

� rrZ2Z1
..rn�2f /.Z3; : : : ; Zn// (11)

C

nX
jD3

.rn�2f /.Z3; : : : ;rrZ2Z1Zj ; : : : ; Zn/ (12)

�

� nX
jD3

rZ1.r
n�2f /.Z3; : : : ;rZ2Zj ; : : : ; Zn/ (13)

�

nX
jD3

j�1X
kD3

.rn�2f /.Z3; : : : ;rZ1Zk ; : : : ;rZ2Zj ; : : : ; Zn/
�

(14)

�

� nX
jD3

�.rn�2f /.Z3; : : : ;rZ1rZ2Zj ; : : : ; Zn/ (15)

�

nX
jD3

nX
kDjC1

.rn�2f /.Z3; : : : ;rZ2Zj ; : : : ;rZ1Zk ; : : : ; Zn/
�
: (16)
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Then in the difference, (2) cancels out with (13); (5) cancels out with (10); (6) and (8)
cancel out with (14) and (16). So the difference is

.rnf /.Z1; Z2; Z3; : : : ; Zn/ � .r
nf /.Z2; Z1; Z3; : : : ; Zn/

D .rZ1rZ2 � rZ2rZ1/
�
.rn�2f /.Z3; : : : ; Zn/

�
� rrZ1Z2�rZ2Z1

..rn�2f /.Z3; : : : ; Zn/

C

nX
jD3

.rn�2f /.Z3; : : : ;rrZ1Z2�rZ2Z1Zj ; : : : ; Zn/

C

nX
jD3

.rn�2f /.Z3; : : : ; .rZ2rZ1 � rZ1rZ2/Zj ; : : : ; Zn/

D

nX
jD3

.rn�2f /
�
Z3; : : : ; .rZ2rZ1 � rZ1rZ2 CrrZ1Z2�rZ2Z1/Zj ; : : : ; Zn

�
D

nX
jD3

.rn�2f /.Z3; : : : ;�R.Z1; Z2/Zj ; : : : ; Zn/:

So the case i D 1 is proved for arbitrary n.
We proceed by induction on i . The base case has been proved above. Now we proceed

with the inductive step.

.rnf /.Z1; : : : ; Zi ; ZiC1; : : : ; Zn/ D .rZ1.r
nf //.Z2; : : : ; Zi ; ZiC1; : : : ; Zn/

D rZ1..r
n�1f /.Z2; : : : ; Zi ; ZiC1; : : : ; Zn//

�

i�1X
kD2

.rn�1f /.Z2; : : : ;rZ1Zk ; : : : ; Zi ; ZiC1; : : : ; Zn/

� .rn�1f /.Z2; : : : ;rZ1Zi ; ZiC1; : : : ; Zn/

� .rn�1f /.Z2; : : : ; Zi ;rZ1ZiC1; : : : ; Zn/

�

nX
kDiC2

.rn�1f /.Z2; : : : ; Zi ; ZiC1; : : : ;rZ1Zk ; : : : ; Zn/:

Similarly,

.rnf /.Z1; : : : ; ZiC1; Zi ; : : : ; Zn/ D .rZ1.r
nf //.Z2; : : : ; ZiC1; Zi ; : : : ; Zn/

D rZ1..r
n�1f /.Z2; : : : ; ZiC1; Zi ; : : : ; Zn//

�

i�1X
kD2

.rn�1f /.Z2; : : : ;rZ1Zk ; : : : ; ZiC1; Zi ; : : : ; Zn/
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� .rn�1f /.Z2; : : : ;rZ1ZiC1; Zi ; : : : ; Zn/

� .rn�1f /.Z2; : : : ; ZiC1;rZ1Zi ; : : : ; Zn/

�

nX
kDiC2

.rn�1f /.Z2; : : : ; ZiC1; Zi ; : : : ;rZ1Zk ; : : : ; Zn/:

We use the induction hypothesis to see that the difference is expressed as

rZ1

� nX
jDiC2

.rn�3f /.Z2; : : : ;�R.Zi ; ZiC1/Zj ; : : : ; Zn/
�

�

nX
jDiC2

i�1X
kD2

.rn�3f /.Z2; : : : ;rZ1Zk ; : : : ;�R.Zi ; ZiC1/Zj ; : : : ; Zn/

�

nX
jDiC2

.rn�3f /.Z2; : : : ;�R.rZ1Zi ; ZiC1/Zj ; : : : ; Zn/

�

nX
jDiC2

.rn�3f /.Z2; : : : ;�R.Zi ;rZ1ZiC1/Zj ; : : : ; Zn/

�

nX
kDiC2

k�1X
jDiC2

.rn�3f /.Z2; : : : ;�R.Zi ; ZiC1/Zj ; : : : ;rZ1Zk ; : : : ; Zn/

�

nX
kDiC2

.rn�3f /.Z2; : : : ; ZiC2; : : : ;�R.Zi ; ZiC1/rZ1Zk ; : : : ; Zn/

�

nX
kDiC2

nX
jDkC1

.rn�3f /.Z2; : : : ; ZiC2; : : : ;rZ1Zk ; : : : ;�R.Zi ; ZiC1/Zj ; : : : ; Zn/

which is equal to the right-hand side.

4. Covariant derivatives of an eigenfunction along parallel tensors

4.1. Terminologies and notations

Let f 2 C1.U /C be an eigenfunction for the Laplace–Beltrami operator, i.e.,

�f D ��f:

We now compute the covariant derivative of f along parallel tensors. By Lemma 2.6, it
suffices to consider the covariant derivatives of f along theO.n;R/-invariant tensors and
non-O.n;R/-invariant tensors.

To avoid the clumsy double-subscript, we use jii to denote the vector field Xi . The
tensor field Xi1 ˝ � � � ˝Xir will be denoted by ji1 � � � iri, as well as ji1 � � � ij i � jijC1 � � � iri
and ji1 � � � ij ijijC1 � � � iri, for any j D 1; : : : ; r � 1.
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With the new notation,

�˝k D
� nX
iD1

ji ii
�˝k
D

nX
a1Da2D1

� � �

nX
a2k�1Da2kD1

ja1a2 � � � a2k�1a2ki:

For any � 2 Sym2k ,

�.�˝k/ D

nX
a1Da2D1

� � �

nX
a2k�1Da2kD1

ja��1.1/ � � � a��1.2k/i:

4.2. Along theO.n;R/-invariant tensors

Theorem 4.1. For any � 2 Sym2k , .r2kf /.�.�˝k// 2 Cf .

Proof. The proof is by induction. In the case k D 1, any � 2 Sym2 stabilizes � and
r2f .�/ D �f D ��f . Now we assume that the conclusion holds for degree k � 1 and
argue for k. Based on the induction hypothesis, we first prove the following technical
proposition.

Proposition 4.2. For any � 2 Sym2k and any i D 1; : : : ; 2k � 1,

.r2kf /.�.�˝k// � .r2kf /..i; i C 1/�.�˝k// 2 Cf:

Proof. By definition,

�.�˝k/ D

nX
a1Da2D1

� � �

nX
a2k�1Da2kD1

ja��1.1/ � � � a��1.2k/i;

.i; i C 1/�.�˝k/ D

nX
a1Da2D1

� � �

nX
a2k�1Da2kD1

ja��1.1/ � � � a��1.iC1/a��1.i/ � � � a��1.2k/i:

In the case i D 2k � 1, we know from the first part of Theorem 3.1 that

.r2kf /.ja��1.1/ � � � a��1.2k�1/a��1.2k/i/ D .r
2kf /.ja��1.1/ � � � a��1.2k/a��1.2k�1/i/:

Thus, the difference is a sum of zeros and the conclusion follows. For all other i D
1; 2; : : : ; 2k � 2, by the second part of Theorem 3.1,

nX
a2l�1Da2lD1
lD1;:::;k

.r2kf /
�
ja��1.1/ � � � a��1.i/a��1.iC1/ � � � a��1.2k/i

�
�

nX
a2l�1Da2lD1
lD1;:::;k

.r2kf /
�
ja��1.1/ � � � a��1.iC1/a��1.i/ � � � a��1.2k/i

�

D �

nX
a2l�1Da2lD1
lD1;:::;k

2kX
jDiC2

.r2k�2f /
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a��1.i/a��1.iC1//a��1.j /ija��1.jC1/ � � � a��1.2k/i
�
: (17)
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The following cases arise with respect to the arrangement of ��1.i/ and ��1.i C 1/:

Case 1. ¹��1.i/; ��1.i C 1/º D ¹2s � 1; 2sº for some s D 1; : : : ; k, then since a2s�1 D
a2s , the curvature tensor is constantly zero. So (17) is simply zero.

Case 2. ��1.i/ 2 ¹2s � 1; 2sº; ��1.i C 1/ 2 ¹2t � 1; 2tº for different s; t 2 ¹1; : : : ; kº.
Without loss of generality, assume ��1.i/ D 2s, ��1.i C 1/ D 2t . Then (17) becomes

�

nX
a2l�1Da2lD1
lD1;:::;k

2kX
jDiC2

.r2k�2f /
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a��1.2k/i
�

(18)

There will be a few situations that require independent treatment.

Case 2.1. Both 2s � 1 and 2t � 1 does not appear in ¹��1.i C 2/; : : : ; ��1.2k/º. Then
(18) can be rewritten as

�

nX
a2l�1Da2lD1
lD1;:::;k

2kX
jDiC2

.r2k�2f /

�
�
ja��1.1/ � � � a2s�1 � � � a2t�1 � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a��1.2k/i
�

D �

2kX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

nX
u;vD1

.r2k�2f /

�
�
ja��1.1/ � � �u � � � v � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.uv/a��1.j /ija��1.jC1/ � � � a��1.2k/i
�
:

Here, the order of a2s�1 and a2t�1 is not important, as will be explained later.
Now, for every fixed j , ��1.j / 2 ¹2m � 1; 2mº for some m 2 ¹1; : : : ; kº. Without

loss of generality, assume ��1.j /D 2m and 2m� 1 appears in ¹��1.1/; : : : ; ��1.i � 1/º.
From the discussion in Section 2.1,

jR.u; v/a��1.j /i D jR.u; v/a2mi D

8̂̂<̂
:̂
�Kjvi if a2m D u;

Kjui if a2m D v;

0 otherwise.
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Thus, the sum can be rewritten as

K

2kX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k

l¤s;l¤t;l¤m

nX
u;vD1

.r2k�2f /

�
�
ja��1.1/ � � �u � � � v � � �u � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jvija��1.jC1/ � � � a��1.2k/i
�

�K

2kX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k

l¤s;l¤t;l¤m

nX
u;vD1

.r2k�2f /

�
�
ja��1.1/ � � �u � � � v � � � v � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� juija��1.jC1/ � � � a��1.2k/i
�
:

Writing �˝.k�1/ as

�˝.k�1/ D

nX
a2l�1Da2lD1
l¤s;t;m

ja1a2 � � �3a2s�1a2s � � �3a2t�1a2t � � �4a2m�1a2m � � � a2k�1a2ki

�

nX
u;vD1

juuvvi;

we see that for each j D i C 2; : : : ; 2k, the tensors
nX

a2l�1Da2lD1
l¤s;t;m

nX
u;vD1

ja��1.1/ � � �u � � � v � � �u � � � a��1.i�1/a��1.iC2/ � � �

a��1.j�1/va��1.jC1/ � � � a��1.2k/i; (19)
nX

a2l�1Da2lD1
l¤s;t;m

nX
u;vD1

ja��1.1/ � � �u � � � v � � � v � � � a��1.i�1/a��1.iC2/ � � �

a��1.j�1/ua��1.jC1/ � � � a��1.2k/i (20)

are both permutations of �˝.k�1/. From the induction hypothesis of the theorem, their
actions on f via r2k�2 result in a scalar multiple of f . So summing up different j results
in a scalar multiple of f as well. Thus, the conclusion follows in this case.

Now we explain why our assumptions above bring no loss of generality.

(1) If 2m � 1 is in ¹��1.i C 2/; : : : ; ��1.j � 1/º (or ¹��1.j C 1/; : : : ; ��1.2k/º),
then the corresponding tensors (19) and (20) are modified to

nX
a2l�1Da2lD1
l¤s;t;m

nX
u;vD1

ja��1.1/ � � �u � � � v � � � a��1.i�1/a��1.iC2/ � � �u � � �

a��1.j�1/va��1.jC1/ � � � a��1.2k/i;
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nX
a2l�1Da2lD1
l¤s;t;m

nX
u;vD1

ja��1.1/ � � �u � � � v � � � a��1.i�1/a��1.iC2/ � � � v � � �

a��1.j�1/ua��1.jC1/ � � � a��1.2k/i;

or

nX
a2l�1Da2lD1
l¤s;t;m

nX
u;vD1

ja��1.1/ � � �u � � � v � � � a��1.i�1/a��1.iC2/ � � �

a��1.j�1/va��1.jC1/ � � �u � � � a��1.2k/i;

nX
a2l�1Da2lD1
l¤s;t;m

nX
u;vD1

ja��1.1/ � � �u � � � v � � � a��1.i�1/a��1.iC2/ � � �

a��1.j�1/ua��1.jC1/ � � � v � � � a��1.2k/i;

all of which are permutations of �˝k .

(2) If ��1.j / D 2m � 1, it is easy for the reader to check that the process is indeed
verbatim, as a2m D a2m�1. We will not elaborate the process here.

(3) If the order of a2s�1 and a2t�1 is swapped, this amounts to be swapping the
position of the first u and v. The corresponding tensors (19) and (20) stay as
permutations of �˝k .

(4) If .��1.i/;��1.i C 1//D .2s � 1;2t/ (or .2s;2t � 1/, or .2s � 1;2t � 1/, respec-
tively), then with the assumption that both 2s and 2t � 1 (or 2s � 1 and 2t , or 2s
and 2t , respectively) are sitting in ¹��1.1/; : : : ; ��1.i � 1/º, it is also easy for the
reader to find that the process repeats verbatim, as a2s D a2s�1 and a2t D a2t�1.
We will not elaborate the process here.

This comment on the generality applies to all the subcases discussed below and shall not
be repeated henceforth.

Case 2.2. One of 2s � 1; 2t � 1 appears in ¹��1.i C 2/; : : : ; ��1.2k/º but the other does
not. Without loss of generality, say 2s � 1 2 ¹��1.1/; : : : ; ��1.i � 1/º and 2t � 1 D
��1.j0/ for some j0 � i C 2. Then (17) becomes

�

nX
a2l�1Da2lD1
lD1;:::;k

j0�1X
jDiC2

.r2k�2f /
�
ja��1.1/ � � � a2s�1 � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a2t�1 � � � a��1.2k/i
�

(21)

�

nX
a2l�1Da2lD1
lD1;:::;k

.r2k�2f /
�
ja��1.1/ � � � a2s�1 � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a2sa2t /a2t�1ija��1.jC1/ � � � a��1.2k/i
�

(22)
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�

nX
a2l�1Da2lD1
lD1;:::;k

2kX
jDj0C1

.r2k�2f /

�
�
ja��1.1/ � � � a2s�1 � � � a��1.i�1/a��1.iC2/ � � � a2t�1 � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a��1.2k/i
�
: (23)

The sums (21) and (23) can be similarly handled as in Case 2.1. For the sum (22), using
the fact that a2t D a2t�1, we have

jR.a2sa2t /a2t�1i D

´
Kja2si if a2t D a2t�1 ¤ a2s;

0 if a2t D a2t�1 D a2s :

Thus, (22) becomes

�K

nX
a2l�1Da2lD1
lD1;:::;k
a2s¤a2t

.r2k�2f /
�
ja��1.1/ � � � a2s�1 � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� ja2sija��1.jC1/ � � � a��1.2k/i
�
;

which can be further simplified as

�K.n � 1/

nX
a2l�1Da2lD1
lD1;:::;k;
l¤t

.r2k�2f /
�
ja��1.1/ � � � a2s�1 � � � a��1.i�1/a��1.iC2/ � � � a��1.j0�1/i

� ja2sa��1.j0C1/ � � � a��1.2k/i
�
:

If we write �˝.k�1/ as

�˝.k�1/ D

nX
a2l�1Da2lD1
lD1;:::;k;
l¤t

ja1a2 � � � a2s�1a2s � � �3a2t�1a2t � � � a2k�1a2ki;

then it is immediately seen that the sum (22) is the action of a permutation of �k�1. By
induction hypothesis, (22) is also a scalar multiple of f .

Case 2.3. Both 2s � 1 and 2t � 1 appear in ¹��1.i C 2/; : : : ; ��1.2k/º. Without loss of
generality, assume ��1.j1/ D 2s � 1; ��1.j2/ D 2t � 1 with j1 < j2. Then (18) can be
written as

�

nX
a2l�1Da2lD1
lD1;:::;k

j1�1X
jDiC2

.r2k�2f /
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a2s�1 � � � a2t�1 � � � a��1.2k/i
�

(24)
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�

nX
a2l�1Da2lD1
lD1;:::;k

.r2k�2f /
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a��1.j�1/i

� jR.a2sa2t /a2s�1ija��1.jC1/ � � � a2t�1 � � � a��1.2k/i
�

(25)

�

nX
a2l�1Da2lD1
lD1;:::;k

j2�1X
jDj1C1

.r2k�2f /
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a2s�1 � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a2t�1 � � � a��1.2k/i
�

(26)

�

nX
a2l�1Da2lD1
lD1;:::;k

.r2k�2f /
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a2s�1 � � � a��1.j�1/i

� jR.a2sa2t /a2t�1ija��1.jC1/ � � � a��1.2k/i
�

(27)

�

nX
a2l�1Da2lD1
lD1;:::;k

2kX
jDiC2

.r2k�2f /

�
�
ja��1.1/ � � � a��1.i�1/a��1.iC2/ � � � a2s�1 � � � a2t�1 � � � a��1.j�1/i

� jR.a2sa2t /a��1.j /ija��1.jC1/ � � � a��1.2k/i
�
: (28)

The sums (24), (26), and (28) can be similarly processed as in Case 2.1, while the sums
(25) and (27) can be processed similarly as in Case 2.2 with trivial modifications. We shall
not repeat the discussion here. If instead, j1 > j2, this amounts to be swapping a2s�1 and
a2t�1. The process is still similar.

We now proceed with the proof of Theorem 4.1. We first note that

.r2kf /.�˝k/ D .��/kf 2 Cf:

Since t1 D .12/; t2 D .23/; : : : ; t2k�1 D .2k � 1; 2k/ generates Sym2k , any � 2 Sym2k

can be written as a product tik � � � ti1 . The proposition then allows us to conclude that

.r2kf /.tijC1 tij � � � ti1�
˝k/ � .r2kf /.tij � � � ti1�

˝k/ 2 Cf

for every j D 0; : : : ; k � 1. Summed up with all j ’s, we see that

.r2kf /.��˝k/ � .r2kf /.�˝k/ 2 Cf:

It then follows from .r2kf /.�˝k/ 2 Cf that

.r2kf /.�.�˝k// 2 Cf:

Remark 4.1. Indeed the same argument shows that for every � 2 Sym2k , the action of
�.�k/ on f is the same as the action of some polynomial in � determined by � . In the
next section, we will discuss the properties of such polynomials.
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4.3. Along the non-O.n;R/-invariant tensors

Now we look at the action of the other type of parallel tensors. We have the following
theorem.

Theorem 4.3. For any � 2 Sym2kCn,

.r2kCnf /.�.�˝k �ƒ// D 0:

Proof. We argue by induction on k. For the base case k D 0, it suffices to argue that

.rnf /.ƒ/ D 0;

as permutations on ƒ only changes the sign of the tensor. Using the notation introduced
in the proof of Proposition 4.2,

ƒ D
X

�2Symn

.�1/�j�.1/ � � ��.n/i:

Let An be the subgroup formed by the even permutations. Then

Symn D An [ .n � 1; n/An:

This allows us to write

ƒ D
X
�2An

j�.1/ � � ��.n � 1/�.n/i �
X
�2An

j�.1/ � � ��.n/�.n � 1/i:

Note that for every � 2 An, it follows from the first part of Theorem 3.1 that

.rnf /
�
j�.1/ � � ��.n � 1/�.n/i

�
D .rnf /

�
j�.1/ � � ��.n/�.n � 1/i

�
:

This shows .rnf /.ƒ/ is simply a sum of zeros. Thus follows the conclusion.
Now assume the conclusion holds for k � 1. Based on the induction hypothesis, we

proceed similarly to prove the following proposition.

Proposition 4.4. For any � 2 Sym2kCn and any i D 1; : : : ; 2k C n � 1,

.r2kf /.�.�˝k ˝ƒ// � .r2kf /..i; i C 1/�.�˝k ˝ƒ// D 0:

Proof. Let

� D

�
1 2 � � � 2k 2k C 1 2k C 2 � � � 2k C n

�.1/ �.2/ � � � �.2k/ i1 i2 � � � in

�
:

Without loss of generality, we assume that i1 < i2 < � � � < in, as permuting i1; : : : ; in only
brings a sign change to the tensor �.�˝k ˝ƒ/. Then we can write the tensor �.�˝k ˝ƒ/
as

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�ja��1.1/ � � � a��1.i1�1/�.1/a��1.i1C1/ � � �

a��1.in�1/�.n/a��1.inC1/ � � � a��1.2kCn/i:
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Regarding the transposition .i; i C 1/, essentially there are four cases to consider. For
exposition purposes, we will first study four special subcases, then generalize.

Case 1. i � in C 1. In this case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n/a��1.inC1/ � � � a��1.j�1/i

� jR.a��1.i/; a��1.iC1//a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
:

For each fixed � 2 Symn, we can take care of the sum similarly as in Proposition 4.2. The
only difference here lies on the occurrence of �.1/; : : : ; �.n/ in the front, which does not
change the process. Finally, .r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /.�.�˝k ˝ƒ// is the
same as an action of some .2k C n � 2/-degree tensor of f which is a permutation of
�˝.k�1/ ˝ƒ. By the induction hypothesis,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /.�.�˝k ˝ƒ// D 0:

Case 2. i D in: In this case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � � a��1.in�1/ija�.inC2/ � � � a��1.j�1/i

� jR.�.n/; a��1.inC1//a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
: (29)

The process is similar to Proposition 4.2 but with a slightly less trivial modification. For
exposition purposes, we will go through the details here.

Let ��1.inC1/2 ¹2s � 1;2sº for some sD 1; : : : ;k. Without loss of generality, assume
��1.inC1/ D 2s.

Case 2.1. 2s � 1 appears in ¹��1.1/; : : : ; ��1.in � 1/º. Then (29) can be rewritten as

�

2kCnX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � � a2s�1 � � ��.n � 1/ � � � a��1.in�1/ija�.inC2/ � � � a��1.j�1/i

� jR.�.n/; a2s/a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
: (30)
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Here, the exact position of a2s�1 is not important. For each fixed j 2 ¹i C 2; : : : ; 2k C nº,
let ��1.j / 2 ¹2t � 1; 2tº for some t D ¹1; : : : ; kº depending on j . Without loss of gener-
ality, assume ��1.j / D 2t and 2t � 1 also appears in ¹��1.1/; : : : ; ��1.in � 1/º. So (30)
can be computed as follows:

�

2kCnX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � � a2s�1 � � � a2t�1 � � ��.n � 1/ � � � a��1.in�1/i

� ja�.inC2/ � � � a��1.j�1/ijR.�.n/; a2s/a2t ija��1.jC1/ � � � a��1.2kCn/i
�

D �

2kCnX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

X
�2Symn

nX
u;vD1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � �u � � � v � � ��.n � 1/ � � � a��1.in�1/i

� ja�.inC2/ � � � a��1.j�1/ijR.�.n/; u/vija��1.jC1/ � � � a��1.2kCn/i
�
: (31)

Here again, the exact position of a2t�1 is not important. Note that

jR.�.n/; u/vi D

8̂̂<̂
:̂
Kj�.n/i if u D v ¤ �.n/;

�Kjui if v D �.n/;

0 otherwise.

Excluding the zero terms in (31), the sum is equal to

�K.n � 1/

2kCnX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

X
�2Symn

nX
uD1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � �u � � �u � � ��.n � 1/ � � � a��1.in�1/i

� ja�.inC2/ � � � a��1.j�1/�.n/ija��1.jC1/ � � � a��1.2kCn/i
�

(32)

CK

2kCnX
jDiC2

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

X
�2Symn

nX
uD1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � �u � � ��.n/ � � ��.n � 1/ � � � a��1.in�1/i

� ja�.inC2/ � � � a��1.j�1/uija��1.jC1/ � � � a��1.2kCn/i
�
: (33)
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Writing �˝.k�1/ ˝ƒ as

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

ja1a2 � � �3a2s�1a2s � � �3a2t�1a2t � � � a2k�1a2ki

�

nX
uD1

juui
X

�2Symn

.�1/�j�.1/ � � ��.n/i;

we see that for each j D i C 2; : : : ; 2k C n, the corresponding summand in both (32) and
(33) coincide with a scalar multiple of the action of some permutation of �˝.k�1/ ˝ ƒ
on f . By induction hypothesis, both (32) and (33) are then a sum of zeros. The conclusion
then follows in this case.

Now we explain why our assumptions bring no loss of generality.

(1) If ��1.in/ D 2s � 1, then with the assumption that 2s 2 ¹��1.1/; : : : ; ��1.in �
1/º, the discussion is verbatim, as a2s D a2s�1.

(2) If ��1.j / D 2t and 2t � 1 now appears in ¹��1.in C 1/; : : : ; ��1.2k C n/º, this
amounts to be moving the first v in (31) to either the second line or the third line.
Thus, the second u in (32) is moved to the second line or the third line, and �.n/
in (33) is moved into the second line, before u or after u. The conclusion that (32)
and (33) are actions of permutations of �k�1 ˝ƒ is unchanged.

(3) If ��1.j / D 2t � 1 and 2t appears anywhere, the discussion is also verbatim, as
a2t�1 D a2t .

This comment applies to all the cases to be discussed below and shall not be repeated.

Case 2.2. ��1.in C 1/ D 2s for some s D 1; : : : ; k and 2s � 1 appears in ¹��1.in C 2/;
: : : ; ��1.2k C n/º. Say ��1.j0/ D 2s � 1, then (29) becomes

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

j0�1X
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � � a��1.in�1/ija�.inC2/ � � � a��1.j�1/i

� jR.�.n/; a2s/a��1.j /ija��1.jC1/ � � � a2s�1 � � � a��1.2kCn/i
�

(34)

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � � a��1.in�1/ija�.inC2/ � � � a��1.j�1/i

� jR.�.n/; a2s/a2s�1ija��1.jC1/ � � � a��1.2kCn/i
�

(35)



Covariant derivatives of eigenfunctions along parallel tensors over space forms 737

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDj0C1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � � a��1.in�1/ija�.inC2/ � � � a2s�1 � � � a��1.j�1/i

� jR.�.n/; a2s/a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
: (36)

The sums (34) and (36) can be handled similarly as in Case 2.1. For the sum (35), note
that jR.�.n/; a2s/a2s�1i is nonzero only when a2s D a2s�1 ¤ �.n/, with the value being
Kj�.n/i. Thus, (33) is simply

�K.n � 1/

nX
a2l�1Da2lD1
lD1;:::;k;l¤s

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � � a��1.in�1/i

� ja�.inC2/ � � � a��1.j�1/�.n/a��1.jC1/ � � � a��1.2kCn/i
�
;

which coincides with the action of a permutation of �˝.k�1/ ˝ƒ and thus is zero.

Case 3. i D in � 1 > in�1. In this case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � � a��1.in�2/ija��1.inC1/ � � � a��1.j�1/i

� jR.a��1.in�1/; �.n//a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
:

Using R.a��1.in�1/; �.n// D �R.�.n/; a��1.in�1//, we can apply the same procedure as
we did for Case 2. We shall not repeat the details here.

Case 4. i D in � 1 D in�1. In this case,

.r2kCnf /.�.�˝k ˝ƒ/ � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ/

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 2/ � � � a��1.in�2/ija��1.inC1/ � � � a��1.j�1/i

� jR.�.n � 1/; �.n//a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
: (37)

We fix j . Without loss of generality, let ��1.j / D 2s and let 2s � 1 appear before the
curvature tensor. Note that R.�.n � 1/; �.n//a2s is nonzero only when a2s D �.n � 1/
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and a2s D �.n/. Thus, (37) simplifies as

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � � a2s�1 � � ��.n � 2/ � � � a��1.in�2/i

� ja��1.inC1/ � � � a��1.j�1/ijR.�.n � 1/; �.n//a2si

� ja��1.jC1/ � � � a��1.2kCn/i
�

D K

nX
a2l�1Da2lD1
lD1;:::;k
l¤s

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n � 1/ � � ��.n � 2/ � � � a��1.in�2/i

� ja��1.inC1/ � � � a��1.j�1/ij�.n/ija��1.jC1/ � � � a��1.2kCn/i
�

�K

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.n/ � � ��.n � 2/ � � � a��1.in�2/i

� ja��1.inC1/ � � � a��1.j�1/ij�.n � 1/ija��1.jC1/ � � � a��1.2kCn/i
�
:

Each sum is zero by the same reason at the end of the previous cases.
Having studied the special cases above, we now investigate their generalizations.

Case 5. im�1 C 1 � i � im � 2 for each m D 1; 2; : : : ; n (here we regard i0 D 0). In this
case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

im�1X
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/a��1.im�1C1/ � � � a��1.i�1/i

� ja��1.iC2/ � � � a��1.j�1/ijR.a��1.i/; a��1.iC1//a��1.j /i

� ja��1.jC1/ � � ��.m/ � � ��.n/a��1.2kCn/i
�

(38)

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/a��1.im�1C1/ � � � a��1.i�1/i

� ja��1.iC2/ � � � a��1.im�1/ijR.a��1.i/; a��1.iC1//�.m/i

� ja��1.jC1/ � � ��.m/ � � ��.n/a��1.2kCn/i
�

(39)
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�

n�1X
pDmC1

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

ipC1�1X
jDipC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/a��1.im�1C1/ � � � a��1.i�1/i

� ja��1.iC2/ � � ��.m/ � � ��.p � 1/ � � � a��1.j�1/i

� jR.a��1.i/; a��1.iC1//a��1.j /i

� ja��1.jC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

(40)

�

nX
pDmC1

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/a��1.im�1C1/ � � � a��1.i�1/i

� ja��1.iC2/ � � ��.m/ � � ��.p � 1/a��1.ip�1/ijR.a��1.i/; a��1.iC1//�.p/i

� ja��1.jC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

(41)

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDinC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/a��1.im�1C1/ � � � a��1.i�1/i

� ja��1.iC2/ � � ��.m/ � � ��.n/ � � � a��1.j�1/i

� jR.a��1.i/; a��1.iC1//a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�

(42)

The sums (38), (40) and (42) can be handled as in Proposition 4.2 or Case 1 here. Also
note that the sum (39) is simply a special case for (41) when p D m. Thus, we will handle
the summand of (41) for each p D m; : : : ; n.

Case 5.1. ¹��1.i/; ��1.i C 1/º D ¹2s � 1; 2sº for some s D 1; : : : ; k. Similar to Case
2.1 in Proposition 4.2, we have zero.

Case 5.2. ��1.i/D 2s, ��1.i C 1/D 2t for some s; t D 1; : : : ; k, s ¤ t . Without loss of
generality, we assume 2s � 1 and 2t � 1 both appear in ¹��1.1/; : : : ; ��1.i � 1/º. Then
the sum of (39) and (41) can be rewritten as

�

nX
pDm

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

X
�2Symn

nX
u;vD1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � �u � � � v � � ��.m � 1/ � � � a��1.i�1/i

� ja��1.iC2/ � � ��.m/ � � ��.p � 1/ � � � a��1.ip�1/i

� jR.u; v/�.p/ija��1.jC1/ � � ��.p C 1/ � � ��.n/ � � � a��1.2kCn/i
�
:
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Note that

jR.u; v/�.p/i D

8̂̂<̂
:̂
�Kjvi if u D �.p/; v ¤ �.p/;

Kjui if u ¤ �.p/; v D �.p/;

0 otherwise.

Thus, (41) is equal to

K

nX
pDm

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

X
�2Symn

nX
vD1

v¤�.p/

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.p/ � � � v � � ��.m � 1/ � � � a��1.i�1/i

� ja��1.iC2/ � � ��.m/ � � ��.p � 1/ � � � a��1.ip�1/i

� jvija��1.jC1/ � � ��.p C 1/ � � ��.n/ � � � a��1.2kCn/i
�

�K

nX
pDm

nX
a2l�1Da2lD1
lD1;:::;k
l¤s;l¤t

X
�2Symn

nX
uD1

u¤�.p/

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � �u � � ��.p/ � � ��.m � 1/ � � � a��1.i�1/i

� ja��1.iC2/ � � ��.m/ � � ��.p � 1/ � � � a��1.ip�1/i

� juija��1.jC1/ � � ��.p C 1/ � � ��.n/ � � � a��1.2kCn/i
�
:

Notice that the requirements v ¤ �.p/ in the first sum and u ¤ �.p/ in the second sum
can be eliminated, as the extra terms introduced adds up to zero. Then for each p D
m; : : : ; n, the summands of both the first and the second sums are actions of a permutation
of �˝.k�1/ ˝ƒ on f . By the induction hypothesis, they are all zero.

Case 6. i D im�1 < im � 1 for m D 2; : : : ; n � 1. In this case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

im�1X
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � � a��1.j�1/i

� jR.�.m � 1/; a��1.im�1C1//a��1.j /i

� ja��1.jC1/ � � ��.m/ � � ��.n/a��1.2kCn/i
�

(43)
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�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � � a��1.im�1�1/i

� jR.�.m � 1/; a��1.im�1C1//�.m/i

� ja��1.imC1/ � � ��.mC 1/ � � ��.n/a��1.2kCn/i
�

(44)

�

n�1X
pDm

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

ipC1�1X
jDipC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � ��.m/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.j�1/ijR.�.m � 1/; a��1.im�1C1//a��1.j /i

� ja��1.jC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

(45)

�

nX
pDmC1

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � ��.m/ � � ��.p � 1/i

� ja��1.ipC1/ � � � a��1.ip�1/ijR.�.m � 1/; a��1.im�1C1//�.p/i

� ja��1.ipC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

(46)

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDinC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � ��.m/ � � ��.n/ � � � a��1.j�1/i

� jR.�.m � 1/; a��1.im�1C1//a��1.j /ija��1.jC1/ � � � a��1.2kCn/i
�
: (47)

The sums (43), (45) and (47) can be handled as in Case 2. The sum (44) is simply a special
case for (46) when p D m. We will handle the summand of (46) for each p D m; : : : ; n.

Without loss of generality, let ��1.im�1/ D 2s and assume 2s � 1 appears in
¹��1.1/; : : : ; ��1.i/º. Then the sum of (44) and (46) can be rewritten as

�

nX
pDm

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

nX
uD1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � �u � � ��.m � 2/ � � ��.m/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.ip�1/ijR.�.m � 1/; u/�.p/i

� ja��1.ipC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�
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D �K

nX
pDm

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.p/ � � ��.m � 2/ � � ��.m/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.ip�1/ij�.m � 1/i

� ja��1.ipC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�
:

This is again zero.

Case 7. i D im � 1 > im�1 for m D 1; 2; : : : ; n � 1. In this case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

imC1�1X
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/ � � � a��1.im�2/ijR.a��1.im�1/; �.m//a��1.j /i

� ja��1.jC1/ � � ��.mC 1/ � � ��.n/a��1.2kCn/i
�

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/ � � � a��1.im�2/i

� jR.a��1.im�1/; �.m//�.mC 1/i

� ja��1.jC1/ � � ��.mC 1/ � � ��.n/a��1.2kCn/i
�

�

n�1X
pDmC1

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

ipC1�1X
jDipC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/ � � ��.mC 1/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.j�1/ijR.a��1.im�1/; �.m//a��1.j /i

� ja��1.jC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

�

nX
pDmC1

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/ � � ��.mC 1/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.ip�1/ijR.a��1.im�1/; �.m//�.p/i

� ja��1.ipC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�
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�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDinC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 1/ � � ��.mC 1/ � � ��.n/i

� ja��1.in�1/C1 � � � a��1.j�1/ijR.a��1.im�1/; �.m//a��1.j /i

� ja��1.jC1/ � � � a��1.2kCn/i
�
:

Using R.a��1.im�1/; �.m// D �R.�.m/; a��1.im�1//, this case can be handled similarly
as in Case 6. We will not repeat the discussion here.

Case 8. i D im�1 D im � 1 for m D 2; : : : ; n � 1. In this case,

.r2kCnf /.�.�˝k ˝ƒ// � .r2kCnf /..i; i C 1/�.�˝k ˝ƒ//

D �

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

imC1�1X
jDiC2

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � � a��1.im�1�1/ijR.�.m � 1/; �.m//a��1.j /i

� ja��1.jC1/ � � ��.mC 1/ � � ��.n/a��1.2kCn/i
�

(48)

�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � � a��1.im�2/ijR.�.m � 1/; �.m//�.mC 1/i

� ja��1.jC1/ � � ��.mC 1/ � � ��.n/a��1.2kCn/i
�

(49)

�

n�1X
pDmC1

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

ipC1�1X
jDipC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � ��.mC 1/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.j�1/ijR.�.m � 1/; �.m//a��1.j /i

� ja��1.jC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

(50)

�

nX
pDmC2

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � ��.mC 1/ � � ��.p � 1/i

� ja��1.ip�1C1/ � � � a��1.ip�1/ijR.�.m � 1/; �.m//�.p/i

� ja��1.ipC1/ � � ��.p C 1/ � � ��.n/a��1.2kCn/i
�

(51)
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�

nX
a2l�1Da2lD1
lD1;:::;k

X
�2Symn

2kCnX
jDinC1

.�1/�.r2kCn�2f /

�
�
ja��1.1/ � � ��.1/ � � ��.m � 2/ � � ��.mC 1/ � � ��.n/i

� ja��1.inC1/ � � � a��1.j�1/ijR.�.m � 1/; �.m//a��1.j /i

� ja��1.jC1/ � � � a��1.2kCn/i
�
: (52)

The sums (48), (50) and (52) can all be handled similarly as in Case 4, while (49) and (51)
are all zero, as �.m � 1/; �.m/ and �.p/ are all distinct for p D mC 1; : : : ; n.

To prove Theorem 4.3, write � as a product of transpositions and proceed with induc-
tion similar to Theorem 4.1. We will not repeat the arguments here.

In conclusion, we have the following theorem.

Theorem 4.5. Let f be an eigenfunction of the Laplace–Beltrami operator. Then as a
vector space, ….T .TM//f D Cf .

Remark 4.2. The same argument also shows that

….T .TM//f D Rf

for eigenfunctions f with real eigenvalues.

5. Scalars ofO.n;R/-invariant tensors

In this section, we study the scalar given by the action of O.n;R/-invariant tensors. The
proof of Theorem 4.1 showed that the scalar is indeed a polynomial in �. We will study
the polynomial by an alternative combinatorial characterization.

5.1. Words, their graph and parallel tensors

Definition 5.1. A word is a sequence of letters where each letter appears exactly twice.
The number of letters appearing in a word is called the length of the word. It is clear that
the length of a word must be even. For each word of length 2k, we associate a graph with
2k vertices. An edge exists between two vertices if and only if the letters associated with
the vertices are the same.

For example, the word “aabccb” is associated with the following graph:

Here, we arrange the vertices all in a row and with edges lying above.
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We now associate each word with a parallel tensor. First, the word “a1a2 � � �a2k�1a2k”
with a1 D a2; : : : ; a2k�1 D a2k is associated with

�k D

nX
a1Da2D1

� � �

nX
a2k�1Da2kD1

ja1a2 � � � a2k�1a2ki:

For a general word “a1a2 � � � a2k�1a2k” with ai1 D ai2 ; : : : ; ai2k�1 D ai2k , let � 2 Sym2k

be the inverse of the permutation�
1 2 � � � 2k � 1 2k

i1 i2 � � � i2k�1 i2k

�
:

The parallel tensor associated to this word is simply

�.�k/ D

nX
a1Da2D1

� � �

nX
a2k�1Da2kD1

ja��1.1/a��1.2/ � � � a��1.2k�1/a��1.2k/i:

For example, the parallel tensors associated to the word “aabccb” is simply

nX
a1Da2D1

nX
a3Da4D1

nX
a5Da6D1

ja1a2a3a5a6a4i:

Moreover, if we arrange the vertices of the graph of the word in two rows, with first
k vertices in the first and last k vertices in the second, then we get the .k; k/-Brauer
diagrams for parallel tensors. Here is the example for “aabccb”:

It is well known that for each k 2 ZC, the number of such words with length 2k is

.2k � 1/ŠŠ D 1 � 3 � 5 � � � .2k � 3/ � .2k � 1/:

It is also shown in [5] that parallel tensors associated with .k; k/-Brauer diagrams span
the space of parallel tensors. The spanning set is linearly independent if k � n. When
k � nC 1, a linear relation among these spanning tensors can also be described. Thus, the
parallel tensors can be studied by using the representation by words or by the graph.

5.2. Action of parallel tensors as a polynomial of �

Let “a1a2 � � � a2k�1a2k” be a word. As shown in Theorem 4.1, the associated parallel
tensor acts on f as a scalar. The same argument also shows that the scalar is a polynomial
in the eigenvalue of �.
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Notation 5.2. Let “a1a2 � � � a2k�1a2k” be a word. In Sections 5 and 6, we will abuse the
notation ja1a2 � � � a2k�1a2ki for the scalar of the action by the associated parallel tensor.
If “b1b2 � � � b2l�1b2l” is another word, then it follows from Formula (1) that

ja1a2 � � � a2k�1a2kb1b2 � � � b2l�1b2li D ja1a2 � � � a2k�1a2ki � jb1b2 � � � b2l�1b2li (53)

We will also use the bracket notation to denote the “commutator”, namely,

ja1 � � � ai�1ŒaiaiC1�aiC2 � � � a2ki WD ja1 � � � ai�1aiaiC1aiC2 � � � a2ki

� ja1 � � � ai�1aiC1aiaiC2 � � � a2ki:

For convenience, we will use � instead of � as the variable of the polynomial appearing
in ja1a2 � � � a2k�1a2ki.

We now describe the algorithm of obtaining this polynomial in terms of recursive
operations on words.

Proposition 5.1. For every word “a1a2 � � �a2k�1a2k”, the polynomial ja1a2 � � �a2k�1a2ki
can be obtained via the recursion

ja1a1a2a2 � � � akaki D �
k ; (54)

ja1 � � � a2k�2a2k�1a2ki D ja1 � � � a2k�2a2ka2k�1i; (55)

ja1 � � � ai�1ŒaiaiC1�aiC2 � � � a2ki

D �

2kX
jDiC2

ja1 � � � ai�1aiC2 � � � aj�1; R.ai ; aiC1/aj ; ajC1 � � � a2ki: (56)

Here, for each j D i C 2; : : : ; 2k

ja1 � � � ai�1aiC2 � � � aj�1; R.ai ; aiC1/aj ; ajC1 � � � a2ki

D

8̂̂̂̂
<̂
ˆ̂̂:
�K.n � 1/ja1 � � � ai�1aiC2 � � � aj�1; aiC1; ajC1 � � � a2ki if aj D ai ;

K.n � 1/ja1 � � � ai�1aiC2 � � � aj�1; ai ; ajC1 � � � a2ki if aj D aiC1;

KjIaj aiC1a1 � � � ai�1aiC2 � � � aj�1; ai ; ajC1 � � � a2ki

�KjIaj aia1 � � � ai�1aiC2 � � � aj�1; aiC1; ajC1 � � � a2ki otherwise,

where in the last formula, the operator Iaj c replaces the other occurrence of aj by c, for
c D ai or aiC1.

Proof. This follows from a straightforward computation.

5.3. Examples

Here, we list the polynomials obtained for words of length 2, 4 and 6.
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Words Graph Polynomial

jaai �

jaabbi �2

jababi �.� CK.n � 1//

jabbai �.� CK.n � 1//

jaabbcci �3

jaabcbci �2.� CK.n � 1//

jaabccbi �2.� CK.n � 1//

jababcci �2.� CK.n � 1//

jabacbci �.� CK.n � 1//2

jabaccbi �.� CK.n � 1//2

jabbacci �2.� CK.n � 1//

jabcabci �.�2 C 3K.n � 1/� CK2.n � 1/.2n � 1//

jabcacbi �.�2 C 3K.n � 1/� CK2.n � 1/.2n � 1//

jabbcaci �.� CK.n � 1//2

jabcbaci �.�2 C 3K.n � 1/� CK2.n � 1/.2n � 1//
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jabccabi �.�2 C 3K.n � 1/� C 2K2n.n � 1/

jabbccai �.� CK.n � 1//2

jabcbcai �.�2 C 3K.n � 1/� CK2.n � 1/.2n � 1/�/

jabccbai �.�2 C 3K.n � 1/� C 2K2n.n � 1//

5.4. Some properties of the polynomials

Proposition 5.2. Let x; y; z be mutually non-identical letters. Then

ja1 � � � x � � �y � � �R.x; y/z � � � z � � � a2ri C ja1 � � � x � � �y � � � z � � �R.x; y/z � � � a2ri D 0:

The locations of x; y outside of R.x; y/z are not important. They can be interchanged,
individually placed before or after R.x; y/z.

Proof. The first term is equal to

ja1 � � � x � � �y � � �R.x; y/x � � � x � � � a2ki C ja1 � � � x � � �y � � �R.x; y/y � � �y � � � a2ki

D �Kja1 � � � x � � �y � � �y � � � x � � � a2ki CKja1 � � � x � � �y � � � x � � �y � � � a2ki;

while the second term is equal to

ja1 � � � x � � �y � � � x � � �R.x; y/x � � � a2ki C ja1 � � � x � � �y � � �y � � �R.x; y/y � � � a2ki

D �Kja1 � � � x � � �y � � � x � � �y � � � a2ki CKja1 � � � x � � �y � � �y � � � x � � � a2ki:

Their sum is zero.

Remark 5.3. This result simplifies the computation of the commutator

ja1 � � � ai�1ŒaiaiC1�aiC2 � � � a2ki:

It suffices to consider those aj ’s that appears only once in ¹aiC2; : : : ; a2kº.

Proposition 5.3. For every word “a1 � � � a2k”,

ja1 � � � a2ki D ja2k � � � a1i:

In other words, inverting the order of words does not change the polynomial.
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Proof. We argue by induction. Assume the equality holds for all smaller k. Choose i 2
¹1; : : : ; 2k � 1º such that ai D a2k . If i D 2k � 1 then the equation holds trivially. Now
assume the equality holds for all larger i ’s. Let Z D ai D a2k . Then the left-hand side is

ja1 � � � ai�1ZaiC1 � � � a2k�1Zi

D ja1 � � � ai�1aiC1Z � � � a2k�1Zi C ja1 � � � ai�1ŒZaiC1� � � � a2k�1Zi:

The first term, by induction hypothesis, is

jZa2k�1 � � �ZaiC1ai�1 � � � a1i;

while the second term is

�

2k�1X
jDiC2

ja1 � � � ai�1aiC2 � � �R.Z; aiC1/aj � � � a2k�1Zi

� ja1 � � � ai�1aiC2 � � � a2k�1R.Z; aiC1/Zi

D �

2k�1X
jDiC2

ja1 � � � ai�1aiC2 � � �R.Z; aiC1/aj � � � a2k�1Zi

CK.n � 1/ja1 � � � ai�1aiC2 � � � a2k�1aiC1i: (57)

From the previous lemma, it suffices to consider the letters aj with its copy falling among
a1; : : : ;ai�1. Let j 0 be the position of the copy of aj . Then for each such j with aj ¤ aiC1,
the summand is

� ja1 � � � aj 0 � � � ai�1aiC2 � � �R.Z; aiC1/aj � � � a2k�1Zi

D Kja1 � � �Z � � � ai�1aiC2 � � � aiC1 � � � a2k�1Zi

�Kja1 � � � aiC1 � � � ai�1ZaiC2 � � �Z � � � a2k�1Zi: (58)

If for some such j we have aj D aiC1, i.e., the copy of the letter aiC1 falls in aiC2; : : : ;
a2k�1, then the summand is

�K.n � 1/ja1 � � � ai�1aiC2 � � �Z � � � a2k�1Zi:

Replacing Z by aiC1, we see that this term cancels out with the second term in (57). If
instead, the copy of the letter aiC1 does not fall in aiC2; : : : ; a2k�1, then the second term
in (57) is kept.

We now look at the right-hand side,

jZa2k�1 � � � aiC1Zai�1 � � � a1i

D jZa2k�1 � � �ZaiC1ai�1 � � � a1i C jZa2k�1 � � � ŒaiC1Z�ai�1 � � � a1i:

The second term can be further expanded as

�

i�1X
j 0D1

jZa2k�1 � � � aiC2ai�1 � � �R.aiC1; Z/aj 0 � � � a1i:
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We similarly consider only those j 0 such that aj 0 appears among a2k�1; : : : ; aiC2. Denote
the position of aj 0 by j . We see for each such j 0 with aj 0 ¤ aiC1, each summand is

� jZa2k�1 � � � aiC2ai�1 � � �R.aiC1; Z/aj 0 � � � a1i

D �jZa2k�1 � � � aj � � � aiC2ai�1 � � �R.aiC1; Z/aj 0 � � � a1i

D KjZa2k�1 � � � aiC1 � � � aiC2ai�1 � � �Z � � � a1i

�KjZa2k�1 � � �Z � � � aiC2ai�1 � � � aiC1 � � � a1i:

Induction hypothesis shows that each such guy is identical to (58). Now, if aiC1 appears
in aiC2; : : : ; a2k�1, then it does not appear in the sum of the right-hand side. If aiC1 does
not appear in aiC2; : : : ; a2k�1, then there is one extra summand that will cancel out with
the second term in (57). So we conclude the proof.

Remark 5.4. If we interpret the parallel tensors in terms of .0; 2k/-Brauer diagrams as
in [7], then (53) can be understood as

jD1 ˝D2i D jD1i � jD2i

for two diagrams D1;D2 of type .0; 2k/. The result of Proposition 5.3 can be understood
as

jD#
i D jDi;

where the operator # is an involution on Brauer diagrams that sends a diagram to its
reflection about a vertical line.

Now we view ja1 � � � a2ki as a polynomial in � and n and study the highest degree
homogeneous component.

Proposition 5.4. Let a1; : : : ; ak be distinct letters. Then for every � 2 Symk , the degree-k
component of

ja1 � � � aka�.1/ � � � a�.k/i (59)

is

�.� CKn// � � � .� C .k � 1/Kn/: (60)

Proof. The proof is by induction. The case k D 1 holds trivially. Assume the statement
holds for every smaller k. Consider first the special case of

ja1 � � � akak � � � a1i:

We attempt to move the central akak to the right using the commutator formula (56)

ja1 � � � ak�1akakak�1 � � � a1i

D ja1 � � � ak�1akak�1ak � � � a1i C ja1 � � � ak�1ak Œakak�1� � � � a1i

D ja1 � � � ak�1ak�1akak � � � a1i C ja1 � � � ak�1Œakak�1�ak � � � a1i

C ja1 � � � ak�1ak Œakak�1� � � � a1i
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D ja1 � � � ak�1ak�1akak � � � a1i � ja1 � � � ak�1; R.ak ; ak�1/ak ; � � � a1i

C 2ja1 � � � ak�1ak Œakak�1� � � � a1i

D ja1 � � � ak�1ak�1akak � � � a1i CK.n � 1/ja1 � � � ak�1ak�1 � � � a1i

C 2ja1 � � � ak�1ak Œakak�1� � � � a1i:

From the induction hypothesis, the degree-k component of the second term is

Kn�.� CKn/ � � � .� C .k � 2/Kn/: (61)

We show now that the degree-k component of the third term is zero:

ja1 � � � ak�1ak Œakak�1� � � � a1i

D

k�2X
jD1

ja1 � � � aj�1; aj ; ajC1 � � � ak�2; ak�1ak ; ak�2 � � � ajC1;

R.ak�1; ak/aj ; aj�1 � � � a1i

D �

k�2X
jD1

ja1 � � � aj�1; aj ; ajC1 � � � ak�2; ak�1ak ; ak�2 � � � ajC1;

R.ak�1; ak/aj ; aj�1 � � � a1i

D K

k�2X
jD1

ja1 � � � aj�1; ak�1; ajC1 � � � ak�2; ak�1ak ; ak�2 � � � ajC1; ak ; aj�1 � � � a1i

�K

k�2X
jD1

ja1 � � � aj�1; ak ; ajC1 � � � ak�2; ak�1ak ; ak�2 � � � ajC1;

ak�1; aj�1 � � � a1i:

The polynomials involved on the right-hand side are at most of degree k � 1 and thus do
not contain any degree-k component.

Now we handle the first term by further moving akak one step right. By a similar
computation we see that

ja1 � � � ak�2ak�1ak�1akakak�2 � � � a1i

D ja1 � � � ak�2ak�1ak�1ak�2akak � � � a1i

CK.n � 1/ja1 � � � ak�2ak�1ak�1ak�2 � � � a1i

C 2ja1 � � � ak�2ak�1ak�1ak Œakak�2� � � � a1i:

Similarly, the degree-k contribution of the second term is (61), and that of the third term
is zero. Repeating the process to the first term, until the first term becomes

ja1 � � � ak�1ak�1 � � � a1akaki:

The degree-k component is then

� � �.� CKn/ � � � .� C .k � 2/Kn/:
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Since the move is performed k � 1 times, we conclude that the degree-k component of
ja1 � � � akak � � � a1i is

� � �.� CKn/ � � � .� C .k � 2/Kn/C .k � 1/Kn � �.� CKn/ � � � .� C .k � 2/Kn/

D �.� CKn/ � � � .� C .k � 2/Kn/.� C .k � 1/Kn/:

Now we consider the general case. It suffices to notice that for every � 2 Symk and
for every i D 1; : : : ; k,

ja1 � � � aka�.1/ � � � Œa�.i/a�.iC1/� � � � a�.k/i

D �

kX
jDiC2

ja1 � � � a�.j / � � � aka�.1/ � � � a�.i�1/a�.iC1/ � � �

R.a�.i/a�.iC1//a�.j / � � � a�.k/i

D K

kX
jDiC2

ja1 � � � a�.i/ � � � aka�.1/ � � � a�.i�1/a�.iC2/ � � � a�.iC1/ � � � a�.k/i

�K

kX
jDiC2

ja1 � � � a�.iC1/ � � � aka�.1/ � � � a�.i�1/a�.iC2/ � � � a�.i/ � � � a�.k/i

is of degree at most k � 1. Thus, switching the position of adjacent letters on the right-half
of the word does not change the degree-k component. This concludes the proof.

Similar computations yield the following results.

Corollary 5.5. (1) The degree-k component of

ja1 � � � aiaiC1 � � � ak�1ak�1 � � � aiC1akakai � � � a1i

is
�.� CKn/ � � � .� C .k � 2/Kn/.� C iKn/:

(2) The degree-k component of

ja1 � � �aiaiC1 � � �ajak�1ak�1ajC1 � � �ak�2ak�2 � � �ajC1aj � � �aiC1akakai � � �a1i

is
�.� CKn/ � � � .� C .k � 3/Kn/.� C iKn/.� C jKn/:

(3) For every � 2 Sym¹1; : : : ; k � 2º, the degree-k component of

ja1 � � � ak�1 � � � ajak�1ajC1 � � � ak�2a��1.k�2/ � � �

a��1.iC1/aka��1.i/ � � � ak � � � a��1.1/i

is
�.� CKn/ � � � .� C .k � 3/Kn/.� C iKn/.� C jKn/:
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Remark 5.5. Part (3) gives the highest degree component of the polynomial for every
graph with an arc on the left half and on the right half. The component is determined by
the position of the vertex of the arc that is closer to the center, e.g., the filled vertices
shown in the following picture:

6. A conjecture motivated by the study of vertex algebras

In this section, we explain a conjecture regarding the polynomials associated to the parallel
tensors. It is a key step in generalizing the results in [10] to higher-dimensional space
forms.

6.1. Linking operator

Let W be the free abelian group generated by all the words. The map associating a word
w to the polynomial jwi extends naturally to W . For each 1 � i < j � 2k, we consider
the following linking operator on W :

L

 
i

j

!
.“a1 � � � ai�1aiaiC1 � � � aj�1ajajC1 � � � a2k”/

D

´
n � “a1 � � � ai�1aiC1 � � � aj�1ajC1 � � � a2k” if ai D aj ;

“Iaiaj a1 � � � ai�1aiC1 � � � aj�1ajC1 � � � a2k” otherwise.

Here, Iaiaj identifies the letter ai with aj .
In natural language, we first remove the letters at the i -th and j -th position. If the

removed letters are the same, then we multiply the remaining word by n, ending up in a
word of length 2k � 2. If the letters are not the same, then these letters appear somewhere
else. Identifying these letter gives a word of length 2k � 2.

The linking operator gets its name from the interpretation of diagrams, as the operator
does precisely the same thing of linking vertex i and vertex j :

i j i j

Here, each occurrence of a circle brings forth a multiplication by n.



F. Qi 754

For example, consider the word “aabccb”. Then

L

 
1

2

!
“aabccb” D n � “�a�abccb” D n � “bccb”;

L

 
1

3

!
“aabccb” D “Iab�aa�bccb” D “Iabaccb” D “acca”;

in graphs

D n � ;

D :

For each l D 1; : : : ; k and for each sequence i1; i2; : : : ; i2l�1; i2l of distinct numbers in
¹1; : : : ; 2kº satisfying i2j�1 < i2j ; j D 1;2; : : : ; l , we similarly define the linking operator

L

�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

�
that sends a word of length 2k to the polynomial for the word obtained by linking the
i1-th vertex with i2-th vertex, i3-th vertex with i4-th vertex, . . . , i2l�1-th vertex with i2l -th
vertex.

6.2. Statement of the problem

Consider now the word

� D “a1a2 � � � ak�1akakak�1 � � � a2a1”

corresponding to the following graph:

� � � � � � � � � � � �
1 2 k � 1 k k C 1 k C 2 2k � 1 2k
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To some extent, the polynomial of this word has the “largest” highest degree component
among those of words of the same length.

Fix any l D 1; : : : ; Œk=2� and any sequence i1; i2; : : : ; i2l�1; i2l satisfying i2j�1 < i2j ,
j D 1; : : : ; l . Let

�

�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

�
D L

�
2r � i2 C 1 2r � i4 C 1 � � � 2r � i2l C 1

2r � i1 C 1 2r � i3 C 1 � � � 2r � i2l�1 C 1

�
�:

Intuitively, �
�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

�
is the word associated to the graph obtained from

linking the letters a1; : : : ; ak appearing on the right of the graph in such a way that ai1
is linked with ai2 , . . . , ai2l�1 is linked with ai2l . Observe that no circles will be formed in
this process.

It is also obvious that

L

�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

�
�

�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

�
D nk“a1 � � � ak�2lak�2l � � � a1”; (62)

since linking ai2j�1 ; ai2j both from the left and from the right results in a circle for each
j D 1; : : : ; l . The following picture shows a simple case when i1 D 1; i2 D 3:

� � � � � �

Our main interest falls on the following polynomial

j�i C

Œk=2�X
lD1

X
all possible choices

of i1;i2;:::;i2l�1;i2l

x
i1i3���i2l�1
i2i4���i2l

ˇ̌̌
�

�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

� E
(63)

where the coefficients ai1i3���i2l�1i2i4���i2l
are determined by the system of linear equations

0 D
ˇ̌̌
L

�
j1 j3 � � � j2p�1
j2 j4 � � � j2p

�
�
E
C

Œr=2�X
kD1

X
all possible choices

of i1;i2;:::;i2l�1;i2l

x
i1i3���i2l�1
i2i4���i2l

�

ˇ̌̌
L

�
j1 j3 � � � j2p�1
j2 j4 � � � j2p

�
�

�
i1 i3 � � � i2l�1
i2 i4 � � � i2l

� E
(64)

for every possible choice of p D 1; : : : ; Œr=2� and every sequence j1; : : : ; j2p of distinct
numbers in ¹1; : : : ; rº satisfying j2q�1 < j2q , q D 1; : : : ; p.
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Example 6.1. In the case k D 2, the polynomial (63) we are considering is

ja1a2a2a1i C x
1
2

ˇ̌̌
L

 
3

4

!
a1a2a2a1

E
D ja1a2a2a1i C x

1
2 ja1a1i;

in graphs ˇ̌̌ E
C x12

ˇ̌̌ E
D

ˇ̌̌ E
C x21 j i:

We determine x21 byˇ̌̌
L

 
1

2

!
“a1a2a2a1”

E
C x12

ˇ̌̌
L

 
1

2

!
“a1a1”

E
D ja1a1i C x

1
2 � n D 0;

in graphs ˇ̌̌ E
C x12

ˇ̌̌ E
D j i C x21 � n D 0:

Thus, x12 D ��=n. Then the polynomial simplifies to

�.� CK.n � 1// �
�

n
� � D

n � 1

n
�.� CKn/:

Example 6.2. In the case k D 3, we are considering the polynomial

ja1a2a3a3a2a1i C x
1
2

ˇ̌̌
L

 
5

6

!
“a1a2a3a3a2a1”

E
C x13

ˇ̌̌
L

 
4

6

!
“a1a2a3a3a2a1”

E
C x23

ˇ̌̌
L

 
4

5

!
“a1a2a3a3a2a1”

E
D ja1a2a3a3a2a1i C x

1
2 ja1a1a3a3i C x

1
3 ja1a2a1a2i C x

2
3 ja1a2a2a1i;

in graphs ˇ̌̌ E
C x12

ˇ̌̌ E
C x13

ˇ̌̌ E
C x23 j i

D

ˇ̌̌ E
C x12 j i C x13 j i C x23

ˇ̌ ˛
:

We determine x12 ; x
1
3 ; x

2
3 byˇ̌̌

L

 
1

2

!
“a1a2a3a3a2a1”

E
C x12

ˇ̌̌
L

 
1

2

!
“a1a1a3a3”

E
C x13

ˇ̌̌
L

 
1

2

!
“a1a2a1a2”

E
C x23

ˇ̌̌
L

 
1

2

!
“a1a2a2a1”

E
D 0;
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ˇ̌̌
L

 
1

3

!
“a1a2a3a3a2a1”

E
C x12

ˇ̌̌
L

 
1

3

!
“a1a1a3a3”

E
C x13

ˇ̌̌
L

 
1

3

!
“a1a2a1a2”

E
C x23

ˇ̌̌
L

 
1

3

!
“a1a2a2a1”

E
D 0;

ˇ̌̌
L

 
2

3

!
“a1a2a3a3a2a1”

E
C x12

ˇ̌̌
L

 
2

3

!
“a1a1a3a3”

E
C x13

ˇ̌̌
L

 
2

3

!
“a1a2a1a2”

E
C x23

ˇ̌̌
L

 
2

3

!
“a1a2a2a1”

E
D 0;

in graphsˇ̌̌ E
C x12

ˇ̌̌ E
C x13

ˇ̌̌ E
C x23

ˇ̌̌ E
D 0;

ˇ̌̌ E
C x12

ˇ̌̌ E
C x13

ˇ̌̌ E
C x23

ˇ̌̌ E
D 0

ˇ̌̌ E
C x12

ˇ̌̌ E
C x13

ˇ̌̌ E
C x23

ˇ̌̌ E
D 0:

The system simplifies to

ja3a3a1a1i C x
1
2nja3a3i C x

1
3 ja1a1i C x

2
3 ja1a1i D �

2
C n�x12 C �x

1
3 C �x

2
3 D 0;

ja2a1a2a1i C x
1
2 ja1a1i C x

1
3nja2a2i C x

2
3 ja1a1i

D �.� CK.n � 1//C �x12 C n�x
1
3 C �x

2
3 D 0;

ja1a2a2a1i C x
1
2 ja1a1i C x

1
3 ja1a1i C x

2
3nja1a1i

D �.� CK.n � 1//C �x12 C �x
13C n�x23 D 0:

One can solve the system and gets

x12 D
2K � �

nC 2
; x13 D x

2
3 D
�Kn � �

nC 2
:

We can then compute the polynomial (63), which is

n � 1

nC 2
�.� CKn/.� CK.2nC 2//:

Conjecture 6.1. Each coefficient ai1i3���i2l�1i2i4���i2l
is a polynomial in � of degree l .

Conjecture 6.2. There exists a constant C depending only on n, such that the polynomial
(63) is

C

k�1Y
pD0

.� CKp.nC p � 1// D C�.� CKn/ � � � .� CK.k � 1/.nC k � 2//:
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Conjecturally,

C D
.n � 1/n.nC 1/ � � � .nC r � 2/

n.nC 2/.nC 4/ � � � .nC 2r � 2/
:

Remark 6.3. We first notice that the number of variables in the linear system coincides
with the number of equations, which is the number of pairings that can be chosen within
1; 2; : : : ; k. This number can be computed as 

k

2

!
C

 
k

4

!
� .4 � 1/ŠŠC � � � C

 
k

2 � Œk=2�

!
� .2Œk=2� � 1/ŠŠ:

The conjecture has been numerically checked up to k D 4.

Remark 6.4. Regarding the linear system (64), using the conclusion of Proposition 5.4
we can show that the coefficient matrix is diagonally dominant when n is sufficiently large
and when � is evaluated as a fixed number. If we regard the solution as a polynomial in n
then it is uniquely determined.

Remark 6.5. Numerical experiments also show that if we start with

� D “a1 � � � aka�.1/ � � � a�.k/”

for any � 2 Symk (whose polynomial has the same highest degree component, as shown
in Proposition 5.4), we will end up with the same linear system (64). As a result, the
solution xi1i3���i2k�1i2i4���i2k

remains the same, and Conjecture 6.2 still holds. A formal proof of
this phenomenon is probably not very difficult.

Remark 6.6. In the study of MOSVAs over n-dimensional space forms, Conjecture 6.2
is key to understand the irreducible modules generated by eigenfunctions of eigenvalues

� D Kp.n � 1C p/; p D 0; 1; 2; : : :

These eigenvalues coincide with the spectrum of the (global) Laplace–Beltrami operator
over the sphere with sectional curvature K. It is shown in [10] that, when n D 2, such
modules are different from those generate by eigenfunctions with generic eigenvalues. In
particular, the extensions of such modules with each other has to be completely reducible.
We expect all the properties discussed in [10] to hold in higher dimensions. Thus, the
conjecture has a conceptual reason to hold.
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port. The author would also like to thank Roe Goodman and Nolan Wallach for discussions
on invariant theory, and Johannes Flake for bringing the author’s attention to the work [6].

References

[1] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Grad. Texts Math.
255, Springer, Dordrecht, 2009 Zbl 1173.22001 MR 2522486

https://zbmath.org/?q=an:1173.22001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2522486


Covariant derivatives of eigenfunctions along parallel tensors over space forms 759

[2] Y.-Z. Huang, Meromorphic open-string vertex algebras. J. Math. Phys. 54 (2013), no. 5,
051702 Zbl 1287.81103 MR 3098909

[3] Y.-Z. Huang, Meromorphic open-string vertex algebras and Riemannian manifolds. 2012,
arXiv:1205.2977

[4] D. D. Joyce, Riemannian holonomy groups and calibrated geometry. Oxf. Grad. Texts Math.
12, Oxford University Press, Oxford, 2007 Zbl 1200.53003 MR 2292510

[5] G. Lehrer and R. Zhang, The second fundamental theorem of invariant theory for the orthog-
onal group. Ann. Math. (2) 176 (2012), no. 3, 2031–2054 Zbl 1263.20043 MR 2979865

[6] G. I. Lehrer and R. Zhang, Invariants of the special orthogonal group and an enhanced Brauer
category. Enseign. Math. 63 (2017), no. 1-2, 181–200 Zbl 1385.16040 MR 3777135

[7] G. I. Lehrer and R. B. Zhang, The Brauer category and invariant theory. J. Eur. Math. Soc.
(JEMS) 17 (2015), no. 9, 2311–2351 Zbl 1328.14079 MR 3420509

[8] P. Petersen, Riemannian geometry. Third edn., Grad. Texts Math. 171, Springer, Cham, 2016
Zbl 1417.53001 MR 3469435

[9] F. Qi, On modules for meromorphic open-string vertex algebras. J. Math. Phys. 60 (2019),
no. 3, 031701 Zbl 1473.17076 MR 3919708

[10] F. Qi, Meromorphic open-string vertex algebras and modules over two-dimensional orientable
space forms. Lett. Math. Phys. 111 (2021), no. 2, Paper No. 27 Zbl 1478.17027
MR 4227842

Received 14 October 2020.

Fei Qi
Pacific Institute of Mathematical Science, University of Manitoba, 451 Machray Hall, 186 Dysart
Road, Winnipeg, MB R3T 2N2, Canada; and Department of Mathematics, University of Denver,
C. M. Knudson Hall, Room 216, 2390 S. York St., Denver, CO 80208, USA;
fei.qi.math.phys@gmail.com

https://zbmath.org/?q=an:1287.81103&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3098909
https://arxiv.org/abs/1205.2977
https://zbmath.org/?q=an:1200.53003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2292510
https://zbmath.org/?q=an:1263.20043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2979865
https://zbmath.org/?q=an:1385.16040&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3777135
https://zbmath.org/?q=an:1328.14079&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3420509
https://zbmath.org/?q=an:1417.53001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3469435
https://zbmath.org/?q=an:1473.17076&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3919708
https://zbmath.org/?q=an:1478.17027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4227842
mailto:fei.qi.math.phys@gmail.com

	1. Introduction
	2. Parallel tensors
	2.1. The curvature tensor
	2.2. Holonomy of the tangent bundle
	2.3. Parallel tensors

	3. Fundamental lemma of covariant derivatives
	4. Covariant derivatives of an eigenfunction along parallel tensors
	4.1. Terminologies and notations
	4.2. Along the O(n,\mathbb{R})-invariant tensors
	4.3. Along the non-O(n,\mathbb{R})-invariant tensors

	5. Scalars of O(n,\mathbb{R})-invariant tensors
	5.1. Words, their graph and parallel tensors
	5.2. Action of parallel tensors as a polynomial of \theta
	5.3. Examples
	5.4. Some properties of the polynomials

	6. A conjecture motivated by the study of vertex algebras
	6.1. Linking operator
	6.2. Statement of the problem

	References

