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The strong homotopy structure of Poisson reduction

Chiara Esposito, Andreas Kraft, and Jonas Schnitzer

Abstract. In this paper, we propose a reduction scheme for multivector fields phrased in terms of
L1-morphisms. Using well-known geometric properties of the reduced manifolds, we perform a
Taylor expansion of multivector fields, which allows us to build up a suitable deformation retract
of differential graded Lie algebras (DGLAs). We first obtained an explicit formula for the L1-
projection and -inclusion of generic DGLA retracts. We then applied this formula to the deformation
retract that we constructed in the case of multivector fields on reduced manifolds. This allows us to
obtain the desired reduction L1-morphism. Finally, we perform a comparison with other reduction
procedures.

1. Introduction

This paper aims to propose a reduction scheme for multivector fields that is phrased in
terms of L1-morphisms and adapted to deformation quantization. Deformation quanti-
zation has been introduced in [1, 2] by Bayen, Flato, Fronsdal, Lichnerowicz, and Stern-
heimer and it relies on the idea that the quantization of a Poisson manifoldM is described
by a formal deformation of the commutative algebra of smooth complex-valued functions
C1.M/, a so-called star product. The existence and classification of star products on
Poisson manifolds has been provided by Kontsevich’s formality theorem [18], whereas
the invariant setting of Lie group actions has been treated by Dolgushev; see [10, 11]. In
the last years, many developments have taken place; see, e.g., [5,6,20]. More explicitly, the
formality provides an L1-quasi-isomorphism between the differential graded Lie algebra
(DGLA) of multivector fields and the multidifferential operators, resp., the invariant ver-
sions. One open question and our main motivation is to investigate the compatibility of
deformation quantization and phase space reduction in the Poisson setting.

In the classical setting, one considers here the Marsden–Weinstein reduction [22]. Sup-
pose that a Lie group G acts by Poisson diffeomorphisms on the Poisson manifold M and
that it allows an Ad�-equivariant momentum map J WM ! g� with 02 g� as regular value,
where g is the Lie algebra of G. Then C D J�1.¹0º/ is a closed embedded submanifold
of M and the reduced manifold Mred D C=G is again a Poisson manifold if the action on
C is proper and free. Reduction theory is very important and it is still a very active field of
research. Among the others, we mention the categorical reformulation performed in [9].
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In the setting of deformation quantization, a quantum reduction scheme has been intro-
duced in [4]; see also [16] for a slightly different formulation, which allows the study of
the compatibility between the reduction scheme and the properties of the star product, as
in [14]. One crucial ingredient are quantum momentum maps (see [32]), and pairs con-
sisting of star products with compatible quantum momentum maps are called equivariant
star products. For symplectic manifolds, these equivariant star products have recently been
classified and it has been shown that quantization commutes with reduction; see [27–29].
More precisely, equivariant star products on M are classified by certain elements in the
cohomology of the Cartan model for equivariant de Rham cohomology [15], and the char-
acteristic classes of the equivariant star product and the reduced star product are related
by pull-backs.

In the more general setting of Poisson manifolds, star products are classified by
Maurer–Cartan elements in the DGLA of multivector fields, i.e., by formal Poisson struc-
tures. Unfortunately, in this case there is no pull-back available and one has to use different
techniques. Motivated by the aim of reducing the formality, we want to describe the
reductions in terms of L1-morphisms. In particular, in this paper we construct such a
reduction for the classical side, i.e., for the equivariant multivector fields Tg.M/, a certain
DGLA whose Maurer–Cartan elements are invariant Poisson structures with equivari-
ant momentum maps. Assuming for simplicity that M D C � g�, which always holds
locally in suitable situations, we can perform a Taylor expansion around C , obtaining a
new DGLA TTay.C � g�/. On C � g�, we have the canonical momentum map J given
by the projection on g� and the canonical linear Poisson structure �KKS induced by the
action Lie algebroid. They give a new DGLA structure on TTay.C � g�/ with differential
Œ�KKS � J; � � and we show that this DGLA is quasi-isomorphic to the multivector fields
on Mred, as desired. One has an L1-quasi-isomorphism between these two DGLAs (see
Theorem 4.21):

Theorem. There exists an L1-quasi-isomorphism zTredWTTay.C � g�/! Tpoly.Mred/.

The morphism zTred is obtained by inverting a certain inclusion i of DGLAs. In order
to give a more explicit formula, we look at general deformation retracts: let .A; dA/ and
.B; dB/ be two DGLAs and assume that we have

.A; dA/ .B; dB/
i

p
h; (1.1)

where i and p are quasi-isomorphisms of cochain complexes with homotopy h, and where
p ı i D idA and h2 D h ı i D p ı h D 0. Using for a coalgebra morphism F WS.BŒ1�/!
S.AŒ1�/ the notation

L1;kC1.F / D Q
1
A;2 ı F

2
kC1 � F

1
k ıQ

k
B;kC1;

where Qk
A;kC1

and Qk
B;kC1

are the extensions of the Lie brackets to the symmetric alge-
bras, and extending h in an appropriate way to Hk on Sk.BŒ1�/, we prove in Proposi-
tions 3.2 and 3.3 the following:
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Proposition. Given a deformation retract as in (1.1),

(i) if i is a DGLA morphism, then P W S�.BŒ1�/ ! S�.AŒ1�/ with structure maps
P 11 Dp andP 1

kC1
DL1;kC1.P / ıHkC1 for k� 1 yields anL1-quasi-isomor-

phism that is quasi-inverse to i ;

(ii) if p is a DGLA morphism, then I W S�.AŒ1�/ ! S�.BŒ1�/ with structure maps
I 11 D i and I 1

k
D h ı L1;k.I / for k � 2 is an L1-quasi-isomorphism that is

quasi-inverse to p.

These explicit formulas allow us to give a more precise description of zTred and its L1-
quasi-inverse. Moreover, they allow us to globalize the result (compare Theorem 5.1):

Theorem. There exists a curved L1-morphism

TredW
�
Tg.M/; �;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; 0; Œ � ; � �

�
; (1.2)

where the curvature � D ei ˝ .ei /M is given by the fundamental vector fields of the G-
action.

We call Tred reduction L1-morphism and we extend the statements to the setting of
formal power series in „. After rescaling the involved curvatures and differentials appro-
priately, Tred gives, in particular, a way to associate formal Maurer–Cartan elements. In
Tg.M/ŒŒ„�� resp. TTay.C � g�/ŒŒ„�� with rescaled structures, formal Maurer–Cartan ele-
ments can be interpreted as formal Poisson structures �„ with formal momentum map
J„ D J C „J

0. Thus, we have the following properties:

• the Poisson bracket ¹ � ; � º„ induced by �„ is G-invariant;

• the fundamental vector fields are given by �M D ¹ � ; J„.�/º„ 2 �1.TM/;

• ¹J„.�/; J„.�/º„ D J„.Œ�; ��/.

Comparing the orders of „ directly shows that the lowest order is a well-defined Poisson
structure on M and that J is an equivariant momentum map with respect to it; moreover,
Tred maps such an object to a formal Poisson structure on Mred.

Note that there is also another reduction scheme for such formal Poisson structures
with formal momentum maps, obtained by adapting the Koszul part of the classical
Becchi–Rouet–Stora–Tyutin (BRST) reduction [19, 30] to the formal setting. This can
be done by using the homological perturbation lemma as in [8], and it corresponds to the
classical analogue of the reduction scheme for star products from [4,16]. Finally, we show
in Theorem 5.4 the following:

Theorem. The reduction of formal equivariant Poisson structures with formal momentum
maps via the reduction L1-morphism coincides with the reduction of formal Poisson
structures via the formal Koszul complex.

The paper is organized as follows: in Section 2, we recall the basic notions of (curved)
L1-algebras, L1-morphisms, and twists. In Section 3, we consider general deformation
retracts of DGLAs and prove the explicit formulas for the extensions of the inclusion resp.
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projection to L1-morphisms needed to describe zTred in Section 4. Here we also construct
the reduction scheme for the Taylor expansion, both in the classical and the formal setting.
Finally, in Section 5, we construct the global reduction L1-morphism and compare the
reduction via Tred with the classical Marsden–Weinstein reduction and with the reduction
of formal Poisson structures via the formal Koszul complex as explained in Appendix A.

2. Preliminaries

In this section, we recall the notions of (curved) L1-algebras, L1-morphisms, and their
twists by Maurer–Cartan elements to fix the notation. Proofs and further details can be
found in [10, 11, 13].

We denote by V � a graded vector space over a field K of characteristic 0 and define
the shifted vector space V Œk�� by

V Œk�` D V `Ck :

A degree C1 coderivation Q on the coaugmented counital conilpotent cocommutative
coalgebra Sc.L/ cofreely cogenerated by the graded vector space LŒ1�� over K is called
anL1-structure on the graded vector space L ifQ2D 0. The (universal) coalgebra Sc.L/
can be realized as the symmetrized deconcatenation coproduct on the space

L
n�0SnLŒ1�,

where Sn LŒ1� is the space of coinvariants for the usual (graded) action of Sn (the sym-
metric group in n letters) on ˝n.LŒ1�/; see, e.g., [13]. Any degree C1 coderivation Q on
Sc.L/ is uniquely determined by the components

QnWSn
�
LŒ1�

�
! LŒ2� (2.1)

through the formula

Q.
1 _ � � � _ 
n/

D

nX
kD0

X
�2Sh.k;n�k/

".�/Qk.
�.1/ _ � � � _ 
�.k// _ 
�.kC1/ _ � � � _ 
�.n/: (2.2)

Here Sh.k; n� k/ denotes that the set of .k; n� k/ shuffles in Sn, ".�/D ".�; 
1; : : : ; 
n/
is a sign given by the rule 
�.1/ _ � � � _ 
�.n/ D ".�/
1 _ � � � _ 
n and we use the conven-
tions that Sh.n; 0/ D Sh.0; n/ D ¹idº and that the empty product equals the unit. Note, in
particular, that we also consider a term Q0 and thus we are actually considering curved
L1-algebras (which will be convenient in the following). Sometimes, we also writeQk D
Q1
k

and following [7] we denote by Qi
n the component of Qi

nWS
nLŒ1�! Si LŒ2� of Q. It

is given by

Qi
n.x1 _ � � � _ xn/

D

X
�2Sh.nC1�i;i�1/

".�/Q1
nC1�i .x�.1/_ � � � _x�.nC1�i//_x�.nC2�i/_ � � � _x�.n/; (2.3)

where Q1
nC1�i are the usual structure maps.
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Example 2.1 (Curved Lie algebra). A basic example of an L1-algebra is that of a
(curved) Lie algebra .L; R; d; Œ � ; � �/ by setting Q0.1/ D �R, Q1 D �d, Q2.
 _ �/ D
�.�1/j
 jŒ
; ��, and Qi D 0 for all i � 3. Note that we denoted the degree in LŒ1� by j � j.

Let us consider two L1-algebras: .L; Q/ and .zL; zQ/. A degree 0 counital coalgebra
morphism

F WSc.L/! Sc.zL/

such thatFQD zQF is said to be anL1-morphism. A coalgebra morphismF from Sc.L/

to Sc.zL/ such that F.1/ D 1 is uniquely determined by its components (also called the
Taylor coefficients)

FnWSn
�
LŒ1�

�
! zLŒ1�;

where n � 1. Namely, we set F.1/ D 1 and use the formula

F.
1 _ � � � _ 
n/

D

X
p�1

X
k1;:::;kp�1

k1C���CkpDn

X
�2Sh.k1;:::;kp/

".�/

pŠ
Fk1.
�.1/ _ � � � _ 
�.k1//

_ � � � _ Fkp .
�.n�kpC1/ _ � � � _ 
�.n//; (2.4)

where Sh.k1; : : : ; kp/ denotes the set of .k1; : : : ; kp/-shuffles in Sn (again we set Sh.n/D
¹idº). We also write Fk D F 1k and similarly to (2.3) we get coefficients F jn W Sn LŒ1�!

Sj zLŒ1� of F by taking the corresponding terms in [12, equation (2.15)]. Note that F jn
depends only on F 1

k
D Fk for k � n� j C 1. Given an L1-morphism F of (non-curved)

L1-algebras .L;Q/ and .zL; zQ/, we obtain the map of complexes

F1W .L;Q1/! .zL; zQ1/:

In this case, the L1-morphism F is called an L1-quasi-isomorphism if F1 is a quasi-
isomorphism of complexes. Given a DGLA .L;d; Œ � ; � �/ and an element � 2LŒ1�0, we can
obtain a curved Lie algebra by defining a new differential dC Œ�; � � and considering the
curvature R� D d� C 1

2
Œ�; ��. In fact, the same procedure can be applied to a curved Lie

algebra .L;R;d; Œ � ; � �/ to obtain the twisted curved Lie algebra .L;R� ;dC Œ�; � �; Œ � ; � �/,
where

R� WD RC d� C
1

2
Œ�; ��:

The element � is called a Maurer–Cartan element if it satisfies the equation

RC d� C
1

2
Œ�; �� D 0:

Finally, it is important to recall that given a DGLA morphism, or more generally an L1-
morphism, F WL ! zL, one may associate to any (curved) Maurer–Cartan element � 2
LŒ1�0 a (curved) Maurer–Cartan element

�F WD
X
n�1

1

nŠ
Fn.� _ � � � _ �/ 2 zLŒ1�

0:
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In order to make sense of these infinite sums, we consider complete filtered L1-
algebras and we demand that Maurer–Cartan elements be in a positive filtration; see [10,
13] for details on such filtrations.

3. An explicit formula for the L1-projection and -inclusion

From the general theory of L1-algebras, one knows that L1-quasi-isomorphisms always
admit L1-quasi-inverses. Moreover, it is well known that, given a homotopy retract, one
can transfer L1-structures. Explicitly, given two cochain complexes .A; dA/ and .B; dB/
with

.A; dA/ .B; dB/
i

p
h; (3.1)

where h ı dB C dB ı h D id � i ı p and where i is a quasi-isomorphism, the homotopy
transfer theorem in [21, Section 10.3] states that if there exists anL1-structure on B , then
one can transfer it to A in such a way that i extends to an L1-quasi-isomorphism.

Let us consider the special case of deformation retracts for DGLAs. More explicitly,
let A;B be two DGLAs. A deformation retract of .A; dA/ is given by the diagram

.A; dA/ .B; dB/
i

p
h; (3.2)

where i and p are quasi-isomorphisms of cochain complexes with homotopy h, i.e., hdB C
dBh D idB � ip, as well as

p ı i D idA; h2 D 0; h ı i D 0; and p ı h D 0:

In addition, we assume that i is a DGLA morphism. As already mentioned, the homotopy
transfer theorem and the invertibility of L1-quasi-isomorphisms imply that p extends
to an L1-quasi-isomorphism denoted by P ; see, e.g., [21, Proposition 10.3.9]. In the
following, we give a more explicit description of P inspired by the symmetric tensor trick
[3,17]. The DGLA structures yield the codifferentialsQA on S.AŒ1�/ andQB on S.BŒ1�/,
and the map h extends to a homotopy HnWSn.BŒ1�/! Sn.BŒ1�/Œ�1� with respect to

Qn
B;nWS

n
�
BŒ1�

�
! Sn

�
BŒ1�

�
Œ1�I

see, e.g., [21, p. 383] for the construction on the tensor algebra, which adapted to our
setting works roughly like: we define the operator

KnWSn
�
BŒ1�

�
! Sn

�
BŒ1�

�
by

Kn.x1 _ � � � _ xn/ D
1

nŠ

n�1X
iD0

X
�2Sn

".�/

n � i
ipX�.1/ _ � � � _ ipX�.i/ _X�.iC1/ _X�.n/:
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Note that here we sum over the whole symmetric group and not the shuffles, since in this
case the formulas are easier. We extend �h to a coderivation to S.BŒ1�/, i.e.,

zHn.x1 _ � � � _ xn/ WD �
X

�2Sh.1;n�1/

".�/hx�.1/ _ x�.2/ _ � � � _ x�.n/

and define
Hn D Kn ı zHn D zHn ıKn:

Since i and p are chain maps, we have

Kn ıQ
n
B;n D Q

n
B;n ıKn;

where Qn
B;n is the extension of the differential Q1

B;1 D �dB to Sn.BŒ1�/ as coderivation.
Hence we have

Qn
B;nHn CHnQ

n
B;n D .n � id � ip/ ıKn;

where ip is extended as a coderivation to S.BŒ1�/. A combinatorial and not very enlight-
ening computation shows that finally

Qn
B;nHn CHnQ

n
B;n D id � .ip/_n: (3.3)

Suppose that we have constructed a morphism of coalgebras P with structure maps

P 1k WS
k
�
BŒ1�

�
! AŒ1�

that is an L1-morphism up to order k, i.e.,

mX
`D1

P 1` ıQ
`
B;m D

mX
`D1

Q1
A;` ı P

`
m

for all m � k. Then we have the following statement.

Lemma 3.1. Let P WS.BŒ1�/! S.AŒ1�/ be an L1-morphism up to order k � 1. Then

L1;kC1 D

kC1X
`D2

Q1
A;` ı P

`
kC1 �

kX
`D1

P 1` ıQ
`
B;kC1 DQ

1
A;2 ı P

2
kC1 � P

1
k ıQ

k
B;kC1 (3.4)

satisfies
L1;kC1 ıQ

kC1
B;kC1

D �Q1
A;1 ı L1;kC1: (3.5)

Proof. The statement follows from a straightforward computation. For convenience, we
omit the index of the differential:

L1;kC1Q
kC1
kC1
D

kC1X
`D2

Q1
` .P ıQ/

`
kC1 �

kC1X
`D2

kX
iD1

Q1
`P

`
i Q

i
kC1 C

kX
`D1

kX
iD1

P 1`Q
`
iQ

i
kC1
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D

kC1X
`D2

Q1
` .Q ı P /

`
kC1 �

kC1X
`D2

kX
iD1

Q1
`P

`
i Q

i
kC1 C

kX
`D1

kX
iD1

Q1
`P

`
i Q

i
kC1

D �Q1
1.Q ı P /

1
kC1 CQ

1
1

kX
iD1

P 1i Q
i
kC1 D �Q

1
1L1;kC1;

where the last equality follows from Q1
1Q

1
1 D 0.

This allows us to obtain the L1-quasi-inverse of i , denoted by P , in (3.2) recursively:

Proposition 3.2. Defining P 11 D p and P 1
kC1
D L1;kC1 ı HkC1 for k � 1 yields an

L1-quasi-isomorphism
P WS

�
BŒ1�

�
! S

�
AŒ1�

�
that is quasi-inverse to i .

Proof. We observe P 1
kC1

.ix1 _ � � � _ ixkC1/D 0 for all k � 1 and xi 2 A, which directly
follows from h ı i D 0 and thusHkC1 ı i_.kC1/D 0. In addition, one also has for all k � 1
the identity L1;kC1.ix1; : : : ; ixkC1/ D 0, which follows from the definition of L1;kC1
and the fact that i is a morphism of DGLAs. We know that P is an L1-morphism up to
order one. Suppose that we already know that it is an L1-morphism up to order k � 1,
then this implies that

P 1kC1 ıQ
kC1
kC1
D L1;kC1 ıHkC1 ıQ

kC1
kC1

D L1;kC1 � L1;kC1 ıQ
kC1
kC1
ıHkC1 � L1;kC1 ı .i ı p/

_.kC1/

D L1;kC1 CQ
1
1 ı P

1
kC1

by the above lemma, and therefore

P 1kC1 ıQ
kC1
kC1
�Q1

1 ı P
1
kC1 D L1;kC1:

Hence P is an L1-morphism up to order k C 1 and the statement follows inductively.

Let us now assume that pWB ! A in the deformation retract (3.2) is a DGLA mor-
phism and that i is just a chain map. Then we can analogously give a formula for the
extension I of i to an L1-quasi-isomorphism.

Proposition 3.3. The coalgebra map I W S�.AŒ1�/! S�.BŒ1�/ recursively defined by the
maps I 11 D i and I 1

k
D h ıL1;k for k � 2 is an L1-quasi inverse of p. Since h2 D 0 D

h ı i , one even has I 1
k
D h ıQ1

2 ı I
2
k

.

Proof. We proceed by induction: assume that I is an L1-morphism up to order k, then
we have

I 1kC1Q
kC1
A;kC1

�Q1
B;1I

1
kC1 D �Q

1
B;1 ı h ı L1;kC1 C h ı L1;kC1 ıQ

kC1
A;kC1

D �Q1
B;1 ı h ı L1;kC1 � h ıQ

1
B;1 ı L1;kC1

D .id � i ı p/L1;kC1:
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We used thatQ1
B;1 D�dB and the homotopy equation of h. Moreover, since p is a DGLA

morphism and p ı h D 0, we have that p ı L1;kC1 D 0 for k � 0. Since I is an L1-
morphism up to order one, i.e., a chain map, the claim is proven.

4. Reduction of multivector fields

In the following, we want to use the above language and considerations to formulate a
reduction scheme for multivector fields. We first introduce a new complex of multivector
field which contains the data of Hamiltonian actions in the case of Lie group actions
ˆWG �M !M .

Definition 4.1 (Equivariant multivectors). The DGLA of equivariant multivector fields is
given by the complex T �g .M/ defined by

T kg .M/ D
M

2iCjDk

�
Si g� ˝ �1.ƒjC1TM/

�G
D

M
2iCjDk

�
Si g� ˝ T

j
poly.M/

�G
;

together with the trivial differential and the Lie bracket

Œ˛ ˝ X;ˇ ˝ Y �g D ˛ _ ˇ ˝ ŒX; Y �

for any ˛ ˝ X;ˇ ˝ Y 2 T �g .M/.

Here Œ � ; � � refers to the usual Schouten–Nijenhuis bracket on Tpoly.M/. Notice that
invariance with respect to the group action means invariance under the transformations
Ad�g ˝ˆ

�
g for all g 2 G. We can equivalently interpret this complex in terms of polyno-

mial maps g! T
j

poly.M/ which are equivariant with respect to adjoint and push-forward
action. Using this point of view, the bracket can be rewritten as

ŒX; Y �g.�/ D
�
X.�/; Y.�/

�
: (4.1)

Furthermore, we introduce the canonical linear map

�Wg 3 � 7! �M 2 T
0

polyM; (4.2)

where �M denotes the fundamental vector field corresponding to the actionˆ. It is easy to
see that � is central and as a consequence we can turn T �gM into a curved Lie algebra with
curvature �. Now let .M;�/ be a Poisson manifold and denote by ¹ � ; � º the corresponding
Poisson bracket. Recall that an (equivariant) momentum map for the action ˆ is a map
J Wg! C1.M/ such that

�M D ¹ � ; J�º and JŒ�;�� D ¹J� ; J�º: (4.3)

An actionˆ admitting a momentum map is what we called Hamiltonian. In the following,
we prove a characterization of Hamiltonian actions in terms of equivariant multivectors.
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Lemma 4.2. The curved Maurer–Cartan elements of T �g .M/ are equivalent to pairs
.�; J /, where � is a G-invariant Poisson structure and J is a momentum map

J Wg! T �1poly.M/:

Proof. The curved Maurer–Cartan equation reads

�C
1

2
Œ…;…�g D 0

for … 2 T 1g .M/. If we decompose … D � � J 2 .T 1poly.M//G ˚ .g� ˝ T �1poly.M//G, it
is easy to see that the curved Maurer–Cartan equation together with the invariance of the
elements is equivalent to the conditions (4.3) defining the momentum map.

As in the Marsden–Weinstein reduction procedure, we fix a constraint surface C �M ,
by choosing an equivariant map J WM ! g� and setting C D J�1.¹0º/. Here we always
assume that 0 2 g� is a regular value of the momentum map, making C a closed embedded
submanifold of M . Note that G acts canonically of C , since J is equivariant. From now
on we also require the action ˆ to be proper around C and free on C .

To implement this choice in our algebraic setting, we consider from now on the curved
DGLA �

T �g .M/; �;�ŒJ; � �; Œ � ; � �
�
: (4.4)

Note that this is in fact a curved Lie algebra since ŒJ; J � D 0 D Œ�; � �. We have to pass
to the formal setting in order to see why this curved Lie algebra is actually interesting.
Note that one advantage of the setting of formal power series is that we immediately get a
complete filtration by the „-degrees, i.e., by setting

F kT �g .M/ŒŒ„�� D „kT �g .M/ŒŒ„��:

In particular, if we consider formal Maurer–Cartan elements „.� � J 0/ 2 „T 1g .M/ŒŒ„��,
then the twisting procedures and infinite sums from Section 2 are all well defined. How-
ever, we have to rescale in this case the curvature, whence we consider the curved Lie
algebra �

T �g .M/ŒŒ„��; „�;�ŒJ; � �; Œ � ; � �
�
: (4.5)

Here the differential, i.e., the classical momentum map, is not rescaled by some order of „.
This is due to the fact that we only want to consider formal Poisson structures with formal
momentum maps that deform the classical J . Allowing general formal momentum maps
would lead to formal Poisson structures with different reduced manifolds, but we want to
fix C and Mred. This becomes clear in the following lemma:

Lemma 4.3. The formal curved Maurer–Cartan elements of the curved DGLA�
T �g .M/ŒŒ„��; „�;�ŒJ; � �; Œ � ; � �

�
are equivalent to pairs „.�; J 0/, where � is a G-invariant formal Poisson structure with
formal moment map J C „J 0Wg! T �1poly.M/ŒŒ„��.
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Proof. The proof follows directly by Lemma 4.2 by counting „-degrees.

The rest of this paper is devoted to the construction of a curved L1-morphism

TredW
�
Tg.M/ŒŒ„��; „�;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/ŒŒ„��; 0; 0; Œ � ; � �

�
with Mred WD C=G. This morphism is frequently referred to as reduction morphism.

4.1. The Taylor series expansion around C

The main goal of this section is the study of a partial Taylor series expansion of the multi-
vector fields onM around C . Let us assumeM D C � g�. This is not a strong assumption
as we know from [4, Lemma 3] that, ifG acts properly on an open neighborhood of C , we
can always find a G-invariant open neighborhood Mnice �M of C , such that there exists
a G-equivariant diffeomorphism Mnice Š Unice � C � g�. Here the Lie group G acts on
C � g� as

ˆg D ˆ
C
g � Ad�

g�1
;

where ˆC is the induced action on C . Note that in this setting the momentum map on
Unice is simply given by the projection to g�. The idea of a Taylor expansion uses the fact
that we have the isomorphism

T kpoly.C � g�/ Š
M
iCjDk

C1.C � g�/˝C1.C/

�
ƒig� ˝ T

j
poly.C /

�
:

First, we define

Tg� WC
1.C � g�/ 3 f 7!

1X
I2Nn

0

1

I Š
eI ˝ �

� @

@˛I
f 2

Y
i

�
Si g˝ C1.C /

�
;

where ˛iei are coordinates on g� and �� is the restriction to C .

Lemma 4.4. The map Tg� is equivariant, i.e.,

Tg� ıˆg;� D .Adg ˝ˆCg;�/ ı Tg� : (4.6)

Proof. We just observe that

@

@˛i
ıˆ�g D .Adg�1/

i
j � .ˆ

C
g /
�
ı
@

@ j̨

for Adg ei D .Adg/
j
i ej . Hence we have

Tg�.ˆg;�f / D

1X
I2Nn

0

1

I Š
eI ˝ �

� @

@˛I
ˆg;�f D .Adg ˝ˆCg;�/ ı Tg�f

by shifting the components .Adg�1/ij D .Adg/
j
i to the symmetric powers of g.
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Remark 4.5. It is now clear that this map can be restricted to invariant functions in order
to obtain invariant elements in

Q
i .S

i g˝ C1.C //. Moreover, with a slight adaption of
the proof of the Borel lemma (see, e.g., [25, Theorem 1.3]), one can show that the map
Tg� is surjective. The more remarkable fact is that the properness of the action ensures
that the map

Tg� WC
1.M � g�/G 3 f 7!

1X
I2Nn

0

1

I Š
eI ˝ �

� @

@˛I
f 2

Y
i

.Si g˝ C1.C //G

is surjective. We omit this proof as we do not use it here and it is just an adaption of the
corresponding statement in [24].

We extend this map to T �poly.C � g�/ via

Tg� WT
k

poly.C � g�/!
Y
i

�
Si g˝ ƒg� ˝ Tpoly.C /

�
.f ˝ � ˝ X/ 7!

1X
I2Nn

0

1

I Š
eI ˝ � ˝ �

� @

@˛I
f �X

and using Lemma 4.4, we see that also this map can be restricted to the equivariant multi-
vector fields:

Definition 4.6 (Taylor expansion around C ). The map

Tg� W
�

S g� ˝ Tpoly.C � g�/
�G
!

�
S g� ˝

1Y
iD0

�
Si g˝ƒg� ˝ Tpoly.C /

��G
(4.7)

is called the Taylor expansion around C and we write

TTay.C � g�/´
�

S g� ˝

1Y
iD0

�
Si g˝ƒg� ˝ Tpoly.C /

��G
:

Having in mind that the vector space
Q1
iD0.S

i g˝ƒg� ˝ Tpoly.C //
G just consists of

the Taylor expansions, it is not surprising that it also inherits the structure of a DGLA: for
P;Q 2

Q
i Si g and �; � 2 g�, the brackets are given by

ŒP;Q� D 0; ŒP ˝ �;Q� D P _ is.�/Q;

ŒP ˝ �;Q˝ �� D P _ is.�/Q˝ � �Q _ is.�/P ˝ �;

where is denotes the symmetric left insertion, and they are extended as a Gerstenhaber
bracket with respect to the graded commutative product

.P ˝ �/ � .Q˝ �/ WD P _Q˝ � ^ �:

We combine it with the usual DGLA structure on Tpoly.C / and extend it as in the case of
T �g .M/ trivially to all of TTay.C � g�/. Summarizing, we have a DGLA structure on the
Taylor expansion around C with zero differential.
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Lemma 4.7. The Taylor expansion

Tg� WTg.M/! TTay.C � g�/ (4.8)

is a DGLA morphism.

Proof. This is an easy verification on generators.

As a next step, we want to include the curvature � 2 T 2g .M/ from Section 4. Recall
that

� D ei ˝ .ei /M 2 T
2
g .M/ D

�
g� ˝ T 0poly.M/

�G
:

Using our assumption thatM D C � g� and that G acts as the product of the action on C
and the coadjoint action, we see that

.ei /M D .ei /C C ˛kf
k
ji

@

@ j̨

; (4.9)

where .ei /C denotes the fundamental vector field of the action on C and where f kji are
the structure constants of g. This means in particular that

Tg�.�/ D e
i
˝ 1˝ 1˝ .ei /C C f

j
j i e

i
˝ ek ˝ e

j
˝ 1 2 TTay.C � g�/:

With a slight abuse of notation, we write � instead of Tg�.�/. The same argument leads to
the observation that

Tg�.J / D e
i
˝ ei ˝ 1˝ 1;

where we also write J instead of Tg�.J / in the sequel.

Corollary 4.8. The map

Tg� W
�
Tg.M/; �;�ŒJ; � �; Œ � ; � �

�
!
�
TTay.C � g�/; �;�ŒJ; � �; Œ � ; � �

�
(4.10)

is a morphism of curved DGLAs.

One main advantage of the Taylor expansion TTay.C � g�/ consists in the fact that we
have a canonical element

�KKS WD 1˝

�
1

2
f kij ek ˝ e

i
^ ej ˝ 1 � 1˝ ei ˝ .ei /C

�
;

which is not available in Tg.M/. Note that �KKS encodes the action on C and the Lie
algebra structure on g.

Remark 4.9 (Action Lie algebroid). The bundle C � g! C can be equipped with the
structure of a Lie algebroid since g acts onC by the fundamental vector fields. The bracket
of this action Lie algebroid is given by

Œ�; ��C�g.p/ D
�
�.p/; �.p/

�
� .L�C �/.p/C .L�C �/.p/ (4.11)
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for �; � 2 C1.C; g/. The anchor is given by �.p; �/ D ��C jp . In particular, one can
check that �KKS is the negative of the linear Poisson structure on its dual C � g� in the
convention of [26].

The canonical �KKS is of big importance since it is part of some kind of normal form
for every invariant Poisson structure on C � g� with moment map J . In the Taylor expan-
sion, this becomes more clear in the following lemma:

Lemma 4.10. Let

� 2

� 1Y
iD0

�
Si g˝ƒg� ˝ Tpoly.C /

��G

� TTay.C � g�/

be a curved Maurer–Cartan element, then

� D �KKS C �C (4.12)

with �C 2 .
Q1
iD0 Si g˝ T 1poly.C //

G.

Proof. By (4.9) we have for � 2 g, c 2 C and ˛ D ˛iei 2 g�

�M j.c;˛/ D �
�
i
�
dJ.�/

�
�
�
j.c;˛/ D �C jc C �g�

ˇ̌
˛
D �C jc � f

i
j`i.ei /˛e

j .�/
@

@˛`
:

This implies directly

� D �C C .ei /C ^
@

@˛i
C
1

2
˛kf

k
ij

@

@˛i
^

@

@ j̨

;

where �C 2 .
Q1
iD0 Si g˝ T 1poly.C //

G is tangent to C , but can possibly depend on all of
M D C � g�. In the Taylor expansion, @

@˛`
corresponds to e` and the lemma is shown.

Comparing now the terms in Œ�; �� D 0 with the same g� and C degrees gives hints
concerning the coefficient function of �C that can also depend on g�. In particular, the
terms in �1.ƒ3TC/ are given by

Œ�C ; �C �C 2.ei /C ^

�
@

@˛i
; �C

�
D 0: (4.13)

To conclude this section, we define for later use the operator

@ WD id˝ is.ei /˝ id˝ .ei /C ^ : (4.14)

Note that we assume the Koszul sign rule; i.e., applying @ to � ˝ P ˝ ˛ ˝ X , we get a
sign .�1/j˛j. We directly see that @2 D 0 and equation (4.13) can be written as

1

2
Œ�C ; �C �C .ei /C ^ is.ei /�C D

1

2
Œ�C ; �C �C @�C D 0: (4.15)
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4.2. The Cartan model of multivector fields

In the case of symplectic manifolds, it has been shown in [27] that quantization and reduc-
tion commute by exploiting the diagram��

S g� ˝ �.M/
�G
; dg

� ��

�!
��

S g� ˝ �.C/
�G
; dg

� p�
 
�
��.Mred/; d

�
(4.16)

forM
�
 C

p
�!Mred. Here .S g� ˝ �.C//G is the so-called Cartan model for equivariant

de Rham cohomology [15, 23, 28] that we want to recall briefly:

Remark 4.11 (Cartan model for equivariant de Rham cohomology). Let M be a smooth
manifold with a Lie group actionˆWG �M !M . The Cartan complex of G-equivariant
differential forms is defined by

�kG.M/ D
� M
2iCjDk

�
Si g� ˝�j .M/

�G
; dg D dC i�

�
: (4.17)

Here d denotes the usual de Rham differential, the invariants are taken with respect to the
product action

g F .p ˝ ˛/ D .Ad�
g�1

p/˝ˆ�
g�1
˛; (4.18)

and one has i� D ei _ ˝ia..ei /M /. In the special case of a principal G-bundle M D C ,
one can show that

H
�
��G.C /; dg

�
Š HdR.C=G/I (4.19)

see, e.g., [27, Corollary 3.5] and the references therein. In particular, the map p� from
(4.16) is a quasi-isomorphism.

We aim to transfer this construction and in particular (4.19) to the setting of Poisson
manifolds by using the above observation as a guideline. For this reason, we introduce
our notion for the Cartan model of equivariant multivector fields and compute its relation
with Tpoly.Mred/ and with the Taylor expansion of multivector fields around C from the
previous section. We start with the following observation:

Proposition 4.12. The cohomology of .TTay.C � g�/;�ŒJ; � �; Œ � ; � �/ is given by the Lie
algebra ..

Q1
iD0.S

i g˝ Tpoly.C ///
G; Œ � ; � �/. Therefore, the canonical inclusion

�W

�� 1Y
iD0

�
Si g˝ Tpoly.C /

��G

; 0; Œ � ; � �

�
!
�
TTay.C � g�/; Œ�J; � �; Œ � ; � �

�
(4.20)

becomes a quasi-isomorphism of DGLAs.

Proof. The map h D is.e`/˝ id˝ e` ^˝id satisfies

� ŒJ; � � ı h.� ˝ P ˝ ˛ ˝X/ � h ı ŒJ; � �.� ˝ P ˝ ˛ ˝X/

D
�

deg.˛/C deg.�/
�
.� ˝ P ˝ ˛ ˝X/

and the statement follows.
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Note that the cohomology .
Q1
iD0.S

i g ˝ Tpoly.C ///
G can be equipped with a non-

trivial, but canonical differential.

Proposition 4.13. The differential @ defined in (4.14) turns�� 1Y
iD0

�
Si g˝ Tpoly.C /

��G

; Œ � ; � �

�
into a DGLA.

Proof. A straightforward computation shows that

@Œ� ˝X; �˝ Y � D is.ei /.� _ �/˝ .ei /C ^ ŒX; Y �;�
@.� ˝X/; �˝ Y

�
D .�1/k is.ei /.�/ _ �˝X ^ Œ.ei /C ; Y �

C is.ei /.�/ _ �˝ .ei /C ^ ŒX; Y �;�
� ˝X; @.�˝ Y /

�
D .�1/k�1� _ is.ei /.�/˝ .ei /C ^ ŒX; Y �

� � _ is.ei /.�/˝ Œ.ei /C ; X� ^ Y;

where X 2 T k�1poly .C /. Using the G-invariance, we get

� ˝
�
.ei /C ; X

�
D f kij ek _ is.ej /� ˝X; �˝

�
.ei /C ; Y

�
D f kij ek _ is.ej /�˝ Y:

Summarizing, this yields

@Œ� ˝X; �˝ Y � D
�
@.� ˝X/; �˝ Y

�
C .�1/k�1

�
� ˝X; @.�˝ Y /

�
and the proposition is shown.

This motivates the following definition.

Definition 4.14 (Cartan model). Let G be a Lie group acting on a manifold C . The DGLA
defined by � 1Y

iD0

�
Si g˝ Tpoly.C /

�G
; @; Œ � ; � �

�
(4.21)

is called the Cartan model and is denoted by TCart.C /.

Seen as a C1.C /-module,
Q1
iD0.S

i g˝ Tpoly.C // is the dual of S g�˝�.C/, whose
invariants are the space underlying the Cartan model for the equivariant de Rham coho-
mology from Remark 4.11. Even the differential @ D is.ei /˝ .ei /C^ is dual to the inser-
tion i� D ei _ ˝ia..ei /C /. In the case of forms, we saw in (4.19) that the equivariant
cohomology of the principal fiber bundle C is isomorphic to the de Rham cohomology of
the reduced manifold, whereas in our setting we want to show that we get the multivector
fields on Mred as cohomology. Note that we have a canonical DGLA map

pW
�
TCart.C /; @; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; Œ � ; � �

�
;
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which is just given by the projection to the symmetric degree 0 followed by the projection
to Mred. It is well defined since invariant multivector fields are projectable.

Proposition 4.15. The DGLA map

pW

�� 1Y
iD0

�
Si g˝ Tpoly.C /

��G

; @; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; Œ � ; � �

�
(4.22)

is a quasi-isomorphism.

Proof. Consider the principal bundle prWC ! Mred and choose a principal bundle con-
nection ! D !i ˝ ei 2 �1.C /˝ g, i.e., an equivariant horizontal lift inducing

TC D Ver.C /˚ Hor.C / D kerT pr˚ ker!;

where ker! Š pr� TMred. Then we can construct a homotopy for @ by h D ei _˝ia.!i /.
Since !i ..ej /M / D ıij , it satisfies

h@C @h D .deggC degver/id:

With the vertical degree, we mean the degree in the splitting

ƒkTC D
M
iCjDk

ƒi Ver.C /˝ ƒj Hor.C /:

In other words, the above proposition yields for every principal connection ! 2

�1.C /˝ g the deformation retract

Tpoly.Mred/

� 1Y
iD0

�
Si g˝ Tpoly.C /

��G
i

p
h; (4.23)

where i denotes the horizontal lift with respect to the connection ! and the homotopy h
is given on all homogeneous elements by

h.� ˝X/

D

´
1

deg.�/Cdegver.X/
ei _ � ˝ ia.!i /X if deg.�/C degver.X/ ¤ 0;

0 else:

Indeed, the algebraic relations of a deformation retract between i , p, and h are easily seen
to be verified. Recall that additionally p is a DGLA morphism, which puts us exactly in
the situation of Proposition 3.3. So before we continue to put the Cartan model in the
context of reduction, we give an explicit formula for a quasi-inverse of p.
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Proposition 4.16. For a fixed principal fiber connection ! 2 �1.C /˝ g with curvature
� 2 �2.C /˝ g, one obtains an L1-quasi-inverse of p

i1WS
�
Tpoly.Mred/Œ1�

�
! S

�� 1Y
iD0

�
Si g˝ Tpoly.C /

��G

Œ1�

�
(4.24)

given by

i1 D e� ı . � /hor; (4.25)

where one extends . � /hor as a coalgebra morphism and � as a coderivation of degree 0.
In particular,

i1;1.X/ D X
hor and i1;2.X; Y / D .�1/

jX jei ˝ �
i .Xhor; Y hor/ (4.26)

for a basis e1; : : : ; en of g.

Proof. Let us fix a principal connection ! 2 �1.C / ˝ g and denote by h the corre-
sponding homotopy and by � its curvature. Due to that fact that equation (4.23) is a
deformation retract and p is a DGLA morphism, we are exactly in the situation of Propo-
sition 3.3 and the statement becomes a purely computational issue; so let us start with
some book-keeping. Throughout the proof, we will make use of the following equation
for X 2 �1.ƒkTC/, Y 2 �1.ƒ`TC/, and ˛ 2 �1.C /:

d˛.X; Y / D
�
ia.˛/X; Y

�
� .�1/k

�
X; ia.˛/Y

�
� ia.˛/ŒX; Y �; (*)

where for the left-hand side, we define

d˛.X; Y / D .d˛/ij ia.dxi /X ^ ia.dxj /Y

in a coordinate patch. The validity of equation (*) for one-forms of the type ˛ D f dg
follows by the usual Schouten calculus. By R-linearity of equation (*), its validity follows
for general one-forms in every coordinate patch and hence also globally. Let us define,
using the curvature �, the map

�WS2
�Y

i

�
Si g˝ Tpoly.C /

�G
Œ1�
�
!

Y
i

�
Si g˝ Tpoly.C /

�G
Œ1�

defined on homogeneous and factorizing elements Pj ˝ Xj 2
Q
i .S

i g˝ Tpoly.C //
GŒ1�,

j D 1; 2 by

�.P1 ˝ X1 _ P2 ˝ X2/ D .�1/
jX1jei _ P1 _ P2 ˝ �

i .X1; X2/:

This map is well defined, i.e., in fact graded symmetric, and of degree 0. With a slight
abuse of notation, we denote also by

�WS�
�Y

i

�
Si g˝ Tpoly.C /

�G
Œ1�
�
! S��1

�Y
i

�
Si g˝ Tpoly.C /

�G
Œ1�
�
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its extension as a coderivation of degree 0, i.e.,

�.X1 _ � � � _Xk/ D
X

�2Sh.2;k�2/

".�/�.X�.1/ _X�.2// _X�.3/ _ � � � _X�.k/

for Xj 2
Q
i .S

i g˝ Tpoly.C //
GŒ1�. Note that for every

k 2 N and Xj 2
Y
i

�
Si g˝ Tpoly.C /

�G
Œ1�;

we have that
�k.X1 _ � � � _Xk/ D 0

since � decreases the symmetric degree by one and hence the expression

e� WD
X
k

1

kŠ
�k

is a well-defined map. Since � is a coderivation of degree 0, it is even a coalgebra mor-
phism. Its components are given by

.e�/`k D
1

.k � `/Š
�k�`;

which can be seen again by counting symmetric degrees. This shows, in particular, that

.e� ı . � /hor/11 D . � /
hor:

We proceed now inductively, so let us assume that e� ı . � /hor coincides with i1 from
Proposition 3.3 up to order k. For Xj 2 Tpoly.Mred/Œ1�, j D 1; : : : ; k C 1, we have

i1;kC1.X1 _ � � � _XkC1/

D h ıQ1
2 ı i

2
1;kC1.X1 _ � � � _XkC1/

D

kX
jD1

X
�2Sh.j;kC1�j /

".�/

2
h ıQ1

2

�
�
i11;j .X�.1/ _ � � � _X�.j // _ i

1
1;k�jC1.X�.jC1/ _ � � � _X�.kC1//

�
D

kX
jD1

X
�2Sh.j;kC1�j /

".�/

2
h ıQ1

2

�

�
�j�1

.j � 1/Š
.Xhor

�.1/ _ � � � _X
hor
�.j // _

�k�j

.k � j /Š
.Xhor

�.jC1/ _ � � � _X
hor
�.kC1//

�
:
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Let us now take a look at

h ıQ1
2

�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j // _�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
D .�1/1C

Pj
kD1
jX�.j /jh

�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j //;�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
D
.�1/1C

Pj
kD1
jX�.j /j

k
ei

˝ ia.!i /
�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j //;�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
(*)
D
.�1/

Pj
kD1
jX�.j /j

k
ei

˝ d!i
�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j //;�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
:

The factor 1
k

appears, since �k raises the symmetric degree in g by k and hence the
commutator has k � 1 symmetric degrees in g degrees and at most one vertical degree,
since both of the entries are horizontal multivector fields. Moreover, since ia.!i / anni-
hilates the terms which do not have a vertical degree, the formula is valid. Note that
by definition of the curvature of !, we have � D d! C 1

2
Œ!; !� or for a chosen basis

�i D d!i C 1
2
f i
kl
!k ^ !l . Since !i vanishes on horizontal lifts, we can write

h ıQ1
2

�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j // _�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
D
.�1/

Pj
kD1
jX�.j /j

k
ei

˝ �i
�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j //;�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
D
1

k
�
�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j //;�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
and hence

i1;kC1.X1 _ � � � _XkC1/

D

kX
jD1

X
�2Sh.j;kC1�j /

".�/

2k
�

�

�
�j�1

.j � 1/Š
.Xhor

�.1/ _ � � � _X
hor
�.j // _

�k�j

.k � j /Š
.Xhor

�.jC1/ _ � � � _X
hor
�.kC1//

�
D

1

kŠ
�k.Xhor

1 _ � � � _X
hor
kC1/:

The last equality follows from the observation that

�k.Xhor
1 _ � � � _X

hor
kC1/

D �
�
�k�1.Xhor

1 _ � � � _X
hor
kC1/

�
D �

�
.k � 1/Š.e�/2kC1.X

hor
1 _ � � � _X

hor
kC1/

�
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D

kX
jD1

X
�2Sh.j;kC1�j /

".�/

2

.k � 1/Š

.j � 1/Š.k � j /Š

��
�
�j�1.Xhor

�.1/ _ � � � _X
hor
�.j // _�

k�j .Xhor
�.jC1/ _ � � � _X

hor
�.kC1//

�
;

and the proof is completed.

Corollary 4.17. The induced map at the level of Maurer–Cartan elements

pWMC
�
TCart.C /

�
!MC

�
Tpoly.Mred/

�
is surjective.

Proof. Let � 2 T 1poly.Mred/ be a Maurer–Cartan element, i.e., a Poisson structure. We
define

… D
X
k�1

1

kŠ
i1;k.�

_k/:

This series is actually well defined in TCart.C /, since we have

… D
X
k�1

1

kŠ

1

.k � 1/Š
�k�1

�
.�hor/_k

�
using the explicit for of i1 as in Proposition 4.16. But

�k�1
�
.�hor/_k

�
2
�

Sk�1 g˝ T 1poly.C /
�G
;

whence … 2 MC.TCart.C // is well defined. The identity p.…/ D � is then clear using
again the explicit form.

Remark 4.18. In particular, the above proposition shows not only that if C admits a flat
connection, then i1 has i1 D . � /hor as only a structure map, but also how to correct the
horizontal lift in order to obtain an L1-quasi-ismorphism.

Having seen the importance of the ad-hoc defined differential @ on TCart.C /, we lean
now again towards TTay.C � g�/ and try to find an extension of the differential �ŒJ; � � in
order to make the inclusion �WTCart.C /! TTay.C � g�/ a quasi-isomorphism with respect
to @. As a first step we have the following proposition.

Proposition 4.19. The map Œ�KKS; �� is a well-defined differential on TTay.C � g�/ that is
explicitly given by

Œ�KKS; � ˝ P ˝ ˛ ˝X� D � ˝ ıCE.P ˝ ˛ ˝X/C @.� ˝ P ˝ ˛ ˝X/; (4.27)

where ıCE denotes the Chevalley-Eilenberg differential. Moreover, the canonical inclusion

�W
�
TCart.C /; @; Œ � ; � �

�
!
�
TTay.C � g�/; Œ�KKS � J; � �; Œ � ; � �

�
becomes a DGLA morphism.



C. Esposito, A. Kraft, and J. Schnitzer 948

Proof. Since the bracket does not depend on the S g�-part we restrict ourselves to P ˝
˛ ˝X . Let us compute�

1

2
f kij ek ˝ e

i
^ ej ; P ˝ ˛ ˝X

�
D
1

2
f kij
�
ek ˝ Œe

i
^ ej ; P ˝ ˛�˝X C Œek ; P ˝ ˛� ^ e

i
^ ej ˝X

�
D f kij ek _ is.ej /P ˝ ei ^ ˛ ˝X �

1

2
f kij P ˝ e

i
^ ej ^ ia.ek/˛ ˝X

and �
� ei ^ .ei /C ; P ˝ ˛ ˝X

�
D �P ˝ ei ^ ˛ ˝L.ei /CX � .�1/

j˛jCjX jis.ei /P ˝ ˛ ˝X ^ .ei /C ;

where jX j denotes the multivector field degree and j˛j the exterior degree. Putting this
together, we directly get (4.27). Since �KKS is a Poisson structure, we directly see that it
squares to zero. Moreover, Œ�KKS; � � boils down to @ when restricted to elements in the
image of the canonical inclusion �, i.e., in .1˝

Q1
iD0.S

i g˝ 1˝ Tpoly.C ///
G.

Alternatively, the identity
Œ�KKS; J � D � (4.28)

implies that the canonical �KKS defines a curved Maurer–Cartan element in the curved
DGLA .TTay.C � g�/; �;�ŒJ; � �; Œ � ; � �/. Therefore, twisting by �KKS yields a Lie algebra
differential on TTay.C � g�/ with curvature zero. The next step is, of course, to check if �
is still a quasi-isomorphism.

Proposition 4.20. The inclusion

�W
�
TCart.C /; @; Œ � ; � �

�
!
�
TTay.C � g�/; Œ�KKS � J; � �; Œ � ; � �

�
(4.29)

is a quasi-isomorphism of DGLAs.

Proof. Let us compute the cohomology of TTay.C � g�/ by interpreting it as a double
complex. The two differentials are Œ�J; � � and Œ�KKS; � � and as bigrading we set

Cp;q D
�

Sq g� ˝

1Y
iD0

�
Si g˝

�
ƒg� ˝ Tpoly.C /

�p�q��G
:

One can directly see that the differentials are compatible with the bigrading in the sense
that

Œ�J; � �WCp;q ! Cp;qC1 and Œ�KKS; � �WC
p;q
! CpC1;q :

By Proposition 4.12, the cohomology of Œ�J; � � is given by .
Q1
iD0.S

i g˝ Tpoly.C ///
G,

on which the horizontal differential Œ�KKS; � � is just @. Thus � is an isomorphism on the
first sheet and thus on the cohomology.
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The above results show that the Cartan model is an intertwiner of TTay.C � g�/ and
Tpoly.Mred/, which can be summarized in the diagram�

TTay.C � g�/; Œ�KKS � J; � �; Œ � ; � �
�

�
TCart.C /; @; Œ � ; � �

�
�
Tpoly.Mred/; 0; Œ � ; � �

�
:

�

pi1

(4.30)

So far we have shown that both � and p are DGLA morphisms and also quasi-isomor-
phisms. For convenience, we included the L1-quasi-inverse i1 of p. From this diagram
and the fact that every L1-quasi-isomorphism is quasi-invertible, we have the following:

Theorem 4.21. There exists an L1-quasi-isomorphism�
TTay.C � g�/; Œ�KKS � J; � �; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; Œ � ; � �

�
:

Note that the KKS Poisson structure is not defined on M , but just in an open neigh-
borhood of C . Recall that we aim to find a curved L1-morphism

TredW
�
Tg.M/; �;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; 0; Œ � ; � �

�
and its formal correspondence. To achieve this, we proceed in the following way: we
construct a (non-curved) quasi-inverse of � in Diagram (4.30) denoted by P and then twist
it by ��KKS in order to find a curved morphism

P��KKS W
�
TTay.C � g�/; �;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/; �red; Œ�KKS;red; � �; Œ � ; � �

�
for

�red WD
X
k�0

.�1/k

kŠ
P1Ck.� _ �

_k
KKS/ and �KKS;red WD

X
k�0

.�1/k

kŠ
Pk.�

_k
KKS/:

There are now two issues with this approach:

• since we did not introduce a complete filtration on the involved DGLAs, we have to
check by hand that both of the series actually converge in a suitable sense;

• this is actually not what we want, since our target, i.e., Tpoly.Mred/, has to have zero
curvature and zero differential.

These two problems are solved in Section 4.4, where we construct a quasi-inverse of � such
that �red D �KKS;red D 0 and we show that the series are well defined. But at first we need
to extend our considerations to the formal setting, where we have a complete filtration by
degrees of „.
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4.3. Formal equivariant multivector fields and their reduction

We want to consider the formal analogue of the equivariant multivector fields on M from
equation (4.4). Since we are only interested in formal Maurer–Cartan elements, we have
to rescale the curvature by „ as in (4.5); i.e., we consider the curved DGLA��

S g� ˝ Tpoly.M/
�G
ŒŒ„��; „�;�ŒJ; � �; Œ � ; � �

�
:

A formal curved Maurer–Cartan element „.� � J 0/ 2 „.S g� ˝ Tpoly.M//GŒŒ„�� corre-
sponds to an invariant formal Poisson structure � with formal momentum map J C „J 0.

The Taylor series expansion discussed in Section 4.1 allows us to interpret the element
„�KKS as a formal curved Maurer–Cartan element. Thus we can perform the twisting
procedure, yielding the flat DGLA�

TTay.C � g�/ŒŒ„��; Œ„�KKS � J; � �; Œ � ; � �
�
:

For a formal Maurer–Cartan element „.� � J 0/, one can check that �KKS C � is a G-
invariant formal Poisson structure with formal momentum map J C „J 0 as desired and
again � D �C CO.„/. Moreover, the Cartan model for the multivector fields reads in the
formal setting: �

TCart.C /ŒŒ„��; „@; Œ � ; � �
�

and the bracket on Tpoly.Mred/ŒŒ„�� is simply extended „-bilinearly. Summarizing, we have
the following claim.

Theorem 4.22. In the diagram�
TTay.C � g�/ŒŒ„��; Œ„�KKS � J; � �; Œ � ; � �

�
�
TCart.C /ŒŒ„��; „@; Œ � ; � �

�
�
Tpoly.Mred/ŒŒ„��; 0; Œ � ; � �

�
;

p

�

both maps are DGLA morphisms and � is still a quasi-isomorphism of DGLAs.

Proof. The proof essentially follows from the above considerations. More explicitely, the
inclusion of the Cartan model into TTay.C � g�/ŒŒ„�� is a quasi-isomorphism of DGLAs
since the bracket with Œ�J; � � is not scaled by „ and Œ„�KKS; � � is just „@ in the cohomology
of Œ�J; � �. In other words, the argument from Proposition 4.20 applies.

Note that here we only prove the fact that the L1-quasi-inverse of � exists. In Sec-
tion 4.4, we give an explicit formula for this map.
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Remark 4.23 (Laurent series). We observe that the map p in the above theorem is not a
quasi-isomorphism due to the scaling problem by „. Concerning the projection from the
Cartan model toMred, we still have the map h satisfying „@hC h„@D„.deggCdegver/id,
as in Proposition 4.15. However, since we are not allowed to divide by „, the projection
p in the formal setting is no longer a quasi-isomorphism. We remark that, if we con-
sider instead the Laurent series in „ in all the complexes, e.g., Tpoly.Mred/Œ„

�1;„��, then it
remains a quasi-isomorphism.

Moreover, we know from [18, Theorem 4.6] that L1-quasi-isomorphisms induce
bijections on the equivalence classes of formal Maurer–Cartan elements. In our setting,
this yields the following corollary.

Corollary 4.24. Every formal Maurer–Cartan element „.� � J 0/ in TTay.C � g�/ŒŒ„�� is
equivalent to a formal Maurer–Cartan element

„�C 2 TCart.C /
1ŒŒ„�� � T 1Tay.C � g�/ŒŒ„��:

In other words, the above Corollary states that every formal Poisson structure �KKSC�

with formal momentum map JC„J 0 is equivalent to a formal Poisson structure �KKSC�C
with undeformed momentum map J . Finally, we can construct an explicit equivalence
transformation from a generic Maurer–Cartan element „.� � J 0/ to one with J 0 D 0. Set
X1
„
D „J 0i e

i and J 02i D exp.X1
„
/.Ji / � Ji � „J

0
i . One can recursively define for k � 1

XkC1
„
D �J 0kC1i ei ´ �

�
exp.Xk

„
/ � � � exp.X1

„
/.Ji / � Ji � „J

0
i

�
ei : (4.31)

Proposition 4.25. Let „.��J 0/ be a formal Maurer–Cartan element in TTay.C�g�/ŒŒ„��.
Then

X1
„
D log

�
lim
k!1

exp.Xk
„
/ � � � exp.X1

„
/
�

(4.32)

satisfies exp.X1
„
/.Ji / D Ji C „J

0
i and hence „ exp.�X1

„
/.�KKS C �/� „�KKS is a for-

mal Maurer–Cartan element in TTay.C � g�/ŒŒ„�� equivalent to „.� � J 0/.

Proof. Note that X1
„
2 O.„/ and inductively one gets

Ji C„J
0
i C J

0kC1
i D exp.Xk

„
/ exp.Xk�1

„
/ � � � exp.X1

„
/.Ji / D exp.Xk

„
/.Ji C„J

0
i C J

0k
i /

D Ji C „J
0
i C J

0k
i CX

k
„
.Ji /CO.„kC1/:

Hence J 0kC1i 2 O.„kC1/ as well as XkC1
„
2 O.„kC1/. In particular, X1

„
is well defined

and satisfies
exp.X1

„
/.Ji / D Ji C „J

0
i C lim

k!1
J 0ki D Ji C „J

0
i

in the „-adic topology. The gauge equivalence exp.�X1
„
/, therefore, maps „.� � J 0/ to

exp.�X1
„
/ F „.� � J 0/ D exp.�X1

„
/
�
„�KKS � J C „.� � J

0/
�
� .„�KKS � J /

D „ exp.�X1
„
/.�KKS C �/ � „�KKSI

compare [31, Proposition 6.2.34] for a formula of the gauge action.
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4.4. L1-quasi-inverse of �

Finally, we want to find an explicit description of the L1-quasi-inverse of �, i.e., an L1-
quasi-isomorphism

P W
�
TTay.C � g�/; Œ�KKS � J; � �; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; Œ � ; � �

�
:

One can check that the homotopy h of Œ�J; � � from Proposition 4.12 does not commute
with Œ�KKS; � �. The idea is to start with Œ�J; � � as differential on the Taylor decomposition
and zero differential on the Cartan model, construct the L1-quasi-isomorphism P in this
case, and then investigate the compatibility with Œ�KKS; � �.

Let us focus on the deformation retract of DGLAs�
TCart.C /; 0

� �
TTay.C � g�/; Œ�J; � �

�i

p
h (4.33)

and apply the construction from Section 3. By Proposition 3.2, we have an L1-quasi-
isomorphism P given by P1 D p and

Pn D P
1
n D .R

1
2P

2
n � P

1
n�1Q

n�1
n / ıHn; (4.34)

where Q and R denote the L1-structure on S.TTay.C � g�/Œ1�/ and on S.TCart.C /Œ1�/,
respectively. Moreover, Hn is the extension of

h.� ˝ P ˝ ˛ ˝X/

D

´
�1

degSg� �Cdegƒg� ˛
is.e`/� ˝ P ˝ e` ^ ˛ ˝X if degSg� � C degƒg� ˛ ¤ 0;

0 else;

since Q1
1 D ŒJ; � �; compare Proposition 4.12.

Lemma 4.26. For n D 2, one has

P2.X1 _X2/ D �p
�
.�1/jX1jŒhX1; X2� � ŒX1; hX2�

�
(4.35)

for all homogeneous X1; X2 2 TTay.C � g�/Œ1�.

Proof. One has P 22 ıH2 D 0. Furthermore, for Q1
2.X1; Y1/ D �.�1/

jX1jŒX1; X2� with
jX1j denoting the shifted degree in TTay.C � g�/Œ1�, we have with the formula forH2, see
[21, p. 383],

P2.X1 _X2/

D �p ıQ1
2 ıH2.X1 _X2/

D �
p

2

�
� .�1/jX1jC1ŒhX1; X2 C ipX2�C .�1/

jX1jCjX1jC1ŒX1 C ipX1; hX2�
�

D �p
�
.�1/jX1jŒhX1; X2� � ŒX1; hX2�

�
:
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The last step is easily seen for homogeneous elements by counting the g�-degrees. In fact,
ifX2 D ipX2, then hX2 D 0 and the statement holds. If ipX2 D 0, then p.ŒhX1;X2�/D 0
since the bracket contains at least one g�-component that is annihilated by p. The same
holds for 1$ 2.

As a next step, we want to obtain an L1-morphism between .TTay.C � g�/;

Œ�KKS � J; � �/, and .TCart.C /; @/. Let us first observe that Pn contains n � 1 brackets and
n � 1 applications of h, increasing the ƒ�g�-degrees. This implies that the Pn are non-
zero only if all n arguments have no ƒg�-contribution and the sum of the S g�-degrees is
n� 1. As a consequence, all n� 1 brackets consist of pairings betweenƒg�-components
coming from h and the

Q
S g-components, whereas the Tpoly.C /-components are just

wedged together. Moreover, the first term in (4.34) does not contribute since the bracket
R12 is here in C -direction and we have

Pn D P
1
n D �P

1
n�1 ıQ

n�1
n ıHn: (4.36)

Therefore, to prove the compatibility of P with the differentials Œ�KKS; � � and @, we only
have to show that

�@P 1n D P
1
n ı .Q

�/nn;

where .Q�/nn is the extension of �Œ�KKS; � �. By the proof of Proposition 4.19 and the
above arguments, the only part with a non-trivial contribution is the extension of �@ D
�id˝ is.ei /˝ id˝ .ei /C^.

Proposition 4.27. The map P from (4.36) is an L1-quasi-isomorphism from the Taylor
series expansion .TTay.C � g�/; Œ�KKS � J; � �/ to .TCart.C /; @/ and an L1-quasi-inverse
to the inclusion � from Proposition 4.20. The same holds in the formal setting with the
rescaled differentials Œ„�KKS � J; � � and „@.

Proof. By the above reasoning all brackets consist of pairings in g�-direction and the
Tpoly.C /-components are just wedged together, so @ satisfies a Leibniz rule. Let us show
the statement inductively. For n D 1, it is obvious. In addition, we know that Œh; @� D 0
and thus

P 1n�1 ıQ
n�1
n ıHn ı .Q

�/nn D P
1
n�1 ıQ

n�1
n ıHn ı .�@/

n
n

D �P 1n�1 ıQ
n�1
n ı .�@/nn ıHn

D �P 1n�1 ıQ
n�1
n ı .Q�/nn ıHn

as the only part of Q� that contributes is �@. Moreover, we have

.Q�/nnQ
n
nC1 D �Q

n
nC1.Q

�/nC1nC1

since .Q�/11 D Œ��KKS; � � is a derivation. Then (4.36) gives

�@P 1nC1 D @P
1
nQ

n
nC1HnC1 D �Pn.Q

�/nnQ
n
nC1HnC1 D �PnQ

n
nC1HnC1.Q

�/nC1nC1

and the statement follows by induction.
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Remark 4.28. Note that here we cannot use the usual twisting procedure since we have
no complete filtration compatible to P such that �KKS is of degree one. Of course, this is
to be expected since the differential on TCart.C / is not an inner one.

We can also show that P is compatible with the curvature, which is easier to show in
the formal setting.

Proposition 4.29. The map P from (4.36) is anL1-morphism between the curved Taylor
expansion .TTay.C � g�/ŒŒ„��; „�; Œ�J; � �; Œ � ; � �/ and .TCart.C /ŒŒ„��; 0; „@; Œ � ; � �/.

Proof. We can twist P from Proposition 4.27 with �„�KKS as in [13, Lemma 2.7]. Then
we obtain an L1-morphism from the Taylor expansion .TTay.C � g�/ŒŒ„��; „�; Œ�J; � �/

to .TCart.C /; 0; „@/. This is clear since the new codifferential on S.TTay.C � g�/ŒŒ„��Œ1�/

is given by

Q00 D Q1.�„�KKS/C
1

2
Q2
�
� „�KKS;�„�KKS

�
D Œ„�KKS � J; „�KKS� D �„�;

Q01.X/ D Q1.X/CQ2.�„�KKS; X/ D Œ�„�KKS C J C „�KKS; X�:

Since �KKS contains a ƒg�-degree, the twisting does not change the L1-structure on the
Cartan model and the twisted morphism is just given by P .

Note that, in this case, P is no longer a quasi-isomorphism, and that the result also
holds in the classical setting:

Corollary 4.30. The map P from (4.36) is also an L1-morphism between the curved
DGLAs .TTay.C � g�/; �; Œ�J; � �/ and .TCart.C /; 0; @/.

Proof. Since the morphism P is „-linear, we can compute explicitly that the Taylor coef-
ficients of P are compatible with the above curved DGLA structures. By the construction
of P , we know that

R12P
2
n D P

1
nQ

n
n C P

1
n�1Q

n�1
n ;

where R12 is the bracket on the Cartan model and Q1
1 is the extension of ŒJ; � �. Moreover,

we have by Proposition 4.29 that

„R11P
1
n CR

1
2P

2
n D P

1
nC1.„Q0 _ � /C P

1
nQ

n
n C P

1
n�1Q

n�1
n ;

where R11 D �@ and Q0 D ��. This gives

„R11P
1
n D P

1
nC1.„Q0 _ � /) R11P

1
n D P

1
nC1.Q0 _ � /

and the statement is shown.

Remark 4.31. This can also be directly shown for the classical setting. Indeed, we do not
have the complete filtration, but by the explicit forms of P and �KKS, all the appearing
series in the twisting procedure are still well defined.
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5. The reduction L1-morphism and reduction of formal Poisson
structures

Let us now merge together all the results we obtained in the previous sections in order to
finalize the construction of the reduction scheme. Let a Lie group actionˆWG�M!M on
a general manifoldM and an equivariant map J WM ! g� with regular value 0 interpreted
as an element J 2 .g� ˝ C1.M//G be given. In (4.4), we defined the curved DGLA�

Tg.M/; �;�ŒJ; � �; Œ � ; � �
�
;

and we want to obtain an L1-morphism to Tpoly.Mred/ with zero differential in order to
reduce, in particular, formal Poisson structures.

5.1. The reduction L1-morphism

Under the above assumptions that the action is proper in an open neighborhood of the
constraint surfaceC WD J�1.¹0º/, we find an open G-invariant neighborhoodC �MniceŠ

Unice � C � g�, such that the momentum map on Unice is just the projection on the second
factor and such the group acts as the product of the action on C and the coadjoint action.
This yields the curved DGLA morphism

�jUnice W
�
Tg.M/; �;�ŒJ; � �; Œ � ; � �

�
!
�
Tg.Unice/; �jUnice ;�ŒJ jUnice ; � �; Œ � ; � �

�
which is just the restriction to the invariant open subsetMnice concatenated with the exten-
sion of the G-equivariant diffeomorphism to Unice. Moreover, we know from [4, Lemma 3]
that Unice is an open neighborhood of C � ¹0º such that Unice \ .¹pº � g�/ is star-shaped
around ¹pº � ¹0º for all p 2 C , hence we also have the Taylor expansion as in equa-
tion (4.7). It is a morphism of curved DGLAs

Tg� W
�
Tg.Unice/; �jUnice ;�ŒJ jUnice ; � �; Œ � ; � �

�
!
�
TTay.C � g�/; �;�ŒJ; � �; Œ � ; � �

�
:

With Proposition 4.29 and Corollary 4.30, we obtain, furthermore, a curvedL1-morphism

P W
�
TTay.C � g�/; �;�ŒJ; � �; Œ � ; � �

�
!
�
TCart.C /; 0; @; Œ � ; � �

�
and finally we have the projection

pW
�
TCart.C /; 0; @; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; 0; Œ � ; � �

�
from equation (4.23) that is a DGLA morphism and hence also a morphism of (curved)
L1-algebras.

Theorem 5.1. The composition of the above morphisms results in a curvedL1-morphism

TredW
�
Tg.M/; �;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/; 0; 0; Œ � ; � �

�
; (5.1)

called reduction L1-morphism. Considering the setting of formal power series in „, we
can extend Tred „-linearly and obtain

TredW
�
Tg.M/ŒŒ„��; „�;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/ŒŒ„��; 0; 0; Œ � ; � �

�
:
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5.2. Reduction of formal Poisson structures

As mentioned above, a formal curved Maurer–Cartan element „.� � J 0/ 2 „Tg.M/ŒŒ„��

is an invariant formal Poisson structure „� with a formal moment map J C „J 0. By Tred

we obtain, therefore, a formal Maurer–Cartan element

„�red D
X
k�1

1

kŠ
Tred;k

�
„.� � J 0/_k

�
(5.2)

in Tpoly.Mred/ŒŒ„�� which corresponds to a formal Poisson structure �red on Mred.
In order to show that this morphism gives indeed a non-trivial reduction scheme for

formal Poisson structures, we show at first that we recover the Marsden–Weinstein reduc-
tion. This classical setting is included in our formulation by considering special curved
formal Maurer–Cartan elements „� 2 „Tg.M/ŒŒ„��, where in fact � 2 T 1poly.M/ does not
depend on „, i.e., is a classical G-invariant Poisson structure with a momentum map J .

Proposition 5.2. The reduction procedure of Marsden–Weinstein coincides with the one
via Tred from Theorem 5.1 for Maurer–Cartan elements of the form „� 2 „Tg.M/ŒŒ„��

with � 2 T 1poly.M/.

Proof. By Lemma 4.10, we know that „� takes in the Taylor expansion the form „�KKSC

„�C , where �C D
Q
i �

i
C with � iC 2 Si g˝ T 1poly.C /. Then the application of p ıP yields

a Maurer–Cartan element „�red in the reduced DGLA .Tpoly.MredŒŒ„��/; 0; Œ � ; � �/ via

„�red D
X
k�1

1

kŠ
p ı Pk

�
„.�KKS C �C /; : : : ; „.�KKS C �C /

�
D p.„�0C /;

so this series is indeed well defined. This Maurer–Cartan element corresponds to a classi-
cal Poisson structure �red with

p��red.d�; d / D �0C .dp
��; dp� / D ��.�KKS C �C /.d prolp��; d prolp� /

for �;  2 C1.Mred/, where prolWC1.C /! C1.C /˝
Q
i Si g is the canonical pro-

longation. But this is just the usual reduced Poisson structure from Marsden–Weinstein
reduction.

Now we want to show that our construction is indeed a non-trivial extension of the
classical Marsden–Weinstein reduction to the formal setting. For simplicity, let us consider
for a moment just a part of Tred, namely the map

zTred D p ı P W
�
TTay.C � g�/ŒŒ„��; „�;�ŒJ; � �; Œ � ; � �

�
!
�
Tpoly.Mred/ŒŒ„��; 0; 0; Œ � ; � �

�
:

Lemma 5.3. The induced map at the level of Maurer–Cartan elements

zTredWMC
�
TTay.C � g�/ŒŒ„��

�
!MC

�
Tpoly.Mred/ŒŒ„��

�
„.� � J 0/ 7!

X
k�1

1

kŠ
zTred;k

�
„.� � J 0/_k

� (5.3)

is a surjection.
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Proof. Let „�red 2MC.Tpoly.Mred/ŒŒ„��/, then we know from Corollary 4.17 that

… D
X
k�1

1

kŠ
�1;k

�
.�red/

_k
�

is a well-defined Maurer–Cartan element in TCart.C /ŒŒ„�� with differential @. Thus „… is a
Maurer–Cartan element with respect to the differential „@ and it satisfies p.„…/ D „�red.
Using Proposition 4.19, we see that „.�KKS C…/ 2MC.TTay.C � g/ŒŒ„��/ andX

k�1

1

kŠ
zTred;k

��
„.�KKS C…/

�_k�
D p.„…/ D „�red

as desired.

5.3. Comparison of the reduction procedures

We conclude with a comparison of the different reduction procedures. More explicitly, we
want to compare the reduction via Tred from Theorem 5.1 with the reduction of formal
Poisson structures via the formal Koszul complex; see Appendix A.

In the setting of curved DGLAs or curved L1-algebras, it is more tricky to talk about
equivalent Maurer–Cartan elements. Thus we switch to the description of our reduction in
terms of flat DGLAs as in Theorem 4.22. Here we need �KKS which is not available in the
general setting, so from now on we restrict ourselfes to the Taylor expansion�

TTay.C � g�/; Œ„�KKS � J; � �; Œ � ; � �
�
:

Consider a formal Poisson structure �„ D
P1
rD0 „

r�r 2 �
1.ƒ2TM/ŒŒ„�� with a for-

mal equivariant momentum map J„ D J C „J 0W g! C1.M/ŒŒ„��. By Proposition A.3,
one gets an induced formal Poisson bracket on Mred D J

�1.¹0º/=G via

��¹u; vºred D �
�
®
Œprol��u�; Œprol��v�

¯
„
;

where the deformed restriction map is given by

�� D ��
�
idC ia.„J 0/h0

��1
D ��

1X
kD0

�
� ia.„J 0/h0

�k
I (5.4)

compare Proposition A.3. We directly see that the reduction procedure works analogously
for �„ 2 T 1Tay.C � g�/ŒŒ„��.

Theorem 5.4. The reduction of formal equivariant Poisson structures with formal mo-
mentum maps via

zTred D p ı P W
�
TTay.C � g�/ŒŒ„��; Œ„�KKS � J; � �; Œ � ; � �

�
!
�
Tpoly.Mred/ŒŒ„��; 0; Œ � ; � �

�
coincides with the reduction of formal Poisson structures via the formal Koszul complex
from Proposition A.3.
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Proof. We show at first that the reduction procedures coincide on Maurer–Cartan elements
of the form „�C , i.e., where the quantum momentum map is just the classical momen-
tum map. Note that by Corollary 4.24 every formal Maurer–Cartan element „.� 0 � J 0/ is
equivalent to such an „�C . Writing again

� iC 2
�

Si g˝ T 1poly.C /
�
ŒŒ„��;

the reduced Poisson structure via zTred is easy to describe, namely by

„�red D

1X
kD1

1

kŠ
zT1red;k.„�C _ � � � _ „�C /

D

1X
kD1

„k

kŠ
p ı Pk.�C ; : : : ; �C / D p.„�

0
C /:

In the reduction via the formal Koszul complex, one has �� D �� and thus the reduced
formal Poisson structures coincide by the same reasons as in the classical setting of Propo-
sition 5.2.

The idea is now to use the explicit equivalence from Proposition 4.25. Let „.� � J 0/
be a formal Maurer–Cartan element in TTay.C � g�/ŒŒ„�� and let X1

„
be the equivalence

between the formal Maurer–Cartan elements .�KKS C �; J C „J
0/ and .�KKS C �C ; J /.

The reduction via the formal Koszul complex maps both Poisson structures to the same
formal Poisson structure on Mred. This follows from formula (A.13) for the equivalence
between the reduced Poisson structures sinceX1

„
differentiates only in the direction of g�.

We only have to show that zTred also maps both to the same one. But X1
„

induces the
following equivalence on the level of the reduced manifold:

p ı P 1
�
X1
„
_ exp

�
exp.X1

„
/ F „.� � J 0/

��
D 0;

see, e.g., [7, Proposition 4.9], whence both reduced structures are again equal. This proves
the theorem.

A. BRST-like reduction of formal Poisson structures
In this appendix, we want to recall a reduction scheme for formal Poisson structures sim-
ilarly to the reduction of star products in [16] resp. to the BRST reduction as formulated
in [4]. It is obtained by extending the Koszul part of the classical BRST reduction as
in [19, 30] to the formal setting. This can be achieved by the homological perturbation
lemma; see [8, Theorem 2.4] and [28, Chapter 2.4] for versions adapted to our setting.

A.1. Homological perturbation lemma

Definition A.1 (Homotopy equivalence data). A homotopy equivalence data (HE data)
consists of two chain complexes .C; dC / and .D; dD/ over a commutative ring R together
with two quasi-isomorphisms

pWC ! D and i WD ! C (A.1)
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and a chain homotopy

hWD ! D with idD � pi D dDhC hdD (A.2)

between pi and idD .

For a shorter notation, we will denote such an HE data by

pW .C; dC / � .D; dD/W i; h:

Moreover, we say that a graded map BWD� ! D��1 with .dD C B/2 D 0 is a perturba-
tion of the HE data. The perturbation is called small if idD C Bh is invertible, and the
homological perturbation lemma states that in this case the perturbed HE data is again an
HE data; see [8, Theorem 2.4] for a proof.

Proposition A.2 (Homological perturbation lemma). Let

pW .C; dC / � .D; dD/W i; h

be an HE data and let B be small perturbation of dD . Then the perturbed data

P W .C; OdC / � .D; OdD/W I;H (A.3)

with

A D .idD C Bh/�1B; OdD D dD C B; OdC D dC C iAp;

P D p � hAp; I D i � iAh; H D h � hAh;
(A.4)

is again an HE data.

We will even encounter a simpler situation, namely that the complex C is concentrated
in degree 0 and Dn D 0 for n < 0:

0 D0 D1 � � �

0 C0 0

i

h0

dD;1

h1

dD;2

p (A.5)

In this case, the perturbed HE data corresponding to a small perturbation B according to
(A.4) is given by

P D p; I D i � i.idD C B1h0/�1B1h0; H D h � h.idD C Bh/�1Bh

and, using the geometric power series, this can be simplified to

P D p; I D i.idD C B1h0/�1; H D h.idD C Bh/�1: (A.6)

Here we denote by B1WD1 ! D0 the degree one component of B , analogously for h.
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A.2. Formal Koszul complex

We start with the classical Koszul complex ƒ�g ˝ C1.M/ that can be interpreted as
the smooth functions on M with values in the complexified Grassmann algebra of g. The
Koszul differential @ is given by

@Wƒqg˝ C1.M/! ƒq�1g˝ C1.M/; a 7! i.J0/a D J0;i ia.ei /a; (A.7)

where i denotes the left insertion and J0 D J0;iei the decomposition of J0 with respect
to a basis e1; : : : ; en of g�. Then @2 D 0 follows immediately with the commutativity of
the pointwise product in C1.M/. The differential @ is also a derivation with respect to
the associative and super-commutative product on the Koszul complex, consisting of the
^-product on ƒ�g tensored with the pointwise product on the functions. Moreover, it is
invariant with respect to the induced g-representation

g 3 � 7! �.�/ D ad.�/˝ id � id˝L�M 2 End
�
ƒ�g˝ C1.M/

�
(A.8)

as we have

@�.ea/.x ˝ f /

D f kaj ek ^ i.ej / ^ i.ei /x ˝ J0;if C f iaj i.ej /x ˝ J0;if C i.ei /x ˝ J0;i¹J0;a; f º0

D �.ea/@.x ˝ f /

for all x 2 ƒ�g and f 2 C1.M/.
One can show that the Koszul complex is acyclic in positive degree with homology

C1.C / in order zero, and that one has a G-equivariant homotopy

hi Wƒ
ig˝ C1.M/! ƒiC1g˝ C1.M/ (A.9)

given on C � Unice � C � g� by

hk.x/.c; �/ D ei ^

Z 1

0

tk
@x

@�i
.c; t�/dt; with @h0 D id0 � prol ��

and h0 ı prolD 0, where x 2ƒkg˝C1.C � g�/ and .c;�/ 2 C � g�; see [4, Lemma 6]
and [16] for the notation Unice. In other words, this means that

prolW
�
C1.C /; 0

�
�
�
ƒ�g˝ C1.M/; @

�
W ��; h

is an HE data of the special type of (A.5); i.e., we have the diagram

0 C1.M/ ƒ1g˝ C1.M/ � � �

0 C1.C / 0

��

h0

@1

h1

@2

prol
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Let now �„ be an invariant formal Poisson structure with a formal equivariant momen-
tum map J„. In order to take care of the formal momentum map, we extend the Koszul
complex „-linearly and gain the HE data

prolW
�
C1.C /ŒŒ„��; 0

�
�
�
ƒ�g˝ C1.M/ŒŒ„��; @

�
W ��; h:

Since the formal momentum map J„ is a deformation of J0 in the sense that the difference
J„ � J0 D J

0W g! „C1.M/ŒŒ„�� starts in order one of „, the formal differential @„ D
i.J„/ D @ C B with B D i.J 0/ on ƒ�g ˝ C1.M/ŒŒ„�� is a small perturbation in the
sense of the homological perturbation lemma (Lemma A.2). Indeed, @2

„
D 0 follows for

the same reasons as @2 D 0, and idC Bh is invertible as formal power series since Bh
stars in order one of „. Consequently, the corresponding perturbed HE data of the formal
Koszul complex

prolW
�
C1.C /ŒŒ���; 0

�
�
�
ƒ�g˝ C1.M/ŒŒ���; @„

�
W ��;h

is given by

prol D prol; �� D ��.idC B1h0/�1; h D h.idC Bh/�1I (A.10)

compare (A.6). In particular, we have ��@„ D 0,

idƒ�g˝C1.M/ŒŒ„�� � prol �� D @„hC h@„ (A.11)

as well as �� prolD idC1.C/ŒŒ„�� because of h0 prolD 0. Moreover, @„ is still a g-equivari-
ant derivation of the algebra structure. Therefore, also �� and h are g-equivariant as all
involved maps are.

We denote the image of the deformed Koszul differential by

J„ D im @„jƒ1g˝C1.M/ŒŒ„�� D hJ„;i ii :

Since prol �� is a projection with kernel J„, compare (A.11), we get with the injectivity of
prol

J„ D ker ��jC1.M/ŒŒ„��:

As @„ is C1.M/ŒŒ„��-linear, J„ is an ideal in C1.M/ŒŒ„�� with respect to the pointwise
product. Moreover, J„ is a Poisson subalgebra of .C1.M/ŒŒ„��; ¹ � ; � º„/ because of

��¹f; gº„

D ��
�
f igj ¹J„;i ; J„;j º„Cf

iJ„;j ¹J„;i ; g
j
º„CJ„;ig

j
¹f i ; J„;j º„CJ„;iJ„;j ¹f

i ; gj º„
�

D 0

for f D f iJ„;i , g D gjJ„;j 2 J„. As usual, one can consider the Poisson normalizer

B„ D
®
f 2 C1.M/ŒŒ„�� j ¹f;J„º � J„

¯
the biggest Poisson subalgebra containing J„ as a Poisson ideal. Then we know that the
quotient is a Poisson algebra and we even have the following proposition.
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Proposition A.3. There exists a unique formal Poisson structure �red on Mred such that

B„=J„ 3 Œf � 7! ��f 2 ��C1.Mred/ŒŒ„��

is an isomorphism of Poisson algebras with inverse ��u 7! Œprol��u�.

Proof. We have for u 2 C1.Mred/ŒŒ„��, j D j kJ„;k 2 J„, and f 2 B„

��¹prol��u; j º„ D ��
�
j k¹prol��u; J„;kº„ C J„;k¹prol��u; j kº„

�
D ��.j kL.ek/M prol��u/ D 0

as well as
L.ei /C �

�f D ��L.ei /M f D �
�
¹f; J„;iº„ D 0;

thus the maps are both well defined. The fact that the maps are mutually inverse is clear
since

�� prol D id and id � prol �� D @„h 2 J„:

The compatibility with the pointwise product follows from the explicit form �� D �� ıP
k.�B1h0/

k and the fact that

h0.f prol�/ D prol� � h0f;

which directly yields

��
�
Œfg�

�
D ��

�
Œf prol ��g�

�
D ��f � ��g:

The compatibility of prol in the setting M DMnice in the notation of [16] is clear since it
is just a pull-back. In addition, we get a unique induced formal Poisson structure on Mred

via
��¹u; vºred D �

�
®
Œprol��u�; Œprol��v�

¯
„
:

Antisymmetry is clear and also the Jacobi identity follows directly, where we omit the
sign for the equivalence classes:

��
®
u; ¹v;wºred

¯
red

D ��
®

prol��u; prol ��¹prol��v; prol��wº„
¯
„

D ��
�®
¹prol��u; prol��vº„; prol��w

¯
„
C
®

prol��v; ¹prol��u; prol��wº„
¯
„

�
D ��

�®
¹u; vºred; w

¯
red C

®
v; ¹u;wºred

¯
red

�
:

Concerning the Leibniz identity, we get

��¹u; vwºred

D ��
®

prol��u; prol.��v/ prol.��w/
¯
„

D ��
�®

prol��u; prol.��v/
¯
„

prol.��w/C prol.��v/
®

prol��u; prol.��w/
¯
„

�
D ��

�
v¹u;wºred C ¹u; vºredw

�
;

since ��.f prol�/ D ��.f /�.
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Now we want to show that the reduction procedure is compatible with equivalences,
i.e., that equivalent formal Poisson structures with formal momentum maps are reduced
to equivalent reduced Poisson structures.

Proposition A.4. Let T D exp.X„/W .�„; J„/ ! .� 0
„
; J 0
„
/ be an equivalence of formal

invariant Poisson structures with momentum maps, i.e., X„ 2 „�1.TM/ŒŒ„�� such that

T�„ D �
0
„

and T ı J„ D J
0
„
: (A.12)

Then one has even X„ 2 „�1.TM/GŒŒ„�� and

Tred D .�
�/�1 ı ��

0
ı T ı prol ı�� (A.13)

is an equivalence between the reduced formal Poisson structures �red and � 0red.

Proof. The proof is analogue to the case of star products in [28, Lemma 4.3.1]. At first,
as in [31, Proposition 6.2.20], one can show that T�„ D � 0„ is equivalent to

T ¹f; gº„ D ¹Tf; Tgº
0
„
:

But then (A.12) implies that

L�M Tf D
®
Tf; J 0

„
.�/
¯0
„
D T

®
f; J„.�/

¯
„
D TL�M f:

In particular, this yields Œ�M ; X„� D 0 and thus the invariance of X„. In addition, recall
from Proposition A.3 that we have an isomorphism of Poisson algebras�

C1.Mred/ŒŒ„��; �red
�
Š

B„

J„
:

By [31, Proposition 6.2.7], we know that T is an automorphism with respect to the point-
wise product, thus we see directly from the definition of the deformed Koszul differential
that

T ı @„ D @
0
„
ı T ) T WJ„

Š
�! J0

„
:

Analogously, we have for j 0 2 J0
„

with j D T �1j 0 2 J„ and f 2 B„

¹Tf; j 0º0
„
D T ¹f; j º„ 2 TJ„ D J„

0
) T WB„

Š
�! B 0

„
:

Thus Tred establishes an isomorphism of the spaces B„=J„ and B 0
„
=J0
„
. It remains to

check the compatibility with the Poisson bracket:

��Tred¹u; vºred D �
�0T prol ��¹prol��u; prol��vº„ D ��

0
T ¹prol��u; prol��vº„

since T maps the kernel of �� into the kernel of ��0. On the other hand, we get

��¹Tredu; Tredvº
0
red D �

�0
¹prol ��0T prol��u; prol ��0T prol��vº0

„

D ��
0
¹T prol��u; T prol��vº0

„
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since we take on the right-hand side the bracket in B 0
„
=J0
„
, where Œprol ��0f � D Œf �. Thus

the compatibility with the brackets is shown. It remains to show that Tred is of the form
TredD exp.Xred;„/ for some vector fieldXred;„ 2„�

1.TMred/ŒŒ„��. Since T D exp.X„/we
know that Tred is a formal power series of CŒŒ„��-linear operators starting with idC„.� � � /.
We can write Tred D exp.„D/ via

„D D

1X
sD0

.�1/sC1

s
.T � id/s :

Again by [31, Proposition 6.2.7] it suffices to show that Tred.uv/ D Tred.u/Tred.v/, which
directly implies that Tred D exp.Xred/ for some vector field Xred 2 „�

1.TMred/ŒŒ„��. But
this is clear since each of the involved maps in the definition of Tred is compatible with
the pointwise product: the maps prol; ��, and .��/�1 since they, resp. their inverses, are
pull-backs, the map T since T D exp.X„/, and �� by Proposition A.3.
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