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Multiparameter quantum groups at roots of unity

Gastón Andrés García and Fabio Gavarini

Abstract. We address the study of multiparameter quantum groups (MpQGs) at roots of unity,
namely quantum universal enveloping algebras Uq.g/ depending on a matrix of parameters q D
.qij /i;j2I . This is performed via the construction of quantum root vectors and suitable “integral
forms” of Uq.g/, a restricted one—generated by quantum divided powers and quantum binomial
coefficients—and an unrestricted one—where quantum root vectors are suitably renormalized. The
specializations at roots of unity of either form are the “MpQGs at roots of unity” we look for. In
particular, we study special subalgebras and quotients of our MpQGs at roots of unity—namely,
the multiparameter version of small quantum groups—and suitable associated quantum Frobenius
morphisms, that link the MpQGs at roots of 1 with MpQGs at 1, the latter being classical Hopf
algebras bearing a well precise Poisson-geometrical content.

A key point in the discussion, often at the core of our strategy, is that every MpQG is actually a
2-cocycle deformation of the algebra structure of (a lift of) the “canonical” one-parameter quantum
group by Jimbo–Lusztig, so that we can often rely on already established results available for the
latter. On the other hand, depending on the chosen multiparameter q, our quantum groups yield
(through the choice of integral forms and their specializations) different semiclassical structures,
namely different Lie coalgebra structures and Poisson structures on the Lie algebra and algebraic
group underlying the canonical one-parameter quantum group.
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1. Introduction
In literature, by “quantum group” one usually means some deformation of an algebraic
object that in turn encodes a geometrical object describing symmetries (such as a Lie or
algebraic group or a Lie algebra): we are interested now in the case when the geometrical
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object is a Lie bialgebra g, and the algebraic one is its universal enveloping algebra U.g/,
with its full structure of co-Poisson Hopf algebra.

In most cases, such a deformation depends on one single parameter, in a “formal” ver-
sion, like with Drinfeld’sU„.g/, or in a “polynomial” one, for Jimbo–Lusztig’sUq.g/. But
since the dawn of the theory, more general deformations depending on many parameters
have been considered too: one then talks of “multiparameter quantum groups” (MpQGs)
that again exist both in formal and polynomial versions; see for instance [15–17, 20, 21,
32, 37, 38, 41, 42, 46, 50, 51, 53, 56, 58]—and the list might be quite longer.

In the previously mentioned papers, multiparameter quantum enveloping algebras
were often introduced via ad hoc constructions. A very general recipe, instead, was that
devised by Reshetikhin (cf. [53]), that consists in performing a so-called deformation by
twist on a “standard” one-parameter quantum group.

Similarly, a dual method was developed, that starts again from a usual one-parameter
quantum group and then performs on it a deformation by a 2-cocycle. In addition, as the
usual uniparameter quantum group is a quotient of the Drinfeld’s quantum double of two
Borel quantum (sub)groups, one can start by deforming (e.g., by a 2-cocycle) the Borel
quantum subgroups and then look at their quantum double and its quotient. This is the
point of view adopted, for instance, in [2–4, 7–13, 26, 33–36, 47], where, in addition, the
Borel quantum (sub)groups are always thought of as bosonizations of Nichols algebras.

In our forthcoming papers [27, 28], we thoroughly compare deformations by twist
or by 2-cocycles on the standard uniparameter quantum group; up to technicalities, it
turns out that the two methods yield the same results. Taking this into account, we adopt
the point of view of deformations by 2-cocycles, implemented on uniparameter quantum
groups, that are realized as (quotients of) quantum doubles of Borel quantum (sub)groups.
With this method, the multiparameter q encoding our MpQG is used from scratch as the
core datum to construct the Borel quantum (sub)groups and eventually remains in the
description of our MpQG by generators and relations. In this approach, a natural constraint
arises for q, namely that it be of Cartan type, to guarantee that our MpQGs have finite
Gelfand–Kirillov dimension.

In order to have meaningful specializations of an MpQG, one needs to choose a suit-
able integral form of that MpQG, and then specialize the latter: indeed, by “specialization
of an MpQG” one means in short the specialization of such an integral form of it. The
outcome of the specialization process then can strongly depend on the choice of the inte-
gral form. For the usual case of uniparameter “canonical” quantum groups, one usually
considers two types of integral forms, namely restricted ones (after Lusztig’s) and unre-
stricted ones (after De Concini and Procesi), whose specializations yield entirely different
outcomes—dual to each other, in a sense. There also exist mixed integral forms (due to
Habiro and Thang Le) that are very interesting for applications in algebraic topology.

For general MpQGs, we introduce integral forms of restricted, unrestricted, and mixed
types, by directly extending the construction of the canonical setup: this is quite a natural
step, yet (to the best of the authors’ knowledge) it had not been considered so far. More-
over, for restricted forms—for which the multiparameter has to be “integral,” i.e., made
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of powers (with integral exponents) of just one single “basic” parameter q—we consider
two possible variants, which gives something new even in the canonical case. For these
integral forms (of either type), we state and prove all those fundamental structure results
(triangular decompositions, Poincaré–Birkhoff–Witt (PBW) theorems, etc.) that one needs
to work with.

When taking specialization at q D 1 (where “q” is again sort of a “basic parame-
ter” underlying the multiparameter q), co-Poisson and Poisson Hopf structures pop up,
yielding classical objects that bear some Poisson geometrical structure. In detail, when
specializing the restricted form, one gets the enveloping algebra of a Lie bialgebra, and
when specializing the unrestricted one, the function algebra of a Poisson group is found:
this shows some duality phenomenon, which is not surprising because the two integral
forms are in a sense related by Hopf duality. This feature already occurs in the uniparam-
eter, canonical case: but in the present, multiparameter setup, the additional relevant fact
is that the involved (co)Poisson structures directly depend on the multiparameter q.

Now consider instead a non-trivial root of 1, say ". Then the specialization of an
MpQG at q D " is tightly related with its specialization at q D 1: this link is formal-
ized in a so-called quantum Frobenius morphism—a Hopf algebra morphism with several
remarkable properties between these two specialized MpQGs—moving to opposite direc-
tions in the restricted and the unrestricted cases. We complete these morphisms to short
exact sequences, whose middle objects are our MpQGs at q D "; the new Hopf algebras
we add to complete the sequences are named small MpQGs.

Remarkably enough, we prove that the above-mentioned short exact sequences have
the additional property of being cleft; thus, our specialized MpQGs at qD" are cleft exten-
sions of the corresponding small MpQGs and the corresponding specialized MpQGs at
q D 1—which are classical geometrical objects; see above. Furthermore, implement-
ing this construction in both cases—with restricted and with unrestricted forms—literally
yields two small MpQGs: nevertheless, we eventually prove that they do coincide indeed.

To some extent, these results (at roots of 1) are a direct generalization of what happens
in the uniparameter case (i.e., for the canonical multiparameter). However, some of our
results seem to be entirely new even for the uniparameter context.

Finally, here is the plan of the paper.
In Section 2, we set some basic facts about Hopf algebras, the bosonization process,

cocycle deformations, etc.—along with all the related notation.
Section 3 introduces our MpQGs: we define them by generators and relations, and we

recall that we can get them as 2-cocycle deformations of the canonical one.
We collect in Section 4 some fundamental results on MpQGs, such as the construction

of quantum root vectors and PBW-like theorems (and related facts). In addition, we com-
pare the multiplicative structure in the canonical MpQG with that in a general MpQG, the
latter being thought of as 2-cocycle deformation of the former.

In Section 5, we introduce integral forms of our MpQGs—of restricted type and of
unrestricted type—providing all the basic results one needs when working with them. We
also shortly discuss mixed integral forms.
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Section 6 focuses on specializations at 1, and the semiclassical structures arising from
MpQGs by means of this process.

At last, in Section 7, we finally harvest our main results. Namely, we deal with spe-
cializations at non-trivial roots of 1, with quantum Frobenius morphisms and with small
MpQGs, for both the restricted version and the unrestricted one.

2. Generalities on Hopf algebras and deformations

Throughout the paper, by k we denote a field of characteristic zero and by k� we denote
the group of units of k. By convention, N D ¹0; 1; : : :º and NC WD N n ¹0º.

2.1. Conventions for Hopf algebras

Our main references for the theory of Hopf algebras are [49, 52, 57], for Lie algebras [39]
and for quantum groups [18, 40]. We use standard notation for Hopf algebras; the comul-
tiplication is denoted by � and the antipode by � . For the first, we use the Heyneman–
Sweedler notation, namely �.x/ D x.1/ ˝ x.2/.

Let H be a Hopf algebra. The left adjoint representation of H is the algebra mor-
phism ad` W H ! End.H/ given by ad`.x/.y/ WD x.1/y�.x.2// for x; y 2 H ; we drop
the subscript ` unless needed; the right adjoint action adr W H ! End.H/ is given by
adr .x/.y/ WD �.x.1//yx.2/ for x; y 2 H . Any subalgebra K of H is said to be normal if
ad`.h/.k/ 2 K, adr .h/.k/ 2 K for all h 2 H , k 2 K.

In any coalgebra C , the set of group-like elements of a coalgebra is denoted by G.C/;
also, we denote by CC WD Ker.�/ the augmentation ideal of C , where � W C ! k is the
counit map of C . If g; h 2 G.H/, the set of .g; h/-primitive elements is defined to be

Pg;h.H/ WD ¹x 2 H j �.x/ D x ˝ g C h˝ xº:

In particular, we call P.H/ WD P1;1.H/ the set of primitive elements.
It is convenient to recall the notions of exact sequence and of cleft extension:

Definition 2.1.1 (cf. [5]). A sequence of Hopf algebras maps over a field k

1! B
�
�! A

�
�! H ! 1;

where 1 denotes the Hopf algebra k, is called exact if � is injective, � is surjective,
Ker.�/ D ABC, and B D co�A WD ¹a 2 A j .� ˝ id/.�.a// D 1˝ aº. We say that A is
a cleft extension of B by H if there exists an H -colinear, convolution-invertible section 
of � .

Finally, we recall the notions of Hopf pairing and skew-Hopf pairing of Hopf algebras:

Definition 2.1.2 (cf. [11, Section 2.1]). Given two Hopf algebras H and K with bijective
antipode over a ring R, an R-linear map � W H ˝R K ! R is called one of the following:
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• Hopf pairing (between H and K) if, for all h 2 H , k 2 K, one has

�.h; k1k2/ D �.h.1/; k1/�.h.2/; k2/; �.h1h2; k/ D �.h1; k.1//�.h2; k.2//;

�.h; 1/ D �.h/; �.1; k/ D �.k/; �
�
�˙1.h/; k

�
D �

�
h; �˙1.k/

�
;

• skew-Hopf pairing (between H and K) if, for all h 2 H , k 2 K, one has

�.h; k1k2/ D �.h.1/; k1/�.h.2/; k2/; �.h1h2; k/ D �.h2; k.1//�.h1; k.2//;

�.h; 1/ D �.h/; �.1; k/ D �.k/; �
�
�˙1.h/; k

�
D �

�
h; ��1.k/

�
:

Recall that, given two Hopf R-algebrasHC andH�, and a Hopf pairing among them,
say � W H cop

� ˝R HC ! k, the Drinfeld double D.H�; HC; �/ is the quotient algebra
T .H� ˚HC/=	, where 	 is the (two-sided) ideal generated by the relations

1H� D 1 D 1HC ; a˝ b D ab 8a; b 2 HC or a; b 2 H�;

x.1/ ˝ y.1/ �.y.2/; x.2// D �.y.1/; x.1// y.2/ ˝ x.2/ 8x 2 HC; y 2 H�I

such a quotient R-algebra is also endowed with a standard Hopf algebra structure, which
is consistent, in that both HC and H� are Hopf R-subalgebras of it.

2.1.1. Yetter–Drinfeld modules, bosonization, and Hopf algebras with a projection.
Let H be a Hopf algebra with a bijective antipode. A Yetter–Drinfeld module over H is
a left H -module and a left H -comodule V , with comodule structure denoted by ı W V !
H ˝ V , v 7! v.�1/ ˝ v.0/, such that

ı.h � v/ D h.1/v.�1/�.h.3//˝ h.2/ � v.0/ for all v 2 V; h 2 H:

Let HHYD be the category of Yetter–Drinfeld modules over H with H -linear and H -
colinear maps as morphisms. The categoryHHYD is monoidal and braided. A Hopf algebra
in the category HHYD is called a braided Hopf algebra for short.

Let R be a Hopf algebra in H
HYD . The procedure to obtain a usual Hopf algebra

from the (braided) Hopf algebras R andH is called bosonization or Radford–Majid prod-
uct, and it is usually denoted by R#H . As a vector space, R#H WD R ˝ H , and the
multiplication and comultiplication are given by the smash-product and smash-coproduct,
respectively. That is, for all r; s 2 R and g; h 2 H , we have

.r#g/.s#h/ WD r.g.1/ � s/#g.2/h;

�.r#g/ WD r .1/#.r .2//.�1/g.1/ ˝ .r .2//.0/#g.2/;

�.r#g/ WD
�
1#�H .r.�1/g/

��
�R.r.0//#1

�
;

where �R.r/ D r .1/ ˝ r .2/ is the comultiplication in R 2 HHYD and �R is the antipode.
The map � W H ! R#H .h 7! 1#h/, resp. � W R#H ! H .r#h 7! �R.r/h/, is a Hopf
algebra monomorphism, resp. epimorhism, and � ı � D idH . Moreover, we have R D
.R#H/co� D ¹x 2 R#H j .id˝ �/�.x/ D x ˝ 1º.



G. A. García and F. Gavarini 844

Conversely, let A be a Hopf algebra with a bijective antipode and � W A! H a Hopf
algebra epimorphism. If there is a Hopf algebra map � W H ! A, such that � ı � D idH ,
then R WD Aco� is a braided Hopf algebra in HHYD , called the diagram of A, and we have
A Š R#H as Hopf algebras. See [52, Section 11.6] for further details.

2.2. Cocycle deformations

We recall now the standard procedure that, starting from a given Hopf algebra and a suit-
able 2-cocycle on it, gives us a new Hopf algebra structure on it, with the same coproduct
and a new “deformed” product. We shall then see the special form that this construction
may take when the Hopf algebra is bigraded by some Abelian group and the 2-cocycle is
induced by one of that group.

2.2.1. First construction. Let .H; m; 1; �; �/ be a bialgebra over a ring R. A normal-
ized Hopf 2-cocycle (see [49, Section 7.1]) is a map � in Homk.H ˝ H; R/ which is
convolution invertible and such that, for all a; b; c 2 H , we have

�.b.1/; c.1//�.a; b.2/c.2// D �.a.1/; b.1//�.a.2/b.2/; c/

and �.a; 1/ D ".a/ D �.1; a/. We simply call it a 2-cocycle if no confusion arises.
Using a 2-cocycle � , it is possible to define a new algebra structure onH by deforming

the multiplication: indeed, define m� D � �m � ��1 W H ˝H ! H by

m� .a; b/ D a �� b D �.a.1/; b.1//a.2/b.2/�
�1.a.3/; b.3// 8a; b 2 H:

If, in addition, H is a Hopf algebra with antipode � , then define also �� W H ! H as
�� D � � � � ��1 W H ! H , where

�� .a/ D �
�
a.1/; �.a.2//

�
�.a.3//�

�1
�
�.a.4//; a.5/

�
8a 2 H:

It is then known—see [25]—that .H; m� ; 1; �; �/ is in turn a bialgebra, and also that
.H;m� ; 1;�; �; �� / is a Hopf algebra: we shall call such a new structure on H a cocycle
deformation of the old one, and we shall graphically denote it by H� .

When dealing with a Hopf algebra H and its deformed counterpart H� as above, we
denote by ad` and adr the adjoint actions in H and by ad�` and ad�r those in H� .

2.2.2. Second construction. There is a second type of cocycle twisting—of algebras,
bialgebras, and Hopf algebras—that we shall need (cf. [14] and references therein). Let
� be an Abelian group, for which we adopt multiplicative notation, and H an algebra
over a ring R that is �-bigraded (i.e., graded by � � �): so H D

L
.;�/2��� H;� with

R �H1;1 andH;�H 0;�0 �H 0;��0 . Given any group 2-cocycle c W � � �!R�, where
R� is the group of units of R, define a new product on H , denoted by ?

c
, as

h?
c
k WD c.�0; �0/c.�; �/�1h � k

for all homogeneous h;k 2H with degrees .�; �0/; .�; �0/ 2 � � � . Then .H I?
c
/ is (again)

an associative algebra, with the same unit as H before.
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As � is free Abelian, each element of H 2.�; R�/ has a representative, say c, which
is bimultiplicative and such that c.�; ��1/ D 1 for all � 2 � (see [14, Proposition 1 and
Lemma 4]); so we may assume that c W � � � ! R� is such a cocycle. Thus

c.; ��1/ D c.�1; �/ D c.; �/�1; c.; 1/ D c.1; / D 1 8; � 2 �:

Now assume that H is a bialgebra, with �.H˛;ˇ / �
P
2� H˛; ˝R H;ˇ for all

.˛; ˇ/ 2 � � � and �.H˛;ˇ / D 0 if ˛ 6D ˇ. Then, H with the new product ?
c

and the old
coproduct� is a bialgebra too. If, in addition,H is a Hopf algebra, whose antipode obeys
�.H˛;ˇ /� .Hˇ�1;˛�1/—for .˛;ˇ/ 2 � ��—then the new bialgebra structure onH (with
the new product and the old coproduct) makes it again into a Hopf algebra with antipode
� .c/ WD � (the old one). In all cases, we will graphically denote byH .c/ the new structure
on H obtained by this (second) cocycle twisting.

In the sequel, we shall compare computations in H with computations in H .c/, in
particular regarding the adjoint action(s); in such cases, we shall denote by ad` and adr
the adjoint actions in H and by ad.c/

`
and ad.c/r those in H .c/.

We shall make use of the following result (whose proof is straightforward):

Lemma 2.2.1 (cf. [20, Lemma 3.2]). Let a 2-cocycle c W � � � ! R� as above be given,
and assume in addition (with no loss of generality) that c is bimultiplicative. Let e; b 2
H be homogeneous with degrees .; 1/ and .�; 1/, respectively, and assume e is .1; h/-
primitive with h 2 H homogeneous of degree .; /. Then

ad.c/
`
.e/.b/ D c.; �/�1 ad`.e/.b/;

ad.c/r .e/.b/ D c.; /
�
� h�1eb C c.; �/c.�; /�1h�1be

�
:

In particular, if c.; �/c.�; /�1 D 1, then ad.c/r .e/.b/ D c.; / adr .e/.b/.

2.2.3. A relation between the two constructions. Let H be a Hopf algebra with bijec-
tive antipode, R a braided Hopf algebra in H

HYD , and A D R#H its bosonization (see
[26] for details). For any a 2 R, set ı.a/ D a.�1/ ˝ a.0/ for the left coaction of H .

Any Hopf 2-cocycle on H gives rise to a Hopf 2-cocycle on A which may deform the
H -module structure of R and consequently its braided structure as well. Specifically, let
� 2 Z2.H;k/; then the map z� W A˝ A! k given by

z�.r#h; s#k/ D �.h; k/�R.r/�R.s/ 8r; s 2 R; h; k 2 H

is a normalized Hopf 2-cocycle such that z� jH˝H D � . By [47, Proposition 5.2], we have
Az� D R�#H� , where R� D R as coalgebras, and the product is given by

a �� b WD �.a.�1/; b.�1//a.0/b.0/ for all a; b 2 R:

Therefore, H� is a Hopf subalgebra of Az� and the map Z2.H; k/ ! Z2.A; k/ given
by � 7! z� is a section of the map Z2.A; k/! Z2.H; k/ induced by the restriction; in
particular, it is injective.
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Now assume that H D k� , with � a group. Then a normalized Hopf 2-cocycle on H
is equivalent to a 2-cocycle ' 2 Z2.�;k/, i.e., a map ' W � � � ! k� such that

'.g; h/'.gh; t/ D '.h; t/'.g; ht/; '.g; e/ D 1 D '.e; g/ 8g; h; t 2 �:

Assume that A D R#k� is given by a bosonization over a free Abelian group � .
Then the coaction of k� on the elements of R induces a .� � �/-grading on A with
deg.g/ WD .g; g/ for all g 2 � and deg.a/ WD .g; 1/ if ı.a/ D g ˝ a with a 2 R a homo-
geneous element; in particular, a is .1; g/-primitive, since �.a/ D a˝ 1C a.�1/ ˝ a.0/.
If ' 2 Z2.�; k/, then A.'

�1/ D Az' , where z' is the Hopf 2-cocycle on A induced by '.
Indeed, this holds true because, for a and b homogeneous inR of degrees .g;1/ and .h;1/,
respectively, we have that

a ?
'�1

b D '.1; 1/�1'.g; h/ab D '.a.�1/; b.�1//a.0/b.0/ D a �� b:

2.3. Basic constructions from multiparameters

The definition of multiparameter quantum groups requires a whole package of related
material, involving root data, weight lattices, etc. This entails several different construc-
tions, depending on “multiparameters,” that we are now going to present.

2.3.1. Root data. Hereafter, we fix � 2 NC and I WD ¹1; : : : ; �º as before. Let A WD
.aij /i;j2I be a Cartan matrix of finite type; then there exists a unique diagonal matrixD WD
.diıij /i;j2I with positive integral, pairwise coprime entries such that DA is symmetric.
Let g be the finite dimensional simple Lie algebra over C associated with A and let ˆ
be the (finite) root system of g, with … D ¹˛i j i 2 I º as a set of simple roots, Q DL
i2I Z˛i the associated root lattice, ˆC the set of positive roots with respect to … and

QC D
L
i2I N˛i the positive root (semi)lattice. We denote by P the associated weight

lattice, with basis ¹!iºi2I dual to ¹ j̨ ºj2I , namely !i . j̨ / D ıij for all i; j 2 I . Using an
invariant non-degenerate bilinear form on the dual h� of a Cartan subalgebra h of g, we
identify Q with a sublattice of P ; in particular, we have ˛i D

P
j2I aj i!j for all i 2 I .

In this setup, we have two natural Z-bilinear pairings P �Q ! Z, that we denote
by h ; i and . ; /, one given by the evaluation (of weights onto roots), and the other one by
.!i ; j̨ /WDdiıij for all i; j 2I . In particular, the restriction of . ; / toQ�Q is a symmetric
bilinear pairing on Q; moreover, both given pairings uniquely extend to Q-bilinear pair-
ings, still denoted by h ; i and . ; /, onto .Q˝ZP /�.Q˝ZQ/D.Q˝ZP /�.Q˝ZP /.
Then we define

Qı WD
®
� 2 QQ j .�; / 2 Z 8 2 Q

¯
D
®
� 2 QQ j .; �/ 2 Z 8 2 Q

¯
:

By construction, P � Qı, and the equality holds true if and only if g is simply laced.
Note that, in terms of the above symmetric pairing on Q, one has di D .˛i ; ˛i /=2 for

all i 2 I . More in general, we shall use the notation d˛ WD .˛; ˛/=2 for every ˛ 2 ˆC;
in particular d˛i D di (i 2 I ). We denote by W the Weyl group associated with the root
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data .ˆ;…/; it is generated by the simple reflections si given by si .ˇ/ WD ˇ �
2.ˇ;˛i /
.˛i ;˛i /

˛i
(i 2 I ); in particular si . j̨ / D j̨ � aij˛i for i; j 2 I .

2.3.2. Multiparameters. Let k be our fixed ground field, and let I WD ¹1; : : : ; �º be as
in Section 2.3.1 above. We fix a matrix q WD .qij /i;j2I , whose entries belong to k�, that
will play the role of “parameters” of our quantum groups. These can be used to construct
diagonal braidings and braided spaces; see for example [6, 10, 26, 34].

We assume that q WD .qij /i;j2I is of finite Cartan type A, i.e., there is a Cartan matrix
A D .aij /i;j2I of finite type such that

qij qj i D q
aij
i i 8i; j 2 I: (2.1)

To avoid some irrelevant technicalities, we assume that A is indecomposable.
For later use, we fix in k some “square roots” of all the qi i ’s, as follows. From the

relations in (2.1), one finds (since the Cartan matrix A is indecomposable) that there exists
j0 2 I such that qi i D q

ei
j0j0

for some ei 2 N, for all i 2 I . Now we assume hereafter that
k contains a square root of qj0j0 , which we fix throughout and denote by qj0 WD

p
qj0j0 .

Then we set qi WD q
ei
0 (a square root of qi i ) for all i 2 I .

As recorded in Section 2.3.1 above, the Cartan matrix A is diagonalizable, hence
we fix positive, relatively prime integers d1; : : : ; d� such that the diagonal matrix D D
diag.d1; : : : ; d� / symmetrizes A, i.e., DA is symmetric; in fact, each of these di ’s coin-
cides with the corresponding exponent ei mentioned above.

We introduce now some special cases of Cartan-type multiparameter matrices.
Integral type: We say that q WD .qij /i;j2I is of integral type if it is of Cartan type and

there exist bij 2 Z such that qij D qbij for i; j 2 I ; then we may assume that bi i D 2di
and bij C bj i D 2diaij (i; j 2 I ), with q D qj0 and the di ’s as above. To be precise, we
say also that q is “of integral type B ,” with B WD .bij /i;j2I 2M� .Z/.

Strongly integral type: We say that q WD .qij /i;j2I is of strongly integral type if it
is of integral type and, in addition, one has bij 2 diZ \ djZ for all i; j 2 I . In other
words, q WD .qij /i;j2I of Cartan type is strongly integral if and only if there exist integers

tCij ; t
�
ij 2 Z such that qij D qdi t

C
ij D qdj t

�
ij for all i; j 2 I ; then we may assume that

t˙i i D 2 D ai i and tCij C t
�
j i D 2aij , for i; j 2 I .

Canonical multiparameter: As a last (very) special case, given that q 2 k�, consider

Lqij WD q
diaij 8i; j 2 I (2.2)

with di .i 2 I / given as above. These qij D Lqij ’s obey condition (2.1), hence the matrix
q D Lq is of Cartan type A; we shall refer to it as to the “canonical” case.

Overall, we have the following relations among different types of multiparameters:

“canonical”) “strongly integral”) “integral”) “Cartan”:

By the way, when the multiparameter matrix q WD .qij /i;j2I is symmetric, i.e., qij D
qj i (for all i; j 2 I ), then the conditions qij qj i D q

aij
i i read q2ij D q

2diaij , hence qij D
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˙qdiaij (for all i; j 2 I ). This means that every symmetric multiparameter is “almost the
canonical one,” as indeed it is the canonical one “up to sign(s)”.

Finally, we assume that for each i; j 2 I there exists in the ground field k a square
root of qij , which we fix once and for all and denote hereafter by q1=2ij ; in addition, we

require that these square roots satisfy the “compatibility constraints” q1=2i i D qi (WD qdi )
and q1=2ij q

1=2
ji D .q

1=2
i i /

aij for all i; j 2 I—in short, we assume that “the signs of all square

roots q1=2ij are chosen in an overall consistent way”.
Even more, when q WD .qij /i;j2I , in particular, is of integral type, say qij D qbij , we

fix a square root q1=2 of q in k and we set q1=2ij WD .q
1=2/bij 2 k for all i; j 2 I .

2.3.3. Multiparameter Lie bialgebras. Consider the complex Lie algebra g associated
with the Cartan matrix A as in Section 2.3.1, and let bC and b� be opposite Borel subal-
gebras in it, containing a Cartan subalgebra h whose associated set of roots is identified
withˆ. There is a canonical, non-degenerate pairing between bC and b�, and using it one
can construct a Manin double g.D/ D bC ˚ b�, which is automatically endowed with a
structure of Lie bialgebra. Roughly, g.D/ is like g but with two copies of h inside it; see
[31] for details (in particular Proposition 4.5 therein, with g.D/ denoted by c).

Now fix in bC and b� generators ei ; hCi .i 2 I / and fi ; h�i .i 2 I /, respectively, as in
the usual Serre presentation of g. Then, thinking of these elements as living in g.D/, the
latter is just the Lie algebra over k with generators ei ; hCi ; h

�
i ; fi .i 2 I / and relations

ŒhCi ; ej �DCdiaij ej ; ŒhCi ; fj �D�diaij fj ; Œh�i ; ej �DCdjaj iej ; Œh�i ; fj �D�djaj i fj ;

ŒhCi ; h
C

j � D 0; Œh�i ; h
�
j � D 0; ŒhCi ; h

�
j � D 0; Œei ; fj � D ıij 2�1.hCi C h�i / ;

ad.ei /1�aij .ej / D 0; ad.fi /1�aij .fj / D 0 .i 6D j /:

Moreover (cf. [31]), g.D/ bears the unique Lie bialgebra structure given by the formulas

ı.ei / D .dihCi /˝ ei � ei ˝ .dihCi /; ı.hCi / D 0;

ı.h�i / D 0; ı.fi / D fi ˝ .dih�i / � .dih
�
i /˝ fi :

Now, all this construction can be extended as follows. Instead of the symmetric matrix
DA, consider any square matrix B D .bij /i;j2I 2 M� .Z/ such that B C B t D 2DA.
Then one can repeat the construction in [31] and then find a new Lie bialgebra gB given
as follows: it is the Lie algebra over C with generators ei , Pki , Pli , fi .i 2 I / and relations

ŒPki ; ej � D Cbij ej ; ŒPki ; fj � D �bij fj ; ŒPli ; ej � D Cbj iej ; ŒPli ; fj � D �bj i fj ;

ŒPki ; Pkj � D 0; ŒPli ; Plj � D 0; ŒPki ; Plj � D 0; Œei ; fj � D ıij .2di /�1.Pki C Pli /;

ad.ei /1�aij .ej / D 0; ad.fi /1�aij .fj / D 0 .i 6D j /

(2.3)

and it bears the Lie bialgebra structure whose Lie cobracket is uniquely given by

ı.ei / D Pki ˝ ei � ei ˝ Pki ; ı.Pki / D 0;

ı.Pli / D 0; ı.fi / D fi ˝ Pli � Pli ˝ fi :
(2.4)

Note that the Lie bialgebra g.D/ above is simply the special case of gB for B WD DA.
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A more detailed, thorough construction of these Lie bialgebras is presented in [28].
Basing upon the ei ’s and the fi ’s, we construct root vectors e˛ 2 bC and f˛ 2 b�

(for all ˛ 2 ˆC); this construction takes place inside the nilpotent part of bC and of b�,
hence these new elements are well defined for each Lie bialgebra gB as above. All these
root vectors, together with the Pki ’s and the Pli ’s, form a Chevalley-type basis of gB , with
e˛i D ei and f˛i D fi for all i 2 I : indeed, up to signs, this basis (hence the e˛’s and
the f˛’s) is unique. We also recall (cf. Section 2.3.1) the notation d˛ WD .˛; ˛/=2 for all
˛ 2 ˆC.

We introduce now some Z-integral forms of gB .

Definition 2.3.1. Keep notation as above, in particular B C B t D 2DA. Then:
(a) We call PgB the Lie subalgebra over Z of gB generated by the elements ei , fi , Pki ,

Pli , and hıi WD .2di /
�1.Pki C Pli / (for all i 2 I ); indeed, this is a Lie bialgebra over Z, with

ı.ei / D Pki ˝ ei � ei ˝ Pki ; ı.fi / D fi ˝ Pli � Pli ˝ fi ;

ı.Pki / D 0; ı.Pli / D 0; ı.hıi / D 0:

(b) We call QgB the Lie subalgebra over Z of gB generated by the elements Qe˛ WD
2d˛e˛ , Qf˛ WD 2d˛f˛ (˛ 2 ˆC), Pki , and Pli (i 2 I ); indeed, this is a Lie bialgebra over Z,
with

ı.Qei / D Pki ˝ Qei � Qei ˝ Pki ; ı.Qfi / D Qfi ˝ Pli � Pli ˝ Qfi ;

ı.Pki / D 0; ı.Pli / D 0:

(c) Assume in addition that bij D di tCij D dj t
�
ij for some t˙ij 2 Z (i; j 2 I ). Then we

call OgB the Lie subalgebra over Z of gB generated by the elements ei , fi , ki WD d�1i Pki ,
li WD d�1i Pli , hıi D 2

�1.ki C li / (for all i 2 I ); indeed, this is a Lie bialgebra over Z, with

ı.ei / D di .ki ˝ ei � ei ˝ ki /; ı.fi / D di .fi ˝ li � li ˝ fi /;

ı.ki / D 0; ı.li / D 0; ı.hıi / D 0:

Remarks 2.3.2. (a) It is clear by definition that PgB , QgB , and OgB are all Z-integral forms of
the Lie algebra gB in Section 2.3.3; i.e., C˝Z aŠgB as Lie algebras for a2¹PgB ; QgB ; OgBº.

We also remark that the elements Qei , Qfi , Pki , and Pli (with i 2 I ) are enough to generate
the Lie algebra Q˝Z QgB over Q; therefore, the formulas given in Definition 2.3.1 (b) are
enough, though they do not display the values ı.Qf˛/ nor ı.Qe˛/, to determine a unique Lie
cobracket on Q˝Z QgB , and thus by restriction on QgB too.

(b) The fact that each of PgB , QgB , and OgB being a Lie sub-bialgebra of gB (hence a Z-
integral form of it as a Lie bialgebra) is a direct check. It is also a consequence, though, of
our results in Section 6.2 later on about specialization of suitable multiparameter quantum
groups.

(c) Definitions imply that in each Lie bialgebra gB—as well as in its Z-integral forms
PgB , QgB , and OgB—the Lie algebra structure does depend on B , whereas the Lie coalgebra
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structure does not. This follows from simple observations, namely that the root vectors e˛
and f˛ are independent of B , and that the formulas for the Lie cobracket of the Pki ’s, the
Pli ’s, the e˛’s, and the f˛’s are independent of B as well; this second fact requires a quick
computation for non-simple ˛’s, where the condition B C B t D 2DA makes the job.

This implies that if we consider two such Lie bialgebras gB 0 and gB 00 , and their corre-
sponding basis elements (over Q) e0˛ , e00˛ , etc., mapping e0˛ 7! e00˛ , Pk0i 7! Pk

00
i , Pl0i 7! Pl

00
i , and

f0˛ 7! f00˛ defines an isomorphism of Lie coalgebras gB 0 Š gB 00 , that on the other hand is
not one of Lie algebras. The same occurs for the Z-integral forms as well.

For later use, we need yet another definition:

Definition 2.3.3. Given B D .bij /i;j2I 2M� .Z/ such that B CB t D 2DA, let gB be the
complex Lie algebra mentioned in Section 2.3.3 above, and U.gB/ its universal envelop-
ing algebra. We define UZ. PgB/, resp. UZ. QgB/, the Z-subalgebra of U. OgB/ generated by²�

Pki
n

�
;

�
Pli
n

�
;

�
hıi
n

�
; e.n/i ; f.n/i

ˇ̌̌
i 2 I; n 2 N

³
;

resp. ²�
ki
n

�
;

�
li
n

�
;

�
hıi
n

�
; e.n/i ; f.n/i

ˇ̌̌
i 2 I; n 2 N

³
;

where
� t
n

�
and a.n/ denote standard binomial coefficients and divided powers, and in the

second case we are assuming that bij D di tCij D dj t
�
ij for some t˙ij 2 Z (i; j 2 I ).

Remarks 2.3.4. (a) By Remarks 2.3.2 above, it is easily seen that UZ. PgB/ and UZ. OgB/

are Z-integral forms of U.gB/; one can also find a presentation of each of them by gen-
erators (the given ones) and relations. Indeed, for both UZ. PgB/ and UZ. OgB/, this is a
simple variation of the well-known presentation of the Kostant Z-integral form of U.g/,
generated by binomial coefficients and divided powers of the Chevalley generators.

Moreover, as g.D/ is a Lie bialgebra, U.g.D// is in fact a co-Poisson Hopf algebra;
then UZ. PgB/ and UZ. OgB/ are in fact Z-integral forms of U.g.D// as co-Poisson Hopf
algebras.

(b) By a standard fact in the “arithmetic of binomial coefficients,” UZ. PgB/ contains
also all “translated” binomial coefficients, of the forms

�PkiCz
n

�
,
�PliCz
n

�
, and

�hiCz
n

�
for i 2 I ,

n 2 N, and z 2 Z; then one has also a presentation of UZ. PgB/ including these extra
generators, and corresponding extra relations too. The same applies similarly for UZ. OgB/

as well.
(c) The definition of the Z-integral forms PgB , OgB , and QgB—of gB—and of the forms

UZ. PgB/ and UZ. OgB/—of U.gB/—may seem to come out of the blue, somehow. Never-
theless, we will show in Section 6.2 that they occur as a direct output of a “specialization
process” of multiparameter quantum groups once suitable integral forms of them are cho-
sen.

2.3.4. Some q-numbers. Throughout the paper, we shall need to consider several kinds
of “q-numbers”. Let ZŒq;q�1� be the ring of Laurent polynomials with integral coefficients
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in the indeterminate q. For every n 2 N, we define

.0/q WD 1; .n/q WD
qn � 1

q � 1
D 1C q C � � � C qn�1 D

n�1X
sD0

qs
�
2ZŒq�

�
;

.n/qŠ WD .0/q.1/q � � � .n/q WD

nY
sD0

.s/q;

�
n

k

�
q

WD
.n/qŠ

.k/qŠ.n � k/qŠ

�
2ZŒq�

�
;

Œ0�q WD 1; Œn�q WD
qn�q�n

q�q�1
D q�.n�1/C � � � Cqn�1 D

n�1X
sD0

q2s�nC1
�
2ZŒq; q�1�

�
;

Œn�qŠ WD Œ0�qŒ1�q � � � Œn�q D

nY
sD0

Œs�q;

�
n

k

�
q

WD
Œn�qŠ

Œk�qŠŒn � k�qŠ

�
2ZŒq; q�1�

�
:

Moreover, we have .n/q2 D qn�1Œn�q , .n/q2 Š D q
n.n�1/
2 Œn�q , and

�
n
k

�
q2
D qk.n�k/

�
n
k

�
q
.

Furthermore, thinking of Laurent polynomials as functions on k�, for any q 2 k� we
shall read every symbol above as representing the corresponding element in k.

3. Multiparameter quantum groups

In this section, we present the notion of MpQG. We introduce it by a direct definition of
generators and relations as it suits better for our purposes. There exists also a realization
in terms of Nichols algebras of diagonal type; see for example [6, 10, 26, 34]. Finally, we
connect them with cocycle deformations of their simplest example, the “canonical” one.

3.1. Defining MpQGs

In this subsection, we introduce the MpQG Uq.g/, associated with a matrix of parameters
q WD .qij /i;j2I of Cartan type (cf. Section 2.3.2). We fix also scalars qi (i 2 I ) as in
Section 2.3.2, with the additional assumption that qkii D q

2k
i 6D 1 for all kD 1; : : : ; 1� aij ,

with i; j 2 I and i 6D j .

Definition 3.1.1 (cf. [51]). We denote by Uq.g/ the unital associative k-algebra generated
by elements Ei , Fi , K˙1i , L˙1i with i 2 I obeying the following relations:

(a) K˙1i L˙1j D L˙1j K˙1i , K˙1i K�1i D 1 D L
˙1
i L�1i ,

(b) K˙1i K˙1j D K˙1j K˙1i , L˙1i L˙1j D L˙1j L˙1i ,

(c) KiEjK
�1
i D qijEj , LiEjL�1i D q

�1
ji Ej ,

(d) KiFjK
�1
i D q

�1
ij Fj , LiFjL�1i D qj iFj ,

(e) ŒEi ; Fj � D ıi;j qi i
Ki�Li
qi i�1

,

(f)
P1�aij
kD0

.�1/k
�1�aij

k

�
qi i
q
.k2/
i i q

k
ijE

1�aij�k

i EjE
k
i D 0 .i ¤ j /,

(g)
P1�aij
kD0

.�1/k
�1�aij

k

�
qi i
q
.k2/
i i q

k
ijF

1�aij�k

i FjF
k
i D 0 .i ¤ j /.
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Moreover, Uq.g/ is a Hopf algebra with coproduct, counit, and antipode determined for
all i; j 2 I by

�.Ei / D Ei ˝ 1CKi ˝Ei ; �.Ei / D 0; �.Ei / D �K
�1
i Ei ;

�.Fi / D Fi ˝ Li C 1˝ Fi ; �.Fi / D 0; �.Fi / D �FiLi
�1;

�.K˙1i / D K˙1i ˝K
˙1
i ; �.K˙1i / D 1; �.K˙1i / D K�1i ;

�.L˙1i / D L˙1i ˝ L
˙1
i ; �.L˙1i / D 1; �.L˙1i / D L�1i :

Finally, for later use, we introduce also, for every � D
P
i2I �i˛i 2 Q, the notation

K� WD
Q
i2I K

�i
i and L� WD

Q
i2I Li

�i .

Remark 3.1.2. Assume that q 2 k� is not a root of unity and fix the “canonical” mul-
tiparameter Lq WD . Lqij D qdiaij /i;j2I like in (2.2). Then we can define the corresponding
MpQG, denoted by ULq.g/: the celebrated one-parameter quantum group Uq.g/ by Jimbo
and Lusztig is (up to a minimal, irrelevant change of generators) just the quotient of ULq.g/
by the (Hopf) ideal generated by ¹Li �K�1i j i D 1; : : : ; �º.

As a matter of fact, that we shall deeply exploit in the present work, most constructions
usually carried on for Uq.g/—like construction of (quantum) root vectors, of integral
forms, etc.—actually make sense and apply the same to ULq.g/ as well.

We introduce now a family of subalgebras of any MpQG, say Uq.g/, as follows.

Definition 3.1.3. Given q WD .qij /i;j2I and Uq.g/ as in Section 3.1, we define U 0q WD
Uq.h ˚ h/, UC;0q , U�;0q , U�q WD Uq.n�/, UCq WD Uq.nC/, U�q WD Uq.b�/, and U�q WD
Uq.bC/ to be the k-subalgebra of Uq.g/ respectively generated as

U 0q WD
˝
K˙1i ; L˙1i

˛
i2I
; UC;0q WD

˝
K˙1i

˛
i2I
; U�;0q WD

˝
L˙1i

˛
i2I
; U�q WD hFi ii2I ;

U�q WD
˝
Fi ; L

˙1
i

˛
i2I
; U�q WD

˝
K˙1i ; Ei

˛
i2I
; UCq WD hEi ii2I :

We shall refer to U�q and U�q as the positive and negative multiparameter quantum
Borel (sub)algebras, and to U 0q , UC;0q and U�;0q as the global, positive, and negative mul-
tiparameter Cartan (sub)algebras.

Recall the notion of “skew-Hopf pairing” (cf. Definition 2.1.2). From [34, Proposi-
tion 4.3]—see also [51, Theorem 20] and [11, Proposition 2.4]—we have the following
proposition.

Proposition 3.1.4. With the assumptions above, assume in addition that qi i 6D 1 for all
indices i 2 I . Then there exists a unique skew-Hopf pairing � W U�q ˝k .U

�
q /

cop! k that
is non-degenerate and such that, for all 1 � i; j � � , one has

�.Ki ; Lj / D qij ; �.Ei ; Fj / D ıi;j
�qi i

qi i � 1
; �.Ei ; Lj / D 0 D �.Ki ; Fj /:
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Moreover, for every E 2 UCq , F 2 U�q , and every Laurent monomials K in the Ki ’s
and L in the Lj ’s, we have

�.EK;FL/ D �.E; F /�.K;L/:

The following result states that there exist special “tensor product factorizations” of
MpQGs (the last ones are usually referred to as “triangular decompositions”).

Proposition 3.1.5 (cf. [51, Corollary 22] and [17, Corollary 2.6]). The multiplication in
Uq.g/ provides k-linear isomorphisms

U�q ˝
k
U 0q Š U

�
q Š U

0
q ˝

k
U�q ; UCq ˝

k
U 0q Š U

�
q Š U

0
q ˝

k
UCq ;

UC;0q ˝
k
U�;0q Š U 0q Š U

�;0
q ˝

k
UC;0q ; U�q ˝

k
U�q Š Uq Š U

�
q ˝

k
U�q ;

UCq ˝
k
U 0q ˝

k
U�q Š Uq Š U

�
q ˝

k
U 0q ˝

k
UCq :

Remark 3.1.6. It is clear from definitions that U 0q D Uq.h˚ h/ has the set of monomials
in theK˙1i ’s and the Li˙1’s as k-basis. It follows then that each triangular decomposition
of Uq.g/ as above induces also a splitting Uq.g/ D Uq.h˚ h/˚ Uq.g/

˚, where

Uq.g/
˚
WD Uq.n�/

C
� Uq.hD/ � Uq.nC/C Uq.n�/ � Uq.hD/ � Uq.nC/

C:

3.2. MpQGs as cocycle deformations

Now we want to perform on the Hopf algebras Uq.g/ a cocycle deformation process, via
special types of 2-cocycles, like in Section 2.2, following [14, 25, 49].

Let us consider q WD .qij /i;j2I and Uq.g/ as in Section 3.1. As explained in Sec-
tion 2.3.2, we fix a special element qj0 2 k�, also denoted by q WD qj0 ; for this choice of
q, we consider the canonical “one parameter” quantum group ULq.g/ as in Remark 3.1.2.

Recall from Definition 3.1.1 the notation K� WD
Q
i2I K

�i
i and L� WD

Q
i2I Li

�i for
every � D

P
i2I �i˛i 2 Q. Similarly, we shall also write

q�� WD
Y
i;j2I

q
�i�j
ij ; q1=2�� WD

Y
i;j2I

.q
1=2
ij /�i�j 8� D

X
i2I

�i˛i ; � D
X
j2I

�j j̨ 2 Q:

Likewise, we define also qˇ WD qi for every positive root ˇ 2 ˆC which belongs to the
same orbit as the simple root ˛i for the action of the Weyl group of g onto Q (which is
well defined, by standard theory of root systems).

Definition 3.2.1. With the above conventions, let ULq.g/ be the MpQG of Remark 3.1.2,
and let � W ULq.g/˝ ULq.g/! k be the unique k-linear map given by

�.x; y/ WD q1=2�� if x D K� or x D L�; y D K� or y D L� ;

�
�
ULq.g/; ULq.g/

˚
�
WD 0 DW �

�
ULq.g/

˚; ULq.g/
�

(by Remark 3.1.6 above, this is enough to determine a unique � as requested).
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The key result that we shall rely upon in the sequel is the following.

Theorem 3.2.2 (cf. [51, Theorem 28]). Let q WD .qij /i;j2I and let q be as above. Then
the map � in Definition 3.2.1 is a normalized 2-cocycle of the Hopf algebra ULq.g/ and
there exists a Hopf algebra isomorphism (with notation of Section 2.2.1)

Uq.g/ Š
�
ULq.g/

�
�
:

Remark 3.2.3. A similar result is given in [44, Theorem 4.5], but using another � .

As a last result in this section, we can show that the 2-cocycle deformation con-
sidered in Theorem 3.2.2 can be also realized as a cocycle deformation in the sense of
Section 2.2.2 as well. Indeed, let � WD Z2� be the free Abelian group generated by the
Ki ’s and Li ’s (i 2 I ), and let VE , resp. VF , be the k-vector space generated by the Ei ’s,
resp. the Fi ’s (i 2 I ). Then, by [26], we know thatULq.g/ is a quotient of T .VE ˚ VF /#k�
by the two-sided ideal generated by the relations (e), (f), and (g) in Definition 3.1.1. We
have a .Q �Q/-grading on T .VE ˚ VF /#k� given by

deg.Ki / D .˛i ; ˛i / D deg.Li /; deg.Ei / D .1; ˛i /; deg.Fi / D .˛i ; 1/

for all i 2 I ; it coincides with the grading induced by the coaction on the Yetter–Drinfeld
modules VE and VF such that deg.Ki / D deg.Li /. As the defining relations are homoge-
neous with respect to this grading, we get a .Q �Q/-grading on ULq.g/.

Consider now the group 2-cocycle ' 2 Z2.�;k/ given by ' WD � j��� , that is

'.h; k/ WD q1=2�� if h D K� or h D L�; k D K� or k D L�

and let z' be the 2-cocycle defined on T .V ˚ W /#k� as in Section 2.2.3. Since � is
Abelian andEi �z' Fj DEiFj for all i; j 2 I , we have thatEi �z' Fj �Fj �z' Ei D ŒEi ;Fj �,
hence z' defines a Hopf 2-cocycle y' on ULq.g/. Finally, a direct comparison shows that
y' D � . Thus, using Section 2.2.3, we conclude that the following holds.

Proposition 3.2.4. There exists a Hopf algebra identification�
ULq.g/

�
�
D
�
ULq.g/

�.z'/
hence, by Theorem 3.2.2, a Hopf algebra isomorphism Uq.g/ Š .ULq.g//

.z'/.

3.3. MpQGs with larger torus

The MpQGs Uq.g/ that we considered so far have a toral part (i.e., the subalgebra U 0q gen-
erated by theK˙1i ’s and the L˙1j ’s) that is nothing but the group algebra of a double copy
of the root lattice Q of g, much like in the one-parameter case—but for the duplication
ofQ, say. Now, in that (uniparameter) case, one also considers MpQGs with a larger toral
part, namely the group algebra of any intermediate lattice between Q and P ; similarly,
we can introduce MpQGs whose toral part is the group algebra of any lattice �` � �r with
Q � �` and Q � �r .
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3.3.1. Larger tori for MpQGs. Recall that the definition of the “toral parts” of Uq.g/—
cf. Definition 3.1.3—is independent of q: indeed, UC;0q is the group algebra over k for
the group Q—identifying ˙˛i ' K˙1i and ˛ ' K˛ (i 2 I , ˛ 2 Q); similarly, U�;0q is
the group algebra (over k) of Q again with ˛ ' L˛ , and Uq.h˚ h/ WD U 0q is the group
algebra (over k) of Q �Q—with .˛0; ˛00/ ' K˛0L˛00 .

Let us denote by QQ and QP the scalar extension from Z to Q of the lattices ZQ and
ZP , respectively; note that QQDQP . For any other sublattice � in QQ (DQP ) of rank
�—the same as Q and P—we can define toral quantum groups U˙;0q;� akin to U˙;0q but
now associated with the lattice � , again as group algebras; similarly, we have an analogue
U 0q;ƒ of U 0q associated with any sublattice ƒ in QQ � QQ of rank 2� . Moreover, all
these bear a natural Hopf algebra structure. Any sublattice inclusion � 0 � � 00 yields a
unique Hopf embedding U˙;0q;� 0 � U

˙;0
q;� 00 , and similar embeddings exist for the U 0q;ƒ’s. We

aim to use these “larger toral MpQGs” as toral parts of larger MpQGs; this requires some
compatibility constraints on q, and some preliminary facts that we now settle.

Let � be a sublattice of QQ of rank � with Q � � . For any basis ¹1; : : : �º of � ,
let C WD .cij /i;j2I be the matrix, with entries in Z, that describes the change of basis
(for QQ as a Q-vector space) from ¹iºi2I to ¹˛iºi2I , so ˛i D

P�
jD1 cij j for each

i 2 I D ¹1; : : : ; �º. Let also c WD jdet.C /j 2 NC be the absolute value of the determinant
of C ; this is equal to the index (as a subgroup) of Q in � , hence it is independent of any
choice of basis. If C�1 D .c0ij /i;j2I is the inverse matrix to C , then i D

P�
jD1 c

0
ij j̨ and

c00ij WD c � c
0
ij 2 Z for all i; j 2 I D ¹1; : : : ; �º.

Let nowUC;0q;� be given, as group algebra of � over k with generatorsK˙1i correspond-
ing to the basis elements i (and their opposite) in � (for i 2 I ). DefineK˛i WD

Q
j2I K

cij
j

for all i 2 I , and then the k-subalgebra of UC;0q;� generated by the K˙1˛i ’s is an isomorphic
copy of UC;0q;Q , which provides a realization of the Hopf algebra embedding UC;0q;Q � U

C;0
q;�

corresponding to the group embedding Q � � .
In the obvious symmetric way, we define also the “negative counterpart” U�;0q;� of

U
C;0
q;� , generated by elements L˙1i corresponding to the ˙i ’s in � , along with a suitable

embedding U�;0q;Q � U
�;0
q;� corresponding to the group embedding Q � � .

Finally, given any two sublattices �˙ of rank � in QQ containing Q, letting �� WD
�C � �� we define U 0q;�� WD U

C;0
q;�C ˝k U

�;0
q;�� ; in this case, the basis elements for �˙ will

be denoted by ˙i (i 2 I ). The previous embeddings of U˙;0q;Q into U˙;0q;�˙ then induce a
similar embedding of U 0q D U

C;0
q;Q ˝k U

�;0
q;Q into U 0q;�� as well.

3.3.2. Special root pairings (in the integral case). Let us now assume that the mul-
tiparameter q WD .qij D qbij /i;j2I is of integral type; we therefore use notation B WD
.bij /i;j2I 2M� .Z/. Then a Z-bilinear pairing . ; /B WQ�Q!Z is defined via the matrix
B by .˛i ; j̨ /B WD bij for all i; j 2 I . Moreover, by Proposition 3.1.4, we know that the
pairing U�q ˝k U

�
q ! k is non-degenerate; but then (by the special properties of this pair-

ing) its restriction to U 0q ˝k U
0
q is non-degenerate too. Finally, from hK˛; Lˇ i D q.˛;ˇ/B

(for all ˛; ˇ 2Q) we get that . ; /B WQ �Q! Z is non-degenerate as well, which forces
B to be invertible.
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By scalar extension, . ; /B yields also a Q-bilinear pairing on QQ, which again is non-
degenerate; we denote it also by . ; /B . It is then meaningful to consider, for any sublattice
� in QQ, its left-dual P�.`/ and its right-dual P�.r/, defined by

P�.`/ WD
®
� 2 QQ j .�; /B 2 Z; 8 2 �

¯
;

P�.r/ WD
®
� 2 QQ j .; �/B 2 Z; 8 2 �º

(3.1)

that are sublattices in QQ and coincide iff B is symmetric; then restricting the Q-bilinear
pairing . ; /B W QQ � QQ ! Q to P�.`/ � � and � � P�.r/ one gets Z-valued pairings
P�.`/ � � ! Z and � � P�.r/ ! Z, still denoted by . ; /B .

Using the matrix B�1 D .b0ij /i;j2I , we define in QQ the elements

P$
.`/
i WD

X
k2I

b0ik˛k 8i 2 I; (3.2)

which are characterized by the property that . P$ .`/
i ; j̨ /B D ıij ; in short, ¹ P$ .`/

i ºi2I is the
Q-basis of QQ which is left-dual to the basis ¹ j̨ ºj2I w.r.t. . ; /B ; in particular, ¹ P$ .`/

i ºi2I

is a Z-basis of PQ.`/, the left-dual to Q w.r.t. . ; /B . Definitions give also Q � PQ.`/ with
˛i D

P
k2I bik P$

.`/

k
for all i 2 I .

The left-right symmetrical counterpart is given once we define the elements

P$
.r/
i WD

X
k2I

b0ki˛k 8i 2 I (3.3)

characterized by the property that . j̨ ; P$
.r/
i /B D ıj i ; thus ¹ P$ .r/

i ºi2I is the Q-basis of
QQ which is right-dual to the basis ¹ j̨ ºj2I with respect to . ; /B ; in particular, ¹ P$ .r/

i ºi2I

is a Z-basis of PQ.r/, the right-dual to Q w.r.t. . ; /B . Furthermore, definitions give also
Q � PQ.r/ with ˛i D

P
k2I bki P$

.r/

k
for all i 2 I .

The strongly integral case. The previous construction has a sort of “refinement” when
the integral-type multiparameter q WD .qij D qbij /i;j2I is actually strongly integral, with
bij D di t

C

ij D dj t
�
ij for all i; j 2 I (cf. Section 2.3.2). In this case, consider the two Z-

bilinear pairings h ; iT˙ W Q �Q! Z defined by the matrices TC and T �—thus given
by h˛i ; j̨ iT˙ WD t

˙
ij for all i; j 2 I—that are obviously non-degenerate (as . ; /B is, and

DTC D B D T �D), and extend them to same-name Q-bilinear pairings on QQ �QQ
by scalar extension. Then define, for any sublattice � in QQ, its left-dual and right-dual
(w.r.t. T � and TC, respectively) as

�.`/ WD
®
� 2 QQ j h�; iT� 2 Z; 8 2 �

¯
;

�.r/ WD
®
� 2 QQ j h; �iTC 2 Z; 8 2 �

¯ (3.4)

that both are sublattices in QQ; the pairings h ; iT˙ then restrict to Z-valued pairings
h ; iT� W �

.`/ � � ! Z and h ; iTC� � �.r/ ! Z. Now consider the elements

$
.`/
i WD di P$

.`/
i D

X
k2I

t
�;0
ik
˛k ; $

.r/
i WD di P$

.r/
i D

X
k2I

t
C;0
ki
˛k 8i 2 I; (3.5)
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where .t˙;0ij /
j2I
i2I D .T

˙/�1, which are characterized by the properties h$ .`/
i ; j̨ iT� D ıij

and h˛i ;$
.r/
j iTC D ıij ; in a nutshell, ¹$ .`/

i ºi2I is the Q-basis of QQ which is left-dual
to the basis ¹ j̨ ºj2I w.r.t. h ; iT� , while ¹$ .r/

i ºi2I is the right-dual to ¹ j̨ ºj2I w.r.t. h ; iTC .
In particular, ¹$ .`/

i ºi2I is a Z-basis ofQ.`/, and ¹$ .r/
i ºi2I is a Z-basis ofQ.r/ with nota-

tion of (3.4). Note also that definitions give Q � Q.`/ \Q.r/ with ˛i D
P
k2I t

�
ik
$
.`/

k

and ˛i D
P
k2I t

C

ki
$
.r/

k
for all i 2 I .

3.3.3. MpQGs with larger tori. Let �C and �� be any two lattices in QQ such that
Q � �˙; then set �� WD �C � ��. From Section 3.3.1, with notation fixed therein, we can
consider the corresponding “multiparameter quantum torus” U 0q;�� , that contains U 0q D
U 0q;Q. For either lattice �˙, we have a matrix C˙ D .c˙ij /i;j2I and C�1

˙
D .c

˙;0
ij /i;j2I ,

with c˙ WD jdet.C˙/j 2 ZC and c˙;00ij WD c˙ � c
˙;0
ij 2 Z (i; j 2 I ).

For the rest of this subsection, we make now the following assumption concerning the
ground field k and the multiparameter (of Cartan type) q WD .qij /i;j2I : for every i; j 2 I ,
the field k contains a c˙-th root of qij , hereafter denoted by q1=c˙ij ; moreover, we assume
that q1=c˙ WD .q1=c˙ij /i;j2I is of Cartan type too.

The natural (adjoint) action of U 0q onto Uq extends, in a unique manner, to a U 0q;�� -
action � W U 0q;�� � Uq ! Uq, given by

KCi
�Ej D q

�C
ij Ej ; L�i �Ej D .q

��
j i /
�1Ej ; KCi

�K
j̨
D K

j̨
;

L�i �K j̨
D K

j̨
; KCi

� L
j̨
D L

j̨
; L�i � L j̨

D L
j̨
;

KCi
� Fj D .q

�C
ij /
�1Fj ; L�i � Fj D q

��
j i Fj ;

where q�Crs WD
Q
k2I .q

1=cC
ks

/c
C;00
rk and q��ae WD

Q
k2I .q

1=c�
ak

/c
�;00
ek ; this makes Uq into a U 0q;�� -

module Hopf algebra. This allows us to consider the Hopf algebra U 0q;�� Ë Uq given by
the smash product of U 0q;�� and Uq: the underlying vector space is just U 0q;�� ˝ Uq, the
coalgebra structure is the one given by the tensor product of the corresponding coalgebras,
and the product is given by the formula

.h Ë x/.k Ë y/ D hk.1/ Ë
�
�.k.1// � x

�
y for all h; k 2 U 0q;�� ; x; y 2 Uq:

Since U 0q;�� contains U 0q (DW U 0q;Q�Q) as a Hopf subalgebra, it follows that U 0q;�� itself
is a right U 0q -module Hopf algebra with respect to the adjoint action. It is not difficult to
see that, under these hypotheses, the smash product U 0q;�� Ë Uq maps onto a Hopf algebra
structure on the vector space U 0q;�� ˝U 0q Uq, which hereafter we denote by U 0q;�� ËU 0q Uq;
see [43, Theorem 2.8]. We define then

Uq;��.g/ � Uq;�� WD U
0
q;�� Ë

U 0q

Uq D U
0
q;�� Ë

U 0q

Uq.g/: (3.6)

It is easy to check that Uq;��.g/ and its Hopf algebra structure can be described with
a presentation by generators and relations like that for Uq.g/ in Definition 3.1.1. Indeed,
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since the coalgebra structure is the one given by the tensor product, one has to describe
only the algebra structure. For this, first one has to replace the generators K˙1i D K˙˛i
and L˙1i D L˙˛i with the generators K˙1i D K

˙Ci
and L˙1i D L˙�i . Second, replace

relations (c) and (d) of Definition 3.1.1 with the following, generalized relations:

(c0) KCi
EjK

�1

Ci
D q

�C
ij Ej , L�i EjL

�1
�i
D .q

��
j i /
�1Ej ,

(d0) KCi
FjK

�1

Ci
D .q

�C
ij /
�1Fj , L�i FjL

�1
�i
D q

��
j i Fj .

Then, in relation (e) write each K˙1i D K˛i , resp. L˙1i D L˙˛i , in terms of the K˙1j WD

K
˙Cj

’s, resp. L˙1j WD L˙�j ’s; finally, leave relations (f) and (g) unchanged.
With much the same approach, one defines also the “(multiparameter) quantum sub-

groups” of Uq;��.g/ akin to those of Uq.g/ (cf. Definition 3.1.3), that we denote by adding
a subscript ��, namely UCq;�� , U

�
q;�� , U

�

q;�� , U
�

q;�� , U
C;0
q;�� , and U�;0q;�� .

The integral case. When q is of integral type, the above construction may have a simpler
description. Indeed, assume also that the lattices �C and �� (both containingQ) are such
that �C � PQ.`/ and �� � PQ.r/, that is .�C; Q/B � Z and .Q; ��/B � Z—notation of
Section 3.3.2. Then in the presentation of the MpQG Uq;�� of (3.6), the modified relations
(c0) and (d0) mentioned above take the forms

(c0) KCi
EjK

�1

Ci
D qC.

C
i ; j̨ /BEj , L�i EjL

�1
�i
D q�. j̨ ;

�
i /BEj ,

(d0) KCi
FjK

�1

Ci
D q�.

C
i ; j̨ /BFj , L�i FjL

�1
�i
D qC. j̨ ;

�
i /BFj .

In particular, this means that Uq;�� is actually well defined over the (possibly smaller)
ground field generated in k by q—and similarly for UCq;�� , U

�

q;�� , etc. Therefore, the
assumption that k contains cC-th and c�-th roots of qij , that is required in the non-integral
case, is not necessary in the integral one.

3.3.4. Duality among MpQGs with larger tori. Let again �˙ be two lattices of rank �
in QQ containing Q, and set �� WD �C � ��; then we have “toral MpQGs” U˙;0q;�˙ and
U 0q;�� as in Section 3.3.1. Moreover, we have bases ¹˙s ºs2I of �˙ and corresponding
matrices C˙ D .c˙ij /i;j2I and C�1

˙
D .c

˙;0
ij /i;j2I , and the integers c˙ WD jdet.C˙/j and

c
˙;00
ij WD c˙ � c

˙;0
ij (i; j 2 I ) as in Section 3.3.3. In addition, we assume that k contains a

.cCc�/-th root of qij , say q1=.cCc�/ij , and that overall the multiparameter

q1=.cCc�/ WD .q1=.cCc�/ij /i;j2I

is of Cartan type.
It is straightforward to check that the skew-Hopf pairing � WU�q ˝k U

�
q ! k in Propo-

sition 3.1.4 actually extends to a similar pairing U�q;�C ˝k U
�

q;�� ! k given by

Ei ˝ L� 7! 0; KC ˝ Fj 7! 0; Ei ˝ Fj 7! �ıij
qi i

qi i � 1
;

KCi
˝ L�j 7!

Y
h;k2I

.q
1=.cCc�/

hk
/
c
C;00
ih
c
�;00
jk
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for all i; j 2 I , and still denoted by �. In particular, this � W U�q;�C ˝k U
�

q;�� ! k is still
non-degenerate, like its restrictions UCq;�C ˝k U

�
q;�� ! k and U 0q;�C ˝k U

0
q;�� ! k.

When q WD .qij D qbij /j2Ii2I is of integral type and . ; /B WQ �Q!Z is the associated
pairing—cf. Section 3.3.2—the previous construction may have a simpler description,
under the additional assumption that .�C;��/B�Z—that is equivalent to either �C� P�.`/�
or �� � P�

.r/
C —so that . ; /B induces a pairing . ; /B W �C � ��! Z. In the following, we

shall briefly refer to such a situation by saying that .�C; ��/ is a pair in duality (w.r.t. B),
or that the lattices �C and �� are in duality (w.r.t. B). Indeed, under these assumptions
we have

�.KCi
; L�j / D

Y
h;k2I

.q
1=.cCc�/

hk
/
c
C;00
ih
c
�;00
jk D q.

C
i ;

�
j /B I

in particular, requiring a .cCc�/-th root in k of every qhk is no longer necessary.

Remark 3.3.1. It is easy to see that, using the skew-Hopf pairing � between (suitably
chosen) quantum Borel subgroups U�q;�C and U�q;�� mentioned in Section 3.3.4 above,
every MpQG with larger torus, say Uq;��.g/, can be realized as a Drinfeld double (of
those quantum Borel subgroups), so extending what happens for MpQGs with “standard”
torus.

4. Quantum root vectors and PBW theorems for MpQGs

The first purpose of this section is to introduce root vectors for MpQGs. Second, we show
that PBW theorems hold true for an MpQG and all its relevant subalgebras.

4.1. Quantum root vectors in MpQGs

For the one-parameter quantum group Uq.g/ of Lusztig, several authors introduced quan-
tum analogues of root vectors—or “quantum root vectors”—in different ways, the most
common ones being via iterated q-brackets or iterated adjoint action. Lusztig gave (cf.
[45]) a general procedure, using an action on Uq.g/ of the braid group associated with g;
later, it was extended to the multiparameter case in [34].

To begin with, let W be the Weyl group of g, generated by reflections si D s˛i
associated with the simple roots ˛i of g (i 2 I ), and let w0 2 W be the longest ele-
ment in W . Then the number N WD jˆCj of positive roots (cf. 2.3.1) of g is also the
length of any reduced expression of w0. Let us fix now one such reduced expression, say
w0 D si1si2si3 � � � siN�1siN , so that all the following constructions will actually depend on
this specific choice.

Set ˇk WD si1si2 � � �sik�1.˛ik / for all kD 1; : : : ;N . Then one has ¹ˇkºkD1;2;:::;N DˆC;
in particular, all positive roots are recovered starting from the fixed reduced expression of
w0, and, in addition, this also endows ˆC with a total order, namely ˇk � ˇh , k � h.
The same method of course can be applied to negative roots.

A similar procedure allows to construct a root vector in g for each positive root. First,
consider the braid group B associated with W , generated by elements xTi which lift the
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simple reflections si D s˛i (i 2 I ). There is a standard way (cf. for instance [39]) to define
a group action of B onto g that on root space yields xTi .gˇ /D gsi .ˇ/; using this action one
can define root vectors via

xˇk WD
xTi1
xTi2 � � �

xTik�1.xik / 2 gˇk 8k D 1; 2; : : : ; N;

where each xi is a Chevalley generator in g˛i . It is worth remarking that if ˇk is a simple
root, say ˇk D j̨ , then the root vector xˇk defined above actually coincides with the
generator xj given from scratch, so the entire construction is overall consistent. The same
argument can be used to construct negative root vectors.

This type of procedure was “lifted” to the one-parameter quantum case by Lusztig
(cf. [45]), who did it introducing a suitable braid group action on Uq.g/; his construc-
tion was later extended by Heckenberger to the multiparameter case, that is to Uq.g/, as
we shall now shortly recall. One defines—see [36, formulas (4.3)–(4.4)]—isomorphisms
T1; : : : ; T� which yield a B-action that lifts that on U.g/; using this action one defines
“quantum root vectors” Eˇk as given by

Eˇk WD Ti1Ti2 � � �Tik�1.Eik / 2 U
C
q 8k D 1; 2; : : : ; N; (4.1)

where one finds that Eˇk D Ej whenever ˇk D j̨ ; similarly one also constructs “(quan-
tum) negative root vectors” Fˇk 2 U

�
q . In the following, we shall refer to the Eˇk ’s or the

Fˇk ’s by loosely calling them “(quantum) root vectors”.
It is also remarkable that these quantum root vectors can be realized as iterated braided

brackets (e.g., like in [36, Section 4]). This will be of key importance, by the following
proposition.

Proposition 4.1.1. Every quantum root vector inUq.g/ is proportional to the correspond-
ing quantum root vector in ULq.g/ by a coefficient that is a monomial in the q˙1=2ij ’s.

Proof. By Theorem 3.2.2 and Proposition 3.2.4 together we know that

Uq.g/ Š ULq.g/� D ULq.g/
.z'/

for the 2-cocycle � of ULq.g/ and a suitable group bicharacter ' of Q. Now denote by E˛
a quantum root vector in Uq.g/ and by LE˛ the corresponding (i.e., built in the same way,
for the same root) quantum root vector in ULq.g/. Since Lqij D qdiaij D qdj aj i D Lqj i for all
i; j 2 I , in ULq.g/� we have that

ad.Ej /.Ei / D ad� . LEj /. LEi / D . LEj /.1/ �� LEi �� ��
�
. LEj /.2/

�
D LEj �� LEi CKj �� LEi �� .K

�1
j ��

LEj /

D �.Kj ; Ki / LEj LEi C
�
�.Kj ; Ki /Kj LEi

�
��

�
�.K�1j ; Kj /K

�1
j
LEj
�

D �.Kj ; Ki /
�
LEj LEi C �.K

�1
j ; Kj /�.KjKi ; 1/Kj LEiK

�1
j
LEj�
�1.Kj ; K

�1
j /

�
D q

1=2
ji .

LEj LEi C Lqij LEi LEj / D q
1=2
ji

�
. LEj /.1/ � LEi � �

�
. LEj /.2/

��
D q

1=2
ji ad. LEj /. LEi /:
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Therefore, although the adjoint action is not preserved under the 2-cocycle deformation,
both elements differ only by a coefficient which is a monomial in the q˙1=2ij ’s. Since both
quantum root vectors are defined by an iteration of adjoint actions (because of the very
definition of the Ti ’s) by Lemma 2.2.1 we infer, taking into account the explicit form of
� (whose values are monomials in the q˙1=2ij ’s), that the quantum root vectors E˛ and LE˛
associated with any root ˛ in Uq.g/ and in ULq.g/� , respectively, are linked by an identity
E˛ D m

C
˛ .q˙1=2/ LE˛ for some monomial mC˛ .q˙1=2/ in the q˙1=2ij ’s, as claimed.

The above accounts for all (quantum) positive root vectors. A similar argument proves
the claim for negative root vectors as well.

4.2. PBW theorems for MpQGs

Once we have quantum root vectors, some PBW theorems hold too, stating that suitable
ordered products of quantum root vectors and/or toral generators do form a k-basis of
Uq.g/ itself. Here is the exact claim:

Theorem 4.2.1 (“PBW theorem” for Uq.g/—cf. [10, Theorem 3.6], [36, Theorem 4.5],
and references therein). Assume that quantum root vectors in Uq.g/ have been defined as
above. Then the set of ordered monomials² 1Y

kDN

F
fk
ˇk

Y
j2I

L
aj
j

Y
i2I

K
bi
i

NY
hD1

E
eh
ˇh
j fk ; aj ; bi ; eh 2 N

³
is a k-basis of Uq.g/, and similarly if we take the opposite order in ˆC.

Similar results hold for the subalgebras U�q , U�q , UCq , U�q , UC;0q , U�;0q , and U 0q .

Proof. This is proved in [10, Theorem 3.6] (also for q not of Cartan type).

Remark 4.2.2. It is easy to see that a suitable “PBW theorem” holds as well for any
generalized MpQG with larger torus Uq;��.g/—cf. Section 3.3.

4.3. Hopf duality among quantum Borel subgroups

Proposition 3.1.4 provides a skew-Hopf pairing between the two MpQGs of Borel type
U�q and U�q , that we denote by �. Again, from [11, Proposition 4.6], we have a complete
description of this pairing, in terms of PBW bases (of both sides), namely the following:

Proposition 4.3.1. Keep notation as above. Then

�

� MY
kD1

E
ek
ˇk
K;

MY
kD1

F
fk
ˇk
L

�
D

MY
kD1

ıek ;fk

�
.�1/h.ˇk/qˇkˇk

qˇkˇk � 1

�ek
.ek/q

ˇkˇk
Š � �.K;L/

for all ek ; fk 2 N and all K 2 UC;0q , L 2 U�;0q , where h.ˇk/ is the height of the root ˇk
and qˇkˇk is defined as in Section 3.2.
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Remark 4.3.2. It is straightforward to see that the result above actually extends to the
case when—under suitable assumptions—one considers the pairing � between two multi-
parameter quantum Borel subgroups U�q;�� and U�q;�� like in Section 3.3.4.

4.4. Special products in Uq.g/ D .ULq.g//�

When performing calculations in our MpQGs, a convenient strategy is to reduce ourselves
to similar calculations in the simpler framework of uniparameter quantum groups. The
basic point to start from is the existence of a Hopf algebra isomorphism

Uq.g/ Š
�
ULq.g/

�
�

(cf. Theorem 3.2.2) where � is the 2-cocycle given in Definition 3.2.1. Therefore, we can
describe Uq.g/ as being the coalgebra .ULq.g//� endowed with the new, deformed product
� WD �� (defined as in Section 2.2.1) and the corresponding, deformed antipode �� . The
“old” product in ULq.g/ instead will be denoted by L�. So hereafter by Y �z or Y L�z we shall
denote the z-th power of any Y 2 ULq.g/ with respect to either the deformed product � or
the old product L�, respectively, for any exponent z 2N, or even z 2Z when Y is invertible.

For later use, we need to introduce some more notation:

Definition 4.4.1. (a) Let A be an algebra over a field F , and let p 2 F be not a root of
unity. For every H 2 A, n 2 N, and c 2 Z, define the elements�

H I c

n

�
p

WD

nY
sD1

pcC1�sH � 1

ps � 1
;

�
H

n

�
p

WD

�
H I 0

n

�
p

(4.2)

that are called p-binomial coefficients (or just “p-binomials”) in H .
(b) For every i 2 I , ˛ 2 ˆC, Xi 2 ¹Ei ; Fiº, Y˛ 2 ¹E˛; F˛º—notation as in Sec-

tion 4.1—and all n 2 N, the elements in Uq.g/

X
.n/
i WD

Xni
.n/qi i Š

; Y .n/˛ WD
Y n˛

.n/q˛˛ Š
(4.3)

are called quantum divided powers, or q-divided powers.

Note that if in ULq.g/ we consider the two products � and �, we have two corresponding
types of q-binomial coefficients, hereafter denoted by

�
X I0
n

�L�
p

and
�
X I0
n

��
p

. Similarly, we
shall consider two types of q-divided powers, for which we use notation Y L�.n/ and Y �.n/;
indeed, the first type denotes a q-divided power in .ULq.g/; L� /, and the second one a q-
divided power in Uq.g/ D .ULq.g//� D .ULq.g/; �/.

4.4.1. Comparison formulas. Some elementary calculations lead to explicit formulas
linking same-type objects in .ULq.g/;L� / and in Uq.g/D .ULq.g/; �/; we shall use them later
on when studying integral forms of Uq.g/.
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Concretely, for all i 2 ¹1; : : : ; �º, n;m 2N, z; z0; z00 2 Z ps 2 ¹q; qsº,X;Y 2 ¹K;Lº,
and G˙1i WD K

˙1
i L�1i , we have, cf. (4.2) for notation,

E
�.n/
i D q

C.n2/
i E

L�.n/
i ; F

�.n/
i D q

�.n2/
i F

L�.n/
i ;

K�zi D K
L�z
i ; L�zi D L

L�z
i ; G�zi D G

L�z
i ;�

Xi

n

��
pi

D

�
Xi

n

�L�
pi

;

�
G˙1i
n

��
qi i

D

�
G˙1i
n

�L�
qi i

;

E
�.n/
i

�E
�.m/
j D q

C.n2/
i qC1=2n˛i ;m j̨

q
C.m2/
j E

L�.n/
i L�E

L�.m/
j D q

C.n2/
i .q

C1=2
ij /nmq

C.m2/
j E

L�.n/
i L�E

L�.m/
j ;

E
�.n1/
i1

�E
�.n2/
i2

� � � � �E
�.ns/
is

D

� sY
jD1

q
C.nj

2
/

ij

��Y
j<k

qC1=2nij ˛ij ;nk˛ik

�
E
L�.n1/
i1
L�E
L�.n2/
i2
L� � � � L�E

L�.ns/
is

;

F
�.n/
i

�F
�.m/
j D q

�.n2/
i q�1=2n˛i ;m j̨

q
�.m2/
j F

L�.n/
i L�F

L�.m/
j D q

�.n2/
i .q

�1=2
ij /nmq

�.m2/
i F

L�.n/
i L�F

L�.m/
j ;

F
�.n1/
i1

�F
�.n2/
i2

� � � � �F
�.ns/
is

D

� sY
jD1

q
�.nj

2
/

ij

��Y
j<k

q�1=2nij ˛ij ;nik˛ik

�
F
L�.n1/
i1
L�F
L�.n2/
i2
L� � � � L�F

L�.ns/
is

;

X�z
0

i
�Y �z

00

j D XL�z
0

i L� Y
L�z00

j ; X�z
0

i
�G�z

00

j D XL�z
0

i L� Y
L�z00

j ; G�z
0

i
�Y �z

00

j D GL�z
0

i L� Y
L�z00

j ;�
Xi

n

��
pi

�

�
Yj

m

��
pj

D

�
Xi

n

�L�
pi

L�

�
Yj

m

�L�
pj

;

�
G˙1i
n

��
qi i

�

�
G˙1j
m

��
qjj

D

�
G˙1i
n

�L�
qi i

L�

�
G˙1j
m

�L�
qjj

;

�
Xi

n

��
pi

�

�
G˙1j
m

��
qjj

D

�
Xi

n

�L�
pi

L�

�
G˙1j
m

�L�
qjj

;

E
�.n/
i

�F
�.m/
j D q

C.n2/
i q

�.m2/
j E

L�.n/
i L� F

L�.m/
j ; F

�.m/
j

�E
�.n/
i D q

�.m2/
j q

C.n2/
i F

L�.m/
j L�E

L�.n/
i ;

X�zi �E
�.n/
j D q

Czn=2
ij XL�zi L�E

L�.n/
j ; E

�.n/
j

�X�zi D q
Czn=2
ji E

L�.n/
j L�XL�zi ;

G�zi �E
�.n/
j D GL�zi L�E

L�.n/
j ; E

�.n/
j

�G�zi D E
L�.n/
j L�GL�zi ;

X�zi �F
�.m/
j D q

�zm=2
ij XL�zi L� F

L�.m/
j ; F

�.m/
j

�X�zi D q
�zm=2
ji F

L�.m/
j L�XL�zi ;

G�zi �F
�.m/
j D GL�zi L� F

L�.m/
j ; F

�.m/
j

�G�zi D F
L�.m/
j L�GL�zi ;

E
�.n/
i

�

�
Xj

m

��
pj

D q
C.n2/
i

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
C1=2
ij /n � 1

psj � 1
E
L�.n/
i

�
Xj

m � c

�L�
pj

XL�cj ;

�
Xj

m

��
pj

�E
�.n/
i D q

C.n2/
i

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
C1=2
ji /n � 1

psj � 1
E
L�.n/
i

�
Xj

m � c

�L�
pj

XL�cj ;
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E
�.n/
i

�

�
Gj

m

��
qjj

D q
C.n2/
i E

L�.n/
i L�

�
Gj

m

�L�
qjj

;

�
Gj

m

��
qjj

�E
�.n/
i D q

C.n2/
i

�
Gj

m

�L�
qjj

L�E
L�.n/
i ;

F
�.n/
i

�

�
Xj

m

��
pj

D q
�.n2/
i

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
�1=2
ij /n � 1

psj � 1
F
L� .n/
i

�
Xj

m � c

�L�
pj

XL�cj ;

�
Xj

m

��
pj

�F
�.n/
i D q

�.n2/
i

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
�1=2
ji /n � 1

psj � 1

�
Xj

m � c

�L�
pj

XL�cj F
L�.n/
i ;

F
�.n/
i

�

�
Gj

m

��
qjj

D q
�.n2/
i F

L�.n/
i L�

�
Gj

m

�L�
qjj

;

�
Gj

m

��
qjj

�F
�.n/
i D q

�.n2/
i

�
Gj

m

�L�
qjj

L�F
L�.n/
i :

In addition, more in general for root vectors we have the following. From Proposition
4.1.1 and its proof, recall that—keeping notation from there—if we denote by E˛ a quan-
tum root vector in Uq.g/ and by LE˛ the corresponding (i.e., for the same root) quantum
root vector in ULq.g/ we have

E˛ D m
C
˛
LE˛ and F˛ D m

�
˛
LF˛

for some Laurent monomials mC˛ D mC˛ .q˙1=2/ and m�˛ D m�˛ .q˙1=2/ in the q˙1=2ij ’s.
Then an analysis like above (just a bit finer), for ˛; ˇ 2 ˆC, j 2 ¹1; : : : ; �º, yields

E�.n/˛
�E
�.m/

ˇ
D q

C.n2/
˛ .q

C1=2

˛ˇ
/nmq

C.m2/
ˇ

.mC˛ /
n.mC

ˇ
/m LEL�.n/˛ L� LE

L�.m/

ˇ
;

E�.n1/˛1
� � � � �E�.ns/˛s

D

� sY
jD1

q
C.nj

2
/

j̨

��Y
j<k

qC1=2nj j̨ ;nk˛k

�� sY
jD1

.mC
j̨
/nj
�
LEL�.n1/˛1
L� � � � L� LEL�.ns/˛s

;

F �.n/˛
�F
�.m/

ˇ
D q

�.n2/
˛ .q

�1=2

˛ˇ
/nmq

�.m2/
ˇ

.m�˛ /
n.m�ˇ /

m LF L�.n/˛ L� LF
L�.m/

ˇ
;

F �.n1/˛1
� � � � �F �.ns/˛s

D

� sY
jD1

q
�.nj

2
/

j̨

��Y
j<k

q�1=2nj j̨ ;nk˛k

�� sY
jD1

.m�
j̨
/nj
�
LF L�.n1/˛1
L� � � � L� LF L�.ns/˛s

;

E�.n/˛
�F
�.m/

ˇ
D q

C.n2/
˛ q

�.m2/
ˇ

.mC˛ /
n.m�ˇ /

m LEL�.n/˛ L� LF
L�.m/

ˇ
;

F
�.m/

ˇ
�E�.n/˛ D q

�.m2/
ˇ

q
C.n2/
˛ .m�ˇ /

m.mC
ˇ
/n LF

L�.m/

ˇ
L� LEL�.n/˛ ;

X�zi �E
�.n/

ˇ
D q

Czn=2

˛iˇ
.mC

ˇ
/nXL�zi L�

LE
L�.n/

ˇ
; E

�.n/

ˇ
�X�zi D q

Czn=2

ˇ˛i
.mC

ˇ
/n LE

L�.n/

ˇ
L�XL�zi ;

G�zi �E
�.n/

ˇ
D .mC

ˇ
/nGL�zi L�

LE
L�.n/

ˇ
; E

�.n/

ˇ
�G�zi D .m

C

ˇ
/n LE

L�.n/

ˇ
L�GL�zi ;

X�zi �F
�.m/

ˇ
D q
�zm=2

˛iˇ
.m�ˇ /

mXL�zi L�
LF
L�.m/

ˇ
; F

�.m/

ˇ
�X�zi D q

Czm=2

ˇ˛i
.m�ˇ /

m LF
L�.m/

ˇ
L�XL�zi ;

G�zi �F
�.m/

ˇ
D .m�ˇ /

mGL�zi L�
LF
L�.m/

ˇ
; F

�.m/

ˇ
�G�zi D .m

�
ˇ /
m LF
L�.m/

ˇ
L�GL�zi ;
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E�.n/˛
�

�
Xj

m

��
pj

D q
C.n2/
˛ .mC˛ /

n

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
C1=2
˛ j̨

/n � 1

psj � 1
LEL�.n/˛

�
Xj

m� c

�L�
pj

XL�cj ;

�
Xj

m

��
pj

�E�.n/˛ D q
C.n2/
˛ .mC˛ /

n

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
C1=2
j̨˛ /n�1

psj � 1

�
Xj

m� c

�L�
pj

XL�cj
LEL�.n/˛ ;

E�.n/˛
�

�
Gj

m

��
qjj

D q
C.n2/
˛ .mC˛ /

nEL�.n/˛ L�

�
Gj

m

�L�
qjj

;

�
Gj

m

��
qjj

�E�.n/˛ D q
C.n2/
˛ .mC˛ /

n

�
Gj

m

�L�
qjj

L�EL�.n/˛ ;

F �.n/˛
�

�
Xj

m

��
pj

D q
�.n2/
˛ .m�˛ /

n

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
�1=2
˛ j̨

/n�1

psj � 1
LF L�.n/˛

�
Xj

m� c

�L�
pj

XL�cj ;

�
Xj

m

��
pj

�F �.n/˛ D q
�.n2/
˛ .m�˛ /

n

mX
cD0

p
�c.m�c/
j

cY
sD1

p1�sj .q
�1=2
j̨˛ /n�1

psj � 1

�
Xj

m� c

�L�
pj

XL�cj
LF L�.n/˛ ;

F �.n/˛
�

�
Gj

m

��
qjj

D q
�.n2/
˛ .m�˛ /

nF L� .n/˛ L�

�
Gj

m

�L�
qjj

;

�
Gj

m

��
qjj

�F �.n/˛ D q
�.n2/
˛ .m�˛ /

n

�
Gj

m

�L�
qjj

L� F L�.n/˛ :

5. Integral forms of MpQGs

The main purpose of the present section is to introduce integral forms of our MpQGs; in
particular, we shall also provide suitable PBW-like theorems for them.

5.1. Preliminaries on integral forms

In this subsection, we fix the ground for our discussion of integral forms of MpQGs.

5.1.1. Integral forms. Let S be any ring andM any S -module. If R is any subring of S ,
we call R-integral form (or “integral form over R”) of M any R-submodule MR of M
whose scalar extension fromR to S isM ; i.e.,MR ˝R S DM . WhenM has some richer
structure (than the S -module one), by “R-integral form” we mean anR-integral form that,
in addition, respects the additional structure; in other words, the definition is like above
but one has to replace the words “module” and “submodule” with the words referring to
the additional, richer structure. For instance, ifH is a Hopf algebra over S , by “R-integral
form” of it we mean any Hopf subalgebra HR over R such that S ˝R HR D H .
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5.1.2. The ground ring. The integral forms of our MpQGs will be defined over a suitable
ground ring. To define it, we begin fixing a multiparameter matrix q of Cartan type with
entries in the field k, assuming again that the Cartan matrix is indecomposable. Starting
from q, we fix in k an element qj0 2 k�, now denoted by q WD qj0 , like in Section 2.3.2,
and square roots q1=2ij of all the qij ’s, like in Section 2.3.2.

We denote by Fq the subfield of k generated by all the q˙1ij ’s (i; j 2 I ) along with q˙1;
moreover, we denote by F

p

q the subfield of k generated by all the q˙1=2ij ’s (i; j 2 I ) and
q˙1=2; then F

p

q is a field extension of Fq that contains also all the square roots q˙1=2i ’s
and q˙1=2

ˇ
’s (ˇ 2 ˆC), for all the qi ’s and qˇ ’s defined at the beginning of Section 3.2.

As a ground ring for our integral forms, we fix the subring Rq of k generated by all the
q˙1ij ’s (for all i; j 2 I ) and q˙1; moreover, we denote by R

p

q the subring of k generated
by all the q˙1=2ij ’s (i; j 2 I ) and q˙1=2: this is a ring extension of Rq that contains all the
square roots q˙1=2i ’s and q˙1=2

ˇ
’s (ˇ 2 ˆC). The field of fractions of Rq is just Fq, and

similarly that of R
p

q is just F
p

q .
When q is of integral type we have that Rq and Fq are generated (as a ring and as a

field, respectively) by q˙1 alone, while R
p

q and F
p

q are generated by q˙1=2.
Finally, if we consider MpQGs with larger tori, then we take a ground field Fqc and a

ground ring Rqc defined like Fq and Rq but replacing the q�1ij ’s with the q˙1=cij ’s and q˙1

by q˙1=c , with c˙ WD jdet.C˙/j and c WD cCc� (cf. Section 3.3.3, Section 3.3.4).

5.2. Integral forms of “restricted” type

Following Section 3, we consider the multiparameter quantum group Uq.g/ associated
with q, defined over k; also, for the special value of q 2 k fixed above (depending on q),
we pick the MpQG of “canonical type” ULq.g/ as in Remark 3.1.2. Moreover, for each
ˇ 2ˆC we consider quantum root vectorsEˇ and Fˇ—within Uq.g/ and within ULq.g/—
as in Section 4.1.

Lusztig’s quantum groups of “restricted type” were introduced (cf. [45]) as special
integral forms of his uniparameter quantum group—which is “almost” ULq.g/—defined in
terms of the so-called “q-binomial coefficients” and “q-divided powers”. We shall now
perform a similar construction in the multiparameter case.

5.2.1. q-binomial coefficients and their arithmetic. Let p be any formal indeterminate,
m 2 N, and J WD ¹1; 2; : : : ; mº. We consider the two algebras

Em WD Q.p/
�
¹X˙1i ºi2J

�
; Em WD Q.p/

�
¹�˙1i ºi2J

�
of Laurent polynomials in the set of indeterminates ¹X˙1i ºi2J and ¹�˙1i ºi2J , respectively,
on the field Q.p/ of rational functions in p with coefficients in Q. Both algebras bear
unique Hopf algebra structures—over Q.p/—for which the X˙1i ’s and the �˙1i ’s are
group-like, i.e.,�.X˙1i / D X˙1i ˝X

˙1
i , �.X˙1i / D 1, �.X˙1i / D X�1i D 1 for Em and

�.�˙1i / D �˙1i ˝ �
˙1
i , �.�˙1i / D 1, �.�˙1i / D ��1i D 1 for Em.

The following result lists some properties of p-binomial coefficients (cf. Definition
4.4.1 (a)), taken from [23, Section 3] (anyway, everything comes easily by induction).
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Lemma 5.2.1. Let A be any algebra over a field F , and let p 2 F be not a root of unity.
Let X; Y;M˙1 2 A with XY D YX . Then for t; s 2 N, c 2 Z, we have�
XY I c

t

�
p

D

tX
sD0

p.s�cy/.s�t/
�
X I cX

t � s

�
p

Y t�s
�
Y I cY

s

�
p

8cX C cY D c;

MM�1 D 1 DM�1M;

�
M I c

0

�
p

D 1; .p � 1/

�
M I 0

1

�
p

DM � 1;

M˙1
�
M I c

t

�
p

D

�
M I c

t

�
p

M˙1;

�
M I c

t

�
p

�
M I c � t

s

�
p

D

�
t C s

t

�
p

�
M I c

t C s

�
p

;�
M I c C 1

t

�
p

� pt
�
M I c

t

�
p

D

�
M I c

t � 1

�
p

8t � 1;�
M I c C 1

t

�
p

�

�
M I c

t

�
p

D pc�tC1M

�
M I c

t � 1

�
p

8t � 1;

�
M I c

t

�
p

D

s�c;tX
s�0

p.c�s/.t�s/
�
c

s

�
p

�
M I 0

t � s

�
p

8c � 0;

�
M I �c

t

�
p

D

tX
sD0

.�1/sp�t.cCs/C.
sC1
2 /
�
s C c � 1

s

�
p

�
M I 0

t � s

�
p

8c � 1:

If, in addition, A is a Hopf algebra and M˙1 is group-like, then

�

��
M I c

t

�
p

�
D

X
rCsDt

p�r.s�c2/
�
M I c1

r

�
p

˝M r

�
M I c2

s

�
p

8c1 C c2 D c;

�

��
M I c

t

�
p

�
D

�
c

t

�
p

; �

��
M I c

t

�
p

�
D .�1/tpct�.

t
2/M�t

�
M I t � c � 1

t

�
p

;

�.M˙1/ DM˙1 ˝M˙1; �.M˙1/ D 1; �.M˙1/ DM�1:

Inside the Q.p/-vector spaces Em and Em, we consider the ZŒp; p�1�-integral form
of Laurent polynomials with coefficients in ZŒp; p�1�, namely

Em;Z WD ZŒp; p�1�
�
¹X˙1i ºi2J

�
; Em;Z WD ZŒp; p�1�

�
¹�˙1i ºi2J

�
which in fact are both Hopf subalgebras (of Em and Em) over ZŒp; p�1�.

Fix some di 2 Z n ¹0º and powers pi WD pdi for each i 2 J . Then a unique Q.p/-
bilinear pairing h ; i W Em � Em ! Q.p/ exists, given by hXzii ; �

�j
j i WD p

ıij zi �j
i (for all

zi ; �j 2 Z and i; j 2 J ). By restriction, this clearly yields a similar ZŒp; p�1�-valued
pairing between the ZŒp;p�1�-integral forms Em;Z and Em;Z; indeed, this is even a Hopf
pairing (cf. Definition 2.1.2). Finally, define

.Em;Z/
ı
WD
®
f 2 Em j hf;Em;Zi � ZŒp; p�1�

¯
:
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It follows from definitions and
�
n
k

�
pi
2 ZŒp; p�1� (n; k 2 N), cf. 2.3.4, that

X˙1i ;

�
X˙1i I c

n

�
pi

2 .Em;Z/
ı
8i 2 J; c 2 Z; n 2 N: (5.1)

Now set�
XJ I 0

n

�
p

X
�bn=2c

J WD

Y
i2J

�
Xi I 0

n

�
pi

X
�bni=2c
i for every n WD .ni /i2J 2 NJ ;

where bni=2c is the greatest natural number less than or equal to n=2. Then we have the
following proposition.

Proposition 5.2.2 ([23, Theorem 3.1]). (a) .Em;Z/ı is a free ZŒp;p�1�-module, with basis

Bm WD

²�
XJ

n

�
p

X
�bn=2c

J j n 2 NJ

³
:

(b) .Em;Z/ı is the ZŒp; p�1�-subalgebra of Em generated by all the
�
Xi Ic
n

�
pi

’s and
the X�1i ’s, or by all the

�
X�1i Ic
n

�
pi

’s and the Xi ’s. In fact, it can be presented as the Hopf
ZŒp;p�1�-algebra with generators

�
Xi Ic
n

�
pi

, X˙1i —for all i 2 I , n 2N, c 2 Z—and rela-
tions stating that all generators commute with each other plus all relations like in Lemma
5.2.1 but with

�
Xi Ic
n

�
pi

, X˙1i , and pi replacing
�
M Ic
n

�
p

, M˙1, and p, respectively, for all
i 2 I ; the Hopf structure then is given again by the same formulas as in Lemma 5.2.1 now
applied to the given generators.

Proof. Due to (5.1), the ZŒp; p�1�-subalgebra of Em generated by all the
�
Xi Ic
n

�
pi

’s and
the X�1i ’s is contained in .Em;Z/ı—and similarly if we replace each X˙1i with its inverse
X�1i . Thus to prove the whole claim, it is enough to show that .Em;Z/ı admits Bm as
ZŒp; p�1�-basis; indeed, we already have that the ZŒp; p�1�-span of Bm is contained in
.Em;Z/

ı, so to prove (a) it is enough to show that any f 2 .Em;Z/ı can be written uniquely
as a ZŒp; p�1�-linear combination of elements in Bm.

To begin with, Em over Q.p/ has as basis the set ¹XzJ WD
Q
i2J X

zi
i j z WD .zi /i2J 2

ZJ º and from this one easily sees that the set Bm WD ¹
�
XJ
n

�
p
X
�bn=2c

J j n 2 NJ º is a
Q.p/-basis too, which is contained in .Em;Z/ı by (5.1). Now consider the monomials
�� WD

Q
j2J �

�j
j (with � WD .�j /j2J 2 NJ ) in the �i ’s. By construction, one has��
XJ

n

�
p

X
�bn=2c

J ; ��

�
D

Y
i2J

�
�i

ni

�
pi

p
��i bni=2c
i 8n; � 2 NJ : (5.2)

Let � be the order relation in NJ given by the product of the standard order in N, so
n � � , ni � �i 8i 2 J . As

�
�i
ni

�
pi
6D 0, ni � �i , by (5.2) one has��

XJ

n

�
p

X
�bn=2c

J ; ��

�
6D 0, n � � .n; � 2 NJ /: (5.3)
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Now pick an f 2 .Em;Z/ı n ¹0º, and expand it (uniquely) as a Q.p/-linear combi-
nation of elements in Bm, say f D

PN
sD1 cs

�XJ
n.s/

�
p
X�bn

.s/=2c for some cs 2 Q.p/ n ¹0º.
Choose any index � 2 ¹1; : : : ; N º such that n� is minimal in ¹n.1/; : : : ; n.N/º; then by
(5.3) above and by

�
n
n

�
pi
D 1 we get

hf; �
n.�/
i D

NX
sD1

cs

��
XJ

n.s/

�
p

X
�bn.s/=2c

J ; �
n.�/

�
D c�

Y
i2J

p
�n

.�/
i bn

.�/
i =2c

i

so that hf; �
n.�/
i2ZŒp; p�1�—because f 2.Em;Z/ın¹0º—implies at once c�2ZŒp;p�1�.

By induction onN , one then concludes that all coefficients cs.s D 1; : : : ;N / in the expan-
sion of f actually lie in ZŒp; p�1�, q.e.d.

Finally, the presentation mentioned in claim (b) follows from [23, Section 3.4].

As a direct consequence of the above lemma, we have the following proposition.

Proposition 5.2.3. .Em;Z/ı is a Hopf ZŒp;p�1�-subalgebra of Em. Therefore, the former
is a ZŒp; p�1�-integral form of the latter.

For later use, we finish the present discussion with another result that gives the dual,
somehow, of what we found for .Em;Z/ı: it concerns the “bidual” space�

.Em;Z/
ı
�ı
WD
®
t 2 Em j

˝
.Em;Z/

ı; t
˛
� ZŒp; p�1�

¯
:

Proposition 5.2.4. The “bidual space” ..Em;Z/ı/ı coincides with Em;Z.

Proof. By definition ..Em;Z/ı/ı � Em;Z, we have to prove the converse inclusion.
Let t 2 ..Em;Z/ı/ı and expand it with respect to the Q.p/-basis of Em made of the

Laurent monomials �� WD
Q
j2J �

�j
j (with � WD .�j /j2J 2 ZJ ) in the �j ’s. This means

writing t as t D
P
�2ZJ c��� for suitable c� 2 Q.p/, almost all being zero; we denote by

n.t/ 2 N the number of all such non-zero coefficients. We must show that t 2 Em;Z, i.e.,
all the c� ’s belong to ZŒp; p�1�; we do it by induction on n.t/.

As a first step, we assume that for all � WD .�/j2J such that c� ¤ 0 we have �j � 0 for
all j 2 J . Then choose a �" 2 ZJ such that c

�"
6D 0 and �" is maximal for that property

with respect to the standard product order on ZJ ; in other words, there exists no � 6D �"

such that c� 6D 0 and �
j
� �"

j
for all j 2 J . Then we have

ZŒp; p�1� 3

��
XJ

�"

�
p

; t

�
D

X
�2ZJ

c�

��
XJ

�"

�
p

; ��

�
D

X
�2ZJ

c�
Y
j2J

�
�j

�
"

j

�
p

;

by the maximality of �", and the properties of q-binomial coefficients. Also we have�
�j

�
"

j

�
p

D ı
�;�"

;

thus the above eventually gives c
�"
2 ZŒp; p�1�, q.e.d. Now look at t 0 WD t � c

�"
�
�"

; by
construction we have n.t 0/ D n.t/ � 1 ˆ n.t/, hence we may assume by induction that
t 0 2 Em;Z. Then t D t 0 C c

�"
�
�"
2 Em;Z too, q.e.d.
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At last, notice that ..Em;Z/ı/ı is a ZŒp; p�1�-subalgebra. In fact, this follows at once
from the fact that .Em;Z/ı is a ZŒp;p�1�-coalgebra—and we have the perfect Hopf pairing
h ; i between Em and Em. As clearly seen that all the �� ’s do belong to ..Em;Z/ı/ı and are
invertible in it, it follows that for any t 2 Em and for any �0 2ZJ one has t 2 ..Em;Z/ı/ı if
and only if t�� 0 2 ..Em;Z/

ı/ı. Now, choosing a proper �0 2 ZJ , we can get t�� 0 such that
in its Q.p/-linear expansion in the �� ’s, say t�� 0 D

P
�2ZJ c��� , for all the � D .�j /j2J ’s

such that c� 6D 0 we have �j � 0 for all j 2 J . But then t 0 WD t�� 0 is of the type we
considered above, for which we did prove that t 0 WD t�� 0 2 Em;Z; so the previous analysis
gives t 2 Em;Z too.

5.2.2. The toral part of restricted MpQGs. The restricted integral form of a unipa-
rameter quantum group Uq.g/ was introduced by Lusztig as q-analogue of Chevalley’s
Z-form of U.g/; we consider here its modified version as in [23], where specific changes
were done in the choice of the toral part. The construction in [23] immediately extends to
ULq.g/, hence now we want to further extend it to the general case of any multiparameter
Uq.g/; nevertheless, a (mild) restriction on q is necessary, in the following terms:

Note. From now on, all along the present section we assume that q is of integral type
(as well as Cartan, as usual), say q D .qij D qbij /i;j2I as in Section 2.3.2. Therefore (cf.
Section 5.1.2) Rq, resp. R

p

q , is just the subring of k generated by q˙1, resp. q˙1=2, and
Fq, resp. F

p

q , is the subfield of k generated by q˙1, resp. q˙1=2.

In the following, whatever object we shall introduce that bear a structure of module
over Rq, resp. over Fq, will also have its natural counterpart defined over R

p

q , resp. over
F
p

q , that is also a scalar extension of the previous one.
In the following, Uq.g/ will be the MpQG associated with q as in Definition 3.1.1.

Inside it—more precisely, inside its toral part—we want to apply the construction pre-
sented in Section 5.2.1, for suitable choices of the Xi ’s, the �i ’s, and the pi ’s.

Recall that I WD ¹1; : : : ; �º. Define G˙1i WD K˙1i L�1i (2 Uq.h˚ h/ WD U 0q ) for all
i 2 I , and consider inside U 0q the Fq-subalgebra generated by the K˙1i ’s and the G˙1i ’s,
namely E2� WDFqŒ¹K

˙1
i ;G˙1i ºi;j2I �; note also that taking theL˙1i ’s as generators instead

of theG˙1i ’s will give the same algebra. As a matter of fact, since theK˙1i ’s and theG˙1i ’s
are group-like, this E2� is indeed a Hopf Fq-subalgebra of U 0q .

In the dual space .U 0q /
�, we consider the Fq-algebra morphisms P�˙1i and ˙1i , for

i 2 I , uniquely defined by˝
K
zi
i ; P�

�j
j

˛
WD qıij zi �j ;

˝
G
zi
i ; P�

�j
j

˛
WD 1;

˝
K
zi
i ; 

�j
j

˛
WD 1;

˝
G
zi
i ; 

�j
j

˛
WD q

ıij zi �j
i i

(cf. Section 5.1.2) for all zi ; �j 2 Z and i; j 2 J . Setting also PE2� WD FqŒ¹P�
˙1
i ; ˙1i ºi;j2I �

for the subalgebra in .U 0q /
� generated by the P�˙1i ’s and the ˙1i ’s, these formulas yield a

non-degenerate Fq-pairing between E2� and PE2� . In fact, the latter is a Hopf algebra (the
P�˙1i ’s and ˙1i ’s being group-like), so this is actually a Hopf pairing.

Now E2� and PE2� , paired as explained, can play the role of Em and Em in Sec-
tion 5.2.1 above, so we apply to them the construction presented there. Taking their



Multiparameter quantum groups at roots of unity 871

corresponding Rq-integral form of Laurent polynomials with coefficients in Rq, namely

E2�;Rq WD Rq
�
¹K˙1i ; G˙1i ºi2I

�
and PE2�;Rq WD Rq

�
¹P�˙1i ; ˙1i ºi2I

�
;

we have Hopf subalgebras over Rq, and the previously given pairing restricts to a non-
degenerate Rq-valued pairing among these two integral forms.

Now assume in addition that the multiparameter q is of strongly integral type, say
q D .qij D qdi t

C
ij D qdj t

�
ij /i;j2I . Then besides the previous construction we can perform

a second, parallel one, as follows.
Inside PE2�;Rq , we consider now �˙1i WD P�

˙di
i (for i 2 I ), for which we have˝

K
zi
i ; �

�j
j

˛
WD qıij dizi �j ;

˝
G
zi
i ; �

�j
j

˛
WD 1

for all zi ; �j 2 Z and i; j 2 J , and set E2� WD FqŒ¹�
˙1
i ; ˙1i ºi;j2I � for the subalgebra in

PE2�;Rq —hence in .U 0q /
� too—generated by the �˙1i ’s and the ˙1i ’s. Then E2� is in fact

a Hopf Fq-algebra (the �˙1i ’s being group-like, like the ˙1i ’s), and the above formulas
provide a non-degenerate Hopf pairing. Taking now

E2�;Rq WD Rq
�
¹K˙1i ; G˙1i ºi2I

�
and E2�;Rq WD Rq

�
¹�˙1i ; ˙1i ºi2I

�
;

we have Hopf subalgebras over Rq, and a non-degenerate Rq-valued pairing between
them provided by restriction of the previous one. Basing on all the above, we can now
introduce the objects we are mainly interested into as follows.

Definition 5.2.5. (a) PyU 0q WD . PE2�;Rq/
ı D ¹f 2 E2� j hf; PE2�;Rqi � Rqº if q is (just)

integral.
(b) yU 0q WD .E2�;Rq/

ı D ¹f 2 E2� j hf;E2�;Rqi � Rqº if q is strongly integral.

By the analysis and results in Section 5.2.1, applied to the present situation, we have
the following proposition.

Proposition 5.2.6. (a) PyU 0q is a Hopf Rq-subalgebra of E2� , generated by all the
�
Ki Ic
k

�
q
’s,

the K˙1i ’s, the
�
G�1i Ic
g

�
qi i

’s, and the G˙1i ’s.

(b) PyU 0q is a free Rq-module, with basis—cf. (4.2) for notation—² �Y
iD1

�
Ki

ki

�
q

K
�bki=2c
i

�Y
iD1

�
Gi

gi

�
qi i

G
�bgi=2c
i j ki ; gi 2 N 8i D 1; : : : ; �

³
:

(c) PyU 0q is isomorphic to the Hopf Rq-algebra with generators
�
Ki Ic
ki

�
q
, K˙1i ,

�
Gi Ic
gi

�
qi i

,
G˙1i (for all i 2 I , ki ; gi 2 N, c 2 Z) and relations stating that all these generators com-
mute with each other, plus all relations like in Lemma 5.2.1 but with

�
Ki Ic
ki

�
q
, K˙1i , q and�

Gi Ic
gi

�
qi i

,G˙1i , qi i replacing
�
M Ic
n

�
p

,M˙1, and p, respectively, for all i 2 I . Accordingly,
the Hopf structure of PyU 0q is also given in terms of generators by formulas as in Lemma
5.2.1 but now applied to the given generators.
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(d)–(e)–(f) When q is strongly integral, similar claims hold true for yU 0q , up to replacing
everywhere each generator

�
Ki Ic
ki

�
q

and the parameter q with the corresponding generator�
Ki Ic
ki

�
qi

and the parameter qi D qdi , respectively.

(g) PyU 0q is a Hopf Rq-subalgebra of yU 0q .

One last important observation is in order:

Remark 5.2.7. Definitions imply that, beside all the generators G˙1i ,
�
Gi Ic
gi

�
qi i

, K˙1i ,
and

�
Ki Ic
ki

�
q
, the algebra PyU 0q contains all L˙1i ’s and

�
Li Ic
li

�
q
’s—as they give values in Rq

when paired with E2�;Rq . This restores a perfect “symmetry” in the roles of the Ki ’s and
the Li ’s, which is not apparent in the very definition of PyU 0q . Indeed, one can easily prove
that PyU 0q can be also generated by generators built from “L” instead of “K;” and similarly
for yU 0q . So replacing “K” by “L” everywhere yields a twin statement of Proposition 5.2.6.

5.2.3. Restricted MpQGs. We are now ready to introduce our generalization to MpQGs
of the notion of restricted integral form introduced by Lusztig for Uq.g/ (and later mod-
ified in [23]). We keep the restriction that q must be of integral type, say q D .qij D

qbij /i;j2I with B D .bij /i;j2I 2M� .Z/, as in Section 2.3.2.
Again, hereafter Uq.g/ denotes the MpQG associated with q as in Definition 3.1.1.
We recall from Definition 4.4.1 (b) the notion of q-divided powers: given i2I , ˛2ˆC,

Xi 2 ¹Ei ; Fiº, Y˛ 2 ¹E˛; F˛º, and n 2N, we call q-divided powers the elementsX .n/i WD
Xni =.n/qi i Š and Y .n/˛ WD Y n˛ =.n/q˛˛ Š in Uq.g/.

The following result, about commutation relations between quantum binomial coeffi-
cients and quantum divided powers, is proved by a straightforward induction.

Lemma 5.2.8. Let q D .qij D qbij /i;j2I be of integral type.
(a) For any i 2 I , m; n; h 2 N, c 2 Z, �; � 2 Q, X; Y 2 ¹K�L� j �; � 2 Qº, and

G˙1i WD K
˙1
i L�1i , we have�
K�L�I c

h

�
q

F
.n/
j D F

.n/
j

�
K�L�I c � n.B

T � � � B � �/j

h

�
q

;�
K�L�I c

h

�
q

E
.n/
j D E

.n/
j

�
K�L�I c C n.B

T � � � B � �/j

h

�
q

;�
Gi I c

h

�
qi i

F
.n/
j D F

.n/
j

�
Gi I c � naij

h

�
qi i

;�
Gi I c

h

�
qi i

E
.n/
j D E

.n/
j

�
Gi I c C naij

h

�
qi i

;

E
.m/
i F

.n/
i D

m^nX
sD0

F
.n�s/
i qsi i

�
Gi I 2s �m � n

s

�
qi i

LsiE
.m�s/
i ;

where .BT � � � B � �/j D
P
i2I .bij �i � bj i�i / for � D

P
i2I �i˛i , � D

P
i2I �i˛i .



Multiparameter quantum groups at roots of unity 873

Moreover, for the Hopf structure, on q-divided powers we have formulas

�.E
.n/
i /D

nX
sD0

E
.n�s/
i Ksi ˝E

.s/
i ; �.E

.n/
i /D ın;0; �.E

.n/
i /D .�1/nq

C.n2/
i i K�ni E

.n/
i ;

�.F
.n/
i /D

nX
sD0

F
.n�s/
i ˝F

.s/
i Ln�si ; �.F

.n/
i /D ın;0; �.F

.n/
i /D .�1/nq

�.n2/
i i F

.n/
i L�ni ;

while for K˙1i , G˙1i , and q-binomial coefficients
�
Ki Ic
h

�
q
,
�
Gi Ic
h

�
qi i

we have formulas like
in Lemma 5.2.1, with M and p replaced by Ki and q or by Gi and qi i .

(b) In addition, if q is of strongly integral type, say q D .qij D qdi t
C
ij D qdj t

�
ij /i;j2I ,

then besides all the above formulas we also have�
Ki I c

h

�
qi

F
.n/
j D F

.n/
j

�
Ki I c � nt

C

ij

h

�
qi

;

�
Ki I c

h

�
qi

E
.n/
j D E

.n/
j

�
Ki I c C nt

C

ij

h

�
qi

;�
Li I c

h

�
qi

F
.n/
j D F

.n/
j

�
Li I c C nt

�
j i

h

�
qi

;

�
Li I c

h

�
qi

E
.n/
j D E

.n/
j

�
Li I c � nt

�
j i

h

�
qi

and formulas for the Hopf structure on q-binomial coefficients
�
Ki Ic
n

�
qi

and
�
Li Ic
n

�
qi

like
in Lemma 5.2.1, with M and p replaced by Ki and qi or by Li and qi .

We can now extend Lusztig’s definition of “restricted quantum universal enveloping
algebra”. Indeed, a straightforward extension requires that q be strongly integral; never-
theless, we consider also a more general definition when q is just integral.

Definition 5.2.9. Let Uq.g/ be an MpQG over the field Fq as in Definition 3.1.1. We
define a bunch of Rq-subalgebras of Uq.g/, with a specific set of generators, as follows:

(a) If q is of integral type, we set
PyU�q WD hF

.n/
i ii2I; n2N ;

PyUCq WD hE
.n/
i ii2I; n2N ;

PyU�;0q WD

�
L˙1i ;

�
Li

n

�
q

�
i2I; n2N

;
PyU�q WD

�
F
.n/
i ; L˙1i ;

�
Li

n

�
q

�
i2I; n2N

;

PyUC;0q WD

�
K˙1i ;

�
Ki

n

�
q

�
i2I; n2N

;
PyU�q WD

�
K˙1i ;

�
Ki

n

�
q

; E
.n/
i

�
i2I; n2N

;

PyUq D
PyUq.g/ WD

˝ PyU 0q [ ¹F .n/i ; E
.n/
i ºi2I; n2N

˛
:

(b) If q is of strongly integral type, we set

yU�q WD
˝
F
.n/
i

˛
i2I; n2N

�
D
PyU�q
�
; yUCq WD

˝
E
.n/
i

˛
i2I; n2N

�
D
PyUCq
�
;

yU�;0q WD

�
L˙1i ;

�
Li

n

�
qi

�
i2I; n2N

; yU�q WD

�
F
.n/
i ; L˙1i ;

�
Li

n

�
qi

�
i2I; n2N

;

yUC;0q WD

�
K˙1i ;

�
Ki

n

�
qi

�
i2I; n2N

; yU�q WD

�
K˙1i ;

�
Ki

n

�
qi

; E
.n/
i

�
i2I; n2N

;

yUq D yUq.g/ WD
˝
yU 0q [ ¹F

.n/
i ; E

.n/
i ºi2I; n2N

˛
:
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In the sequel, we shall refer to all these objects as to restricted MpQGs.

The “restricted” MpQGs introduced in Definition 5.2.9 admit a presentation by gener-
ators and relations, which generalizes the one in the canonical case (cf. [23]):

Theorem 5.2.10. (a) Let q WD .qij D qbij /i;j2I be of integral type. Then PyUq D
PyUq.g/

is (isomorphic to) the associative, unital Rq-algebra with the following presentation by
generators and relations. The generators are all elements of PyU 0q as well as all elements
F
.n/
i , E.n/i (for all i 2 I , n 2 N), and the relations holding true inside PyU 0q as well as the

following ones:

K˙1i E
.n/
j D q˙nbijE

.n/
j K˙1i ; K˙1i F

.n/
j D q�nbijF

.n/
j K˙1i ;

L˙1i E
.n/
j D q�nbj iE

.n/
j L˙1i ; L˙1i F

.n/
j D q˙nbj iF

.n/
j L˙1i ;

G˙1i E
.n/
j D q

˙naij
i i E

.n/
j G˙1i ; G˙1i F

.n/
j D q

�naij
i i F

.n/
j G˙1i ;�

Ki I c

h

�
q

E
.n/
j D E

.n/
j

�
Ki I c C nbij

h

�
q

;

�
Ki I c

h

�
q

F
.n/
j D F

.n/
j

�
Ki I c � nbij

h

�
q

;�
Li I c

h

�
q

E
.n/
j D E

.n/
j

�
Li I c � nbj i

h

�
q

;

�
Li I c

h

�
q

F
.n/
j D F

.n/
j

�
Li I c C nbj i

h

�
q

;�
Gi I c

h

�
qi i

E
.n/
j DE

.n/
j

�
Gi I cCnaij

h

�
qi i

;

�
Gi I c

h

�
qi i

F
.n/
j D F

.n/
j

�
Gi I c�naij

h

�
qi i

;

X
.r/
i X

.s/
i D

�
r C s

r

�
qi i

X
.rCs/
i ; X

.0/
i D 1 8X 2 ¹E;F º;

X
rCsD1�aij

.�1/sq
.k2/
i i q

k
ijX

.r/
i X

.1/
j X

.s/
i D 0 8X 2 ¹E;F º; 8i ¤ j;

E
.m/
i F

.n/
i D

m^nX
sD0

F
.n�s/
i qsi i

�
Gi I 2s �m � n

s

�
qi i

LsiE
.m�s/
i :

Moreover, with respect to this presentation, PyUq is endowed with the Hopf algebra structure
(over Rq) uniquely given by

�.E
.n/
i /D

nX
sD0

E
.n�s/
i Ksi ˝E

.s/
i ; �.E

.n/
i /D ın;0; �.E

.n/
i /D .�1/nq

C.n2/
i i K�ni E

.n/
i ;

�.F
.n/
i /D

nX
sD0

F
.n�s/
i ˝F

.s/
i Lsi ; �.F

.n/
i /D ın;0; �.F

.n/
i /D .�1/nq

�.n2/
i i F

.n/
i L�ni

and formulas for �; �; � in Lemma 5.2.1 with .M; p/ 2 ¹.Li ; q/; .Ki ; q/; .Gi ; qi i /º.
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(b) Let q WD .qij D qdi t
C
ij D qdj t

�
ij /i;j2I be of strongly integral type. Then yUq D yUq.g/

is (isomorphic to) the Hopf algebra over Rq with the following presentation by generators
and relations. The generators are all elements of yU 0q as well as all elements F .n/i , E.n/i
(for all i 2 I , n 2 N), and the relations are

K˙1i E
.n/
j D q

˙ntCij
i E

.n/
j K˙1i ; K˙1i F

.n/
j D q

�ntCij
i F

.n/
j K˙1i ;

L˙1i E
.n/
j D q

�nt�j i
i E

.n/
j L˙1i ; L˙1i F

.n/
j D q

˙nt�j i
i F

.n/
j L˙1i ;

G˙1i E
.n/
j D q

˙naij
i i E

.n/
j G˙1i ; G˙1i F

.n/
j D q

�naij
i i F

.n/
j G˙1i ;�

Ki I c

h

�
qi

E
.n/
j D E

.n/
j

�
Ki I c C nt

C

ij

h

�
qi

;

�
Ki I c

h

�
qi

F
.n/
j D F

.n/
j

�
Ki I c � nt

C

ij

h

�
qi

;�
Li I c

h

�
qi

E
.n/
j D E

.n/
j

�
Li I c � nt

�
j i

h

�
qi

;

�
Li I c

h

�
qi

F
.n/
j D F

.n/
j

�
Li I c C nt

�
j i

h

�
qi

;�
Gi I c

h

�
qi i

E
.n/
j DE

.n/
j

�
Gi I cCnaij

h

�
qi i

;

�
Gi I c

h

�
qi i

F
.n/
j D F

.n/
j

�
Gi I c�naij

h

�
qi i

;

X
.r/
i X

.s/
i D

�
r C s

r

�
qi i

X
.rCs/
i ; X

.0/
i D 1 8X 2 ¹E;F º;

X
rCsD1�aij

.�1/sq
.k2/
i i q

k
ijX

.r/
i X

.1/
j X

.s/
i D 0 8X 2 ¹E;F º; 8i ¤ j;

E
.m/
i F

.n/
i D

m^nX
sD0

F
.n�s/
i qsi i

�
Gi I 2s �m � n

s

�
qi i

LsiE
.m�s/
i

endowed with the Hopf algebra structure (over Rq) uniquely given by

�.E
.n/
i /D

nX
sD0

E
.n�s/
i Ksi ˝E

.s/
i ; �.E

.n/
i /D ın;0; �.E

.n/
i /D .�1/nq

C.n2/
i i K�ni E

.n/
i ;

�.F
.n/
i /D

nX
sD0

F
.n�s/
i ˝F

.s/
i Ln�si ; �.F

.n/
i /D ın;0; �.F

.n/
i /D .�1/nq

�.n2/
i i F

.n/
i L�ni

formulas for �, �, � in Lemma 5.2.1 for .M; p/ 2 ¹.Li ; qi /; .Ki ; qi /; .Gi ; qi i /º.

(c) PyUq is a Hopf Rq-subalgebra of yUq.
(d) Similar statements occur for the various restricted multiparameter quantum sub-

groups considered in Definition 5.2.9.

Proof. Everything is proved like in the canonical case (cf. [23]), taking Lemma 5.2.8 into
account, but for (c), which follows from definitions and Proposition 5.2.6.

As a first, direct consequence, we have the following result.
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Proposition 5.2.11. (a) PyUq D
PyUq.g/, resp. PyU�q , resp. PyU 0q , resp. PyU�;0q , resp. PyU 0q , resp.

PyUC;0q , resp. PyU�q , is a Hopf Rq-subalgebra (hence, it is an Rq-integral form, as a Hopf
algebra) of Uq.g/, resp. of U�q , resp. of U�;0q , resp. of U 0q , resp. of UC;0q , resp. of U�q .

Similarly, PyU�q , resp. PyUCq , is an Rq-subalgebra—hence, it is an Rq-integral form, as
an algebra—of U�q , resp. of UCq .

(b) If q is strongly integral, similar results—as in (a) and (b)—hold true as well when
“ PyU” is replaced with “ yU”.

Proof. Indeed, Theorem 5.2.10 tells us that PyUq is a Hopf subalgebra (over Rq) of Uq;
moreover, the scalar extension of PyUq from Rq to Fq yields Uq as an Fq-module, just by
definition: thus PyUq is an integral Rq-form of Uq, as claimed. The same argument applies
to PyU�q , PyU 0q , etc., as well as to yUq, yU�q , yU 0q , etc.

An easier result, that is a direct consequence of Lemma 5.2.8 above, is the following,
which is about the existence of “triangular decompositions” for these restricted MpQGs
over Rq:

Proposition 5.2.12 (triangular decompositions for restricted MpQGs). The multiplication

in PyUq provides Rq-module isomorphisms

PyU�;0q ˝
Rq

PyU 0q Š
PyU�q Š

PyU 0q ˝
Rq

yU�;0q ;

PyUC;0q ˝
Rq

yU 0q Š
PyU�q Š

PyU 0q ˝
Rq

PyUC;0q ;

PyUC;0q ˝
Rq

PyU�;0q Š
PyU 0q Š

PyU�;0q ˝
Rq

PyUC;0q ;

PyU�q ˝
Rq

PyU�q Š
PyUq Š

PyU�q ˝
Rq

PyU�q ;

PyUCq ˝
Rq

PyU 0q ˝
Rq

PyU�q Š
PyUq Š

PyU�q ˝
Rq

PyU 0q ˝
Rq

PyUCq

and similarly with “ PyU” replaced by “ yU” if q is strongly integral.

Proof. We consider the case of PyUq and of the left-hand side isomorphism, namely the case
PyUCq ˝Rq

PyU 0q ˝Rq
PyU�q Š

PyUq, all other cases being similar.

By definition PyUq is spanned over Rq by monomials whose factors can be freely chosen
among the elements of PyU 0q , the F .m/i ’s, and the E.n/j ’s; moreover, thanks to Proposition
5.2.6 (b) we can replace these monomials with other monomials, say M, in the

�
Ki
k

�
q
’s,

the K��i ’s, the
�
Gi
gi

�
qi i

’s, the G�j ’s, the F .m/i ’s, and the E.n/j ’s.

Now, by repeated use of the commutation relations among factors of this type given in
Lemma 5.2.8—plus those stating that the

�
Ki
k

�
q
’s, the K��i ’s, the

�
Gi
gi

�
qi i

’s, and the G�j ’s
all commute with each other—(or by the corresponding relations given in Theorem 5.2.10)
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one can easily see that the following holds. Each one of these monomials, say M, can be
expanded into an Rq-linear combination of new monomials, say Ms , of the same type but
having the following additional property: each of them has the form Ms DMCs �M

0
s �M

�
s ,

where MCs is a monomial in the E.n/j ’s, M0
s is a monomial in the

�
Ki
k

�
q
’s, the K��i ’s, the�

Gi
gi

�
qi i

’s, and the G�j ’s, and M�s is a monomial in the F .m/j ’s. This means that

Ms DMCs �M
0
s �M

�
s 2

PyUCq �
PyU 0q �
PyU�q ;

hence the multiplication map PyUCq ˝Rq
PyU 0q ˝Rq

PyU�q !
PyUq is onto. On the other hand,

the PBW theorem (Theorem 4.2.1) for Uq D Uq.g/ directly implies that this map is 1:1 as
well.

The previous result is improved by the following “PBW theorem” for our restricted
MpQGs (and their quantum subgroups as well):

Theorem 5.2.13 (PBW theorem for restricted quantum groups and subgroups). Let quan-
tum root vectors in Uq.g/ be fixed as in Section 4.1. Then the following holds.

(a) The set of ordered monomials² 1Y
kDN

F
.fk/

ˇk
j fk 2 N

³
; resp.

² NY
hD1

E
.eh/

ˇh
j eh 2 N

³
;

is an Rq-basis of PyU�q , resp. of PyUCq ; in particular, both PyU�q and PyUCq are free Rq-modules.

The same holds true for yU˙q .D
PyU˙q / in the strongly integral case.

(b) The set of ordered monomials²Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c j lj 2 N

³
; resp.

²Y
i2I

�
Ki

ki

�
q

Ki
�bki=2c j ki 2 N

³

is an Rq-basis of PyU�;0q , resp. of PyUC;0q . Similarly, the sets²Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c j lj ; gi 2 N

³
and ²Y

i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

Y
j2I

�
Kj

kj

�
q

Kj
�bkj =2c j gi ; kj 2 N

³
are Rq-bases of PyU 0q . In particular, all PyU�;0q , PyUC;0q , and PyU 0q are free Rq-modules.

(c) The sets of ordered monomials² 1Y
kDN

F
.fk/

ˇk

Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c j fk ; lj 2 N

³
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and ²Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c

1Y
kDN

F
.fk/

ˇk
j fk ; lj 2 N

³
;

resp. ²Y
j2I

�
Kj

kj

�
q

Kj
�bkj =2c

NY
hD1

E
.eh/

ˇh
j kj ; eh 2 N

³
and ² NY

hD1

E
.eh/

ˇh

Y
j2I

�
Kj

kj

�
q

Kj
�bkj =2c j kj ; eh 2 N

³
;

are Rq-bases of PyU�q , resp. PyU�q ; in particular, PyU�q and PyU�q are free Rq-modules.
(d) The sets of ordered monomials² 1Y

kDN

F
.fk/

ˇk

Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

NY
hD1

E
.eh/

ˇh
j fk ; lj ; gi ; eh2N

³
;

² NY
hD1

E
.eh/

ˇh

Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

1Y
kDN

F
.fk/

ˇk
j fk ; lj ; gi ; eh2N

³
;

² 1Y
kDN

F
.fk/

ˇk

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

Y
j2I

�
Kj

kj

�
q

Kj
�bkj =2c

NY
hD1

E
.eh/

ˇh
j fk ; gi ; kj ; eh2N

³
;

² NY
hD1

E
.eh/

ˇh

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

Y
j2I

�
Kj

kj

�
q

Kj
�bkj =2c

1Y
kDN

F
.fk/

ˇk
j fk ; gi ; kj ; eh2N

³

are Rq-bases of PyUq D
PyUq.g/; in particular, PyUq D

PyUq.g/ is a free Rq-module.
(e) In addition, when q is strongly integral, similar results—akin to (b), (c), and (d)—

hold true if “ PyU” is replaced with “ yU” and every
�Lj
lj

�
q
, resp.

�Kj
kj

�
q
, is replaced with�Lj

lj

�
qj

, resp.
�Kj
kj

�
qj

.

Proof. (a) It is a classical result, due to Lusztig, that the claim holds true for PyU�
Lq ; i.e., the

latter is free as an Rq-module with a PBW-type basis given by the ordered monomials in
the LF .f /

ˇ
’s, taken with respect to the product “�” in PyU�

Lq ; the same monomials then form a
PBW-like R

p

q -basis of . PyU�
Lq /
p

WD R
p

q ˝Rq
PyU�
Lq as well.

Now, the formulas in Section 4.4.1 show that the above-mentioned “restricted” PBW
monomials in .. PyU�

Lq /
p

; �/ are proportional, by a coefficient which is a power of q˙1=2

(hence invertible in the ground ring R
p

q ) to their “counterparts” (with the same exponents
for each root vector) in . PyU�q /

p

�.Uq.g//
p

D..ULq.g//
p

; �/, i.e., with respect to the
“deformed” product “�” in .ULq.g//

p

WDR
p

q ˝RqULq.g/. In other words, using notation
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of Section 4.4.1, we can write in short

1Y
kDN

LF
L�.fk/

ˇk
D qz=2

1Y
kDN

F
�.fk/

ˇk

for some z 2 Z. Therefore, as the PBW monomials
Q1
kDN

LF
L�.fk/

ˇk
form an R

p

q -basis of
.
PyU�
Lq /
p

, we can argue that the
Q1
kDN F

�.fk/

ˇk
’s form an R

p

q -basis of . PyU�q /
p

too.
On the other hand, as a direct consequence of Theorem 4.2.1, we have that the sameQ1

kDN F
�.fk/

ˇk
’s also form an Fq-basis of U�q . Thus any u� 2 .

PyU�q /
p

will have a unique
expansion as an R

p

q -linear combination of the
Q1
kDN F

�.fk/

ˇk
’s, but also a unique expan-

sion as an Fq-linear combination of the same “restricted” PBW-like monomials. Then
the coefficients in both expansions must coincide, and since R

p

q \ Fq D Rq, they must
belong to Rq; so the

Q1
kDN F

�.fk/

ˇk
’s form an Rq-basis of U�q , as claimed.

The same argument applies for the part of the claim concerning PyUCq .
(b) This follows by construction together with Proposition 5.2.2.
(c)–(d) These follow at once from claims (a)–(b) along with the existence of triangular

decompositions as given in Proposition 5.2.12.
(e) This is proved by the same arguments used for claims (a) through (d).

Remark 5.2.14. It is worth stressing that the construction of restricted MpQGs does not
“match well” with the process of cocycle deformation, even if one extends scalars from Rq

to R
p

q —and from Fq to F
p

q accordingly. In fact, if we label every MpQG over R
p

q

or F
p

q by a superscript “
p

,” what happens is that, although U
p

q .g/ D .U
p

Lq .g//� D

U
p

Lq .g/ as R
p

q -modules, for integral forms one has in general PyU
p

q .g/ 6D
PyU
p

Lq .g/ as
R
p

q -modules; and a fortiori PyUq.g/ 6D
PyULq.g/. The same holds for all “quantum sub-

groups”.
In order to see that, let us consider an element of PyU

p

q .g/ D .
PyU
p

Lq .g/; �/ of the form
E
�.n/
˛ �

�
Kj
m

��
q
: from Section 4.4.1 we have the formula

E�.n/˛
�

�
Kj

m

��
q

D q
C.n2/
˛ .mC˛ /

n

mX
cD0

q�c.m�c/
cY
sD1

q1�s.q
C1=2
˛ j̨

/n � 1

qs � 1
LEL�.n/˛

�
Kj

m � c

�L�
q

KL�cj

here, the right-hand side term is the expansion of E�.n/˛ �

�
Xj
m

��
pj

into an Fq-linear combi-
nation of the elements of² NY
hD1

LE
L�.eh/

ˇh

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

Y
j2I

�
Kj

kj

�
q

Kj
�bkj =2c

1Y
kDN

LF
L�.fk/

ˇk
j fk ; gi ; kj ; eh 2N

³
which, being an R

p

q -basis of PyU
p

q .g/—by Theorem 5.2.13 (d) above—is also an F
p

q -
basis of F

p

q ˝
R

p

q

PyU
p

q .g/ D U
p

q .g/. Now, in the above expansion, the coefficients

q
C.n2/
˛ .mC˛ /

nq�c.m�c/
cY
sD1

q1�s.q
C1=2
˛ j̨

/n � 1

qs � 1
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in general do not belong to R
p

q ; therefore, we have

E�.n/˛
�

�
Kj

m

��
q

62
PyU
p

Lq .g/

whereas E�.n/˛ �

�
Kj
m

��
q
2
PyU
p

q .g/ by definition. This shows that PyU
p

q .g/ 6D
PyU
p

Lq .g/ inside
U
p

q .g/ D U
p

Lq .g/ (as Fq-modules); in fact, it even proves that . PyU�q /
p

6D .
PyU
�

Lq /
p

, and
similarly one shows that . PyU�q /

p

6D .
PyU�
Lq /
p

too.

5.3. Integral forms of “unrestricted” type

Beside Lusztig’s “restricted” integral form, a second integral form of Uq.g/ was intro-
duced by De Concini, Kac, and Procesi: the ground ring in that case was kŒq; q�1�, but one
can easily prove—using the analogue (in that context) of Proposition 4.3.1—that their def-
inition does work the same over ZŒq; q�1� too, so it yields an integral form over ZŒq; q�1�,
with a suitable PBW-like basis, etc. Their construction can be easily extended to ULq.g/;
hereafter, we extend this (obvious) generalization to any MpQG such as Uq.g/.

Let us fix a multiparameter matrix q WD .qij /i;j2I and the corresponding MpQGUq.g/

as in Section 3.1; then fix the special parameter q (depending on q) and the “canonical”
multiparameter Lq WD . Lqij WD qdiaij /i;j2I as in Section 3.2. Finally, assume that quantum
root vectors E˛ , F˛ (for all ˛ 2 ˆC) have been fixed, as in Section 4.1, and consider for
them the following “renormalizations” (where q˛˛ is defined as in Section 3.2):

xE˛ WD .q˛˛ � 1/E˛; xF˛ WD .q˛˛ � 1/F˛ 8˛ 2 ˆC: (5.4)

Mimicking the construction in [24], we introduce the following definition.

Definition 5.3.1. For any multiparameter q WD .qij /i;j2I as in Section 2.3.2, fix modified
quantum root vectors xE˛ and xF˛ (for all ˛ 2ˆC) of Uq.g/ as above. Then define in Uq.g/

the following Rq-subalgebras:

zU�q WD h
xF˛i˛2ˆC ; zU 0q WD hLi

˙1; K˙1i ii2I ;

zUCq WD h
xE˛i˛2ˆC ; zU�q WD h

xF˛; Li
˙1
i˛2ˆC; i2I ;

zU�q WD hK
˙1
i ; xE˛ii2I; ˛2ˆC ; zU�;0q WD hLi

˙1
ii2I ;

zUq.g/ D zUq WD h xF˛; Li
˙1; K˙1i ; xE˛ii2I; ˛2ˆC ; zUC;0q WD hK˙1i ii2I :

In the following, we shall refer to this kind of MpQG as unrestricted.

Contrary to the case of restricted integral forms, if we extend scalars to R
p

q , then all
unrestricted ones are indeed 2-cocycle deformations of their canonical counterparts, just
like what happens with MpQGs over Fq. This follows from direct analysis through the
formulas in Section 4.4.1, as the following shows:
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Proposition 5.3.2. The Hopf algebra zU
p

q D zU
p

q .g/ WDR
p

q ˝Rq
zUq.g/ is a 2-cocycle

deformation of its canonical counterpart, namely

zU
p

q .g/ D
�
zU
p

Lq .g/
�
�
D
�
zU
p

Lq .g/
�.z'/

(see Theorem 3.2.2 and Proposition 3.2.4 for notation). Similarly—using a superscript
“
p

” to denote scalar extension to R
p

q —. zU�q /
p

, resp. . zU 0q /
p

, resp. . zU�q /
p

, is a
2-cocycle deformation of . zU�

Lq /
p

, resp. of . zU 0
Lq /
p

, resp. of . zU�
Lq /
p

. In particular,
zU
p

q .g/ D zU
p

Lq .g/, . zU�q /
p

D . zU�
Lq /
p

, . zU 0q /
p

D . zU 0
Lq /
p

, and . zU�q /
p

D . yU
�

Lq /
p

as

R
p

q -coalgebras, and . zU˙q /
p

D . zU˙
Lq /
p

as R
p

q -modules.

It follows that all of zU
p

q , . zU�q /
p

, . zU 0q /
p

, . zU�q /
p

, . zU�q /
p

, and . zUCq /
p

are inde-
pendent of the choice of quantum root vectors Eˇ and Fˇ (for ˇ 2 ˆC).

Proof. The same analysis as in the proof of Theorem 5.2.13 (a) shows—looking at the
proper formulas from Section 4.4.1—that the identities

. zU�q /
p

D . zU�
Lq /
p

; . zUCq /
p

D . zUC
Lq /
p

hold as R
p

q -modules, and . zU 0q /
p

D . zU 0
Lq /
p

as R
p

q -coalgebras; more precisely, the
latter identity can be read as

. zU 0q /
p

D
�
. zU 0
Lq /
p �

�
D
�
. zU 0
Lq /
p �.z'/

;

by the very definitions and thanks to Theorem 3.2.2 and Proposition 3.2.4.
The same argument proves also zU

p

q .g/D zU
p

Lq .g/, . zU�q /
p

D . zU�
Lq /
p

, and . zU�q /
p

D

. yU
�

Lq /
p

as R
p

q -coalgebras; more precisely, one has zU
p

q .g/D . zU
p

Lq .g//� D . zULq.g//
.z'/,

. zU�q /
p

D .. zU�
Lq /
p

/� D .. zU
�

Lq /
p

/.z'/, and . zU�q /
p

D .. zU
�

Lq /
p

/� D .. zU
�

Lq /
p

/.z'/.

As for restricted MpQGs, we have a PBW theorem for unrestricted ones too:

Theorem 5.3.3 (PBW theorem for unrestricted MpQGs—and subgroups). (a) The set of
ordered monomials² 1Y

kDN

xF
fk
ˇk
j fk 2 N

³
; resp.

² NY
hD1

xE
eh
ˇh
j eh 2 N

³
is an Rq-basis of zU�q , resp. of zUCq ; in particular, both these are free Rq-modules.

(b) The set of ordered monomials²Y
j2I

Lj
aj j aj 2Z

³
; resp.

²Y
i2I

Ki
bi j bi 2Z

³
; resp.

²Y
j2I

Lj
ajKi

bi j aj ;bi 2Z

³
is an Rq-basis of zU�;0q , resp. of zUC;0q , resp. of zU 0q , and hence all these are free Rq-
modules.
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(c) The sets of ordered monomials² 1Y
kDN

xF
fk
ˇk

Y
j2I

Lj
aj

³
fk2N; aj2Z

and
²Y
j2I

Lj
aj

1Y
kDN

xF
fk
ˇk

³
fk2N; aj2Z

;

resp. ²Y
i2I

Ki
bi

NY
hD1

xE
eh
ˇh

³
bi2Z; eh2N

and
² NY
hD1

xE
eh
ˇh

Y
i2I

Ki
bi

³
bi2Z; eh2N

;

are Rq-bases of zU�q , resp. of zU�q ; in particular, zU�q and zU�q are free Rq-modules.
(d) The sets of ordered monomials² 1Y

kDN

xF
fk
ˇk

Y
j2I

Lj
aj
Y
i2I

Ki
bi

NY
hD1

xE
eh
ˇh
j fk ; eh 2 N; aj ; bi 2 Z

³
and ² NY

hD1

xE
eh
ˇh

Y
j2I

Lj
aj
Y
i2I

Ki
bi

1Y
kDN

xF
fk
ˇk
j fk ; eh 2 N; aj ; bi 2 Z

³
are Rq-bases of zUq; in particular, zUq D zUq.g/ itself is a free Rq-module.

Proof. (a) Entirely similar to the proof of Theorem 5.2.13.
(b) This is obvious from definitions.
(c) We can apply once more the same ideas as for Theorem 5.2.13, thus finding

that B WD ¹
Q1
kDN

xF
fk
ˇk

Q
j2I Lj

aj ºfk2N; aj2Z is an Rq-basis of zU�q , the case for zU�q
being entirely similar. The claim is true when q D Lq, by the results in [24]; moreover,
by Proposition 5.3.2 we have . zU�q /

p

D . zU�
Lq /
p

as R
p

q -coalgebras, so B is also an

R
p

q -basis of . zU�q /
p

. On the other hand, it follows from Theorem 4.2.1 that B is also
an Fq-basis of . zU�q /

p

. Thus any u 2 zU�q .� . zU�q /
p

\ zU�q / uniquely expands as an
R
p

q -linear combination of elements in B but also uniquely expands as an Fq-linear com-
bination of such elements: we conclude that the coefficients in these expansions belong to
R
p

q \ Fq D Rq, q.e.d.
(d) This is proved by the same arguments as (c) above.

A direct fallout of the previous result is the following proposition.

Proposition 5.3.4 (triangular decompositions for unrestricted MpQGs). The multiplica-
tion in zUq provides Rq-module isomorphisms

zU�q ˝
Rq

zU 0q Š
zU�q Š

zU 0q ˝
Rq

zU�q ;
zUCq ˝

Rq

zU 0q Š
zU�q Š

zU 0q ˝
Rq

zUCq ;

zUC;0q ˝
Rq

zU�;0q Š zU 0q Š
zU�;0q ˝

Rq

zUC;0q ; zUCq ˝
Rq

zU 0q ˝
Rq

zU�q Š
zUq Š zU

�
q ˝

Rq

zU 0q ˝
Rq

zUCq :
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Proof. Direct from Theorem 5.3.3 above.

Here is a second consequence:

Proposition 5.3.5. (a) zUq D zUq.g/, resp. zU�q , resp. zU 0q , resp. zU�q , is a Hopf Rq-subal-
gebra (hence is an Rq-integral form as a Hopf algebra) of Uq.g/, resp. of U�q , resp. of
U 0q , resp. of U�q .

(b) zU˙q is an Rq-subalgebra (hence an Rq-integral form, as an algebra) of U˙q .

Proof. Claim (b) is obvious, by construction, and similarly also claim (a) for zU 0q ; the other
cases are similar, so we restrict ourselves to one of them, say that of zUq.

Once again, the canonical case (i.e., q D Lq) follows from the results in [24], suitably
adapted to the present context; then by Proposition 5.3.2 above the same result also holds
true for zU

p

q with any possible q—that is, zU
p

q is a Hopf R
p

q -subalgebra of U
p

q WD

U
p

q .g/, for any possible q. In particular, zU
p

q is an R
p

q -subcoalgebra of U
p

q , hence
given any u2 zUq (� zU

p

q ) we have�.u/ 2 zU
p

q ˝
R

p

q
zU
p

q . By Theorem 5.3.3, the R
p

q -
module zU

p

q ˝
R

p

q
zU
p

q is free with a basis made of homogeneous tensors v0 ˝ v00 in
which both v0 and v00 are PBW monomials as given in Theorem 5.3.3 (d): thus �.u/ has
a unique expansion of the form �.u/ D

P
s csv

0
s ˝ v

00
s for some cs 2 R

p

q . On the other
hand, the same set of “PBW homogeneous tensors” of the form v0 ˝ v00 as above is also
an Fq-basis of Uq ˝Fq Uq: hence, since Uq is an Fq-coalgebra and u 2 zUq � Uq, we have
also a unique Fq-linear expansion of �.u/ into �.u/ D

P
s asv

0
s ˝ v

00
s . Comparing both

expansions inside U
p

q ˝
F

p

q
U
p

q —which also has the set of all “PBW homogeneous
tensors” v0 ˝ v00 as F

p

q -monomials—we find cs D as 2 R
p

q \ Fq D Rq for all s,
which means that �.u/ 2 zUq ˝Rq

zUq. So zUq is an Rq-subcoalgebra of Uq, and similar
arguments prove it is stable by the antipode, hence is a Hopf Rq-subalgebra.

5.4. Integral forms for MpQGs with larger torus

In Section 3.3, we introduced generalized MpQGs, denoted by Uq;�� � Uq;��.g/, whose
toral part is the group algebra of any lattice �� D �C � �� with �˙ being rank � lattices
such thatQ��˙ �QQ; in particular, this required additional assumptions on the ground
field k, namely that k contain suitable roots of the qij ’s; see Section 3.3.3. We shall now
consider one such a generalized MpQG, sayUq;�� , making assumptions on k as mentioned
above, and introduce integral forms for it, quickly explaining the few changes one needs in
the previously described treatment of integral forms for Uq, that is the case �� D Q �Q.

5.4.1. Restricted integral forms for MpQGs with larger torus. Assume that q is of
integral type. Then a Z-bilinear form . ; /B is defined on QQ, and we have well-defined
sublattices PQ.`/ and PQ.r/ in QQ (notation of Section 3.3.2). We assume in addition that
�C � PQ

.`/ and �� � PQ.r/. Then we can define a “restricted integral form” PyUq;�� for
Uq;�� , akin to PyUq—so that �˙ D Q yields PyUq;�� D

PyUq—as follows.
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Let ¹˙i ºi2I be a basis of �˙. Then in Definition 5.2.9 (a), replace every occurrence of
“K˙1i ” with “K˙1

Ci
” and every occurrence of “L˙1i ” with “L˙1�i ”—so each q-binomial

coefficient
�
Ki Ic
n

�
q

is replaced by
�K

C
i
Ic

n

�
q
, etc.; this yields the very definition of PyUq;�� .

Basing on this definition, one easily finds that all results presented in Section 5.2 above
for PyUq have their direct counterpart for PyUq;�� as well. Moreover, the natural embedding
Uq � Uq;�� between MpQGs—induced by the inclusionQ �Q � ��—clearly restricts to
a similar embedding PyUq �

PyUq;�� of integral forms. Similar comments apply to the various
subalgebras of PyUq for their natural counterparts in PyUq;�� .

Similarly, assume now that q is of strictly integral type, so that the sublattices Q.`/

and Q.r/ are defined in QQ (cf. Section 3.3.2); concerning �˙, this time we assume in
addition that �C �Q.`/ and �� �Q.r/. Then we can define a second “restricted integral
form” yUq;�� for Uq;�� , a direct analogue to yUq, as follows.

Given bases ¹˙i ºi2I of �˙ as above, in Definition 5.2.9 (b) replace every occurrence
of “K˙1i ” with “K˙1

Ci
” and every occurrence of “L˙1i ” with “L˙1�i ,” in particular, every

qi -divided binomial coefficient
�
Ki Ic
n

�
qi

is replaced by
�K

C
i
Ic

n

�
qi

, etc.; then read the out-
come, by assumption, as the very definition of yUq;�� .

In force of this definition, one can easily find that all results presented in Section 5.2
about yUq have their direct counterpart for yUq;�� as well. In addition, the embedding Uq �

Uq;�� restricts to an embedding yUq � yUq;�� between integral forms. All this applies also
to the natural counterparts in yUq;�� of the different subalgebras of yUq.

5.4.2. Unrestricted integral forms for MpQGs with larger torus. Let now q be of
general (though Cartan) type, and make no special assumptions on �˙. Then we can
define for Uq;�� an “unrestricted integral form” zUq;�� , akin to zUq—in that zUq;�� D

zUq

when �˙ D Q—in the following, very simple way.
Let ¹˙i ºi2I be bases of �˙, as before: now, in Definition 5.3.1, replace every occur-

rence of “K˙1i ” with “K˙1
Ci

” and every occurrence of “L˙1i ” with “L˙1�i ;” then take the

final outcome as the very definition of zUq;�� .
Starting from this definition, one easily checks that all results presented in Section 5.3

for zUq have a direct counterpart for zUq;�� too. Also, the natural embedding Uq � Uq;��
between MpQGs implies by restriction a similar embedding zUq � zUq;�� between the cor-
responding unrestricted integral forms. Finally, similar comments apply to the natural
counterparts in zUq;�� of the various subalgebras considered in zUq.

5.5. Duality among integral forms

If we take two quantum Borel subgroups U�q and U�q , we know that they are in duality
via a non-degenerate skew-Hopf pairing as in Section 4.3. Now, assuming that q is of
integral type, if we take on either side integral forms of opposite nature, say PyU�q , or yU�q ,
and zU�q —or zU�q and PyU�q , or yU�q —we find that they are “dual to each other” with respect
to that pairing. To state this properly, we need to work with MpQGs with (suitably paired)
larger tori. The correct statement is the following.
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Proposition 5.5.1. Let �˙ be rank � sublattices of QQ containing Q, let U�q;�C and
U�q;�� be the associated Borel MpQGs, and let � W U�q;�C ˝ U

�

q;�� ! k be the skew-Hopf
pairing of Section 3.3.4.

(a) Assume that qD .qbij /i;j2I is of integral type, and (with notation of Section 3.3.2)
that �C D P�.`/� and �� D P�

.r/
C . Then

PyU
C;0
q;�C D

®
u 2 U

C;0
q;�C j �

�
u; zU

�;0
q;��

�
� Rq

¯
;

zU
�;0
q;�� D

®
v 2 U

�;0
q;�� j �

� PyUC;0q;�C ; v
�
� Rq

¯
;

PyUCq D
PyUCq;�C D

®
u 2 UCq;�C j �

�
u; zU�q;��

�
� Rq

¯
;

zU�q D
zU�q;�� D

®
v 2 U�q;�� j �

� PyUCq;�C ; v� � Rq
¯
;

PyU
�

q;�C D
®
u 2 U

�

q;�C j �
�
u; zU�q;��

�
� Rq

¯
;

zU�q;�� D
®
v 2 U�q;�� j �

� PyU�q;�C ; v� � Rq
¯

and similarly reversing the roles of “C” and “�” and of “�” and “�”.
(b) Assume that qD .qdi t

C
ij D qdj t

�
ij /i;j2I is of strongly integral type (cf. Section 3.3.2

for notation). If �� D �
.r/
C —cf. (3.4)—then

yU
C;0
q;�C D

®
u 2 U

C;0
q;�C j �

�
u; zU

�;0
q;��

�
� Rq

¯
;

zU
�;0
q;�� D

®
v 2 U

�;0
q;�� j �

�
yU
C;0
q;�C ; v

�
� Rq

¯
;

yUCq D
yUCq;�C D

®
u 2 UCq;�C j �

�
u; zU�q;��

�
� Rq

¯
;

zU�q D
zU�q;�� D

®
v 2 U�q;�� j �

�
yUCq;�C ; v

�
� Rq

¯
;

yU
�

q;�C D
®
u 2 U

�

q;�C j �
�
u; zU�q;��

�
� Rq

¯
zU�q;�� D

®
v 2 U�q;�� j �

�
yU
�

q;�C ; v
�
� Rq

¯
:

If instead �C D �.`/� —cf. (3.4) again—then

yU
�;0
q;�� D

®
v 2 U

�;0
q;�� j �

�
zU
C;0
q;�C ; v

�
� Rq

¯
;

zU
C;0
q;�C D

®
u 2 U

C;0
q;�C j �

�
u; yU

�;0
q;��

�
� Rq

¯
;

yU�q D
yU�q;�� D

®
v 2 U�q;�� j �

�
zUCq;�C ; v

�
� Rq

¯
;

zUCq D
zUCq;�C D

®
u 2 UCq;�C j �

�
u; yU�q;��

�
� Rq

¯
;

yU�q;�� D
®
v 2 U�q;�� j �

�
zU
�

q;�C ; v
�
� Rq

¯
;

zU
�

q;�C D
®
u 2 U

�

q;�C j �
�
u; yU�q;��

�
� Rq

¯
:
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Proof. (a) The assumptions imply .�C; ��/B � Z, hence �.KCi ;L
�
j
/D q.

C
i ;

�
j /B—cf.

Section 3.3.4—that in turn implies

�

��
KCi
I 0

n

�
q

; L�j

�
D

�
.Ci ; 

�
j /B

n

�
q

2 Rq:

Taking PBW bases on both sides, this is enough to prove �. PyUC;0q;�C ;
zU
�;0
q;��/�Rq; therefore

we get
PyU
C;0
q;�C �

®
u 2 U

C;0
q;�C j �.u;

zU
�;0
q;��/ � Rq

¯
and on the other hand also zU�;0q;�� � ¹v 2 U

�;0
q;�� j �.

PyU
C;0
q;�C ; v/ � Rqº. This proves “half”

the result we claimed true, thus we still need some additional work to do.
Since �C D P�.`/� and �� D P�

.r/
C , we can fix bases ¹˙i ºi2I of �˙ that are dual to each

other, namely .C
h
; �
k
/B D ıh;k for all h; k 2 I ; so we get �.K

zC
h

C
h

; L
z�
k
�
k
/ D qıh;kz

C

h
z�
k .

As a consequence, the arguments used for Proposition 5.2.2 and Proposition 5.2.4 apply
again (with � replacing the pairing h ; i and the KC

h
’s, resp. the L�

k
’s, playing the role of

theXi ’s, resp. of the �j ’s) now proving claim (a). Indeed, the analysis developed for those
results now shows that PyUC;0q;�C and zU�;0q;�� contain bases that, up to invertible coefficients
(powers of q), are dual to each other, and that is enough to conclude.

The claim about PyUCq D
PyUCq;�C and zU�q D zU

�
q;�� (both independent of �˙) is a conse-

quence of PBW theorems for both sides and of Proposition 4.3.1. Then from this result,
the one for PyUC;0q;�C and zU�;0q;�� and the triangular decompositions in Propositions 5.2.12 and
5.3.4, we finally get the statement concerning PyU�q;�C and zU�q;�� as well.

The statement with switched “C” and “�” or “�” and “�” goes the same way.
(b) Up to minimal changes, this is proved much like claim (a).

Remark 5.5.2. One can use the previous result to deduce properties of a (Hopf) alge-
bra on either side—e.g. zU�q;�� , say—out of properties on the other side— PyU�q;�C or yU�q;�C
in the example. For instance, zU�q;�� is an Rq-algebra (hard to prove directly!) because
yU
�

q;�C is an Rq-coalgebra (that follows from its definition). Similarly, we deduce that zUCq
is independent of any choice of quantum root vectors (that do enter in the definition!)
because it is “the dual” of yU�q and the latter is independent, by definition, of any such
choice.

5.6. Integral forms of “mixed” type

Let us consider two quantum Borel subgroups U�q;�C and U�q;�� as in Section 5.5 above,
with q integral, linked by the skew-Hopf pairing � of Section 3.3.4. Assuming in addition
that the lattices �˙ fit the conditions required in Theorem 5.5.1 (according to whether
q is strongly integral or not), that theorem tells us that the pairing � yields by restric-
tion Rq-valued skew-Hopf pairings, still denoted by �, for the pairs of Rq-Hopf algebras
.
PyU
�

q;�C ;
zU�q;��/ and . zU�q;�C ;

PyU�q;��/, or the pairs . yU�q;�C ;
zU�q;��/ and . zU�q;�C ;

yU�q;��/ when q
is strongly integral. Moreover, as the original pairing � is non-degenerate, the same holds
true for its restrictions to Rq-integral forms of the original quantum Borel subgroups.
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Therefore, much like each MpQG Uq.g/ can be realized as Drinfeld double via the origi-
nal pairing � (cf. Remark Section 3.3.1), the restrictions of the latter lead us to define the
following definition.

Definition 5.6.1. With assumption as above—thus q is of integral type—we define the
following Hopf algebras over Rq as Drinfeld doubles (cf. Section 2.1):

P�!
U q;�� WD

P�!
U q;��.g/ D D

� PyU�q;�C ; zU�q;�� ; ��;
P �
U q;�� WD

P �
U q;��.g/ D D

�
zU
�

q;�C ;
PyU�q;�� ; �

�
;

where �� WD �C � ��. If, in addition, the multiparameter q is also strongly integral, then
we define similarly also the Hopf Rq-algebras (again as Drinfeld doubles)

�!
U q;�� WD

�!
U q;��.g/ D D

�
yU
�

q;�C ;
zU�q;�� ; �

�
;

 �
U q;�� WD

 �
U q;��.g/ D D

�
zU
�

q;�C ;
yU�q;�� ; �

�
:

The following claim points out the main properties of these new objects.

Theorem 5.6.2. Keep assumptions and notations as above. Then
P�!
U q;�� , resp.

P �
U q;�� , is

an Rq-integral form (as Hopf algebra) of Uq;�� , with a PBW-type basis² NY
hD1

E
.eh/

ˇh

Y
j2I

�
LCj
lj

�
q

L
�blj =2c

Cj

Y
i2I

K
ki
�i

1Y
tDN

xF
ft
ˇ t
j eh; lj ; ki ; ft 2 N

³
;

resp. ² NY
hD1

xE
eh
ˇh

Y
j2I

L
lj

Cj

Y
i2I

�
K�i
ki

�
q

K
�bki=2c
�i

1Y
tDN

F
.ft /

ˇ t
j eh; lj ; ki ; ft 2 N

³
(notation of Section 5.4.1) as well as variations of these, changing the order of factors
in the PBW monomials. Similarly, if q is strongly integral, then

�!
U q;�� , resp.

 �
U q;�� , is an

Rq-integral form (as Hopf algebra) of Uq;�� , with a PBW-type basis² NY
hD1

E
.eh/

ˇh

Y
j2I

�
LCj
lj

�
qi

L
�blj =2c

Cj

Y
i2I

K
ki
�i

1Y
tDN

xF
ft
ˇ t
j eh; lj ; ki ; ft 2 N

³
;

resp. ² NY
hD1

xE
eh
ˇh

Y
j2I

L
lj

Cj

Y
i2I

�
K�i
ki

�
qi

K
�bki=2c
�i

1Y
tDN

F
.ft /

ˇ t
j eh; lj ; ki ; ft 2 N

³
(as well as variations of these, changing the order of factors in the PBW monomials).

In addition,
P�!
U q;�� , resp.

P �
U q;�� , resp.

�!
U q;�� , resp.

 �
U q;�� , coincides with the Rq-

subalgebra of Uq;�� generated by PyU�q;�C and zU�q;�� , resp. by zU�q;�C and PyU�q;�� , resp. by
yU
�

q;�C and zU�q;�� , resp. by zU�q;�C and yU�q;�� .
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Proof. Indeed, the result follows at once by construction, together with the fact that PyU�q;�C ,
zU�q;�� , etc., actually are integral forms of the corresponding quantum Borel subgroups
defined over k, and with the PBW theorems for them.

We are also interested in yet other mixed integral forms, defined as follows. Inside
PyU
�

q;�C (or inside yU�q;�C , it is the same), denote by yU�;"q;�C the Rq-subalgebra generated
by yUCq and zU 0q;�C (recall that by Remark 5.2.7, one has zU 0q;�C �

PyU 0q;�C �
yU 0q;�C ); this

is indeed an Rq-integral form of U�q;�C (as a Hopf subalgebra), and the non-degenerate
skew-Hopf pairing

� W
PyU
�

q;�C ˝Rq
zU�q;�� ! Rq

restricts to a similar pairing

� W yU
�;"
q;�C ˝Rq

zU�q;�� ! Rq:

Similarly, we consider the Rq-subalgebra yU�;"q;�� of PyU�q;�� (or of yU�q;�� ) generated by
yU�q and zU 0q;�� , which again is an Rq-integral form of U�q;�� for which we have a non-
degenerate skew-Hopf pairing � W zU�q;�C ˝Rq

yU
�;"
q;�� ! Rq induced by the original skew-

Hopf pairing between our multiparameter quantum Borel subgroups over k. In addition,
we do not assume that the multiparameter q is of integral type, nor we assume �C and ��
to be in duality (as in Section 3.3.3). All this allows the following.

Definition 5.6.3. For any multiparameter q (of Cartan type) and �� WD �C � ��, we
define the following Hopf algebras over Rq as Drinfeld doubles with respect to the above-
mentioned skew-Hopf pairings:

LU
.C/
q;�� WD

LU
.C/
q;��.g/ D D

�
yU
�;"
q;�C ;

zU�q;�� ; �
�
;

LU
.�/
q;�� WD

LU
.�/
q;��.g/ D D

�
zU
�

q;�C ;
yU
�;"
q;�� ; �

�
:

The main properties of these more Hopf algebras are summarized as follows:

Theorem 5.6.4. Keep notation as above.
(a) The Hopf algebras LU .C/q;�� and LU .�/q;�� are both Rq-integral forms (as Hopf algebras)

of Uq;�� , with a PBW-type basis² NY
hD1

E
.eh/

ˇh

Y
j2I

L
lj

Cj

Y
i2I

K
ki
�i

1Y
tDN

xF
ft
ˇ t
j eh; lj ; ki ; ft 2 N

³
;

and ² NY
hD1

xE
eh
ˇh

Y
j2I

L
lj

Cj

Y
i2I

K
ki
�i

1Y
tDN

F
.ft /

ˇ t
j eh; lj ; ki ; ft 2 N

³
(notation of Section 5.4.1) for LU .C/q;�� and LU .�/q;�� respectively, as well as variations of these
(changing the order of factors in the PBW monomials).
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(b) LU .C/q;�� , resp. LU .�/q;�� , coincides with the Rq-subalgebra of Uq;�� generated by yUCq;�� ,
zU 0q;�� , and zU�q;�� , resp. by zUCq;�� ,

zU 0q;�� , and yU�q;�� .

(c) Both LU .C/q;�� and LU .�/q;�� have obvious triangular decompositions analogous to those
in Propositions 5.2.12 and 5.3.4.

Proof. Here again, everything follows easily by construction, through our previous results
on integral forms of multiparameter quantum Borel subgroups.

Remark 5.6.5. Defining LU .C/q;�� and LU .�/q;�� , as well as
P�!
U q;�� ,

P �
U q;�� ,

�!
U q;�� , and

 �
U q;�� , as

Drinfeld doubles provides great advantages, namely we get for free that

(1) they are Hopf algebras,

(2) they have nice PBW bases (and triangular decompositions),

(3) they are Rq-integral forms of Uq;��—since they are tensor products (as Drinfeld
doubles!) of integral forms of multiparameter quantum Borel subgroups.

In fact, we already saw that these algebras coincide with suitable Rq-subalgebras in
Uq;�� ; yet, proving properties (1)–(3) by direct approach would not be trivial.

5.6.1. The link with the uniparameter case. For the uniparameter quantum groupUq.g/
of Drinfeld and Jimbo, possibly with larger torus, one can define Rq-integral forms yUq.g/,
PyUq.g/, and zUq.g/ much like we did with our MpQGs, constructing them as generated

by quantum divided powers and binomial coefficients or by renormalized quantum root
vectors; note that now Rq D ZŒq; q�1�. Similarly, one can define another Rq-subalgebra
of Uq.g/, denoted by LU .�/q .g/, generated by yU�q , zU 0q , and zUCq , first introduced in [30].
This is again an Rq-integral form of Uq.g/, for which triangular decomposition and PBW
theorems hold true, deduced from the similar results for yUq.g/ and zUq.g/. One also has
its “symmetric counterpart,” say LU .C/q .g/, generated by zU�q , zU 0q , and yUCq .

The construction of Rq-integral forms (again with Rq D ZŒq; q�1�) of restricted
or unrestricted type also extends to the context of twisted quantum groups U 'q;M .g/ à
la Costantini–Varagnolo (see [21, 22]), still denoted by yU 'q;M .g/ and zU 'q;M .g/ in the
restricted and the unrestricted cases, respectively. Then one has also corresponding inte-
gral forms for the various relevant (Hopf) subalgebras (Borel, nilpotent, etc.), triangular
decompositions, PBW bases, etc.—see [29] for details. Moreover, one can define also in
this context mixed integral forms LU .�/;'q;M .g/ and LU .C/;'q;M .g/; namely

(1) LU .�/;'q;M .g/ is the Rq-subalgebra of U 'q;M .g/ generated by yU�q , zU 0q;M , zUCq ,

(2) LU .C/;'q;M .g/ is the Rq-subalgebra of U 'q;M .g/ generated by zU�q , zU 0q;M , yUCq ,

(note that the occurrence of ' is irrelevant at the algebra level, so that LU .˙/;'q;M .g/ D
LU
.˙/
q;M .g/ as Rq-algebras; the coalgebra structure, on the contrary, is affected).

Using the properties of yU�q , zU 0q;M , and zU˙q presented in [29], one can prove that
LU
.�/;'
q;M .g/ and LU .C/;'q;M .g/ are again Rq-integral forms—as Hopf algebras—ofU 'q;M .g/. In

fact, the trivial case 'D 0 givesU 'D0q;M .g/ D Uq;M .g/, the standard uniparameter quantum
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group associated with M , so the case of U 'q;M .g/ and its Rq-integral forms (restricted, or
unrestricted, or mixed) is a direct generalization of what occurs with Uq;M .g/.

On the other hand, it is proved in [27] that Costantini–Varagnolo’s twisted quantum
groups U 'q;M .g/ are just quotients of MpQGs Uq;M�Q.g/ with q ranging in a special
subset of strongly integral type multiparameters. It follows that the same link exists among
their integral forms of either type, including the mixed one.

5.6.2. Applications to topological invariants. As mentioned above, the mixed form
LU
.�/
q .g/ was introduced in [30]. In that paper, the authors provide a construction of a

“universal quantum invariant” of integral homology spheres, calling it JM ; this “lifts”
the well-known Witt–Reshetikhin–Turaev (= WRT) knot invariant �g

M ."/ of M associ-
ated with g and any root of unity ", in that �g

M ."/ is obtained by evaluation of JM at ".
Unlike the definition of the WRT invariant, the construction of this “universal” invariant
JM does not involve representations, so it provides a unified, representation-free defini-
tion of quantum invariants of integral homology spheres, performed in terms of the form
LU
.�/
q .g/.

Now, having introduced “multiparameter mixed integral forms” LU .˙/;'q;M .g/ and even
LU
.˙/
q;M�Q.g/, we might expect that the construction of JM could be extended, starting from
LU
.˙/;'
q;M .g/ or even LU .˙/q;M�Q.g/ instead of LU .�/q .g/, thus providing entirely new topological

invariants for knots (and links) and integral homology spheres.

6. Specialization of MpQGs at 1

In this section, we study those MpQGs for which all the qi i ’s are 1; in fact, as every qi i is
a power of a single q 2 k�, requiring qi i D 1 for all i amounts to requiring q D 1.

Note that if qi i D 1 for some i , the very definition of Uq.g/ makes no sense, so we
have to be more subtle. First we take Uq.g/ as defined over a “generic” multiparameter
q WD .qij /i;j2I of Cartan type; then we consider its Z-forms PyUq.g/, yUq.g/, and zUq.g/,
defined over Rq (under suitable “integrality” assumptions on q for the first two cases);
finally, for either form we specialize q—hence all the qi i ’s—to a root of unity (or to 1, in
particular), which will make sense just because our ground ring will be set to be Rq.

6.1. The “generic” ground rings

As a first step in the process sketched above, we formalize the loose ideas of “generic
parameter of Cartan type” and of “generic parameter of (a specific) integral type”. Indeed,
this “universal ring of multiparameters” will be the ring of functions on the Z-scheme of
all q’s of Cartan type, or of (fixed) integral type.

Similarly, we introduce also the (universal) rings generated by “square roots of inde-
terminate parameters,” for both the Cartan-type and the integral-type cases.

6.1.1. The universal ring of multiparameters (of Cartan type). Let hereafter

ZŒx˙1� WD Z
�
¹x˙1ij ºi;j2I

�
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be the ring of Laurent polynomials with coefficients in Z in the indeterminates xij (i;j2I ),
and let A WD .aij /i;j2I be an indecomposable Cartan matrix of finite type. Consider the
quotient ring

ZAŒq˙1� WD ZŒx˙1�
ı�
¹xijxj i � x

aij
i i ºi;j2I

�
in which we denote by qij the image of every xij (for i; j 2 I ). This is the ring of global
sections of an affine scheme over Z, call it CA: by definition, the set of k-points of this
scheme (for any field k) is just the set of all matrices q D .qij /i;j2I of parameters of
Cartan type A with entries in k as in Section 2.3.2.

From all the identities qij qj i D q
aij
i i in ZAŒq˙1�, one finds—by direct inspection of

different cases of possible Cartan matrices A D .aij /i;j2I—that there exists j0 2 I such
that qi i D q

ni
j0j0

for some ni 2 N, for all i 2 I ; indeed, we can take ni D di (i 2 I ) as in
Section 2.3.2. From this and the relations between the qij ’s, it is easy to argue that CA is a
torus, of dimension

�
�
2

�
C 1: in particular, it is irreducible. Then ZAŒq˙1� is a domain, so

we can take its field of fractions, denoted by QA.q/; in the following, we denote again by
qij (i; j 2 I ) the image of xij in QA.q/ too.

By construction, the matrix q WD .qij /i;j2I is a Cartan-type matrix of parameters in
k WD QA.q/ in the sense of Section 2.3.2; in addition, none of the qi i ’s is a root of unity.

Now consider the ring extension Rq of ZAŒq˙1� generated by a (formal) square root
of qj0j0—hereafter denoted by q WD q1=2j0j0

—namely

Rq WD
�
ZAŒq˙1�

�
Œx�
ı
.x2 � qj0j0/ so that q1=2j0j0

WD Nx 2 Rq

and then let Fq be its field of fractions, such that Fq Š .QA.q//Œx�=.x2 � qj0j0/. We still
denote by qij the images in Rq and in Fq of the “old” elements with the same name in
ZAŒq˙1� and QA.q/. We shall also write q˙1i WD q

˙di for all i 2 I , so to be consistent
with Section 2.3.2; in particular, q1=2j0j0

WD q D qj0 . Note in addition that we also have

Rq Š
�
Z
�
¹x˙1ij ºi;j2I

��
Œx�
ı�
¹xijxj i � x

aij
i i ºi;j2I [ ¹x

2
� xj0j0º

�
In turn, we define also

R
p

q WD Z
�
¹�
˙1=2
ij ºi;j2I

�
Œ�˙1=2�

ı�®
�
1=2
ij �

1=2
ji � .�

1=2
i i /

aij
¯
i;j2I

[
®
.�1=2/2 � �

1=2
j0j0

¯�
which is again a domain, and F

p

q as being the field of fractions of the former. In both
cases, we denote by q˙1=2ij and q˙1=2 the images of �˙1=2ij and �˙1=2, respectively (in
short, one reads these symbols as “� WD

p
x”). Note that R

p

q and F
p

q are naturally
isomorphic with Rq and Fq, respectively, but we rather see the formers as ring or field
extensions of the latters via the natural embeddings Rq ,!R

p

q and Fq ,! F
p

q given—
in both cases—by q˙1ij 7! .q

˙1=2
ij /2 and q˙1 7! .q˙1=2/2.

Finally, observe also that the ring ZŒq; q�1�, resp. ZŒq1=2; q�1=2�, of Laurent poly-
nomial in the indeterminate q, resp. q1=2, naturally embeds in Rq, resp. in R

p

q , and the
same occurs with their corresponding fields of fractions. Then each module over ZŒq;q�1�,
resp. ZŒq1=2; q�1=2�, turns into a module over Rq, resp. R

p

q , by scalar extension.
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The very reason for introducing the above definitions, which explains the “univer-
sality” of both Rq and R

p

q , is the following. If k is any field and Nq WD . Nqij /i;j2I is
any multiparameter of Cartan type A chosen in k—i.e., all the Nqij ’s belong to k—then
there exist unique ring morphisms Rq ! k and R

p

q ! k given by q˙1ij 7! Nq
˙1
ij and

q
˙1=2
ij 7! Nq

˙1=2
ij (for all i; j 2 I ) respectively—and similarly if Rq and R

p

q are replaced
by the fields Fq and F

p

q . The images of these morphisms are the subrings RNq and R
p

Nq
of k, respectively, generated by the Nqij ’s and the Nq1=2ij ’s, like in Section 5.1.2—or the
corresponding fields, if one starts with Fq and F

p

q .

6.1.2. The universal ring of multiparameters of integral type. Let A WD .aij /i;j2I be
a fixed indecomposable Cartan matrix of finite type as in Section 6.1.1, and let B WD
.bij /i;j2I be a matrix with entries in Z like in Section 2.3.2. We consider the rings

RB
q WD ZŒq; q�1�; RB;

p

q WD ZŒq1=2; q�1=2�

and the corresponding fields of fractions F B
q WD Q.q/ and F

B;
p

q WD Q.q1=2/, together

with the natural ring embeddings RB
q ,!R

B;
p

q and F B
q ,! F

B;
p

q given (in both cases)
by q˙1 7! .q˙1=2/2. In all these rings, we consider the elements qij WD qbij 2RB

q � F B
q

and q˙1=2ij WD .q˙1=2/bij 2 R
B;
p

q � F
B;
p

q for all i; j 2 I .

Much like for the previous case of Rq and R
p

q , the rings RB
q and R

B;
p

q are “uni-
versal” among all those generated by multiparameters of type B in any field k, in the
following sense. If k is any field and Nq WD . Nqij /i;j2I is any multiparameter of integral
type B in k, so that Nqij D Nqbij for some Nq 2 k (for all i; j 2 I ), then there exist unique

ring morphisms RB
q ! k and R

B;
p

q ! k given by q˙1 7! Nq˙1 and q˙1=2 7! Nq˙1=2, so
that

qij WD q
bij 7! Nqbij D Nqij and q

˙1=2
ij 7! . Nq˙1=2/bij D Nq

˙1=2
ij .i; j 2 I /I

similarly with the fields F B
q and F

B;
p

q replacing RB
q and R

B;
p

q . The images of these
morphisms are the subrings RNq and R

p

Nq (independent of B) of k, respectively, generated
by the Nq˙1ij ’s and the Nq˙1=2ij ’s, i.e., by Nq˙1 and Nq˙1=2, respectively, like in Section 5.1.2
(or the corresponding fields, if we deal with F B

q and F
B;
p

q ).
Finally, notice that we have a natural, “hierarchical” link between our universal rings

(or fields) of Cartan or integral type: namely, there exist unique epimorphisms

Rq � RB
q .q˙1 7! q˙1/ and R

p

q � RB;
p

q .q˙1=2 7! q˙1=2/

so Rq=.¹qij � q
bij ºi;j2I / Š RB

q and R
p

q =.¹q
1=2
ij � .q

˙1=2/bij ºi;j2I / Š R
B;
p

q .

6.2. Specialization at 1

Let q, Rq, and R
p

q be fixed as in Section 6.1 above together with all related notation.
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We consider the quotient ring Rq;1 WD Rq=.q � 1/Rq; by construction, the latter is
generated by invertible elements

y˙1ij WD q
˙1
ij mod .q � 1/Rq

which obey only the relations y˙1j0j0D1 and y˙1ij y
˙1
ji D1, so that y˙1ji Dy

�1
ij . It follows that

Rq;1 is just the ring of Laurent polynomials in the
�
�
2

�
indeterminates y1=2ij , i < j . In

the sequel, we write y˛ for an element in Rq;1 defined like in Section 3.2 but for using
the yij ’s instead of the qij ’s.

It is clear that Rq;1 is also an Rq-algebra by scalar restriction through the canonical
ring epimorphism Rq � Rq=.q � 1/Rq DW Rq;1.

For every matrix B WD .bij /i;j2I with entries in Z as in Section 2.3.2, we define
the ring RB

q;1 WD RB
q =.q � 1/R

B
q . Note that RB

q;1 Š Z since RB
q Š ZŒq; q�1�, and the

epimorphism Rq � RB
q induces a similar epimorphism Rq;1� RB

q;1 at q D 1.

Similarly, the “specialization at q1=2 D 1” of both R
p

q and R
B;
p

q will be

R
p

q;1 WD R
p

q =.q1=2 � 1/R
p

q and R
B;
p

q;1 WD RB;
p

q =.q1=2 � 1/RB;
p

q I

we write y˙1=2ij for the image of q˙1=2ij in R
p

q;1 and R
B;
p

q;1 , and overall y WD .yij /i;j2I ,

y1=2 WD .y1=2ij /i;j2I . Again, we have an epimorphism R
p

q;1� R
B;
p

q;1 induced by R
p

q �
R
B;
p

q . Finally, the ring extensions Rq ,! R
p

q and RB
q ,! R

B;
p

q yield extensions
Rq;1 ,! R

p

q;1 and RB
q;1 ,! R

B;
p

q;1 ; in fact, the latter is actually an isomorphism

RB
q;1

Š
� R

B;
p

q;1 .Š Z/:

Before going on and studying specializations of our objects at q D 1, we recall some
well-known facts of quantization theory.

6.2.1. (Co-)Poisson structures on semiclassical limits. Let A be any (commutative uni-
tal) ring, let p 2A be non-invertible inA, andApD0 WDA=.p/DA=pA. Whatever follows
applies to A 2 ¹Rq;R

B
q º and p WD q � 1 or A 2 ¹R

p

q ;R
B;
p

q º and p WD q1=2 � 1.
Consider an A-module H , and let HpD0 WD H=pH be its specialization at p D 0;

clearly the latter is automatically an ApD0-module. If, in addition, H has a structure of
an A-algebra, an A-coalgebra, a bialgebra or Hopf algebra over A, then the HpD0 also
inherits the same kind of (quotient) structure over ApD0.

Furthermore, the following holds (see, e.g., [19, Chapter 6]).
(a) If H has a structure of (unital, associative) A-algebra such that HpD0 is commuta-

tive, then HpD0 bears a canonically structure of (unital, associative) Poisson algebra over
ApD0, whose Poisson bracket is uniquely given by

¹x; yº WD
x0y0 � y0x0

p
mod pH 8x; y 2 HpD0

for any x0; y0 2 H such that x WD x0 mod pH , y WD y0 mod pH .
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If, in addition,H is a bialgebra or Hopf algebra overA, then the above Poisson bracket
together with the quotient structure of bialgebra or Hopf algebra (overApD0) makesHpD0
into a Poisson bialgebra or Poisson Hopf algebra over ApD0.

(b) If H has a structure of (counital, coassociative) A-coalgebra such that HpD0 is
cocommutative, then HpD0 bears a canonically structure of (counital, coassociative) co-
Poisson algebra over ApD0, whose Poisson cobracket is uniquely given by

r.x/ WD
�.x0/ ��op.x0/

p
mod pH 8x 2 HpD0

for any x0 2 H such that x WD x0 mod pH .
If, in addition, H is a bialgebra or Hopf algebra over A, then the above Poisson

cobracket together with the quotient structure of bialgebra or Hopf algebra (over ApD0)
makes HpD0 into a co-Poisson bialgebra or co-Poisson Hopf algebra over ApD0.

As a last remark, we recall that if l is a Lie algebra and the Hopf algebra U.l/ is
actually a co-Poisson Hopf algebra, then l canonically inherits a structure of Lie bialgebra,
with the original Lie bracket and the Lie cobracket given by restriction of the Poisson
cobracket in U.l/. As a consequence, if HpD0 Š U.l/ as Hopf algebras (H as above)
for some Lie algebra l, then the latter bears a Lie bialgebra structure, induced by H as
explained.

Now we fix Fq, Rq, and F B
q , RB

q , as in Section 6.1. Note that their generators qij (for
all i and j ) form inside either field Fq or F B

q a multiparameter matrix q WD .qij /i;j2I of
Cartan type, and even of integral type (namely, type B) in the case of F B

q . We consider
then the associated MpQGs defined over Fq and over F B

q , both denoted by Uq.g/; never-
theless, we shall loosely distinguish the two cases by saying that we are “in the general,
resp. integral, case” when the ground ring is Fq or Rq, resp. F B

q or RB
q .

In the general case, we consider in Uq.g/ the unrestricted integral form zUq.g/, defined
over the ring Rq as in Section 5.3. In the integral case instead, we pick in Uq.g/ the
restricted integral forms PyUq.g/ and—in the strictly integral case— yUq.g/, defined over
RB

q as in Section 5.2, and the unrestricted form zUq.g/ too—over RB
q again.

We can now introduce the first type of specialization we are interested into:

Definition 6.2.1. (a) Let q be of integral type. We call specialization of PyUq.g/ at q D 1
the quotient

PyUq;1.g/ WD
PyUq.g/=.q � 1/

PyUq.g/

endowed with its natural (quotient) structure of Hopf algebra over RB
q;1 (D Z).

As a matter of notation, setting PyUq WD
PyUq.g/ we shall denote�

Pki I c
n

�
WD

�
Ki I c

n

�
q

mod .q � 1/ PyUq;

�
Pki
n

�
WD

�
Ki

n

�
q

mod .q � 1/ PyUq;�
Pli I c
n

�
WD

�
Li I c

n

�
q

mod .q � 1/ PyUq;

�
Pli
n

�
WD

�
Li

n

�
q

mod .q � 1/ PyUq;
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hi I c
n

�
WD

�
Gi I c

n

�
qi i

mod .q � 1/ PyUq;

�
hi
n

�
WD

�
Gi

n

�
qi i

mod .q � 1/ PyUq;

Pki WD
�
Pki
1

�
; Pli WD

�
Pli
1

�
; hi WD

�
hi
1

�
;

e.n/˛ WD E
.n/
˛ mod .q � 1/ PyUq; f.n/˛ WD F

.n/
˛ mod .q � 1/ PyUq

for all i 2 I , c 2 Z, n 2 N, ˛ 2 ˆC.
If q is of strongly integral type, then we call specialization of yUq.g/ at q D 1 the

quotient
yUq;1.g/ WD yUq.g/=.q � 1/ yUq.g/

endowed with its natural (quotient) structure of Hopf algebra over RB
q;1 (DZ). Like above,

setting yUq WD yUq.g/ we shall write (for i 2 I , c 2 Z, n 2 N, ˛ 2 ˆC)�
ki I c
n

�
WD

�
Ki I c

n

�
qi

mod .q � 1/ yUq;

�
ki
n

�
WD

�
Ki

n

�
qi

mod .q � 1/ yUq;�
li I c
n

�
WD

�
Li I c

n

�
qi

mod .q � 1/ yUq;

�
li
n

�
WD

�
Li

n

�
qi

mod .q � 1/ yUq;�
hi I c
n

�
WD

�
Gi I c

n

�
qi i

mod .q � 1/ yUq;

�
hi
n

�
WD

�
Gi

n

�
qi i

mod .q � 1/ yUq;

ki WD
�

ki
1

�
; li WD

�
li
1

�
; hi WD

�
hi
1

�
;

e.n/˛ WD E
.n/
˛ mod .q � 1/ yUq; f.n/˛ WD F

.n/
˛ mod .q � 1/ yUq:

(b) Let q be arbitrary (of Cartan type). We call specialization of zUq.g/—defined over
either Rq or RB

q —at q D 1 the quotient

zUq;1.g/ WD zUq.g/=.q � 1/ zUq.g/

endowed with its natural (quotient) structure of Hopf algebra—over Rq;1 or RB
q;1, respec-

tively. As a matter of notation, we shall denote (for all ˛ 2 ˆC, i 2 I )

f˛ WD xF˛ mod .q � 1/ zUq.g/; e˛ WD xE˛ mod .q � 1/ zUq.g/;

l˙1i WD L˙1i mod .q � 1/ zUq.g/; k˙1i WD K
˙1
i mod .q � 1/ zUq.g/:

Remark 6.2.2. Note that the specializations introduced above can be also realized, alter-
natively, as scalar extensions, namely

PyUq;1.g/ WD RB
q;1 ˝

RB
q

PyUq.g/; yUq;1.g/ WD RB
q;1 ˝

RB
q

yUq.g/; zUq;1.g/ WD RB
q;1 ˝

RB
q

zUq.g/

or—according to what is the chosen ground ring for zUq.g/—also

zUq;1.g/ WD Rq;1 ˝
Rq

zUq.g/:



G. A. García and F. Gavarini 896

Our first key result about specialization at q D 1 is the following theorem.

Theorem 6.2.3. Let q WD .qij D qbij /i;j2I be as above, with B WD .bij /i;j2I 2 M� .Z/
such that B C B t D DA. Then the following holds:

(a) PyUq;1.g/ is a (cocommutative) co-Poisson Hopf algebra, which is isomorphic to
UZ. PgB/—cf. Definition 2.3.3—the latter being endowed with the Poisson co-bracket
uniquely induced by the Lie cobracket of PgB—cf. Definition 2.3.1 (a). Indeed, an explicit

isomorphism PyUq;1.g/
Š
� UZ. PgB/ is given by�

Pki
n

�
7!

�
Pki
n

�
;

�
Pli
n

�
7!

�
Pli
n

�
;

�
hi
n

�
7!

�
hi
n

�
; e.n/˛ 7! e.n/˛ ; f.n/˛ 7! f.n/˛ :

Similar statements hold true for the specialization at q D 1 of PyU�q , PyU�q , PyU 0q, etc.
(b) yUq;1.g/ is a (cocommutative) co-Poisson Hopf algebra, which is isomorphic to

UZ. OgB/—cf. Definition 2.3.3—the latter being endowed with the Poisson co-bracket
uniquely induced by the Lie cobracket of OgB—cf. Definition 2.3.1 (c). Indeed, an explicit

isomorphism yUq;1.g/
Š
,! UZ. OgB/ is given by�

ki
n

�
7!

�
ki
n

�
;

�
li
n

�
7!

�
li
n

�
;

�
hi
n

�
7!

�
hi
n

�
; e.n/˛ 7! e.n/˛ ; f.n/˛ 7! f.n/˛ :

Similar statements hold true for the specialization at q D 1 of yU�q , yU�q , yU 0q , etc.

Proof. By the definitions and the structure results for PyUq;1.g/ and yUq;1.g/ in Section 5.2
(in particular, Theorem 5.2.10) the proof is a straightforward check. Indeed, from the pre-
sentation of PyUq.g/ and yUq.g/ in Theorem 5.2.10, we get similar presentations of PyUq;1.g/

and yUq;1.g/: comparing these presentations with those mentioned in Remark 2.3.4 (a) for
UZ. PgB/ and UZ. OgB/, sheer calculations show that the formulas in the above statement
provide well-defined isomorphisms, as claimed.

Hereafter, we give a sample of these “sheer calculations”. Out of the commutation
formulas among generators of PyUq.g/—cf. Theorem 5.2.10 (a)—we get�

Ki

1

�
q

E
.n/
j D E

.n/
j

�
Ki Inbij

1

�
q

D E
.n/
j

��
Ki

1

�
q

C .nbij /qKi

�
D E

.n/
j

�
Ki

1

�
q

C .nbij /qE
.n/
j Ki :

Then, when we specialize this formula at qD1—that is, we take it modulo .q�1/ PyUq.g/—
the left-hand side and right-hand side become, respectively,�

Ki

1

�
q

E
.n/
j �

�
Pki
1

�
e.n/j

�
mod .q � 1/ PyUq.g/

�
;

E
.n/
j

�
Ki

1

�
q

C .nbij /qE
.n/
j Kj � e.n/j

�
Pki
1

�
C nbij e.n/j

�
mod .q � 1/ PyUq.g/

�
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because Ki D 1C .q � 1/
�
Ki
1

�
q
� 1 mod .q � 1/ PyUq.g/. This shows that the relation�

Ki

1

�
q

E
.n/
j D E

.n/
j

�
Ki

1

�
q

C .nbij /qE
.n/
j Ki

involving some generators of PyUq.g/, through the specialization process turns into�
Pki
1

�
e.n/j D e.n/j

�
Pki
1

�
C nbij e.n/j

among the corresponding elements in UZ. PgB/; but this relation is indeed one of those
occurring in the presentation of UZ. PgB/ itself by generators and relations.

With a similar analysis, one sees that the generators in PyUq;1.g/ do respect all relations
that hold true among the same name generators of UZ. PgB/. In addition, there are no extra
relations because we have PBW bases for PyUq.g/ which specialize to similar bases for
PyUq;1.g/, and the latter correspond to PBW bases of UZ. PgB/.

Finally, since Ki D 1C .q � 1/
�
Ki
1

�
q
� 1 mod .q � 1/ PyUq.g/ and also

Li D 1C .q � 1/

�
Li

1

�
q

� 1 mod .q � 1/ PyUq.g/;

it follows from Theorem 5.2.10 that

�.E
.n/
i / �

nX
sD0

E
.n�s/
i ˝E

.s/
i and �.F

.n/
i / �

nX
sD0

F
.n�s/
i ˝ F

.s/
i

modulo ..q � 1/ PyUq.g/˝
PyUq.g/C

PyUq.g/˝ .q � 1/
PyUq.g//. This implies that PyUq;1.g/ is a

cocommutative Hopf algebra.

Remark 6.2.4. In sight of Theorem 6.2.3 above, the fact that the PgB ’s, resp. the OgB ’s, for
different q’s are all isomorphic as Lie coalgebras—cf. Remarks 2.3.2 (c)—is a direct con-
sequence of the fact that all the PyUq.g/’s, resp. the yUq.g/’s, for different q’s are isomorphic
as coalgebras, as this happens for the Uq’s.

Next, we study the structure of zUq;1.g/ WD zUq.g/=.q � 1/ zUq.g/. For the first results,
the multiparameter q is assumed to be generic, i.e., just of Cartan type.

Let zU
p

q WD R
p

q ˝Rq
zUq, and let zU

p

q;1 .g/ WD
zU
p

q =.q1=2 � 1/ zU
p

q be the special-
ization of zU

p

q at q1=2 D 1. For any affine Poisson group-scheme zG�DA over R
p

Lq;1 dual to
QgDA, i.e., Lie. zG�DA/ Š Qg

�
DA, we let O

p

. zG�DA/ be its representing Hopf algebra.

Proposition 6.2.5. zU
p

q;1 .g/ is a 2-cocycle deformation of O
p

. zG�DA/ for some (uniquely
defined) connected, simply connected affine Poisson group-scheme zG�DA over R

p

Lq;1 dual
to QgDA (as above).
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Proof. Having taken the largest ground ring R
p

q instead of Rq, Proposition 5.3.2 applies,
giving us zU

p

q .g/ D . zU
p

Lq .g//� for a specific 2-cocycle � as in Definition 3.2.1—in
particular, depending only on the q˙1=2ij ’s. By its very construction, this � induces, mod-
ding out .q1=2 � 1/, a similar 2-cocycle, denoted by �1, of the specialized Hopf algebra
zU
p

Lq;1 .g/ WD
zULq.g/=.q

1=2 � 1/ zULq.g/; therefore we get

zU
p

q .g/=.q1=2 � 1/ zU
p

q .g/ D
�
zU
p

Lq .g/=.q1=2 � 1/ zU
p

Lq .g/
�
�1
: (6.1)

Now, for the usual one-parameter quantum group Uq.g/ in [24]—cf. also [29]—one
has a similar construction for zUq.g/—which is nothing but the quotient of zULq;1.g/modulo
.Li �K

�1
i / for all i—for which one has

zU1.g/ WD zUq.g/=.q
1=2
� 1/ zUq.g/ D O. zG�/ (6.2)

for some (uniquely defined) connected, simply connected affine Poisson group-scheme
zG� whose cotangent Lie bialgebra is such that Lie. zG�/ Š . QgDA=.ki C li /i2I /� as Lie
bialgebras. Once more, this result can be easily “lifted” to the level of the quantum double
of Uq.g/, which is nothing but ULq.g/: the resulting construction is exactly that of the inte-
gral form zULq.g/ within ULq.g/, and the results in [24] then turn into (sort of) a “quantum
double version” of (6.2), namely

zULq;1.g/ WD zULq.g/=.q � 1/ zULq.g/ D O. zG�DA/

with zG�DA a connected Poisson group-scheme whose cotangent Lie bialgebra is QgDA.
Extending scalars from Rq;1 to R

p

q;1 this yields

zU
p

Lq;1 .g/ WD
zU
p

Lq .g/=.q1=2 � 1/ zU
p

Lq .g/ D O
p

. zG�DA/: (6.3)

Finally, matching (6.1) and (6.3) the claim is proved.

The previous result can be reformulated as follows: up to scalar extension—from
Rq;1 to R

p

q;1—the Hopf algebra zUq;1.g/ is a 2-cocycle deformation of the Hopf algebra
O. zG�DA/. Actually, we can provide the following, more precise statement:

Theorem 6.2.6. zUq;1.g/ is a y-polynomial and Laurent y-polynomial algebra over Rq;1

(with y as in Section 6.2), namely

zUq;1.g/ Š Rq;1
�
¹f˛; l

˙1
i ; k˙1i ; e˛º

i2I
˛2ˆC

�
where the indeterminates y-commute among them in the following sense:

f˛0f˛00 D y˛00˛0f˛00f˛0 ; e˛0f˛00 D f˛00e˛0 ;

e˛0e˛00 D y˛0˛00e˛00e˛0 ; k˙1i e˛ D y
˙1
˛i˛
e˛k
˙1
i ;

l˙1i e˛ D y
�1
˛˛i
e˛l
˙1
i ; k˙1i f˛ D y

�1
˛i˛
f˛k

˙1
i ;

l˙1i f˛ D y
˙1
˛˛i
f˛l
˙1
i ; k˙1i k˙1j D k˙1j k˙1i ;

k˙1i l˙1j D l˙1j k˙1i ; k˙1i k˙1j D k˙1j k˙1i :
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Proof. All formulas but those in the first line are direct consequence of definitions, so we
can dispose of them, and we are left with proving the first three.

We begin with the mid formula e˛0f˛00 D f˛00e˛0 , for which we have to compare
xE˛0 xF˛00 with xF˛00 xE˛0 within zUq.g/; and in order to do that, we shall compare these prod-

ucts with the similar product taken inside zULq.g/, where the multiplication is deformed by
a 2-cocycle � as in Proposition 5.3.2.

Indeed, in the rest of the proof we extend scalars from Rq to R
p

q and thus work
with zU

p

q .g/ and zU
p

Lq .g/; for the former we identify zU
p

q .g/ D . zU
p

Lq .g//� as R
p

q -

modules, which is correct by Proposition 6.2.5. In particular, inside zU
p

Lq .g/ we shall
consider the original product of zU

p

Lq .g/, hereafter denoted by “L�”, and the � -deformed

product—yielding the product in zU
p

Lq .g/—denoted by “�”.
By the results in [24]—cf. also [29]—suitably adapted to the present “quantum double

setup”, we know that zULq.g/ is commutative modulo .q � 1/: this implies that LxE˛0 L� LxF˛00 in
zULq.g/ can be written as

LxE˛0 L�
LxF˛00 D

LxF˛00 L�
LxE˛0 C .q � 1/

X
s

cs xM
L�
s (6.4)

for some cs 2 Rq, where LxE˛0 and LxF˛00 are (renormalized) quantum root vectors in zULq.g/
and the xML�s’s are PBW monomials in a PBW basis of zULq.g/ like in Theorem 5.3.3 (d).

Let us look now for the counterpart of formula (6.4) in zUq.g/—thought of as embed-

ded into zU
p

q .g/ D . zU
p

Lq .g//� . Thanks to Proposition 4.1.1 we have

xE˛0 D m
C

˛0.q
˙1=2/ LxE˛0 ; xF˛00 D m

�
˛00.q

˙1=2/ LxF˛00

for suitable Laurent monomials mC˛0.q
˙1=2/ and m�˛00.q

˙1=2/ in the q1=2ij ’s (each of which
is trivial if the corresponding root is simple). Now, the formulas in Section 4.4.1 give

LxE˛0 �
LxF˛00 D

LxE˛0 L�
LxF˛00 ;

LxF˛00 �
LxE˛0 D

LxF˛00 L�
LxE˛0

(by the same analysis as that before Proposition 3.2.4); on the other hand, again by Propo-
sition 4.1.1 and by Section 2.2.2 we have that every PBW monomial in zULq.g/, say xML�,
has the form xML� D m xM.q

˙1=2/ xM
� where m xM.q

˙1=2/ is a suitable Laurent monomial
in the q˙1=2ij ’s. Tidying everything up, from (6.4) and the identities here above—writing
m˙˛ WD m

˙
˛ .q˙1=2/ and m xM WD m xM.q

˙1=2/—we find

xE˛0 � xF˛00 D m
C

˛0m
�
˛00
LxE˛0 �

LxF˛00 D m
C

˛0m
�
˛00
LxE˛0 L�

LxF˛00

D mC˛0m
�
˛00

�
LxF˛00 L�

LxE˛0 C .q � 1/
X
s

cs xM
L�
s

�
D mC˛0m

�
˛00

�
.mC˛0/

�1.m�˛00/
�1 xF˛00 � xE˛0 C .q � 1/

X
s

cs m xMs

xM
�

s

�
D xF˛00 � xE˛0 C .q � 1/

X
s

cs m
C

˛0m
�
˛00m xMs

xM
�

s
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that is, in the end,

xE˛0 � xF˛00 D xF˛00 � xE˛0 C .q � 1/
X
s

cs m
C

˛0m
�
˛00m xMs

xM
�

s (6.5)

which is almost what we need, as the right-hand side belongs to zU
p

q .g/ but possibly not to
zUq.g/. To fix this detail, we take the expansion of xE˛0 � xF˛00 as an Rq-linear combination of
the PBW basis of the xM�

r ’s (which includes xF˛00 � xE˛0 too), namely xE˛0 � xF˛00 D
P
r �r
xM
�

r

for some �r 2Rq; comparing the latter with (6.5) we get csmC˛0m
�
˛00m xMs

2Rq for every s.
Then (6.5) is an identity in zUq.g/, which implies

xE˛0 � xF˛00 D xF˛00 � xE˛0 mod .q � 1/ zUq.g/

whence eventually e˛0f˛00 D f˛00e˛0 , q.e.d.
We turn now to proving the identity e˛0e˛00 D y˛0˛00e˛00e˛0 , for which we need to com-

pare xE˛0 xE˛00 with xE˛00 xE˛0 within zUq.g/. To begin with, from the results [24, Sections 9,
10, and 12]—suitably adapted, as usual, to the present, “quantum double framework”—in
the standard case of zULq.g/ we have

LxE˛0 L�
LxE˛00 D Lq˛0;˛00

LxE˛00 L�
LxE˛0 C .q � 1/

X
˛

Lc˛
LxE
e˛
˛ (6.6)

for all ˛0; ˛00 2 ˆC, where Lq˛0;˛00 D q.˛
0;˛00/=2 by definition, Lc˛ 2 ZŒq; q�1� .�Rq/ for all

˛ and the LxEe˛˛ ’s are PBW monomials in the LxE˛’s alone.
Now from (6.6) we deduce a parallel identity in zUq.g/. Namely, acting like in the first

part of the proof—basing again on the formulas in Section 4.4.1—we find

xE˛0 � xE˛00 D m
C

˛0m
C

˛00
LxE˛0 �

LxE˛00 D m
C

˛0m
�
˛00q
C1=2
˛0;˛00

LxE˛0 L�
LxE˛00

D mC˛0m
�
˛00q
C1=2
˛0;˛00

�
Lq˛0;˛00

LxE˛00 L�
LxE˛0 C .q � 1/

X
˛

Lc˛
LxE
e˛
˛

�
D mC˛0m

C

˛00q
C1=2
˛0;˛00 Lq˛0;˛00.m

C

˛00/
�1.mC˛0/

�1q
�1=2
˛00;˛0

xE˛00 � xE˛0

C .q � 1/
X
˛

Lc˛ m
C

˛0m
C

˛00q
C1=2
˛0;˛00 �˛

xE
e˛
˛

D q
C1=2
˛0;˛00 Lq˛0;˛00q

�1=2
˛00;˛0

xE˛00 � xE˛0 C .q � 1/
X
˛

Lc˛ m
C

˛0m
C

˛00q
C1=2
˛0;˛00 �˛

xE
e˛
˛

where �˛ is yet another Laurent monomial in the q˙1=2ij ’s and each xEe˛˛ is the unique
PBW monomial in the xE˛’s that corresponds (in an obvious sense) to LxEe˛˛ . Thus

xE˛0 � xE˛00 D q
C1=2
˛0;˛00 Lq˛0;˛00q

�1=2
˛00;˛0

xE˛00 � xE˛0 C .q � 1/
X
˛

c˛ xE
e˛
˛ (6.7)

where
c˛ WD Lc˛m

C

˛0m
C

˛00q
C1=2
˛0;˛00 �˛ 2 R

p

q :
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But we also know that the xE˛’s form a PBW basis over Rq for zUq.g/, hence xE˛0 � xE˛00
uniquely expands into an Rq-linear combination of these monomials: comparing such an
expansion with (6.7) we find that all coefficients c˛ therein necessarily belong to Rq: then
(6.7) itself is an identity in zUq.g/—i.e., not only in zU

p

q .g/. Therefore, from (6.7) we
deduce

xE˛0 � xE˛00 Š q
C1=2
˛0;˛00 Lq˛0;˛00q

�1=2
˛00;˛0

xE˛00 � xE˛0 mod .q � 1/ zUq.g/: (6.8)

Finally, since q WD .qij /i;j2I and Lqij WD qdiaij D qdj aj i for all i; j 2 I , we just com-
pute that

q
C1=2
˛0;˛00 Lq˛0;˛00q

�1=2
˛00;˛0 D q˛0;˛00 ;

whose coset in Rq;1 WD Rq=.q � 1/Rq is just y˛0˛00 ; therefore (6.8) yields e˛0e˛00 D
y˛0˛00e˛00e˛0 as claimed.

A similar procedure shows that f˛0f˛00 D y˛00˛0f˛00f˛0 , which ends the proof.

Remarks 6.2.7. In [10, Section 3], a different construction eventually leads to a result
comparable with Theorem 6.2.6 above, although slightly weaker. In general, we prefer
to follow a different approach, because it exploits an independent argument and is more
consistent with our global approach in the present work, mostly based on the fact that
Uq.g/ D .ULq.g//� . In addition, some results of [10] cannot be directly applied to our
context of integral forms and specializations, so we must resort to an alternative strategy.

When the multiparameter q is of integral type the last two previous results get a
stronger importance from a geometrical point of view. In fact, the following is a refinement
of Proposition 6.2.5 but we provide for it an independent proof.

Theorem 6.2.8. Let q be of integral type, and zUq;1.g/ defined over RB
q D ZŒq; q�1�.

Then zUq;1.g/ is (isomorphic to) the representing Hopf algebra O. zG�B/ of a connected
affine Poisson group-scheme over Z whose cotangent Lie bialgebra is QgB as described in
Definition 2.3.1.

Similar statements hold true for the specialization at q D 1 of zU�q , zU�q , zU 0q , etc.

Proof. First of all, when q is of integral type, so qij D qbij (for all i; j ), we have

yij WD qij mod .q � 1/ D qbij mod .q � 1/ D 1bij D 1 8i; j 2 I:

Therefore, Theorem 6.2.6 tells us that zUq;1.g/ is a commutative Hopf algebra (of Laurent
polynomials); it follows then that zUq;1.g/ D O.G / for some affine group-scheme, say G .
Moreover, from Proposition 6.2.5 (with notation as in its proof) we know that

O.G /D zUq;1.g/DO. zG�DA/�1 ;

where the group scheme zG�DA is connected—in other words, O. zG�DA/ has no non-trivial
idempotents. Now, as qij D qbij for qD 1, the “specialized” cocycle �1 is trivial—namely,
�1 D � ˝ �—which implies that O.G / D O. zG�DA/�1 D O. zG�DA/, hence G D zG�DA as
group-schemes. In addition, by Remark 6.2.1 (a) the Hopf algebra O.G /D zUq;1.g/, being
commutative, inherits from zUq.g/ a Poisson structure. Hence it is a Poisson Hopf algebra;
thus G itself is in fact a Poisson group-scheme.
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We point out that the Poisson structure on O.G / D zUq;1.g/ is induced by the multi-
plication in zUq.g/ D . zULq.g//�q , which in turn depends on q. Thus G and zG�DA, although
coinciding as group schemes, do not share, in general, the same Poisson structure.

What is still missing for having G D zG�B is proving that the cotangent Lie bialgebra
of G is isomorphic to QgB , defined as in Definition 2.3.1.

First we recall the definition of the cotangent Lie bialgebra of G . If me WD Ker.�O.G //

is the augmentation ideal of O.G /, the quotient me=m
2
e has a canonical structure of Lie

coalgebra, such that its linear dual is the tangent Lie algebra of G . In addition, the prop-
erties of the Poisson bracket in O.G / imply that me is a Lie subalgebra (even a Lie ideal,
indeed) of the Lie algebra .O.G /; ¹ ; º/, and m2

e is a Lie ideal in .me; ¹ ; º/, whence me=m
2
e

has a quotient Lie algebra structure; together with the Lie coalgebra structure, the latter
makes me=m

2
e into a Lie bialgebra. As a matter of notation, we set Nx 2me=m

2
e to denote

the coset in me=m
2
e of any x 2 me .

As a consequence of the PBW theorem for zUq.g/—i.e., Theorem 5.3.3, or directly of
Theorem 6.2.6—taking into account that the e˛’s, the f˛’s, the .ki�1/’s, and the .li�1/’s,
with ˛ 2 ˆC, i 2 I , all lie in me , one has that a basis of me=m

2
e is given by the e˛’s, the

f˛’s, the .ki � 1/’s, and the .li � 1/’s altogether. Our aim now is to prove the following.

Claim 6.2.9. There exists a Lie bialgebra isomorphism � W me=m
2
e

Š
� QgB given by � W

e˛ 7! Qe˛ , f˛ 7! Qf˛ , .ki � 1/ 7! Pki , and .li � 1/ 7! Pli , for all ˛ 2 ˆC, i 2 I .

To begin with, given ˛;ˇ2ˆC, we show that �.Œe˛; eˇ �/DŒ�.e˛/;�.eˇ /�. First observe
that our root vectors e in g come from the simple ones via a construction à la Chevalley
(see [39, Chapter II, Section 25.2]), so that Œe˛; eˇ � D c˛;ˇ e˛Cˇ for suitable c˛;ˇ 2 Z.
Moreover, since (under our assumption that g is simple) there are only two possible root
lengths, we have d˛Cˇ 2¹d˛; dˇ º; so if d˛Ddˇ , we write dı WDd˛ (Ddˇ ) and if d˛ 6Ddˇ ,
we call dı the unique element of ¹d˛; dˇ º n ¹d˛Cˇ º. Then recall that (for all  2 ˆC)

e WD xE mod .q � 1/ zUq; e WD E mod .q � 1/ PyUq;

Œ e˛; eˇ � WD ¹e˛; eˇ º mod m2
e ; ¹e˛; eˇ º WD .q � 1/

�1Œ xE˛; xEˇ � mod .q � 1/ zUq:

Second, since zUq is commutative modulo .q � 1/, we have Œ xE˛; xEˇ �D .q � 1/E for some
E 2 zUq \ U

C
q D

zUCq —so that

¹e˛; eˇ º WD E mod .q � 1/ zUq:

On the other hand, from Œe˛; eˇ � D c˛;ˇ e˛Cˇ (see above) and e WD E mod .q � 1/ PyUq

together we get ŒE˛; Eˇ � D c˛;ˇE˛Cˇ C .q � 1/E for some E 2 yUq \ U
C
q D

yUCq . The
latter implies that

Œ xE˛; xEˇ � D .q˛˛ � 1/.qˇˇ � 1/ŒE˛; Eˇ �

D c˛;ˇ .q˛˛ � 1/.qˇˇ � 1/E˛Cˇ C .q � 1/.q˛˛ � 1/.qˇˇ � 1/E

D c˛;ˇ .qıı � 1/ xE˛Cˇ C .q � 1/.q˛˛ � 1/.qˇˇ � 1/E
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and comparing the last term with the previous identity Œ xE˛; xEˇ � D .q � 1/E yields

E D c˛;ˇ .2dı/q xE˛Cˇ C .q˛˛ � 1/.qˇˇ � 1/E:

Then expanding E w.r.t. the Rq-PBW basis of yUCq (made of ordered products of
q-divided powers E.n / ’s) and comparing with the expansion of .q˛˛ � 1/.qˇˇ � 1/E—
which must necessarily belong to zUCq —in terms of the Rq-PBW basis of zUCq (made of
ordered monomials in the xE ’s), we eventually find that

.q˛˛ � 1/.qˇˇ � 1/E D
X
k�2

X
1;:::;k2ˆ

C

c01;:::;k
xE1 � � �

xEk C .q � 1/E
0

for some c01;:::;k 2 Rq and some E 0 2 zUCq . Therefore,

E D c˛;ˇ .2dı/q xE˛Cˇ C
X
k�2

X
1;:::;k2ˆ

C

c01;:::;k
xE1 � � �

xEk C .q � 1/E
0

which in turn implies that

E mod .q � 1/ zUq D
�
c˛;ˇ .2dı/q xE˛Cˇ mod .q � 1/ zUq

�
C

�X
k�2

X
1;:::;k2ˆ

C

c01;:::;k
xE1 � � �

xEk mod .q � 1/ zUq

�
D c˛;ˇ2dıe˛Cˇ C

X
k�2

X
1;:::;k2ˆ

C

c1;:::;ke1 � � � ek

with c1;:::;k WD .c
0
1;:::;k

mod .q � 1/Rq/ 2 Rq=.q � 1/Rq D Rq;1. This yields

Œe˛; eˇ � D
�
¹e˛; eˇ º mod m2

e

�
D
��
.q � 1/�1Œ xE˛; xEˇ � mod .q � 1/ zUq

�
mod m2

e

�
D
��

E mod .q � 1/ zUq
�

mod m2
e

�
D

��
c˛;ˇ2dıe˛Cˇ C

X
k�2

X
1;:::;k2ˆ

C

c1;:::;ke1 � � � ek

�
mod m2

e

�
D c˛;ˇ2dıe˛Cˇ ;

that is in short Œe˛; eˇ � D 2 dı c˛;ˇ e˛Cˇ . Now, from the last identity, we compute

�
�
Œe˛; eˇ �

�
D �.2dı Nc˛;ˇe˛Cˇ / D 2dı Nc˛;ˇ�.e˛Cˇ / D 2dı Nc˛;ˇ Le˛Cˇ (6.9)

by definition of �. On the other hand, we have also�
�.e˛/; �.eˇ /

�
D ŒLe˛; Leˇ � D 2d˛2dˇ Œe˛; eˇ � D 2d˛2dˇc˛;ˇ e˛Cˇ D 2dıc˛;ˇ Le˛Cˇ

comparing this with (6.9) eventually gives �.Œe˛; eˇ �/ D Œ�.e˛/; �.eˇ /�, q.e.d.
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Acting in the same way, one finds also that

Œki � 1; e˛ � D
�
¹ki � 1; e˛º mod m2

e

�
D
��
.q � 1/�1

�
.Ki � 1/ xE˛ � xE˛.Ki � 1/

�
mod .q � 1/ zUq.g/

�
mod m2

e

�
D
��
.dCi;˛/q

xE˛Ki mod .q � 1/ zUq.g/
�

mod m2
e

�
D .dCi;˛e˛ki mod m2

e/ D d
C

i;˛e˛;

where dCi;˛ WD C
P
j2I bij cj with ˛ D

P
j2I cj j̨ , so in the end

Œki � 1; e˛ � D d
C

i;˛e˛ 8i 2 I; ˛ 2 ˆC: (6.10)

Similarly, one finds also that

Œli � 1; e˛ � D d
�
i;˛e˛ 8i 2 I; ˛ 2 ˆC (6.11)

with d�i;˛ WD �
P
j2I bj icj for ˛ D

P
j2I cj j̨ . Likewise, parallel formulas to (6.10) and

(6.11) hold true when the e˛’s are replaced by the f˛’s.
Finally, comparing the Lie brackets (inside me=m

2
e) given explicitly in (6.10) and

(6.11), and the similar ones where the f ’s are replaced by the e ’s, with the analogue
brackets inside QgB of the corresponding elements through the map � as given in Claim
6.2.9, one easily sees that the latter map is indeed a Lie algebra morphism. In addition,
it is invertible because it maps a basis to a basis. Moreover, this is also an isomorphism
of Lie bialgebras because the formulas for the Lie cobracket do correspond on either side
on all elements of the forms ei , fi , ki � 1, and li � 1 (with i 2 I ), which is enough to
conclude—cf. Remarks 2.3.2. In fact, this is again a matter of bookkeeping: for instance,
writing m

Œ2�
˝ WD me ˝m2

e Cm2
e ˝me , one has

ı. ei / D
��
�.ei / ��

op.ei /
�

mod m
Œ2�
˝

�
D
��
.�. xEi / ��

op. xEi // mod .q � 1/ zUq.g/
˝2
�

mod m
Œ2�
˝

�
D
���
.Ki � 1/˝ xEi � xEi ˝ .Ki � 1/

�
mod .q � 1/ zUq.g/

˝2
�

mod m
Œ2�
˝

�
D
��
.ki � 1/˝ ei � ei ˝ .ki � 1/

�
mod m

Œ2�
˝

�
D .ki � 1/˝ ei � ei ˝ .ki � 1/

which means ı.ei /D .ki � 1/˝ ei � ei ˝ .ki � 1/. Through the formulas given in Claim
6.2.9, this last identity corresponds to ı.Qei /D Pki˝Qei � Qei˝Pki given in Definition 2.3.1 (b)
for QgB . Likewise, it holds for the other cases.

7. Specialization of MpQGs at roots of unity

In this section, we study MpQGs for which all parameters qi i are roots of unity. Once
again, this amounts to requiring q itself to be a root of unity, or just 1. As we already
considered the case q D 1, we assume this root to be different from 1 itself.
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7.1. Specialization at roots of unity

Let again Rq and RB
q be fixed as in Section 6.1; fix also a positive, odd integer ` which is

coprime with all the di ’s (i 2 I ) given in Section 6.1, and let p`.x/ be the `-th cyclotomic
polynomial in ZŒx�. We consider the special element q 2Rq and the quotient ring Rq;" WD

Rq=p`.q/Rq, and we call " the image of q in Rq;".
By construction, the ring Rq;" is generated by invertible elements "˙1ij each of whom

is the image in Rq;" of the corresponding generator q˙1ij of Rq; since "`i i D 1 for all i , all
these generators only obey the relations ."˙1ij "

˙1
ji /

` D 1. We denote by "˛ the element in
Rq;" defined like in Section 3.2 but for using the "ij ’s instead of the q˙1ij ’s, so that "˙1˛
is nothing but the image in Rq;" of q˙1˛ 2 Rq. Finally, Rq;" is an Rq-algebra by a scalar
restriction via the canonical epimorphism Rq � Rq;".

Replacing Rq with RB
q everywhere, we set RB

q;" WDRB
q =p`.q/R

B
q , for which we use

again such notation as ", "ij , etc., noting, in addition, that now "ij D "
bij . Then the natural

epimorphism Rq � RB
q yields a similar one Rq;"� RB

q;".
Furthermore, it is worth stressing that the isomorphism RB

q Š ZŒq; q�1� induces in
turn

RB
q;" Š ZŒq; q�1�=p`.q/ZŒq; q

�1� DW ZŒ"�;

the latter being the ring extension of Z by any (formal) primitive `-th root of unity ".
Similarly, we define R

p

q;" WD R
p

q =p`.q
1=2/R

p

q and denote by "1=2, "1=2ij , etc., the

image of q1=2, q1=2ij , etc., in R
p

q;" ; and the same applies for

R
B;
p

q;" WD RB;
p

q =p`.q
1=2/RB;

p

q ;

for which we have, in addition, R
B;
p

q;" ŠZŒ"1=2�, where "1=2 is again a primitive `-th root
of unity. The projection R

p

q � R
B;
p

q induces an epimorphism R
p

q;" � R
B;
p

q;" , while
the embeddings Rq ,! R

p

q and Rq;" ,! R
p

q;" induce embeddings RB
q ,! R

B;
p

q and
RB

q;" ,! R
B;
p

q;" , respectively. In addition, for the last map the following holds.

Lemma 7.1.1. The morphism RB
q;" ,! R

B;
p

q;" , given by "˙1 7! ."˙1=2/2, is an isomor-
phism whose inverse R

B;
p

q;" ,� RB
q;" is given by "˙1=2 7! "˙.`C1/=2.

We introduce now the “specialization at q D "” of the integral forms PyUq.g/, yUq.g/,
and zUq.g/—over the ring RB

q or Rq—of our MpQGs Uq.g/.

Definition 7.1.2. (a) Let q be a multiparameter matrix of Cartan type: given zUq.g/ over
the ground ring Rq, we call specialization of zUq.g/ at q D " the quotient

zUq;".g/ WD zUq.g/=p`.q/ zUq.g/ Š Rq;" ˝Rq
zUq.g/

endowed with its natural (quotient) structure of Hopf algebra over Rq;".



G. A. García and F. Gavarini 906

(b) Let q, in addition, be of integral type—hence RB
q D ZŒq; q�1�. Then:

(b.1) given zUq.g/ over the ground ring RB
q , we call specialization of zUq.g/ at q D "

the quotient

zUq;".g/ WD zUq.g/=p`.q/ zUq.g/ Š RB
q;" ˝RB

q
zUq.g/

endowed with its natural (quotient) structure of Hopf algebra over RB
q;";

(b.2) we call specialization of PyUq.g/ at q D " the quotient

PyUq;".g/ WD
PyUq.g/=p`.q/

PyUq.g/ Š RB
q;" ˝RB

q

PyUq.g/

endowed with its natural (quotient) structure of Hopf algebra over RB
q;";

(b.3) if q is of strongly integral type, we call specialization of yUq.g/ at q D " the
quotient

yUq;".g/ WD yUq.g/=p`.q/ yUq.g/ Š RB
q;" ˝RB

q
yUq.g/

endowed with its natural (quotient) structure of Hopf algebra over RB
q;".

Note that, using the isomorphism R
B;
p

q;" Š RB
q;" of Lemma 7.1.1, all the above-

mentioned specializations of MpQGs at q D " can be also considered as Hopf algebras
over the ring R

B;
p

q;" , by scalar extension; hereafter we shall freely do that.

The above definitions and our results in Section 5 yield the following.

Theorem 7.1.3. The PBW bases (over Rq or RB
q ) of zUq.g/, resp. of PyUq.g/, resp. of

yUq.g/—cf. Theorems 5.2.13 and 5.3.3—yield, through the specialization process, similar
PBW-bases (over Rq;" or RB

q;") of zUq;".g/, resp. of PyUq;".g/, resp. of yUq;".g/.

Basing on the remark at the end of Definition 7.1.2, consider now both zUq;".g/ and
zULq;".g/ as algebras over R

B;
p

q;" . Let �" be the unique 2-cocycle of zULq;".g/ naturally
induced by the 2-cocycle � of zULq.g/ as given in Definition 3.2.1; that is,

�" W zULq;".g/˝ zULq;".g/! Rq;"

is the unique Rq;"-linear map given by

�".x; y/ WD "
1=2
�� if x D K� or x D L�; and y D K� or y D L�

and �".x; y/ WD 0 otherwise. The results in Section 5 then lead us to the following.

Theorem 7.1.4. Let q be a multiparameter matrix of Cartan type.Then the following hold.

(a) The Hopf Rq;"-algebra zUq;".g/ is a 2-cocycle deformation of zULq;".g/, namely
zUq;".g/ Š . zULq;".g//�" .

(b) Assume that q is of integral type; then the Hopf RB
q;"-algebra zUq;".g/ is a 2-

cocycle deformation of zULq;".g/, namely zUq;".g/ Š . zULq;".g//�" .
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Proof. Directly from definitions along with Proposition 5.3.2, we get claim (a) from

zUq;".g/ D Rq;" ˝Rq
zUq.g/ D Rq;" ˝Rq

�
zULq.g/

�
�

D
�
Rq;" ˝Rq

zULq.g/
�
�"
D
�
zULq;".g/

�
�"

and likewise we prove claim (b) as well.

7.2. Quantum Frobenius morphisms for MpQGs

When dealing with uniparameter quantum groups, the so-called “quantum Frobenius mor-
phisms” set a strong link between specializations of these quantum groups (either re-
stricted or unrestricted) at 1 and specializations at roots of unity.

When one chooses the restricted and the unrestricted integral forms, these quantum
Frobenius morphisms (for uniparameter quantum groups) look as

cF r` W yU".g/� ZŒ"�˝Z yU1.g/ (restricted case)

and fF r` W ZŒ"�˝Z zU1.g/ ,! zU".g/ (unrestricted case);

where

ZŒ"� WD ZŒq; q�1�=p`.q/ZŒq; q
�1�; yUs.g/ WD yUq.g/=

�
p`.q/ yUq.g/

�
;

and similarly also

zUs.g/ WD zUq.g/=
�
p`.q/ zUq.g/

�
; for s 2 ¹1; "º:

Roughly speaking, cF r` is given by taking “`-th roots” of algebra generators of yU".g/,
namely quantum divided powers and quantum binomial coefficients, while (dually, in a
sense) fF r` is given by raising to the “`-th power” the algebra generators of zU".g/, i.e.,
quantum root vectors and toral generators.

In the present subsection, we shall show that similar quantum Frobenius morphisms
do exist for MpQGs as well, with a similar description.

7.2.1. Quantum Frobenius morphisms in the restricted case. We start by considering
quantum Frobenius morphisms in the restricted case, i.e., for the specializations at roots of
unity of PyUq.g/ and yUq.g/. Like in the uniparameter case, they will map any specialization
at a root of unity " onto a specialization at 1.

The following provides our quantum Frobenius morphisms for restricted MpQGs.

Theorem 7.2.1. Let q WD .qij /i;j2I be a multiparameter matrix of integral type. Then
there exists a Hopf algebra epimorphism (over RB

q;" Š ZŒ"�)

PcF r` W PyUq;".g/� RB
q;" ˝RB

q;1

PyUq;1.g/ Š ZŒ"�˝Z UZ. PgB/ (7.1)
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(cf. Theorem 6.2.3 (a)) given on generators by

E
.n/
i 7!

´
e.n=`/i if `

ˇ̌
n;

0 if 6̀
ˇ̌
n;

F
.n/
i 7!

´
f.n=`/i if `

ˇ̌
n;

0 if 6̀
ˇ̌
n;

(7.2)

�
Ki I c

n

�
"

7!

8<:
�PkiCc
n=`

�
if `

ˇ̌
n;

0 if 6̀
ˇ̌
n;

�
Li I c

n

�
"

7!

8<:
�PliCc
n=`

�
if `

ˇ̌
n;

0 if 6̀
ˇ̌
n;

(7.3)

�
Gi I c

n

�
"i i

7!

´ �hiCc
n=`

�
if `

ˇ̌
n;

0 if 6̀
ˇ̌
n;

K˙1i 7! 1; L˙1i 7! 1: (7.4)

Moreover, the image Im. PcF r`/ is co-central in RB
q;" ˝RB

q;1

PyUq;1.g/, that is

.� ��op/.u/ 2 Ker. PcF r`/˝ Ker. PcF r`/ for all u 2 PyUq;".g/: (7.5)

In addition, when q is of strongly integral type, there exists yet another Hopf algebra
epimorphism (over RB

q;" Š ZŒ"�)

cF r` W yUq;".g/� RB
q;" ˝RB

q;1
yUq;1.g/ Š ZŒ"�˝Z UZ. OgB/ (7.6)

(cf. Theorem 6.2.3 (b)) for which similar properties and a similar description hold true
with each

�Lj Ic
lj

�
"
, resp.

�Kj Ic
kj

�
"
, replaced by

�Lj Ic
lj

�
"j

, resp.
�Kj Ic
kj

�
"j

.

Proof. We present the proof for PcF r` and PyUq;".g/, the rest being similar.

By Theorem 5.2.10 (a), we have a presentation of PyUq;" WD
PyUq;".g/ by generators and

relations. Then this also yields a similar presentation for

RB
q;" ˝RB

q;1

PyUq;1.g/;

which is isomorphic to ZŒ"�˝Z UZ. PgB/ as a Hopf algebra, by Theorem 6.2.3 (a). Now, a
moment’s check shows that under the prescriptions given in the claim each relation in the
presentation of PyUq;" is mapped by PcF r` onto either a similar relation in PyUq;1 or zero, hence
they do provide a well-defined algebra morphism as required.

To show what happens in a specific example, let us consider the relations

E
.m/
i F

.n/
i D

m^nX
sD0

F
.n�s/
i qsi i

�
Gi I 2s �m � n

s

�
qi i

LsiE
.m�s/
i 8m; n 2 N

for every index i , holding true in PyUq (cf. Theorem 5.2.10). By specialization, these yield
in PyUq;" the relations

E
.m/
i F

.n/
i D

m^nX
sD0

F
.n�s/
i "si i

�
Gi I 2s �m � n

s

�
"i i

LsiE
.m�s/
i .m; n 2 N/ (7.7)
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and likewise in PyUq;1 Š UZ. PgB/ the relations (cf. Definition 6.2.1 and Theorem 6.2.3)

e.m/i f.n/i D
m^nX
sD0

f.n�s/i

�
hi C .2s �m � n/

s

�
e.m�s/i .m; n 2 N/; (7.8)

where one uses a bit of arithmetic of p-binomial coefficients (namely, the sixth line iden-
tity in the list of Lemma 5.2.1) and of (classical) binomial coefficients to realize that
specializing

�
Gi I2s�m�n

s

�
qi i

at q D 1 eventually yields
�hiC.2s�m�n/

s

�
.

Now, a moment’s thought shows that if in the left-hand side of (7.7) eitherm or n is not
divisible by `, then for each summand in the right-hand side all of .n� s/, s, and .m� s/
are not divisible either; hence our prescriptions for PcF r` actually do map both sides of
(7.7) to zero. If instead both m and n are divisible by `, then there are also summands
in the right-hand side for which all of .n � s/, s, and .m � s/ are divisible as well; more
explicitly, if m D h` and n D k`, say, then the “relevant” summands on the right-hand
side are exactly those with index s D r` for all r 2 ¹0; 1; : : : ; h ^ kº. In this case, our
prescriptions for PcF r` map the left-hand side of (7.7) to e.m=`/i f.n=`/i D e.h/i f.k/i and the
right-hand side to

h^kX
rD0

f..k`�r`/=`/i

�
hi C .2r` � h` � k`/=`

r`=`

�
e..h`�r`/=`/i

D

h^kX
rD0

f.k�r/i

�
hi C .2r � h � k/

r

�
e.h�r/i ;

where the right-hand side is equal to e.h/i f.k/i , by (7.8) for m WD h and n WD k.

Therefore, the given formulas do provide a well-defined morphism of algebras PcF r` as
required. By construction PcF r` is clearly onto, as the generators of

RB
q;" ˝RB

q;1

PyUq;1.g/ Š ZŒ"�˝Z UZ. PgB/

are the images via PcF r` of the corresponding generators of PyUq.

Finally, we must prove that PcF r` is also a Hopf algebra morphism and that its image is
co-central. This follows from the uniparameter case, as the coalgebra structure of the inte-
gral form of these MpQGs (cf. Theorem 5.2.10 (a) and [23, Proposition 6.4]) is the same
as in the canonical case (the cocycle deformation process does not change the coalgebra
structure), and our quantum Frobenius morphism is described by the same formulas.

7.2.2. The unrestricted case: quantum Frobenius morphisms for zUq.g/. In the unre-
stricted case, i.e., that of zUq.g/, quantum Frobenius morphisms, in comparison with the
restricted case, “go the other way round”. Indeed, like in the uniparameter case, we shall
find them mapping the specialization at 1 (of the given unrestricted integral form of an
MpQG) into any specialization at a root of unity ".
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The very construction of such quantum Frobenius morphisms requires some prepara-
tion. Mimicking what was found in [24] for the canonical case, the first ingredient is the
subalgebra of zUq;".g/ generated by the `-th powers of its generators.

Definition 7.2.2. We define Z0 to be the Rq;"-subalgebra

Z0 WD h Nf
`
˛ ; l

˙`
i ; k˙`i ; Ne`˛i˛2Q; i2I

of zUq;".g/ generated by the `-th powers of the generators of zUq;".g/.

N.B.: the original definition of Z0 given in [24, Chapter 5, Section 19.1] reads differ-
ent, but it is also proved—still in [loc. cit.]—to be equivalent to the one given above.

The main properties of Z0 were investigated in [10, Section 4], with a slightly more
general approach. The main outcome reads as follows:

Proposition 7.2.3 (cf. [10, Section 4]). (a)Z0 is "-central in zUq;".g/, i.e., for each mono-
mial b in a PBW basis of zUq;".g/ as in Theorem 7.1.3 and each generator

z 2 ¹ Nf `˛ ; l
˙`
i ; k˙`i ; Ne`˛º˛2Q; i2I

of Z0, there exists a (Laurent) monomial mz;b."˙`/ in the "˙`ij ’s such that

zb D mz;b."
˙`/bz:

In particular, when q is of integral type, Z0 is central, hence normal, in zUq;".g/.
(b) Z0 is a Hopf subalgebra of zUq;".g/, which is isomorphic as an algebra over Rq;"

to a partially Laurent "-polynomial algebra; namely

Z0 Š Rq;"
�
¹f `˛ ; l

˙`
i ; k˙`i ; e`˛º

i2I
˛2ˆC

�
;

where the indeterminates "-commute (notation as in Section 6.2) among them, i.e.,

f `˛0f
`
˛00 D "

`2

˛00˛0f
`
˛00f

`
˛0 ; e`˛0f

`
˛00 D f

`
˛00e

`
˛0 ;

e`˛0e
`
˛00 D "

`2

˛0˛00e
`
˛00e

`
˛0 ; k˙`i e`˛ D "

˙`2

˛i˛
e`˛k
˙`
i ;

l˙`i e`˛ D "
�`2

˛˛i
e`˛l
˙`
i ; k˙`i f `˛ D "

�`2

˛i˛
f `˛ k

˙`
i ;

l˙`i f `˛ D "
˙`2

˛˛i
f `˛ l

˙`
i ; k˙`i k˙`j D k˙`j k˙`i ;

k˙`i l˙`j D l˙`j k˙`i ; k˙`i k˙`j D k˙`j k˙`i :

In particular, if q is of integral type—hence Rq;" D ZŒ"�—then zUq;".g/ is a commutative
Hopf algebra of partially Laurent polynomials.

(c) zUq;".g/ is a free (left or right) Z0-module of rank `dim.g/.

Proof. Almost everything is proved in [10, Section 4], so we just stress a single detail
concerning claim (c). Indeed, Proposition 4.1 in [10] yields claim (b) as well as (c), but
for the latter the involved coefficients read differently: for instance one has f `˛0f

`
˛00 D

"`˛00;`˛0f
`
˛00f

`
˛0 . But the symbol "˛;ˇ is bimultiplicative in ˛ and ˇ—i.e., it is a bicharacter

on Q �Q—hence "`˛00;`˛0 D "`
2

˛00˛0 , and we are done.
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We shall now compare the subalgebra Z0, a sub-object inside zUq;".g/, which is the
specialisation of zUq.g/ at q D ", with the specialization at q D 1, that is zUq;1.g/. This
leads to find a special morphism, which we call quantum Frobenius morphism for zUq.g/,
which links zUq;1.g/ with zUq;".g/—once again generalizing what occurs in the uniparam-
eter case. In order to formalize this, we need to make zUq;1.g/ into a Hopf algebra over
Rq;", so that we can compare it with zUq;".g/.

Let us consider the unique ring embedding

Rq;1 ,! R
p

q;" .Š Rq;"/; y˙1ij 7! "`
2

ij

�
Š ."

˙1=2
ij /2`

2�
; (7.9)

where in the right-hand side we take into account the isomorphism R
p

q;" ŠRq;" given by
Lemma 7.1.1; we use this embedding to perform a scalar extension from Rq;1 to Rq;" for
zUq;1.g/, so to make Rq;" ˝Rq;1

zUq;1.g/ into a (Hopf) algebra over Rq;".
Besides, recall—from Proposition 4.1.1—that for any ˛ 2 ˆC, there exists suitable

(Laurent) monomials mC˛ .q˙1=2/ and m�˛ .q˙1=2/ in the q˙1=2ij ’s such that

E˛ D m
C
˛ .q

˙1=2/ LE˛; F˛ D m
�
˛ .q
˙1=2/ LF˛;

where LE˛ , resp. LF˛ , is the quantum root vector associated with ˛ 2 ˆC, resp. �˛ 2 ˆ�,
in ULq.g/, and E˛ , resp. F˛ , is the similar vector in Uq.g/ D .ULq.g//� .

As a direct consequence, we have similar relations among quantum root vectors in
zUq;1.g/ D .Rq;1 ˝ZŒq;q�1�

zULq;1.g//� and zUq;".g/ D .Rq;" ˝ZŒ";"�1�
zULq;".g//� ; namely

Ne˛ D m
C
˛ .y
˙1=2/ LNe˛; Nf˛ D m

�
˛ .y
˙1=2/ LNf˛ in zUq;1.g/; (7.10)

and
Ne˛ D m

C
˛ ."
˙1=2/ LNe˛; Nf˛ D m

�
˛ ."
˙1=2/ LNf˛ in zUq;".g/: (7.11)

Our main result in this subsection is the existence of quantum Frobenius morphisms
for unrestricted MpQGs, that are the monomorphisms mentioned below:

Theorem 7.2.4. There exists a Hopf algebra monomorphismfF r` W Rq;" ˝Rq;1
zUq;1.g/ ,! zUq;".g/

uniquely determined (still identifying R
p

q;" Š Rq;") for all ˛ 2 ˆC, i 2 I , by

Nf˛ 7!m�˛ ."
˙1=2/`

2�` Nf `˛ ; l˙1i 7! l˙`i ; k˙1i 7! k˙`i ; Ne˛ 7!mC˛ ."
˙1=2/`

2�`
Ne`˛ (?)

whose image is the "-central Hopf subalgebra Z0 of zUq;".g/; as a consequence, the Hopf
algebra Z0 itself is isomorphic to Rq;" ˝Rq;1

zUq;1.g/.
In particular, when q is integral, the morphism fF r` is described by the simpler for-

mulas (for all ˛ 2 ˆC, i 2 I )

Nf˛ 7! Nf `˛ ; l˙1i 7! l˙`i ; k˙1i 7! k˙`i ; Ne˛ 7! Ne
`
˛:
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Proof. To begin with, the morphism in (7.9) maps every y˙1=2
˛;ˇ

2 R
p

q;1 Š Rq;1 into the
corresponding "˙`

2=2

˛;ˇ
2 R

p

q;" Š Rq;". Moreover, for q D Lq the analysis in [24] yields
a (“quantum Frobenius”) morphism fF r_

`
W zULq;1.g/ ,! zULq;".g/ of Hopf algebras which

is determined by the formulas given for the integral case in the above statement when
Nf˛ D

LNf˛ , etc., that is fF r_
`
. LNf˛/ D

LNf `˛ and so on; in particular, this fF r_
`

preserves the
coproduct.

Now, extending scalars, we obtain yet another Hopf algebra monomorphismfF r` W Rq;" ˝ZŒq;q�1�
zULq;1.g/ ,! Rq;" ˝ZŒ";"�1�

zULq;".g/

that fits into the commutative diagram

zULq;1.g/
� � eF r_

` //

_�

��

zULq;".g/
� _

��

Rq;1 ˝ZŒq;q�1�
zULq;1.g/

_�

��

Rq;" ˝Rq;1

�
Rq;1 ˝ZŒq;q�1�

zULq;1.g/
�
�� eF r` // Rq;" ˝ZŒ";"�1�

zULq;".g/

Let us check that fF r` satisfies the equalities in (?). First, as by (7.10) we have Ne˛ D
mC˛ .y˙1=2/ LNe˛ , we find that

fF r`. Ne˛/ D fF r`�mC˛ .y˙1=2/ LNe˛� D mC˛ ."˙1=2/`2fF r`. LNe˛/
D mC˛ ."

˙1=2/`
2fF r_` . LNe˛/ D mC˛ ."˙1=2/`2 LNe`˛

D mC˛ ."
˙1=2/`

2

mC˛ ."
˙1=2/�` Ne`˛ D m

C
˛ ."
˙1=2/`

2�`
Ne`˛;

thanks to (7.11); i.e., fF r`. Ne˛/ D mC˛ ."˙1=2/`2�` Ne`˛ for every root vector Ne˛ in zUq;1.g/.
Similarly, one finds that fF r`. Nf˛/ D m�˛ ."˙1=2/`2�` Nf `˛ when dealing with the Nf˛’s, andfF r`.l˙1i / D l˙`i ; fF r`.k˙1i / D k˙`i for all i 2 I:

Now recall that we have identifications of coalgebras

zUq;1.g/ D
�
Rq;1 ˝ZŒq;q�1�

zULq;1.g/
�
�1
; zUq;".g/ D

�
Rq;" ˝ZŒ";"�1�

zULq;".g/
�
�"
;

hence the monomorphism fF r` defines also a monomorphism of coalgebras—over
Rq;"—from Rq;" ˝Rq;1

zUq;1.g/ to zUq;".g/. To prove that fF r` is also a Hopf algebra
morphism, it is enough to prove thatfF r`.x ��1 y/ D fF r`.x/ ��" fF r`.y/
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for all x, y in Rq;" ˝ZŒq;q�1�
zULq;1.g/. This in turn follows from the fact that

�"
�fF r`.x/;fF r`.y/� D �1.x; y/ for all x; y 2 Rq;" ˝ZŒq;q�1�

zULq;1.g/ (7.12)

which can be checked by direct computation with x and y being generators of zULq;1.g/
and using the ring embedding (7.9); for example, one has

�"
�fF r`.ki /;fF r`.kj /� D �"�k`i ; k`j � D "`2=2ij D y

1=2
ij D �1.ki ; kj / for all i; j 2 I:

In fact, from (7.12) we get

fF r`.x ��1 y/
D fF r`��1.x.1/; y.1//x.2/y.2/��11 .x.3/; y.3//

�
D �1.x.1/; y.1//fF r`.x.2//fF r`.y.2//��11 .x.3/; y.3//

D �"
�fF r`.x/.1/;fF r`.y/.1/�fF r`.x/.2/fF r`.y/.2/��1" �fF r`.x/.3/;fF r`.y/.3/�

D fF r`.x/ ��" fF r`.y/I
thus the proof is completed.

7.3. Small multiparameter quantum groups

In the study of uniparameter quantum groups, a relevant role is played by the so-called
“small quantum groups”. These are usually introduced as Hopf subalgebras of the re-
stricted quantum groups at roots of unity; nonetheless, they can also be realized as Hopf
algebra quotients of the unrestricted quantum groups at roots of unity. In this subsection,
we extend their construction to the multiparameter context.

7.3.1. Small MpQGs: the “restricted realization”. Let q be a multiparameter of inte-
gral type, hence possibly of strongly integral type. Correspondingly, we consider the
restricted MpQGs PyUq;" and yUq;" at a root of unity ", like in Section 7.1. Inside them,
we consider the following subalgebras, defined by generating sets:

POuq;" D POuq;".g/ WD

�
F
.n/
i ; L˙1i ;

�
Li

n

�
"

; K˙1i ;

�
Ki

n

�
"

; E
.n/
i

�0�nˆ`

i2I

(7.13)

as an Rq;"-subalgebra of PyUq;" D
PyUq;".g/, when q is integral, and

Ouq;" D Ouq;".g/ WD

�
F
.n/
i ; L˙1i ;

�
Li

n

�
"i

; K˙1i ;

�
Ki

n

�
"i

; E
.n/
i

�0�nˆ`

i2I

(7.14)

as an Rq;"-subalgebra of yUq;"D yUq;".g/, when q is strongly integral. Similarly, one defines
POu˙q;", POu

˙;0
q;" , POu0q;", POu

�
q;", and POu�q;" inside POuq;", and similarly Ou˙q;", Ou

˙;0
q;" , etc., inside Ouq;", just

mimicking Definition 5.2.9 but working inside PyUq or yUq, respectively, and imposing the
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restriction “n ˆ `” everywhere. All these objects will be called “restricted small multipa-
rameter quantum (sub)groups”.

Note that for q D Lq the canonical multiparameter, the small quantum group OuLq;" is a
quantum double version of the one-parameter small quantum group by Lusztig.

Our first result is a structural one:

Theorem 7.3.1. For any q of integral type, POuq;" is a Hopf RB
q;"-subalgebra of PyUq;" D

PyUq;".g/. In addition, if q of strongly integral type, then Ouq;" is a Hopf RB
q;"-subalgebra of

yUq;" D yUq;".g/. Moreover, POuq;" admits a presentation by generators and relations that is
the same as in Theorem 5.2.10 (with q specialized to ") but for the bound on generators—
i.e., they must have 0 � n ˆ ` as in (7.13)—and for the additional relations

X
.n/
i X

.m/
i D 0;

�
M I c

n

�
"

�
M I c � n

m

�
"

D 0 8n;m ˆ ` W nCm � ` (7.15)

for all X 2¹F; Eº, M 2¹K; Lº, c2Z. Similar statements hold true for all the other re-
stricted small MpQGs, namely POu˙q;", POu

˙;0
q;" , POu0q;", POu

�
q;", and POu�q;", and—in the strongly

integral case— Ouq;", Ou˙q;", Ou
˙;0
q;" , Ou0q;", Ou

�
q;", and Ou�q;".

Proof. The claim follows from the very definitions together with Theorem 5.2.10—noting
in particular that all relations between generators given there do “fit properly” with the
bound n ˆ ` on generators of the small MpQG. In particular, the additional relations in
(7.15) are a direct consequence of the relations

X
.n/
i X

.m/
i D

�
nCm

n

�
qi i

X
.nCm/
i ;

�
M I c

n

�
q

�
M I c � n

m

�
q

D

 
nCm

n

!
q

�
M I c

nCm

�
q

(for all X 2 ¹F; Eº, M 2 ¹K;Lº, and c 2 Z) holding true in our restricted MpQGs for
every n;m 2 N, that for n;m ˆ ` such that nCm � ` yield (7.15) because then�

nCm

n

�
qi i

D 0 and
�
nCm

n

�
q

D 0 for q D ":

Similarly, the result about the Hopf structure follows from the explicit formulas for
the coalgebra structure of PyUq.g/ or yUq.g/ coming from Lemma 5.2.8.

Our second result yields triangular decompositions for restricted small MpQGs:

Proposition 7.3.2 (triangular decompositions for restricted small MpQGs). The multipli-
cation in POuq;" provides RB

q;"-module isomorphisms

POu�q;" ˝
Rq;"

POu0q;" Š
POu�q;" Š

POu0q;" ˝
Rq;"

POu�q;";
POuCq;" ˝

Rq;"

POu0q;" Š
POu�q;" Š

POu0q;" ˝
Rq;"

POuCq;";

POuC;0q;" ˝
Rq;"

POu�;0q;" Š
POu0q;" Š

POu�;0q;" ˝
Rq;"

POuC;0q;" ;
POu�q;" ˝

Rq;"

POu�q;" Š
POuq;" Š POu

�
q;" ˝

Rq;"

POu�q;";

POuCq;" ˝
Rq;"

POu0q;" ˝
Rq;"

POu�q;" Š
POuq;" Š POu

�
q;" ˝

Rq;"

POu0q;" ˝
Rq;"

POuCq;"

and similarly with “ POu” replaced by “ Ou” if q is strongly integral.
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Proof. This is proved like for restricted MpQGs: one observes that the presentation of
(restricted) small MpQGs given in Theorem 7.3.1 above presents the same special features
that were exploited for the proof of Proposition 5.2.12, so the same arguments apply again.
A quicker argument is the following: the isomorphisms of Proposition 5.2.12 restrict to
maps for small quantum groups which are linear isomorphisms by Theorem 7.3.1.

The third result is a PBW-like theorem for these restricted small MpQGs:

Theorem 7.3.3 (PBW theorem for restricted small MpQGs). Every restricted small
MpQG is a free RB

q;"-module with an RB
q;"-basis the subset of a PBW basis—as given in

Theorem 5.2.13—of the corresponding specialized restricted MpQG made by those PBW-
like monomials in which the degree of each factor is less than `. For instance, POuq;" has an
RB

q;"-basis² 1Y
kDN

F
.fk/

ˇk

Y
j2I

�
Lj

lj

�
q

Lj
�blj =2c

Y
i2I

�
Gi

gi

�
qi i

Gi
�bgi=2c

NY
hD1

E
.eh/

ˇh
j 0� fk ; lj ;gi ; eh < `

³
and similarly holds for POu˙q;", POu

˙;0
q;" , POu0q;", POu

�
q;", and POu�q;", as well as—in the strongly integral

case—for Ouq;", Ou˙q;", Ou
˙;0
q;" , Ou0q;", Ou

�
q;", and Ou�q;".

Proof. First we discuss the case of POuCq;", whose “candidate” RB
q;"-basis is the set of “trun-

cated” (ordered) PBW monomials

BCq WD

² NY
hD1

E
.eh/

ˇh
j 0 � e1; : : : ; eN < `

³
:

In the canonical case q D Lq, the required property (i.e., BCq is an RB
q;"-basis of POuCq;")

is proved by Lusztig (cf. [45] and references therein). For general q, we deduce the claim
from the canonical case, arguing like in the proof of Theorem 5.2.13 (a).

Let us consider a quantum root vector Eˇ for ˇ 2 ˆC in POuCq;", coming (through spe-
cialization) from the same name quantum root vector in PyUCq . We want to prove that

E
.n/

ˇ
2 POuCq;" for all 0 � n < `:

Indeed, once we have E.n/
ˇ
2 POuCq;" for all ˇ 2 ˆC and 0 � n < `, we argue that all of

� WD SpanRq;".B
C
q / is included in POuCq;".

Let us resume notation as in Section 4.4.1. As we said, the claim being true in the
canonical case implies EL�.n/

ˇ
2 POuC

Lq;", so that EL�.n/
ˇ

can be written as a non-commutative
polynomial—with coefficients in RB

q;"—in the EL�.c/i ’s with i 2 I and c < `, say

E
L�.n/

ˇ
D P

�
¹E
L�.c/
i ºi2I;c<`

�
: (7.16)

Now, the formulas in Section 4.4.1 tell us that E�.n/
ˇ
D ."1=2/zˇE

L�.n/

ˇ
and

E
�.s1/
i1
�E

�.s2/
i2
� � � � �E

�.sk/
ik

D ."1=2/zi ;sE
L�.s1/
i1
L�E
L�.s2/
i2
L� � � � L�E

L�.sk/
ik

(7.17)
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for some zˇ ; zi ;s 2 Z—with ˇ 2 ˆC, k 2 N, i WD .i1; i2; : : : ; ik/ 2 I
k , and s WD

.s1; s2; : : : ; sk/ 2 Nk—where "1=2 arises as specialization of q1=2 but identifies with
".`C1/=2 2 RB

q;". These identities together with (7.16) lead us in turn to write

E
�.n/

ˇ
D P�

�
¹E
�.c/
i ºi2I;c<`

�
;

where P� is again a non-commutative polynomial in the E�.c/i ’s with coefficients in RB
q;",

so that E�.n/
ˇ
2 POuCq;", q.e.d.

We have seen above that

�q WD SpanRq;".B
C
q / �

POuCq;";

now we prove the converse. First of all, by construction, POuCq;" is spanned over Rq;" by
monomials in the E.n/i ’s of the form

E
�.s/

i WD E
�.s1/
i1
�E

�.s2/
i2
� � � � �E

�.sk/
ik

that can also be re-written as E�.s/i D."1=2/zi ;sE
L�.s1/
i1
L�E
L�.s2/
i2
L� : : : L�E

L�.sk/
ik
DW."1=2/zi ;sE

L�.s/

i —
with notation as above; we aim to prove that each such E�.s/i belongs to �q, as this will
then entail at once that POuCq;" � �q. The claim is true in the canonical case, so EL�.s/i 2

POuCq;" D �Lq, hence EL�.s/i expands as

E
L�.s/

i D

X
E
L�.c/
˛ 2B

C

Lq

�cE
L�.c/
˛

for suitable �c 2 RLq;" D RB
q;". Using (7.17) again, we get

E
�.s/

i D

X
E
�.c/
˛ 2BCq

."1=2/zc�cE
�.c/
˛

for suitable zc 2 Z, so that E�.s/i 2 �Lq, q.e.d.

Just like for POuCq;", the same arguments prove that the claim is true for POu�q;" as well.
As to POu�;0q;" , POuC;0q;" , and POu0q;", the claim follows at once from the analogous PBW theorem

for PyU 0q;", together with the relations�
M I c

n

�
"

�
M I c � n

m

�
"

D 0

for all n;m ˆ ` such that nCm � ` when M 2 ¹Ki ; Liºi2I (cf. Theorem 7.3.1).
Finally, the claim for POu�q;", for POu�q;", and for POuq;" follows from the previous results

together with triangular decompositions (cf. Proposition 7.3.2).
The cases where “ POu” is replaced by “ Ou” are treated similarly.
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Note. From now on, for the rest of the present discussion of restricted small MpQGs, we
extend our ground ring from RB

q;" D ZŒ"� to Q", the latter being the `-th cyclotomic field
over Q—i.e., the field extension of Q generated by a primitive `-th root of unity ". Thus,
all our MpQGs at a root of unity will be considered—via a scalar extension from RB

q;" to
Q"—as Hopf algebras defined over Q".

A first, elementary result follows easily from definitions:

Proposition 7.3.4. Assume that q is of strongly integral type. Then we have

(a) PyUq;"D yUq;",
PyU˙q;"D

yU˙q;",
PyU
�
q;"D yU

�
q;",
PyU�q;"D

yU�q;",
PyU 0q;"D

yU 0q;", and PyU˙;0q;" D yU
˙;0
q;"

via natural identifications;

(b) POuq;" D Ouq;", and both algebras are generated by ¹Ei ; L˙1i ; K˙1i ; Fiºi2I ;

(c) POu˙q;" D Ou
˙
q;", and both algebras are generated, respectively, by ¹Eiºi2I—for the

“C” case—and by ¹Fiºi2I—for the “�” case;

(d) POu˙;0q;" D Ou
˙;0
q;" , and both algebras are generated, respectively, by ¹K˙1i ºi2I—for

the “C” case—and by ¹L˙1i ºi2I—for the “�” case;

(e) POu0q;" D Ou
0
q;", resp. POu�q;" D Ou

�
q;", resp. POu�q;" D Ou

�
q;", and both algebras are generated

by ¹K˙1i ; L˙1i ºi2I , resp. by ¹L˙1i ; Fiºi2I , resp. by ¹Ei ; K˙1i ºi2I .

Proof. As to claim (a), by construction it is enough to show that PyU 0q;" D yU
0
q;" or more

precisely PyU˙;0q;" D yU
˙;0
q;" . In turn, the latter identity follows from definitions together with

the following formal identity among quantum binomial coefficients�
X

n

�
"

D

nY
sD1

.di /"s

�
X

n

�
"i

which proves that the "-binomial coefficients and the "i -binomial coefficients generate
over Q" the same algebra, since

Qn
sD1.di /"s is invertible in the field Q".

As to the remaining claims, everything follows again from a simple remark. Namely,
definitions give

nY
rD1

.Xi"
1�r
i � 1/ D

nY
rD1

."ri � 1/

�
Xi

n

�
"i

;

nY
rD1

.Xi"
1�r
� 1/ D

nY
rD1

."r � 1/

�
Xi

n

�
"

for all X 2 ¹K; Lº, i 2 I , and 0 � n � ` � 1, and similarly Zni D Œn�"i ŠZ
.n/
i for all

Z 2 ¹F; Eº, i 2 I , and 0 � n � ` � 1. Now, the condition n � ` � 1 implies that all
the coefficients

Qn
rD1."

r
i � 1/,

Qn
rD1."

r � 1/, and Œn�"i Š that occur above are non-zero
elements in Q", whence we deduce at once our claim.

Remark 7.3.5. From the PBW theorem (Theorem 7.3.3) and Proposition 7.3.4, it follows
that POuq;" D Ouq;" is a finite-dimensional Q"-Hopf algebra of dimension `dim.g.D//.

Next result yields a strict link (a multiparameter version of a well-known result) be-
tween small MpQGs and quantum Frobenius morphisms for restricted MpQGs; indeed,
one could take it as an alternative way to introduce small MpQGs.
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Theorem 7.3.6. Let q WD .qij /i;j2I be of integral type, let PyUq;".g/
PbF r`
��! UQ". PgB/ be the

scalar extension of the quantum Frobenius morphism of Theorem 7.2.1, and finally let
POuq;"

�
�!
PyUq;" be the natural embedding of POuq;" into PyUq;". Then

1! POuq;"
�
�!
PyUq;".g/

PbF r`
��! UQ� . PgB/! 1

is an exact sequence of Hopf Q�-algebras which is cleft.
A similar statement holds true for Ouq;" and the scalar extension of the quantum Frobe-

nius morphism

yUq;".g/
bF r`
��! UQ� . OgB/

when q is strongly integral.

Proof. By Theorem 7.3.3, PyUq;".g/ is free over POuq;". So, to show that the sequence is exact,
it is enough to prove that Ker. PcF r`/ D PyUq;".g/ POu

C
q;". This follows along the same lines as

for the canonical case (proved in [1, Lemma 3.4.2]), so we skip it.
To prove that the extension is cleft, we use the well-known fact that an extension of

algebras is cleft if and only if it is Galois and has a normal basis (see, e.g., [25]). Since the
extension is a Hopf algebra extension, it follows that it is Galois; see [55, Remark 1.6]. The
normal basis property follows from [54, Corollary 4.3] since PyUq;".g/ is pointed. Indeed, by
the PBW theorem (Theorem 7.1.3), one may define an algebra filtrationUn of PyUq;".g/ such
that U0 is the subalgebra generated by K˙1i , L˙1i (i 2 I ), and E.n/i , F .n/i ,

�
M Ic
n

�
"
2 Un

(i 2 I , n 2 N). By Theorem 5.2.10 and Lemma 5.2.1, this is a coalgebra filtration, so
the coradical of PyUq;".g/ is contained in U0. As the latter is the linear span of group-like
elements, it follows that PyUq;".g/ is pointed.

Remarks 7.3.7. (a) The proof that the Hopf algebra extension above is cleft also follows
by the proof of the canonical case given in [1, Lemma 3.4.3]. On the other hand, let
us point out that the normal basis property means that PyUq;".g/ is isomorphic to POuq;" ˝

UQ� . PgB/ as a left POuq;"-module and a rightUQ� . PgB/-comodule. Hence, the MpQG at a root
of unity PyUq;".g/ D yUq;".g/ can be seen as a “blend” of a restricted small MpQG, namely
POuq;".g/ D Ouq;".g/, and a “classical” geometrical object, namely UQ". PgB/ D UQ". OgB/ D

UQ".gB/.
(b) Beside the canonical case, some variations of the quantum Frobenius homorphism

are treated in the literature. For example, Lentner [43] studies the quantum Frobenius
map for the positive Borel algebras at small roots of unity, which are in fact Nichols
algebras. Another is in [48], which provides the construction of the quantum Frobenius
homomorphism for the positive part using Hall algebras. As in the Hopf algebra case, the
quantum Frobenius map is used to study exact sequences of Nichols algebras. In [3], it
is shown how Nichols algebras give rise to positive parts of semisimple Lie algebras as
images of the quantum Frobenius morphism.
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7.3.2. Small MpQGs: the “unrestricted realization”. We introduce now a second type
of small MpQGs, defined in terms of unrestricted MpQGs. As in the restricted case, these
are defined for a multiparameter of integral type q. We shall eventually see that these
“unrestricted” small MpQGs actually do coincide with the “restricted” ones.

Let q be a multiparameter of integral type, hence possibly of strongly integral type.
Let fF r` WZŒ"�˝Z zUq;1.g/ŠRB

q;"˝Rq;1
zUq;1.g/ ,! zUq;".g/ be the unrestricted quantum

Frobenius morphism introduced in Theorem 7.2.4, a Hopf algebra monomorphism whose
image is the central Hopf subalgebra Z0 of zUq;".g/ given in Definition 7.2.2. We consider
the Hopf cokernel of fF r`, i.e., the quotient Hopf algebra

Quq;" WD Quq;".g/ WD zUq;".g/= zUq;".g/Z0
C;

where Z0C denotes the augmentation ideal of Z0, and similarly the cokernels of the
restrictions of fF r` to all various relevant multiparameter quantum subgroups of Quq;".g/:
for instance, Qu�q;" WD zU

�
q;"= zU

�
q;".Z

�

0 /
C, and so on and so forth. We call all these objects

“unrestricted small multiparameter quantum (sub)groups”. When q D Lq is the canonical
multiparameter, this definition coincides with the one for the one-parameter small quan-
tum group associated with g given in [18, Section III.6.4].

Since, by Proposition 7.2.3, zUq;".g/ is a free zUq;1.g/-module of rank `dim.g.D//, it
follows that Quq;" is a finite-dimensional Hopf algebra of dimension `dim.g.D//; indeed, we
shall show that it actually coincides with POuq;" D Ouq;".

As a direct consequence of definitions and previous results, we find structure results
for unrestricted small MpQGs. The first one is about triangular decompositions:

Proposition 7.3.8 (triangular decompositions for unrestricted small MpQGs). The multi-
plication in Quq;" provides Rq;"-module isomorphisms

Qu�q;" ˝
Rq;"

Qu0q;" Š Qu
�
q;" Š Qu

0
q;" ˝

Rq;"

Qu�q;";

QuCq;" ˝
Rq;"

Qu0q;" Š Qu
�
q;" Š Qu

0
q;" ˝

Rq;"

QuCq;";

QuC;0q;" ˝
Rq;"

Qu�;0q;" Š Qu
0
q;" Š Qu

�;0
q;" ˝

Rq;"

QuC;0q;" ;

Qu�q;" ˝
Rq;"

Qu�q;" Š Quq;" Š Qu
�
q;" ˝

Rq;"

Qu�q;";

QuCq;" ˝
Rq;"

Qu0q;" ˝
Rq;"

Qu�q;" Š Quq;" Š Qu
�
q;" ˝

Rq;"

Qu0q;" ˝
Rq;"

QuCq;":

Proof. This can be proved like the similar result for unrestricted MpQGs or can be de-
duced from the latter; details are left to the reader.

The second result is a PBW-like theorem for unrestricted small MpQGs:

Theorem 7.3.9 (PBW theorem for unrestricted small MpQGs). Every unrestricted small
MpQG is a free Rq;"-module with an Rq;"-basis made by the cosets of all PBW mono-
mials—in the subset of a PBW basis (as given in Theorem 5.3.3) of the corresponding
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specialized unrestricted MpQG—in which the degree of each factor is less than `. For
instance, Quq;" has an Rq;"-basis² 1Y

kDN

xF
fk
ˇk

Y
j2I

L
lj
j

Y
i2I

K
ci
i

NY
hD1

xE
eh
ˇh
j 0 � fk ; lj ; ci ; eh < `

³
and similarly holds for Qu˙q;", Qu

˙;0
q;" , Qu0q;", Qu

�
q;", and Qu�q;".

Proof. This follows at once from definitions and from Proposition 7.2.3.

The results in Section 5 and Theorem 7.1.4 lead us to the following theorem.

Theorem 7.3.10. The Hopf Rq;"-algebra Quq;" is a 2-cocycle deformation of QuLq;".

Proof. Denote by LZ0 the subalgebra of zULq;".g/ that defines QuLq;". Since q is of integral
type, Z0 and LZ0 are both central Hopf subalgebras of zUq;".g/ and zULq;".g/, respectively.
By Theorem 7.1.4 (a), we know that the Hopf Rq;"-algebra zUq;".g/ is a 2-cocycle defor-
mation of zULq;".g/. As the 2-cocycle giving the deformation is

�".x; y/ WD "
1=2
�� if x D K� or x D L�; y D K� or y D L� ;

�"
�
ULq.g/; ULq.g/

˚
�
WD 0 DW �"

�
ULq.g/

˚; ULq.g/
�
;

it follows that
�"j zULq;".g/˝ LZ0C LZ0˝ zULq;".g/

D � ˝ �;

the trivial 2-cocycle, with � the counit of zULq;".g/; in particular, Z0 D . LZ0/�" D
LZ0 as

Hopf algebras. Finally, if we define N�" W QuLq;" ˝ QuLq;" ! RB
q;" by N�". Nx; Ny/ WD �".x; y/ for

x, y 2 zULq;".g/, a straightforward calculation shows that N�" is a 2-cocycle for QuLq;" and
. QuLq;"/�" Š Quq;".

Note. Now we extend the ground ring from RB
q;" D ZŒ"� to the cyclotomic field Q" gen-

erated over Q by an `-th root of unity: all algebras then will be taken as defined over Q"

(via scalar extension), even though we keep the same notation. In this case, we have the
following structural result.

Proposition 7.3.11. Let us consider zUq;" and Quq;", as well as their quantum subgroups,
as defined over Q" (via scalar extension). Then we have the following.

(a) zUq;" is generated by ¹ xEi ; L˙1i ; K˙1i ; xFiºi2I , and Quq;" is generated by the corre-
sponding set of cosets.

(b) zUCq;" and zU�q;" are generated, respectively, by ¹ xEiºi2I and by ¹ xFiºi2I , and simi-
larly QuCq;" and Qu�q;" are generated by the corresponding sets of cosets.

(c) zUC;0q;" , zU�;0q;" , and zU 0q;" are generated, respectively, by ¹K˙1i ºi2I , ¹L˙1i ºi2I , and
¹K˙1i ; L˙1i ºi2I , and similarly QuC;0q;" , Qu�;0q;" , and Qu0q;" are generated by the corre-
sponding sets of cosets.
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(d) zU�q;", resp. zU�q;", is generated by ¹L˙1i ; xFiºi2I , resp. ¹ xEi ;K˙1i ºi2I ; similarly Qu�q;",
resp. Qu�q;", is generated by the corresponding set of cosets.

(e) In all claims (a) through (d) above, one can freely replace any xEi or xFj with Ei
or Fj , respectively, and still have a set of generators.

Proof. It is enough to prove claim (a), as the other are similar. By construction, zUq;" is
generated by (the specialization of) all the K˙1i ’s, all the L˙1i ’s, and all the quantum root
vectors xE˛ and xF˛ . Now, xE˛ D ."˛;˛ � 1/E˛ , so the xE˛’s can be replaced with the E˛’s,
because ."˛;˛ � 1/ is invertible in Q". Moreover, each quantum root vector E˛ can be
expressed, by construction (cf. Section 4.1), as a suitable q-iterated quantum bracket of
some of the Ei ’s; as Ei D ."2i � 1/

�1 xEi , the xEi ’s alone are enough to generate all the
xE˛’s over Q". A similar argument works for the xF˛’s, hence the claim for zUq;" follows,

and that for Quq;" is an obvious consequence. Claim (e) is clear as well from the above
analysis.

By construction, the projection � from zUq;" to Quq;" and the scalar extension of the
quantum Frobenius morphism fF r` match together to yield a short exact sequence of Hopf
Q"-algebras. As before, this sequence allows to reconstruct the unrestricted MpQG zUq;"

as a cleft extension, as the following shows:

Theorem 7.3.12. Let q WD .qij /i;j2I be a multiparameter of integral type.
Let zUq;1.g/

eF r`
,! zUq;".g/ be the scalar extension to Q" of the unrestricted quantum

Frobenius morphism of Theorem 7.2.4 and let

Quq;".g/ WD zUq;".g/= zUq;".g/ zUq;1.g/
C

be the quotient Hopf algebra. Then

1! zUq;1.g/
eF r`
��! zUq;".g/

�
�! Quq;".g/! 1 (7.18)

is a central exact sequence of Hopf Q�-algebras which is cleft.

Proof. By Proposition 7.2.3, we know that zUq;".g/ is a free zUq;1.g/-module of rank
`dim.g.D//. Since zUq;1.g/ is central and Quq;".g/ WD zUq;".g/= zUq;".g/ zUq;1.g/

C, by [49, Propo-
sition 3.4.3] we have that zUq;1.g/ D zUq;".g/

co� and the sequence is exact. As we did
before for the restricted case, to prove that the extension is cleft we show that it is Galois
and has a normal basis. Since the extension is a Hopf algebra extension, it follows that it is
Galois; see [55, Remark 1.6]. The normal basis property follows from [54, Corollary 4.3]
as zUq;".g/ is a pointed Hopf algebra, since it is generated by group-like and skew-primitive
elements.

Remarks 7.3.13. (a) By the normal basis property, zUq;".g/ is isomorphic to zUq;1.g/˝

Quq;".g/ as a left zUq;1.g/-module and a right Quq;".g/-comodule. Hence, the MpQG at a
root of unity zUq;".g/ can be understood as a “blend” of a classical geometrical object—
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namely zUq;1.g/, which is O. zG�B/ since q is of integral type; see Theorem 6.2.8—and a
quantum one—the unrestricted small MpQG Quq;".g/.

(b) Borrowing language from geometry—without claiming to be precise, by no
means—the exact sequence (7.18) can be interpreted as follows: zUq;".g/ defines a princi-
pal bundle of Hopf Q"-algebras over the Poisson group

Spec.Z0/ D Spec
�
zUq;1.g/

�
D Spec

�
O. zG�B/

�
D zG�B ;

and, as the extension is cleft, that bundle is globally trivializable.

7.3.3. Small MpQGs: identifying the two realizations. So far we considered small
MpQGs of two kinds, namely restricted and unrestricted ones. We will show now that
these two types over Q" actually coincide, up to isomorphism:

Theorem 7.3.14. Consider the associated small MpQGs of either type over the ground
ring Q" (via scalar extension from RB

q;" D ZŒ"�).
Then Quq;".g/ Š POuq;".g/ .D Ouq;".g// as Hopf algebras over Q".
A similar statement holds true for the various (small) quantum subgroups, namely

Qu�q;" Š POu
�
q;" .D Ou

�
q;"/, etc.

Proof. We prove that Quq;".g/ Š POuq;".g/ .D Ouq;".g//, the rest being similar.
To begin with, from Proposition 7.3.4, we know that POuq;" WD POuq;".g/—when defined

over the extended ground ring Q"—is generated by ¹Ei ; L˙1i ; K˙1i ; Fiºi2I . Moreover,
from Theorem 7.3.1 we can deduce a complete set of relations for this generating set:
indeed, these relations can be also described as being of two types:

(a) the relations arising (through specialization) from those respected by the same-
name elements—i.e., Ei ; L˙1i ; K˙1i ; Fi (i 2 I )—inside the restricted MpQG PyUq;" (before
specialization) just by formally writing “"” instead of “q”;

(b) the “singular” relations

E`i D 0; L`i � 1 D 0; K`i � 1 D 0; F `i D 0 .i 2 I /

that are induced from the relations in PyUq;"

X`i D Œ`�qi ŠX
.`/
i ;

`�1Y
sD0

�
Yi I �s

1

�
q

D

`�1Y
cD1

�
c C 1

c

�
q

�

�
Yi I 1 � `

`

�
q

—for all i 2 I , X 2 ¹E;F º and Y 2 ¹L;Kº—when specializing q to ".
Overall, this provides another concrete, explicit presentation of POuq;" over Q" by gener-

ators and relations (with less generators than that arising from Theorem 7.3.1). In addition,
as a byproduct we find—comparing with Theorem 7.3.3—another PBW theorem for POuq;"

(over Q"), stating that POuq;" admits the following Q"-basis:² 1Y
kDN

F
fk
ˇk

Y
j2I

L
lj
j

Y
i2I

K
ci
i

NY
hD1

E
eh
ˇh

³
0�fk ;lj ;ci ;eh<`

: (7.19)
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On the other hand, we know by Proposition 7.3.11 that Quq;" WD Quq;".g/ is generated
over Q" by ¹Ei ; Li ; Ki ; Fiºi2I , because L`i D 1 D K

`
i in Quq;", by definition (so that we

can get rid ofL�1i andK�1i ); in particular, from Theorem 7.3.9 we can deduce that another
possible PBW Q"-basis for Quq;" is² 1Y

kDN

F
fk
ˇk

Y
j2I

L
lj
j

Y
i2I

K
ci
i

NY
hD1

E
eh
ˇh

³
0�fk ;lj ;ci ;eh<`

: (7.20)

Now, the generators Ei ; Li ; Ki ; Fi (i 2 I ) of Quq;" do respect all relations that come
by straightforward rescaling from the relations respected by the generators xEi , Li ,Ki , xFi
(i 2 I ). In turn, the latter are of two types:

(a) the relations arising (through specialization) from those respected by the same-
name elements—i.e., xEi , L˙1i , K˙1i , xFi (i 2 I )—inside the unrestricted MpQG zUq;"

(before specialization) by formally writing “"” instead of “q”;
(b) the “singular” relations xE`i D 0, L`i � 1D 0,K`i � 1D 0, xF `i D 0 (i 2 I ) induced

from the “relations” in zUq;"

xX`i � 0 mod .Z0/C; xY `i � 1 mod .Z0/C

—for all X 2 ¹E;F º, Y 2 ¹L;Kº, i 2 I—when one specializes q to ".
The outcome is that all this yields an explicit presentation of Quq;" over Q" by genera-

tors—namely Ei , Li , Ki , Fi (i 2 I )—and relations.
Comparing the previous analyses, we find that POuq;" and Quq;" share identical presen-

tation: more precisely, mapping Ei 7! Ei , Li 7! Li , Ki 7! Ki , Fi 7! Fi (i 2 I ) yields
a well-defined isomorphism of Q"-algebras; in addition, tracking the whole construction
one sees at once that this is also a morphism of Hopf algebras. Finally, comparing (7.19)
and (7.20) shows that this is indeed an isomorphism, q.e.d.

Remark 7.3.15. As an application of the previous result, even for the classical (unipa-
rameter) small quantum groups one can always make use of either realization of them: the
(most widely used) restricted one or the unrestricted one.
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