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Multiparameter quantum groups at roots of unity
Gastén Andrés Garcia and Fabio Gavarini

Abstract. We address the study of multiparameter quantum groups (MpQGs) at roots of unity,
namely quantum universal enveloping algebras Uq(g) depending on a matrix of parameters q =
(9ij)i,jer- This is performed via the construction of quantum root vectors and suitable “integral
forms” of Uq(g), a restricted one—generated by quantum divided powers and quantum binomial
coefficients—and an unrestricted one—where quantum root vectors are suitably renormalized. The
specializations at roots of unity of either form are the “MpQGs at roots of unity” we look for. In
particular, we study special subalgebras and quotients of our MpQGs at roots of unity—namely,
the multiparameter version of small quantum groups—and suitable associated quantum Frobenius
morphisms, that link the MpQGs at roots of 1 with MpQGs at 1, the latter being classical Hopf
algebras bearing a well precise Poisson-geometrical content.

A key point in the discussion, often at the core of our strategy, is that every MpQG is actually a
2-cocycle deformation of the algebra structure of (a lift of) the “canonical” one-parameter quantum
group by Jimbo-Lusztig, so that we can often rely on already established results available for the
latter. On the other hand, depending on the chosen multiparameter q, our quantum groups yield
(through the choice of integral forms and their specializations) different semiclassical structures,
namely different Lie coalgebra structures and Poisson structures on the Lie algebra and algebraic
group underlying the canonical one-parameter quantum group.
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1. Introduction

In literature, by “quantum group” one usually means some deformation of an algebraic
object that in turn encodes a geometrical object describing symmetries (such as a Lie or
algebraic group or a Lie algebra): we are interested now in the case when the geometrical
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object is a Lie bialgebra g, and the algebraic one is its universal enveloping algebra U(g),
with its full structure of co-Poisson Hopf algebra.

In most cases, such a deformation depends on one single parameter, in a “formal” ver-
sion, like with Drinfeld’s U (g), or in a “polynomial” one, for Jimbo-Lusztig’s U, (g). But
since the dawn of the theory, more general deformations depending on many parameters
have been considered too: one then talks of “multiparameter quantum groups” (MpQGs)
that again exist both in formal and polynomial versions; see for instance [15-17,20, 21,
32,37,38,41,42,46,50,51,53,56,58]—and the list might be quite longer.

In the previously mentioned papers, multiparameter quantum enveloping algebras
were often introduced via ad hoc constructions. A very general recipe, instead, was that
devised by Reshetikhin (cf. [53]), that consists in performing a so-called deformation by
twist on a “standard” one-parameter quantum group.

Similarly, a dual method was developed, that starts again from a usual one-parameter
quantum group and then performs on it a deformation by a 2-cocycle. In addition, as the
usual uniparameter quantum group is a quotient of the Drinfeld’s quantum double of two
Borel quantum (sub)groups, one can start by deforming (e.g., by a 2-cocycle) the Borel
quantum subgroups and then look at their quantum double and its quotient. This is the
point of view adopted, for instance, in [2—4, 7—13, 26, 33-36,47], where, in addition, the
Borel quantum (sub)groups are always thought of as bosonizations of Nichols algebras.

In our forthcoming papers [27, 28], we thoroughly compare deformations by twist
or by 2-cocycles on the standard uniparameter quantum group; up to technicalities, it
turns out that the two methods yield the same results. Taking this into account, we adopt
the point of view of deformations by 2-cocycles, implemented on uniparameter quantum
groups, that are realized as (quotients of) quantum doubles of Borel quantum (sub)groups.
With this method, the multiparameter q encoding our MpQG is used from scratch as the
core datum to construct the Borel quantum (sub)groups and eventually remains in the
description of our MpQG by generators and relations. In this approach, a natural constraint
arises for q, namely that it be of Cartan type, to guarantee that our MpQGs have finite
Gelfand—Kirillov dimension.

In order to have meaningful specializations of an MpQG, one needs to choose a suit-
able integral form of that MpQG, and then specialize the latter: indeed, by “specialization
of an MpQG” one means in short the specialization of such an integral form of it. The
outcome of the specialization process then can strongly depend on the choice of the inte-
gral form. For the usual case of uniparameter “canonical” quantum groups, one usually
considers two types of integral forms, namely restricted ones (after Lusztig’s) and unre-
stricted ones (after De Concini and Procesi), whose specializations yield entirely different
outcomes—dual to each other, in a sense. There also exist mixed integral forms (due to
Habiro and Thang Le) that are very interesting for applications in algebraic topology.

For general MpQGs, we introduce integral forms of restricted, unrestricted, and mixed
types, by directly extending the construction of the canonical setup: this is quite a natural
step, yet (to the best of the authors’ knowledge) it had not been considered so far. More-
over, for restricted forms—for which the multiparameter has to be “integral,” i.e., made



Multiparameter quantum groups at roots of unity 841

of powers (with integral exponents) of just one single “basic” parameter g—we consider
two possible variants, which gives something new even in the canonical case. For these
integral forms (of either type), we state and prove all those fundamental structure results
(triangular decompositions, Poincaré-Birkhoff—-Witt (PBW) theorems, etc.) that one needs
to work with.

When taking specialization at ¢ = 1 (where “g” is again sort of a “basic parame-
ter” underlying the multiparameter q), co-Poisson and Poisson Hopf structures pop up,
yielding classical objects that bear some Poisson geometrical structure. In detail, when
specializing the restricted form, one gets the enveloping algebra of a Lie bialgebra, and
when specializing the unrestricted one, the function algebra of a Poisson group is found:
this shows some duality phenomenon, which is not surprising because the two integral
forms are in a sense related by Hopf duality. This feature already occurs in the uniparam-
eter, canonical case: but in the present, multiparameter setup, the additional relevant fact
is that the involved (co)Poisson structures directly depend on the multiparameter q.

Now consider instead a non-trivial root of 1, say ¢. Then the specialization of an
MpQG at g = ¢ is tightly related with its specialization at ¢ = 1: this link is formal-
ized in a so-called quantum Frobenius morphism—a Hopf algebra morphism with several
remarkable properties between these two specialized MpQGs—moving to opposite direc-
tions in the restricted and the unrestricted cases. We complete these morphisms to short
exact sequences, whose middle objects are our MpQGs at g = ¢; the new Hopf algebras
we add to complete the sequences are named small MpQGs.

Remarkably enough, we prove that the above-mentioned short exact sequences have
the additional property of being cleft; thus, our specialized MpQGs at ¢ = ¢ are cleft exten-
sions of the corresponding small MpQGs and the corresponding specialized MpQGs at
q = 1—which are classical geometrical objects; see above. Furthermore, implement-
ing this construction in both cases—with restricted and with unrestricted forms—Iliterally
yields rwo small MpQGs: nevertheless, we eventually prove that they do coincide indeed.

To some extent, these results (at roots of 1) are a direct generalization of what happens
in the uniparameter case (i.e., for the canonical multiparameter). However, some of our
results seem to be entirely new even for the uniparameter context.

Finally, here is the plan of the paper.

In Section 2, we set some basic facts about Hopf algebras, the bosonization process,
cocycle deformations, etc.—along with all the related notation.

Section 3 introduces our MpQGs: we define them by generators and relations, and we
recall that we can get them as 2-cocycle deformations of the canonical one.

We collect in Section 4 some fundamental results on MpQGs, such as the construction
of quantum root vectors and PBW-like theorems (and related facts). In addition, we com-
pare the multiplicative structure in the canonical MpQG with that in a general MpQG, the
latter being thought of as 2-cocycle deformation of the former.

In Section 5, we introduce integral forms of our MpQGs—of restricted type and of
unrestricted type—providing all the basic results one needs when working with them. We
also shortly discuss mixed integral forms.
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Section 6 focuses on specializations at 1, and the semiclassical structures arising from
MpQGs by means of this process.

At last, in Section 7, we finally harvest our main results. Namely, we deal with spe-
cializations at non-trivial roots of 1, with quantum Frobenius morphisms and with small
MpQGs, for both the restricted version and the unrestricted one.

2. Generalities on Hopf algebras and deformations

Throughout the paper, by k we denote a field of characteristic zero and by k™ we denote
the group of units of k. By convention, N = {0, 1,...} and N} := N\ {0}.

2.1. Conventions for Hopf algebras

Our main references for the theory of Hopf algebras are [49,52,57], for Lie algebras [39]
and for quantum groups [18,40]. We use standard notation for Hopf algebras; the comul-
tiplication is denoted by A and the antipode by §. For the first, we use the Heyneman—
Sweedler notation, namely A(x) = x(1) ® Xx(2).

Let H be a Hopf algebra. The left adjoint representation of H is the algebra mor-
phism ad; : H — End(H) given by adg(x)(y) := x1)y3 (x(2)) for x, y € H; we drop
the subscript £ unless needed; the right adjoint action ad, : H — End(H) is given by
ad, (x)(¥) := 8(x1))yx() for x,y € H. Any subalgebra K of H is said to be normal if
adg(h)(k) € K, ad,(h)(k) € K forallh € H,k € K.

In any coalgebra C, the set of group-like elements of a coalgebra is denoted by G(C);
also, we denote by C .= Ker(¢) the augmentation ideal of C, where € : C — k is the
counit map of C.If g,h € G(H), the set of (g, h)-primitive elements is defined to be

Pep(H)y:={xe H|AX)=xQg+h®x}.

In particular, we call P(H) := P;,1(H) the set of primitive elements.
It is convenient to recall the notions of exact sequence and of cleft extension:

Definition 2.1.1 (cf. [5]). A sequence of Hopf algebras maps over a field k
1-B5 A5 H 1,

where 1 denotes the Hopf algebra k, is called exact if ¢ is injective, & is surjective,
Ker(n) = ABT,and B = "4 :={a € A | (7 ® id)(A(a)) = 1 ® a}. We say that A is
a cleft extension of B by H if there exists an H -colinear, convolution-invertible section y
of .

Finally, we recall the notions of Hopf pairing and skew-Hopf pairing of Hopf algebras:

Definition 2.1.2 (cf. [11, Section 2.1]). Given two Hopf algebras H and K with bijective
antipode over aring R, an R-linearmap n: H ® g K — R is called one of the following:
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* Hopf pairing (between H and K) if, forall h € H, k € K, one has

n(h,kikz) = nthqy, kon(hey. k2),  n(hiha, k) = n(hy, kay)n(ha, k),
n(h,1) =€), n(l.k) =ek), n(ST'(h).k)=n(h S (k)).

* skew-Hopf pairing (between H and K) if, forall h € H, k € K, one has

n(h, kika) = n(hqy, kin(he), ka),  n(hiha, k) = n(ha, kay)n(h, ko)),
n(h,1) =eh), n(l.k)=ek), n($F'(h).k)=n(h ST (k).

Recall that, given two Hopf R-algebras H and H_, and a Hopf pairing among them,
say w : HP @ p Hy — Kk, the Drinfeld double D(H_, Hy, i) is the quotient algebra
T(H- & H+)/I,where I is the (two-sided) ideal generated by the relations

lpg.=1=1y,, a®b=ab VYabe Hy or abeH_,
x1) ® yay 7(ye2). X)) = 71(ya). X)) Yo) ® X2y VX € Hy, y€ H-;

such a quotient R-algebra is also endowed with a standard Hopf algebra structure, which
is consistent, in that both H; and H_ are Hopf R-subalgebras of it.

2.1.1. Yetter—Drinfeld modules, bosonization, and Hopf algebras with a projection.
Let H be a Hopf algebra with a bijective antipode. A Yetter—Drinfeld module over H is
aleft H-module and a left H-comodule V', with comodule structure denoted by § : V' —
H®V,v vi_1) ® vy, such that

8(h-v) = h(l)v(_l)S(h(3)) ® h(z) - V(0) forallve V,h € H.

Let gy@ be the category of Yetter—Drinfeld modules over H with H-linear and H -
colinear maps as morphisms. The category Z YD is monoidal and braided. A Hopf algebra
in the category g YD is called a braided Hopf algebra for short.

Let R be a Hopf algebra in gle. The procedure to obtain a usual Hopf algebra
from the (braided) Hopf algebras R and H is called bosonization or Radford—Majid prod-
uct, and it is usually denoted by R#H. As a vector space, R#H := R ® H, and the
multiplication and comultiplication are given by the smash-product and smash-coproduct,
respectively. That is, for all ,s € R and g, h € H, we have

(r#tg)(s#h) == r(gqy - $)#g)h.
A(r#g) := rV#®)Cpga) ® rP)o#ge).
S(r#g) := (1#85 (r=1)8)) (Sr(r0))#1).
where Ag(r) = rM ® r@ is the comultiplication in R € Z YD and Sg is the antipode.
The map ¢ : H — R#H (h > 1#h), resp. w : R#H — H (r#h — egr(r)h), is a Hopf

algebra monomorphism, resp. epimorhism, and = o ¢ = idg. Moreover, we have R =
(R#H)°T ={x € R#H | (d®@ 1)A(x) = x ® 1}.
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Conversely, let A be a Hopf algebra with a bijective antipode and 7 : A — H a Hopf
algebra epimorphism. If there is a Hopf algebra map ¢ : H — A, such that 7 ot = idy,
then R := A“” is a braided Hopf algebra in 11-11 YD, called the diagram of A, and we have
A = R#H as Hopf algebras. See [52, Section 11.6] for further details.

2.2. Cocycle deformations

We recall now the standard procedure that, starting from a given Hopf algebra and a suit-
able 2-cocycle on it, gives us a new Hopf algebra structure on it, with the same coproduct
and a new “deformed” product. We shall then see the special form that this construction
may take when the Hopf algebra is bigraded by some Abelian group and the 2-cocycle is
induced by one of that group.

2.2.1. First construction. Let (H,m, 1, A, €) be a bialgebra over a ring R. A normal-
ized Hopf 2-cocycle (see [49, Section 7.1]) is a map o in Homg(H ® H, R) which is
convolution invertible and such that, for all a, b, ¢ € H, we have

o(bay.cqy)o(a, beycw)) = olaqy. bay)o(apybe).c)

and o(a, 1) = e(a) = (1, a). We simply call it a 2-cocycle if no confusion arises.
Using a 2-cocycle o, it is possible to define a new algebra structure on H by deforming
the multiplication: indeed, define my =0 *xm o' : H ® H — H by

me(a,b) =a-cb = J(a(l),b(l))a(z)b(z)a_l(a(g,),b(3)) Va,b € H.

If, in addition, H is a Hopf algebra with antipode §, then define also S, : H — H as
So =ox8x0"!: H— H,where

So(a) = o(aqy. $(aw))Sa@)o " (S(aw).as)) Ya € H.

It is then known—see [25]—that (H, mq, 1, A, €) is in turn a bialgebra, and also that
(H,mqg, 1, A, €,8y) is a Hopf algebra: we shall call such a new structure on H a cocycle
deformation of the old one, and we shall graphically denote it by H,.

When dealing with a Hopf algebra H and its deformed counterpart H, as above, we
denote by ad and ad, the adjoint actions in H and by adj and ady those in H,,.

2.2.2. Second construction. There is a second type of cocycle twisting—of algebras,
bialgebras, and Hopf algebras—that we shall need (cf. [14] and references therein). Let
I' be an Abelian group, for which we adopt multiplicative notation, and H an algebra
over aring R that is I'-bigraded (i.e., graded by I' x I'): so H = @(y,n)erxr H,, with
RC Hyyand HyyHyr y € Hyy . Given any group 2-cocycle ¢ : I' x I' — R*, where
R* is the group of units of R, define a new product on H, denoted by *, as

hxk :=c,k)e(n ) h-k
c

for all homogeneous i,k € H with degrees (,7), (k,k") € T' x I'. Then (H; *) is (again)
(4
an associative algebra, with the same unit as H before.
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As T is free Abelian, each element of H2(I", R*) has a representative, say ¢, which
is bimultiplicative and such that ¢(n, n~') = 1 for all n € T' (see [14, Proposition 1 and
Lemma 4]); so we may assume that ¢ : I' x ' — R* is such a cocycle. Thus

cyn H=ciy ' =cy.n™, c(.D)=c(liy)=1 Vynel.

Now assume that H is a bialgebra, with A(Hqp) € > er Ha,y ®r Hy,p for all
(a,B) e I'xI' and €(Hgy,g) = 0if o # B. Then, H with the new product * and the old
coproduct A is a bialgebra too. If, in addition, H is a Hopf algebra, whose antipode obeys
S(Hgy,g) C (Hg-1 4-1)—for (a, B) € I' x '—then the new bialgebra structure on H (with
the new product and the old coproduct) makes it again into a Hopf algebra with antipode
§©) := § (the old one). In all cases, we will graphically denote by H ©) the new structure
on H obtained by this (second) cocycle twisting.

In the sequel, we shall compare computations in H with computations in H (), in
particular regarding the adjoint action(s); in such cases, we shall denote by ad; and ad,
the adjoint actions in H and by adl(f) and adgc) those in H ),

‘We shall make use of the following result (whose proof is straightforward):

Lemma 2.2.1 (cf. [20, Lemma 3.2]). Let a 2-cocycle ¢ : T' x I' — R* as above be given,
and assume in addition (with no loss of generality) that c is bimultiplicative. Let e, b €
H be homogeneous with degrees (v, 1) and (n, 1), respectively, and assume e is (1, h)-
primitive with h € H homogeneous of degree (y, y). Then

ad(” (e)(b) = c(y, )" adg(e) (),
ad((e)(b) = c(r.y)(=h~"eb +c(y.me(n,y) "' h™"be).

In particular, if c(y,n)c(n, y) ™' = 1, then adﬁc) (e)(D) = c(y,y)ad,(e)(D).

2.2.3. A relation between the two constructions. Let H be a Hopf algebra with bijec-
tive antipode, R a braided Hopf algebra in g YD, and A = R#H its bosonization (see
[26] for details). For any a € R, set (a) = a(—1) ® a(o) for the left coaction of H.

Any Hopf 2-cocycle on H gives rise to a Hopf 2-cocycle on A which may deform the
H -module structure of R and consequently its braided structure as well. Specifically, let
0 € Z?(H,k); thenthe map 5 : A ® A — k given by

o (r#h, sttk) = o(h,k)er(r)er(s) Vr,s € R, h,k e H

is a normalized Hopf 2-cocycle such that 6|gg g = 0. By [47, Proposition 5.2], we have
Az = Rs#H,, where R, = R as coalgebras, and the product is given by

a-b:=o(acy, b(_l))a(o)b(o) foralla,b € R.

Therefore, H, is a Hopf subalgebra of Az and the map Z2(H,k) — Z2(A, k) given
by o + & is a section of the map Z2(A,k) — Z2(H, k) induced by the restriction; in
particular, it is injective.
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Now assume that H = kI', with I" a group. Then a normalized Hopf 2-cocycle on H
is equivalent to a 2-cocycle ¢ € Z2(I'", k), i.e.,amap ¢ : I' x I' — k* such that

o(g. ho(gh,t) = o(h,t)p(g, ht), ¢(g.e) =1=g¢(e,g) Vg htel.

Assume that A = R#KkI is given by a bosonization over a free Abelian group I.
Then the coaction of kI on the elements of R induces a (I x I')-grading on A with
deg(g) := (g,g) forall g € I'" and deg(a) := (g, 1) if §(a) = g ® a witha € R a homo-
geneous element; in particular, a is (1, g)-primitive, since A(a) =a ® 1 + a—1) ® a(o).
If ¢ € Z2(T, k), then AW = Ag, where ¢ is the Hopf 2-cocycle on A induced by ¢.
Indeed, this holds true because, for a and » homogeneous in R of degrees (g, 1) and (4, 1),
respectively, we have that

a x b=¢l,1) Ye(g, h)ab = (a1, b1))awbo) =a ¢ b.
@

2.3. Basic constructions from multiparameters

The definition of multiparameter quantum groups requires a whole package of related
material, involving root data, weight lattices, etc. This entails several different construc-
tions, depending on “multiparameters,” that we are now going to present.

2.3.1. Root data. Hereafter, we fix § € Ny and [ := {1,..., 6} as before. Let 4 :=
(aij)i,jer be a Cartan matrix of finite type; then there exists a unique diagonal matrix D :=
(d;6ij)i,jer with positive integral, pairwise coprime entries such that DA is symmetric.
Let g be the finite dimensional simple Lie algebra over C associated with A and let ®
be the (finite) root system of g, with IT = {@; | i € I} as a set of simple roots, Q =
;s Za; the associated root lattice, @ the set of positive roots with respect to IT and
01 = @,c; No; the positive root (semi)lattice. We denote by P the associated weight
lattice, with basis {w; };e; dual to {o; }jer, namely w;(cr;) = §;; forall i, j € I. Using an
invariant non-degenerate bilinear form on the dual §* of a Cartan subalgebra ) of g, we
identify Q with a sublattice of P; in particular, we have o; = ) jer ajiw;j foralli € I.

In this setup, we have two natural Z-bilinear pairings P x Q — Z, that we denote
by (,) and (, ), one given by the evaluation (of weights onto roots), and the other one by
(wi,a;):=d;8;j foralli, j €l.In particular, the restriction of (,) to Q x Q is a symmetric
bilinear pairing on Q; moreover, both given pairings uniquely extend to Q-bilinear pair-
ings, still denoted by (,) and (,), onto (Q®z P)x(Q®z0)=(QRz P)x(QRz P).
Then we define

0°:={1€QO|(A.y)eZVyeQ}={pecQQ|(y.p) € ZVy € 0}.

By construction, P € Q°, and the equality holds true if and only if g is simply laced.
Note that, in terms of the above symmetric pairing on Q, one has d; = (¢;,®;)/2 for

all i € I. More in general, we shall use the notation dy := (, )/2 for every « € ot

in particular do; = d; (i € I). We denote by W the Weyl group associated with the root
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data (@, IT); it is generated by the simple reflections s; given by s;(8) := 8 — %ai
(i € I);in particular s; (otj) = oj —a;jo; fori, j € 1.

2.3.2. Multiparameters. Let k be our fixed ground field, and let 7 := {1, ..., 6} be as
in Section 2.3.1 above. We fix a matrix q := (g;;);,jer, Whose entries belong to k>, that
will play the role of “parameters” of our quantum groups. These can be used to construct
diagonal braidings and braided spaces; see for example [6, 10,26, 34].

We assume that q := (g;; )i, jer is of finite Cartan type A, i.e., there is a Cartan matrix
A = (aij)i,jer of finite type such that

qaijqji = q;; Vi.j el @.1)

To avoid some irrelevant technicalities, we assume that A is indecomposable.

For later use, we fix in k some “square roots” of all the g;;’s, as follows. From the
relations in (2.1), one finds (since the Cartan matrix A4 is indecomposable) that there exists
Jjo € I suchthat g;; = qi; Jo for some e¢; € N, for all i € I. Now we assume hereafter that
k contains a square root of qj, j,, which we fix throughout and denote by qj, := ./, jo-
Then we set ¢; := g (a square root of g;;) forall i € I.

As recorded in Section 2.3.1 above, the Cartan matrix A is diagonalizable, hence
we fix positive, relatively prime integers dj, ..., dg such that the diagonal matrix D =
diag(dy, ..., dg) symmetrizes A, i.e., DA is symmetric; in fact, each of these d;’s coin-
cides with the corresponding exponent e; mentioned above.

We introduce now some special cases of Cartan-type multiparameter matrices.

Integral type: We say that q := (q;;)i,jer is of integral type if it is of Cartan type and
there exist b;; € Z such that g;; = qbi/ fori, j € I; then we may assume that b;; = 2d;
and b;; + bj; = 2d;a;; (i, j € I), with ¢ = g;, and the d;’s as above. To be precise, we
say also that q is “of integral type B,” with B := (b;;)i,jer € Mo(Z).

Strongly integral type: We say that q := (g;;)i,jer 18 of strongly integral type if it
is of integral type and, in addition, one has b;; € d;Z N d;Z for all i, j € I. In other
words, q := (gi; )i, jer of Cartan type is strongly integral if and only if there exist integers

g 4
t;l.“, lj; € Z such that g;; = qdl’ij = qdf % for all i, j € I; then we may assume that
tf =2 =a;; and t; +1; = 2a;j,fori,j el.

Canonical multiparameter: As a last (very) special case, given that ¢ € k*, consider
Gij = q% Vi jel 2.2)

with d; (i € I) given as above. These g;; = ¢;;’s obey condition (2.1), hence the matrix
q = q is of Cartan type A; we shall refer to it as to the “canonical” case.
Overall, we have the following relations among different types of multiparameters:

“canonical” = “strongly integral” = “integral” = “Cartan”.

By the way, when the multiparameter matrix q := (g;;);, jer is symmetric, i.e., ¢ij =

q;i (for all i, j € I), then the conditions ¢;;q;; = q?iij read qizj = ¢24i%j hence qij =
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+q%ai (foralli, j € I). This means that every symmetric multiparameter is “almost the
canonical one,” as indeed it is the canonical one “up to sign(s)”.
Finally, we assume that for each i, j € I there exists in the ground field k a square

root of ¢;;, which we fix once and for all and denote hereafter by ql.lj/ 2. in addition, we

require that these square roots satisfy the “compatibility constraints” qili/ 2 = gi (= q%)

1/2 1/2 2
and qij/ qji/ = (qii/

1/2 . .
roots ¢; j/ are chosen in an overall consistent way”.

)4%i forall i, j € I—in short, we assume that “the signs of all square

Even more, when q := (q,j)i,jer, in particular, is of integral type, say q;j = qbi, we
fix a square motql/2 of q in k and we set ql-lj/2 = (ql/z)b"f ekforalli,jel.

2.3.3. Multiparameter Lie bialgebras. Consider the complex Lie algebra g associated
with the Cartan matrix A as in Section 2.3.1, and let by and b_ be opposite Borel subal-
gebras in it, containing a Cartan subalgebra f) whose associated set of roots is identified
with ®. There is a canonical, non-degenerate pairing between b and b_, and using it one
can construct a Manin double g(py = b4 @ b_, which is automatically endowed with a
structure of Lie bialgebra. Roughly, g(p) is like g but with two copies of 1) inside it; see
[31] for details (in particular Proposition 4.5 therein, with g(p) denoted by c).

Now fix in b4 and b_ generators e;, hi+ (i € I)and f;,h; (i € I), respectively, as in
the usual Serre presentation of g. Then, thinking of these elements as living in g(p), the

latter is just the Lie algebra over k with generators e;, hi+ ,hi f; (i € I') and relations

[hi.ejl = +diaije;.  [bi.fj]=—diaijtj, [b7.ej]=+djajie;. [h;.f;]=—d;a;f;,
b hf1=0, [ .h;]=0. [hf.h]=0, [e.f;]=8;2""(h} +h;).

VAR]

ad(e;)' ™ (e;) =0, ad(fy)' "™ (f;) =0 (i # j).
Moreover (cf. [31]), g(p) bears the unique Lie bialgebra structure given by the formulas
8(ei) = (dih]") ® e; —e; ® (dih]"),  8(h;7) =0,
8(hy) =0, 8(f;) =1 ® (dihy) — (dihi") ® f;.
Now, all this construction can be extended as follows. Instead of the symmetric matrix
DA, consider any square matrix B = (b;j)i,jer € My(Z) such that B + B' = 2DA.

Then one can repeat the construction in [31] and then find a new Lie bialgebra gp given
as follows: it is the Lie algebra over C with generators e;, f(,- R ii, f; (i € I) and relations
ki ej] = +bije;. [k fi] = —bijf;, [li.ej] = +bjie;.  [li.f;] = —bjif;.
ki k] =0, [iij]=0, [k.i]=0, [e.f;]=8;2d) " (ki +1),  (23)
ad(e;)' ™ (ej) = 0. ad(f;)' " (f;) =0 (i # )
and it bears the Lie bialgebra structure whose Lie cobracket is uniquely given by
Se;) =k ®e; —e; ®k;, 8(kj) =0,
(.l) 1 1 1 1 ] ( l) (24)
81;)=0, ) =fx]; —1; ®f;.

Note that the Lie bialgebra g(p) above is simply the special case of g for B := DA.
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A more detailed, thorough construction of these Lie bialgebras is presented in [28].

Basing upon the e;’s and the f;’s, we construct root vectors e, € by and f, € b_
(for all « € ®™T); this construction takes place inside the nilpotent part of by and of b_,
hence these new elements are well defined for each Lie bialgebra gp as above. All these
root vectors, together with the ki ’s and the L-’S, form a Chevalley-type basis of gp, with
ey, =¢€; and fy, ={f; for all i € I: indeed, up to signs, this basis (hence the e,’s and
the f’s) is unique. We also recall (cf. Section 2.3.1) the notation dy := (c, )/2 for all
a € dt.

We introduce now some Z-integral forms of gp.

Definition 2.3.1. Keep notation as above, in particular B + B = 2DA. Then:
(a) We call gp the Lie subalgebra over Z of gp generated by the elements e;, fj, ki,
I;, and h? := (2d;)"'(k; + ;) (for all i € I); indeed, this is a Lie bialgebra over Z, with

S(e)) =ki®e; —e; ®k;, 8(f)=f 1 —i; ®F;,
8(ki) =0, 8(@1;) =0, &) =0.

(b) We call gp the Lie subalgebra over Z of gp generated by the elements &, :=
2dyeq, Ty i = 2dfy (@ € ®T), k;, and I; (i € I); indeed, this is a Lie bialgebra over Z,
with

$@) =k ®& & ®k, G =f®l-ef
§(ki) =0, §(d;) =o0.

(c) Assume in addition that b;; = d; t; =d; 1;; for some tij].: € Z (i, j € I). Then we
call gp the Lie subalgebra over Z of gp generated by the elements e;, f;, k; := di_lki,
I; = dl._ll,-, h® = 271(k; +1;) (forall i € I); indeed, this is a Lie bialgebra over Z, with

1
Sei) =diki ®e; —e; ®k;), (i) =difi®l; —1; ® 1),
§(kj) =0, 48(1;)=0, 6&(h))=0.

Remarks 2.3.2. (a) It is clear by definition that § g, § g, and § p are all Z-integral forms of
the Lie algebra g g in Section 2.3.3; i.e., C ®z a = gp as Lie algebras fora€{3p,35,3B)}-

We also remark that the elements €;, fi, f(,-, and L- (with i € I) are enough to generate
the Lie algebra Q ®z qp over Q; therefore, the formulas given in Definition 2.3.1 (b) are
enough, though they do not display the values §(f,) nor §(&4), to determine a unique Lie
cobracket on Q ®z Gp, and thus by restriction on g p too.

(b) The fact that each of §p, §p, and g being a Lie sub-bialgebra of g p (hence a Z-
integral form of it as a Lie bialgebra) is a direct check. It is also a consequence, though, of
our results in Section 6.2 later on about specialization of suitable multiparameter quantum
groups.

(c) Definitions imply that in each Lie bialgebra g g—as well as in its Z-integral forms
dB. aB,and § p—the Lie algebra structure does depend on B, whereas the Lie coalgebra
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structure does not. This follows from simple observations, namely that the root vectors ey
and f, are independent of B, and that the formulas for the Lie cobracket of the f(i ’s, the
i,- ’s, the ey ’s, and the f,,’s are independent of B as well; this second fact requires a quick
computation for non-simple o’s, where the condition B + B’ = 2D A makes the job.
This implies that if we consider two such Lie bialgebras g p/ and g p~, and their corre-
sponding basis elements (over Q) e, el etc., mapping €, — e, k; — k;’ , 1; [ i;-’ , and
f, > . defines an isomorphism of Lie coalgebras gp = gp», that on the other hand is

not one of Lie algebras. The same occurs for the Z-integral forms as well.
For later use, we need yet another definition:

Definition 2.3.3. Given B = (b;;)i jer € Mp(Z) suchthat B + B* =2DA, let g g be the
complex Lie algebra mentioned in Section 2.3.3 above, and U(gp) its universal envelop-
ing algebra. We define Uz (), resp. Uz(aB), the Z-subalgebra of U(gp) generated by

k; i; he
n n n
k; 1; ho
n n n

where (!) and a® denote standard binomial coefficients and divided powers, and in the

second case we are assuming that b;; = ditij =d; 1 for some tiij eZ i, jel).

iel,neN},

resp.

ie],neN},

Remarks 2.3.4. (a) By Remarks 2.3.2 above, it is easily seen that Uz(gp) and Uz (G )
are Z-integral forms of U(gpg); one can also find a presentation of each of them by gen-
erators (the given ones) and relations. Indeed, for both Uz(gp) and Uz(gp), this is a
simple variation of the well-known presentation of the Kostant Z-integral form of U(g),
generated by binomial coefficients and divided powers of the Chevalley generators.

Moreover, as g(p) is a Lie bialgebra, U(g(p)) is in fact a co-Poisson Hopf algebra;
then Uz(gp) and Uz(§p) are in fact Z-integral forms of U(g(p)) as co-Poisson Hopf
algebras.

(b) By a standard fact in the “arithmetic of binomial coefficients,” Uz(gg) contains
also all “translated” binomial coefficients, of the forms (ki :Z) (li :Z ) and (h";l"z ) fori el,
n € N, and z € Z; then one has also a presentation of Uz(gp) including these extra
generators, and corresponding extra relations too. The same applies similarly for Uz (g p)
as well.

(c) The definition of the Z-integral forms g, §g, and §p—of gp—and of the forms
Uz (§p) and Uz (g p)—of U(gp)—may seem to come out of the blue, somehow. Never-
theless, we will show in Section 6.2 that they occur as a direct output of a “specialization
process” of multiparameter quantum groups once suitable integral forms of them are cho-
sen.

2.3.4. Some g-numbers. Throughout the paper, we shall need to consider several kinds
of “g-numbers”. Let Z[q,g~'] be the ring of Laurent polynomials with integral coefficients
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in the indeterminate g. For every n € N, we define

n _ n—1
Oi=1. Wgi= Tt =gt = g (Zlg).
s=0
z n (n),!
et = a0 = [T60 () =g (<2
n__,—n n—1
[0 :=1, [n]g:= % =q "4t =) g (eZlg.g7M).
5s=0
o _ - nlyo_ [n]q! -
[n]g! = [0]g[llg -~ [n]q = E)[S]q» [k]q = W = (€Zlg.q7").

Moreover, we have (1),2 = q" nlg, (n)g2! = qn(n;n [n]g, and (Z)q2 = qk(”_k)[z ]q.

Furthermore, thinking of Laurent polynomials as functions on k>, for any ¢ € k* we
shall read every symbol above as representing the corresponding element in k.

3. Multiparameter quantum groups

In this section, we present the notion of MpQG. We introduce it by a direct definition of
generators and relations as it suits better for our purposes. There exists also a realization
in terms of Nichols algebras of diagonal type; see for example [6, 10,26, 34]. Finally, we
connect them with cocycle deformations of their simplest example, the “canonical” one.

3.1. Defining MpQGs

In this subsection, we introduce the MpQG Uy (g), associated with a matrix of parameters
q := (qij)i,jer of Cartan type (cf. Section 2.3.2). We fix also scalars ¢; (i € ) as in
Section 2.3.2, with the additional assumption that q{‘i = qfk #lforallk=1,...,1—ay,
withi,j € I andi # j.
Definition 3.1.1 (cf. [51]). We denote by Uq(g) the unital associative k-algebra generated
by elements E;, Fj, Kiil, L;ﬂ with i € [ obeying the following relations:
@ KFLF' = LFKFEL KFKT =1=LFLT,
+1 g+l _ ptlptl I+l _ j+ig+
(b) K; IK_i 1= K: 'KF! L; le 1= L; TLE,
(©) K,'EjKi_l = ql‘jEj, LiEle-_l = qj_ilEj’
d) KiFK'=q;'Fj, LiF; L7 = q;i Fj,
() [Ei. Fj]= Si,jQii%,k
1—a;; 1—a;; 1—a;j—k . .
O Tily DR, a P b BT E B =06 £ ),

@ Ti DR, 0Pk T R =0 #
g k=0 k 4ii 4t P FE =00 #J).

dii
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Moreover, Uq(g) is a Hopf algebra with coproduct, counit, and antipode determined for
alli,j € I by

AE)=E®1+K ®E., eE)=0 S(E)=-KE,

AF))=F®L +1Q F, €(F;) =0, S(F) =—FLi",
AKEY) = K @ K7, (K =1. S(KFH =K',
ALEY) = L' @ LE!, e@ifh =1 S =L

Finally, for later use, we introduce also, for every A = ) ;; A;i; € Q, the notation
. Ai . A,‘
Ki = Tlies Ki" and Ly := [1;ef Li™.

Remark 3.1.2. Assume that ¢ € k™ is not a root of unity and fix the “canonical” mul-
tiparameter q := (§;; = q%%/); jes like in (2.2). Then we can define the corresponding
MpQG, denoted by Uy(g): the celebrated one-parameter quantum group U, (g) by Jimbo
and Lusztig is (up to a minimal, irrelevant change of generators) just the quotient of Uy (g)
by the (Hopf) ideal generated by {L; — K; ' |i = 1,...,6}.

As a matter of fact, that we shall deeply exploit in the present work, most constructions
usually carried on for Uy (q)—like construction of (quantum) root vectors, of integral
forms, etc.—actually make sense and apply the same to Uy(g) as well.

We introduce now a family of subalgebras of any MpQG, say Uq(g), as follows.

Definition 3.1.3. Given q := (g;;)i,jer and Uq(g) as in Section 3.1, we define Ué’ =
Ug(h ® 5), U0, U0, Uy i= Ug(no), Ut = Ug(uy), US := Uqy(b-), and U :
Uq(b4) to be the k-subalgebra of Ug(g) respectively generated as

Uo? Z(Kiil’inl)ieI’ Uq+’0::(Kiil>ie1’ U;’O::(Liil)iel’ Uy = (Fi)ier,
Ug = (F. L)) Ug = (K Ei)epe U = (Eiier.

We shall refer to qu and qu as the positive and negative multiparameter quantum
Borel (sub)algebras, and to U2, UzH? and U, ° as the global, positive, and negative mul-
tiparameter Cartan (sub)algebras.

Recall the notion of “skew-Hopf pairing” (cf. Definition 2.1.2). From [34, Proposi-
tion 4.3]—see also [51, Theorem 20] and [11, Proposition 2.4]—we have the following
proposition.

Proposition 3.1.4. With the assumptions above, assume in addition that q;; # 1 for all
indices i € I. Then there exists a unique skew-Hopf pairing n : qu Rk (Uqf)“’p — k that
is non-degenerate and such that, forall 1 <1i,j <6, one has

i

—gi
n(Ki, Lj) = qij, n(Ei, Fj) = Si,j—q“ - T n(Ei, Lj) =0 =n(Ki, Fj).
12
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Moreover, for every E € U;, F e U(;, and every Laurent monomials K in the K;'’s
and L in the L;’s, we have

n(EK, FL) =n(E, F)n(K, L).

The following result states that there exist special “tensor product factorizations” of
MpQGs (the last ones are usually referred to as “triangular decompositions’).

Proposition 3.1.5 (cf. [51, Corollary 22] and [17, Corollary 2.6]). The multiplication in
Uq(g) provides k-linear isomorphisms

— 0~ 77= A~ 70 - + 0~ 772~ 70 +
Ug Uy = U5 = U/ ®U,. U ®U) =Ug = U@ Uy
U+,0®U—,0 ~ U0~y ® U+ USQUZxU,2UZQU=
qkq—q—qkq’ q]kq—q—q]kq’

UFrUQU ~U,~2U-QU’QUT.
q K (l]k q q q K (lk q

Remark 3.1.6. It is clear from definitions that U(;’ = Uq(h @ b) has the set of monomials
in the K iil s and the L; £'°s as k-basis. It follows then that each triangular decomposition
of Uq(g) as above induces also a splitting Uq(g) = Uq(h @ b) @ Uq(g)®, where

Uq(g)EB = Uq(n,)+ : Uq(bD) : Uq(n+) + Uq(nf) : Uq(bD) : Uq(n+)+~

3.2. MpQGs as cocycle deformations

Now we want to perform on the Hopf algebras Uqy(g) a cocycle deformation process, via
special types of 2-cocycles, like in Section 2.2, following [14,25,49].

Let us consider q := (gi;)i,jes and Ugy(g) as in Section 3.1. As explained in Sec-
tion 2.3.2, we fix a special element g, € k™, also denoted by ¢ := ¢,; for this choice of
g, we consider the canonical “one parameter” quantum group Ug(g) as in Remark 3.1.2.

Recall from Definition 3.1.1 the notation K := [];¢; Kik" and L) :=[];¢s L% for
every A =) ;c; Aio; € Q. Similarly, we shall also write

iVj 1/2 S
o= [T alft= TLar va= Y me v =Y ne <0
ijel ijel iel jel

Likewise, we define also gg := ¢; for every positive root 8 € ®T which belongs to the
same orbit as the simple root ¢; for the action of the Weyl group of g onto Q (which is
well defined, by standard theory of root systems).

Definition 3.2.1. With the above conventions, let Ug(g) be the MpQG of Remark 3.1.2,
and let o : Ug(g) ® Uz(g) — k be the unique k-linear map given by

o(x,y):= q%)z ifx=Kyorx=L,, y=K,ory=1L,,
o (Uy(g). Ug(2)®) := 0 =: 0 (Uy(a)®. Uy(q))

(by Remark 3.1.6 above, this is enough to determine a unique o as requested).
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The key result that we shall rely upon in the sequel is the following.

Theorem 3.2.2 (cf. [51, Theorem 28]). Let q := (gi;)i,jer and let q be as above. Then
the map o in Definition 3.2.1 is a normalized 2-cocycle of the Hopf algebra Ug(g) and
there exists a Hopf algebra isomorphism (with notation of Section 2.2.1)

Uq(g) = (Uy(9)),-
Remark 3.2.3. A similar result is given in [44, Theorem 4.5], but using another o.

As a last result in this section, we can show that the 2-cocycle deformation con-
sidered in Theorem 3.2.2 can be also realized as a cocycle deformation in the sense of
Section 2.2.2 as well. Indeed, let T := Z2% be the free Abelian group generated by the
K;’sand L;’s (i € I), and let Vg, resp. VF, be the k-vector space generated by the E;’s,
resp. the F;’s (i € I). Then, by [26], we know that Uy (g) is a quotient of T (Ve @ Vp )#kT
by the two-sided ideal generated by the relations (e), (f), and (g) in Definition 3.1.1. We
have a (Q x Q)-grading on T (Vg @ VF)#kI given by

deg(K;) = (o, ;) = deg(L;), deg(E;) = (1,04), deg(F;) = (a;,1)

for all i € I; it coincides with the grading induced by the coaction on the Yetter—Drinfeld
modules Vg and VF such that deg(K;) = deg(L;). As the defining relations are homoge-
neous with respect to this grading, we get a (Q x Q)-grading on Uy(g).

Consider now the group 2-cocycle ¢ € Z2(T, k) given by ¢ := o|r«r, that is

o(h, k) = ql%z ith=Kyorh=L,, k=K,ork =1L,

and let ¢ be the 2-cocycle defined on T'(V & W)#KkT as in Section 2.2.3. Since T is
Abelianand E; -5 F; = E; F; foralli, j € I, wehave that E; -5 F; — Fj -z E; = [E;, F],
hence ¢ defines a Hopf 2-cocycle ¢ on Ug(g). Finally, a direct comparison shows that
@ = 0. Thus, using Section 2.2.3, we conclude that the following holds.

Proposition 3.2.4. There exists a Hopf algebra identification

(Ua(@), = (Us(@)?

hence, by Theorem 3.2.2, a Hopf algebra isomorphism Uq(g) = (U(l(g))(a).

3.3. MpQGs with larger torus

The MpQGs Uy (g) that we considered so far have a toral part (i.e., the subalgebra U(;) gen-
erated by the Kiil ’s and the L]?tl ’s) that is nothing but the group algebra of a double copy
of the root lattice QO of g, much like in the one-parameter case—but for the duplication
of O, say. Now, in that (uniparameter) case, one also considers MpQGs with a larger toral
part, namely the group algebra of any intermediate lattice between Q and P; similarly,
we can introduce MpQGs whose toral part is the group algebra of any lattice I'y x I', with
QCTlyand Q C 1.
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3.3.1. Larger tori for MpQGs. Recall that the definition of the “toral parts” of Uq(g)—
cf. Definition 3.1.3—is independent of q: indeed, Uq+’0 is the group algebra over k for
the group Q—identifying +o; =~ Kii1 and o >~ Ky (i € I, o € Q); similarly, Uq_’o is
the group algebra (over k) of Q again with @ ~ Ly, and Uy(h @ b)) := U(;’ is the group
algebra (over k) of Q x Q—with (o, ") >~ Ky Lyy.

Let us denote by Q Q and Q P the scalar extension from Z to Q of the lattices Z Q and
Z P, respectively; note that Q Q = Q P. For any other sublattice I" in Q Q (=QP)of rank
f—the same as Q and P—we can define toral quantum groups v ol % akin to Uq £0 put
now associated with the lattice I', again as group algebras; similarly, we have an analogue
U (2 A of U(;) associated with any sublattice A in QQ x QQ of rank 26. Moreover, all
these bear a natural Hopf algebra structure. Any sublattice inclusion TV < T'” yields a
unique Hopf embedding qur(’) cU qir(,),, and similar embeddings exist for the U, A’s We
aim to use these “larger toral MpQGs” as toral parts of larger MpQGs; this requires some
compatibility constraints on q, and some preliminary facts that we now settle.

Let I' be a sublattice of QQ of rank 6 with Q < I'. For any basis {y;,...yg} of [,
let C := (c;j)i,jer be the matrix, with entries in Z, that describes the change of basis
(for QQ as a Q-vector space) from {y;}ies to {&;}ies, S0 @; = Z?:l cijy; for each
iel ={1,...,0}.Letalso ¢ := |det(C)| € N be the absolute value of the determinant
of C; this is equal to the index (as a subgroup) of QO in I', hence it is independent of any
choice of basis. If C~! = (cf;);,jer is the inverse matrix to C, then y; = Z?_l c;;o; and
ciji=c-cyelforalli,j el ={l...,0}

Letnow U, q—i—l“ be given, as group algebra of I' over k with generators K- il correspond-
ing to the basis elements y; (and their opposite) inI" (fori € I). Define Kal =11 jel K;;’
foralli e I, and then the k-subalgebra of Ut ol generated by the K il’ s is an isomorphic
copy of Ut Q , which provides a realization of the Hopf algebra embedding U + 0 c U + 9
correspondmg to the group embedding Q < T.

In the obvious symmetric way, we define also the “negative counterpart” U _i‘ of
U +F° generated by elements LjEl corresponding to the £y;’s in I', along with a suitable
embedding U YcUu: ol correspondlng to the group embedding 0 < T.

Finally, glven any two sublattices 'y of rank 6 in QQ containing Q, letting I'y :=
'y xT'— we deﬁne U 0 = U + 0 ®k U, Fi ; in this case, the basis elements for "1 w1ll
be denoted by )/ @i e I ) The prev10us embeddlngs of U 9 into U FO then induce a
similar embedding of UO UJr O o U Q into UOF as Well

3.3.2. Special root pairings (in the integral case). Let us now assume that the mul-
tiparameter q := (qij = qbif),-, jer is of integral type; we therefore use notation B :=
(bij)i.jer € Mg(Z). Then a Z-bilinear pairing (, ) : Q x Q — Z is defined via the matrix
B by (a;,aj)p := b;j forall i, j € I. Moreover, by Proposition 3.1.4, we know that the
pairing qu Rk UqS — k is non-degenerate; but then (by the special properties of this pair-
ing) its restriction to Uy O @K Uy 9 is non-degenerate too. Finally, from (Ky, Lg) = q@Ps
(foralla, B € Q) we get that ( )B : Q x Q — Z is non-degenerate as well, which forces
B to be invertible.
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By scalar extension, (, )p yields also a Q-bilinear pairing on Q Q, which again is non-
degenerate; we denote it also by (,)p. It is then meaningful to consider, for any sublattice
[in QOQ, its left-dual T'® and its right-dual I'"), defined by

9:={1eQQ|(y)pelZ Yyel},
[7:={peQQ|(r.ppeZ Vyel}

that are sublattices in Q Q and coincide iff B is symmetric; then restricting the Q-bilinear
pairing (,)p : QO xQQ — Q to I'® x T and T x I'™ one gets Z-valued pairings
I'OxT - ZandT x '™ — Z, still denoted by (, )3.

Using the matrix B! = (blf_ i)‘? jer, we define in Q O the elements

@3.1)

0= b Viel, (3.2)
kel

which are characterized by the property that (z'Ui(e), aj)p = 8;j; in short, {zifi(e)},-e 1 is the
Q-basis of Q O which is left-dual to the basis {c; } ;7 W.r.t. (,)p; in particular, { z'Ui(()},-e I
is a Z-basis of Q®, the left-dual to Q w.r.t. (,)p. Definitions give also Q € 0© with
U= reg bikz'vg) foralli € I.

The left-right symmetrical counterpart is given once we define the elements

=Y bion Viel (3.3)
kel

characterized by the property that (o, u‘ri(r) )B = §j;; thus {zifi(r)},-e 1 is the Q-basis of
QQ which is right-dual to the basis {o; }j; with respect to (,)p; in particular, {u*ri(r)},-el
is a Z-basis of 0, the right-dual to Q w.rt. (,)p. Furthermore, definitions give also
0 C 0O witha; = Y o) brr” foralli € 1.

The strongly integral case. The previous construction has a sort of “refinement” when
the integral-type multiparameter q := (¢;; = qbif)i’ jer 1s actually strongly integral, with
bij = d; IJ =d; 1 for all i, j € I (cf. Section 2.3.2). In this case, consider the two Z-
bilinear pairings (, )7+ : QO x Q — Z defined by the matrices 7" and T~ —thus given
by (o, o) 7+ 1= tﬂ; for all i, j € I—that are obviously non-degenerate (as (,)p is, and
DTt = B = T~ D), and extend them to same-name Q-bilinear pairings on QQ x QQ
by scalar extension. Then define, for any sublattice I' in QQ, its left-dual and right-dual

(w.r.t. T~ and T, respectively) as
r®.— {)L €eQQO|{Ay)r-€Z, Vy e F},
r":={peQQ|(y.p)r+ €Z, Vy €T}

that both are sublattices in QQ; the pairings (, )r+ then restrict to Z-valued pairings
(V- TOXT - Zand (,)7+T x '™ — Z. Now consider the elements

3.4)

1
kel kel

wi(l) = diu‘fi(é) = Zt;{’/ak, o) = d,-u‘fi(r) = Zt,j;”ak Viel, (3.5)
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where (ti /)IJ : II = (T*)~!, which are characterlzed by the properties (w; ', ;) - = §;;
and (o;, w; ))T+ = §;;; in a nutshell, {w )},61 is the Q-basis of Q Q Wthh is left-dual
to the basis {&; };es w.r.t. {,)7—, while {w )}161 is the right-dual to {&j };er W.r.t. (,)7+.

(f)

In particular, {w(@},el is a Z-basis of 0, and {w( )} <7 is a Z-basis of Q) with nota-
tion of (3.4). Note also that definitions give Q € Q® N 0" with o; = Dokerl; kwlgé)

ando; =) 4eg t,j;wlir) foralli € 1.

3.3.3. MpQGs with larger tori. Let 'y and I'_ be any two lattices in QQ such that
Q <Ty;thenset 'y := I'; x I'_. From Section 3.3.1, with notation fixed therein, we can
consider the corresponding “multiparameter quantum torus” U, OI- , that contains U 0 —

U0 . For either lattice 'y, we have a matrix Ci = (c 2)i,jer and CL 1= (cl] ), jels

w1th c+ :=|det(Cy)| € Z4 and ci” =t ij "en (z,] el).

For the rest of this subsection, we make now the following assumption concerning the
ground field k and the multiparameter (of Cartan type) q := (g;j);,jer: foreveryi, j € I,
the field k contains a c4-th root of ¢g;;, hereafter denoted by q;; les, ; moreover, we assume
that q'/¢+ := (‘11/ *);,jer is of Cartan type too.

The natural (adjoint) action of U(f onto Uy extends, in a unique manner, to a U, (;’, r.”

action - : Ul x Ugq — Ug, given by

T o
K+ Ej = q;;" Ej. Ly -Ej = (4;;7)"'Ej. K+ Ka; = Ka,.
Ly Ko

J

= Ko, Ky+ Loy = La. Ly - La; = La.
Ty\— r
K+ Fp=(q; )7 Fi. Ly - F = q;; Fj.

where ers+ = [Tker (qlis +)c’k and gg¢ = nkeI(ql/c ) ek ; this makes Uqinto a UG?F.-
module Hopf algebra. This allows us to consider the Hopf algebra U (;” r. X Uq given by
the smash product of Ué),r. and Ug: the underlying vector space is just U(;’,F. ® Ug, the
coalgebra structure is the one given by the tensor product of the corresponding coalgebras,
and the product is given by the formula

(hx x)(kxy) =hkagyx (S(k(l)) -x)y forall h,k € U(;),F., x,y € Uq.

Since U)p, contains Uy (=: Uy 5,o) as a Hopf subalgebra, it follows that U, itself
is a right U(f -module Hopf algebra with respect to the adjoint action. It is not difficult to
see that, under these hypotheses, the smash product U (;) r, % Uq maps onto a Hopf algebra

structure on the vector space U (;” r, ®up U, which hereafter we denote by U(;’,F. Xyo Ug;
see [43, Theorem 2.8]. We define then

ql".(g) Ugr, == U T, 15( Uy = U By '>< U (Q) (3.6)
q

It is easy to check that Uq,r, (g) and its Hopf algebra structure can be described with
a presentation by generators and relations like that for Uqy(g) in Definition 3.1.1. Indeed,
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since the coalgebra structure is the one given by the tensor product, one has to describe
only the algebra structure. For this, first one has to replace the generators K; +1 = = K4y,
and LjEl L +,; with the generators K - g +yt and &£; +1 = L4y-. Second, replace
relations (c) and (d) of Definition 3.1.1 W1th the followmg, generahzed relations:

() Ky_-#EjK_Jr = qij+Ej’ Lyleiji—l = (qjii) lEj,
d) K,+Fj K— = (q;;")""Fj. Ly FiLt = q;; Fj.

Then, in relation (e) write each Kl.ﬂ:1 = Ky, resp. Ll.jEl = L4, in terms of the JCIiI =
K Ly ’s, resp. éﬁjﬂ»“ = Liyj— ’s; finally, leave relations (f) and (g) unchanged.

With much the same approach, one defines also the “(multiparameter) quantum sub-
groups” of Uq r, (g) akin to those of Uq(g) (cf. Definition 3.1.3), that we denote by adding
a subscript I's, namely Uq T.: Uq_F s Uq—F s Uq T.> Uq+1“ , and Uq_’l’fi.

The integral case. When q is of integral type, the above construction may have a simpler
description. Indeed, assume also that the lattices I'y. and T'— (both containing Q) are such
that Ty < 0W and T_ < 0, thatis (T4, Q) € Z and (Q, )z C Z—notation of
Section 3.3.2. Then in the presentation of the MpQG Uy, r, of (3.6), the modified relations
(c") and (d") mentioned above take the forms

() Kny,-K;J} _ gtotas Ly-E;L;} = g @YDsEj,
(d) Ky.*F]'K;l = q_(yfr,ﬁtj)BF'j’ LylfFjL;_l _ 6]+(“f’yi_)BFj_

In particular, this means that Ugr, is actually well defined over the (possibly smaller)
ground field generated in k by q—and similarly for Uq+l".’ UqZF., etc. Therefore, the
assumption that k contains ¢ -th and c_-th roots of ¢;;, that is required in the non-integral

case, is not necessary in the integral one.

3.3.4. Duality among MpQGs with larger tori. Let again I'y be two lattices of rank 6

in QQ containing @, and set I’y := '} x I'_; then we have “toral MpQGs” U, qir‘i and

U OF as in Section 3.3.1. Moreover, we have bases {)/S }ser of '+ and corresponding
matrices C+ = (c “)i,jer and C 1 (cU ),,]51, and the integers ¢4 := |det(C+)| and

eE" = =cC4- ci (l jel)asin Sectlon 3.3.3. In addition, we assume that k contains a

ij
(c+ c,) th root of qij, say qll/ (ee-) , and that overall the multiparameter

ql/(6+07) (qu/(CJrC ))l el

is of Cartan type.

It is straightforward to check that the skew- Hopf pairing 1 : Ug ®x U — k in Propo-
sition 3.1.4 actually extends to a similar pairing U T, ®k U . — k given by

E,’@Ly—i—)(), Ky+®Fj — 0, El‘®Fjl—>—8,’j—1,
qii —
1/( _) +,0r =
Kyr @ Ly; > [T @)
hkel
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foralli, j € I, and still denoted by 5. In particular, this 7 : qu,rur Ok qu,r‘_ — k is still
non-degenerate, like its restr.ictions U qu ®k Uy — kand U(;)’ r, ®k U, ;),F_ — k.

When q:= (¢g;; = qbif){eell is of integral type and (,)p : Q x Q — Z is the associated
pairing—cf. Section 3.3.2—the previous construction may have a simpler description,
under the additional assumption that (I"y, ['_) g € Z—that is equivalent to either ['; C r®
orI'_ C fg)—so that (,)p induces a pairing (,)p : 'y x ['_ — Z. In the following, we
shall briefly refer to such a situation by saying that (I'y., I'_) is a pair in duality (w.r.t. B),
or that the lattices ' and I'_ are in duality (w.r.t. B). Indeed, under these assumptions
we have o .

1Ky L) = [T ey i’ = g s,
h,kel

in particular, requiring a (c4+c—)-th root in k of every g is no longer necessary.

Remark 3.3.1. It is easy to see that, using the skew-Hopf pairing 1 between (suitably
chosen) quantum Borel subgroups U, qZ,l"+ and U qS,F_ mentioned in Section 3.3.4 above,
every MpQG with larger torus, say Ugr,(g), can be realized as a Drinfeld double (of
those quantum Borel subgroups), so extending what happens for MpQGs with “standard”
torus.

4. Quantum root vectors and PBW theorems for MpQGs

The first purpose of this section is to introduce root vectors for MpQGs. Second, we show
that PBW theorems hold true for an MpQG and all its relevant subalgebras.

4.1. Quantum root vectors in MpQGs

For the one-parameter quantum group Uy (g) of Lusztig, several authors introduced quan-
tum analogues of root vectors—or “quantum root vectors’—in different ways, the most
common ones being via iterated g-brackets or iterated adjoint action. Lusztig gave (cf.
[45]) a general procedure, using an action on Uy (g) of the braid group associated with g;
later, it was extended to the multiparameter case in [34].

To begin with, let W be the Weyl group of g, generated by reflections s; = sq,
associated with the simple roots «; of g (i € 1), and let wo € W be the longest ele-
ment in W. Then the number N := |®*]| of positive roots (cf. 2.3.1) of g is also the
length of any reduced expression of wy. Let us fix now one such reduced expression, say
Wo = Si; Si,Siy *** Siy_, Siy» 5O that all the following constructions will actually depend on
this specific choice.

Set gk .= 8iySip+++8ip_, (o) forallk =1,..., N. Then one has {ﬁk}k=1,2 ..... N=DT;
in particular, all positive roots are recovered starting from the fixed reduced expression of
Wy, and, in addition, this also endows ®* with a total order, namely ,Bk < ﬁh < k <h.
The same method of course can be applied to negative roots.

A similar procedure allows to construct a root vector in g for each positive root. First,
consider the braid group B associated with W, generated by elements 7; which lift the
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simple reflections s; = so; (i € I). There is a standard way (cf. for instance [39]) to define
a group action of B onto g that on root space yields T; (g 8) = Gs;(8); using this action one
can define root vectors via

xge =T Ty Tip_, (xi) € gge Yk =1,2,....N,

where each x; is a Chevalley generator in g, . It is worth remarking that if B k is a simple
root, say ﬂk = «;, then the root vector Xgk defined above actually coincides with the
generator x; given from scratch, so the entire construction is overall consistent. The same
argument can be used to construct negative root vectors.

This type of procedure was “lifted” to the one-parameter quantum case by Lusztig
(cf. [45]), who did it introducing a suitable braid group action on U,(g); his construc-
tion was later extended by Heckenberger to the multiparameter case, that is to Ug(g), as
we shall now shortly recall. One defines—see [36, formulas (4.3)—(4.4)]—isomorphisms
Ti, ..., Tg which yield a B-action that lifts that on U(g); using this action one defines
“quantum root vectors” Epgi as given by

Egi =T, Ty, Ty (Ey) € U Vk=12,....N, 4.1)

where one finds that Ege = E; whenever k = a;; similarly one also constructs “(quan-
tum) negative root vectors” Fgr € Uy . In the following, we shall refer to the Eg«’s or the
Fgi’s by loosely calling them “(quantum) root vectors™.

It is also remarkable that these quantum root vectors can be realized as iterated braided
brackets (e.g., like in [36, Section 4]). This will be of key importance, by the following
proposition.

Proposition 4.1.1. Every quantum root vector in Uq(g) is proportional to the correspond-

ing quantum root vector in Uy(g) by a coefficient that is a monomial in the qil/2 ’

ij S.

Proof. By Theorem 3.2.2 and Proposition 3.2.4 together we know that

Uy(g) = Uy(a)o = Uy(g)@

for the 2-cocycle o of Uy(g) and a suitable group bicharacter ¢ of Q. Now denote by E,
a quantum root vector in Uq(g) and by E, the corresponding (i.e., built in the same way,
for the same root) quantum root vector in Uy (g). Since ¢;; = g% = g% = g i for all
i,j €1,in Uy(g)s we have that

ad(Ej)(E;) = ado (E)(ED) = (Ej)y o Ei o 85 ((E)))
=Ej o Ei+Kj o Eio(Ki" s Ej)
=0(Kj, K)E;E; + (0(K;. K) K Ei) o (0(K; ' KK E))
= 0(K;. Ki)(EEi + o(K;' K)o (K; Ki, VK Ei K Ejo ™ (K; . K;)
= Q;,/Z(Ejéi + Gy EiEj) = q;,/z((éj)(l) CEi - S((Ej)@))
= q} {7 ad(E;)(E;).
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Therefore, although the adjoint action is not preserved under the 2- cocycle deformation,
both elements differ only by a coefficient which is a monomial in the qil 2’5, Since both
quantum root vectors are defined by an iteration of adjoint actions (because of the very
definition of the 7;’s) by Lemma 2.2.1 we infer, taking into account the explicit form of
o (whose values are monomials in the qil/ >
associated with any root & in Uq(g) and in Uy(g)s, respectively, are linked by an identity
E, = m}(q*'/?)E, for some monomial m+(qi1/2) in the qil/z’

The above accounts for all (quantum) positive root vectors. A similar argument proves
the claim for negative root vectors as well. ]

s), that the quantum root vectors E, and Eq

s, as claimed.

4.2. PBW theorems for MpQGs

Once we have quantum root vectors, some PBW theorems hold too, stating that suitable
ordered products of quantum root vectors and/or toral generators do form a k-basis of
Uq(g) itself. Here is the exact claim:

Theorem 4.2.1 (“PBW theorem” for Uq(g)—cf. [10, Theorem 3.6], [36, Theorem 4.5],
and references therein). Assume that quantum root vectors in Uy(qg) have been defined as
above. Then the set of ordered monomials

1
{ I1 Ff"HLa’HK HE | fe, a,,b,,eheN}
k=N JjeI iel

is a k-basis of Uq(g), and similarly if we take the opposite order in ®.
Similar results hold for the subalgebras Ug, US, U, Uy, U0, U0, and Uc:).

Proof. This is proved in [10, Theorem 3.6] (also for q not of Cartan type). ]

Remark 4.2.2. It is easy to see that a suitable “PBW theorem” holds as well for any
generalized MpQG with larger torus Ug r, (g)—cf. Section 3.3.
4.3. Hopf duality among quantum Borel subgroups

Proposition 3.1.4 provides a skew-Hopf pairing between the two MpQGs of Borel type
Uq> and Uq , that we denote by 7. Again, from [11, Proposition 4.6], we have a complete
description of this pairing, in terms of PBW bases (of both sides), namely the following:

Proposition 4.3.1. Keep notation as above. Then
M M M —1)h(Be)
e fir ) _ (=D P q g gi
n(k];[1 EﬂkK,kl_[:l Fj L) - ]}:[léek,fk(—qﬂkﬂk " (€K)qype ! (K, L)

forall e, fr € Nandall K € Uq+’°, L e Uq_’o, where h(By) is the height of the root By,
and qgk gk is defined as in Section 3.2.
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Remark 4.3.2. It is straightforward to see that the result above actually extends to the
case when—under suitable assumptions—one considers the pairing 1 between two multi-
parameter quantum Borel subgroups U, qZF. and U qSF. like in Section 3.3.4.

4.4. Special products in Uy(g) = (Uy(9))e

When performing calculations in our MpQGs, a convenient strategy is to reduce ourselves
to similar calculations in the simpler framework of uniparameter quantum groups. The
basic point to start from is the existence of a Hopf algebra isomorphism

Uq(a) = (Uy(9)),

(cf. Theorem 3.2.2) where o is the 2-cocycle given in Definition 3.2.1. Therefore, we can

describe Uy (g) as being the coalgebra (Uy(g))o endowed with the new, deformed product

* 1= -, (defined as in Section 2.2.1) and the corresponding, deformed antipode S,. The

“old” product in Uy(g) instead will be denoted by . So hereafter by ¥ *? or Y% we shall

denote the z-th power of any Y € Uy(g) with respect to either the deformed product * or

the old product *, respectively, for any exponent z € N, or even z € Z when Y is invertible.
For later use, we need to introduce some more notation:

Definition 4.4.1. (a) Let 4 be an algebra over a field F, and let p € F be not a root of
unity. For every H € A, n € N, and ¢ € Z, define the elements

H; nopetlsg H H:0
()~ (=), e
n g o p° = nJp nJp

that are called p-binomial coefficients (or just ““p-binomials”) in H .
(b) Foreveryi € I, o € ®, X; € {E;, F;}, Y, € {Ey, Fy)—notation as in Sec-
tion 4.1—and all n € N, the elements in Ugy(g)

X V4
xm.— i ym.— o 4.3)
(n)g;;! (1) goq!

are called quantum divided powers, or q-divided powers.

Note that if in Ug(g) we consider the two products - and *, we have two corresponding
types of g-binomial coefficients, hereafter denoted by (Xn;o);J and (Xn;o);. Similarly, we
shall consider two types of g-divided powers, for which we use notation Y ™ and y*);
indeed, the first type denotes a g-divided power in (Uy(g).~), and the second one a g-
divided power in Uqy(g) = (Ug(a))o = (Uz(g). ).

4.4.1. Comparison formulas. Some elementary calculations lead to explicit formulas
linking same-type objects in (Uy(g),~) and in Uq(g) = (Uy(g).*); we shall use them later
on when studying integral forms of Ug(g).
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Concretely, foralli € {1,...,0},n,me N, z,z/,z" € Z ps € {q,qs}, X,Y €{K, L},
and GijEl = K;-LIL;FI, we have, cf. (4.2) for notation,
—q (z)Fl(n)

K* = K7 LiP=Lf. G =G,

Xi*_XiY Giil*_Giﬂf
h Di B n Pi’ n qii a h qii,

x(m) _  +(5) ) *(n)
E;" =q; P E™. R

Ei*(n) » E;f(m) _ q+(z)q;li-all/’2na/ q; +(3 )E (n)vE (m) _ +(2) (q+1/2)nmq]f"(2)E;(n)jE;(m),
S
E:(nl) E*(nz) "*EZ("S) _ (1—[ +( ))(l—[q;:%z ’nkalk) (m)vE (nz)j‘”jEl:S(ns)’

j=1 Jj<k

Fr® . Frm = g ()qno},/,zma,Q,()F(")vF(m) 0 D /2ymy. ()F(n)vF(m)

1) (n2) (n5) -(}) - )y 2y v ()
Fl’:nl F*nz *F:" :(Hq )(anllt/ﬁ nlkalk)F'llnl ‘F, 2y, Fisn 7

j<k

*z/ xz" _ vz vyiz/ *z' xz" _ vz vy’ *z' xz"" _ vy
Py =XE Y X GE =X Y G Y =6 Y

X
OO0 =0,
nJp \MJp; n/p \m Pj’
(A =), (),
2 * J — 1 M J
GO0, =0 =),
nJ pi m- /g, nJ pi m qj,-,

w(n) | xm) _ +G) =(3) 2m) v im) w(m)  xm) _ —(3) +()im) v -in)
Ein*ij_qiijinn'ij’ ij*E'n—qu Zij‘Ein,

q;

Xi*Z . E]*(”) — qi‘;Z”/ZX;Z \"l,:;(”)7 E]*(") . Xi*z q]‘tzn/zEv(") ‘.’X;Z,

xz  pxM) _ 7z v (@) *(n)  ~xz _ p(n) v~z
Gim=E; 7 =G - B, BTG = BTG

1

X7 Fj*(m) — qi;zm/ZX;Z v F;(m), Fj*(m) D qj—izm/Z F;(m) M X;Z’

G;kZ « F*(m) — G;Z \:F?(m), F*(m) *Gi*z — Fv(m)VGVZ7

. s H1/20n
*(n) _ +() cem—oy T P i ) =1 (X ;
() =a T () x
s=1 j

pj—l

+1/2
Xi\* Er0) _ +(2) e T P ) = (X ”
Z p; 1_[ — &7 ) X
mJp; s=1 r; m==<c/p,
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Gi\* +O( G\ .o
, ( ) g0 — gt O(G) e,
qdjj qjj

Gi\* N oo G\
Ez*(n) *( ]) — ql+(2) Ei(n)j( J )
m /). m/,

4qjj

1/2 .
F*(") _(2) 2 : —c(m—c) l_[ pj s(ql] )t — IFF(n) X; e
m Di -l p _1 1 ) Jj

j s=1 J Dj

m-—c

_ 1/2 v
Xi\" FrO) — (2)2 —c(m—c) 1—[ r; S(qﬂ )n XY e
m)p. i s=1 M=C/p T

Fi*(”’*(Gf)* :qi—('z')Fif(n)f(Gj)' 7 (Gj)* *Fi*(n):qi—(ﬁ)(Gj)' ),
"/ aj /gy M/ ajj "M/ ajj

In addition, more in general for root vectors we have the following. From Proposition
4.1.1 and its proof, recall that—keeping notation from there—if we denote by E, a quan-
tum root vector in Uq(g) and by E, the corresponding (i.e., for the same root) quantum
root vector in Uy (g) we have

E, = m(J{Eva and F, = m;ﬁa
for some Laurent monomials m) = m+(qi1/2) and m, = my, (qil/z) in the qil/z’s.
Then an analysis like above (just a bit finer), for o, 8 € d>+ jed{l,...,0},yields

+1/2 +(3 5i(n) v 5
E;(n) . E;(m) (2)(q / )nmqﬁ (2)(m(;|-)n(m;-)mEa(n) - Eﬁ(m)’
s
+( ) I A vV s
EX0) . XD = (1—[ g )(qufnkak)(H(m;rj)n,)Eélnl) ..... ),
j<k j=1

Fro. F;(m) _ q;('zl) (q;1/2)nm q;(’?) (mg )" (m)™ o~ 15;(”’),

Fro .. s = ( 1—[ s )) (l_[q;la/ﬁnkak) ( ﬁ(m;j)nf)ﬁ;gm)r. L),
i<k j=1

EX®™. F;(m) _ q;(g)q;(g) (mi)n(mg)mé;(n) v I}[;(m)’

Fpm . gr® — q;('é') ar® (mg)™ (my Y ES < B0,

X3 *E*(n) +zn/2(m+)nX E ). E;(n) X} = +zn/2( ﬂ)”E () v X,

G*z E;(n) (m+)”G zv E (n) E;(") . Gi*z — (m;)” E-(n) v Gz:Z’

XFe F;(m) =q, Zﬁm/z(m—)le:z v ﬁ;(M)’ F;(m) CXF = q;-;m/z(mg)mﬁg(m) YX;Z,

Gr* *F;(m) (m Y"G; z VF (m) ;(m) G} = (mg)mFIé(m)gGl{z’
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+1/z)n _1

E*(n) ( ) +(2)(m+)n§ : —c(m—c) l—[ p] aa] 5 (n)( X; ) e
m Pi p;i—1 * \m—c), 7’
pj s=1 J Dj

* —s(,+1/2\n M
(X]) *E;(n) +(2)(m+)nz ]—c(m c) 1—[ p] (qa]a ) —1 ( Xj ) X;CE;('I)’
Pi s=1 pj

m pj—l m-—c

G: * +(n) . 5 G Y
E‘?‘((n)*(mj)q,, =ga 2 (m;—)nEa(n)‘(n;)
i qj;
Gi\* o G v .
(rr;) * E;('l) = o (2)(m‘;i-)n( mJ) y Ea(n),
i 4
1/2\n M
- P} (qaa) ) con (X .
Fa (m) (2)(m )nz JC(m C)H% a(n)(m—c) X
Pi s=1 p] Dj
* —s 1/2 n__ v
(Xj) *F*(n)_q (2)(71’1 )" Z J—c(m c)l—[ pj (6104, 1) 1( X; ) X;Cﬁ;("),
m pj s=1 P]— m-—c i
i i

G'* *(n - —\n G'Y v -'(n
( j) *Fo‘():qa(Z)(m“) (n’;) ‘Foc()'

djj qjj

5. Integral forms of MpQGs

The main purpose of the present section is to introduce integral forms of our MpQGs; in
particular, we shall also provide suitable PBW-like theorems for them.

5.1. Preliminaries on integral forms

In this subsection, we fix the ground for our discussion of integral forms of MpQGs.

5.1.1. Integral forms. Let S be any ring and M any S-module. If R is any subring of S,
we call R-integral form (or “integral form over R”) of M any R-submodule Mr of M
whose scalar extension from Rto S is M ;i.e., Mg Qg S = M. When M has some richer
structure (than the S-module one), by ““R-integral form” we mean an R-integral form that,
in addition, respects the additional structure; in other words, the definition is like above
but one has to replace the words “module” and “submodule” with the words referring to
the additional, richer structure. For instance, if H is a Hopf algebra over S, by “R-integral
form” of it we mean any Hopf subalgebra Hg over R such that S ® g Hr = H.
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5.1.2. The ground ring. The integral forms of our MpQGs will be defined over a suitable
ground ring. To define it, we begin fixing a multiparameter matrix q of Cartan type with
entries in the field k, assuming again that the Cartan matrix is indecomposable. Starting
from q, we fix in ]k an element ¢;, € k™, now denoted by g := g}, like in Section 2.3.2,
and square roots q 2 of all the qi;’s, like in Section 2.3.2.

We denote by F the subfield of k generated by all the qil ’s (i, j € I') along with g*
moreover, we denote by F¢¥ the subfield of k generated by all the qil/ g (i, jel) and
g*1/2; then Fq v is a field extension of %4 that contains also all the square roots qil/ g
and qil/z’ (B € ®1), for all the ¢;’s and qp’s defined at the beginning of Section 3.2.
As a ground ring for our integral forms, we fix the subring R, of k generated by all the

“—Ll s (forall i, j € I)and g*'; moreover, we denote by Rq the subring of k generated
by all the qil/ 2’s (i, j € I) and g*'/2: this is a ring extension of R, that contains all the
square roots qlﬂ/z’s and q;}tl/z’s (B € ™). The field of fractions of Ry is just g, and
similarly that of Rq is just g

When q is of integral type we have that Rq and Fq are generated (as a ring and as a
field, respectively) by ¢! alone, while ﬁf and 4" are generated by q*1/2.

Finally, if we consider MpQGs with larger tori, then we take a ground field Fq, and a
ground ring R, defined like ¥4 and R but replacing the q_l ’s with the qil/ “sand g*
by ¢*'/¢, with ¢+ := |det(C+)| and ¢ := cqc_ (cf. Sectlon 3.3.3, Section 3 3.4).

5.2. Integral forms of “restricted” type

Following Section 3, we consider the multiparameter quantum group Ug(g) associated
with q, defined over k; also, for the special value of ¢ € k fixed above (depending on q),
we pick the MpQG of “canonical type” Ug(g) as in Remark 3.1.2. Moreover, for each
B € ®* we consider quantum root vectors E g and Fg—within Uy (g) and within Ug(g)—
as in Section 4.1.

Lusztig’s quantum groups of “restricted type” were introduced (cf. [45]) as special
integral forms of his uniparameter quantum group—which is “almost” Uy (g)—defined in
terms of the so-called “g-binomial coefficients” and “g-divided powers”. We shall now
perform a similar construction in the multiparameter case.

5.2.1. g-binomial coefficients and their arithmetic. Let p be any formal indeterminate,
m € N,and J :={1,2,...,m}. We consider the two algebras

Enm = QX ies], €m = Q)[{xF Vies]

of Laurent polynomials in the set of indeterminates { X iil }ies and { )(iil }ier, respectively,
on the field Q(p) of rational functions in p with coefficients in Q. Both algebras bear
unique Hopf algebra structures—over Q(p)—for which the X ﬂEl’s and the Xil’ are
group-like, i.e., A(Xlil) XﬂEl ® XﬂEl e(Xil) = 1 S(Xlil) Xl:Fl =1 for E,, and
AGEY = 11 ® ), e(rE) = 1S (i) = 7! = 1 for .

The following result lists some properties of p-binomial coefficients (cf. Definition
4.4.1 (a)), taken from [23, Section 3] (anyway, everything comes easily by induction).



Multiparameter quantum groups at roots of unity 867

Lemma 5.2.1. Let A be any algebra over a field F, and let p € F be not a root of unity.
Let XY, M*! € A with XY = YX. Then fort,s € N, ¢ € Z, we have

. t N ;
(XY,C) _ Zp@—cy)(s—t)(x’c’() YH(Y’CY) Vex + oy =c.
t y4 K] L= r ’ ’

=0

M: M:
MM =1=M"M, ( ’c) —1, (p—l)( ’0) — M1,
0 V4 1 P

Mil(M;C) :(M;C) M*! (M;C) (M;C_t) :(H_S) (M;C)
P L Jp ' Jp § p ! A
(M;c+l) _pz(M;C) Z(M;C) Ve > 1,

t » L Jp t=1,
(M;c+1) _(M;c) :pc—t+1M(M;") Vi > 1,

t » L Jp =1

s<c,t .

("), = Lo (),(1), veze

t P S)p\t=5/p

§=>0

. t .
(M,—c) _ Z(—l)sp’(cﬂ)ﬂszl)(s +c— 1) (MO) ves 1.
t p s P r—s P

s=0

~

If, in addition, A is a Hopf algebra and M*" is group-like, then

A((M;C)) Z pr(ch)(M;cl) ®M’(M;C2) Ve 4+ =c,
L Jp rs=t " > e

M;c c M:;c — 1\ pet—(5) z(M;t_C_l)
6(( t )p) (I)p, s(( Z ),,)_( D pe=G m c )

A(M:I:l) — M:I:l ®M:|:1, G(M:tl) — 1, S(M:I:l) — M:Fl_

Inside the Q(p)-vector spaces E ,, and &,,, we consider the Z[p, p~!]-integral form
of Laurent polynomials with coefficients in Z[p, p~!], namely

Enz =Zp, p 'I[{XF Yes].  Emz = Zlp, p " I[{xF" ies]

which in fact are both Hopf subalgebras (of E ,,, and &,,) over Z[p, p~!].

Fix some d; € Z \ {0} and powers p; := p% for each i € J. Then a unique Q(p)-
bilinear pairing (,) : E,, x &, — Q(p) exists, given by (Xiz",)(f-j) = pf”zic" (for all
z;,{j € Z and i, j € J). By restriction, this clearly yields a similar Z[p, p~1]-valued
pairing between the Z[p, p~!]-integral forms E ,, z and &,, z; indeed, this is even a Hopf

pairing (cf. Definition 2.1.2). Finally, define

(Emz)° = {f € Em|(f Emz) S Zlp.p~']}.
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It follows from definitions and (Z) € Z[p, p~'] (n,k € N), cf. 2.3.4, that

pi

XE e
XE ( P ) €(Emz)° Viel celZ, neN. (5.1)
n pi

1

Now set

X750\ - Xii0\ i
( 7 ) x5 = 1_[( l ) X720 for every n := (n)ies € N7,
n ya iesN " b

where |n; /2] is the greatest natural number less than or equal to n/2. Then we have the
following proposition.

Proposition 5.2.2 ([23, Theorem 3.1]). (a) (6m,z)° is afree Z[p, p~']-module, with basis
X -
B, {( J) XJLE/ZJ Ine NJ}.
b7p

(b) (Em,z)° is the Z[gl ._1]—subalgebra of E,, generated by all the (X;l;c)pi ’s and
the Xi_1 ’s, or by all the ( . ’c)pv ’s and the X;’s. In fact, it can be presented as the Hopf
Z[p, p~']-algebra with generators (X;;C)p_, Xiil—for alli € I,n € N, ¢ € Z—and rela-
tions stating that all generators commute with each other plus all relations like in Lemma
5.2.1 but with (X;l;c)pi, XEL and p; replacing (Mn;c)p, MY and p, respectively, for all
i € I; the Hopf structure then is given again by the same formulas as in Lemma 5.2.1 now
applied to the given generators.

Proof. Due to (5.1), the Z[p, p~!]-subalgebra of E ,, generated by all the (X;,;C)pi ’s and
the X l._l ’s is contained in (&,,,7)°—and similarly if we replace each X iil with its inverse
Xfl. Thus to prove the whole claim, it is enough to show that (&, z)° admits B,, as
Z[p, p~']-basis; indeed, we already have that the Z[p, p~']-span of B, is contained in
(Em,z)°, so to prove (a) it is enough to show that any f € (&,,,7)° can be written uniquely
as a Z[p, p~1]-linear combination of elements in B,,,.

To begin with, E ,, over Q(p) has as basis the set {X§ =[lies X/ | z:= (zi)ies €
77} and from this one easily sees that the set B, := {(X;J) X;Iﬂ/z] |neN’}is a
Q(p)-basis too, which is contained in (&,,,7)° by (5.1). Nowgconsider the monomials

Ky = ]_[jeJ )(;j (withy := (vj)jes € NY) in the y;’s. By construction, one has

X _ N
<( J) X,'ﬂ/“,xv>=]_[(”‘) prll2 e N 52)
n/, ni Jp,

ieJ M!

Let < be the order relation in N” given by the product of the standard order in N, so
n=<v&n <vVieg. As (le)p # 0 < n; <v;, by (5.2) one has

n

<(X’) X,_L"m,xv>#0©afz (n.v e NY). (5.3)
)2
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Now pick an f € (&,,,z)° \ {0}, and expand it (uniquely) as a Q(p)-linear combi-
nation of elements in B,,,, say f = Y ¢, (f({)) X~ 129721 for some ¢5 € Q(p) \ {0}.
Choose any index o € {1,..., N} such that n is minimal in {nD, ..., n™}; then by

(5.3) above and by (Z) = 1we get

(XS -ln®)2) 11 /2]
(fs Xn(o) Z <(n(s)) X, ’ln(a)> =Co 1_[ P
- P

s=1 ieJ

sothat (f. X)) €Zp. p~1]—because f€(Ey.z)°\{0}—implies at once ¢, €Z[p, p~!].

By induction on N, one then concludes that all coefficients cs(s = 1,..., N) in the expan-
sion of f actually lie in Z[p, p~!], q.e.d.
Finally, the presentation mentioned in claim (b) follows from [23, Section 3.4]. [

As a direct consequence of the above lemma, we have the following proposition.

Proposition 5.2.3. (&,,2)° isa Hopf Z[p, p~'1-subalgebra of E ,,. Therefore, the former
is a Z[p, p~']-integral form of the latter.

For later use, we finish the present discussion with another result that gives the dual,
somehow, of what we found for (&,,,7)°: it concerns the “bidual” space

((Emz)°)” = {t € &m | {(Em2)°.1) S ZIp. p~"1}.
Proposition 5.2.4. The “bidual space” ((Em,z)°)° coincides with &, 7.

Proof. By definition ((,2)°)° 2 &m,z, We have to prove the converse inclusion.

Lett € ((&n,z)°)° and expand it with respect to the Q(p)-basis of &,, made of the
Laurent monomials y¢ := ]_[jej ij (with § := (§j)jes € 77 in the X;’s. This means
writing t ast = Z;ezl c¢ x¢ for suitable c; € Q(p), almost all being zero; we denote by
n(t) € N the number of all such non-zero coefficients. We must show thatr € &, z, i.e.,
all the ¢¢’s belong to Z{p, p~1]; we do it by induction on n(¢).

As a first step, we assume that for all { := ({);es such that c; 7 0 we have {; > 0 for
all j € J. Then choose a § T € 77 such that Cet # 0 and § is maximal for that property
with respect to the standard product order on Z7; in other words, there exists no ¢ # {
such that ¢¢ #£0 and{ > ZT for all j € J. Then we have

o (5),)= El(3) ) S T1(3),

tezt tez’! jeJ

by the maximality of { T, and the properties of g-binomial coefficients. Also we have

(?T )p =gt

J
thus the above eventually gives Cet € Z[p. p~ '], q.e.d. Now look at ¢’ :=t — Cet Xets by
construction we have n(t') = n(f) — 1 < n(z), hence we may assume by induction that
t'€8nyz. . Thent =1 + CetXet € Em.z 100, q.e.d.
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At last, notice that ((§,,,z)°)° is a Z[p, p~!]-subalgebra. In fact, this follows at once
from the fact that (§,,,z)° is a Z[p, p~!]-coalgebra—and we have the perfect Hopf pairing
(,) between &, and E ,,. As clearly seen that all the y;’s do belong to ((€,,7)°)° and are
invertible in it, it follows that for any ¢ € &,, and for any ¢’ € Z” one has t € ((E;,2)°)° if
and only if 7y, € ((Em,2)°)°. Now, choosing a proper QT e 77, we can get 1 X¢ such that
inits Q(p)-linear expansion in the y¢’s, say 7 Y, = Z;Ezj cg xg, forallthe § = (gj)jes’s
such that ¢¢ # 0 we have {; > 0 for all j € J. But then ¢ := txy is of the type we
considered above, for which we did prove that ¢’ :=ty ¢ € &m,z; so the previous analysis
gives t € &, 7 too. [

5.2.2. The toral part of restricted MpQGs. The restricted integral form of a unipa-
rameter quantum group U, (g) was introduced by Lusztig as g-analogue of Chevalley’s
Z-form of U(g); we consider here its modified version as in [23], where specific changes
were done in the choice of the toral part. The construction in [23] immediately extends to
U (), hence now we want to further extend it to the general case of any multiparameter
Uq(g); nevertheless, a (mild) restriction on q is necessary, in the following terms:

Note. From now on, all along the present section we assume that q is of integral type
(as well as Cartan, as usual), say q = (g;; = qbii )i,jer asin Section 2.3.2. Therefore (cf.
Section 5.1.2) Ry, resp. :Ra[, is just the subring of k generated by ¢*!, resp. ¢*'/2, and
Fq» TESp. quI, is the subfield of k generated by g*', resp. g*1/2.

In the following, whatever object we shall introduce that bear a structure of module
over Ry, resp. over Fq, will also have its natural counterpart defined over JR{ , Tesp. over
Fq* , that is also a scalar extension of the previous one.

In the following, Uq(g) will be the MpQG associated with q as in Definition 3.1.1.
Inside it—more precisely, inside its toral part—we want to apply the construction pre-
sented in Section 5.2.1, for suitable choices of the X;’s, the y;’s, and the p;’s.

Recall that 7 := {1,..., 0}. Define G*! := KFILF (e Uy(h ® h) := U?) for all
i € I, and consider inside U(;) the Fq-subalgebra generated by the Kiil’s and the Gl.il’s,
namely E,g:=F4[{ Kl.jEl , GijEl }i,jer]; note also that taking the Ll.jEl ’s as generators instead
of the GijEl ’s will give the same algebra. As a matter of fact, since the K l.il ’s and the GijEl s
are group-like, this E g is indeed a Hopf F-subalgebra of U(;).

In the dual space (U;))*, we consider the Fq-algebra morphisms /%iil and yiil, for
i € I, uniquely defined by

(KiZiJ-(j?j) = q3ij2i§j7 (GiZiJ-(j?j) =1, <KiZi’Vj§j) =1, <GiZi’Vj§j) — qiz_'jzifj
(cf. Section 5.1.2) forall z;,{; € Z and i, j € J. Setting also Er9 = ?q[{/'ciil,yiil},-,je]]
for the subalgebra in (U(;))* generated by the Kl:tl ’s and the yl-il ’s, these formulas yield a
non-degenerate F-pairing between E 9 and &,¢. In fact, the latter is a Hopf algebra (the
k1’s and y£1’s being group-like), so this is actually a Hopf pairing.

Now E,g and €9, paired as explained, can play the role of E,, and &, in Sec-
tion 5.2.1 above, so we apply to them the construction presented there. Taking their
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corresponding R q-integral form of Laurent polynomials with coefficients in &, namely
Ezp, = Rq[{KE GE Y ier] and  Ex9.2, := Re[{ki v Yier ],

we have Hopf subalgebras over &q, and the previously given pairing restricts to a non-
degenerate Rq-valued pairing among these two integral forms.

Now assume in addition that the multiparameter q is of strongly integral type, say
q=(gij = qdi’if = qdf fij )i,jel- Then besides the previous construction we can perform
a second, parallel one, as follows.

Inside &29,»,, we consider now Ki:tl = /'cl.id" (for i € I), for which we have

(Kz, & ) qB,]d,-zié'j (G'Zi K;-j> =1
1 b / 9 1 b .1 .
forall z;,{; € Z and i, j € J, and set &9 := ¥, [{Kil, Yi +11; ier] for the subalgebra in
829 #,—hence in (UO)* too—generated by the Kil’s and the yil’s Then &,y is in fact
a Hopf Fg-algebra (the Kil ’s being group-like, hke the yil’s) and the above formulas
provide a non-degenerate Hopf pairing. Taking now

Ezor, = Re[{KF'. G Yier] and  Er0.2, 1= Re[{ki™ v Sier .

we have Hopf subalgebras over (R4, and a non-degenerate Ry-valued pairing between
them provided by restriction of the previous one. Basing on all the above, we can now
introduce the objects we are mainly interested into as follows.

Definition 5.2.5. (a) U2 = (€20.2,)° = {f € Eag | (f, 26,2,) € Ra} if @ is (just)
integral.
(b) Ué’ = (&20,2,)° ={f € E20 | ([, E29,8,) C Ry} if qis strongly integral.

By the analysis and results in Section 5.2.1, applied to the present situation, we have
the following proposition.

Proposition 5.2.6. (a) U 9 is a Hopf Rq-subalgebra of E»g, generated by all the ( )q ’s,
the Kil ’s, the ( g’c) ’s, and the Gil’

dii

(b) U 0 s a free Rq-module, with basis—cf. (4.2) for notation—

0

K; Lki/2] —lgi/2] :
|| K || G. = ki,gieNVi=1,...,0%.
{ (kl) qii ! | & l

i=1

© U(;) is isomorphic to the Hopf Rq-algebra with generators (K” ) KlﬂEl (Gg )q

GﬂEl (foralli € I, ki, g; e N,ce€Z) and relations stating that all these genemtors com-
mute with each other, plus all relations like in Lemma 5.2.1 but with ( ) K i'l, q and
(Gé )q GjE , Qi replacmg ( ) M= and p, respectively, for all i € Iq Accordingly,
the Hopf structure of U 0 s also given in terms of generators by formulas as in Lemma

5.2.1 but now applied to the given generators.
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(d)—(e)—(f) When q is strongly integral, similar claims hold true for 0o, up to replacing
everywhere each generator (K]éi;c)q and the parameter q with the corresponding generator

(K]é'l;c‘)q and the parameter q; = qd", respectively.
1 T .

(2) ﬁé’ is a Hopf Rq-subalgebra of 17(;).
One last important observation is in order:

Remark 5.2.7. Definitions imply that, beside all the generators Gi!, (Géflfc) Y G
and (K";C)q the algebra (’]‘0 contains all LF!’s and (L;i;c)q’s—as they give values in Ry
when paired with &9 g, ThlS restores a perfect symmetry in the roles of the K;’s and
the L;’s, which is not apparent in the very definition of U 0. Indeed, one can easily prove
that U 0 can be also generated by generators built from “L” instead of “K;” and similarly

for U 0 So replacing “K” by “L” everywhere yields a twin statement of Proposition 5.2.6.

5.2.3. Restricted MpQGs. We are now ready to introduce our generalization to MpQGs
of the notion of restricted integral form introduced by Lusztig for U,(g) (and later mod-
ified in [23]). We keep the restriction that q must be of integral type, say q = (q;j =
qbif)i7j€1 with B = (bi;)i,jer € Mg(Z), as in Section 2.3.2.

Again, hereafter Ug(g) denotes the MpQG associated with q as in Definition 3.1.1.

We recall from Definition 4.4.1 (b) the notion of g-divided powers: giveni €I, € ®T,
X; €{Ei, Fi}, Yy €{Eqy, Fy},and n € N, we call g-divided powers the elements Xi(n) =
X /(n)g;,! and Y(n) Y/ (1) g, ! in Ug(g).

The following result, about commutation relations between quantum binomial coeffi-
cients and quantum divided powers, is proved by a straightforward induction.

Lemma 5.2.8. Letq = (q;; = qbif),-, jerl be of integral type.
(@) Foranyi € I, mn,heN,ce€Z, k,A € Q, X,Y € {KcL, |k, A € Q}, and
Gij:1 = Kl-ilL?l, we have

K.Lj,;c F(n) F(n) K,Lj; c—n(BT Kk—B- /\)] ’
h h p

(K,CL)L;C) E(n) E(n) KKLA,C-FH(BT k—B- )L)j)
h b
q

(Gi;C) (n) (n)(G,,C nau)
h dii dii
(Gi;C) E;n):E;n)(Gi;c+naij) ’
h qdii h qii
$ gii

where (BT -k — B )L)] = Ziel(bij’(i —bﬁ)&,-)for/c = Ziel KO, A= Ziel )tiO{i.
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Moreover, for the Hopf structure, on q-divided powers we have formulas

n
AED) =S E"VKRED,  e(E®) =80, S(E®) = (-1)'g; K E®,
s=0

n
AFD) =Y FrQFOLI= (F™) =80, S(F™) = 1y g OFm L
s=0
while for KjEl GjEl and q-binomial coefficients ( i C)q, (G;'l;c)q”_ we have formulas like
in Lemma 5.2.1, with M and p replaced by K; and q or by G; and q,,
(b) In addition, if q is of strongly integral type, say q = (g;; = q i — =gq a fir); el

then besides all the above formulas we also have

Ki;C F(n)—F(n) K,-;c—nti}% Ki;C E(n)—E(n) Ki;C—f—l’ll‘i—}_
ho), T heo )y \n ) T o),

L;;c F(") _ F(") Li;c—f—ntﬁ L;;c E(") E(") L,-;c—ntj_i
h qi s h ¢Ii7 h qi h qi

and formulas for the Hopf structure on q-binomial coefficients (K;l;c)q_ and (L;'l;c)q_ like
in Lemma 5.2.1, with M and p replaced by K; and q; or by L; and g;.

We can now extend Lusztig’s definition of “restricted quantum universal enveloping
algebra”. Indeed, a straightforward extension requires that q be strongly integral; never-
theless, we consider also a more general definition when q is just integral.

Definition 5.2.9. Let Uq(g) be an MpQG over the field #4 as in Definition 3.1.1. We
define a bunch of R4-subalgebras of Uqy(g), with a specific set of generators, as follows:
(a) If q is of integral type, we set

Uy = (F")icr, nen. U = (EM)ier, nen,

el (), el (),
n gliel, neN n gliel, neN

il (5)), el (),
n gliel, neN n q iel, neN

ﬁq = ﬁq(g) = ((7(? U {F,-(n), Ei(n)}iel, neN)-
(b) If q is of strongly integral type, we set

O ={F")iernen (=00), U = (E") = 07)

ﬁq—,O = <Ll?t], (Ll) > s q§ = <Fi(n),Li] ( )
n .
giliel, neN iel, nEN
A~ K;
U’ = <Kiilv( l) > ;
n giliel, neN

ﬁq = Uq(g) = (lA/(f U {Fi("), Ei(n)}iel, neN)-

>

N
=y
Il
—_—
=
i
A
v
D'J
IO
—

iel, neN
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In the sequel, we shall refer to all these objects as to restricted MpQGs.

The “restricted” MpQGs introduced in Definition 5.2.9 admit a presentation by gener-
ators and relations, which generalizes the one in the canonical case (cf. [23]):

Theorem 5.2.10. (a) Let q := (q;; = qbij)l"jel be of integral type. Then Oq = Oq(g)
is (isomorphic to) the associative, unital Rq-algebra with the following presentation by
generators and relations. The generators are all elements of U O as well as all elements
F(") E(") (foralli € I, n € N), and the relations holding true inside UO as well as the
followmg ones:

+1 -(n) +nb;; (1) 1 +1 -(n) bij (1) %1
K; Ejn =q" ’Ejn K=, K; Ijn =q™" ’Ijn K,
[ilE() :Fb-,-E()[:I:I [:l:IF() :I:b-iF()[:i:l

i jn =q"" jn i i jn =q " jn i

+1 1-(n) tnaij (n) ~+1 +1 (n) Fnaij (n) ~+1
G; Ej =q;; ’Ej G-, G; Pj =q;. ’Fj G-,

(Ki;c) E;n) _ Ejgn)(Ki;C-i-nbij) ’ (Ki;c) Fj(n) _ Fj(n)(Ki;C—nbij) ’
h q h q h q h q
(Li;C) EM _ E(n)(LlaC_nbji) 7 (Li;c) F(n) F(n)(Li;C+nbji) ,

h q ! h q h q h q

Gi;c EM _ pm Gi;c+naj; ’ Gi;c F(n) F(n) Gi;c—najj ’
h dii / / h dii h dii h qdii

My _ (T TS (r+s) ) _
xXxF _( ) ) X" XY =1 VX e{E, F},
qll

S Pk xOX VXD —0 VX € (B, F), Vi £,

r+s=1-aj;

() o) _ o~ pns) s ((Gii2s —m—n s 2 (m—s)
EMMFM =Y F"g; | LE™™.
qii

ii
5s=0

Moreover, with respect to this presentation, Uq is endowed with the Hopf algebra structure
(over Rq) uniquely given by

n
AED) =Y E" I KQED, «(E") =800 S(E™) = (—1)'q; DK ED,

s=0

n
A(Fi(n)) — Z Fi(n_S) ®Fi(S)L;-Y, G(Fi(n)) — 8n,0’ S(Fi(")) — (_l)nq;(z) Fi(n)Li_n

s=0

and formulas for A, €, S in Lemma 5.2.1 with (M, p) € {(L;i,q), (Ki,q),(Gi,qii)}.
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(b) Let q := (q;; = q i — =q 4 i) _jeI be of strongly integral type. Then Uq =0, q(g)
is (isomorphic to) the Hopf algebra over Rq with the followmg presentation by generators
and relations. The generators are all elements of U O as well as all elements F; (") E; (n)
(foralli € I, n € N), and the relations are

1) E () 1) _ TN ()
KHE® =q; "EMKE, KFF™ =q, " FKE,
o 4 o
Ll:I:IE](n) — qi:Fnt”E;n)L?:l, Ll:i:vaj(n) — qi ntﬂFj(n)L?:l,
+na;; Fna;;
G E" = 4" E G, G = g FV G,
Ki;C E(n) E(n) Kl,C + nt; Ki;C F(n) F(n) Ki;C —l’lli—}_
qi ! h ‘Ii’ qi h qi’
Li;c E(") _ E(") L;;c— nzj_i Li;c F(") F(") Li;c+ ntj_i
h ;o h ' h ’
qi qi qi qi
Gi:c E® _ g Gi;c+najj Gi;c Fo _ F(n) Gi;c—nayj
h ;o h ’ J h ’
qdii qii qii qii
xOx® = (r * S) X0 x© =1 vx e{E F},
r
qll

Y = l)sq,(f)q,’j DXVXS =0 VX e{E.F}, Vi#].

r+s=1-ajj
(A Gi;2s—m—n

EED =3 RO (O wpee
s=0 qii

endowed with the Hopf algebra structure (over Rgq) uniquely given by

n
AED) =Y ECVKIQED,  e(EP) =810, S(E™) = (-17q @ K ED
s=0

n
AFD) =Y Fr 9@ FOLI, «(F™) =80, S(E™)=(-1)" )
s=0
formulas for A, €, § in Lemma 5.2.1 for (M, p) € {(Li,4i), (K, qi). (Gi, qii)}-
© l7q is a Hopf Rq-subalgebra of qu.
(d) Similar statements occur for the various restricted multiparameter quantum sub-
groups considered in Definition 5.2.9.

Proof. Everything is proved like in the canonical case (cf. [23]), taking Lemma 5.2.8 into
account, but for (c), which follows from definitions and Proposition 5.2.6. [

As a first, direct consequence, we have the following result.
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PropOSItlon 5.2.11. (a) Uq = Uq(g) resp. U—, resp. UO, resp. U , resp. 0o, resp.
U+ 0, resp. Uz, isa Hopf Rq-subalgebra (hence it is an R —mtegral form, as a Hopf
algebra) of Uq(g) resp. ofU , resp. of Uy 0, resp. of UY, resp. of U+ 0, resp. of U—
Similarly, ﬁ(; , resp. Ut, isan Ry-subalgebra—hence, it is an Rq-integral form, as
an algebra—of U, resp. of Uq+.
. (b) If q is strongly integral, similar results—as in (a) and (b)—hold true as well when
“U” is replaced with “«U”.

Proof. Indeed, Theorem 5.2.10 tells us that Uq is a Hopf subalgebra (over Rq) of Ug;
moreover, the scalar extension of (7 from Rq to Fq yields Uq as an Fgq-module, just by
definition: thus U is an 1ntegral Rq-form of Uq, as claimed. The same argument applies
toU< U0 etc., as well as to Uy, U< U0 etc. n

An easier result, that is a direct consequence of Lemma 5.2.8 above, is the following,
which is about the existence of “triangular decompositions” for these restricted MpQGs

over Rq:

Proposition 5.2.12 (triangular decompositions for restricted MpQGs). The multiplication

in Uq provides Rq-module isomorphisms

-
+
(=}
&®
-
(=]
I
Coe |v>
1
>
(=}
2®
=
. (=]

-
+
[=}
®
>
>
%
>
o
[
5%
)
®
-
+
. [=}

>
>
3
)

U U, ®(7
qaz :qu 1 R,

and similarly with “«0” replaced by “«0” if q is strongly integral.

Proof. We consider the case of ﬁq and of the left-hand side isomorphism, namely the case
U+ ®Rr, U0 ®,Rq U(; = Uy, all other cases being similar.

By definition U is spanned over Rq by monomials whose factors can be freely chosen
among the elements of U2, the F; (m)’s and the E (")’s moreover, thanks to Proposmon

5.2.6 (b) we can replace these monomlals with other monomials, say M, in the ( )q S,
the K;*’s, the( ) ’s, the G; ~7, the F(m)’s and the E(”)’

gii
Now, by repeated use of the commutation relations among factors of this type given in
Lemma 5.2.8—plus those stating that the (X ) s, the K7*’s, the (g’) s, and the G

all commute with each other—(or by the correspondlng relatlons glven in Theorem 5. 2 1 0)
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one can easily see that the following holds. Each one of these monomials, say M, can be
expanded into an Rq-linear combination of new monomials, say M, of the same type but
having the following additional property each of them has the form My = M} - MO - M,
where M+ is a monomial in the E () ’s, MQ isa monomlal in the (k) ’s, the Kl._"’s, the

(g")q ’s, and the G V2s, and M 1s a monomial in the F m s. This means that
i ii

My =M} - M2 M eUS -0 U

hence the multiplication map (7(;” OR, 0(;) O R, ﬁq_ — Uy is onto. On the other hand,
the PBW theorem (Theorem 4.2.1) for Uy = Uy(g) directly implies that this map is 1:1 as
well. |

The previous result is improved by the following “PBW theorem” for our restricted
MpQGs (and their quantum subgroups as well):

Theorem 5.2.13 (PBW theorem for restricted quantum groups and subgroups). Let quan-
tum root vectors in Uy(q) be fixed as in Section 4.1. Then the following holds.
(a) The set of ordered monomials

1 N

{HF(fk)|f GN} resp. {HE(")|eheN}

k=N h=1

is an Rq-basis of U-, resp. of Ut;in particular, both l/]\q_ and ﬁq+ are free Rq-modules.

The same holds true for (A]qi = (7qi) in the strongly integral case.
(b) The set of ordered monomials

L; K;
{l_[( lj) Lj_l'lj/ZJ | l; € N}, resp. {H(kl) K,'_I'ki/zj | ki € N}
jer N /a ier N\ /q
is an Rq-basis ofl;]\q_’o, resp. of l;jq+’°. Similarly, the sets

L/’) .-l 1—[( ) Gl

1_[ i gi/2] |l e N
] j» 8i
{jel( lj iel i

and

{H(G) Lglmn( ) K020 | gk, GN}

i

are Rq-bases of U(;). In particular, all Uq_’o, ﬁq+’0, and (7(? are free Rq-modules.
(c) The sets of ordered monomials

{ 1_[ Fyil? ( ) L7 fly e N}
li /4

jel
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and
L. 1
(11() £ 11 A e
jer ™~ 74 k=N
resp.
K; N
(1) s T 15 )
jer N4 h=1
and
N K
(TTETI() &7 1k en e,
h=1 jeI 7/ q

A
=

& and UZ are free Rq-modules.

are Rq-bases of U, resp. UZ; in particular,

(d) The sets of ordered monomials

N
[T F ( ) —Ll/ZJH( ) —Lgi/ZJHEéehh)|fk’lj,gi,eh€N}7

k=N jel iel qii h=1

N 1
G
| | Elff”) ( ) —Ll,/2J| |( ’) G; &2l | | Fé{") | fk,lj,gi,eheN},
ii k=N

{
{
|

G.
P (g-l) G,-Lei/2] 1—[( ) KW/ HE(%) | fi, gl,k,,eheN}
[ [ dii

jeI h=1

ﬁ (eh)l_[( ) —Lg:/2JH( ) K~ ki/2] 1_[ F(fk) | fe. g,,k],ehEN}

iel qii jeI k=N

are Rq-bases of ﬁq = 0q(g),' in particular, 0,1 = 0q(g) is a free R q-module.
(e) In addition, when q is strongly integral similar results—akin to (b), (c), and (d)—
hold true if “U” is replaced with “U” and every ( ) , resp. (I]f’ ) , is replaced with
q i’q

(Ll;i)Qj resp. (k,)

Proof. (a) Itis a classical result, due to Lusztig, that the claim holds true for U ;ie., the
latter is free as an Rq-module with a PBW-type basis given by the ordered monomials in
the F 7S )’s taken Wlth respect to the product “-” in U ; the same monomials then form a
PBW- llke R[-basm of (UV W= JRI ®Rr, Uv as well.

Now, the formulas in Sectlon 4.4.1 show that the above-mentioned “restricted” PBW
monomials in ((ﬁﬁ_)f, -) are proportional, by a coefficient which is a power of g*1/2
(hence invertible in the ground ring Rq ) to their “counterparts” (with the same exponents
for each root vector) in ((A]q_)Jg(Uq(g))Jz((U(](g))xf, *), i.e., with respect to the
“deformed” product “+” in (Uy (@)V = R({ ®r,Ug(g). In other words, using notation

qj
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of Section 4.4.1, we can write in short

1

l_[ (fk) z/2 ll[ F;’ffk)

k=N k=N

for some z € Z. Therefore, as the PBW monomials ]_[k N F ﬂ(f © form an e%’l‘f—bams of
(UV ), we can argue that the Hk N F;(fk)’s form an e‘R‘[—bas1s of (U )«f too.

On the other hand, as a direct consequence of Theorem 4.2.1, we have that the same
]_[k N F;(fk)’s also form an ¥g-basis of Uy - Thusany u_ € (U )v" will have a unique
expansion as an e‘/?‘[—llnear combination of the ]_[k N F *(f k7
sion as an Fgq-linear combination of the same restrlcted” PBW-like monomials. Then
the coefficients in both expanswns must coincide, and since JR‘[ N Fq = Rq, they must
belong to Rg; 5o the [Ty ;,ffk ’s form an Rg4-basis of U, as claimed.

The same argument applies for the part of the claim concerning U +.

(b) This follows by construction together with Proposition 5.2.2.

(c)—(d) These follow at once from claims (a)—(b) along with the existence of triangular
decompositions as given in Proposition 5.2.12.

(e) This is proved by the same arguments used for claims (a) through (d). ]

S, but also a unique expan-

Remark 5.2.14. It is worth stressing that the construction of restricted MpQGs does not
“match well” with the process of cocycle deformation, even if one extends scalars from R
to JRf—and from ¥4 to J*qf accordingly. In fact, if we label every MpQG over Rq
or fq‘[ by a superscript “v",” what happens is that, although Uq (g) (UV (@) =
(g) as ,Rf-modules for 1ntegra1 forms one has in general U, “[(g) # Uv‘/(g) as
!Rf-modules and a fortiori U q(g) # U; 4(a). The same holds for all “quantum sub-
groups”. .
In order [osee that, let us consider an element of U, “[(g) (ﬁa“/(g), *) of the form

EX®. ( ) from Section 4.4.1 we have the formula

K - 4 1-s(,+1/2\n 1 .. K. L
£ (M) =i Oy e [T 2% S (K9 e
q c=0 s=1 q

Nk i~ . .
here, the right-hand side term is the expansion of Eg @, (iilf )p_ into an Fg-linear combi-
J
nation of the elements of

1
{HE(”') (Gi) —Lg/ZJH( ) K; 2 H 5 fis g,,kj,eheN}
dii

8i jel
which, being an ;Rf-basm of Uq*[(g)—by Theorem 5.2.13 (d) above—is also an ¥ "qf-
basis of J*q‘[ ® &y Uq (g) = Uq‘[(g). Now, in the above expansion, the coefficients

iel

c I—S(q+1/2)n -1

+( —e(m— q j
Ja (2) (m;-)nq c(m—c) l_[ q(:ai :
s=1
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in general do not belong to R({ ; therefore, we have
*(n) Kj : A va

whereas E*(n) (m) U“[(g) by definition. This shows that Uq“[(g) # U‘[(g) inside
U‘[(g) U‘/(g) (as Fg-modules); in fact, it even proves that (U Z)V £ (UV =)¥", and
similarly one shows that (U<)~f # (U =)V too.

5.3. Integral forms of ‘“unrestricted” type

Beside Lusztig’s “restricted” integral form, a second integral form of U,(g) was intro-
duced by De Concini, Kac, and Procesi: the ground ring in that case was k[g,g ], but one
can easily prove—using the analogue (in that context) of Proposition 4.3.1—that their def-
inition does work the same over Z[g, g~ !] too, so it yields an integral form over Z[q,q~'],
with a suitable PBW-like basis, etc. Their construction can be easily extended to Uy(g);
hereafter, we extend this (obvious) generalization to any MpQG such as Uy(g).

Let us fix a multiparameter matrix q := (¢;;);,jes and the corresponding MpQG Uy (g)
as in Section 3.1; then fix the special parameter g (depending on q) and the “canonical”
multiparameter ¢ := (¢;; := g% )i,jer asin Section 3.2. Finally, assume that quantum
root vectors E,, F, (for all @ € ®T) have been fixed, as in Section 4.1, and consider for
them the following “renormalizations” (where ¢4 is defined as in Section 3.2):

Eq = (qaa — )Eq. Fy = (qaa —1)Fy Va € %, (5.4)
Mimicking the construction in [24], we introduce the following definition.

Definition 5.3.1. For any multlparameter q := (¢ij)i,jer asin Section 2.3.2, fix modified
quantum root vectors £ and F, (forall @ € ®7) of Uq(g) as above. Then define in Uy (g)
the following &R q-subalgebras:

q_ = (fa)aedﬂ'v (74;) = (Li:l:l7 Ki:tl>i51’

~qJr = (Ea)aca ﬁqs i= (Fa. Li 1)ae<l>+, iel>
U7 = (Kiil Eo)ier, acor. Ug® = (Li*")ier.

U a(@) = Uq = = (Fu. L ! Kil Eq diel, et ﬁq+’0 = (Kiil)ielo
In the following, we shall refer to this kind of MpQG as unrestricted.

Contrary to the case of restricted integral forms, if we extend scalars to !R{ , then all
unrestricted ones are indeed 2-cocycle deformations of their canonical counterparts, just
like what happens with MpQGs over Fg4. This follows from direct analysis through the
formulas in Section 4.4.1, as the following shows:
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Proposition 5.3.2. The Hopf algebra Uq‘[ = Uq*[(g) = JR({ ®Rr, Uq(g) is a 2-cocycle
deformation of its canonical counterpart, namely

0 @) = (0 @), = (0 @)?

(see Theorem 3.2.2 and Proposition 3.2.4 for notation). Similarly—using a superscript
“v'” to denote scalar extension to =72*f—(l7<)~/ resp. (UO)J resp. (U>)*/ is a
2-cocycle deformatlon of (Uv ), resp. of (U NV, resp. of (U =)', In particular,
0 @ =0 @. TV = T, G = TV, and U) = OFW as
IR‘}[ -coalgebms, and (qu)J (Uﬁi)*f as ,Raf -modules.

It follows that all of Uy, (G2)Y, (GO, (GZ)Y, (T7)Y, and (T are inde-
pendent of the choice of quantum root vectors Eg and Fg (for B € ot).

Proof. The same analysis as in the proof of Theorem 5.2.13 (a) shows—Ilooking at the
proper formulas from Section 4.4.1—that the identities

AV =TV, OHv =THv
hold as ,Ra[ -modules, and (U;’)«f = (U({))f as Raf -coalgebras; more precisely, the
latter identity can be read as
~ ~ ~ ("'
TV = (T)Y), = (@),
by the very definitions and thanks to Theorem 3.2.2 and Proposition 3.2.4.

The same argument proves also Uq (g) = Uv‘[(g) (U =)V = (U5)Y, and (U W=
(U =)V as eﬂf-coalgebras more precisely, one has U“[(g) (UE. (@))e = (U(](g))(@,
TV = (THV)o = (THND and (T2) = (TF)V)e = (THVIP. =

As for restricted MpQGs, we have a PBW theorem for unrestricted ones too:

Theorem 5.3.3 (PBW theorem for unrestricted MpQGs—and subgroups). (a) The set of
ordered monomials

1

N
{l_[ka|fk€N} resp. {HEEZM’ZGN}
h=1

k=N

is an Rq-basis of U, resp. of UrF;in particular, both these are free Rq-modules.
(b) The set of ordered monomials

{HLJ-“HajEZ}, resp. {HKib"|b,-eZ}, resp. {HLj“fK,-b"|aj,b,~€Z}
jel iel jel

is an Rq-basis of Uq_’o, resp. of Uq""o, resp. of U°, and hence all these are free Rq-
modules.
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(c) The sets of ordered monomials

e

k=N jel Jk€N, a;eZ jel

1
and {HL_;“I Hka} ,

Jk€N, a;€Z

resp.

(e [15)

N
a {
iel b,‘EZ, ehEN h=1

EST] Kib"}
iel

b,‘ €z, ehEN

=

¢ are free Rq-modules.

are Rq-bases of UZ, resp. of UZ; in particular; Uqf and
(d) The sets of ordered monomials

1
{HFf"HL“JHKblHE | fx.en €N, a;.b; ez}
k=N

jel iel

and
1

{HE [T ] k" ]‘[ka|fk en €N, aj.b; ez}

jel iel
are Rq-bases of ﬁq; in particular, ﬁq = qu (g) itself is a free Rq-module.

Proof. (a) Entirely similar to the proof of Theorem 5.2.13.

(b) This is obvious from definitions.

(c) We can apply once more the same ideas as for Theorem 5.2.13, thus finding
that B := {l‘[k N ﬂk l‘[jel L%} feN, a;ez is an Ry-basis of U=, the case for ﬁqz
being entirely similar. The claim is true when q = q, by the results in [24]; moreover,
by Proposition 5.3.2 we have (U<)~f = (U =)V as <72“f-coalgo;3bras so B is also an
Rf-basm of (U ). On the other hand, it follows from Theorem 4.2.1 that B is also
an Fq-basis of (Uq<)~[. Thus any u € Uq< (- (U;)«f N Uq<) uniquely expands as an
Rq -linear combination of elements in B but also uniquely expands as an F4-linear com-
bination of such elements: we conclude that the coefficients in these expansions belong to
RY N Fy = Ry, qed.

(d) This is proved by the same arguments as (c) above. ]

A direct fallout of the previous result is the following proposition.

Proposition 5.3.4 (triangular decompositions for unrestricted MpQGs). The multiplica-
tion in Uq provides Rq-module isomorphisms

1
1
1
1
1
1

77— 7 0 77— + 0 > 0 +
QU =U==U"® U, QU)=2UZ=U) U,
qﬁ q qJ,Qq q qﬁq q q qﬂ?q q
77+:0 a0~ -0 o [7H0 7 70 9 ii—~il. ~T- 2% 07
U ® =q=q®q+’ q+®q®q=‘l=q®q®q+
‘Rq ‘Rq ‘Rq ‘Rq 'R‘l
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Proof. Direct from Theorem 5.3.3 above. ]

Here is a second consequence:

Proposition 5.3.5. (a) Uq = Uq(g), resp. US, resp. U°, resp. UZ, is a Hopf Rq-subal-
gebra (hence is an Rq-integral form as a Hopf algebra) of Uy(g), resp. of UZ, resp. of
U(;), resp. of Ug.

b) qu is an Rq-subalgebra (hence an Rq-integral form, as an algebra) of qu.

Proof. Claim (b) is obvious, by construction, and similarly also claim (a) for U?; the other
cases are similar, so we restrict ourselves to one of them, say that of Uq.

Once again, the canonical case (i.e., ¢ = q) follows from the results in [24], suitably
adapted to the present context; then by Proposition 5.3.2 above the same result also holds
true for U V' with any possible q—that is, 0 isa Hopf !Ra[ -subalgebra of Uq“[ =
U “[(g) for any possible q. In particular, U 4 is an Rq -subcoalgebra of U’ , hence
given any u € U (< Uq“[) we have A(u) € U“f ® s U‘[ By Theorem 5.3.3, the Rq
module U ® v U is free with a basis made ‘of homogeneous tensors v’ ® v”
which both v ana v” are PBW monomials as given in Theorem 5.3.3 (d): thus A(u) has
a unique expansion of the form A(u) = )"  c;v; ® vy for some c; € Ry . On the other
hand, the same set of “PBW homogeneous tensors” of the form v’ ® v” as above is also
an Fy-basis of Uy ® 7, Uy: hence, since Uy is an Fy-coalgebra and u € Uy € Uy, we have
also a unique Fq-linear expansion of A(u) into A(u) = Y, a,v; @ vy. Comparing both
expansmns 1n51de U ® o Uy —which also has the set of all “PBW homogeneous
tensors” v’ ® v as Fg' -monomials—we find ¢; = ay € R‘[ N Fq = Rq for all s,
which means that A(u) € U ®Rr, U . So U is an Rq-subcoalgebra of Uy, and similar
arguments prove it is stable by the antipode, hence is a Hopf Rq-subalgebra. ]

5.4. Integral forms for MpQGs with larger torus

In Section 3.3, we introduced generalized MpQGs, denoted by Uqr, = Ugr, (g), whose
toral part is the group algebra of any lattice I'e = 't x I'_ with ['y. being rank 6 lattices
such that Q < Ty <QQ; in particular, this required additional assumptions on the ground
field k, namely that k contain suitable roots of the q;;’s; see Section 3.3.3. We shall now
consider one such a generalized MpQG, say Uy, r, , making assumptions on k as mentioned
above, and introduce integral forms for it, quickly explaining the few changes one needs in
the previously described treatment of integral forms for Uy, that is the case I's = O x Q.

5.4.1. Restricted integral forms for MpQGs with larger torus. Assume that q is of
integral type. Then a Z-bilinear form (, )p is defined on QQ, and we have well-defined
sublattices 0@ and Q) in QQ (notation of Section 3.3.2). We assume in addition that
'y Q'(Z) and I'_ C Q(’). Then we can define a “restricted integral form” Uq,r_ for
U,g,r., akin to Uq—so that Ty = Q yields Uq,r_ = Uq—as follows.



G. A. Garcia and F. Gavarini 884

Let {)’l:t}iel be a basis of I'+. Then in Definition 5.2.9 (a), replace every occurrence of
“Kil 7 with “K;El ” and every occurrence of “LjEl 7 with “LjEl "—so each q-binomial
coefficient (K” ) is replaced by ( V;l : ) etc.; this yields the very definition of Uq I.-

Basing on th1s definition, one easily ﬁtads that all results presented in Section 5.2 above
for Uq have their direct counterpart for Uq,p, as well. Moreover, the natural embedding
Uq € Ug,r, between MpQGs—induced by the inclusion Q x Q C I'e—=clearly restricts to
a similar embeddmg U - Uq r, of integral forms. Similar comments apply to the various
subalgebras of U for their natural counterparts in Uq I.-

Similarly, assume now that q is of strictly integral rype, so that the sublattices Q©
and Q) are defined in QQ (cf. Section 3.3.2); concerning I'x, this time we assume in
addition that T € Q® and T_ € Q). Then we can define a second “restricted integral
form” Uq,r, for Uq,r,, a direct analogue to Uq, as follows.

Given bases {V; }ier of 'y as above, in Definition 5.2.9 (b) replace every occurrence
of “Kil ” with “KE1” and every occurrence of “Lil ” with “Lil ” in particular, every
qi-divided bmomza% coefficient ( ”C)qi is replticed by (Kyh )q etc then read the out-
come, by assumption, as the very definition of Ugr, .

In force of this definition, one can easily find that all results presented in Section 5.2
about U have their direct counterpart for Uq r, as well. In addition, the embedding U, C
U,,r, restricts to an embeddmg Uq - UQl r. between integral forms. All this applies also
to the natural counterparts in Uq,p, of the different subalgebras of Uq.

5.4.2. Unrestricted integral forms for MpQGs with larger torus. Let now q be of
general (though Cartan) type, and make no speczal assumptmns on I'x. Then we can
define for Uy r, an “unrestricted integral form” U'[l r., akin to U —in that Uq r. = U

when 'y = Q—in the following, very simple way.

Let {yl }ier be bases of 'y, as before: now, in Definition 5.3.1, replace every occur-
rence of “KidEl 7 with Kyﬁl ” and every occurrence of “Liil 7 with “Lf,?l ;7 then take the
final outcome as the very definition of Uq,r..

Starting from this definition, one easily checks that all results presented in Section 5.3
for Uq have a direct counterpart for ﬁq’r‘. too. Also, the natural embedding Uq € Ug,r,
between MpQGs implies by restriction a similar embedding Uq c Uq,p, between the cor-
responding unrestricted integral forms. Finally, similar comments apply to the natural
counterparts in Uq,p. of the various subalgebras considered in Uq.

5.5. Duality among integral forms

If we take two quantum Borel subgroups Uy = and Uq =, we know that they are in duality
via a non-degenerate skew-Hopf pairing as in Sectlon 4.3. Now, assuming that q is of
integral type, if we take on either side integral forms of opposite nature, say Uz, or U z,
and Uqf—or qu and Uqf, or Uqf—we find that they are “dual to each other” with respect
to that pairing. To state this properly, we need to work with MpQGs with (suitably paired)
larger tori. The correct statement is the following.
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Proposition 5.5.1. Let Iy be rank 6 sublattices of QQ containing Q, let UqZF+ and
U qS,F_ be the associated Borel MpQGs, and let 1 : U qZ,I‘+ QU qS,F_ — k be the skew-Hopf
pairing of Section 3.3.4.
(a) Assume that q = (¢ )i,jer is of integral type, and (with notation of Section 3.3.2)
thatTy =TW and T = fg). Then

U ={ue Ul 10w, 0,0) € Ry},
O = v e U [n(020 . v) € Ry}
Uf = U, = {u e Ufr, In(u.Opp ) € Ry
Uy = ~q_,1"_ ={veUyr_ | ”(ﬁqJ,er v) € Ry},
qu,m ={ue qu,m | n(u. ﬁqs,r,) S Rq}.
0% ={veU |n(0Z,.v) € Ry}
and similarly reversing the roles of “+” and “—” and of “>" and “<”.

(b) Assume that q = (qd’ L — qd/li;)i,j 1 Is of strongly integral type (cf. Section 3.3.2
for notation). If I'_ = F_(:)—cf. (3.4)—then

>

T = e USE [0 T,10) € Ry},
Ut = {v € Ut [ 007 v) € Ra},
U =0, = {u e Ur, [ n(u.Uqr ) € R},
Uy =Ugr. = {v € Ugr_ [ n(Ugfr, - v) € Ry},
Ugr, = {1 € Ugp, I n(u.U51) € Rq
U5 ={veUS [ (07, .v) S Ry}
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Proof. (a) The assumptions imply (I'y,'_)p C Z, hence W(Kyfr, LV/_) = q(”i+’yf)3 —f.
Section 3.3.4—that in turn implies

K +:0 R Vi
(55, 00) (72775
n q J n q

Taking PBW bases on both sides, this is enough to prove n(U F , q g ) C Ry; therefore
we get

U+0 {ueU+O | n(u, U_ILO)CJRq}
and on the other hand also U;ll(i C{ve Uq_’l’fi | r](U(:'rO , V) € Rq}. This proves “half”
the result we claimed true, thus we still need some additional work to do.

Since I'y = Ir®andT_ = f‘(r) we can fix bases {y Yier of Fﬂ; that are dual to each
other, namely ()/h Ye )B = Snk for all h,k € I; so we get n(K ) q°m K2 7
As a consequence, the arguments used for Proposition 5.2.2 and Proposmon 5. 2 4 apply
again (with 7 replacing the pairing (, ) and the K yit'S s, resp. the L,,-’s, playing the role of
the X;’s, resp. of the y; s) now pr0v1ng claim (a). Indeed, the analys1s developed for those
results now shows that U FO and U FO_ contain bases that, up to invertible coefficients
(powers of ), are dual to eac_h other, and that is enough to conclude.

The claim about Uq+ =0 qu and U(; =U q_,r_ (both independent of I'y) is a conse-
quence of PBW theorems for both sides and of Proposition 4.3.1. Then from this result,
the one for U +1" and U F and the triangular decompos1t10ns in Propositions 5.2.12 and
5.3.4, we ﬁnally get the statement concerning U= ol and U= qr_ as well.

The statement with switched “+” and “—" or “>" and “<” goes the same way.

(b) Up to minimal changes, this is proved much like claim (a). [

Remark 5.5.2. One can use the previous result to deduce properties of a (Hopf) alge-
bra on either side—e.g. U T > say—out of properties on the other s1de—U T, or U= ol
in the example. For 1nstance U T_ is an Rq-algebra (hard to prove directly') because
U T, is an Rq-coalgebra (that follows from its definition). Similarly, we deduce that U +
is mdependent of any choice of quantum root vectors (that do enter in the deﬁnltion')
because it is “the dual” of Uq_ and the latter is independent, by definition, of any such
choice.

5.6. Integral forms of “mixed” type

Let us consider two quantum Borel subgroups U qz,l" and Uq r_ as in Section 5.5 above,
with q integral, linked by the skew-Hopf pairing n of Section 3.3.4. Assuming in addition
that the lattices '+ fit the conditions required in Theorem 5.5.1 (according to whether
q is strongly integral or not), that theorem tells us that the pairing 7 yields by restric-
tion Ryq Valued skew- Hopf pairings still denoted by n, for the pairs of R -Hopf algebras
( als qr )and (U qr , qF ), or the pairs (U= QT qr )and( qF , (fr_)whenq
is strongly integral. Moreover, as the original pairing 7 is non-degenerate, the same holds
true for its restrictions to Rgq-integral forms of the original quantum Borel subgroups.
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Therefore, much like each MpQG Uy (g) can be realized as Drinfeld double via the origi-
nal pairing 7 (cf. Remark Section 3.3.1), the restrictions of the latter lead us to define the
following definition.

Definition 5.6.1. With assumption as above—thus q is of integral type—we define the
following Hopf algebras over (Rq as Drinfeld doubles (cf. Section 2.1):

= : ~
Uqgr. = Uq,l". (@) = (Uq_r+» Uq_r_v 77)»

Uagr. —Uqr.(g) DUz, . U— 1),

where Iy := 'y x I'_. If, in addition, the multiparameter q is also strongly integral, then
we define similarly also the Hopf R4-algebras (again as Drinfeld doubles)

Uq,[‘. = Uq,F. (@) = (Aq I ﬁqs,r_’ 7])’

Uq,r. = Uq r.(g) = ( q>r+ qu,[‘_’ 71)-
The following claim points out the main properties of these new objects.
= <
Theorem 5.6.2. Keep assumptions and notations as above. Then U yr,, resp. Ugr,, is
an Rq-integral form (as Hopf algebra) of Uy r,, with a PBW-type basis

N

L+
(T T ) 5 T T A vt b
J q

h=1 jel iel t=N
resp.

1
HLVJ 1_[( .t ) K)Zl-ki/ZJ 1_[ F[gtft) |€h»lj7ki,fz c N}
l q

jel iel t=N

he

(notation of Section 5.4.1) as well as variations of these, changing the orde(i of factors
in the PBW monomials. Similarly, if q is strongly integral, then U r,, resp. U o r,, is an
Rq-integral form (as Hopf algebra) of Uy r,, with a PBW-type basis

N

L
(117 ), s Tt T vt e
7).

h=1 jel qi iel t=N
resp.

1
{HE Tel TI(') &2 T £ tens i i e )
qi

jel iel ki t=N
(as well as variations of these, changing the order of factors in the PBW monomials).
— < — <«
In addition, U qr,, resp. Uqr,, resp. Uqr,, resp. Ugr,, coincides with the Rq-
/> < = /<

subalgebra of Uy, generated by Uq,n and Uq,r,’ resp. by Uq,n and Uq,r,’ resp. by
= 77 < 7= <
Ugr, and U, resp. by U p and U
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Proof Indeed, the result follows at once by construction, together with the fact that U T.»
U T_» etc., actually are integral forms of the corresponding quantum Borel subgroups
deﬁned over k, and with the PBW theorems for them. ]

We are also interested in yet other mixed integral forms, defined as follows. Inside
U= or, or inside U . F , it is the same), denote by U Az’ the Rq-subalgebra generated
by U+ and UOF (recall that by Remark 5.2.7, one has Uo c U0 - UOF ); this
is 1ndeed an Rg4-integral form of Uq,F+ (as a Hopf subalgebra), and the non-degenerate
skew-Hopf pairing

e
n:U Ty R, ol — Ry

restricts to a similar pairing

n: Uql—lzi+ ®n, U — Rq.

Similarly, we consider the Rq-subalgebra U SfT of U SF (or of qu’r_) generated by
U and U° Ol which again is an Rg-integral form of U =~ for which we have a non-
degenerate skew-Hopf pairing 7 : U= oy OR U qSl:T — R 1nduced by the original skew-
Hopf pairing between our multlparameter quantum Borel subgroups over k. In addition,
we do not assume that the multiparameter q is of integral type, nor we assume ' and I'_
to be in duality (as in Section 3.3.3). All this allows the following.

Definition 5.6.3. For any multiparameter q (of Cartan type) and I'e := 'y x T'_, we
define the following Hopf algebras over Ry as Drinfeld doubles with respect to the above-
mentioned skew-Hopf pairings:

) ._ 7 o=t O
Uq Ie - U (g) ( q.I'y U )

). ( ) 0
Uq,l“- Uq, (0) = ( a4 Uq r- 77)
The main properties of these more Hopf algebras are summarized as follows:

Theorem 5.6.4. Keep notation as above.
(a) The Hopf algebras Uq(}). and Uq(,_l"). are both Rq-integral forms (as Hopf algebras)
of Ug,r., with a PBW-type basis

1
{HE(eh)l_[L HKIIZL l_[ Ff{,’ | en.lj. ki, f1 € N},

h=1 jel iel t=N

and

1
{HE l_[Llj HKk, 1_[ F(ft)|eh l/»khszN}

jel iel t=N

(notation of Section 5.4.1) for U q(JIC). and U q(}). respectively, as well as variations of these
(changing the order of factors in the PBW monomials).
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(b) U (1(}).’ resp. U q(,_r)., coincides with the Rq-subalgebra of Uy, generated by U qTF.’

Ucﬁr., and ﬁ(;n, resp. by ﬁd}., ﬁir., and 0(1_,1‘.‘
(c) Both U q(}h). and U q(_l"). have obvious triangular decompositions analogous to those

in Propositions 5.2.12 and 5.3 4.

Proof. Here again, everything follows easily by construction, through our previous results
on integral forms of multiparameter quantum Borel subgroups. ]

. “(+) (=) = < — «—
Remark 5.6.5. Defining Uq,r. and Uq,F.’ aswellas Uqr,, Uqr,, Uqgr,,and Ugr,, as
Drinfeld doubles provides great advantages, namely we get for free that

(1) they are Hopf algebras,
(2) they have nice PBW bases (and triangular decompositions),

(3) they are Rgq-integral forms of Ug r,—since they are tensor products (as Drinfeld
doubles!) of integral forms of multiparameter quantum Borel subgroups.

In fact, we already saw that these algebras coincide with suitable {Rq-subalgebras in
U,,r.; yet, proving properties (1)—(3) by direct approach would not be trivial.

5.6.1. The link with the uniparameter case. For the uniparameter quantum group Uy, (g)
of Drinfeld and Jimbo, possibly with larger torus, one can define RR4-integral forms ﬁq (9),
ﬁq(g), and ﬁq(g) much like we did with our MpQGs, constructing them as generated
by quantum divided powers and binomial coefficients or by renormalized quantum root
vectors; note that now Ry = Z[q, ¢~']. Similarly, one can define another RR4-subalgebra
of U, (g), denoted by qu(_)(g), generated by lz; , 17[? , and 17;, first introduced in [30].
This is again an Rq-integral form of U, (g), for which triangular decomposition and PBW
theorems hold true, deduced from the similar results for ﬁq(g) and qu (g). One also has
its “symmetric counterpart,” say Uq(+)(g), generated by ﬁq_ , (7; ,and l’]\q"r .

The construction of Rgq-integral forms (again with Rq = Z[g, ¢']) of restricted
or unrestricted type also extends to the context of twistequuantum groups U ; ul(g) a
la Costantini—Varagnolo (see [21, 22]), still denoted by Uf, (g) and U; (@) in the
restricted and the unrestricted cases, respectively. Then one has also corresponding inte-
gral forms for the various relevant (Hopf) subalgebras (Borel, nilpotent, etc.), triangular
decompositions, PBW bases, etc.—see [29] for details. Moreover, one can define also in

this context mixed integral forms U q(,_A)i(p (g) and U q(j&"p (g); namely

(1) U;’_A)j“’ (g) is the Ry-subalgebra of U,/ (q) generated by ﬁq_, ﬁ;,M’ Ur

q b
) (V]q(j&"p (g) is the Rq-subalgebra of U,/ (g) generated by Uq_, ﬁl;)’M, Uq ,

(note that the occurrence of ¢ is irrelevant at the algebra level, so that U q(j;}’w (g) =
U q(ﬂ;)I (g) as Rq-algebras; the coalgebra structure, on the contrary, is affected).

Using the properties of UF, 0 (2 u» and ﬁqi presented in [29], one can prove that
U q(;&"p (q)and U q(j&"p (g) are again Rq-integral forms—as Hopf algebras—of UJ ,/(g). In
fact, the trivial case ¢ = 0 gives U ;” 740 (a) = Uy, m (g), the standard uniparameter quantum
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group associated with M, so the case of U q‘o, (@) and its R-integral forms (restricted, or
unrestricted, or mixed) is a direct generalization of what occurs with Uy a7 (g).

On the other hand, it is proved in [27] that Costantini—Varagnolo’s twisted quantum
groups U f’ () are just quotients of MpQGs Ug prxo(g) with q ranging in a special
subset of strongly integral type multiparameters. It follows that the same link exists among
their integral forms of either type, including the mixed one.

5.6.2. Applications to topological invariants. As mentioned above, the mixed form
Lv/q(_)(g) was introduced in [30]. In that paper, the authors provide a construction of a
“universal quantum invariant” of integral homology spheres, calling it Jjs; this “lifts”
the well-known Witt—Reshetikhin—Turaev (= WRT) knot invariant rf,, (¢) of M associ-
ated with g and any root of unity ¢, in that rfl (e) is obtained by evaluation of Jys at &.
Unlike the definition of the WRT invariant, the construction of this “universal” invariant
Ju does not involve representations, so it provides a unified, representation-free defini-
tion of quantum invariants of integral homology spheres, performed in terms of the form
Us " (9)- )

Now, having introduced “multiparameter mixed integral forms” U q(j,}’(p (g) and even
U q(j}x 0 (g), we might expect that the construction of Jpy could be extended, starting from
U;j,)l’w (g) or even Uéj}xg (g) instead of Uq(_) (@), thus providing entirely new topological

invariants for knots (and links) and integral homology spheres.

6. Specialization of MpQGs at 1

In this section, we study those MpQGs for which all the g;;’s are 1; in fact, as every ¢;; is
a power of a single ¢ € k*, requiring ¢;; = 1 for all i amounts to requiring ¢ = 1.

Note that if g;; = 1 for some i, the very definition of Ug(g) makes no sense, so we
have to be more subtle. First we take Uq(g) as defined over a “‘generic” multiparameter
q := (gij)i,jer of Cartan type; then we consider its Z-forms ﬁq(g), (7q(g), and ﬁq(g),
defined over Rq (under suitable “integrality” assumptions on q for the first two cases);
finally, for either form we specialize g—hence all the g;; ’s—to a root of unity (or to 1, in
particular), which will make sense just because our ground ring will be set to be R.

6.1. The “generic”’ ground rings

As a first step in the process sketched above, we formalize the loose ideas of “generic
parameter of Cartan type” and of “generic parameter of (a specific) integral type”. Indeed,
this “universal ring of multiparameters” will be the ring of functions on the Z-scheme of
all q’s of Cartan type, or of (fixed) integral type.

Similarly, we introduce also the (universal) rings generated by “square roots of inde-
terminate parameters,” for both the Cartan-type and the integral-type cases.

6.1.1. The universal ring of multiparameters (of Cartan type). Let hereafter

ZIx*"] = Z[{xF Y et ]
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be the ring of Laurent polynomials with coefficients in Z in the indeterminates x;; (i, j€ 1),
and let A := (a;;)i,jer be an indecomposable Cartan matrix of finite type. Consider the
quotient ring
Zala*®']:= ZIxH'/ (xipxji = X3 Visjer)

in which we denote by g;; the image of every x;; (fori, j € I'). This is the ring of global
sections of an affine scheme over Z, call it €4: by definition, the set of k-points of this
scheme (for any field k) is just the set of all matrices q = (g;;);,jer of parameters of
Cartan type A with entries in k as in Section 2.3.2.

From all the identities ¢;;q;; = qfiij in Z4[q*!], one finds—by direct inspection of
different cases of possible Cartan matrices A = (a;;);,je7—that there exists jo € I such
that g;; = q]'-’(fjo for some n; € N, forall i € I;indeed, we cantake n; = d; (i € I) asin
Section 2.3.2. From this and the relations between the g;;’s, it is easy to argue that €4 is a
torus, of dimension (g) + 1: in particular, it is irreducible. Then Z 4 [qil] is a domain, so
we can take its field of fractions, denoted by Q4(q); in the following, we denote again by
gij (i, j € I the image of x;; in Q4(q) too.

By construction, the matrix q := (¢;;);,jes is a Cartan-type matrix of parameters in
k := Q4(q) in the sense of Section 2.3.2; in addition, none of the q;;’s is a root of unity.

Now consider the ring extension Rq of Z4 [qF!] generated by a (formal) square root

1/2

of ¢j, j,—hereafter denoted by ¢ := ¢ o jo—namely

Rq = (Zalg®"])[x]/(x* = qjyjo) so that q;o/ﬁ) =X € Ry

and then let % be its field of fractions, such that F4 = (Q4(q))[x]/(x* — gj, j,)- We still
denote by ¢;; the images in Rq and in Fy of the “old” elements with the same name in
Z4lq™'] and Q4(q). We shall also write qijEl :=g*9% forall i € I, so to be consistent
with Section 2.3.2; in particular, g }0/ ,'20 := g = gj,. Note in addition that we also have

= (Z[xEjer )]/ (i xgi — xi i jer UAX® = Xjojo})

In turn, we define also

RY = 2[E e JEE A (626 — @) IE? 82

which is again a domain, and ¥gq V' as being the field of fractions of the former. In both
cases, we denote by qil/ % and qil/ 2 the images of Eil/ 2 and £¥1/2, respectively (in
short, one reads these symbols as “¢ := /x”). Note that ﬂ(}f and Fq* are naturally
isomorphic with Rq and Fg, respectively, but we rather see the formers as ring or field
extensions of the latters via the natural embeddings Ry — eﬂ{ and Fq — Fq' given—
/2)2 and qzl:l — (q:tl/2)2.

Finally, observe also that the ring Z[g, ¢~'], resp. Z[q'/?, g~"/?], of Laurent poly-
nomial in the indeterminate g, resp. ql/ 2 naturally embeds in R, resp. in Raf , and the
same occurs with their corresponding fields of fractions. Then each module over Z[g,q™!],
resp. Z[g'/?,g~1/?], turns into a module over Ry, resp. R({ , by scalar extension.

in both cases—by ql- j — (ql y
1/2
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The very reason for introducing the above definitions, which explains the “univer-
sality” of both Rq and R({, is the following. If k is any field and q := (G;j)i,jer is
any multiparameter of Cartan type A chosen in k—i.e., all the g;;’s belong to k—then
there exist unique ring morphisms Rq — k and ;R[ — k given by q — é;l and
qlﬂ; vz, ql:]tl/ 2 (forall i, J € I) respectively—and similarly if Rq and Rq are replaced
by the fields ¥4 and ff"qf The images of these morphisms are the subrings Rg and fR-‘f
of k, respectively, generated by the g;;’s and the ql/ %5, like in Section 5. l 2—or the
corresponding fields, if one starts with ¥4 and Fq

6.1.2. The universal ring of multiparameters of integral type. Let A := (a;7);,jes be
a fixed indecomposable Cartan matrix of finite type as in Section 6.1.1, and let B :=
(bij)i,jer be a matrix with entries in Z like in Section 2.3.2. We consider the rings

Rf — Z[q,q_l], ﬁf,f = Z[ql/Z,q—l/Z]

and the corresponding fields of fractions ¥ ° := Q(q) and ¥ ° B = Q(g'/?), together
with the natural ring embeddings Rf — {Rq f and F ,qu "q f
byq:I:I (q:i:l/2)2

and qil/Z (qil/Z)bu c ;RB 2 - quB o foralli,j € I.

given (in both cases)
In all these rings, we consider the elements g;; := = Rf C ?'qB

Much like for the previous case of R and eﬂaf , the rings !RB and Rq BV are “uni-
versal” among all those generated by multiparameters of type B in any ﬁeld k, in the
following sense. If k is any field and q := (g;;)i,jer is any multiparameter of integral
type B in k, so that g;; = gbi for some g € k (for all i, j € I), then there exist unique
ring morphisms RZ — k and eﬂ(lf’[ — k given by ¢*' > gt and ¢g*1/? > G2 s
that

=q

e @Y =g G eI

qij ==q" — " =g and g a;

similarly with the fields ¥ ”qB and }qu,f replacing !R(f and R(lf V" The images of these
morphisms are the subrings Rgand JRI (independent of B) of k, respectively, generated
by the g£'’s and the g;; 172 e, by g*! and g*'/2, respectively, like in Section 5.1.2
(or the corresponding ﬁelds if we deal with %/ B and 7y f)

Finally, notice that we have a natural, “hierarchical” link between our universal rings
(or fields) of Cartan or integral type: namely, there exist unique epimorphisms

Rq —> {Rf (qﬂEl — qil) and {R‘{ —> Rf’f (qil/2 — qil/z)
50 Ra/(qij — 4" ijer) = RE and Ry /(g}/> — @*V2)P0)ije) = RV

6.2. Specialization at 1

Let q, Rq, and :R&f be fixed as in Section 6.1 above together with all related notation.
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We consider the quotient ring Rq,1 := Rq/(g — 1)Rq; by construction, the latter is

generated by invertible elements

yiﬂjFl = qifl mod (¢ — )Ry
which obey only the relations y*} =1and y !y =1, so that y7' = y !, It follows that
Rgq,1 18 just the ring of Laurent polynomials in the (g) indeterminates yilj/ 2i< Jj.In
the sequel, we write yo, for an element in Rgq,; defined like in Section 3.2 but for using
the y;;’s instead of the g;;’s.

It is clear that Rq,; is also an RR4-algebra by scalar restriction through the canonical
ring epimorphism Rq = Rq/(g — 1)Rq =: Rq,1.

For every matrix B := (b;;);,je; with entries in Z as in Section 2.3.2, we define
the ring Rf’l = Rf/(q - l)fRf. Note that Rff’l =~ 7 since R(If =~ Z[q.q~"], and the
epimorphism Rq — eﬂf induces a similar epimorphism Rq,1 —> eﬂc’ﬁ patg = 1.

Similarly, the “specialization at ¢!/ = 1” of both R{ and Rf ' will be

q,

R =R g = DR and R = REV /(g2 - ORD

we write yil/z for the image of qifl/z in Rg’fl and J?i’l‘f, and overall y := (y;j)i,jer,
y'/?:= (yilj/z)i,j 1. Again, we have an epimorphism J{;g —> ﬁg’l‘r induced by JR({—»
,Rf v Finally, the ring extensions Rq — R({ and fRf — fRf o yield extensions
Rq1 — IR({I and eﬂgl s Ri’l‘[; in fact, the latter is actually an isomorphism

>~ B,
RE, 5 REY (=),

Before going on and studying specializations of our objects at ¢ = 1, we recall some
well-known facts of quantization theory.

6.2.1. (Co-)Poisson structures on semiclassical limits. Let A be any (commutative uni-
tal) ring, let p € A be non-invertiblein A, and Ap—¢ := A/(p) = A/ pA. Whatever follows
applies to A € {Rq, J{f} and p:=qg—1lorAde {ﬁ({ J{f’f} and p :=¢q'/2 — 1.

Consider an A-module H, and let H,—o := H/pH be its specialization at p = 0;
clearly the latter is automatically an A,—¢-module. If, in addition, / has a structure of
an A-algebra, an A-coalgebra, a bialgebra or Hopf algebra over A, then the H,—¢ also
inherits the same kind of (quotient) structure over A,—o.

Furthermore, the following holds (see, e.g., [19, Chapter 6]).

(a) If H has a structure of (unital, associative) A-algebra such that Hy,—¢ is commuta-
tive, then Hp,—¢ bears a canonically structure of (unital, associative) Poisson algebra over
Ap—o, whose Poisson bracket is uniquely given by

/N ]
{x,y}:= WV TVY hod pH Vx,y € Hp—o

for any x’, ' € H such that x := x’ mod pH,y := y’ mod pH.
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If, in addition, H is a bialgebra or Hopf algebra over A, then the above Poisson bracket
together with the quotient structure of bialgebra or Hopf algebra (over A,—¢) makes Hp—o
into a Poisson bialgebra or Poisson Hopf algebra over Ap—g.

(b) If H has a structure of (counital, coassociative) A-coalgebra such that Hy,—¢ is
cocommutative, then Hp—¢ bears a canonically structure of (counital, coassociative) co-
Poisson algebra over Ap—go, whose Poisson cobracket is uniquely given by

/ 0 /
V(x) = w mod pH Vx € Hp—p
for any x’ € H such that x := x’ mod pH.

If, in addition, H is a bialgebra or Hopf algebra over A, then the above Poisson
cobracket together with the quotient structure of bialgebra or Hopf algebra (over A,—o)
makes Hj,—o into a co-Poisson bialgebra or co-Poisson Hopf algebra over Ap—y.

As a last remark, we recall that if [ is a Lie algebra and the Hopf algebra U([) is
actually a co-Poisson Hopf algebra, then [ canonically inherits a structure of Lie bialgebra,
with the original Lie bracket and the Lie cobracket given by restriction of the Poisson
cobracket in U(I). As a consequence, if Hp,—¢ = U(l) as Hopf algebras (H as above)
for some Lie algebra [, then the latter bears a Lie bialgebra structure, induced by H as
explained.

Now we fix Fgq, Rq, and qu , Rf, as in Section 6.1. Note that their generators g;; (for
all i and j) form inside either field ¥4 or F B a multiparameter matrix q := (gi;)i,jer of
Cartan type, and even of integral type (namely, type B) in the case of F B We consider
then the associated MpQGs defined over ¥4 and over 7, B both denoted by Uq(g); never-
theless, we shall loosely distinguish the two cases by saymg that we are “in the general,
resp. integral, case” when the ground ring is 4 or R, resp. ,'FqB or ﬂ?f .

In the general case, we consider in Uq(g) the unrestricted integral form U q(g), defined
over the ring Rq as in Section 5.3. In the integral case instead, we plck in Uy(g) the
restricted 1ntegral forms U q(g) and—in the strlctly integral case—U, q(g), defined over
!Rg as in Section 5.2, and the unrestricted form U, q(g) too—over eﬂf again.

We can now introduce the first type of specialization we are interested into:

Definition 6.2.1. (a) Let q be of integral type. We call specialization of ﬁq(g) atqg =1
the quotient

Uq.1(8) == Ua(8)/(qg = 1)Uy(g)
endowed with its natural (quotient) structure of Hopf algebra over J‘Eg 1 (=12Z).

As a matter of notation, setting ﬁq = ﬁq(g) we shall denote

kise Kisc 5 (ki K; i

( ) = ( ) mod (¢ — 1)Uy, ( ) = ( ) mod (¢ — 1)Uy,
n n o/, n /g

(li;C):: (Li;C) mod (q—l)fj, (li):: (Li) mod(q—l)ﬁ,
n n J, n nJq



Multiparameter quantum groups at roots of unity 895

h;; G;: 2 h; G: =
(,c)::( ,c) mod (¢ — 1)Uy, (l):z( l) mod (¢ — 1)Uy,
n /g n 7 g
= ()= () e ()
ki = , ll' = s h,‘ = s
1 1 1

e = EM™ mod (¢ — 1)U, P :=E™ mod (¢ — 1)U,

foralli e I,ceZ,neN,a € dt.
If q is of strongly integral type, then we call specialization of Uq(g) at ¢ = 1 the
quotient

Uq1(a) := Uq(@)/ (g — 1)Uq(g)
endowed with its natural (quotient) structure of Hopf algebra over R (113’ 1 (= 7). Like above,
setting 0q = ﬁq(g) we shall write (fori € I,c € Z,n € N, € %)

ki c K;; ~ k; K; ~
(nc):z( nc) mod (g — 1)Uy, (n):z(n) mod (¢ — 1)Uy,
ai ai
I;; Li; N 1; L; A
(ll;c) = ( ;C) mod (g — 1)U, (’;) = (nl) mod (g — 1)U,
ai ai
h;; Gi; A~ h; G; N
(lc):z( ;C) mod (¢ — 1)Uy, (nl)::(nl) mod (¢ — 1)Uy,
dii dii
k; l; h;
ki = , ll' = s h,‘ = s
() =) w=(7)

efx") = Eé”) mod (¢ — 1)U, fg") = Fof”) mod (q — l)ﬁq.

(b) Let q be arbitrary (of Cartan type). We call specialization of ﬁq(g)—deﬁned over
either Rq or ﬁf—at q = 1 the quotient

Uq1(8) := Ug(g)/(q — 1) Tq(q)

endowed with its natural (quotient) structure of Hopf algebra—over Rq,1 or R
tively. As a matter of notation, we shall denote (for allax € ®*,i € I)

faoi=Fy mod(g—1Ty(e), ex:=E, mod(q—1)TUy(g)
l,-il = Ll-jtl mod (¢ — l)ﬁq(g), kl-il = Kl-jtl mod (g — l)ﬁq(g).

B

a.1> Tespec-

Remark 6.2.2. Note that the specializations introduced above can be also realized, alter-
natively, as scalar extensions, namely

Ug1(g) == RE, ® Uy(q). Ugi(g) = RE, ® Uy(q). Ugi(g) :=RE, ® Uy(g)
RE RE RE

or—according to what is the chosen ground ring for ﬁq (g)—also

Uq1(a) = Rg1 ® Uy(g).
‘Rq
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Our first key result about specialization at ¢ = 1 is the following theorem.

Theorem 6.2.3. Let q := (qi; = qb"f)i,jel be as above, with B 1= (bi;); jer € Mo(Z)
such that B + B ! = DA. Then the following holds:

(a) Uq,l(g) is a (cocommutative) co-Poisson Hopf algebra, which is isomorphic to
Uz (gp)—cf. Definition 2.3.3—the latter being endowed with the Poisson co-bracket
uniquely induced by the Lie cobracket of § p—cf. Definition 2.3.1 (a). Indeed, an explicit

isomorphism ﬁq,l (g) => Uz (ap) is given by

ki k; I; I; h; h:
(’;)0—)(’;) (’;)H(Ié) (n’),_)(n') e s o [, (),

Similar statements hold true for the specialization at ¢ = 1 of Uz, 0 E’ U g, etc.

b) l’]\q,l(g) is a (cocommutative) co-Poisson Hopf algebra, which is isomorphic to
Uz (aB)—cf. Definition 2.3.3—the latter being endowed with the Poisson co-bracket
uniquely induced by the Lie cobracket of § p—cf. Definition 2.3.1 (c). Indeed, an explicit

isomorphism ﬁq,l (g) B Uz(gp) is given by

k; k; 1; 1; h; h; o) o) ) n)
(n)H(n), (an, Yo (M), e s,
Similar statements hold true for the specialization at ¢ = 1 of U=, Uqf, 0(?, etc.

Proof. By the definitions and the structure results for l’]\q,l (g) and Oq,l (g) in Section 5.2
(in particular, Theorem 5.2.10) the proof is a straightforward check. Indeed, from the pre-

sentation of ﬁq(g) and Uq(g) in Theorem 5.2.10, we get similar presentations of ﬁq,l (g)
and ﬁq,l (g): comparing these presentations with those mentioned in Remark 2.3.4 (a) for
Uz (gp) and Uz(gp), sheer calculations show that the formulas in the above statement
provide well-defined isomorphisms, as claimed.

Hereafter, we give a sample of these “sheer calculations”. Out of the commutation
formulas among generators of 0q(g)—cf. Theorem 5.2.10 (a)—we get

K; ) o ( Kiinbij m ([ Ki
( 1 )qu =5 1 q =i 1/, bk
K.
— EJ(")( 1’)q + (nbij)g E\V K.

Then, when we specialize this formula at ¢ = 1—that is, we take it modulo (¢ — 1)(7q (g)—
the left-hand side and right-hand side become, respectively,

() £ = (5 )er moata=niy)
q

K; k; 2
EJ(")( 1‘ )q + (nbij)g E\V K = e](.")( 1’) +nbijel  (mod (¢ — 1)Uq(g))
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because K; = 1 + (¢ — 1)(1?)(17 = 1 mod (¢ — l)ﬁq(g). This shows that the relation
K; K;
( 1’) E" = E]()( 1’) + (nbij)gE{" K;
q q

involving some generators of (7q (g), through the specialization process turns into

ki (n) (n) ki
(1l)ef" =" (] ) by

among the corresponding elements in Uz (g p); but this relation is indeed one of those
occurring in the presentation of Uz (g g) itself by generators and relations.

With a similar analysis, one sees that the generators in Uq,I (g) do respect all relations
that hold true among the same name generators of Uz (g ). In addition, there are no extra
relations because we have PBW bases for ﬁq(g) which specialize to similar bases for
l/]\q,I (), and the latter correspond to PBW bases of Uz(§ ).,

Finally, since K; = 1 + (¢ — 1)(1?')(1 = 1 mod (¢ — 1)U,(g) and also

L; by
Li=1+4+(q— 1)( 1') = 1 mod (g — 1)Uq(g).
q
it follows from Theorem 5.2.10 that

n n
A(Ei(n)) — ZEi(n_S) ® E;'(S) and A(Fi(n)) — Z Fi(n—s) ® Fi(s)
s=0 s=0

modulo ((g — l)ﬁq(g) ® 0q(g) + ﬁq(g) ® (g — 1)l7q(g)). This implies that l’]\q,l(g) isa
cocommutative Hopf algebra. ]

Remark 6.2.4. In sight of Theorem 6.2.3 above, the fact that the g g’s, resp. the §p’s, for
different q’s are all isomorphic as Lie coalgebras—cf. Remarks 2.3.2 (¢c)—is a direct con-
sequence of the fact that all the 0q (g)’s, resp. the ﬁq (g)’s, for different q’s are isomorphic
as coalgebras, as this happens for the Ug’s.

Next, we study the structure of ﬁq,l (g) := l7q (g)/(q — l)ﬁq(g). For the first results,
the multiparameter q is assumed to be generic i.e., just of Cartan type.

Let Uf fRf RR, Uy, and let U 1 (g) = U“[/(ql/2 I)U‘f be the special-
ization of Ug 7Y at ql/ 2 = 1. For any afﬁne Poisson group-scheme G* D4 Over QR“[ dual to
apa4, 1.e. LIC(GDA) = qp 4, We let OI(G D4) be its representing Hopf algebra

Proposition 6.2.5. lquyl (g) is a 2-cocycle deformation of ov- (6,’5 Al for some (uniquely
defined) connected, simply connected affine Poisson group-scheme Gy , over ‘R(],l dual
to Gp4 (as above).
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Proof. Having taken the largest ground ring JQ‘[ instead of Ry, Proposition 5.3.2 applies,
giving us Uq (g) = (g))s for a specific 2-cocycle ¢ as in Definition 3.2.1—in
particular, depending only on the g; ]1 2. By its very construction, this o induces, mod-
ding out (ql/ 2 — 1), a similar 2-cocycle, denoted by o7, of the specialized Hopf algebra

ﬁd{(g) := Uy(0)/(q"* — 1)Uy(g); therefore we get

07 @/ -0 @ = (0 @/~ T (@), (6.1)

Now, for the usual one- parameter quantum group Uy (g) in [24]—cf. also [29]—one
has a s1m11ar construction for Uq (g)—which is nothing but the quotient of Ué 1(g) modulo
(L; — K; ") for all i—for which one has

U1(g) := Uy(0)/(¢"? = )T, (g) = O(G*) (6.2)

for some (uniquely defined) connected, simply connected affine Poisson group-scheme
G* whose cotangent Lie bialgebra is such that Lie(G*) = (§pa/(ki + 1;)ies)* as Lie
bialgebras. Once more, this result can be easily “lifted” to the level of the quantum double
of Uy (g), which is nothing but Uy(g): the resulting construction is exactly that of the inte-
gral form Uy (g) within Ug(g), and the results in [24] then turn into (sort of) a “quantum
double version” of (6.2), namely

Us1(0) = Uz(a)/(q — DUz(g) = O(Gp,)

with é; 4 a connected Poisson group-scheme whose cotangent Lie bialgebra is gpa.
Extending scalars from Rgq,; to Ry, this yields

02 (0) =0 (©/@"? = DT () = 0¥ (G ). 63)
Finally, matching (6.1) and (6.3) the claim is proved. ]
The previous result can be reformulated as follows: up fo scalar extension—from

Rq,1 to fRf—the Hopf algebra ﬁq 1(g) is a 2-cocycle deformation of the Hopf algebra
(9(G N Actually, we can provide the following, more precise statement:

Theorem 6.2.6. Uy, 1(g) is a y-polynomial and Laurent y-polynomial algebra over R4,
(with 'y as in Section 6.2), namely

Uq,l(g) = Rq,l[{fa’liil,kiilsea}ffe{w]
where the indeterminates y-commute among them in the following sense:
fa’fa” = ya”a’fa”fa’» ea’fa” = fa”ea’
€a'Cq’ = Ya'a’Ca"€a’, kl‘:He ya,aeakil
e = yagealis K fa = va o fuki
I# 1, = youx, L g kizl:lkjil _ kj:_l:lkizl:l’
KT = Y ki =k
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Proof. All formulas but those in the first line are direct consequence of definitions, so we
can dispose of them, and we are left with proving the first three.

We begin with the mid formula ey fov = fqreqa, for which we have to compare
Ea/ Faw with Fa// Ea/ within Uq (g); and in order to do that, we shall compare these prod-
ucts with the similar product taken inside Uq(g), where the multiplication is deformed by
a 2-cocycle o as in Proposition 5.3.2.

Indeed, in the rest of the proof we extend scalars from Rq to R“f and thus work
with Uq‘[(g) and U (g) for the former we identify U (g) (U (g))a as Rf
modules, which is correct by Proposmon 6.2.5. In particular, inside Uv (g) we shall
consider the original product of Uv (g) hereafter denoted by “*”, and the o-deformed

product—yielding the product in U p (g)—denoted by “«”

By the results in [24]—cf. also [29]—su1tably adapted to the present “quantum double
setup”, we know that U(l(g) is commutative modulo (¢ — 1): this implies that Eq/ ¥ Fyr in
Ug(g) can be written as

Ew*For = For"Ew + (q—1)Y_ cs M (6.4)
S

for some ¢; € Rq, where E4 and 1?“// are (renormalized) quantum root vectors in U;l(g)
and the M ’s are PBW monomials in a PBW basis of Uy (g) like in Theorem 5.3.3 (d).
Let us look now for the counterpart of formula (6.4) in Ug(g)—thought of as embed-

ded into Uq‘[(g) = (U(l‘[(g))g. Thanks to Proposition 4.1.1 we have
Eor = m3@ ) Ew,  Fur = my (@) Fur

for suitable Laurent monomials m}, (q*!/2) and m_, (q*'/?) in the q %5 (each of which
is trivial if the corresponding root is simple). Now, the formulas in Sectlon 4.4.1 give

v v v v v v

~ > > ~ ~
EO[’ * FO[” = EO[’ \:Fa//’ FO(” * EO{’ = FO[” \:Ea/

(by the same analysis as that before Proposition 3.2.4); on the other hand, again by Propo-
sition 4.1.1 and by Section 2.2.2 we have that every PBW monomial in U; a(g), say M,
has the form M = m (qil/ 2)M* where m (qil/ 2) is a suitable Laurent monomial
in the ¢;; £1/2,, Tldylng everythlng up, from (6.4) and the identities here above—writing

mE = mi(qil/z) and m mﬂ(qil/z)—we find

v

* Fon —ma/m

Ea/ * Fa// = m;r/m

m|<

a//

Ea/ I‘éa//
_a,/ \-/ a/ —|— (q — 1) ch e/"_t;)
A

(m3) "N my)  For+ Eg 4+ (g — 1) ch mﬂsﬂ;‘>
S

— ot
= ma/ma//

AN TN

— ot
= ma/mau

= _Ol” * Ea/ —+ (q — 1)26‘5 m;m;//mﬂsM;

N
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that is, in the end,

Ea/ * Fa” = Fa// * E(x’ + (q — 1) ZCS m;_,m;,/mdqs M_: (65)

s

which is almost what we need, as the right-hand side belongs to U (g) but possibly not to
Uq (g). To fix this detail, we take the expanswn of Eg * Fyr asan R ¢-linear combination of
the PBW basis of the M} ’s (which includes Fy» * Eq too), namely Eqr * For = 3, 16, M,
for some «, € Rq; comparing the latter with (6.5) we get ¢ m;r/m;//mﬂs € Rq for every s.

Then (6.5) is an identity in ﬁq (g), which implies
Ea/ * Fa” = Fa// * Ea/ mod (q - l)ﬁq(g)

whence eventually ey for = fyreq, q.e.d.

We turn now to proving the identity ey ey = Yoa”€a” ey, for which we need to com-
pare Ey Eqr with Egr Eg within ﬁq(g). To begin with, from the results [24, Sections 9,
10, and 12]—suitably adapted, as usual, to the present, “quantum double framework”—in
the standard case of Uq(g) we have

Ew*Ew = fuwa Ear B + (g — 1)) Ca Eo® (6.6)
o

forall o', a” € ®F, where Gor or = ¢@*"/2 by definition, ¢y € Z[g,q7'] (€ Rg) for all
o and the E%’s are PBW monomials in the Eg’s alone.

Now from (6.6) we deduce a parallel identity in ﬁq (g). Namely, acting like in the first
part of the proof—basing again on the formulas in Section 4.4.1—we find

FOLE ot + 1/2 o
E(x’ * E(x” = ma/ma// E(x’ * E(x” = ma/ma//qa/ ! E(x’ . Ea”

= m;m;nq;—/’lo{,% ((;a’,a” Eot” : Eot’ + (q - 1) Z 51 E;Q)
o

-1 -1 -1/2 & il
- mo—bm;—//qa/ O{” Qa’ ol (m;—//) (m;_/) qa//’{x/ Ea// * EO[’

2 -€a

+ (-1 E Eambmy g i Ha Ea®
+1/2 = v +1/2 o
= qa/’of// th’,a"qa//’g/ Ea” * E(x’ + (q - 1) § :CQ (_)i—’mz_”q(x’ O{” Ha Ej

+1/2,

where fiq is yet another Laurent monomial in the g;;~*~’s and each Eég is the unique

PBW monomial in the E,’s that corresponds (in an 0bV10us sense) to Eég. Thus

Ea’ * Ea” = q;,lo{’% éa’,a”q;/l’t/xzf Ea” * Ea’ +(@—1 ch E;E (6.7)
a

where

X +1/2
Cg = Cgm;_/m;—//qa/ C{" //L(x € eﬂ{



Multiparameter quantum groups at roots of unity 901

But we also know that the Eg ’s form a PBW basis over Ry for Uq(g), hence Eq = Egr
uniquely expands into an {R-linear combination of these monomials: comparing such an
expansion with (6.7) we ﬁnd that all coefficients ¢y therein necessarlly belong to Rq: then
(6.7) itself is an identity in U q(g)—i.e., not only in U (g) Therefore, from (6.7) we
deduce

Ea’ * E_a” = Q;r/}o{/% éa’,a”qo}l’{j Ea” * Ea’ mod (g — I)Uq(g)- (6.8)

Finally, since q := (g;j)i,jer and ¢;; = q%%i = q%%i foralli, j € I, we just com-
pute that
6]: o{” 0% a//qa,,l{f, do’ o'
whose coset in Rq,1 1= Rq/(q — 1)Rq is just ygrer; therefore (6.8) yields ey eqr =
Ya'a"€q"€q as claimed.
A similar procedure shows that fo for = Vorar far for, which ends the proof. (]

Remarks 6.2.7. In [10, Section 3], a different construction eventually leads to a result
comparable with Theorem 6.2.6 above, although slightly weaker. In general, we prefer
to follow a different approach, because it exploits an independent argument and is more
consistent with our global approach in the present work, mostly based on the fact that
Uq(g) = (Uy(g))o- In addition, some results of [10] cannot be directly applied to our
context of integral forms and specializations, so we must resort to an alternative strategy.

When the multiparameter q is of integral type the last two previous results get a
stronger importance from a geometrical point of view. In fact, the following is a refinement
of Proposition 6.2.5 but we provide for it an independent proof.

Theorem 6.2.8. Ler q be of integral type, and Uq 1(g) defined over !RB Zlg.q7 "]
Then Uq 1(g) is (isomorphic to) the representing Hopf algebra (9(G 3) of a connected
affine Poisson group-scheme over 7. whose cotangent Lie bialgebra is § g as described in
Definition 2.3.1.

Similar statements hold true for the specialization at ¢ = 1 of Uz, l~/q5, (7(?, etc.

Proof. First of all, when q is of integral type, so g;; = gPi (for all i, j), we have
yij i=¢qijmod (¢ —1) =¢" mod (g — 1) = 1% =1 Vi jel
Therefore, Theorem 6.2.6 tells us that (711,1 (g) is a commutative Hopf algebra (of Laurent

polynomials); it follows then that l7q,1 (g) = O(¥) for some affine group-scheme, say §.
Moreover, from Proposition 6.2.5 (with notation as in its proof) we know that

0(9) = Uq1(2) = O(Gp)or

where the group scheme 55 4 is connected—in other words, (9(6,’3 4) has no non-trivial
idempotents. Now, as ¢;; = g for ¢ = 1, the “specialized” cocycle oy is trivial—namely,
01 = € ® e—which implies that O(8) = O(G}, )0, = O(G},), hence § = G}, as
group-schemes. In addition, by Remark 6.2.1 (a) the Hopf algebra O (§) = ﬁq,l (g), being
commutative, inherits from ﬁq (g) a Poisson structure. Hence it is a Poisson Hopf algebra;
thus § itself is in fact a Poisson group-scheme.
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We point out that the Poisson structure on O(9) = ﬁq,l(g) is induced by the multi-
plication in ﬁq(g) = (17;1 (8))o,> which in turn depends on q. Thus § and 65 4» although
coinciding as group schemes, do not share, in general, the same Poisson structure.

What is still missing for having § = é} is proving that the cotangent Lie bialgebra
of § is isomorphic to g p, defined as in Definition 2.3.1.

First we recall the definition of the cotangent Lie bialgebra of §. If m, := Ker(ep(g))
is the augmentation ideal of (), the quotient m,/m? has a canonical structure of Lie
coalgebra, such that its linear dual is the tangent Lie algebra of §. In addition, the prop-
erties of the Poisson bracket in @ (¥) imply that mt, is a Lie subalgebra (even a Lie ideal,
indeed) of the Lie algebra (O (§),{,}), and m2 is a Lie ideal in (u,, {, }), whence nt, /m2
has a quotient Lie algebra structure; together with the Lie coalgebra structure, the latter
makes m,/m?2 into a Lie bialgebra. As a matter of notation, we set X € m,/m? to denote
the coset in mt,/m2 of any x € m,.

As a consequence of the PBW theorem for ﬁq(g)—i.e., Theorem 5.3.3, or directly of
Theorem 6.2.6—taking into account that the e, ’s, the fy’s, the (k; —1)’s, and the (/; —1)’s,
witha € ®T, i e I, all lie in n1,, one has that a basis of rne/mg is given by the e,’s, the
fu’s, the (k; — 1)’s, and the (/; — 1)’s altogether. Our aim now is to prove the following.

Claim 6.2.9. There exists a Lie blalgebra 1s0m0rphlsm ¢ m,/m?2 > 3p given by ¢ :
%a > 8q, fou > fo, (ki — 1) > ki, and (; — 1) — 1;, forall & € d>+ iel.

To begin with, given o, B€ @, we show that ¢ ([eq, 25]) =[¢(ea). ¢ (€p)]. First observe
that our root vectors e, in g come from the simple ones via a construction a la Chevalley
(see [39, Chapter II, Section 25.2]), so that [ey, eg] = cq gey+p for suitable ¢y g € Z.
Moreover, since (under our assumption that g is simple) there are only two possible root
lengths, we have dy 4 g €{dy, dg}; soif dy =dg, we write ds:=dy (=dp) and if dy #dg,
we call ds the unique element of {dy, dg} \ {dg+p}. Then recall that (for all y € &)

ey :=E, mod (¢ — 1)U, e, := E, mod (q — 1)U,

[57%] = {eaveﬂ} mOd mg» {easeﬂ} = (q_ 1)_1[EO[7 E,B] mOd (q_ 1)l~]q
Second, since ﬁq is commutative modulo (¢ — 1), we have [Eq, E g] = (g — 1)& for some
€ € Uy NU," = Ujt—so that

{ea,ep} ==& mod (g — 1)0 .

On the other hand, from [eq, eg] = ¢4 geq+p (see above) and e, := E), mod (q — l)U
together we get [Eq, Eg] = co.pEqtp + (¢ — 1)E for some & € Uy N UJr = U+ The
latter implies that

[Eoca Eﬂ] = (qaa — 1)(51/3,3 — D[Eq, Eﬂ]
= Ca,ﬂ(qota - 1)(qﬂf3 - 1)Ea+ﬂ + (q - 1)(q«>ux - 1)(qﬁ/3 - 1)@
= ca.8(Gss — DEatp + (¢ — D)(qaa — D(gps — 1E
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and comparing the last term with the previous identity [E,, E gl = (q — 1)& yields

€ =cq,8(2ds)gEqrp + (qua — D(gpp — DE.

Then expandlng Gf’ w.r.t. the Rq-PBW basis of U + (made of ordered products of
q-divided powers E s) and comparing with the expansion of (¢oe — 1)(ggg — 1)E—
which must necessarlly bel_ong to l~]q+—in terms of the R¢-PBW basis of (7(1"“ (made of
ordered monomials in the £, ’s), we eventually find that

(Goa —D(gpg —DE =D Y ¢} Ey - Ey +(qg—1DE

k=2 y1,..yp €t

for some ¢}, € Rqand some & € U,". Therefore,

€ =capds)gEarp+Y . D By By +(q—DE

k>2 Y1 ,...,yk€¢+

which in turn implies that
& mod (¢ — 1)Uy = (ca,p(2ds)g Eqrp mod (g — 1)Ty)

+ (Z Z c;’l ----- )/kEl’l'“El’k mod (q_l)ﬁq>

k=2 yy,..,yp€®t

= Co,p2dseqsp + Z Z Cytyns vy Cyy

with ¢y, = (¢}, ., mod (¢ — D)Rq) € Rq/(q — 1)Rq = Rg,1- This yields

[ea. 28] = ({ea. g} mod m?)
= (((q — 1) E,, Eﬂ] mod (¢ — 1)[7.1) mod mg)
= ((& mod (¢ — 1)l~/q) mod m)

Il
~
~

o

R
=

[N}

&
Q
R
+
=
_l’_
(%)
=
N
o
=
o
=
—
2
o
[oN
&
—

.....

= Ca,p2dseq 1B,
that is in short [ey, eg] = 2 ds cq g €q+p. Now, from the last identity, we compute
P([ea.2p]) = ¢(2dsCa,peatp) = 2dsCa,pP(€atp) = 2d5Ca,pCutp (6.9)
by definition of ¢. On the other hand, we have also
[#(a). ¢(ep)] = [Ea.ép] = 2du2dpleq eg] = 2da2dpca pea+p = 2d5Ca,péatp

comparing this with (6.9) eventually gives ¢ ([eq, eg]) = [¢p(ex). P (ep)], q.e.d.
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Acting in the same way, one finds also that
[k —l,eq] = ({k,—l ey} mod m; )
= (((¢ = )" ((Ki = ) Eq — Eo(Ki — 1)) mod (¢ — 1)Ty(g)) mod m?)
= (((d;%)q Ea Ki mod (g — 1)Tq(g)) mod wm?)
(d eak mod m? )—d 2 Ca>

where d:’a =+ jer bijej witha = Zjel cja;, so in the end

ki —leg] =dtea Viel acdt (6.10)
Similarly, one finds also that
i —lLegl=dieq Viel acdt (6.11)

withd;, = =3 iy bjicj fora = ;. cja;. Likewise, parallel formulas to (6.10) and
(6.11) hold true when the e4’s are replaced by the E’s.

Finally, comparing the Lie brackets (inside m,/ mg) given explicitly in (6.10) and
(6.11), and the similar ones where the Ty’s are replaced by the e,’s, with the analogue
brackets inside gp of the corresponding elements through the map ¢ as given in Claim
6.2.9, one easily sees that the latter map is indeed a Lie algebra morphism. In addition,
it is invertible because it maps a basis to a basis. Moreover, this is also an isomorphism
of Lie bialgebras because the formulas for the Lie cobracket do correspond on either side
on all elements of the forms e;, E, ki —1,and [; — 1 (with i € I), which is enough to
conclude—cf. Remarks 2.3.2. In fact, this is again a matter of bookkeeping: for instance,

o 2
writing m([g,] =m, ® mg + m? ® m,, one has

((A(ei) — A*®(e;)) mod mg])

(((A(E)) — AP(E;)) mod (g — 1)Ty(g)®?) mod ml3)

((((Ki -1)®E —E ®(Ki — 1)) mod (¢ — l)ﬁq(g)®2) mod mg])
(ki = 1) ® e; — e; ® (k; — 1)) mod m2)
=ki—-Doe—a® ki —1)

8(e;)

which means §(e;) = (k; — 1) ® & —e; ® (k; — 1). Through the formulas given in Claim
6.2.9, this last identity corresponds to §(&;) = k; ®&; — & ®k; given in Definition 2.3.1 (b)
for g g. Likewise, it holds for the other cases. [

7. Specialization of MpQGs at roots of unity

In this section, we study MpQGs for which all parameters g;; are roots of unity. Once
again, this amounts to requiring ¢ itself to be a root of unity, or just 1. As we already
considered the case ¢ = 1, we assume this root to be different from 1 itself.
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7.1. Specialization at roots of unity

Let again Rq and Rf be fixed as in Section 6.1; fix also a positive, odd integer £ which is
coprime with all the d;’s (i € 1) given in Section 6.1, and let py(x) be the £-th cyclotomic
polynomial in Z[x]. We consider the special element g € R4 and the quotient ring R ¢ 1=
Rq/ Pe(@)Rq, and we call ¢ the image of ¢ in Ry s.

By construction, the ring R is generated by invertible elements 51 ¥ 1 each of whom

is the image in R ¢ of the corresponding generator qil of Rg; since 8 = 1foralli,all

+1 :I:l
ij
Rgq,s defined like in Section 3.2 but for using the gij’s instead of the qi;

)¢ = 1. We denote by 80,,, the element in
+1>

these generators only obey the relations (&;
s, so that say
is nothing but the image in R, of qay € Rq. Finally, R is an R algebra by a scalar
restriction via the canonical epimorphism Rq — Rye.

Replacing R4 with 525 everywhere, we set Rf’ = RB / Pe (q)RB for which we use
again such notation as ¢, ¢;;, etc., noting, in addition, that now &;; = ¢ bij  Then the natural
epimorphism Rq — fRf yields a similar one Rgq, — !Rg o

Furthermore, it is worth stressing that the isomorphism Rf = Z[q,q™"] induces in
turn

Ree = Zl4.q7"1/ pe@)Zlg.q”"] =: Z[el.
the latter being the ring extension of Z by any (formal) primitive £-th root of unity e.
Similarly, we define Rf : R({ /pe(q" 2)52.{ and denote by &/2, ¢!/2, etc., the

b lj 9
1/2 ,1/2

image of ¢°/=, ¢;; 7, etc., in {Rag ; and the same applies for

REY = REV [ pu(q"PHREV

for which we have, in addition, Ri ;;f >~ Z[e'/?], where £'/? is again a primitive £-th root
of unity. The projection JQF —> J{f - induces an epimorphism :R[ - R B , while
the embeddings Rq — R&f and Rg,e — {Ra,[s induce embeddings ,Rf — ,Rf v and
RB’ e Rf, ’g‘[, respectively. In addition, for the last map the following holds.

Lemma 7.1.1. The morphism RE, — !Rf,;f, given by e¥1 > (¢1/2)2
phism whose inverse Rg, af S R’%s is given by e¥1/2 > g=U+D/2,

, 1S an isomor-

We introduce now the “specialization at ¢ = &” of the integral forms ﬁq(g), ﬁq (a),
and Ug(g)—over the ring fRf or Rq—of our MpQGs Ug(g).

Definition 7.1.2. (a) Let q be a multiparameter matrix of Cartan type: given Uq(g) over
the ground ring R, we call specialization of Uq(g) at ¢ = & the quotient

Uge(8) := Uq(9)/pe(@)Uq(g) = Ry.e ®r, Uqg(q)

I

endowed with its natural (quotient) structure of Hopf algebra over Rg.
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(b) Let q, in addition, be of integral type—hence Rf = Z[q,q"]. Then:

(b.1) given (7q (g) over the ground ring RZ, we call specialization of ﬁq(g) atq = ¢
the quotient

Uge(9) := Ug(8)/ pe(@)Uq(g) = RS, ®zp Uy(g)
endowed with its natural (quotient) structure of Hopf algebra over Rf, o

(b.2) we call specialization of Oq(g) at q = ¢ the quotient

Une(®) = Ug(@)/ pe (@) Ua(8) = RE, ® 25 Un(a)

endowed with its natural (quotient) structure of Hopf algebra over J{f, &

(b.3) if q is of strongly integral type, we call specialization of ﬁq(g) at g = ¢ the
quotient
Uge(@) := Ug(@)/ Pe(9)Uq(g) = RE, ® 25 Ug(a)

endowed with its natural (quotient) structure of Hopf algebra over Rg .

Note that, using the isomorphism Ry ; BV o !Rgs of Lemma 7.1.1, all the above-

mentioned specializations of MpQGs at q = € can be also considered as Hopf algebras

over the ring R(I; ’8‘[, by scalar extension; hereafter we shall freely do that.

The above definitions and our results in Section 5 yield the following.

Theorem 7.1.3. The PBW bases (over Rq or JR ) of U q(g), resp. of U q(g), resp. of
0, q(g)—cf. Theorems 5.2.13 and 5.3. 3—yleld through the speczalzzallon process, similar
PBW-bases (over Rgq,¢ or ﬂq o) of Uq,g(g), resp. of Uq’e(g), resp. of Uq,s(g).

Basing on the remark at the end of Definition 7.1.2, consider now both Uq ¢(g) and
U;l £(g) as algebras over Rg g‘f Let o, be the unique 2-cocycle of Uq’s(g) naturally
induced by the 2-cocycle o of U; 4(g) as given in Definition 3.2.1; that is,

Uye (@) ® Uz () = Rqe

is the unique R .-linear map given by

cf,g(x,y):zz?ll/v2 ifx=Kyorx=L,, and y=K,ory=1L,

and o,(x, y) := 0 otherwise. The results in Section 5 then lead us to the following.

Theorem 7.1.4. Let q be a multiparameter matrix of Cartan type. Then the follawing hold.

(a) The Hopf Rq c-algebra Uq +(g) is a 2-cocycle deformation of 4.¢(a), namely
Uye(8) = (Uge(@))o.-
(b) Assume that q is of integral type, then the Hopf !Rf’ .-algebra Uq’s(g) is a 2-
cocycle deformation of Uy +(g), namely Uq ¢(g) = (Uy £(a))o,-
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Proof. Directly from definitions along with Proposition 5.3.2, we get claim (a) from

ﬁq,a(g) = eﬂqs ®Rq ﬁ (Q) = Rqe ®Rq ([jv (Q))U
('Rq,s AR, Uy (g)) ( qs(g))

and likewise we prove claim (b) as well. [

7.2. Quantum Frobenius morphisms for MpQGs

When dealing with uniparameter quantum groups, the so-called “quantum Frobenius mor-
phisms” set a strong link between specializations of these quantum groups (either re-
stricted or unrestricted) at 1 and specializations at roots of unity.

When one chooses the restricted and the unrestricted integral forms, these quantum
Frobenius morphisms (for uniparameter quantum groups) look as

Frg: Ug(g) — Zle]l @z U, (g) (restricted case)

and
Fro:Z[e] @z Ui(q) < U(q) (unrestricted case),

where

Zle) = Zlg.q7 "1/ pe@Zlg.q7 "], Us(a) := Ug(a)/ (pe(@)Uqg ().

and similarly also

Us(g) := Ug()/(pe(@)Uq(q)).  fors € {1, ¢}.

Roughly speaking, Fr ¢ is given by taking “¢-th roots” of algebra generators of (75 (9),
namely _quantum divided powers and quantum binomial coefficients, while (dually, in a
sense) Fr ¢ is given by raising to the “f-th power” the algebra generators of Ug(g) ie.,
quantum root vectors and toral generators.

In the present subsection, we shall show that similar quantum Frobenius morphisms
do exist for MpQGs as well, with a similar description.

7.2.1. Quantum Frobenius morphisms in the restricted case. We start by considering
quantum Frobenius morphisms in the restricted case, i.e., for the specializations at roots of
unity of qu (g) and ﬁq (g)- Like in the uniparameter case, they will map any specialization
at a root of unity ¢ onto a specialization at 1.

The following provides our quantum Frobenius morphisms for restricted MpQGs.

Theorem 7.2.1. Let q := (qi;)i,jer be a multiparameter matrix of integral type. Then

there exists a Hopf algebra epimorphism (over Rq e = Zle])

Fri:Uge(®) —» Re: ®z5 Uga(9) = Zlel ®z Uz(§p) (7.1)
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(cf- Theorem 6.2.3 (a)) given on generators by

n/0 . f(n/i) ;
e; ifl|n, ; ifl | n,
Ei(n) { i if i F(n) { i if |

; (7.2)
0 ifefn, 0 iftfn,

(%) - (ufe) ire|n, () - Gje) wreln )

n 0 iftfn, n 0 iftfn,
. h; +c e ,

(G,,c) . () ’fin K1, Lf'e 1. (7.4)
noJe, 0 zfﬁ,fn,

Moreover, the image Im(P/’\rg) is co-central in {R(fs ®rB, (A]q,l(g), that is
’ q,
(A — AP)(u) € Ker(ﬂg) ® Ker(F/’\rg) forallu € I’J\q,g(g). (7.5)

In addition, when q is of strongly integral type, there exists yet another Hopf algebra

epimorphism (over eﬂg e = Zle])

Fry:Uye(9) > R, ®ps, Uai1(8) = Z[e) ®2 Uz(@5) (7.6)

(cf. Theorem 6.2.3 (b)) for which similar properties and a similar description hold true
. Liic Ki;c Lijc Ki;c
with each( ;j )6, resp. ( Iéj )8, replaced by( l/j )8j, resp. ( Iéj )sj.
Proof. We present the proof for Fr ¢ and l’]\q,s(g), the rest being similar.

By Theorem 5.2.10 (a), we have a presentation of ﬁq,,; = Aq,g(g) by generators and
relations. Then this also yields a similar presentation for

Ree ®z2, Ua1 ().

which is isomorphic to Z[e] ®z Uz (g p) as a Hopf algebra, by Theorem 6.2.3 (a). Now, a
moment’s check shows that under the prescriptions given in the claim each relation in the
presentation of Uq,s is mapped by Fr ¢ onto either a similar relation in Uq,l or zero, hence
they do provide a well-defined algebra morphism as required.

To show what happens in a specific example, let us consider the relations

mAn

(m) () (n—s) s (Gis2s —m—n (m—s)
EMF™ =" F" ngi( ) ) L{E/™™ V¥m,neN
=0 qii

for every index i, holding true in Uq (cf. Theorem 5.2.10). By specialization, these yield
in Uy, the relations

mAn

_ Gi;2s —m — _
EMEY =3 F )( S ) LEEM™™ (mneN) (17
s=0 €ii
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and likewise in ﬁq,l =~ Uz (gp) the relations (cf. Definition 6.2.1 and Theorem 6.2.3)

mAn
_of h; 28 —m — _
el(m)fl(n) _ Z fl(n s)( it Q2s—m n))e(m s) (m,n € N), (7.8)

s i
5s=0

where one uses a bit of arithmetic of p-binomial coefficients (namely, the sixth line iden-
tity in the list of Lemma 5.2.1) and of (classical) binomial coefficients to realize that
specializing (G";zs;m*")qﬁ at g = 1 eventually yields (h"+(2s; mﬁ")).

Now, a moment’s thought shows that if in the left-hand side of (7.7) either m or n is not
divisible by £, then for each summand in the right-hand side all of (n — ), s, and (m — s)
are not divisible either; hence our prescriptions for 1/7\1’5 actually do map both sides of
(7.7) to zero. If instead both m and n are divisible by £, then there are also summands
in the right-hand side for which all of (n — s), s, and (m — s) are divisible as well; more
explicitly, if m = h{ and n = k¥, say, then the “relevant” summands on the right-hand
side are exactly those with index s = r€ for all » € {0, 1,...,h A k}. In this case, our
prescriptions for I/T\rg map the left-hand side of (7.7) to egm/ e)fl("/ O = efh)fl(k) and the
right-hand side to

hAk

ﬁ: {(kt=r)/0 (hi + @2ré—ht— ke)/z)e((hé—ré)/(i)
¢ (

r=0

re/e i
hAk

_ Z =) (h,- +@r—h- k))e;h_r)
r=0 r

where the right-hand side is equal to el(h)fgk), by (7.8) form := hand n := k.

Therefore, the given formulas do provide a well-defined morphism of algebras Fr ¢ as
required. By construction Fry is clearly onto, as the generators of

Res ® s, Ug1(8) = Z[e] ®2 Uz(35)

are the images via F'ry of the corresponding generators of ﬁq.

Finally, we must prove that Fr ¢ 1s also a Hopf algebra morphism and that its image is
co-central. This follows from the uniparameter case, as the coalgebra structure of the inte-
gral form of these MpQGs (cf. Theorem 5.2.10 (a) and [23, Proposition 6.4]) is the same
as in the canonical case (the cocycle deformation process does not change the coalgebra
structure), and our quantum Frobenius morphism is described by the same formulas. m

7.2.2. The unrestricted case: quantum Frobenius morphisms for l7q (g). In the unre-
stricted case, i.e., that of Uq(g), quantum Frobenius morphisms, in comparison with the
restricted case, “go the other way round”. Indeed, like in the uniparameter case, we shall
find them mapping the specialization at 1 (of the given unrestricted integral form of an
MpQG) into any specialization at a root of unity ¢.
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The very construction of such quantum Frobenius morphisms requires some prepara-
tion. Mimicking what was found in [24] for the canonical case, the first ingredient is the
subalgebra of Uy, -(g) generated by the {-th powers of its generators.

Definition 7.2.2. We define Zj to be the Ry ¢-subalgebra

Zy = { t l'il, k,'ie’é()aeQ,ieI

ol o

of ﬁq,g (g) generated by the £-th powers of the generators of ﬁq,g(g).

N.B.: the original definition of Z¢ given in [24, Chapter 5, Section 19.1] reads differ-
ent, but it is also proved—still in [loc. cit.]—to be equivalent to the one given above.

The main properties of Z, were investigated in [10, Section 4], with a slightly more
general approach. The main outcome reads as follows:

Proposition 7.2.3 (cf. [10, Section 4]). (a) Zy is e-central in Uq’s(g), i.e., for each mono-
mial b in a PBW basis of Uq¢(g) as in Theorem 7.1.3 and each generator

A A Y A/
AIS {fa’ l,’ , ki s ea}aeQ,ieI
of Zy, there exists a (Laurent) monomial m p (eiﬁ) in the Sij;e ’s such that
zb = mz,b(sﬂ)bz.

In particular, when q is of integral type, Z is central, hence normal, in ﬁq,g (g)-
(b) Zy is a Hopf subalgebra of Ug ¢(g), which is isomorphic as an algebra over Ry, ¢
to a partially Laurent e-polynomial algebra; namely

~ L g+l 5, L Uil
Zoy = ‘Rq,ﬁ[{fowli ki ’ea}ae<b+]’
where the indeterminates €-commute (notation as in Section 6.2) among them, i.e.,

2
foﬁ azll e gg//a/f(ﬁ/ ael, eﬁ/ (5’ = fae//eé/,

2 2
e(l;/eﬁ// = ef;/a//eﬁueﬁ/, klizeﬁ = Eiﬁ eﬁkli[,

+0 0 _ FL2 L1+l +0 o0 _ _FL2 ol HL
[ ey, = ¢egy. eyl ki f, =¢ k:

’ aja Jai >

0 ol A gL b Ly L
li fa _Eaaif(xli ’ ki kj _kj ki ’

KEEE = RS kG = kG

In particular, if q is of integral type—hence Rq,c = Z[e]—then ﬁq,s(g) is a commutative
Hopf algebra of partially Laurent polynomials.
(c) Uq,s(q) is a free (left or right) Zo-module of rank dim(g)

Proof. Almost everything is proved in [10, Section 4], so we just stress a single detail
concerning claim (c). Indeed, Proposition 4.1 in [10] yields claim (b) as well as (c), but
for the latter the involved coefficients read differently: for instance one has fof, _fof, =
Ela Lo fof, fof,. But the symbol ¢, g is bimultiplicative in o and f—i.e., it is a bicharacter

on O x Q—hence e¢y" 4oy = efl,,a,, and we are done. ]
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We shall now compare the subalgebra Z, a sub-object inside ﬁq,g(g), which is the
specialisation of ﬁq(g) at ¢ = &, with the specialization at ¢ = 1, that is Uq,l(g). This
leads to find a special morphism, which we call quantum Frobenius morphism for f/q (a),
which links qu,l (g) with Uq,g(g)—once again generalizing what occurs in the uniparam-
eter case. In order to formalize this, we need to make ﬁq,l(g) into a Hopf algebra over
Rgq,s, s0 that we can compare it with ﬁq,g(g).

Let us consider the unique ring embedding

2 + 2
Rq,1 — IR(;,C(; Ra,e) yifl — sfj (; (eijl/z)” ) (7.9)
where in the right-hand side we take into account the isomorphism !Ra/; >~ R, given by

Lemma 7.1.1; we use this embedding to perform a scalar extension from Rq,1 to Ry, for
Uq.1(g), so to make Rq e ® g, Uq,1(g) into a (Hopf) algebra over Ry

Besides, recall—from Proposition 4.1.1—that for any a € ®T, there exists suitable
(Laurent) monomials m+(qi1/2) and m (qil/z) in the ¢;; £1/255 Such that

Ey =mi @V E,, Fy=m,(q*V?)F,,

where Ea, resp. ﬁa, is the quantum root vector associated with o € o, resp. —o € &7,
in Uy(g), and Eq, resp. Fy, is the similar vector in Ug(g) = (Uy(g))o-
As a direct consequence we have similar relations among quantum root vectors in

Ug, l(g) (=(Rq,1 OZlg.q- 1] I(Q))U and Uq e(g) = (‘(Rq,s BZe,e~1] ,s(g))a’ namely
o =mg (Y Ve, fa=may*) fo inTygi(a), (7.10)

and
eo =mJ(et)ey,  fo =my(eF?) fy in Uye(q). (7.11)

Our main result in this subsection is the existence of quantum Frobenius morphisms
for unrestricted MpQGs, that are the monomorphisms mentioned below:

Theorem 7.2.4. There exists a Hopf algebra monomorphism
Fre: Ree @, Ug1(9) = Uge(@)
uniquely determined (still identifying J{(;,/; > Rye)foralla € dt, i €1, by
ﬁme;(eil/z)ez_(ﬁf, lj:l:l }_)liﬂ! ki:l:l »—>kiﬂ, 2y > m ( :|:1/2)E —L ( (%)

whose image is the e-central Hopf subalgebra Z of ﬁq,s(g); as a consequence, the Hopf
algebra Z, itself is isomorphic to Rq,e ®R,, ﬁq,l(gL

In particular, when q is integral, the morphism Fry is described by the simpler for-
mulas (for all a € ot iel)

; o +1 +¢ +1 e S —{
Jar foy, 1T =0T kT ek, eq ey
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Proof. To begin with, the morphism in (7.9) maps every yil/ = 52‘[ >~ Rg,1 into the
corresponding sifg/ € J%a/; o~ {Rq, Moreover for q = q the analys1s in [24] yields
a (“quantum Frol;enlus ’) morphism Fre 1 Ug1(g) = Uq +(a) of Hopf algebras which
is determined by the formulas given for the integral case in the above statement when
fu = fu, etc., that is F rZ( fo) = Su #¢ and so on; in particular, this FrY | preserves the
coproduct.

Now, extending scalars, we obtain yet another Hopf algebra monomorphism

Fro: R ®Zg.4-11 (7;1,1((3) — Rq,e BZe,e1] ﬁé,e(g)
that fits into the commutative diagram
Fry

Ty1(8) Uy (a)

) ')

th,l ®Z[q,q—1] ijﬁ,l (g)

~

Rae ®Ry1 (Rat ®z19.4-11 Ug1(9)) 7 Rae Ozfe.e1) Uge(8)
Let us check that Fr ¢ satisfies the equalities in (x). First, as by (7.10) we have e, =
m} (y*'/?)e,, we find that
Fro@a) = Fro(mg (v5'/2)éq) = mg (e*1/) Fre(éa)
— m:(eil/z)ﬁ F;’Z(éa) — m;-(eﬂ:l/Z)Zz x(
_ m:(eil/z)ézm:(eil/z)—féé _ ma( :|:1/2)€2 —L 13
thanks to (7.11); i.e., Fre(ea) = mJ (eE1/2)~L3L for every root vector &, in Uq 1(q).
Similarly, one finds that Fr¢( fy) = m (eil/z)e2 [fa when dealing with the f,’s, and
Fro(ly =X, Frokt')y =k foralli e 1.
Now recall that we have identifications of coalgebras

Ug1(@) = (Ra1 ®2zig.11 U31(0))g,>  Une(@) = (Rae ®zfe.s1) Uge (@),

hence the monomorphism F;g defines also a monomorphism of coalgebras—over
Rqe—from Rqe ®r,, Uq,1(g) 0 Uqe(g). To prove that Fry is also a Hopf algebra
morphism, it is enough to prove that

Fre(x o, y) = Fre(x) o, Fre(y)
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forall x, y in Rqe ®z[4.4-1] 17;1,1 (g)- This in turn follows from the fact that

0s(Fre(x). Fre(y)) = o1(x,y) forallx,y € Rqe ®zig0-1 Ugi(@)  (7.12)

which can be checked by direct computation with x and y being generators of (7;1,1 (a)
and using the ring embedding (7.9); for example, one has

oe(Fro(ki). Fro(k;)) = oo (k. kf) = f, 2 = yll/z = o1(ki, kj) foralli,j el.

In fact, from (7.12) we get

Fro(x g, )

= Fre(o1(xqy. Y1) *@¥@01 ' (X3). Y3)))

= 01(x(1). Y1) Fre(x@) Fre(ve)or  (x@). ¥3)

= 0o (Fre(x)ay, Fre(n) ) Fre(x) @ Fri(») o, (Fro(x) @), Fry)s)
Fre(x) o, Fre(y):

thus the proof is completed. ]

7.3. Small multiparameter quantum groups

In the study of uniparameter quantum groups, a relevant role is played by the so-called
“small quantum groups”. These are usually introduced as Hopf subalgebras of the re-
stricted quantum groups at roots of unity; nonetheless, they can also be realized as Hopf
algebra quotients of the unrestricted quantum groups at roots of unity. In this subsection,
we extend their construction to the multiparameter context.

7.3.1. Small MpQGs: the “restricted realization”. Let q be a multiparameter of inte-
gral type, hence possibly of strongly integral type. Correspondingly, we consider the
restricted MpQGs lA]q,8 and ﬁq,g at a root of unity ¢, like in Section 7.1. Inside them,
we consider the following subalgebras, defined by generating sets:

R . L: K; 0<nz{
A A 1 1
fige = fige(q) == <F,-("),L,~i1,( ) ,K?‘,( ) ,El-(”)> (7.13)
nJe nJe iel
as an Rq ¢-subalgebra of ﬁq,e = ﬁq,g(g), when q is integral, and
L: K; 0<nst
fige = fige(q) := <F,.("),L,.i1, ( ’) K ( ’) ,El-(”)> (7.14)
n & h & iel

asan Rg, g-subalgebra of Uq ¢ = Uy, 8(g) when q is strongly 1ntegra1 Similarly, one defines

A:t A+,0 Ao A
qg,uqe,qu, qs’

mimicking Definition 5.2.9 but working inside U or Uq, respectively, and imposing the

~+,0
and 1 uq ¢ inside 1 uq ¢, and 51m11arly uq o uq -, etc., inside 1 g, just
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restriction “n = £” everywhere. All these objects will be called “restricted small multipa-
rameter quantum (sub)groups”.

Note that for q = { the canonical multiparameter, the small quantum group 1t , is a
quantum double version of the one-parameter small quantum group by Lusztig.

Our first result is a structural one:

Theorem 7.3.1. For any q of integral type, uq,g is a Hopf R o-subalgebra of (’J\q’g =

q,g (g)- In addition, if q of strongly integral type, then lig is a Hopf R o-Subalgebra of
Uq,g = q,s(g) Moreover, iy, admits a presentation by generators and relations that is
the same as in Theorem 5.2.10 (with q specialized to €) but for the bound on generators—
i.e., they must have 0 < n = £ as in (7.13)—and for the additional relations

M:; M:c—
x®x™ — o, ( c)( ¢ ”) —0 VamsLintm=L (115
n P m P

forall Xe{F,E}, M e{K, L}, ce Z. Similar statements hold true for all the other re-
A0 X i
stricted small MpQGs, namely uq o uq,s s ug,s, @

A4+ A~E,0 A0 A ~>
integral case—itq e, U, Tqs, U, U5, and Uge.

and uq & and—in the strongly

Proof. The claim follows from the very definitions together with Theorem 5.2.10—noting
in particular that all relations between generators given there do “fit properly” with the
bound n = £ on generators of the small MpQG. In particular, the additional relations in
(7.15) are a direct consequence of the relations

() v (m) n+m (n+m) M:c M:;c—n n+m M:c
XinXim:( n ) X ( n )( m - n n+m
qii q q p q

(forall X e {F,E}, M € {K, L}, and ¢ € Z) holding true in our restricted MpQGs for
every n,m € N, that for n,m < £ such that n + m > £ yield (7.15) because then

(n+m) =0 and (n+m) =0 forg=ce.
/g - Jq

Similarly, the result about the Hopf structure follows from the explicit formulas for
the coalgebra structure of Uqy(g) or Uy(g) coming from Lemma 5.2.8. |

Our second result yields triangular decompositions for restricted small MpQGs:

Prop051t10n 7.3.2 (triangular decompositions for restricted small MpQGs). The multipli-
cation in g provides JR ¢-module isomorphisms

A— A0 A< A0 A— A0 A> A0 A4
1 ®u, . =xu;. =u ® 1 u ®u, . =xu;. =u ® 1
q.e q.e q.e q.e q.e’ q.e q,e q.e q.e Q.
‘ﬂqaf ‘ﬂqﬁ ‘R%E Rq,e
G0 G0 ~ 40 ~ {0 G0 {S i ~f. .~ 1 G=
Uge & Ugp ZUg, =Uge @ Uy Uge @ UG, S Uge =g, O U,
q.& q.& ’R‘LE ’quE
A4 A A— A A— A0 A4
u ® 1u R U,  XlUge =1 ® u ® 1
q.e q.e q.e q4.& q.e q.€ q,¢
‘Rqs ‘Rq,e ‘R‘IS 'Rq,E

and similarly with “” replaced by “0” if q is strongly integral.
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Proof. This is proved like for restricted MpQGs: one observes that the presentation of
(restricted) small MpQGs given in Theorem 7.3.1 above presents the same special features
that were exploited for the proof of Proposition 5.2.12, so the same arguments apply again.
A quicker argument is the following: the isomorphisms of Proposition 5.2.12 restrict to
maps for small quantum groups which are linear isomorphisms by Theorem 7.3.1. ]

The third result is a PBW-like theorem for these restricted small MpQGs:

Theorem 7.3.3 (PBW theorem for restricted small MpQGs). Every restricted small
MpQG is a free R(lﬁ o-module with an RLI; o-basis the subset of a PBW basis—as given in
Theorem 5.2.13—of the corresponding specialized restricted MpQG made by those PBW-
like monomials in which the degree of each factor is less than £. For instance, ﬁq,g has an
eﬂf’ o-basis

N
{1—[ FUO (1 ) —u,/zJH( ) G TTEGY 10 < fiolj.given <e}
J qii

jeI iel h=1

AE,0 Ao

and similarly holds for 1 uq o Oqs s g o 0s,, and 1 uq & as well as—in the strongly integral

(la’

fE0 S0 o
0 A%, and iz,

Gt <
case—for Uqe, Ug,, Uqe > Uy 0 Uge
Proof. First we discuss the case of uq ¢» Whose “candidate” Rf o-basis is the set of “trun-
cated” (ordered) PBW monomials

N

B; :={1_[E;eh”) |O§el,...,eN<€}.
h=1

In the canonical case q = q, the required property (i.e., B; is an ﬁg o-basis of ﬁIE)
is proved by Lusztig (cf. [45] and references therein). For general ¢, we deduce the claim
from the canonical case, arguing like in the proof of Theorem 5.2.13 (a).

Let us consider a quantum root vector Eg for 8 € @7 in uga, coming (through spe-
cialization) from the same name quantum root vector in U +. We want to prove that

Eg‘) etlif, forall0<n <.

Indeed, once we have El(g") for all B € ®* and 0 < n < £, we argue that all of
S = Spanqu!E(B;) is 1ncluded 1n u @.e

Let us resume notatiop as in Section 4.4. 1; As we said, the claim being true in the
canonical case implies E,s IS u(il" , so that E,s can be written as a non-commutative

polynomial—with coefficients in fRB —in the E ©>g withi € I and ¢ < £, say
Ey" = P({EYicre<t)- (7.16)
Now, the formulas in Section 4.4.1 tell us that E;(") = (e1/2)%8 E;(") and

EXG1 E;;(SZ) % E*(Sk) (e 1/2)z, SE, (SI)VE (S2)f. . .‘.’E?}ES") (7.17)

31
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for some zg, z; s € Z—with B € &, ke N, i:=(i1,iz,...,0x) € I¥, and s :=
(51,52, ..., 5¢) € N*—where £!/? arises as specialization of ¢!/2 but identifies with
gl+/2 ¢ R(ﬁ - These identities together with (7.16) lead us in turn to write

E;™ = Po({E Y iere<t),

where P, is again a non-commutative polynomial in the E; *(©)>g with coefficients in Rf &
so that Eﬂ(") € 11+8, q.e.d.
We have seen above that

Sq 1= Spang,, (By) < i,

+

now we prove the converse. First of all, by construction, 1,

is spanned over Rq,¢ by
monomials in the E; Mg of the form

*(9) . px(s1) *(s2) *(sk)
EL '_Eill *Eizz*---*Ei k
that can also be re-written as E; *() =(el/?) S E; (SI)VE (s2)y E; o) (/2% s E, ©_
with notation as above; we aim to prove that each such E, +(s) belongs to §q, as thls w111
then entail at once that u+ C 34. The claim is true in the canonical case, so E

A )
,f ¢ = Sy hence E; expands as

E;(QGB:*'
@ q
for suitable k. € Ry, = R(lf’s. Using (7.17) again, we get
E*® — Z (81/2)Z£K£E;(£)

i
E;©eBf

for suitable z, € Z, so that E*(D € 84, q.ed.

Just like for 1i uq > the same arguments prove that the claim is true for i uq - as well.
Asto uq 80, u;r o ,and 1 uq ¢ the claim follows at once from the analogous PBW theorem

for U0 together with the relations

9.6’
M: M:c —
()., =
n & m &€

forall n,m < £ such thatn + m > K when M € {Kl, L;i}ier (cf. Theorem 7.3.1).
Finally, the claim for uq &, for uq > and for uq,e follows from the previous results

together with trlangular decompositions (cf. Proposition 7.3.2).

“fi” is replaced by “0i” are treated similarly. ]

u"w

The cases where
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Note. From now on, for the rest of the present discussion of restricted small MpQGs, we
extend our ground ring from ﬁf’ . = Z[e] to Qg, the latter being the £-th cyclotomic field
over Q—i.e., the field extension of Q generated by a primitive £-th root of unity ¢. Thus,
all our MpQGs at a root of unity will be considered—rvia a scalar extension from R(lf’ . to
Q¢—as Hopf algebras defined over Q.

A first, elementary result follows easily from definitions:
Proposmon 7.3.4. Assume that q is of strongly integral type Then we have
@ Uge=Uge, Ut =0E, Uz, =UZ, U=, =UZ, U2, =00, and U* = U%°

q,8’ q.& Q.8
via natural zdentzﬁcatzons

(b) ﬁq,g = {iq,s, and both algebras are generated by {E;, L-jtl K»jEl Filier;

(c) ﬁflt’s = ﬁq o and both algebras are generated respectively, by {E; }ic—for the
“+7” case—and by { F;}icj—for the “—" case;

(d ﬁat 50 = ﬁff 50, and both algebras are generaled respectively, by {Kiil},-e 1—for
the “+” case—and by {Lil},g for the “—” case;

(e) ﬁo = gs, resp. uis = Aq o resp uq e = uq & and both algebras are generated

by{Kil LEYieq, resp. by {LE!, F;}ier, resp. by {Ei, KX it

Proof. As to claim (a), by construction it is enough to show that U O = U 0 or more
precisely Uq 80 = qugo In turn, the latter identity follows from deﬁmtlons together with
the following formal identity among quantum binomial coefficients

X " X
(3),= M (),

which proves that the e-binomial coefficients and the ¢;-binomial coefficients generate
over Q. the same algebra, since [ [;_; (d;)es is invertible in the field Q.

As to the remaining claims, everything follows again from a simple remark. Namely,
definitions give

[Teve =0 =TTe-n(%) - [T =0 =TT =n(7))
r=1 r=1 &i r=1 r=1 €

forall X € {K,L},i €I, and 0 <n < {— 1, and similarly Z? = [n].,!Z" for all
Z e{F,E},ie€l,and 0 <n <{— 1. Now, the condition n < £ — 1 implies that all
the coefficients ]_[':21(8{ — 1), [T’—,(e" — 1), and [n],! that occur above are non-zero
elements in Q,, whence we deduce at once our claim. ]

Remark 7.3.5. From the PBW theorem (Theorem 7.3.3) and Proposition 7.3.4, it follows
that fiq , = 114, is a finite-dimensional Q-Hopf algebra of dimension 2dim(g )

Next result yields a strict link (a multiparameter version of a well-known result) be-
tween small MpQGs and quantum Frobenius morphisms for restricted MpQGs; indeed,
one could take it as an alternative way to introduce small MpQGs.
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A F
Theorem 7.3.6. Let q := (qi;)i,je1 be of integral type, let Uq ¢(g) RAN Ug,(aB) be the
scalar extension of the quantum Frobenius morphism of Theorem 7.2.1, and finally let
fge 5 Uq,e be the natural embedding of g, into Ugs. Then

2 LA ﬁ[ .
I - Uq,e — Uq,s(g) — UQe (gB) — 1

is an exact sequence of Hopf Q¢-algebras which is cleft.
A similar statement holds true for iq,c and the scalar extension of the quantum Frobe-
nius morphism

N Frq .
Uge(g) —> Uq.(aB)

when q is strongly integral.

Proof. By Theorem 7.3.3, l’]\q,g(g) is free over ﬁqyg. So, to show that the sequence is exact,
it is enough to prove that Ker(ﬁg) = l’]\q,s(g)ﬁis. This follows along the same lines as
for the canonical case (proved in [1, Lemma 3.4.2]), so we skip it.

To prove that the extension is cleft, we use the well-known fact that an extension of
algebras is cleft if and only if it is Galois and has a normal basis (see, e.g., [25]). Since the
extension is a Hopf algebra extension, it follows that it is Galois; see [55, Remark 1.6]. The
normal basis property follows from [54, Corollary 4.3] since ﬁq,s (g) is pointed, Indeed, by
the PBW theorem (Theorem 7.1.3), one may define an algebra filtration U,, of ﬁq,s(g) such
that Uy is the subalgebra generated by K=, LF! (i € I), and Ei("), Fi("), (A{l;c)s e U,
(i € I,n € N). By Theorem 5.2.10 and Lemma 5.2.1, this is a coalgebra filtration, so
the coradical of ﬁq,g(g) is contained in Up. As the latter is the linear span of group-like

elements, it follows that ﬁq,g(g) is pointed. |

Remarks 7.3.7. (a) The proof that the Hopf algebra extension above is cleft also follows
by the proof of the canonical case given in [1, Lemma 3.4.3]. On the other hand, let
us point out that the normal basis property means that qu,g(g) is isomorphic to ﬁq,g ®
Uq. (g B) as aleft ﬁq,s-module and aright Ug, (g p)-comodule. Hence, the MpQG at a root
of unity ﬁq,g(g) = ﬁq,g (g) can be seen as a “blend” of a restricted small MpQG, namely
ﬁq,s(g) = 1ig.(g), and a “classical” geometrical object, namely Ug, (§8) = Uqg,(G8) =
Uq.(gB)-

(b) Beside the canonical case, some variations of the quantum Frobenius homorphism
are treated in the literature. For example, Lentner [43] studies the quantum Frobenius
map for the positive Borel algebras at small roots of unity, which are in fact Nichols
algebras. Another is in [48], which provides the construction of the quantum Frobenius
homomorphism for the positive part using Hall algebras. As in the Hopf algebra case, the
quantum Frobenius map is used to study exact sequences of Nichols algebras. In [3], it
is shown how Nichols algebras give rise to positive parts of semisimple Lie algebras as
images of the quantum Frobenius morphism.
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7.3.2. Small MpQGs: the “unrestricted realization”. We introduce now a second type
of small MpQGs, defined in terms of unrestricted MpQGs. As in the restricted case, these
are defined for a multiparameter of integral type q. We shall eventually see that these
“unrestricted” small MpQGs actually do coincide with the “restricted” ones.

Let q be a multiparameter of integral type, hence possibly of strongly integral type.
Let Fry: Z[e) @z U, 1(g) = Rf’g ®Ry1 Uq,l(g) — ﬁq,s(g) be the unrestricted quantum
Frobenius morphism introduced in Theorem 7.2.4, a Hopf algebra monomorphism whose
image is the central Hopf subalgebra Z of U (@) given in Definition 7.2.2. We consider
the Hopf cokernel of Fr ¢, 1.e., the quotient Hopf algebra

g := ﬁq,e(g) = Uq,s(g)/ﬁq,a(g)zo+»

where ZoT denotes the augmentation ideal of Zj, and similarly the cokernels of the
restrictions of Fr ¢ to all various relevant multiparameter quantum subgroups of 1iq . (g):
for instance, ﬁis = ﬁ(fg / ﬁ(fs (ZOZ)+, and so on and so forth. We call all these objects
“unrestricted small multiparameter quantum (sub)groups”. When q = q is the canonical
multiparameter, this definition coincides with the one for the one-parameter small quan-
tum group associated with g given in [18, Section II1.6.4].

Since, by Proposition 7.2.3, ﬁq,g(g) is a free ﬁq,l(g)—module of rank £4m(8®) it
follows that 11y ¢ is a finite-dimensional Hopf algebra of dimension £9im@0); indeed, we
shall show that it actually coincides with ﬁq,a = fig,.

As a direct consequence of definitions and previous results, we find structure results
for unrestricted small MpQGs. The first one is about triangular decompositions:

Proposition 7.3.8 (triangular decompositions for unrestricted small MpQGs). The multi-
plication in g ¢ provides Rq ¢-module isomorphisms

— ~0 ~< ~ —
u R u, ., Xxu;, =u ® u
Q. Q. q.e q.e q.8°
‘ﬂq’é‘ =‘Rq,€
~ 4 ~0 5> 0 ~ 4
uq,s X uq,s = uq,s - uq,e ® uq,g’
q,& :Rq,s
~+,0 ~—.0 ~0 ~—.0 ~+,0
u,.; ® u ~Xu, . =u ® 1u
Q. q.e q.e q.e q,€
Ry,e Rq.e
< ~> ~ ~ > ~<
u=-., Q@ u- XU =xu-, @ u_
q,€ q,¢ q,€ q,€ q,8°
Rqe Rq.e
~ 4 ~0 - ~ ~— 0 ~+
un ® u ® u, . =u ~u ® u ® 1u
q,¢ q,¢ q,¢ q,€ q,¢ q,¢ q,¢
‘ﬂq,s ‘ﬂq,g =Rq,£ *Rq,s

Proof. This can be proved like the similar result for unrestricted MpQGs or can be de-
duced from the latter; details are left to the reader. [

The second result is a PBW-like theorem for unrestricted small MpQGs:

Theorem 7.3.9 (PBW theorem for unrestricted small MpQGs). Every unrestricted small
MpQG is a free Ry c-module with an R ¢-basis made by the cosets of all PBW mono-
mials—in the subset of a PBW basis (as given in Theorem 5.3.3) of the corresponding
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specialized unrestricted MpQG—in which the degree of each factor is less than {. For
instance, liqs has an Ry ¢-basis

! N
{ [ Fﬁf’f HLj'jHKiq [TES 10= fi. lj.civen <€}
k=N h=1

Jjel iel

o s+ =E0 S0 =< - >
and similarly holds for Ug e Uge s Ug e U and ug.

Proof. This follows at once from definitions and from Proposition 7.2.3. ]

The results in Section 5 and Theorem 7.1.4 lead us to the following theorem.

Theorem 7.3.10. The Hopf R c-algebra iy is a 2-cocycle deformation of Tig .

Proof. Denote by Zo the subalgebra of ﬁﬁ,a(g) that defines 1 .. Since q is of integral
type, Zo and Zo are both central Hopf subalgebras of ﬁq,g(g) and Uﬁ,s(g), respectively.
By Theorem 7.1.4 (a), we know that the Hopf R .-algebra ﬁq,g(g) is a 2-cocycle defor-
mation of ﬁﬁ,a(g). As the 2-cocycle giving the deformation is

og(x,y) = 8}/‘,2 iftx=K,orx=L,, y=K,ory=1L,,

0:(Uy(0). Ug(9)®) := 0 =: 0, (Ug(9)®. Uy(g)).
it follows that
Oclg, ()0 2o+ Z0o Ty @) = € ® €

the trivial 2-cocycle, with € the counit of ﬁa,s(g); in particular, Zy = (Zo)ag = Z as
Hopf algebras. Finally, if we define 0, : g, ® g, — eﬂgs by 0¢(x, y) := 0.(x, y) for
X, y € Uy ,(g), a straightforward calculation shows that o, is a 2-cocycle for ity , and
(ﬁ(],s)(fg = ﬁq,e~ u
Note. Now we extend the ground ring from Rf’ . = Z¢] to the cyclotomic field Q, gen-
erated over Q by an £-th root of unity: all algebras then will be taken as defined over Q,

(via scalar extension), even though we keep the same notation. In this case, we have the
following structural result.

Proposition 7.3.11. Let us consider ﬁq,e and g, as well as their quantum subgroups,
as defined over Q. (via scalar extension). Then we have the following.
(a) ﬁq,a is generated by {E_i, Liil, Kiil, E}ie], and 1y ¢ is generated by the corre-
sponding set of cosets.
(b) (7(:'8 and (7q_ . are generated, respectively, by { Ei}ier and by {F;Yicr, and simi-
larly ﬁIE and ng . are generated by the corresponding sets of cosets.
(©) Uquo, Uq_,s’o, and U(ﬁs are generated, respectively, by {Kl-il}iel, {Liil},-el, and
{Kl.il, LijEl }ier, and similarly ﬁ:lt;o, ﬁ;go, and ﬁ?.,s are generated by the corre-
sponding sets of cosets.
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() TE, resp. UZ,, is generated by {LE", F}icr, resp. {Ei, KE"}ieq; similarly i

Q.8
resp. ui & 15 generated by the corresponding set of cosets.

(e) In all claims (a) through (d) above, one can freely replace any E; or FJ with E;
or Fj, respectively, and still have a set of generators.

Proof. 1t is enough to prove claim (a), as the other are similar. By construction, Ug ¢ is
generated by (the specialization of) all the K +1°g all the Lil ’s, and all the quantum root
vectors Ey and Fy. Now, Ey = (fa,a — 1)Ea, so the E,’s can be replaced with the E’s,
because (gq,0 — 1) is invertible in Q.. Moreover, each quantum root vector E, can be
expressed, by construction (cf. Section 4.1), as a suitable g-iterated quantum bracket of
some of the E;’s; as E; = (81-2 — 1)_1Ei, the Ei’s alone are enough to generate all the
Ea’s over Q,. A similar argument works for the Fa’s, hence the claim for Uq,s follows,
and that for 114, is an obvious consequence. Claim (e) is clear as well from the above
analysis. ]

By construction, the projection 7 from 17.1,5 to 1iq,c and the scalar extension of the
quantum Frobenius morphism F'r; match together to yield a short exact sequence of Hopf
Q,-algebras. As before, this sequence allows to reconstruct the unrestricted MpQG Ug ¢
as a cleft extension, as the following shows:

Theorem 7.3. IZFLet q := (qij)i,jer be a multiparameter of integral type.
Let Uq 1(g) SN Uq.(g) be the scalar extension to Qg of the unrestricted quantum
Frobenius morphism of Theorem 7.2.4 and let

fig.e(8) 1= Uge(@)/Tqe(@)Tq1(a) "

be the quotient Hopf algebra. Then

~ Fri ~ ~
1= Tg1(8) — Tge(g) = fiqelg) = 1 (7.18)
is a central exact sequence of Hopf Qc-algebras which is cleft.

Proof. By Proposmon 7.2.3, we know that Uq g(g) is a free Uq 1(g)-module of rank
¢dim(8)_ Since Uq 1(g) is central and 1t lig, ¢(g):=Uj, 8(g)/Uq E(g)U .1(g)™, by [49, Propo-
sition 3.4.3] we have that Uq,l(g) = Uq,s(g)c"” and the sequence is exact. As we did
before for the restricted case, to prove that the extension is cleft we show that it is Galois
and has a normal basis. Since the extension is a Hopf algebra extension, it follows that it is
Galois; see [55, Remark 1.6]. The normal basis property follows from [54, Corollary 4.3]
as ﬁq,s (g) is a pointed Hopf algebra, since it is generated by group-like and skew-primitive
elements. ]

Remarks 7.3.13. (a) By the normal basis property, ﬁq,s(g) is isomorphic to (Af'q,l (g) ®
iiq,s(g) as a left Ug,1(g)-module and a right 11y ¢ (g)-comodule. Hence, the MpQG at a
root of unity Ug¢(g) can be understood as a “blend” of a classical geometrical object—



G. A. Garcia and F. Gavarini 922

namely ﬁq,l(g), which is (9(57;) since q is of integral type; see Theorem 6.2.8—and a
quantum one—the unrestricted small MpQG 1i4,:(g).

(b) Borrowing language from geometry—without claiming to be precise, by no
means—the exact sequence (7.18) can be interpreted as follows: qu,s(g) defines a princi-
pal bundle of Hopf QQ.-algebras over the Poisson group

Spec(Zo) = Spec (Uy,1(8)) = Spec (0(Gp)) = G,
and, as the extension is cleft, that bundle is globally trivializable.

7.3.3. Small MpQGs: identifying the two realizations. So far we considered small
MpQGs of two kinds, namely restricted and unrestricted ones. We will show now that
these two types over Q. actually coincide, up to isomorphism:

Theorem 7.3.14. Consider the associated small MpQGs of either type over the ground
ring Q. (via scalar extension from eﬂf’ e = Z[e]).

Then iq¢(g) = fiq,s(g) (= 1q,:(g)) as Hopf algebras over Q.

A similar statement holds true for the various (small) quantum subgroups, namely
g, = ﬁie (= iz,), etc.

Proof. We prove that 11,.(g) = ﬁq,e(g) (= 114,6(g)), the rest being similar.

To begin with, from Proposition 7.3.4, we know that ﬁq,s = ﬁq,g(g)—when defined
over the extended ground ring Q.—is generated by {E;, Liil, Kiil, F;}ier. Moreover,
from Theorem 7.3.1 we can deduce a complete set of relations for this generating set:
indeed, these relations can be also described as being of two types:

(a) the relations arising (through specialization) from those respected by the same-
name elements—i.e., E;, Ll?tl, Kiil, F; (i € I )—inside the restricted MpQG (A]q,s (before
specialization) just by formally writing “e” instead of “q”;

(b) the “singular” relations

Ef=0, Lf—1=0, Kf-1=0, Ff=0 (el

that are induced from the relations in Ug ¢

-1 -1

Xt = [0g,1%0. l—[(Y"’l_S) = l_[(c ! 1) - (Y 2_6)
s=0 q c=1 q q
—foralli € I, X € {E,F}and Y € {L, K}—when specializing q to &.

Overall, this provides another concrete, explicit presentation of ﬁq,s over Q. by gener-
ators and relations (with less generators than that arising from Theorem 7.3.1). In addition,
as a byproduct we find—comparing with Theorem 7.3.3—another PBW theorem for ﬁq,g
(over Q;), stating that ﬁq,s admits the following Q.-basis:

1 N
T A T2 TT T 55
k=N h=1

jel iel

(7.19)

0= fk.lj,ci,en<t
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On the other hand, we know by Proposition 7.3.11 that fig s := 1i4,(g) is generated
over Q, by {E;, L;, K;, F;}iey, because Lf =1= Kf in g, by definition (so that we
can get rid of Li_1 and K 1 ); in particular, from Theorem 7.3.9 we can deduce that another
possible PBW Q,-basis for 11 ¢ is

1 N
{ [1FETTe TTxe HE;’,;}
k=N h=1

jeI el

(7.20)

0= fk.lj,cien<t

Now, the generators E;, L;, K;, F; (i € I) of 1ig,¢ do respect all relations that come
by straightforward rescaling from the relations respected by the generators E;, L;, K;, F;
(i € I). In turn, the latter are of two types:

(a) the relations arising (through specialization) from those respected by the same-
name elements—i.e., E;, Liil, Kl-il, F; (i € I)—inside the unrestricted MpQG ﬁqyg
(before specialization) by formally writing “¢” instead of “q”;

(b) the “singular” relations Ef =0, Lf —1=0, Kf —1=0, I*jil =0(i € I)induced
from the “relations” in Uq,e

)?f =0 mod (Zy)T, )7,-( =1 mod (Zo)*

—forall X e {E,F},Y € {L,K}, i € [—when one specializes q to ¢.

The outcome is that all this yields an explicit presentation of 114, over Q. by genera-
tors—namely E;, L;, K;, F; (i € I)—and relations.

Comparing the previous analyses, we find that ﬁq,s and 11, share identical presen-
tation: more precisely, mapping E; — E;, L; — L;, K; — K;, F; — F; (i € 1) yields
a well-defined isomorphism of Q¢-algebras; in addition, tracking the whole construction
one sees at once that this is also a morphism of Hopf algebras. Finally, comparing (7.19)
and (7.20) shows that this is indeed an isomorphism, q.e.d. ]

Remark 7.3.15. As an application of the previous result, even for the classical (unipa-
rameter) small quantum groups one can always make use of either realization of them: the
(most widely used) restricted one or the unrestricted one.
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