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A noncommutative extension
of Mahler’s interpolation theorem

Jean-Éric Pin and Christophe Reutenauer

Abstract. We prove a noncommutative generalization of Mahler’s theorem on interpolation series,
a celebrated result of p-adic analysis. Mahler’s original result states that a function from N to Z is
uniformly continuous for the p-adic metric dp if and only if it can be uniformly approximated by
polynomial functions. We prove an analogous result for functions from a free monoid A� to a free
group F.B/, where dp is replaced by the pro-p metric.

1. Introduction

The aim of this paper is to give a noncommutative version of Mahler’s theorem on inter-
polation series [8]. This new version, which applies to functions from a free monoid A�

to a free group F.B/, extends a previous extension, due to Silva and the first author [15],
for functions from A� to Z. Several results of our new article were announced in the
conference paper [11], in which most proofs were either omitted or just sketched out.

Throughout this paper, p denotes a prime number.

1.1. Original motivation

Our original motivation, described in more details in Section 9.2, seems at first sight to
have nothing to do with Mahler’s theorem. It is inspired by automata theoretic questions,
see [12, 14] for more details. Recall that a subset L of A� (also called a language) is
recognized by a monoid M if there exists a monoid morphism 'WA� ! M such that
L D '�1.'.L//.

Following Eilenberg [6], let Gp denote the class of all languages recognized by a finite
p-group. An elegant description of these languages was given by Eilenberg (see The-
orem 9.2) using a noncommutative extension of the binomial coefficients, described in
Section 2.1. Our original motivation was to obtain a satisfactory description of the func-
tions f WA� !B� such that, for each languageL in Gp, the language f �1.L/ is also in Gp.
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The connection with Mahler’s theorem stems from the fact that these functions are
exactly the uniformly continuous functions, whenA� and B� are equipped with the pro-p
metric, defined in Section 6.4. When jAj D jBj D 1, A� and B� are isomorphic to the
additive monoid N , the pro-p metric is the p-adic metric and our problem amounts to
describe the functions from N to N which are uniformly continuous for the p-adic metric.
As we will see in the next section, this is precisely the goal of Mahler’s theorem. To return
to the general case, it was therefore natural to look for a noncommutative version of this
theorem.

1.2. Mahler’s interpolation theorem

Mahler’s interpolation theorem [8] is usually stated for functions of p-adic numbers, but
this full version can be easily recovered from the simpler version given in Theorem 1.1
below. Recall that the difference operator � associates to each function f W N ! Z, the
function �f W N ! Z defined by .�f /.n/ D f .n C 1/ � f .n/. Let �k be the k-th
iteration of �. Setting ıkf D .�kf /.0/ for every nonnegative integer k and fr .n/ D
Pr
kD0

�

n
k

�

ıkf , Mahler’s theorem can be stated as follows:

Theorem 1.1 (Mahler). Let f WN ! Z be a function. The following conditions are equiv-

alent:

(1) f is uniformly continuous for the p-adic metric,

(2) the functions�rf tend uniformly to 0 when r tends to 1,

(3) the p-adic norm of ırf tends to 0 when r tends to 1,

(4) f is the uniform limit of the functions fr when r tends to 1.

Just to clarify, N and Z are equipped in this statement with the p-adic metric and the
uniformity used in conditions (2) and (4) is that of uniform convergence on the space of
functions from N to Z, described in more details in Propositions 6.9 and 6.10.

Mahler’s theorem is based on another result of independent interest. Newton’s Forward

Difference Formula states that, for all natural numbers n, f .n/ D
P1
kD0

�

n
k

�

ıkf , a sum
which is finite for each given n. A remarkable consequence of this formula is that the map
f ! .ıkf /k>0 defines a bijection between functions from N to Z and integer sequences.
We call this bijection the Newton bijection.

1.3. A noncommutative extension

Our noncommutative extension concerns functions from a free monoidA� to a free group
F.B/. Of course, if B is a one-letter alphabet, then F.B/ is isomorphic to Z and one
recovers the result of [15]. If, in addition,A is a one-letter alphabet, thenA� is isomorphic
to N , and one gets back Mahler’s original theorem.

We equip both A� and F.B/ with the pro-p metric, a natural extension of the p-
adic metric. A noncommutative version of Newton’s Forward Difference Formula and
of Newton’s bijection was given by the first author in [10]. We give a simpler proof of
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these results in Section 3. In this noncommutative setting, f is a function from A� to a
group G. For each letter a of A, the difference operator �a associates to each function
f WA� ! G the function �af WA� ! G defined by �af .u/ D f .u/�1f .ua/. Next, we
attach a difference operator �w to each word w D a1 � � � an of A� by setting �wf D

�a1.�a2.� � ��anf / � � � //. Setting ıwf D �wf .1/, where 1 is the empty word of A�, the
Newton bijection is now the map f ! .ıwf /w2A� . If we just keep the elements ıwf such
that jwj 6 r and replace every other ıwf by the identity of G, the inverse of Newton’s
bijection gives back a function fr , called the r-th Newton polynomial function associated

to f .
Our main result offers a noticeable analogy with Mahler’s theorem:

Theorem 1.2. Let f WA� ! F.B/ be a function. The following conditions are equivalent:

(1) f is uniformly continuous for the pro-p metric,

(2) the functions�wf , where w 2 A�, tend uniformly to 1 when jwj tends to 1,

(3) the elements ıwf , where w 2 A�, tend to 1 when jwj tends to 1,

(4) f is the uniform limit of its Newton polynomial functions fr when r tends to 1.

In addition to this theorem, we prove several other results of interest. The first one is a
solution to the following question:

Integration problem. Given an element g of G and a family .fa/a2A of functions from

A� to G, find a function f such that f .1/ D g and fa D �af for all a 2 A.

We show that the integration problem has a unique solution Seq.g; .fa/a2A/, called
the sequential product at g of the family .fa/a2A.

Let us call a function f from N to Z a Newton polynomial function if �kf D 0 for
almost all1 k. In particular, all polynomial functions are Newton polynomial functions,
but the function n !

�

n
2

�

is also a Newton polynomial function. It is natural to extend this
definition as follows:

Definition. A function f WA� ! G is a Newton polynomial function2 if �wf D 1 for
almost all wordsw 2A�. In this case, the degree of f is the smallest d such that�wf D 1

for all words w of length > d .

In particular, the function fr introduced earlier is a Newton polynomial function of
degree at most r . We show (Proposition 4.2) that a function f is a Newton polynomial
function of degree 6 d if and only if ıwf D 1 for all words w of length d C 1. We also
show (Corollary 4.6) that the set of Newton polynomial functions is the smallest set of
functions containing the constant functions and closed under sequential product.

1Following a standard terminology, we use “almost all” to mean “all but finitely many”.
2They were called Mahler polynomial functions in [15] but Newton polynomial function seems to be

more appropriate.
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1.4. Proof techniques and notation

Our proof techniques are a mixture of algebra, combinatorics and topology. The com-
binatorial aspects occur already in Section 2.1, where the noncommutative extension of
binomial coefficients is introduced, and in Section 3.1, where we define a noncommutative
extension of the Magnus transformation (see in particular Propositions 3.1 and 7.5). Alge-
braic arguments appear in Proposition 6.6 and form the core of Sections 7.3 and 7.4. The
topological aspects are introduced in Section 6. We preferred to place ourselves within
the framework of uniform spaces for two reasons: first, it leads to more concise proofs;
secondly, it makes it easier to understand when it is mandatory to use a finite alphabet. We
come back to metric spaces in the last three subsections of Section 7.

Two applications of our main result are discussed in Section 9. We first study an inter-
polation problem in the spirit of Mahler’s original paper [8] and then come back to our
original motivation related to language theory.

We would like to warn the reader of a notation that could lead to confusion. Indeed,
starting from Section 3, we use an additive notation for a noncommutative operation. This
is not in itself a novelty and is even a standard notation for the sum of ordinals. For our
part, we were inspired by Banaschewski and Nelson [1], who use “C” in exactly the same
case as we do. Nevertheless, we have sought to replace “C” with another symbol, such
as “�”, but we have not found a substitute for � and ˙. As this additive notation leads to
synthetic formulas, such as (3.2) and (3.3), we finally decided to keep it, while frequently
recalling its noncommutative character.

1.5. Structure of the paper

Our paper is organized as follows. Basic prerequisites are recalled in Section 2. Newton’s
Forward Difference Formula is introduced in Section 3 and Newton polynomial functions
in Section 4. Newton’s bijection is the topic of Section 5. General topological aspects
are covered in Section 6 and the special case of free monoids and free groups is treated in
Section 7. The proof of our main result is given in Section 8 and applications are presented
in Section 9. The article is completed by a short appendix on uniform structures.

2. Prerequisites

As usual, Œn� denotes the set ¹1; : : : ; nº and jEj the cardinality of a set E .

2.1. Words and subwords

LetA be a set called an alphabet, whose elements are called letters. A word onA is a finite
sequence of elements of letters, denoted by mere juxtaposition a1 � � � an. If u D a1 � � �an
is a word, then n is the length of u and is denoted by juj. The set of words of length n is
denoted by An.
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We let A� denote the set of words on A. It is a monoid for the concatenation prod-

uct, which associates with two words u D a1 � � � ap and v D b1 � � � bq the word uv D

a1 � � � apb1 � � � bq . This product has an identity, the empty word, denoted by 1 or by "
when 1 already denotes a letter of the alphabet, as in Example 2.1 below. The empty word
is the unique word of length 0. The monoid A� is actually the free monoid on A.

Further, a word u D a1a2 � � � an is a subword of a word v if v can be written as
v D v0a1v1 � � �anvn for some (possibly empty) words v0; v1; : : : ; vn. For instance, aba is
a subword of caccbca.

Let u and v be words. Following Eilenberg [6] and Lothaire [7, Chapter 6], let
�

v
u

�

denote the number of distinct ways to write u as a subword of v. More formally, if u D

a1a2 � � �an, then
 

v

u

!

D Card
®

.v0; v1; : : : ; vn/ 2 .A�/nC1 j v0a1v1 � � �anvn D v
¯

:

Observe that, if uD am and v D an, then
�

v
u

�

D
�

n
m

�

and hence the numbers
�

v
u

�

constitute
a generalization of the classical binomial coefficients. We refer the reader to [7, Chapter 6]
for more information on these extended binomial coefficients.

2.2. Sequential transducers

We refer the reader to the survey article [5] for more information on sequential transducers.
However, we follow Sakarovitch’s suggestion [20, p. 651] and use the term pure sequential

instead of sequential and sequential instead of subsequential.
A sequential transducer is an 8-tuple T D .Q;A;M;q0; �;�;m; �/, whereQ is the set

of states, A is a finite alphabet called the input alphabet,M is a monoid called the output

monoid, q0 2Q is the initial state, the functions .q;a/ 7! q � a2Q and .q;a/ 7! q � a2M

are respectively the transition function and the output function,m 2 M is the initial prefix

and �WQ!M is a function, called the terminal function. It is a pure sequential transducer

if m D 1 and �.q/ D 1 for all q 2 Q. The transducer is called finite whenQ is finite.
It is convenient to represent a sequential transducer by a labeled graph whose vertices

are the states of the transducer. The initial state and the initial prefix are pictured by an
incoming arrow, the terminal function by an outcoming arrow, as follows:

1
m

q
�.q/

For a pure sequential transducer, we simply give the initial state and ignore the initial
prefix and the terminal function. We also represent simultaneously the transition q ! q � a

and the output q � a in the following form, where the vertical bar is a separator:

q q � a
a j q � a
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The transition and the output functions can be extended to functionsQ � A� ! Q (resp.
Q �A� ! M ) by setting, for each u 2 A� and each a 2 A,

q � 1 D q;

q � 1 D 1;

q � .ua/ D .q � u/ � a;

q � .ua/ D .q � u/..q � u/ � a/:

We also fix some priority rules on the operators. The standard choice is to give highest
priority to concatenation, then to “�” and then to “�”. For instance, we write q � ua for
q � .ua/, as well as q � ua for q � .ua/ and q � u � a for .q � u/ � a.

The function f WA� ! M realized by T is defined by

f .u/ D m.q0 � u/�.q0 � u/;

or, when T is a pure sequential transducer, by

f .u/ D q0 � u:

A sequential function is a function that can be realized by a finite sequential transducer.

Example 2.1. For a word u 2 ¹0; 1; 2º�, let xu denote the nonnegative integer represented
by u in base 3. Let f W ¹0; 1; 2º� ! ¹0; 1; 2º� be the Euclidean division by 2 in base 3, that
is, the function which associates to a wordu2 ¹0;1;2º� representing an integer n in base 3,
the unique word v of the same length as u representing the quotient of the division of n
by 2 (in base 3). For instance, f .1212/ D 0221 since 1212 D 50 and 0221 D 25 D 50=2.
It can also be defined recursively as follows:

f ."/ D ";

f .u0/ D

´

f .u/0 if xu is even,

f .u/1 if xu is odd,

f .u1/ D

´

f .u/0 if xu is even,

f .u/2 if xu is odd,

f .u2/ D

´

f .u/1 if xu is even,

f .u/2 if xu is odd.

As stated in [18], the function f is sequential. Indeed, it is realized by the finite pure
sequential transducer represented in Figure 1.
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0 1

0 j 0

2 j 1

0 j 1

2 j 2

1 j 0

1 j 2

Figure 1. Euclidean division by 2 of integers in base 3.

For instance, on the input 1212, the output is 0221, as shown in the figure below:

0 1 1 0 0
1 j 0 2 j 2 1 j 2 2 j 1

3. Newton’s Forward Difference Formula

Newton’s Forward Difference Formula gives an expression of a function in terms of the
initial value of the function and the powers of the forward difference operator. The sim-
plest version of this formula states that for each function f from N to Z,

f .n/ D

1
X

kD0

 

n

k

!

ıkf; (3.1)

a formula which is also the starting point of Mahler’s article [8, Theorem 1].
A noncommutative extension of (3.1) for the functions from A� to Z was given in

[15, Theorem 2.2] and a further extension for the functions fromA� to F.B/was proposed
in [10]. In this section, we give a simpler presentation of these results for the functions
from A� to a groupG, a slightly more general setting.

Our noncommutative version of Newton’s Forward Difference Formula allows to re-
trieve the function f from the family .ıwf /w2A� . Its precise statement, as given in
Theorem 3.6 below, requires some auxiliary definitions and results, as could be expected
in this noncommutative framework. To this end, we introduce a noncommutative exten-
sion of the Magnus transformation in Section 3.1 and then study the operators�w in more
detail in Section 3.2. Section 3.3 is devoted to the proof of Theorem 3.6.

3.1. Noncommutative Magnus transformation

Let A�� denote the free monoid freely generated by A�. An element of A�� is a finite
sequence .x1; : : : ; xn/ of elements of A�. However, to avoid any confusion between the
product in A� and the product in A��, we adopt an additive notation for A��, although
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A�� is in general noncommutative. This means that we replace the notation .x1; : : : ; xn/
by x1 C � � � C xn. The addition of two elements .u1 C � � � C um/ and .v1 C � � � C vn/ of
A�� is also denoted additively, which is coherent, since

.u1 C � � � C um/C .v1 C � � � C vn/ D u1 C � � � C um C v1 C � � � C vn:

Accordingly, the neutral element of the monoid A�� is denoted 0.
For each u 2 A� and x D x1 C � � � C xn 2 A��, let us set

x � u D x1uC � � � C xnu: (3.2)

We let the reader verify that this defines a monoid right action ofA� onA��, which means
that the following formulas hold for all u; u1; u2 2 A�, and for all x; x1; x2 2 A��:

0 � u D 0;

.x1 C x2/ � u D x1 � uC x2 � u;

x � .u1u2/ D .x � u1/ � u2:

The noncommutative Magnus transformation is the mapping � from A� into A�� defined
recursively by setting �.1/ D 1 and, for all w 2 A� and a 2 A,

�.wa/ D �.w/C �.w/ � a: (3.3)

Example 3.1. Let a; b; c; d 2 A. Then

�.a/ D 1C a;

�.ab/ D 1C aC b C ab;

�.abc/ D 1C aC b C ab C c C ac C bc C abc;

�.abcd/ D 1C aC b C ab C c C ac C bc C abc C d C ad C bd

C abd C cd C acd C bcd C abcd;

�.aba/ D 1C aC b C ab C a C aa C baC aba;

�.abab/ D 1C aC b C ab C a C aa C baC abaC b C ab C bb

C abb C ab C aab C bab C abab: (3.4)

Warning. It is tempting to define directly, instead of the right action defined by (3.2), a
product on A�� given, using the same notation, by the formula

.u1 C � � � C um/.v1 C � � � C vn/D u1v1 C � � � C umv1 C � � � C u1vn C � � � C umvn (3.5)

and then simply write�.a1a2 � � �an/D .1C a1/.1C a2/ � � �.1C an/. This approach using
near-rings is possible and was used in [10], but it requires special care. Indeed, not only the
addition is not commutative, but multiplication only distributes on the left over addition,
and not on the right. For instance, .1C a/.1C b/D .1C a/C .1C a/bD 1C aC bC ab

is different from .1C b/C a.1C b/ D 1C b C aC ab.
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The function � is an extension of the classical Magnus transformation M , which is
a morphism from the free monoid A� (and more generally the free group F.A/) into the
multiplicative monoid of the ring ZhhAii of noncommutative formal power series: it maps
each letter a onto 1 C a. For example, since the addition in ZhhAii is commutative, one
has

M.abab/ D .1C a/.1C b/.1C a/.1C b/

D 1C 2a C 2b C aa C 3ab C ba C bb

C aab C abaC abb C bab C abab;

a formula to be compared with (3.4).
Here is a simple algorithm to obtain �.abcd/, suggested by Mathieu Guay-Pacquet.

(1) Write abcd backwards to get dcba.

(2) Order the subwords of dcba as in a dictionary to obtain the list

L D 1; a; b; ba; c; ca; cb; cba; d; da; db; dba; dc; dca; dcb; dcba:

(3) Write the words of L backwards to get the list

zL D 1; a; b; ab; c; ac; bc; abc; d; ad; bd; abd; cd; acd; bcd; abcd:

Then �.abcd/ is the ordered sum of the elements of zL. To get �.abab/, it now suffices
to replace c by a and d by b in the expression giving �.abcd/.

This algorithm can be justified as follows. Let P D N � ¹0º be the set of positive
integers. Define recursively a total order on the set of finite subsets of P as follows:

(1) for every nonempty finite subset I of P , set ; < I ;

(2) if I , J are two nonempty subsets of P , then I < J if either max.I / <max.J / (for
the usual order of natural numbers), or if max.I /D max.J / and I � ¹max.I /º <
J � ¹max.J /º.

Example 3.2. One has ¹4; 7º < ¹3; 4; 7º < ¹5; 7º and, representing subsets of P without
braces,

; < 1 < 2 < 12 < 3 < 13 < 23 < 123 < 4 < 14

< 24 < 124 < 34 < 134 < 234 < 1234:

If w D a1 � � � an and I D ¹i1 < � � � < ikº � Œn�, let wŒI � denote the word ai1 � � � aik .
Then the following result holds.

Proposition 3.1. For each w 2 A�,

�.w/ D
X

I�Œjw j�

wŒI �; (3.6)

where the (noncommutative) sum runs, from left to right, over all subsets of Œjwj� increas-

ingly ordered by <.
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Proof. Recall that � is defined recursively by �.1/ D 1 and by the functional equa-
tion (3.3). Therefore, it suffices to show that the function �.w/ D

P

I�Œjw j�wŒI � satisfies
the same equations. Since the equality �.1/ D wŒ;� D 1 is immediate, it just remains to
prove that, for each letter a 2 A,

�.wa/ D �.w/C �.w/ � a: (3.7)

First observe that a subset of Œjwj C 1� is either a subset of Œjwj� or contains jwj C 1, and
every subset of the first category is lower (for the order<) than every subset of the second
category. Moreover, if I < J are subsets of the second category, then, by definition of
the order, I � ¹jwj C 1º < J � ¹jwj C 1º. Since, for I in the second category, waŒI � D

wŒI � ¹jwj C 1º�a, one gets

�.wa/ D
X

I�Œjw jC1�

waŒI � D
X

I�Œjw j�

wŒI �C
�

X

I�Œjw j�

wŒI �
�

� a

which proves (3.7).

3.2. Difference operators

Let G be a group and let f WA� ! G be a function. Following [10], we define the differ-
ence operators as follows. For each letter a of A, let �af denote the function A� ! G

defined by
�af .w/ D f .w/�1f .wa/

for each word w in A�. We obtain in this way a function a 7! �a from A into the set
M of all mappings from GA

�
into itself. We view M as a monoid under the composi-

tion of mappings. Since A� is the free monoid on A, this function from A to M extends
uniquely to a monoid morphism from A� into M. Denoting w 7! �w this extension, we
get �1f D f and, for all words u; v in A�,

�uvf D �u�vf: (3.8)

Example 3.3. For instance, one gets

.�1f /.u/ D f .u/;

.�af /.u/ D f .u/�1f .ua/;

.�abf /.u/ D f .ub/�1f .u/f .ua/�1f .uab/;

.�abcf /.u/ D f .ubc/�1f .ub/f .u/�1f .uc/f .uac/�1f .ua/f .uab/�1f .uabc/;

.�abcdf /.u/ D f .ubcd/�1f .ubc/f .ub/�1f .ubd/f .ud/�1

f .u/f .uc/�1f .ucd/f .uacd/�1f .uac/f .ua/�1

f .uad/f .uabd/�1f .uab/f .uabc/�1f .uabcd/;

.�ababf /.u/ D f .ubab/�1f .uba/f .ub/�1f .ubb/f .ub/�1

f .u/f .ua/�1f .uab/f .uaab/�1f .uaa/f .ua/�1

f .uab/f .uabb/�1f .uab/f .uaba/�1f .uabab/: (3.9)



A noncommutative extension of Mahler’s theorem 1065

Let us return for a moment to the commutative case, where f is a function from N to
a commutative group .G;C/. To do this, we take a one-letter alphabetAD ¹aº and we use
the map an ! n to identify A� to .N;C/. Writing �nf for �a

n
f and using an additive

notation, we get

�0f .n/ D f .n/;

�1f .n/ D �f .n/C f .nC 1/;

and more generally,

�kf .n/ D f .nC k/ �

 

n

1

!

f .nC k � 1/C

 

n

2

!

f .nC k � 2/� � � �

C .�1/k
 

n

k

!

f .n/;

which is the standard expression of the k-th power of the difference operator.
The general formula to retrieve the results of Example 3.3 requires some further devel-

opment and will be presented at the end of Section 3.3.
Difference operators commute with group morphisms in the following sense:

Proposition 3.2. Let f WA� ! G be a function, let 'WG ! H be a group morphism and

let w be a word. Then

�w.' ı f / D ' ı .�wf /: (3.10)

Proof. We prove the result by induction on jwj. The result is trivial if w is the empty
word. If w D a for some letter a, one gets

�a.' ı f /.x/ D .' ı f .x//�1.' ı f .xa// D '.f .x//�1'.f .xa//

D '.f .x/�1f .xa// D '.�af .x// D ' ı .�af /.x/;

and thus�a.' ı f / D ' ı .�af /.
If jwj > 2, then w D ua for some word u of length jwj � 1 and some letter a. Then,

by (3.8) and by the induction hypothesis applied to u, one gets

�w .' ı f / D �u�a.' ı f / D �u.' ı�af / D ' ı�u.�af /

D ' ı�uaf D ' ı�wf;

which concludes the proof.

Most of the time, it is difficult to give explicit formulas for the difference operators of
a given function. For the convenience of the reader, we present three examples where this
computation is not only tractable, but also leads to interesting formulas.
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Example 3.4 (The inversion function). We first apply the difference operators to the func-
tion mapping a word to its inverse in the free group. An auxiliary definition is in order to
state this result. The iterated commutator Œx1; x2; : : : ; xn� of n elements x1; x2; : : : ; xn of
a group is defined by induction by setting Œx1� D x1 and for n > 2,

Œx1; x2; : : : ; xn� D x1Œx2; x3; : : : ; xn�x
�1
1 Œx2; x3; : : : ; xn�

�1:

In particular, since Œx1; x2� D x1x2x
�1
1 x�1

2 , one gets

Œx1; x2; : : : ; xn� D
�

x1; Œx2; x3; : : : ; xn�
�

:

Proposition 3.3. Let f WA� ! F.A/ be the function defined by

f .x/ D x�1:

Then for every n > 0 and for all a1; : : : ; an 2 A,

�a1a2 ���anf .x/ D xŒa1; a2; : : : ; an�
�1x�1: (3.11)

Proof. For n D 1, the result follows from the formulas

�af .x/ D .f .x//�1f .xa/ D .x�1/�1.xa/�1 D xa�1x�1:

Let n > 2 and suppose that the result holds for n � 1. Thus, by (3.8), one has

.�a1a2 ���anf /.x/ D
�

�a1.�a2 ���anf /
�

.x/

D
�

.�a2 ���anf /.x/
��1

.�a2 ���anf /.xa1/:

Applying the induction hypothesis to �a2 ���anf , one gets

.�a2 ���anf /.x/ D xŒa2; : : : ; an�
�1x�1

and hence

.�a1a2 ���anf /.x/ D
�

xŒa2; : : : ; an�
�1x�1

��1�
xa1Œa2; : : : ; an�

�1.xa1/
�1
�

D xŒa2; : : : ; an�x
�1xa1Œa2; : : : ; an�

�1.xa1/
�1

D xŒa2; : : : ; an�a1Œa2; : : : ; an�
�1a�1

1 x�1

D xŒa1; a2; : : : ; an�
�1x�1

which proves the induction step.
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Example 3.5 (The Euclidean division by 2 in base 3). We come back to the function f
considered in Example 2.1. Let us compute the functions�xf . First, we have �"f D f

and

�0f .u/ D

´

0 if xu is even,

1 if xu is odd,

�1f .u/ D

´

0 if xu is even,

2 if xu is odd,

�2f .u/ D

´

1 if xu is even,

2 if xu is odd.

The other values of �xf can be obtained through the following result:

Proposition 3.4. Let s; t 2 A� and let gW ¹0; 1; 2º� ! A� be the function defined by

g.u/ D

´

s if xu is even,

t if xu is odd.

Then �"g D g and, for each word x,

�xg.u/ D

´

" if x … 1�,

.s�1t/2
n�1.�1/n�1Cxu

if x D 1n for some n > 0.
(3.12)

Proof. (1) Let us first compute �0g, �1g and �2g. Since xu, u0 and u2 have the same
parity, one has g.u/ D g.u0/ D g.u2/, so that

�0g.u/ D g.u/�1g.u0/ D " (3.13)

and

�2g.u/ D g.u/�1g.u2/ D ": (3.14)

Similarly,�1g.u/ D g.u/�1g.u1/, but now, xu and u1 have opposite parities. If xu is even,
then u1 is odd, and therefore

�1g.u/ D g.u/�1g.u1/ D s�1t D .s�1t/.�1/
xu

: (3.15)

The argument is similar when xu is odd, and leads to the same formula, by noting that s�1t

is the inverse of t�1s.
(2) Let us prove (3.12) by induction on n. For n D 1, the result follows from (3.15). If

(3.12) holds for some n > 1, then one has

�1
nC1

g.u/ D �1.�1
n

g.u// D .�1
n

g.u//�1�1
n

g.u1/

D ..s�1t/2
n�1.�1/n�1Cxu

/�1.s�1t/2
n�1.�1/n�1Cu1

D .s�1t/2
n�1.�1/nCxu

.s�1t/2
n�1.�1/nCxu

D .s�1t/2
n.�1/nCxu

;

which concludes the induction step.
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(3) Suppose now that x is nonempty and not of the form 1n. Then we may write
x D ya1k with a D 0 or 2 and k > 0. If k > 0, then (3.12) shows that �1

k
g.u/ can take

at most two values, which depend on the parity of xu. This is also true if k D 0, because in
this case, �1

k
g D �"g D g.

It now follows from (3.13) and (3.14), with g replaced by �1
k
g, that, for all u 2 A�,

�a1
k
g.u/ D �a�1

k
g.u/ D " and hence�xg.u/ D �y�a1

k
g.u/ D ".

We already computed �xf for the words x of length 0 or 1. Next we have for each
n > 0

�1
n0f .u/ D .0�11/2

n�1.�1/n�1Cxu

;

�1
n1f .u/ D .0�12/2

n�1.�1/n�1Cxu

;

�1
n2f .u/ D .1�12/2

n�1.�1/n�1Cxu

;

and, for any other word x, �xf is the constant function to ".

Example 3.6 (The noncommutative Magnus transformation). We now view the noncom-
mutative Magnus transformation defined in Section 3.1 as a function from A� to F.A�/,
the free group freely generated byA�, for which we also adopt a noncommutative additive
notation. The functions�w� are easy to compute.

Proposition 3.5. The following formula holds for all u;w 2 A�:

�w�.u/ D �.u/ � w: (3.16)

Proof. We prove (3.16) by induction on the length ofw. It is trivial ifw is the empty word.
Suppose that the result holds for w and let a be a letter. Then we have, for all w 2 A� and
a 2 A,

�aw�.u/ D �a.�w�/.u/ D ��w�.u/C�w�.ua/

D ��.u/ � w C �.ua/ � w:

Now, �.ua/ D �.u/C �.u/ � a by (3.3), and since � is a right action, one gets

�aw�.u/ D ��.u/ � w C .�.u/C �.u/ � a/ � w

D ��.u/ � w C �.u/ �w C �.u/ � aw D �.u/ � aw

which proves the induction step.

3.3. Newton’s Forward Difference Formula

For each w 2 A�, let us set
ıwf D �wf .1/

and let ıf WA� ! G be the map defined by ıf .w/ D ıwf . This map extends to a monoid
morphism ı�

f
WA�� ! G. Thus ı�

f
.w/ D ıwf and if w1 C � � � Cwn is an element of A��,

then ı�
f
.w1 C � � � C wn/ D ıw1f � � � ıwnf .
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Theorem 3.6 (Newton’s Forward Difference Formula). The equality f D ı�
f

ı � holds

for each function f WA� ! G.

Before moving on to the proof of this formula, let us illustrate it on a few examples.
Let a; b; c; d be letters of A. Then one has

f .1/ D ı1f;

f .a/ D .ı1f /.ıaf /;

f .ab/ D .ı1f /.ıaf /.ıbf /.ıabf /;

f .abc/ D .ı1f /.ıaf /.ıbf /.ıabf /.ıcf /.ıacf /.ıbcf /.ıabcf /;

f .abcd/ D .ı1f /.ıaf /.ıbf /.ıabf /.ıcf /.ıacf /.ıbcf /.ıabcf /

.ıdf /.ıadf /.ıbdf /.ıabdf /.ıcdf /.ıacdf /.ıbcdf /.ıabcdf /;

f .abab/ D .ı1f /.ıaf /.ıbf /.ıabf /.ıaf /.ıaaf /.ıbaf /.ıabaf /

.ıbf /.ıabf /.ıbbf /.ıabbf /.ıabf /.ıaabf /.ıbabf /.ıababf /;

a formula deduced from (3.4) by eliminating the C signs and by replacing each word u
by ıuf .

Theorem 3.6 relies on the following lemma.

Lemma 3.7. The following formula holds for every x 2 A�� and every a 2 A:

ı�
f .x � a/ D ı�

�af .x/: (3.17)

Proof. Since the map x 7! x � a is a monoid endomorphism of A��, both sides of (3.17),
viewed as functions of x, are monoid morphisms from A�� into G. Therefore, it suffices
to establish (3.17) when x is a generator of A��, that is, x D u for some word u 2 A�.
Then x � a D ua and hence one has

ı�
f .u � a/ D ıuaf D �uaf .1/ D �u�af .1/ D ıu.�

af / D ı�
�af .u/:

Proof of Theorem 3.6. Let us show that, for every word w 2 A�,

f .w/ D ı�
f ı �.w/: (3.18)

We prove (3.18) by induction on jwj. If jwj D 0, then w is the empty word, and

f .1/ D �1f .1/ D ı1f D ı�
f .1/ D ı�

f ı �.1/:

Suppose that the result holds for all words of length 6 n and let u be a word of length
n C 1. Let w be the prefix of length n of u and let a be its last letter, so that u D wa.
Observing that �af .w/ D f .w/�1f .wa/, one gets

f .u/ D f .wa/ D f .w/�af .w/: (3.19)
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Moreover, the induction hypothesis yields

f .w/ D ı�
f .�.w//; (3.20)

�af .w/ D ı�
�af ı �.w/:

Applying now Lemma 3.7 with x D �.w/, one gets

�af .w/ D ı�
�af ı �.w/ D ı�

f .�.w/ � a/: (3.21)

Plugging (3.20) and (3.21) into (3.19) yields

f .u/ D f .w/�af .w/ D ı�
f

�

�.w/
�

ı�
f

�

�.w/ � a
�

D ı�
f

�

�.w/C �.w/ � a
�

D ı�
f

�

�.wa/
�

D ı�
f ı �.u/

which proves the induction step and concludes the proof.

Example 3.7. A direct application of Proposition 3.3 and Theorem 3.6 leads to the for-
mula

.abc/�1 D a�1b�1Œa; b��1c�1Œa; c��1Œb; c��1Œa; b; c��1; (3.22)

or, equivalently,

abc D Œa; b; c�Œb; c�Œa; c�cŒa; b�ba: (3.23)

Example 3.8. Let us come back to the function f considered in Examples 2.1 and 3.5.
Proposition 3.4 shows that ı0f D 0, ı1f D 0, ı2f D 1, and for each n > 0,

ı1n0f D .0�11/2
n�1.�1/n�1

;

ı1n1f D .0�12/2
n�1.�1/n�1

;

ı1n2f D .1�12/2
n�1.�1/n�1

;

and ıxf D " in all other cases. Applying Newton’s Forward Difference Formula, we get
for instance

f .1212/ D ı"f ı1f ı2f ı12f ı1f ı11f ı21f ı121f

ı2f ı12f ı22f ı122f ı12f ı112f ı212f ı1212f

D ı1f ı2f ı12f ı1f ı11f ı2f ı12f ı12f ı112f

D 01.1�12/0.0�12/1.1�12/.1�12/.1�12/�2 D 0221;

a somewhat convoluted way to show that 50 divided by 2 equals 25.

Example 3.9. For the noncommutative Magnus transformation, Proposition 3.5 shows
that ıw� D w for all w 2 A�. Thus, ı�

� is the identity, in accordance with Theorem 3.6.
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Newton’s Forward Difference Formula allows one to recover f from the elements
ıuf . A formula giving �wf in terms of f , as shown in Example 3.3, was given in [10].
Let us briefly review the steps leading to this formula.

We first consider � as a function from A� to F.A�/, the free group freely generated
by A�, for which we keep the noncommutative additive notation already used for A��.
This means that every element of F.A�/ is written as

˙ x1 ˙ � � � ˙ xn

with x1; : : : ; xn 2 A� and no consecutive terms of the form �x C x or Cx � x occur in
this expression.

Next we extend �, in the only possible way, to an endomorphism of F.A�/. We show
below that it is actually an automorphism, and how to construct its inverse. We also define
a right and a left action of A� on A�� as follows. For each element ˙ x1 C � � � ˙ xn of
F.A�/ and each u 2 A�, we set

.˙x1 C � � � ˙ xn/ � u D .˙x1u˙ � � � ˙ xnu/;

u � .˙x1 C � � � ˙ xn/ D ˙ux1 C � � � ˙ uxn:

Note that the right action extends the right action of A� on A�� given by (3.2).
The formula giving�wf is now easy to obtain. Recall that f is a function fromA� to

some groupG. Thus, f uniquely extends to a group morphism f �WF.A�/ ! G, and the
following formula, stated in [10, Proposition 4.5] with a slightly different notation, holds
for all u;w in A�:

�wf .u/ D f �.u � ��1.w//: (3.24)

It remains to give an explicit formula for the inverse of �. For this purpose, we intro-
duce a new function �WA� ! F.A�/ defined recursively by setting �.1/ D 1 and, for all
w 2 A� and a 2 A,

�.wa/ D ��.w/C �.w/ � a: (3.25)

For instance, if a; b; c; d 2 A, then we have:

�.a/ D �1C a;

�.ab/ D �a C 1 � b C ab;

�.abc/ D �ab C b � 1C a � ac C c � bc C abc;

�.abcd/ D �abc C bc � c C ac � aC 1 � b C ab � abd C bd � d

C ad � acd C cd � bcd C abcd;

�.aba/ D �ab C b � 1C a � aa C a � baC aba;

�.abab/ D �aba C ba � a C aa � a C 1 � b C ab � abb C bb � b

C ab � aab C ab � bab C abab: (3.26)
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In the same way as �, the function � uniquely extends to an endomorphism of F.A�/,
also denoted by � . This endomorphism � is not yet the inverse of �, but we are almost
there.

The reversal of a word u D a1 � � �an is the word zu D an � � � a1. The reversal map is a
permutation on A� which uniquely extends to a group automorphism of F.A�/. Accord-
ing to [10, Corollary 3.4], the inverse of � is given by the following formula, for all
x 2 F.A�/:

��1.x/ D e�. Qx/: (3.27)

For instance, if x D ab, then Qx D ba, whence

�.ba/ D �b C 1 � a C ba and ��1.ab/ D A�.ba/ D �b C 1 � aC ab:

For a more complicated example, we let the reader verify that applying (3.24), (3.26) and
(3.27), one recovers (3.9).

4. Polynomial functions

In this section, we extend the notion of a Newton polynomial function from N to Z to
functions from A� to some group G. The formal definition, as well as a useful character-
ization, are given in Section 4.1. Next, in Section 4.2, we introduce a new construction,
the sequential product, that we use to solve the integration problem. In Section 4.3, we
associate to each function f from A� to G a sequence of Newton polynomial functions
fr of degree at most r .

4.1. Polynomial functions and their degree

Let 1 denote the constant function from A� to G that maps every word to 1, the identity
element of G.

A function f WA� !G is called a Newton polynomial function if�wf D 1 for almost
all words w 2 A�. In this case, the degree of f , denoted deg.f /, is defined by

deg.f / D min¹d 2 N [ ¹�1º j �wf D 1

for all words w 2 A� such that jwj > d º: (4.1)

or equivalently, using (3.8) and the fact that �w1 D 1 for all words w,

deg.f / D min¹d 2 N [ ¹�1º j �wf D 1

for all words w 2 A� such that jwj D d C 1º: (4.2)

Observe that (3.8) and the definition of the degree imply the following inequality, for all
words w 2 A�,

deg.�wf / 6 deg.f / � jwj: (4.3)
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Proposition 4.1. The following properties hold:

(1) The unique Newton polynomial function of degree �1 is the function 1.

(2) A Newton polynomial function has degree 0 if and only if it is a constant function

different from 1.

(3) For every Newton polynomial function f of nonnegative degree,

deg.f / D 1C max¹deg.�af / j a 2 Aº: (4.4)

Proof. (1) The equality deg.1/ D �1 follows from the definition, and since �1f D f ,
the degree of each function f ¤ 1 is nonnegative.

(2) Let f be a constant function and a be a letter. Then, since�af .u/Df .u/�1f .ua/,
one has�af D 1, and hence deg.f / 6 0 by (4.2). Moreover, if f ¤ 1, then deg.f / D 0

by (1).
Conversely, if deg.f / D 0, then f ¤ 1 by (1) and �af D 1 for each letter a. Since

�a.u/D f .u/�1f .ua/, one has f .ua/D f .u/, and by an easy induction, f is a constant
function.

(3) Let dDdeg.f /. If dD0, then (4.4) is immediately verified. If d>0, then�wf D1

for all words w of length > d and there exists a word w of length d such that �wf ¤ 1.
Setting w D uc, where c is a letter and juj D d , one gets �wf D �u.�cf / by (3.8),
whence�u.�cf / ¤ 1 and deg.�cf / > d � 1 by (4.2). Therefore,

d 6 1C deg.�cf / 6 1C max¹deg.�af / j a 2 Aº:

Moreover, it follows from (4.3) that, for each letter a, deg.�af / 6 d � 1 and thus
1C max¹deg.�af / j a 2 Aº 6 d , which proves (4.4).

The degree of a Newton polynomial function may also be defined by using the func-
tions ı instead of �.

Proposition 4.2. Let f WA� !G be a Newton polynomial function and let d 2 N [ ¹�1º.

Then deg.f / 6 d if and only if ıwf D 1 for all words w of length > d .

Proof. Suppose that deg.f / 6 d and let w be a word of length > d . Then �wf D 1 by
(4.1) and since ıwf D �wf .1/, one has ıwf D 1.

In the opposite direction, we now prove by induction on d that, if ıwf D 1 for all
words w of length > d , then deg.f / 6 d . If d D �1, then ıwf D 1 for each word w. It
follows by Theorem 3.6 that f D 1 and thus deg.f / D �1.

Suppose now that d > 0. Since deg.f / D 1 C max¹deg.�af / j a 2 Aº by (4.4), it
suffices to show that, for each letter a, deg.�af / 6 d � 1. Let u be a word of length
> d � 1. Using (3.8), one gets, since juaj > d ,

ıu.�
af / D �u�af .1/ D �uaf .1/ D ıuaf D 1:

It follows by the induction hypothesis that deg.�af / 6 d � 1, as required.

Examples of Newton polynomial functions of degree 2 and examples of non-polyno-
mial functions are given at the end of Section 4.2.
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4.2. Integration problem and sequential products

We now show that f and the functions�af , for a 2 A, are related by a functional equa-
tion.

Proposition 4.3. Let a1 � � �an be a word of A�. Then the following formula holds:

f .a1 � � �an/ D f .1/
Y

16i6n

�aif .a1 � � �ai�1/; (4.5)

where the product is evaluated from left to right.

Proof. The result is trivial if nD 0. Moreover, if (4.5) holds for n, then, by induction on n

f .1/
Y

16i6nC1

�aif .a1 � � �ai�1/ D f .a1 � � �an/�
anC1f .a1 � � �an/

D f .a1 � � �an/f .a1 � � � an/
�1f .a1 � � �ananC1/

D f .a1 � � �ananC1/;

which proves (4.5).

The functional equation (4.5) gives an expression of f in terms of f .1/ and of the
family .�af /a2A. We now address the opposite question, which is somewhat similar to
the problem of integrating a function from its derivative.

Integration problem. Given an element g of G and a family .fa/a2A of functions from

A� to G, is there a function f such that f .1/ D g and fa D �af for all a 2 A?

To solve the integration problem, it is convenient to introduce a new definition. Given
an element g ofG and a family .fa/a2A of functions fromA� toG, the sequential product

Seq.g; .fa/a2A/ is the function f WA� ! G, defined, for each word a1 � � � an 2 A�, by

f .a1 � � �an/ D g
Y

16i6n

fai .a1 � � �ai�1/: (4.6)

By abuse of language, a function f WA� ! G is called a sequential product of a family

.fa/a2A of functions from A� to G if, for some g 2 G, f D Seq.g; .fa/a2A/.
This terminology stems from the fact that f can be realized by a sequential transducer

with infinitely many states. Indeed, consider the sequential transducer

A D .A�; A;G; 1; �;�; g/;

where A� is the set of states, A the input alphabet, G the output group, 1 the initial state,
g the initial prefix. The transition and the output functions are respectively defined by
u � a D ua and u � a D fa.u/.

g
1 u ua

a j fa.u/
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A typical computation in A looks like this

g
: : :

: : :

1 a1 a1a2 a1a2a3

a1a2 � � � an�1 a1a2 � � � an

a1 j fa1.1/ a2 j fa2.a1/ a3 j fa3.a1a2/

an j fan.a1 � � � an�1/

and hence A computes the sequential product f defined by (4.6).
We are now ready to solve the integration problem.

Proposition 4.4. Let g 2 G and let .fa/a2A be a family of functions from A� to G. Then

the sequential product Seq.g; .fa/a2A/ is the unique function f such that f .1/ D g and

�af D fa for all a 2 A.

Proof. Let f D Seq.g; .fa/a2A/. Then f .1/ D g by definition. Let u D a1 � � � an be a
word and a be a letter. Since �af .u/ D f .u/�1f .ua/, one gets by (4.5)

�af .u/ D
�

g
Y

16i6n

fai .a1 � � �ai�1/
��1

g
�

Y

16i6n

fai .a1 � � �ai�1/
�

fa.a1 � � �an/

D fa.a1 � � �an/

whence�af D fa.
To prove uniqueness, consider a function f such that f .1/D g and�af D fa for all

a 2 A. Then, for each word a1 � � �an 2 A�, one gets by (4.5),

f .a1 � � �an/ D f .1/
Y

16i6n

�aif .a1 � � �ai�1/ D g
Y

16i6n

fai .a1 � � �ai�1/:

and thus f D Seq.g; .fa/a2A/.

Proposition 4.5. Let G be a group and let f W A� ! G be a function. The following

conditions are equivalent:

(1) f is a Newton polynomial function of degree 6 d ,

(2) there exists a family .fa/a2A of polynomial functions of degree 6 d � 1 such that

f D Seq.f .1/; .fa/a2A/.

In this case, one has fa D �af for every a 2 A.

Proof. (1) ) (2). Let f be a polynomial function of degree 6 d . Formula (4.3) shows
that, for each letter a, �af is a Newton polynomial function of degree at most d � 1.
Moreover, Proposition 4.3 shows that f .a1 � � � an/ D f .1/

Q

16i6n �
aif .a1 � � � ai�1/,

which proves (2).
(2) ) (1). Suppose that (2) holds. Proposition 4.4 shows that, for each letter a,�af D

fa and hence�af is a Newton polynomial function of degree 6 d � 1. It follows that f
is a Newton polynomial function of degree 6 d .
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The following characterization of the set of Newton polynomial functions is now an
immediate consequence of Proposition 4.5.

Corollary 4.6. Let G be a group. The set of Newton polynomial functions from A� to G

is the smallest set of functions from A� to G containing the constant functions and closed

under sequential product.

We now come back to the characterization of the Newton polynomial functions of
degree 6 1. Let us say that a function f WA� ! G is an affine morphism if f D f .1/g

for some monoid morphism gW A� ! G. Equivalently, conjugating by f .1/, one gets
f D hf .1/ for some monoid morphism hWA� ! G.

Proposition 4.7. A function from A� to G is a Newton polynomial function of degree 6 1

if and only if it is an affine morphism.

Proof. Proposition 4.5 shows that a function from A� to G is a polynomial function of
degree 6 1 if and only if there exists a family .fa/a2A of Newton polynomial functions
of degree 6 0 such that f D Seq.f .1/; .fa/a2A/. Proposition 4.1 shows that these poly-
nomial functions fa of degree 6 0 are constant functions equal to some element ga of G.
It follows that f is a Newton polynomial function of degree 6 1 if and only if there is a
family .ga/a2A of elements of G such that, for each word w D a1 � � �an,

f .w/ D f .1/
Y

16i6n

gai : (4.7)

Defining gWA� !G as the unique monoid morphism such that g.a/D ga for each letter a,
(4.7) is equivalent to writing f .w/ D f .1/g.w/, which proves the result.

Example 4.1. The function f WA� ! F.A/ defined by

f .a1 � � �an/ D a1.a1a2/.a1a2a3/ � � � .a1 � � �an/

is a Newton polynomial function of degree 2. Indeed, it is equal to the sequential product
Seq.1; .fa/a2A/ where each fa is the affine morphism defined by fa.u/ D ua.

Proposition 4.8. Any Newton polynomial function of finite image from A� to a free group

is a constant function.

Proof. Let f WA� ! F.B/ be a Newton polynomial function of finite image. Then, for
each a2A, the image of�af is also finite since�af .u/, which is equal to f .u/�1f .ua/,
can only take finitely many values. It follows by induction that, for every word w, the
image of �wf is also finite.

Let d be the degree of f and suppose that d > 0. By (4.2), there exists a word w of
length d such that�wf ¤ 1. Let a be the first letter of w and s its suffix of length d � 1.
By (4.3), �sf is a Newton polynomial function of degree 6 1, and since �a.�sf / ¤ 1,
it is actually of degree 1. It follows from Proposition 4.7 that f is an affine morphism.



A noncommutative extension of Mahler’s theorem 1077

Consequently, there is a monoid morphism gWA� ! F.B/ such that �sf D �sf .1/g.
But since �sf has finite image, g.A�/ has to be a finite submonoid of F.B/ and the
unique possibility is g D 1. But in this case, �sf is a constant function and hence has
degree 0, a contradiction. Thus d 6 0 and f is a constant function.

Just like difference operators, sequential products commute with group morphisms:

Proposition 4.9. Let ' W G ! H be a group morphism and let .fa/a2A be a family of

functions from A� to G. Then the following equality holds:

' ı Seq.g; .fa/a2A/ D Seq.'.g/; .' ı fa/a2A/: (4.8)

Proof. Since ' is a morphism, one has

'
�

Seq.g; .fa/a2A/.a1 � � �an/
�

D '
�

g
Y

16i6n

fai .a1 � � �ai�1/
�

D '.g/
Y

16i6n

'
�

fai .a1 � � �ai�1/
�

D Seq
�

'.g/; .' ı fa/a2A

�

.a1 � � �an/

which proves (4.8).

4.3. Newton polynomial functions associated to a function

For each r 2 N , let Cr be the set of words of A� of length at most r . Let �r be the unique
monoid endomorphism of A�� which maps every element of Cr to itself, and maps any
other element of A� to 0. In other words, if x D

P

16i6s ui is an element of A��, where
each ui 2 A� and if Er .x/ D ¹i 2 ¹1; : : : ; sº j jui j 6 rº, then

�r .x/ D
X

i2Er.x/

ui : (4.9)

For instance, �3.1 C ab C baba C 1 C aba C abaab C b/ D 1 C ab C 1 C aba C b.
The function

�r D �r ı �

from A� to A�� is called the r-th truncated noncommutative Magnus transformation.

Example 4.2. Let a; b; c; d 2 A. Then

�2.a/ D 1C a;

�2.ab/ D 1C aC b C ab;

�2.abc/ D 1C aC b C ab C c C ac C bc;

�2.abcd/ D 1C aC b C ab C c C ac C bc C d C ad C bd C cd;

�2.abab/ D 1C aC b C ab C aC aa C baC b C ab C bb C ab:

Thus, �2.abab/, for instance, is obtained by only keeping the words of length 6 2 in
�.abab/, as given in (3.4).
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Formula (3.3) admits a truncated version:

Lemma 4.10. The following formulas hold for all w 2 A�, a 2 A and r > 0:

�r .�.w/ � a/ D �r�1.�.w// � a; (4.10)

�r .wa/ D �r .w/C �r�1.w/ � a: (4.11)

Proof. Formula (4.10) follows from an inspection of the words of Er .�.w/ � a/: they are
exactly the words of the form ua where u 2 Er�1.�.w//.

Let us prove (4.11). By definition, �r .wa/D �r ı�.wa/. Since �r is a monoid endo-
morphism on A��, applying �r to each side of (3.3) yields

�r .�.wa// D �r .�.w/C �.w/ � a/ D �r.�.w//C �r .�.w/ � a/:

Moreover, it follows from (4.10) that

�r .�.w/ � a/ D �r�1.�.w// � a D �r�1.w/ � a;

and hence

�r .�.wa// D �r.�.w//C �r�1.w/ � a D �r .w/C �r�1.w/ � a:

An interesting consequence of Lemma 4.10 is that �r can be expressed as a sequential
product of the functions �r�1 � a, for a 2 A. For this to make sense, we need to consider
each �r as a function from A� to the free group of base A�, written additively like A��.

Corollary 4.11. For every r > 0, �r D Seq.1; .�r�1 � a/a2A/.

Proof. On the one hand, it follows from (4.11) that for all w 2 A� and a 2 A,

�a�r .w/ D ��r .w/C �r .wa/ D �r�1.w/ � a: (4.12)

On the other hand, Proposition 4.3 shows that

�r D Seq.1; .�a�r /a2A/: (4.13)

The corollary now follows immediately from (4.12) and (4.13).

To each function f WA� ! G, we associate, for each r > 0, a function fr WA� ! G by
setting fr D ı�

f
ı�r . We will see in Proposition 4.14 below that fr is a Newton polynomial

function. For this reason, we call fr the r-th Newton polynomial function associated to f .

Lemma 4.12. The function f0 is the constant function equal to f .1/.

Proof. Indeed, since �1f D f , one gets

f0.u/ D ı�
f ı �0.u/ D ı�

f .1/ D ı1f D �1f .1/ D f .1/:
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Example 4.3. Here are a few other examples, in which we write ıu instead of ıuf .

f2.a/ D ı�
f ı �2.a/ D ı�

f .1C a/ D ı1ıa;

f2.ab/ D ı�
f ı �2.ab/ D ı�

f .1C a C b C ab/ D ı1ıaıbıab;

f2.abc/ D ı�
f ı �2.abc/ D ı�

f .1C aC b C ab C c C ac C bc/

D ı1ıaıbıabıcıacıbc ;

f2.abcd/ D ı�
f ı �2.abcd/

D ı�
f .1C aC b C ab C c C ac C bc C d C ad C bd C cd/

D ı1ıaıbıabıcıacıbcıdıad ıbdıcd ;

f2.abab/ D ı1ıaıbıabıaıaaıbaıbıabıbbıab :

Proposition 4.13. The formula

�a.fr/ D ı�
�af ı �r�1 D .�af /r�1 (4.14)

holds for all r > 0 and a 2 A.

Proof. Since fr D ı�
f

ı �r and �r .ua/ D �r .u/C �r�1.u/ � a by (4.11), formula (4.14)
follows from the following sequence of equalities:

�afr .u/ D fr .u/
�1fr .ua/ D

�

ı�
f .�r .u//

��1
ı�
f .�r .ua//

D
�

ı�
f .�r .u//

��1
ı�
f .�r .u/C �r�1.u/ � a/

D
�

ı�
f .�r .u//

��1
ı�
f .�r .u//ı

�
f .�r�1.u/ � a/ D ı�

f .�r�1.u/ � a/

D ı�
�af .�r�1.u// by Lemma 3.7

D .�af /r�1.u/ by the definition of .�af /r�1:

Proposition 4.14. For each r > 0, fr is a Newton polynomial function of degree at most r .

Proof. We prove the result by induction on r . For r D 0, the result follows from Lem-
ma 4.12.

Applying Proposition 4.3 to fr , one gets, for every word a1 � � �ak 2 A�,

fr .a1 � � �ak/ D fr .1/
Y

16i6k

�aifr .a1 � � �ai�1/: (4.15)

Now, fr .1/ D ı�
f

ı �r .1/ D ı�
f
.1/ D f .1/ and �afr D .�af /r�1 by Proposition 4.13.

It follows that

fr.a1 � � �ak/ D f .1/
Y

16i6k

.�aif /r�1.a1 � � �ai�1/: (4.16)

By the induction hypothesis applied to�af , .�af /r�1 is a Newton polynomial function
of degree at most r � 1. Hence, by Proposition 4.5, fr is a Newton polynomial function
of degree at most r .
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Recall that ı�
f

is a monoid morphism from A�� to G, but we keep the same notation
for its restriction to C �

r . Theorem 3.6 admits the following counterpart.

Corollary 4.15. Let f WA� ! G be a Newton polynomial function of degree at most d .

Then f D ı�
f

ı �d .

Proof. It suffices to use Theorem 3.6 and to observe that ı�
f
.u/ D ıuf D �uf .1/ D 1

for each word of length > d .

5. Newton’s bijection

Recall that to each function f WA� ! G is associated the map ıf WA� ! G defined by
ıf .w/ D ıwf . The Newton map is the map ıW f ! ıf . We show in this section that ı is
a bijection and we explicitly find its inverse.

Let f �WA�� ! G be the unique monoid morphism extending f and let  WA� ! G

be the map defined by .f / D f � ı �. Thus, if u 2 A� and �.u/ D u1 C � � � C um, then

.u/ D f �.u1 C � � � C um/ D f .u1/ � � �f .um/:

Theorem 5.1 (Newton’s bijection). The Newton map ı is a permutation on the set of

functions from A� to G and its inverse is the permutation  .

Proof. Since f D ı�
f

ı � by Theorem 3.6,  ı ı is the identity function. Therefore, 
is surjective, ı is injective and it suffices to prove that  is injective. Let g; hWA� ! G

be such that g� ı � D h� ı �. Let us show by induction on juj that g.u/ D h.u/. If
juj D 0, then u is the empty word 1, �.1/ D 1, g�.1/ D g.1/, h�.1/ D h.1/ and thus
g.1/ D h.1/. Suppose now that juj D r C 1. Then �.u/ D �r .u/C u and since g� and
h� are monoid morphisms, one gets g� ı �.u/ D g�.�r .u/C u/ D g�.�r .u//g.u/ and
similarly h� ı �.u/ D h�.�r .u//h.u/. Since �r .u/ is a sum of words of length 6 r , the
induction hypothesis gives g�.�r .u// D h�.�r .u//. Now, since g� ı �.u/ D h� ı �.u/,
one gets g.u/ D h.u/, which concludes the induction step.

Theorem 5.1 solves the following interpolation problem.

Corollary 5.2. For each function gWA� ! G, there exists a unique function f WA� ! G

such that, for all u 2 A�, ıuf D g.u/.

A function f WA� ! G is called a G-polynomial if f .w/ D 1 for almost all words
w 2 A�. The degree of a G-polynomial is �1 if f D 1; otherwise, it is the smallest d
such that f .w/ D 1 for every word of length d C 1. One can now enrich Theorem 5.1 as
follows.

Theorem 5.3. For each degree d , the maps ı and  define mutually inverse bijections

between the set of Newton polynomial functions of degree d and the set ofG-polynomials

of degree d .
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Proof. It suffices to prove that ı and  define mutually inverse bijections between the
set of Newton polynomial functions of degree at most d and the set of G-polynomials
of degree at most d . Let f be a Newton polynomial function of degree 6 d . Then by
definition, ı.f / is a G-polynomial of degree at most d . Let now f be a G-polynomial
of degree at most d . Theorem 5.1 shows that f D ı ı .f / D ı.f /. It follows that for
every word w of length > d , 1 D f .w/ D ı.f /.w/. Thus, .f / is a Newton polynomial
function of degree at most d .

6. Pro-p uniformity and pro-p metric

In order to deal with uniformly continuous function, we have chosen to work with unifor-

mities (also called uniform structures), following Bourbaki [3], rather than with distances,
because it is more natural and makes proofs more fluid. The relevant definitions can be
found in Appendix A.

6.1. Residually p-finite monoids

Let p be a prime number and let M be a monoid. Let us say that a finite p-group G
separates two elements of M if there exists a monoid morphism ' from M onto G such
that '.u/ ¤ '.v/.

A monoid M is residually a finite p-group, or residually p-finite for short, if every
pair of elements of M can be separated by a finite p-group. Equivalently, a monoid is
residually p-finite if it is a subdirect product (in the category of monoids) of finite p-
groups.

Since a monoid morphism from a group to another group is a group morphism, this
definition is compatible with the standard definition of a residually p-finite group: a group
G is residually p-finite if, for each g ¤ 1 in G, there is some finite p-groupH and some
morphism G ! H whose kernel does not contain g. Equivalently, a group is residually
p-finite if the intersection of all its subgroups of index a power of p is trivial.

The next proposition gathers some known facts about residually p-finite monoids.

Proposition 6.1. The following properties hold:

(1) a product of residually p-finite monoids is again residually p-finite;

(2) a submonoid of a residually p-finite monoid is residually p-finite;

(3) every free monoid and every free group is residually p-finite;

(4) a finite monoid is residually p-finite if and only if it is a finite p-group.

6.2. Pro-p uniformity on a residually p-finite monoid

LetM be a residuallyp-finite monoid. The pro-p uniformity onM is the initial uniformity
with respect to all monoids morphisms from M to a finite p-group, equipped with the
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discrete uniformity. A base of this uniformity is given by Proposition 6.2 below. For each
monoid morphism ' fromM onto a finite p-groupG, let

U' D ¹.u; v/ 2 M �M j '.u/ D '.v/º:

Since G is finite, U' can be written as a finite union

U' D
[

g2G

�

'�1.g/ � '�1.g/
�

: (6.1)

Proposition 6.2. Let M be a residually p-finite monoid. The sets of the form U' , where

' runs over the class of all monoid morphisms from M onto a finite p-group, form a base

of the pro-p uniformity on M .

Proof. The sets of the form
U';P D .' � '/�1.P /;

where P is an entourage of the discrete uniformity on G, form a subbase of the initial
uniformity. Note thatU' DU';D whereD is the diagonal ofG �G. Since every entourage
of the discrete uniformity onG containsP , every set U';P containsU' . It follows that the
sets of the form U' form another subbase of the initial uniformity. To prove they do in fact
form a base, it suffices to prove that if '1WM ! G1 and '2WM ! G2 are two morphisms
fromM onto finite p-groupsG1 and G2, there exists a morphism ' from M onto a finite
p-group G such that U' � U'1 \ U'2 . Actually, if ' is the morphism '1 � '2WM !

G1 �G2 and G D '.M/, then a simple calculation shows that U' D U'1 \ U'2 .

From now on, the term uniform continuity will always refer to the pro-p uniformity.
We let the reader verify the following straightforward results:

Proposition 6.3. Let M be a residually p-finite monoid. Then the product on M is uni-

formly continuous.

Proposition 6.4. Let M and N be two residually p-finite monoids. Then every monoid

morphism from M to N is uniformly continuous.

The topology induced by the pro-p uniformity is called the pro-p topology on M . It
is the initial topology with respect to all monoid morphisms fromM onto a discrete finite
p-group. Thus, the sets of the form '�1.g/, where ' is a monoid morphism fromM onto
a finite p-group G and g 2 G, form a base of this topology. Since M is residually p-
finite, this topology is Hausdorff. It follows from Proposition 6.3 that every residually p-
finite monoid is a Hausdorff topological monoid. Applying the standard characterization
of initial uniform structures, one gets the following result.

Proposition 6.5. LetM andN be two residually p-finite monoids. A function f WM !N

is uniformly continuous (respectively continuous) if and only if, for every monoid mor-

phism ' from N onto a finite pro-p group, ' ı f is uniformly continuous (respectively

continuous).
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The next proposition gives a purely algebraic characterization of uniformly continuous
functions from a residually p-finite monoid to a finite p-group.

Proposition 6.6. Let M be a residually p-finite monoid. A function f from M to a finite

p-group G is uniformly continuous if and only if there exists a monoid morphism ' from

M onto a finite p-groupK and a map gWK ! G such that f D g ı '.

M G

K

'

f

g

Proof. Suppose that f D g ı ' for some map gWK ! G and some monoid morphism
'WM ! K . Since K and G are finite p-groups, the pro-p uniformity on these groups
is the discrete uniformity and thus g is uniformly continuous. Moreover, ' is uniformly
continuous by Proposition 6.4, and thus f is uniformly continuous.

Conversely, let f WM !G be a uniformly continuous function. Since the pro-p unifor-
mity onG is the discrete one, there exists an entourageU ofM such that for all x;y inM ,
the condition .x; y/ 2 U implies f .x/ D f .y/. It follows that U contains an entourage
of the form U' , for some morphism ' from M onto a finite p-group K . Consequently,
the condition '.x/ D '.y/, which is equivalent to .x; y/ 2 U' , implies f .x/ D f .y/. It
follows that f factors through '.

6.3. Sequences and families indexed by A�

Let X be a topological space. In this paper, we use sequences of elements of X , that is,
functions from N toX , but also families of elements ofX indexed byA�, that is, functions
from A� to X . We say that a family .xu/u2A� converges to x when juj tends to infinity if
x is a limit point of the map u ! xu with respect to the filter ¹AnA� j n > 0º on A�. This
means that, for each neighborhood V of x, there exists N > 0 such that, if juj > N , then
xu 2 V .

Let us recall that a sequence .xn/n> 0 is ultimately equal to x if there exists some
r > 0 such that, for all n > r , one has xn D x.

Proposition 6.7. LetM be a residually p-finite monoid. A sequence xn of elements ofM

converges to x if and only if, for every monoid morphism ' fromN to a finite pro-p group,

the sequence '.xn/ is ultimately equal to '.x/.

In particular, one gets the following useful consequence.

Proposition 6.8. Let M be a residually p-finite monoid. Then for all x 2 M ,

lim
n!1

xp
n

D 1:
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Proof. According to Proposition 6.7, it suffices to prove that, for each monoid morphism
' from M to a finite p-group G, the sequence .'.x//p

n
tends to '.1/, that is, to 1. Since

G is a finite p-group of order pk , jGj divides pn for all n > k. It follows by Lagrange’s
theorem that .'i .x//jGj D 1 and hence .'i .x//p

n
D 1 for all n > jGj, which proves the

result.

Let us mention a last property, related to function spaces. Let S be a set and let M be
a residually p-finite monoid. Let F .S;M/ denote the set of mappings from S to M . For
each monoid morphism ' fromM to a finite pro-p group, let

V' D ¹.f; g/ j f; g 2 F .S;M/ and ' ı f D ' ı gº:

The sets V' form the base of a uniformity on the space F .S;M/, called the uniformity

of uniform convergence. For a finite p-group G, one can take ' to be the identity and
V' is the diagonal of F .S; G/ � F .S; G/. Thus in this case, the uniformity of uniform
convergence on F .S;G/ is the discrete one.

Let us recall a classic result; see for instance [2, Chap. X, Remark 3, p. 283].

Proposition 6.9. If S is a uniform space, then the set of uniformly continuous functions

from S to M is closed in F .S; M/. In particular, the uniform limit of a sequence of

uniform functions is uniformly continuous.

The following result is a special case of [2, Chap. X, Proposition 4, p. 278].

Proposition 6.10. The uniformity of uniform convergence on F .S;M/ is the initial uni-

formity with respect to the mappings f ! ' ı f from F .S;M/ to F .S; G/, for every

monoid morphism ' from M onto a finite p-group G.

Now, since the uniformity of uniform convergence on F .S; G/ is discrete, one gets
the following corollary, which will be used in Section 8.

Corollary 6.11. Let S be a set and let G be a residually p-finite group.

(1) A sequence of functions .fnW S ! G/n>0 converges uniformly to a function

f WS !G if and only if, for each group morphism fromG onto a finitep-groupH ,

the sequence ' ı fn is ultimately equal to ' ı f .

(2) A family of functions .fuW S ! G/u2A� converges uniformly to the function

f WS !G when juj tends to infinity if and only if, for each group morphism fromG

onto a finite p-groupH , there existsN such that if juj > N , then ' ı fu D ' ı f .

6.4. The metric dp

Let M be a residually p-finite monoid. One can define a metric dp on M as follows. Set,
for all u; v 2 M ,

rp.u; v/ D max
®

n 2 N [ ¹1º j no p-group of order 6 pn separates u and v
¯

:
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Then, for all u; v in M , the following relations hold:

(1) rp.u; v/ D rp.v; u/,

(2) rp.u;w/ > max
®

rp.u; v/; rp.v; w/
¯

.

Finally, we put
dp.u; v/ D p�rp.u;v/

with the convention p�1 D 0. Then dp is a metric and even an ultrametric.
For a residually p-finite group H , there is a more convenient way to define dp. For

each g 2 H , let vp.g/ denote the largest n such that g belongs to the kernel of every
morphism from H to a p-group of order pn. Note that vp.g/ is always finite, except for
g D 1, in which case it is infinite.

The pro-p norm of g is jgjp D p�vp.g/, with the usual convention p�1 D 0. Note
that if x; y 2 H , then dp.x; y/ D jx�1y jp.

The condition dp.x; y/ 6 p�k means that x�1y is in the kernel of each group mor-
phism from G into a p-group of cardinality at most pk . We leave to the reader to verify
that if G D Z, one recovers the usual p-adic valuation, norm and metric.

Another useful example occurs when G is a finite p-group. Recall that the discrete

metric on a set E is the metric d defined, for all x; y 2 E by

d.x; y/ D

´

1 if x ¤ y;

0 if x D y:

In this case, the double inequality dp.x; y/ 6 d.x;y/ 6 jGjdp.x; y/ shows that the pro-p
metric is uniformly equivalent to the discrete metric.

The study of the connection between dp and the pro-p uniformity brings in some
surprises. On one hand, [14, Proposition 3.1] shows that the pro-p uniformity on M is
metrizable if and only if, for each finite p-group G, there are only countably many mor-
phisms from M onto G. On the other hand, [14, Proposition 3.2]3 shows that the pro-p
uniformity on M can be defined by dp if and only if, for each finite p-group G, there are
only finitely many morphisms from M onto G.

7. Free monoids and free groups

7.1. Arbitrary alphabets

We already mentioned that every free group and every free monoid is residually p-finite.
We now identify A� to a subset of F.A/.

3The definition of dp given in [14] is actually slightly different, but yields a uniformly equivalent
metric.
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Proposition 7.1. LetA be a set. The pro-p uniformity onA� is the restriction of the pro-p

uniformity on F.A/. Furthermore, A� is dense in F.A/.

Proof. The proof is modeled on that of [16, Proposition 7]. Let G be a finite p-group and
let 'WF.A/ ! G be a group morphism. Then the restriction 'jA� of ' to A� is a monoid
morphism and the equality

U' \ .A� �A�/ D U'jA�

shows that the restriction to A� of the pro-p uniformity of F.A/ is a subset of the pro-p
uniformity ofA�. To prove the opposite inclusion, it suffices to observe that every monoid
morphism  WA� ! G extends uniquely to a group morphism x WF.A/ ! G for which

U x \ .A� � A�/ D U x jA�
:

Let H be the closure of A� in F.A/. Since the closure of a submonoid of a topological
monoid is a monoid, H is a submonoid of F.A/. Furthermore, Proposition 6.8 implies
that for all x 2 H , limn!1 xp

n�1 D x�1. Since H is closed, it follows that x�1 2 H .
Thus, H is a subgroup of F.A/ containing A, and hence it is equal to F.A/. Thus, A� is
dense in F.A/.

Proposition 7.2. Let G be a residually p-finite group. If f WA� ! G is uniformly contin-

uous, then so is �wf for every word w 2 A�.

Proof. By induction and by (3.8), it is enough to prove the result for w D a, for some
letter a 2 A. In this case, �af WA� ! G is the composition of the following functions:

A� ! A� � A�; A� � A� ! A� �A�; A� �A� ! G �G;

u 7! .u; u/; .u; v/ 7! .u; av/; .u; v/ 7! .f .u/; f .v//;

G �G ! G �G; G �G ! G;

.g; h/ 7! .g�1; h/; .g; h/ 7! gh

as shown by the diagram

u 7! .u; u/ 7! .u; au/ 7! .f .u/; f .au//

7! .f .u/�1; f .au// 7! f .u/�1f .au/ D �af .u/:

Proposition 6.3 shows that the product on A� (respectively on G) is uniformly con-
tinuous. It follows that each of these functions is uniformly continuous and so is their
composition.

7.2. Finite alphabets, a combinatorial approach

We will only retain the following consequence of the results stated at the end of Sec-
tion 6.4.
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Proposition 7.3. For an alphabetA, the following conditions are equivalent:

(1) A is finite,

(2) the pro-p uniformity on A� is defined by dp,

(3) the pro-p uniformity on F.A/ is defined by dp.

When A is finite, the metric dp can be replaced by a uniformly equivalent metric
defined in a purely combinatorial way. Let us define a metric d 0

p by setting, for all words
u; v 2 A�,

r 0
p.u; v/ D max

²

n j for all x 2 An;

 

u

x

!

�

 

v

x

!

mod p

³

;

d 0
p.u; v/ D p�r 0

p.u;v/:

It is shown in [9] that dp and d 0
p define the same uniformity. Consequently, one has the

following result.

Proposition 7.4. Let A and B be two finite alphabets. A function f WA� ! B� is uni-

formly continuous if and only if, for all n > 0, there exists an N > 0 such that, if
�

u
x

�

�
�

v
x

�

mod p for all words x of A� of length 6 N , then
�

f.u/
z

�

�
�

f.v/
z

�

mod p for all words

z of B� length 6 n.

Let us illustrate this combinatorial approach by proving that, whenA is finite, the trun-
cated noncommutative Magnus transformations introduced in Section 4.3 are uniformly
continuous. The proof relies on a combinatorial identity of independent interest, formula
(7.1) below.

We rely on the notation and results introduced at the end of Section 3.1. In particular,
recall that the number of occurrences of u as a subword of w, denoted by

�

w
u

�

, is also the
number of subsets J of Œjwj� such that wŒJ � D u.

Given k words x1; : : : ; xk in A�, let E.x1; : : : ; xk/ denote the set of all .k C 1/-tuples
.x; I1; : : : ; Ik/ such that

(T1) x is a word in A� such that jxj 6 jx1j C � � � C jxkj;

(T2) .I1 < � � � < Ik/ is a chain of subsets of Œjxj� whose union is Œjxj�;

(T3) xŒIj � D xj for 1 6 j 6 k.

Remark. The reader may compare this definition with the definition of the infiltration

product as given in [17, p. 134–135] or in [7, Chap. 6, Section 3]: the infiltration product
of k words x1; : : : ; xk is the sum of all x, the summation being over the setE.x1; : : : ; xk/,
except that the condition I1 < � � � < Ik is omitted.

Proposition 7.5. For all words w; x1; : : : ; xk in A�, one has

 

�.w/

x1 C � � � C xk

!

D
X

.x;I1;:::;Ik/
2E.x1;:::;xk/

 

w

x

!

: (7.1)
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An example of such a relation is given, for distinct letters a; b; c, by
 

�.w/

ac C bc

!

D

 

w

acbc

!

C

 

w

abcc

!

C

 

w

bacc

!

C

 

w

abc

!

:

We need in the proof the operation of standardization. Let J be the union of a k-chain
.J1 < � � � < Jk/ of finite subsets of P and let � be the unique increasing bijection from J

to ŒjJ j�. The standardization of .J1 < � � � < Jk/ is the k-chain

st.J1 < � � � < Jk/ D .�.J1/ < � � � < �.Jk//:

For example, if J D ¹1; 2; 4; 7º, then ŒjJ j� D ¹1; 2; 3; 4º, �.1/ D 1, �.2/ D 2, �.4/ D 3,
�.7/ D 4 and hence st.¹1; 7º; ¹2; 4; 7º/ D .¹1; 4º; ¹2; 3; 4º/. We let the reader verify that
the sequence .�.J1/; : : : ; �.Jk// is indeed a chain, that is, increasing for <, and that the
following properties hold:

(P1) j�.Jj /j D jJj j for 1 6 j 6 k,

(P2) if w is a word such that all the sets Jj are subsets of Œjwj�, then

wŒJj � D .wŒJ �/Œ�.Jj /�:

For instance, as a continuation of the previous example, letw D a1 � � �a7, J D ¹1; 2; 4; 7º,
J1 D ¹1; 7º and J2 D ¹2; 4; 7º. Then �.J1/ D ¹1; 4º and �.J2/ D ¹2; 3; 4º. Setting
u D wŒJ � D a1a2a4a7, (P2) states that wŒ¹1; 7º� D uŒ¹1; 4º� D a1a7 and wŒ¹2; 4; 7º� D

uŒ¹2; 3; 4º� D a2a4a7.
Finally, note that the chain .J1 < � � � < Jk/ may be recovered from J and the stan-

dardization st.J1 < � � � < Jk/ using the inverse of the bijection � .

Proof. Proposition 3.1 implies that the left-hand side of (7.1) is equal to jLj, where L is
the set of k-chains .J1 < � � � < Jk/ of Œjwj� such that wŒJj � D xj for 1 6 j 6 k. Sim-
ilarly, the right-hand side of (7.1) is equal to jRj, where R is the set of .k C 2/-tuples
.x; I1; : : : ; Ik; J / such that .x; I1; : : : ; Ik/ 2 E.x1; : : : ; xk/, J � Œjwj� andwŒJ �D x. The
rest of the proof consists of finding a bijection from L to R.

Consider the function hwhich associates to a k-chain .J1 < � � �<Jk/ ofL the .kC 2/-
tuple .x; I1; : : : ; Ik; J / of R defined by

J D J1 [ � � � [ Jk ; x D wŒJ � and .I1 < � � � < Ik/ D st.J1 < � � � < Jk/:

We claim that h is well defined and is a bijection from L to R.
Setting h.J1; : : : ; Jk/ D .x; I1; : : : ; Ik; J /, one gets jIj j D jJj j D jwŒJj �j D jxj j and

by (P2), .wŒJ �/ŒIj � D wŒJj �. It follows that (T3) holds, since, according to the definition
of L, wŒJj � D xj . Furthermore, one has

jxj D jJ j D jJ1 [ � � � [ Jk j 6 jJ1j C � � � C jJkj D jx1j C � � � C jxkj

so that (T1) is also satisfied. Moreover, (T2) is a consequence of the definition of standard-
ization. This shows that h is well defined. It remains to prove that it is bijective.
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Suppose that h.J1; : : : ;Jk/D .x;I1; : : : ; Ik ;J /. Since J is known, the standardization
may be reversed, and hence J1; : : : ; Jk are known. Thus, h is injective.

To prove the surjectivity of h, consider a .k C 2/-tuple .x; I1; : : : ; Ik ; J / of R. As
previously observed, the standardization may be reversed since J is known. It follows
from (T2) and from the definition of L that jJ j D jxj D jI1 [ � � � [ Ikj. Thus, we may
find a chain .J1 < � � � < Jk/ whose standardization is .I1 < � � � < Ik/ and such that
J D J1 [ � � � [ Jk . Then, for 1 6 j 6 k,

wŒJj � D .wŒJ �/ŒIj � D xŒIj � D xj ;

so that .I1; : : : ; Ik/ belongs to L. Moreover, J is the union of the Jj by construction and
x D wŒJ � since .x; I1; : : : ; Ik ; J / 2 R. Therefore h.J1; : : : ; Jk/ D .x; I1; : : : ; Ik ; J /,
which proves that h is surjective.

Proposition 7.6. Let A be a finite alphabet. Then, for each r > 0, the function �r WA
� !

C �
r is uniformly continuous.

Proof. First, recall that Cr is the set of words of A� of length at most r . Since A is finite,
then so is Cr . We claim that the condition

 

u

x

!

�

 

v

x

!

mod p for all words x of A� of length 6 rn (7.2)

implies
 

�r .u/

z

!

�

 

�r .v/

z

!

mod p for all words z of C �
r of length 6 n. (7.3)

Let z D x1 C � � � C xk , with k 6 n. By definition of �r , one has
 

�r .u/

z

!

D

 

�r .v/

z

!

D 0 if the length of one of the xi ’s is larger than r:

Suppose now that, for 16 i 6 k, jxi j 6 r . If .x; I1; : : : ; Ik/ 2E.x1; : : : ; xk/, then one has
jxj 6 jx1j C � � � C jxk j 6 kr 6 nr . It follows by (7.2) that

�

u
x

�

�
�

v
x

�

mod p. Applying
(7.1), one gets

 

�r .u/

z

!

D
X

.x;I1;:::;Ik/
2E.x1;:::;xk/

 

u

x

!

�
X

.x;I1;:::;Ik/
2E.x1;:::;xk/

 

v

x

!

D

 

�r .v/

z

!

mod p:

It now follows from Proposition 7.4 that �r is uniformly continuous.
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7.3. Sequential product of uniformly continuous functions

Our goal is to prove Proposition 7.9, the last result of this section. The difficulty is con-
centrated on an apparently simpler case, which we treat separately.

Proposition 7.7. Let A be a finite alphabet and let G be a p-finite group. Any sequential

product of uniformly continuous functions from A� to G is uniformly continuous.

Proof. Let g 2 G, let .fa/a2A be a family of uniformly continuous functions from A� to
G and let f D Seq.g; .fa/a2A/. According to Proposition 6.6, f is uniformly continuous
if and only if, for every morphism ' from G to a finite p-group H , there exist a finite
p-groupR and a monoid morphism �WA� ! R such that ' ı f factors through �.

Since each fa is uniformly continuous, Proposition 6.6 shows that for each a 2 A,
there exists by a finite p-groupKa, a monoid morphism aWA

� !Ka and a map �aWKa !

H such that ' ıfa D �a ı a. Let  be the monoid morphism fromA� to
Q

a2AKa defined
by .u/ D .a.u//a2A and let K be the image of  .

Since A is finite, K is a finite p-group. For each a 2 A, let �aWK ! Ka denote the
natural projection, so that �a ı  D a. Setting �a D �a ı �a, one gets

�a ı  D �a ı �a ı  D �a ı a D ' ı fa: (7.4)

The situation is summarized in the following commutative diagram:

A� K

G

Ka

H

fa '



a
�a

�a

�a

LetH ıK be the wreath product ofH byK . Recall thatH ıK is the group with support
HK �K and product defined, for all .f0; u0/; .f1; u1/ 2 HK �K , by

.f0; u0/.f1; u1/ D .f; u0u1/ where, for all k 2 K , f .k/ D f0.k/f1.ku0/.

Let �WA ! H ıK be the map defined, for each a 2 A, by

�.a/ D .�a; .a//: (7.5)

Then � extends uniquely to a monoid morphism from A� toH ıK , also denoted �. Since
H and K are finite p-groups, then so is H ıK . Now, the image F of � is a submonoid,
and hence a subgroup4, of H ıK . Thus F is also a finite p-group. We claim that ' ı f

factors through �. The proof relies on the following lemma:

4Since for each x 2 M , x�1 D xjF j�1.
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Lemma 7.8. Let u be a word of A� and let �.u/ D .�u; .u//. Then �u is a map from K

to H such that '.f .u// D '.g/�u.1/.

Proof. Let u D a1 � � � an. According to the definition of the wreath product, and since
.1/ D 1, �uWK ! H is given by

�u.k/ D �a1.k.1//�a2.k.a1// � � ��an.k.a1 � � �an�1//:

It follows that

�u.1/ D �a1..1//�a2..a1// � � ��an..a1 � � �an�1//:

Now, since by (7.4), �a ı  D ' ı fa for each a 2 A, one gets

�u.1/ D .' ı fa1/.1/ � � � .' ı fan/.a1 � � �an�1/

D '
�

fa1.1/ � � �fan.a1 � � �an�1/
�

:

Applying the definition of the sequential product, one obtains

f .u/ D gfa1.1/ � � �fan.a1 � � �an�1/

whence

'.f .u// D '
�

gfa1.1/ � � �fan.a1 � � �an�1/
�

D '.g/�u.1/:

We come back to the proof of Proposition 7.7 by proving the claim. Let u and v be
words such that �.u/D�.v/. In particular, since �.u/D.�u; .u//, one has �u.1/D�v.1/,
whence '.g/�u.1/ D '.g/�v.1/. It follows by Lemma 7.8 that ' ı f .u/ D ' ı f .v/.
Thus, �.u/ D �.v/ implies ' ı f .u/ D ' ı f .v/ and thus ' ı f factors through �. The
proposition follows.

A� G H

F

�

f '

Proposition 7.9. Let A be a finite alphabet and let G be a residually p-finite group. Any

sequential product of uniformly continuous functions from A� to G is uniformly continu-

ous.

Proof. Let g 2 G, let .fa/a2A be a family of uniformly continuous functions from A�

to G and let f D Seq.g; .fa/a2A/. According to Proposition 6.5, it suffices to prove
that, for every morphism ' from G to a finite p-groupH , ' ı f is uniformly continuous.
Now, Proposition 4.9 shows that ' ı Seq.g; .fa/a2A/D Seq.'.g/; .' ı fa/a2A/. Thus, by
Proposition 7.7, it suffices to prove that each function ' ı fa is uniformly continuous. But
this is clear, since fa is uniformly continuous by hypothesis and ' is uniformly continuous
by Proposition 6.4.
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7.4. Uniform continuity and Newton polynomial functions

The aim of this section is to prove the following theorem.

Theorem 7.10. Let A be a finite alphabet and let G be a finite p-group. A function

f WA� ! G is uniformly continuous if and only if it is a Newton polynomial function.

Our proof of Theorem 7.10 is splitted into two halves: one direction is addressed by
Proposition 7.11 and the opposite direction by Proposition 7.12.

Proposition 7.11. Let A be a finite alphabet and let G be a residually p-finite group.

Every Newton polynomial function f WA� ! G is uniformly continuous.

Proof. We prove the result by induction on the degree d of f . If d 6 0, then f is a
constant function by Proposition 4.1 and hence f is uniformly continuous. Otherwise,
Proposition 4.5 shows that f is a sequential product of a family .fa/a2A of Newton poly-
nomial functions of degree 6 d � 1. By the induction hypothesis, each fa is uniformly
continuous and hence f is uniformly continuous by Proposition 7.9.

Another possible proof consists in using Corollary 4.15, which states that if f is a
Newton polynomial function of degree at most d , then f D ı�

f
ı�d . Now�d is uniformly

continuous by Proposition 7.6 and the morphism ı�
f

WC �
d

!F.B/ is uniformly continuous
by Proposition 6.4. Consequently, f is uniformly continuous.

Proposition 7.12. Let A be a finite alphabet and let G be a finite p-group. If a function

f WA� ! G is uniformly continuous, then f is a Newton polynomial function.

We need several facts about algebras over a field F (below we use the p-element
field Fp). First, if G is a monoid, let F ŒG� denote the vector space over F with basis G.
It is an F-algebra, called the monoid algebra of G over F . If G is a group, then F ŒG�

is also called the group algebra of G over F . In the particular case where G D A�, it is
rather denoted FhAi, the algebra of noncommutative polynomials over F . Each monoid
morphism from a monoid G1 into a monoid G2 extends uniquely, by linearity, to an F-
algebra morphism from F ŒG1� into F ŒG2�. Similarly, each function from G to F extends
uniquely, by linearity, to a linear form on F ŒG�.

The vector space of linear forms on an F-algebra R, that is, the dual of R, is a left
R-module: the action is defined, for all elements x; y in R and each linear form f on R,
by .x � f /.y/ D f .yx/. It is indeed a left action: first, 1 � f D f and

.x1 � .x2 � f //.y/ D .x2 � f /.yx1/ D f .yx1x2/ D ..x1x2/ � f /.y/;

so that x1 � .x2 � f / D .x1x2/ � f .

Lemma 7.13. Let f1; f2 be linear forms on the F-algebras R1; R2 respectively, and let

�WR1 ! R2 be an algebra morphism such that f2 ı � D f1. Then for each x in R1, one

has x � f1 D .�.x/ � f2/ ı �.
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Proof. For every y in R1, one has

.x � f1/.y/ D f1.yx/ D .f2 ı �/.yx/ D f2
�

�.y/�.x/
�

D
�

�.x/ � f2
��

�.y/
�

D
�

.�.x/ � f2/ ı �
�

.y/

and the lemma follows.

Proof of Proposition 7.12. Let pr be the order of G. We prove the result by induction
on r .

For r D 1, G is cyclic of order p and we switch to additive notation. Thus, we have
to show that �wf D 0 for almost all w. As G D Z=pZ is the additive group of the field
Fp, we may consider f as a function from A� to Fp. Since f is uniformly continuous,
there exist by Proposition 6.6 a finite p-group H , a monoid morphism �WA� ! H and a
function �WH ! Fp such that f D � ı �, as shown in the left diagram in Figure 2.

We extend by linearity all these functions, as explained previously, and denote these
extensions by the same letters. We obtain the diagram on the right-hand side of Figure 2.

A� Fp

H

f

� �

FphAi Fp

FpŒH �

f

� �

Figure 2. Two diagrams.

Now, � is a morphism of Fp-algebra and f , as well as �, are Fp-linear forms. With
these notations, one has�af D .a� 1/ � f jA� , where � denotes the left action of FphAi on
its dual. Indeed, for each wordw inA�, one has on one hand�af .w/D �f .w/C f .wa/

and on the other hand

..a � 1/ � f /.w/ D f .w.a � 1// D f .wa �w/ D f .wa/ � f .w/: (7.6)

Let w D a1 � � � an, with a1; : : : ; an 2 A. Applying Equation (3.8) and the definition of a
left action, one gets

�wf D �a1���anf D
�

.a1 � 1/ � � � .an � 1/
�

� f jA� : (7.7)

Since f D � ı � and �..a1 � 1/ � � � .an � 1// D .�.a1/ � 1/ � � � .�.an/ � 1/, Lemma 7.13
yields

�

.a1 � 1/ � � � .an � 1/
�

� f D
�

�

.�.a1/ � 1/ � � � .�.an/ � 1/
�

� �
�

ı �: (7.8)

Let

IH D

²

X

g2H

agg j
X

g2H

ag D 0

³
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be the augmentation ideal of FpŒH �. It follows from [6, Proposition VIII.10.4] that if
n > jH j, then I nH D 0. Since every element �.ai / � 1 belongs to IH , one gets

�

�.a1/ � 1
�

� � �
�

�.an/ � 1
�

2 I nH

and hence .�.a1/ � 1/ � � � .�.an/ � 1/ D 0. Formulas (7.7) and (7.8) now show that if
n > jH j, then �wf D 0, which settles the case r D 1.

Suppose now that r > 1 and let f WA� ! G be a uniformly continuous function. By
a standard result of group theory [19, Theorem 6.5, p. 116], G has a normal subgroup
C of order p. Now the quotient map qWG ! G=C is uniformly continuous and so is
q ı f WA� ! G=C . Since jG=C j D pr�1, the induction hypothesis can be applied: there
exists n such that �v.q ı f / D 1 for every word v in A� of length > n.

Since�v.q ı f /D q ı .�vf / by Proposition 3.2, one has, for jvj > n, q ı .�vf /D 1

and hence �vf maps A� into C . Note that �vf is uniformly continuous by Proposi-
tion 7.2. Applying the first part of the proof to C , we get the following conclusion: for
each v of length > n, there exists nv such that for each word u of length at least nv ,
one has �u�vf D 1. Let N be the maximum of all nv taken over the finitely many v
of length n. Then for each word w of length at least N C n, we may write w D uv, with
jvj D n and juj >N > nv . Then�wf D�u�vf D 1 and thus f is a Newton polynomial
function.

Note that Proposition 7.11 holds for each residually p-finite group. One may wonder
whether Proposition 7.12 can also be extended to this case. As shown Example 8.1 below,
this is not the case.

8. Main result

Let us rephrase Theorem 1.2 of the introduction in a slightly more general setting, which
is the main result of this paper.

Theorem 8.1. Let A be a finite alphabet and let f be a function from A� to a residually

p-finite group G. The following conditions are equivalent:

(1) f is uniformly continuous for the pro-p uniformity,

(2) the functions�wf , where w 2 A�, tend uniformly to 1 when jwj tends to 1,

(3) the elements ıwf , where w 2 A�, tend to 1 when jwj tends to 1,

(4) f is the uniform limit of the sequence .fr /r>0 of its Newton polynomial functions.

Proof. (1) ) (2). Let f WA� ! G be a uniformly continuous function and let ' be a
group morphism from G onto a finite p-group H . Since ' is uniformly continuous, so is
' ı f . It follows by Proposition 7.12 that ' ı f is a Newton polynomial function and thus
�w.' ı f /D 1 for almost all w 2 A�. Therefore, ' ı .�wf /D 1 by Proposition 3.2 and
thus (2) holds by Corollary 6.11.
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(2) ) (3) is clear, since ıwf D �wf .1/.
(3) ) (4). First, Proposition 4.14 states that the functions fr are Newton polynomial

functions. Let ' be a group morphism from G onto a finite p-group H . By hypothesis
there exists N such that for each word u of length > N , ıuf 2 Ker.'/. We show that for
every r > N , one has ' ı fr D ' ı f , and then deduce (4) from Corollary 6.11.

Let w 2 A�. If jwj 6 N , then �.w/ D �r .w/, so that f .w/ D fr .w/ by Theorem 3.6
and by the definition of fr , hence ' ı fr .w/ D ' ı f .w/.

If jwj > N , then �N .w/ D v1 C : : : C vk for some vi 2 CN . Moreover, �r.w/ D

x0 C v1 C x1 C : : : C vk C xk , where each xi is a sum of words u of length > N . For
each such word u, one has ı�

f
.u/ D ıuf 2 Ker.'/ and thus ı�

f
.xi / 2 Ker.'/. Similarly,

�.w/ D y0 C v1 C y1 C : : :C vn C yn, where ı�
f
.yi / 2 Ker'. It follows that

' ı fr .w/ D ' ı ı�
f .�r .w// D ' ı ı�

f .�N .w//

D ' ı ı�
f .�.w// D ' ı f .w/

and thus ' ı fr D ' ı f .
(4) ) (1) follows from Proposition 6.9, since Newton polynomial functions are uni-

formly continuous by Proposition 7.11.

Example 8.1. We come back once again to the function f considered in Examples 2.1,
3.5 and 3.8, except that we now see f as a function from ¹0; 1; 2º� to the free group on
¹0; 1; 2º.

Proposition 3.4 shows that f is not a Newton polynomial function, since ı1nf ¤ 1

for all n. However, f is uniformly continuous for d2. One way to see this is to use the
implication (3) ) (1) of Theorem 8.1. Indeed, one has

ı0f D 0; ı1f D 0; ı2f D 1; ı1n0f D .0�11/2
n�1.�1/n�1

;

ı1n1f D .0�12/2
n�1.�1/n�1

; ı1n2f D .1�12/2
n�1.�1/n�1

;

and ıuf D " in all other cases. It now follows from Proposition 6.8 that ıwf tends to "
when jwj tends to 1.

Another way to prove this would be to adapt the results of [18]. These results are stated
for groups instead of p-groups but can be readily adapted to this latter case. They show
that if the transition monoid of the minimal sequential transducer realizing a function is a
p-group, then this function is uniformly continuous for the metric dp. In our case, p D 2

and the transition monoid of the transducer of f is the cyclic group of order 2. It follows
that f is uniformly continuous for the metric d2.

Example 8.2. Proposition 7.6 shows that, for each r > 0, �r is uniformly continuous.
However, the function � is not uniformly continuous. Indeed, consider a function f from
A� to a residually p-finite group G. Newton’s Forward Difference Formula shows that
f D ı�

f
ı �. Now, ı�

f
is a monoid morphism, and hence is uniformly continuous by
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Proposition 6.4. Thus, if � was uniformly continuous, then any function f would also
be uniformly continuous.

Another way to prove that� is not uniformly continuous is to use Theorem 8.1. Indeed,
we have seen in Example 3.9 that ıw� D w for all w 2 A�. Since these elements do not
tend to 1 when jwj tends to infinity, � is not uniformly continuous.

9. Applications

We conclude this article by giving two consequences of our results. We first consider
an interpolation problem in Section 9.1. Section 9.2 is devoted to applications to formal
language theory, a topic that originally motivated the authors to study pro-p uniformities
[9, 11, 12, 16, 18].

9.1. An interpolation problem

It follows from Theorem 1.1 that for each sequence .cn/n>0 of integers, there exists a
unique function f D N ! Z such that ınf D cn. Moreover, this function is uniformly
continuous for dp if and only if limn!1 jcnjp D 0.

Similarly, ifA andB are finite alphabets, for each function cWA� ! F.B/, there exists
a unique function f WA� ! F.B/ such that, for all u 2 A�, ıuf D cu. This function is
defined by f .u/ D c.�.u// for all u 2 A�. Moreover, it follows from Theorem 8.1 that
this function is uniformly continuous for dp if and only if jc.u/jp tends to 1 when jwj

tends to 1.
Mahler’s original paper [8] concerned functions of a p-adic variable. His results make

it possible, to solve the following interpolation problem: is it possible to extend a function
from N to Z into a continuous function from Zp to Zp? In our noncommutative setting,
we replace N byA�, whereA is a finite alphabet. In this case, the completion ofA� for the
pro-p uniformity is the free pro-p group Fp.A/ on A and the problem can be formulated
as follows.

Interpolation problem. Given a function f WA� ! F.B/, does there exist a continuous

function Fp.A/ ! Fp.B/ which extends f ?

Theorem 8.1 gives the answer to this question.

Proposition 9.1. Let f WA� ! F.B/ be a function. Then f extends to a continuous func-

tion from Fp.A/ to Fp.B/ if and only if the elements ıwf , where w 2 A�, tend to 1 when

jwj tends to 1. In this case, this extension is unique.

Proof. Suppose that f admits a continuous extension yf from Fp.A/ to Fp.B/. Since
Fp.A/ and Fp.B/ are not only complete, but also compact, yf is uniformly continuous. It
follows that f is uniformly continuous, and by Theorem 8.1, the elements ıwf tend to 1
when jwj tends to 1.
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Suppose now that the elements ıwf tend to 1 when jwj tends to 1. By Theorem 8.1,
f is uniformly continuous and since the embedding map from F.B/ into Fp.B/ is also
uniformly continuous, f can be seen as a uniformly continuous map from A� to Fp.B/.
Since A� is dense in Fp.A/ and since Fp.B/ is a complete uniform space, f admits a
unique uniformly continuous extension from Fp.A/ to Fp.B/.

9.2. Formal languages

We come back in this section to the problem that originally motivated this research. Let
us first recall some definitions.

Let A be a finite alphabet. A subset of A� is usually called a language, as it is a
set of words. A language L of A� is recognized by a monoid morphism 'WA� ! M if
there exists a subset P of M such that L D '�1.P /. By extension, one also says that M
recognizes L if there exists a monoid morphism 'WA� ! M that recognizes L.

A language is recognizable or regular if it can be recognized by a finite monoid. It is a
p-group language if it can be recognized by a finite p-group. It is not difficult to show that
regular languages (respectively p-group languages) are closed under Boolean operations,
which comprise finite intersection, finite union and complement. Let Gp denote the class
of p-group languages.

Examples of p-group languages include, for each word v and 06 r < p, the languages

L.v; r/ D
°

w 2 A� j

 

w

v

!

� r mod p
±

;

first introduced by Eilenberg in [6, p. 239]. It is convenient to call these languages binomial

languages. Eilenberg proved the following result

Theorem 9.2 (Eilenberg). A language is a p-group language if and only if it is a Boolean

combination of binomial languages.

A function f from A� to B� is regularity-preserving if, for each regular language L
of B�, the language f �1.L/ is also regular5. More generally, if C is a class of regular
languages, f is C -preserving if, for each language L of C , the language f �1.L/ is also
in C . The problem mentioned at the beginning of this section is as follows:

Synthesis problem. Describe the class of C -preserving functions.

For instance, although several families of regularity-preserving functions have been
identified, the synthesis problem for these functions is still a major open problem. In a
series of papers [12–14], Silva and the first author addressed this problem when C is a
variety of languages, in the sense of Eilenberg [6]. In particular, one has:

5It would probably be more appropriate to say that f �1 is regularity-preserving, but we preferred to
stick to an already well-established terminology.
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Proposition 9.3. [15, Proposition 1.3 and Theorem 1.4] A function is Gp-preserving if

and only if it is uniformly continuous for dp.

In the case of sequential and rational functions, C -preserving functions were inves-
tigated by Schützenberger and the second author [18]. Another characterization of Gp-
functions using profinite equations was obtained in [4, Lemma 4], but it only holds for
regular-preserving functions and the next example shows that a Gp-preserving function is
not necessarily regular-preserving.

Example 9.1. Let f W N ! N be the function defined as follows: f .0/ D 0 and if n > 0,
the binary representation of f .n/ is obtained from that of n by replacing the rightmost
bit 1 by 0. For instance, since the binary representation of 26 is 11010, the binary repre-
sentation of f .26/ is 11000, and hence f .26/ D 24. We let the reader verify that, for all
n;m 2 N, d2.f .n/; f .m// 6 d2.n; m/ and hence f is uniformly continuous. It follows
that f is G2-preserving. However, it is not regularity-preserving: ¹0º is a regular language,
but f �1.0/ D ¹0º [ ¹2n j n > 0º is not regular.

Our results are of a different nature, since they concern all Gp-preserving functions.
Indeed, Theorem 8.1 allows us to solve the synthesis problem for Gp in the following way:

Theorem 9.4. The class of Gp-preserving functions is the smallest set of functions con-

taining the constant functions and which is closed under taking sequential products and

uniform limits.

Proof. It follows from Proposition 9.3 that a function is Gp-preserving if and only if it
is uniformly continuous for dp. Therefore, it suffices to prove that the set of uniformly
continuous functions is equal to the smallest set S of functions containing the constant
functions and closed under taking sequential products and uniform limits.

Constant functions are uniformly continuous. Furthermore, Proposition 7.9 states that
every sequential product of uniformly continuous functions is uniformly continuous and
Proposition 6.9 shows that the uniform limit of a sequence of uniform functions is uni-
formly continuous. It follows that every function of S is uniformly continuous.

Let now f be a uniformly continuous function. By Theorem 8.1, f is the uniform limit
of the sequence of its Newton polynomial functions. Moreover, Corollary 4.6 shows that
the smallest set of functions containing the constant functions and closed under sequential
product is the set of Newton polynomial functions. It follows that f belongs to S .

There is a counterpart of Proposition 9.3 for regularity preserving functions: a function
is regularity preserving if and only if it is uniformly continuous for the profinite unifor-
mity, which is the initial uniformity with respect to all monoid morphisms from A� onto a
finite monoid. However, there is no known counterpart of Theorem 9.4 for these functions.
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A. Uniform spaces

Readers are referred to [3] for an introduction to uniform spaces.
Let X be a set. The subsets of X � X can be viewed as relations on X . In particular,

if U and V are subsets of X � X , we use the notation UV to denote the composition of
the two relations, that is, the set

UV D
®

.x; y/ 2 X �X j there exists z 2 X; .x; z/ 2 U and .z; y/ 2 V
¯

:

Given a relation U , the inverse relation of U is the relation

U�1 D
®

.x; y/ 2 X �X j .y; x/ 2 U
¯

:

A relation U is symmetrical if U�1 D U . Finally, if x 2 X and U � X � X , we write
U.x/ for the set ¹y 2 X j .x; y/ 2 U º.

A uniformity (or uniform structure) on a set X is a nonempty set U of subsets of
X �X satisfying the following properties:

(U1) if a subset U of X �X contains an element of U, then U 2 U,

(U2) the intersection of any two elements of U contains an element of U,

(U3) each element of U contains the diagonal of X �X ,

(U4) for each U 2 U, U�1 2 U,

(U5) for each U 2 U, there exists V 2 U such that V V � U .

If U is a uniformity on the set X , the elements of U are called entourages. Note that
X �X is always an entourage. The pair .X;U/ (or the set X if U is understood) is called
a uniform space.

For each x 2 X , let U.x/ D ¹U.x/ j U 2 Uº. There exists a unique topology on X ,
called the topology induced by U, for which U.x/ is the filter of neighborhoods of x for
each x 2 X . A uniform space .X;U/ is Hausdorff if the induced topology is Hausdorff.
This is equivalent to requiring that the intersection of all the entourages of U is equal to
the diagonal of X �X .

A base of a uniformity U is a subset B of U such that each element of U contains
an element of B. In particular, U consists of all the relations on X containing an element
of B. We say that U is generated by B. A set B of subsets of X � X is a base of some
uniformity if and only if it satisfies properties (U2), (U3), (U5) and (U6):

(U6) for each U 2 B, there exists U 0 2 B such that U 0 � U�1.

A subbase of a uniformity U is a subset B of U such that the finite intersections of
members of B form a base of U.

The product of two uniform spaces .X1;U1/ and .X2;U2/ is the uniform space
.X1 �X2;U/, where U is the uniformity generated by the base consisting of the en-
tourages of X1 �X2 of the form

®�

.x1; x2/; .y1; y2/
�

j .x1; y1/ 2 U1; .x2; y2/ 2 U2
¯

where U1 is an entourage of X1 and U2 is an entourage of X2.
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If .X;U/ and .Y; V/ are uniform spaces, a function f WX ! Y is said to be uni-

formly continuous if, for each entourage V of V , .f � f /�1.V / is an entourage of U, or,
equivalently, there exists an entourage U 2 U such that the condition .x; y/ 2 U implies
.f .x/; f .y// 2 V .

Let X be a set, .Xi ;Vi /i2I a family of uniform spaces, and for each i 2 I , a function
fi WX ! Xi . The initial uniformity on X with respect to the family .fi /i2I is the coars-
est uniformity V on X such that each fi is uniformly continuous. The sets of the form
.fi � fi /

�1.Vi /, where Vi is an entourage of Xi for some i 2 I , form a subbase of V .
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