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On the lifting property for C �-algebras

Gilles Pisier

Abstract. We characterize the lifting property (LP) of a separable C�-algebraA by a property of its
maximal tensor product with otherC�-algebras, namely we prove thatA has the LP if and only if for
any family ¹Di j i 2 I º ofC�-algebras the canonical map `1.¹Di º/˝max A! `1.¹Di ˝max Aº/

is isometric. Equivalently, this holds if and only if M ˝max A D M ˝nor A for any von Neumann
algebra M .

1. Introduction

A separable C �-algebra A has the lifting property (LP in short) if any contractive com-
pletely positive (c.c.p. in short) map u W A! C=	 into a quotient C �-algebra admits a
c.c.p. lifting Ou W A! C . In [9], Choi and Effros proved that all (separable) nuclear C �-
algebras have the LP. Later on in [19] Kirchberg proved that the full C �-algebra of the free
group Fn with n > 1 (or n D 1) generators, which is notoriously non-nuclear, also has
the LP. It follows that separable unital C �-algebras with the LP are just the quotients of
C �.F1/ for which the quotient map admits a unital completely positive (u.c.p. in short)
lifting. More generally, as observed by Boca in [7], it follows from the latter fact that the
LP is stable by unital (maximal) free products. Indeed, it is an immediate consequence of
Boca’s theorem in [6] (see [11] for a recent simpler proof) that the free product of a family
of unital �-homomorphisms that are liftable by u.c.p. maps is also liftable by a u.c.p. map.
However, it is well known that the reduced C �-algebra of Fn fails the LP.

Our main result is a very simple (functorial) characterization of the LP in terms of
maximal tensor products (namely (1.4) below) that seems to have been overlooked by
previous authors. In [18], Kirchberg gave a tensor product characterization of the local
version of the LP called the LLP. He showed that a C �-algebra A has the LLP if and
only if B.`2/ ˝max A D B.`2/ ˝min A. He then went on to conjecture that for separa-
ble C �-algebras the LLP implies the LP, and he showed that a negative solution would
imply a negative answer for the Connes embedding problem (see Remark 1.17 for more
information). We hope that our new criterion for the LP will help to answer this question
whether the LLP implies the LP. More specifically, we believe that a modification of the
construction in [28] might lead to a counterexample.
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Let .Di /i2I be a family of C �-algebras. We will denote by `1.¹Di j2 I º/ or sim-
ply by `1.¹Diº/ the C �-algebra formed of the families d D .di /i2I in

Q
i2I Di such

that supi2Ikdik <1, equipped with the norm d 7! supi2Ikdik. Consider the following
property of a C �-algebra A:

For any family .Di /i2I of C �-algebras and any t 2 `1.¹Diº/˝ A we have (1.1)

ktk`1.¹Di º/˝maxA � sup
i2I

ktikDi˝maxA; (1.2)

where ti D .pi ˝ IdA/.t/ with pi W `1.¹Diº/! Di denoting the i -th coordinate projec-
tion.

Of course, for any i 2 I we have kpi ˝ IdA W `1.¹Diº/˝max A! Di ˝max Ak � 1,
and hence we have a natural contractive �-homomorphism

`1.¹Diº/˝max A! `1.¹Di ˝max Aº/: (1.3)

Thus, (1.2) means that we have a natural isometric embedding

`1.¹Diº/˝max A � `1.¹Di ˝max Aº/: (1.4)

More precisely `1.¹Diº/˝max A can be identified with the closure of `1.¹Diº/˝ A
(algebraic tensor product) in `1.¹Di ˝max Aº/.

Let us denote
C D C �.F1/;

the full (or “maximal”) C �-algebra of the free group F1 with countably infinitely many
generators.

Using the description of the norm inD ˝max `
n
1 (for an arbitrary C �-algebraD), with

`n1 � C identified as usual with the span of n free generators, it is easy to check that C has
this property (1.1) (see Lemma 6.1 below). In fact, as a consequence, any unital separable
A with LP has this property. Our main result is that conversely this characterizes the LP.

The fact that (1.1) implies the LP contains many previously known lifting theorems,
for instance the Choi–Effros one. It also gives a new proof of the LP for C �.F1/.

The key step will be a new form of the reflexivity principle. Consider for E � A finite
dimensional the normed space MB.E; C / defined below in Section 2 as formed of the
max! max-tensorizing maps into another C �-algebra C . We will show that if (and only
if) A has property (1.1) then the natural map

MB.E;C ��/ �MB.E;C /��

is contractive for any finite dimensional E � A. As a consequence it follows that any
u 2MB.E;C / admits an extension in MB.A;C / with the same MB-norm up to " > 0.
From this extension property we deduce a lifting one: if A assumed unital and separable
satisfies (1.1), any unital c.p. map u W A! C=	 (C=	 any quotient) admits a unital c.p.
lifting. In other words, this says that (1.1) implies the LP.
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Remark 1.1. Let .Di /i2I be a family ofC �-algebras. Consider the algebraic tensor prod-
uct `1.¹Diº/˝ A. We will use the natural embedding

`1.¹Diº/˝ A �
Y
i2I

.Di ˝ A/:

Any t 2 `1.¹Diº/˝A can be identified with a bounded family .ti / with ti 2Di ˝E for
some f.d. subspace E � A. Thus, the correspondence t 7! .ti / gives us a canonical linear
embedding

`1.¹Diº/˝ A � `1.¹Di ˝max Aº/: (1.5)

The property in (1.1) is equivalent to the assertion that this map is an isometric embedding
when `1.¹Diº/˝ A is equipped with the maximal C �-norm.

More precisely, for any f.d. subspace E � A we have a canonical linear isomorphism

`1.¹Diº/˝E ' `1.¹Di ˝Eº/:

By convention, for any C �-algebra D let us denote by D ˝max E the normed space
obtained by equipping D ˝ E with the norm induced on it by D ˝max A. Then the prop-
erty in (1.1) is equivalent to the assertion that for any f.d. E � A we have an isometric
isomorphism

`1.¹Diº/˝max E ' `1.¹Di ˝max Eº/: (1.6)

Notation. Let D;A be C �-algebras and let E � A be a subspace. We will denote

.D ˝E/Cmax D .D ˝max A/C \ .D ˝E/:

Theorem 1.2. Let A be a separable C �-algebra. The following are equivalent:

(i) The algebra A has the lifting property (LP).

(ii) For any family .Di /i2I of C �-algebras and any t 2 `1.¹Diº/˝ A we have

ktk`1.¹Di º/˝maxA � sup
i2I

ktikDi˝maxA:

In other words, the natural �-homomorphism (1.3) is isometric.

(ii)C For any family .Di /i2I of C �-algebras and any t 2 `1.¹Diº/˝A, the follow-
ing implication holds:

8i 2 I ti 2 .Di ˝ A/
C
max ) t 2 .`1.¹Diº/˝ A/

C
max:

We prove Theorem 1.2 in Section 6.

Remark 1.3 (On the nuclear case). If one replaces everywhere max by min in (ii) in
Theorem 1.2, then the property clearly holds for all C �-algebras. Thus, Theorem 1.2
implies as a corollary the Choi–Effros lifting theorem from [9], which asserts that nuclear
C �-algebras have the LP.
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Remark 1.4. It is easy to see that if A is the direct sum of finitely many C �-algebras
satisfying (1.1) then A also does.

Remark 1.5. Let A be a C �-algebra. It is classical (see e.g. [29, Prop. 7.19]) that for
any (self-adjoint, closed and two sided) ideal 	 � A and any C �-algebra D we have an
isometric embeddingD˝max 	 �D˝max A. This shows that if A satisfies (1.1) then any
ideal 	 in A also does.

Similarly, for any ideal 	�D we have an isometric embedding 	˝max A�D˝max A.
Thus, if (1.1) holds for a given family .Di / it also holds for any family .	i / where each
	i is an ideal in Di . Since any D is an ideal in its unitization, one deduces from this that
if (1.1) holds for any family .Di / of unital C �-algebras, then it holds for any family. One
also sees that A satisfies (1.1) if and only if its unitization satisfies it.

Remark 1.6. We will use the fact due to Kirchberg [18] that for any t 2 Di ˝ A there is
a separable C �-subalgebra �i � Di such that t 2 �i ˝ A and

ktk�i˝maxA D ktkDi˝maxA:

Indeed, by [29, Lem. 7.23] for any "> 0 there is a separableD"
i �Di such that t 2D"

i ˝A

and ktkD"
i˝maxA � .1C "/ktkDi˝maxA. This implies that the C �-algebra �i generated by

¹D"
i j " D 1=n; n � 1º has the announced property. Using this fact in property (1.1) we

may assume that all the Di ’s are separable (and unital by the preceding remark).

Remark 1.7. Let C=	 be a quotient C �-algebra and let A be another C �-algebra. It is
well known (see e.g. [29, Prop. 7.15]) that

.C=	/˝max A D .C ˝max A/=.	 ˝max A/: (1.7)

Equivalently, A˝max .C=	/D .A˝max C/=.A˝max 	/. Moreover, for any f.d. subspace
E � A we have (for a detailed proof see e.g. [29, Lem. 4.26])

.C=	/˝max E D .C ˝max E/=.	 ˝max E/: (1.8)

Moreover, the closed unit ball of .C ˝max E/=.	˝max E/ coincides with the image under
the quotient map of the closed unit ball of C ˝max E. This known fact can be checked just
like for the min-norm in [29, Lem. 7.44].

Since any separable unital C �-algebraD can be viewed as a quotient of C, so that, say
D D C=	, we have an isomorphism

D ˝max A D .C˝max A/=.	 ˝max A/: (1.9)

Using Remarks 1.6 and 1.7, one obtains:

Proposition 1.8. To verify property (1.1) we may assume without loss of generality that
Di D C for any i 2 I .
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Lemma 1.9. Let .Di /i2I be a family of C �-algebras. Then for any C �-algebra C we
have natural isometric embeddings

`1.¹Di ˝max C º/ � `1.¹D
��
i ˝max C º/; (1.10)

`1.¹Diº/˝max C � `1.¹D
��
i º/˝max C: (1.11)

Proof. We will use the classical fact that (1.11) (or (1.10)) holds when .Di /i2I is reduced
to a single element (see Remark 1.15 or [29, Prop. 7.26]), which means that we have for
each i 2 I a natural isometric embedding Di ˝max C � D

��
i ˝max C . From this, (1.10)

is immediate.
To check (1.11), since any unital separable C is a quotient of C, we may assume by

Remark 1.7 that C D C (see [29, Thm. 7.29] for details). Now, since C satisfies (1.1) (or
equivalently the LP) we have isometric embeddings

`1.¹Diº/˝max C � `1.¹Di ˝max Cº/

and
`1.¹D

��
i º/˝max C � `1.¹D

��
i ˝max Cº/:

Thus, (1.11) follows from (1.10) for C D C, and hence in general.

Proposition 1.10. To verify property (1.1) we may assume without loss of generality that
Di is the bidual of a C �-algebra for any i 2 I . A fortiori we may assume thatDi is a von
Neumann algebra for any i 2 I .

Proof. This is an immediate consequence of Lemma 1.9.

In [19], where Kirchberg shows that the C �-algebra C D C �.F1/ has the LP, he also
states that if a C �-algebra C has the LP then for any von Neumann algebra M the nor-
norm coincides on M ˝ C (or on C ˝M ) with the max-norm. We will show that the
converse also holds. The nor-norm of an element t 2 M ˝ C (C any C �-algebra) was
defined by Effros and Lance [13] as

ktknor D sup¹k� � �.t/kº

where the sup runs over allH and all commuting pairs of representations � WM !B.H/,
� W C ! B.H/ with the restriction that � is normal onM . Here, � � � WM ˝C ! B.H/

is the �-homomorphism defined by � � �.m˝ c/D �.m/�.c/ (m 2M , c 2 C ). The norm
k knor is a C �-norm and M ˝nor C is defined as the completion of M ˝ C relative to this
norm. One can formulate a similar definition for C ˝nor M . See [29, p. 162] for more
on this. We will invoke the following elementary fact (we include its proof for lack of a
reference).

Lemma 1.11. Let D be another C �-algebra. Then for any c.c.p. map u W C ! D the
mapping IdM ˝ u W M ˝ C ! M ˝ D extends to a contractive (and c.p.) map from
M ˝nor C to M ˝nor D.
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Proof. Let Smax (resp. Snor) denote the set of states on M ˝max C (resp. M ˝nor C ).
An element of Smax can be identified with a bilinear form f W M � C ! C of norm
� 1 that is c.p. in the sense that

P
f .xij ; yij / � 0 for all n and all Œxij � 2 Mn.M/C

and Œyij � 2 Mn.C /C. The set Snor corresponds to the forms f 2 Smax that are normal
in the first variable. See [13] or [29, §4.5] for more information. Let u W C ! D be
a c.c.p. map. Clearly, for any f 2 Snor the form .x; y/ 7! f .x; u.y// is still in Snor.
Since ktknor � supf 2Snor

jf .t/j for any t 2 M ˝ C , the mapping IdM ˝ u (uniquely)
extends to a bounded linear map uM W M ˝nor C ! M ˝nor D. Since u is c.p. we have
uM .t

�t / 2 .M ˝ C/C WD span¹s�s j s 2 M ˝ C º for any t 2 M ˝ C , and hence by
density uM .t�t / 2 .M ˝nor C/C for any t 2 M ˝nor C . This means that uM is posi-
tive. ReplacingM byMn.M/ shows that uM is c.p. Since ktknor D supf 2Snor

jf .t/j when
t � 0, we have kuMk � 1.

We will invoke the following simple elementary fact.

Lemma 1.12. Let A be a C �-algebra. For any family .Di /i2I of C �-algebras we have a
natural isometric embedding

`1.¹D
��
i º/˝nor A � `1.¹D

��
i ˝nor Aº/:

Proof. Let D D c0.¹Diº/ so that D�� D `1.¹D
��
i º/. Consider t 2 D�� ˝ A. Let � W

A ! B.H/, � W D�� ! �.A/0 be commuting non-degenerate �-homomorphisms with
� normal. Thus, � is the canonical weak* to weak* continuous extension of �jD W D !
�.A/0. It will be notationally convenient to view Di as a subalgebra of D. We observe
that �jD is the direct sum of representations of the Di ’s. Let �i W Di ! �.A/0 be defined
by �i .x/ D �.x/ (recall Di � D). There is an orthogonal decomposition of H of the
form IdH D

P
i2I pi with pi 2 �.D/ � �.A/0 such that for any c D .ci / 2 D we have

�.c/D norm sense
P
i2I �i .ci / and also �i .x/D pi�i .x/D �i .x/pi for any x 2Di . Let

R�i W D
��
i ! �.A/0 be the weak* to weak* continuous extension of �i . Since � is normal,

we have then for any c00 D .c00i / 2 `1.¹D
��
i º/

�.c00/ D weak* sense
X
i2I

R�i .c
00
i /:

This means � ' ˚R�i . Therefore, for any t 2 D�� ˝ A D `1.¹D��i º/˝ A we have

k� � �.t/k D sup
i2I

k R�i � �.ti /k � sup
i2I

ktikD��i ˝norA:

Taking the sup over all the above specified pairs .�; �/, we obtain

ktknor � sup
i2I

ktikD��i ˝norA;

whence (since the converse is obvious) a natural isometric embedding

D�� ˝nor A � `1.¹D
��
i ˝nor Aº/:

This completes the proof.



On the lifting property for C�-algebras 973

The next statement is now an easy consequence of Theorem 1.2.

Theorem 1.13. Let A be a separable C �-algebra. The following are equivalent:

(i) The algebra A has the lifting property (LP).

(i)0 The algebra A satisfies (1.1).

(ii) For any von Neumann algebra M we have

M ˝nor A DM ˝max A (or equivalently A˝nor M D A˝max M ): (1.12)

(ii)0 For any C �-algebra D we have

D�� ˝nor A D D
��
˝max A (or equivalently A˝nor D

��
D A˝max D

��):

Proof. The equivalence (i), (i)0 duplicates for convenience part of Theorem 1.2.
(i)) (ii) boils down to Kirchberg’s result from [19] that C satisfies (ii), for which a

simpler proof was given in [26] (see also [29, Thm. 9.10]). Once this is known, if A has
the LP then A itself satisfies (ii). Indeed, we may assume AD C=	 and by Lemma 1.11 if
r W A! C is a c.c.p. lifting then rM WM ˝nor A to M ˝nor C DM ˝max C is contractive,
from which (1.12) follows. A priori this uses the separability of A but we will give a direct
proof of (i)0) (ii) valid in the non-separable case in Section 8.

(ii)) (ii)0 is trivial. Assume (ii)0 (with A possibly non-separable). By Lemma 1.12
we have a natural isometric embedding

`1.¹D
��
i º/˝max A � `1.¹D

��
i ˝max Aº/:

By (1.10) and (1.11) we must have (1.1), which means that (i)0 holds. Thus, (ii)0) (i)0.

We will prove a variant of the preceding theorem in terms of ultraproducts in Section 7.

Remark 1.14. It is known (see [29, Thm. 8.22]) that we always have an isometric natural
embedding

D�� ˝bin A
��
� .D ˝max A/

��:

Therefore, for arbitrary D and A, we have an isometric natural embedding

D�� ˝nor A � .D ˝max A/
��: (1.13)

Thus, (ii)0 in Theorem 1.13 can be reformulated as saying that for any D we have an
isometric natural embedding

D�� ˝max A � .D ˝max A/
��: (1.14)

This is the analogue for the max-tensor product of Archbold and Batty’s property C 0

from [4], which is closely related to the local reflexivity of [12] (see [27, p. 310] or
[29, Rem. 8.34] for more information on this topic). However, what matters here is the
injectivity of the �-homomorphism in (1.14). Its continuity is guaranteed by (1.13). In
sharp contrast for property C 0 continuity is what matters while injectivity is automatic
since the min-tensor product is injective.
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Remark 1.15. Let A be a C �-algebra. We already used in Lemma 1.9 the fact that for
any other C �-algebra D we have an isometric natural morphism

D ˝max A! D ˝max A
��:

Similarly, for any von Neumann algebra M , the analogous morphism

M ˝nor A!M ˝nor A
��

is isometric. This follows from the basic observation that if � WM ! B.H/ and � W A!
B.H/ are representations with commuting ranges, then the canonical normal extension R�
of � to A�� takes values in �.M/0.

Remark 1.16 (On the LLP). Following Kirchberg [18], a unital C �-algebra A is said to
have the local lifting property (LLP) if for any unital c.p. map u W A! C=	 (C=	 being
any quotient of a unital C �-algebra C ) the map u is “locally liftable” in the following
sense: for any f.d. operator system E � A the restriction ujE W E ! C=	 admits a u.c.p.
lifting uE W E! C . The crucial difference between “local and global” is that a priori ujE
does not extend to a u.c.p. map on the whole of A. If A is not unital we say that it has
the LLP if its unitization does. Equivalently, a general C �-algebra A has the LLP if for
any c.c.p. map u W A! C=	 (C=	 being any quotient of a C �-algebra C ) and any f.d.
subspace E � A the restriction ujE W E ! C=	 admits a lifting uE W E ! C such that
kuEkcb � 1 (see [29, Thm. 9.38]).

Kirchberg [18] proved thatA has the LLP if and only ifB.`2/˝min ADB.`2/˝max A

or equivalently if and only if `1.¹Mn j n� 1º/˝min AD `1.¹Mn j n� 1º/˝max A. Using
this it is easy to check, taking ¹Diº D ¹Mn j n � 1º, that (1.1) implies the LLP.

Remark 1.17 (Global versus local). Clearly the LP implies the LLP. Kirchberg observed
in [18] that if his conjecture1 that C˝min A D C˝max A for any A with LLP (or equiv-
alently just for A D C) is correct then conversely the LLP implies the LP for separable
C �-algebras.

Note that if C˝min CD C˝max C, then since C satisfies (1.1) we have `1.C/˝min CD

`1.C/˝max C, and hence for any A with LLP also

`1.C/˝min A D `1.C/˝max A: (1.15)

Now (1.15) obviously implies (recalling Proposition 1.8) the property in (1.1), which by
Theorem 1.2 implies the LP in the separable case, whence another viewpoint on Kirch-
berg’s observation.

Kirchberg showed in [18] that a C �-algebra D has the weak expectation property
(WEP) (for which we refer the reader to [29, p. 188]) if and only ifD˝max CDD˝min C.

1According to a recent paper entitled MIP* = RE posted on arXiv in January 2020 by Ji, Natarajan,
Vidick, Wright, and Yuen this conjecture is not correct.
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Thus, his conjecture is equivalent to the assertion that C has the WEP or that any C �-
algebra D is a quotient of a WEP C �-algebra. Such a D is called QWEP. He also showed
that it is equivalent to the Connes embedding problem (see [29, p. 291]).

Note that if all the Di are WEP, the fact that C satisfies (1.1) tells us that

`1.¹Diº/˝max C! `1.¹Di ˝min Cº/

is isometric, and hence that `1.¹Diº/˝max C D `1.¹Diº/˝min C. Thus, it follows that
`1.¹Diº/ is WEP.

Yet another way to look at the problem whether the LLP implies the LP for separable
C �-algebras is through the observation (pointed out by a referee) thatA has the LLP if and
only if `1.¹Diº/˝max A! `1.¹Di ˝max Aº/ is isometric (or equivalently injective) for
any family .Di / of QWEP C �-algebras. This is easily checked using (1.9). If Kirchberg’s
conjecture was correct, the LLP of A would imply the same for arbitraryDi and hence by
Theorem 1.2 this would imply that A has the LP in the separable case.

Remark 1.18 (Counterexamples to LP). For the full C �-algebra C �.G/ of a discrete
group G, the LP holds both when G is amenable and when G is a free group. It is thus
not easy to find counterexamples, but the existence of C �.G/’s failing LP has been proved
using property (T) groups by Ozawa in [24]. Later on, Thom [32] gave an explicit example
ofG for whichC �.G/ fails the LLP. More recently, Ioana, Spaas and Wiersma [16] proved
that SLn.Z/ for n � 3 and many other similar property (T) groups fail the LLP. See
Section 10 for more on this theme.

Abbreviations and notation. As is customary we abbreviate completely positive by
c.p., completely bounded by c.b., unital completely positive by u.c.p. and contractive com-
pletely positive by c.c.p. Analogously we will abbreviate maximally bounded, maximally
positive and unital maximally positive respectively by m.b., m.p. and u.m.p. We also use
f.d. for finite dimensional. We denote by BE the closed unit ball of a normed spaceE, and
by IdE W E ! E the identity operator on E. We denote by E ˝ F the algebraic tensor
product of two vector spaces. Lastly, by an ideal in a C �-algebra we implicitly mean a
two sided, closed and self-adjoint ideal.

2. Maximally bounded and maximally positive maps

Let E � A be an operator space sitting in a C �-algebra A. Let D be another C �-algebra.
Recall we denote (abusively) by D ˝max E the closure of D ˝ E in D ˝max A, and we
denote by k kmax the norm induced on D ˝max E by D ˝max A. We define similarly
E ˝max D. We should emphasize that D ˝max E (or E ˝max D) depends on A and on
the embedding E � A, but there will be no risk of confusion. Of course we could also
define E ˝max F � A˝max D for a subspace F � D but we will not go that far. Let C
be another C �-algebra.
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We will denote byMB.E;C / the set of maps u WE! C such that for any C �-algebra
D, the map IdD ˝ u WD˝E!D˝C extends to a bounded mapping uD WD˝max E!

D ˝max C , and moreover such that the bound on kuDk is uniform over all D’s. We call
such maps “maximally bounded” or “max-bounded” or simply m.b. for short. (They are
called max! max-tensorizing in [29].) We denote

kukmb D sup¹kuD W D ˝max E ! D ˝max Ckº;

where the sup runs over all possible D’s. We have clearly kuDkmb � kukmb.
Moreover, if A is unital, assuming that E is an operator system let us denote by

MP.E; C / the subset formed of the maps u such that IdD ˝ u W D ˝ E ! D ˝ C is
positive for any D, by which we mean that

ŒIdD ˝ u�..D ˝E/Cmax/ � .D ˝ C/
C
max:

Equivalently, uD is positive for all D’s. We call such maps “maximally positive” (m.p. in
short). Replacing D by Mn.D/ shows that the latter maps will be automatically c.p.

In passing, recall that for any c.p. u W E ! C we have kukcb D kuk D ku.1/k, and
hence kukmb D ku.1/k for any m.p. u. Obviously, we have kukmb D 1 if E D A and u is
a �-homomorphism.

Clearly (taking D DMn), we have MB.E;C / � CB.E;C / and

8u 2MB.E;C / kukcb � kukmb: (2.1)

Proposition 2.1. A map u W E ! C belongs to MB.E;C / if and only if IdC ˝ u defines
a bounded map from C˝max E to C˝max C and we have

kukmb D kIdC ˝ u W C˝max E ! C˝max Ck:

Proof. This follows easily from (1.9).

Corollary 2.2. If C has the WEP then any c.b. map u W E ! C is in MB.E; C / and
kukcb D kukmb.

Proof. By the WEP of C , we have C˝max C D C˝min C (see [8, p. 380] or [29, p. 188]),
and hence

kIdC ˝ u W C˝max E ! C˝max Ck D kIdC ˝ u W C˝max E ! C˝min Ck

� kIdC ˝ u W C˝min E ! C˝min Ck

� kukcb:

Remark 2.3. Let u 2MB.E;C /. Let F �C be such that u.E/� F and letB be another
C �-algebra. Then for any v 2MB.F;B/ the composition vu W E ! B is in MB.E;B/
and kvukmb � kvkmbkukmb.
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Remark 2.4. When E D A any c.p. map u W A! C is in MB.A;C / and kukmb D kuk

(see e.g. [27, p. 229] or [29, Cor. 7.8]). However, this is no longer true in general when E
is merely an operator system in A. This distinction is important for the present work.

Remark 2.5. We will use the following well-known elementary fact. Let A; C be unital
C �-algebras. Let E � A be an operator system. Let u W E! C be a unital c.b. map. Then
u is c.p. if and only if kukcb D 1 (see e.g. [25], [27, p. 24] or [29, Thm. 1.35]).

Remark 2.6. In the same situation, any unital map u 2MB.E;C / such that kukmb D 1

must be c.p. Indeed, (2.1) implies kukcbDku.1/k D 1, and u is c.p. by the preceding
remark. More precisely, the same reasoning applied to the maps uD (withD unital) shows
that u is m.p.

Remark 2.7. Let u W E ! C with E an operator system. Let u� W E ! C be defined
by u�.x/ D .u.x�//� (x 2 E), so that ku�k D kuk. We claim ku�kmb D kukmb for any
u 2 MB.E; C /. Indeed, this is easy to check using .uD/� D .u�/D . A map u W E ! C

is called “self-adjoint” if u D u�.

The following important result was shown to the author by Kirchberg with permission
to include it in [27]. It also appears in [29, Thm. 7.6].

Theorem 2.8 ([20]). Let A; C be C �-algebras. Let iC W C ! C �� denote the inclusion
map. A map u W A! C is in MB.A;C / if and only if iCu W A! C �� is decomposable.
Moreover, we have

kukmb D kiCukdec:

Recall that a map u W A! C is called decomposable if it is a linear combination of
c.p. maps. See [14] or [29, §6] for more on decomposable maps and the definition of the
dec-norm.

Elaborating on Kirchberg’s argument, we included in [27] and later again in [29,
Thm. 7.4] the following variant as an extension theorem.

Theorem 2.9. Let A; C be C �-algebras. Let E � A be a subspace. Consider a map
u W E ! C in MB.E;C /. Then

kukmb D infkzukdec;

where the infimum runs over all maps zu W A! C �� such that zujE D iCu. Moreover, the
latter infimum is attained.

Remark 2.10. A fortiori, since kiCukdec � kukdec, we have kukmb � kukdec. Moreover,
for any zu W A! C �� we have

kzukmb D kzukdec: (2.2)

Indeed, since there is a c.c.p. projection P W .C ��/�� ! C ��, we have

kzukmb D kiC�� zukdec � kP iC�� zukdec D kzukdec:
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Remark 2.11. For any C �-algebras C;D the natural inclusionD˝max C �D˝max C
��

is isometric (see Remark 1.15). Therefore, for any u W E ! C we have

kukmb D kiCukmb;

where iC W C ! C �� is the canonical inclusion. Moreover, if there is a projection P W
C �� ! C with kP kdec D 1 (for instance if P is c.c.p.) then kukdec D kiCukdec.

Remark 2.12 (A refinement of Theorem 2.9). Let E � A and let M � B.H/ be a von
Neumann algebra. Consider a map u W E ! M . Let us denote by Ou W M 0 ˝ E ! B.H/

the linear map such that Ou.x0 ˝ a/ D x0u.a/ (x0 2M 0, a 2 E). Then

kukmb D k Ou WM
0
˝max E ! B.H/kcb D inf¹kzukdec j zu W A!M; zujE D uº:

If either M has infinite multiplicity or M 0 has a cyclic vector, then

k Ou WM 0 ˝max E ! B.H/kcb D k Ou WM
0
˝max E ! B.H/k:

This is as in [29, Thm. 6.20 with Cor. 6.21 and Cor. 6.23].

Remark 2.13. In the situation of the preceding remark, if E is an operator system and
if Ou W M 0 ˝max E ! B.H/ is c.p. (in particular if u 2 MP.E;M/) then u admits a c.p.
extension zu W A!M with kzuk D kuk (in particular zu 2MP.A;M/). This follows from
Arveson’s extension theorem for c.p. maps and the argument called “the trick” in [8, p. 87].

Let E � A and C be as in Theorem 2.9. To state our results in full generality, we
introduce the space SB.E;C / for which the unit ball is formed of all u WE!C satisfying
an operator analogue of (1.1).

Definition 2.14. We call strongly maximally bounded the maps u W E ! C such that, for
any family .Di /i2I , the map Id˝u defines a uniformly bounded map from `1.¹Diº/˝E

equipped with the norm induced by `1.¹Di ˝max Eº/ to `1.¹Diº/˝ C equipped with
the norm induced by `1.¹Diº/˝max C . We define

kuksb D sup¹k.Id˝ u/.t/k`1.¹Di º/˝maxC j .ti /i2I 2 `1.¹Diº/˝E;

sup
i2I

ktikDi˝maxC � 1º; (2.3)

where the sup runs over all possible families .Di /i2I of C �-algebras.

Definition 2.15. Let A; C be C �-algebras. Let E � A be a subspace. A linear map
u W E ! C will be called maximally isometric (or max-isometric in short) if for any
C �-algebra D the associated map IdD ˝ u W D ˝ E ! D ˝ C extends to an isometric
map D ˝max E ! D ˝max C . Equivalently, this means that E ˝max D ! C ˝max D is
isometric for all C �-algebras D.

These maps were called max-injective in [29]. We adopt here “maximally isometric”
to emphasize the analogy with completely isometric.
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Remark 2.16. For example, for any C �-algebra C the canonical inclusion iC W C !
C �� is max-isometric (see Remark 1.15 or [29, Cor. 7.27]). Thus, for any D we have an
isometric �-homomorphism D ˝max C ! D ˝max C

��, which implies

.D ˝ C/ \ .D ˝max C
��/C � .D ˝max C/C: (2.4)

Moreover, the inclusion 	! C of an ideal, in particular the inclusion C ! C1 of C into
its unitization, is max-isometric (see e.g. [29, Prop. 7.19]).

Remark 2.17. We have kIdAkSB.A;A/ D 1 if (and only if) A satisfies property (1.1). In
that case, by Remark 2.6, for any u 2 CP.A;C / (where C is an arbitrary C �-algebra) we
have

kukSB.A;C/ D kuk: (2.5)

Remark 2.18. We will use the elementary fact (see [29, Cor. 7.16] for a proof) that
D ˝max E ! D ˝max C is isometric for all D (i.e. it is max-isometric) if and only if
this holds for D D C. In particular, checking D separable is enough.

As we will soon show (see Theorem 5.3), maximally bounded maps admit maximally
bounded liftings when (1.1) holds. To tackle u.c.p. liftings we will need a bit more work.
The following perturbation lemma is the m.p. analogue of [12, Thm. 2.5].

Lemma 2.19. Let E � A be an n-dimensional operator system, C a unital C �-algebra.
Let 0 < " < 1=2n. For any self-adjoint unital map u WE! C with kukmb � 1C ", there is
a unital maximally positive (u.m.p. in short) map v W E ! C such that ku� vkmb � 8n".
Here, u self-adjoint means that u.x/ D u.x�/� for any x 2 E.

Sketch. The proof is essentially the same as that of the corresponding statement for the
c.b. norm and c.p. maps appearing in [12, Thm. 2.5] and reproduced in [29, Thm. 2.28].
However, we have to use the “m.p. order” instead of the c.p. one. The only notable dif-
ference is that one should use Theorem 2.9 instead of the injectivity of B.H/. Using the
latter we can find a self-adjoint extension zu W A! C �� with kzukdec � 1C ". We can write
zuD v1 � v2 with v1 and v2 inMP.A;C ��/ such that kv1C v2k � 1C ". Since u.1/D 1
we have k1C 2v2.1/kD k.v1C v2/.1/k � 1C ", and hence kv2.1/k � "=2. Arguing as in
[12, Thm. 2.5] or [29, Thm. 2.28] there is f 2 E� with kf k � 2n" such that the mapping
w2 W x 7! f .x/1 � v2.x/ is in MP.E;C ��/. We then set v0 D v1jE Cw2 D uC f .�/1.
Note that v0.E/ � C . A priori v0 2MP.E;C ��/, but we actually have v0 2MP.E;C /
by (2.4). Moreover, kv0 � ukmb � 2n". In particular, kv0.1/� 1k � 2n" < 1, which shows
that v0.1/ is invertible and close to 1 when " is small. The rest of the proof is as in
[12, Thm. 2.5] or [29, Thm. 2.28].

The following variant is immediate:

Lemma 2.20. Let E � A be an n-dimensional operator system, C a unital C �-algebra.
For any self-adjoint map u W E ! C such that ku.1/ � 1k < " and kukmb � 1C ", there
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is a unital map v 2 MP.E; C / such that ku � vkmb � fE ."/, where fE is a function of
" 2 .0; 1/ such that lim"!0 fE ."/ D 0.

Sketch. Let u0.�/D u.1/�1=2u.�/u.1/�1=2. Then ku�u0k� f 0."/with lim"!0 f
0."/D 0.

We may apply Lemma 2.19 to u0.

3. Arveson’s principle

To tackle global lifting problems a principle due to Arveson has proved very useful. It
asserts roughly that in the separable case pointwise limits of suitably liftable maps are
liftable. Its general form can be stated as follows. Let E be a separable operator space, C
a unital C �-algebra, 	 � C an ideal.

A bounded subset of F � B.E;C / will be called admissible if for any pair f; g in F

and any � 2 CC with k�k � 1 the mapping

x 7! �1=2f .x/�1=2 C .1 � �/1=2g.x/.1 � �/1=2

belongs to F . This implies that F is convex.
Let q W C ! C=	 denote the quotient map and let

q.F / D ¹qf j f 2 F º:

Then Arveson’s principle (see [5, p. 351]) can be stated like this:

Theorem 3.1 (Arveson’s principle). Assume E separable and F admissible. For the
topology of pointwise convergence on E we have

q.F / D q.F /:

Actually, we do not even need to assume F bounded if we restrict to the pointwise con-
vergence on a countable subset of E.

One can verify this assertion by examining the presentations [10, p. 266] or [27, p. 46
and p. 425] or [29, Thm. 9.46].

The classical admissible classes are contractions, complete contractions and, when E
is an operator system, positive contractions or completely positive (c.p. in short) contrac-
tions. In the unital case, unital positive or unital completely positive (u.c.p. in short) maps
form admissible classes. Let f; g 2 BMB.E;C/. Then it is easy to see on one hand that the
map x 7! .f .x/; g.x// is in BMB.E;C˚C/. On the other hand, the map  W C ˚ C !
C defined by v.a; b/ D �1=2a�1=2 C .1 � �/1=2b.1 � �/1=2 is unital c.p. and hence
in BMB.C˚C;C/ (see Remark 2.4). This shows (with Remark 2.3) that the unit ball of
MB.E;C / is admissible.

In the rest of this section, we record a few elementary facts.
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Lemma 3.2. Let A be a unital C �-algebra. Let E � A be an operator system. Consider
a unital map u W E ! C=	 (C=	 any quotient C �-algebra). Let v 2 MB.E; C / (resp.
v 2 SB.E; C /, resp. v 2 CB.E; C /) be a lifting of u. Then for any " > 0 there is a
unital lifting v0 2MB.E;C / (resp. v0 2 SB.E;C /, resp. v0 2 CB.E;C /) with kv0kmb �

.1C "/kvkmb (resp. kv0ksb � .1C "/kvksb, resp. kv0kcb � .1C "/kvkcb). If v is merely
assumed bounded, we also have kv0k � .1C "/kvk.

Proof. Let .�˛/ be a quasicentral approximate unit in 	 in the sense of [5] (see also e.g.
[10] or [29, p. 454]). Let T˛ W C ˚C ! C be the unital c.p. map defined by

T˛.x; c/ D
�
.1 � �˛/

1=2�
1=2
˛

� �x 0

0 c

� 
.1 � �˛/

1=2

�
1=2
˛

!
D .1 � �˛/

1=2x.1 � �˛/
1=2
C c�˛:

Since v.1/ � 1 2 	 we have

k.1 � �˛/
1=2Œv.1/ � 1�.1 � �˛/

1=2
k ! 0: (3.1)

Let f W E ! C be a state, i.e. a positive linear form such that f .1/ D 1. Note that
kf ksb D kf kmb D kf k D 1. Also kvk � kuk � 1. The map  W E ! C ˚ C defined
by  .x/ D .v.x/; f .x// clearly satisfies k kmb � kvkmb. Let T 0˛.x/ D T˛ .x/. Then
kT 0˛kmb � kvkmb (see Remarks 2.3 and 2.4), T 0˛ W E ! C lifts u and by (3.1) we have
kT 0˛.1/ � 1k ! 0, so that going far enough in the net we can ensure that T 0˛.1/ is invert-
ible in C . We then define v0 W E ! C by v0.x/ D T 0˛.1/

�1
T 0˛.x/ (we could use x 7!

T 0˛.1/
�1=2

T 0˛.x/T
0
˛.1/

�1=2). Now v0 is unital and

kv0kmb � kT
0
˛.1/

�1
kkT 0˛kmb � kT

0
˛.1/

�1
kkvkmb:

Choosing ˛ “large” enough so that kT 0˛.1/
�1
k < 1C ", we obtain the desired bound for

the m.b.-case. The other cases are identical.

Let I be a directed set. Assume xi 2 B.H/ for all i 2 I and x 2 B.H/. Recall that
(by definition) xi tends to x for the strong* operator topology (in short x D sot*- lim xi )
if xih! xh and x�i h! x�h for any h 2 H .

Let M � B.H/ be a von Neumann subalgebra of B.H/. Assume that there is a C �-
subalgebra C � M such that C 00 D M . It is well known that the unit ball of M is the
closure of that of C for the strong* topology (see [31, Thm. 4.8. p. 82]). This implies
the following well-known and elementary fact representing M as a quotient of a natural
C �-subalgebra of `1.¹C º/.

Lemma 3.3. In the preceding situation, for a suitable directed index set I , with which we
set Ci D C for all i 2 I , there is a C �-subalgebra L � `1.¹Ci j i 2 I º/ and a surjective
�-homomorphismQ WL!M such that for any .xi / 2L we haveQ..xi //D sot*- limxi .
If C is unital, we can get L and Q unital as well.
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Proof. Choose a directed set I such that for any x 2 BM there is .xi /i2I 2
Q
i2I BCi

(recall Ci D C for all i 2 I ) such that x D sot*- limxi . For instance, the set of neighbor-
hoods of 0 for the sot*-topology can play this role. Let L � `1.¹Ciº/ denote the unital
C �-subalgebra formed of the elements .xi /i2I in L such that sot*- lim xi exists. We then
set Q.x/ D sot*- lim xi for any x D .xi / 2 L. The last assertion is obvious.

Let X � A be a separable subspace of a C �-algebra A. For any C �-algebra C we
give ourselves an admissible class of mappings F .X; C / that we always assume closed
for pointwise convergence. We will say that X � A has the F -lifting property if for any
u 2 F .X; C=	/ there is a lifting Ou in F .X; C /.

Remark 3.4. In the sequel, we will assume that F is admissible and in addition that for
any u 2 F .X; C / and any �-homomorphism � W C ! D between C �-algebras � ı u 2
F .X;D/. When F is formed of unital maps (X is then an operator system and C a unital
C �-algebra), we assume moreover that � ı u 2 F .X;D/ for any u.c.p. map � W C ! D.

Remark 3.5 (Examples). Examples of such classes are those formed of maps that are con-
tractive, positive and contractive, n-contractive, n-positive and n-contractive, completely
contractive or c.c.p. When dealing with positive or c.p. maps, we assume that X is an
operator system. Then we may intersect the latter classes with that of unital ones.

To tackle liftings within biduals we will use the following classical fact (for which a
proof can be found e.g. in [29, p. 465]): for any C �-algebra C and any ideal 	 � C with
which we can form the quotient C �-algebra C=	, we have a canonical isomorphism:

C �� ' .C=	/�� ˚ 	�� (3.2)

and hence an isomorphism
.C=	/�� ' C ��=	��:

The next two statements (which follow easily from Arveson’s principle) show that
the global (resp. local) lifting property is equivalent to some sort of “global (resp. local)
reflexivity principle”.

Theorem 3.6. Let X � A and F be as in Remark 3.4. Then the following are equivalent:

(i) The space X has the F -LP.

(ii) For any von Neumann algebra M , any C � M such that C 00 D M and any
u 2 F .X;M/ there is a net of maps ui 2 F .X;C / tending pointwise sot* to u.

(iii) For any C and any u 2F .X;C ��/ there is a net of maps ui 2F .X;C / tending
pointwise to u for the weak* (i.e. �.C ��; C �/) topology.

Proof. Assume (i). We apply Lemma 3.3. We have a C �-subalgebra L � `1.¹Ciº/ and a
surjective �-homomorphism Q W L!M such that for any .xi / 2 L we have Q..xi // D
sot*- lim xi (and a fortiori Q..xi // D weak*- lim xi ). Let u 2 F .X; M/ and let Ou 2
F .X;L/ be a lifting for Q. Then .ui /i2I such that Ou D .ui /i2I gives us (ii).
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(ii)) (iii) is obvious.
Assume (iii). Let u 2 F .X; C=	/. We will use (3.2). The proof can be read on the

following diagram:

C

q

��

// C ��

q��

��

X

v

''

vi

==

u
// C=	 // ŒC=	���

�

ff

By (3.2) we have a lifting � W .C=	/�� ' C ��=	��! C �� which is a �-homomorphism.
Let f be a state on .C=	/�� and let p denote the unit in 	���C ��. Then �1 WC ��=	��!
C �� defined by �1 D �.�/ C f .�/p is a u.c.p. lifting (replacing � by �1 is needed only
when F is formed of unital maps). Therefore, recalling Remark 3.4, we can find a map
v 2 F .X; C ��/ such that q��v D iC=	u (where as usual iD W D ! D�� the canonical
inclusion). By (iii) there is a net .vi / in F .X; C / tending weak* to v. Then qvi D q��vi
tends pointwise weak* to q��vD u. This means qvi ! u pointwise for the weak topology
of C=	. We can then invoke Mazur’s classical theorem to obtain (after passing to suitable
convex combinations) a net such that qvi ! u pointwise in norm (see e.g. [29, Rem. A.10]
for details). By Arveson’s principle, u admits a lifting in F , so we obtain (i).

LetX �A be as above. In addition for anyC and any f.d. subspaceE0�X we assume
given another f.d. E � E0 and a class F .E; C / satisfying the same two assumptions as
F .X; C /. We also assume that u 2 F .X; C / implies ujE 2 F .E; C /. We will say that
u W X ! C=	 is locally F -liftable if for any f.d. E0 � X there is a f.d. E � E0 and a
map uE 2 F .E; C / lifting the restriction ujE . We will say that X has the F -LLP if for
any C , any u 2 F .X;C=	/ is locally F -liftable. The introduction of E in place of E0 is
a convenient way to include e.g. the class F formed of unital c.p. maps on f.d. operator
systems. In the latter case, E can be any f.d. operator system containing E0.

Theorem 3.7. With the above assumptions and those of Theorem 3.6, the following are
equivalent:

(i) The space X has the F -LLP.

(ii) For any C , any u 2 F .X;C ��/ and any f.d. E0 � X , there is a f.d. E � E0 and
a net of maps uEi 2 F .E; C / tending pointwise weak* to ujE .

Proof. The proof of Theorem 3.6 can be easily adapted to prove this.

Since the work of T.B. Andersen and Ando [1,2] it has been known that if a separable
Banach space X has the metric approximation property then any contractive u W X !
C=	 admits a contractive lifting. Although we will not use it, we conclude our general
discussion by reformulating this result in our framework. Let us say that u W X ! C=	 is
F -approximable if there is a net of finite rank maps u˛ 2 F .X; C=	/ tending pointwise
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to u. For the examples of F considered in Remark 3.5 it is obviously equivalent to say
that the identity map of C=	 is locally F -liftable or to say that for any X any finite rank
map in F .X; C=	/ is locally F -liftable.

With this terminology, Ando’s well-known result [2] can nowadays be reformulated
like this:

Proposition 3.8. Assume that any finite rank map in F .X; C=	/ is liftable in F .X; C /.
If u W X ! C=	 is F -approximable, then u admits a (global) lifting in F .X; C /.

Proof. This follows from Arveson’s principle.

Let us denote by Fccp (resp. Fucp) the class of c.c.p. (resp. u.c.p.) maps. Then the LP
is just the Fccp-LP. In the unital case, we show below that the Fccp-LP and the Fucp-LP are
equivalent. Of course in the latter case we restrict to lifting quotients of unitalC �-algebras.

The following statement about the unitization process is a well-known consequence of
the works of Choi–Effros and Kirchberg [9, 19].

Proposition 3.9. Let A be a separable C �-algebra and let A1 be its unitization. The
following properties of A are equivalent:

(i) The lifting property LP, meaning the Fccp-LP.

(ii) The unitization A1 has the Fucp-LP.

Moreover, when A is unital (i) and (ii) are equivalent to

(iii) The C �-algebra A has the Fucp-LP.

Proof. Assume (i). Let q W C ! C=	 be the quotient map. Assuming C unital, let u W
A1 ! C=	 be a u.c.p. map. By (i) there is w 2 CP.A;C / with kwk � 1 such that qw D
ujA W A! C=	. Let w1 W A1 ! C1 be the unital extension of w. By [9, Lemma 3.9],
w1 is c.p. Since C is unital there is a unital �-homomorphism � W C1! C extending IdC .
Let yu D �w1 W A1 ! C . Then yu is a u.c.p. map such that qyujA D ujA and qyu.1/ D 1. It
follows that qyu D u, whence (ii).

Assume (ii). Let u W A! C=	 be a c.c.p. map. Let u1 W A1! .C=	/1 ' C1=	 be the
unital map extending u. By [9, Lemma 3.9] again, u1 is c.p. By (ii) there is a unital c.p.
map bu1 W A1 ! C1 lifting u1. Let q W C ! C=	 and Q W C1 ! C1=	 ' .C=	/1 be the
quotient maps. We have Qbu1 D u1 and u1jA D u. A moment of thought shows that Q is
the unital extension of q, so thatQ�1.C=	/D C . ThusQbu1.a/D u1.a/D u.a/ 2 C=	
for any a 2 A implies that bu1.a/ 2 C for any a 2 A. We conclude that bu1jA W A! C is
a c.p. lifting of u with norm � 1, whence (i).

Assume (i) with A unital. Let u W A! C=	 be a u.c.p. map. Let v W A! C be a c.c.p.
lifting of u. To show (iii) let f be a state on A and let yu D v C .1 � v.1//f . Then yu is a
u.c.p. lifting. This shows (i)) (iii).

Conversely, assume (iii). To show (i) let u W A! C=	 be a c.c.p. map. Let u0 W A!
C1=	 be the map u composed with the inclusion of C into its unitization C1=	. Note that
since u0 takes its values in C=	, any lifting yu of u0 must take its values in C , and hence
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be a lifting of u. Therefore, it suffices to show that u0 admits a c.c.p. lifting. Assume first
that u0.1/ is invertible in C1. We will argue as for Lemma 3.2. Define w 2 CP.A;C1=	/
by w.x/ D u0.1/�1=2u0.x/u0.1/�1=2. Then w is unital. Let yw W A! C1 be a u.c.p. lifting
of w. Let z 2 C1 be a lifting of u0.1/ with kzk D ku0.1/k � 1. Then the mapping yu W
A! C1 defined by yu.�/ D z1=2 yw.�/z1=2 is a c.c.p. lifting of u0. Let f be a state on A.
To complete the proof note that for any " > 0 the map u" 2 CP.A; C1=	/ defined by
u".�/ D u

0.�/C "f .�/ is a c.p. perturbation of u0 with u".1/ invertible. By what precedes,
the maps .1 C "/�1u" admit c.c.p. liftings. By Arveson’s principle u0 also does. This
shows (iii)) (i).

Remark 3.10. If A is unital (i)–(iii) in Proposition 3.9 are also equivalent to:

(iv) Any unital �-homomorphism u W A! C=	 into a quotient of C admits a u.c.p.
lifting.

Indeed, (iii) ) (iv) is trivial, and to show (iv) ) (iii) one can realize A as a quotient
of C. Then (iv) implies that the identity of A factors via u.c.p. maps through C, so that (iii)
follows from Kirchberg’s theorem that A D C satisfies (iii) or (ii).

However, we deliberately avoid using the equivalence with (iv) to justify our claim
that Theorem 1.2 yields a new proof of the latter theorem of Kirchberg.

Remark 3.11. In [18], Kirchberg defines the LP for A by property (ii) in Proposition 3.9.
We prefer to use the equivalent definition in (i) that avoids the unitization.

See [15] for a discussion of lifting properties in the more general context ofM -ideals.

4. A “new” extension theorem

We start by a new version of the “local reflexivity principle” (see particularly (4.3)). This
is the analogue of [12, Lemma 5.2] for the maximal tensor product.

Theorem 4.1. Assume that A satisfies (1.1). Let E � A be any f.d. subspace. Then for
any C �-algebra C we have a contractive inclusion

MB.E;C ��/!MB.E;C /��: (4.1)

In other words any u in the unit ball of MB.E; C ��/ is the weak* limit of a net .ui / in
the unit ball of MB.E;C /.

Proof. This will follow from the bipolar theorem. We first need to identify the dual of
MB.E;C /. As a vector spaceMB.E;C /' C ˝E� and henceMB.E;C /� ' C � ˝E
(or say .C �/dim.E/). We equip C � ˝ E with the norm ˛ defined as follows. Let K �
MB.E;C /� denote the set of those f 2MB.E;C /� for which there is a C �-algebra D,
a functional w in the unit ball of .D ˝max C/

� and t 2 BD˝maxE , so that

8u 2MB.E;C / f .u/ D hw; ŒIdD ˝ u�.t/i:
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We could rephrase this in tensor product language: note that we have a natural bilinear
map

.D ˝max C/
�
� .D ˝max E/! C � ˝E

associated to the duality D� �D ! C, then K can be identified with the union (over all
D’s) of the images of the product of the two unit balls under this bilinear map.

We will show that K is the unit ball of MB.E; C /�. Let D1; D2 be C �-algebras.
Let D D D1 ˚D2 with the usual C �-norm. Using the easily checked identities (here the
direct sum is in the `1-sense)

D ˝max E D .D1 ˝max E/˚ .D2 ˝max E/;

and
D ˝max C D .D1 ˝max C/˚ .D2 ˝max C/;

and hence .D ˝max C/
� D .D1˝max C/

�˚1 .D2˝max C/
� (direct sum in the `1-sense),

it is easy to check that K is convex and hence that K is the unit ball of some norm ˛ on
MB.E;C /�.

Our main point is the claim thatK is weak* closed. To prove this, let .fi / be a net inK
converging weak* to some f 2 MB.E; C /�. Let Di be C �-algebras, wi 2 B.Di˝maxC/�

and ti 2 BDi˝maxE such that we have

8u 2MB.E;C / fi .u/ D hwi ; ŒIdDi ˝ u�.ti /i:

Let D D `1.¹Diº/ and let t 2 D ˝ E be associated to .ti /. By (1.2) we know that
ktkmax � 1. Let pi W D ! Di denote the canonical coordinate projection, and let vi 2
.D ˝max C/

� be the functional defined by vi .x/ D wi .Œpi ˝ IdC �.x//. Clearly vi 2
B.D˝maxC/� and fi .u/ D hvi ; ŒIdD ˝ u�.t/i: Let w be the weak* limit of .vi /. By weak*
compactness, w 2 B.D˝maxC/� . Then f .u/ D lim fi .u/ D hw; ŒIdD ˝ u�.t/i: Thus we
conclude f 2 K, which proves our claim.

By the very definition of kukMB.E;C/ we have

kukmb D sup¹jf .u/j j f 2 Kº:

This implies that the unit ball of the dual ofMB.E;C / is the bipolar ofK, which is equal
to its weak* closure. By what precedes, the latter coincides with K. Thus, the gauge of K
is the announced dual norm ˛ D k kMB� .

Let u00 2MB.E;C ��/with ku00kmb� 1. By the bipolar theorem, to complete the proof
it suffices to show that u00 belongs to the bipolar ofK, or equivalently that jf .u00/j � 1 for
any f 2 K. To show this, consider f 2 K taking u 2MB.E;C / to f .u/ D hw; ŒIdD ˝
u�.t/i with w 2 B.D˝maxC/� and t 2 BD˝maxE . Observe that ŒIdD ˝ u00�.t/ 2D ˝ C �� �
.D˝max C/

��. Recall thatMB.E;C ��/'MB.E;C /��' .C ��/dim.E/ as vector spaces.
Thus, we may view f 2MB.E;C /� as a weak* continuous functional on MB.E;C ��/
to define f .u00/. We claim that

f .u00/ D hw; ŒIdD ˝ u00�.t/i; (4.2)
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where the duality is relative to the pair h.D ˝max C/
�; .D ˝max C/

��i. From this claim
the conclusion is immediate. Indeed, we have kŒIdD ˝ u00�.t/kD˝maxC�� � ku

00kmb � 1,
and by the maximality of the max-norm on D ˝ C �� we have a fortiori

kŒIdD ˝ u00�.t/k.D˝maxC/�� � kŒIdD ˝ u
00�.t/kD˝maxC�� � 1:

Therefore jf .u00/j D jhw;ŒIdD˝u00�.t/ij � kwk.D˝maxC/� � 1, which completes the proof
modulo our claim (4.2).

To prove the claim, note that identity (4.2) holds for any u 2 MB.E; C /. Thus, it
suffices to prove that the right-hand side of (4.2) is a weak* continuous function of u00

(which is obvious for the left-hand side). To check this, one way is to note that t 2D˝E
can be written as a finite sum t D

P
dk ˝ ek (dk 2 D; ek 2 E) and if we denote by

Pw W D ! C � the linear map associated to w we have

hw; ŒIdD ˝ u00�.t/i D
X
k

hw; Œdk ˝ u
00.ek/�i D

X
k

h Pw.dk/; u
00.ek/i;

and since Pw.dk/ 2 C � the weak* continuity as a function of u00 is obvious, completing
the proof.

Remark 4.2. The preceding proof actually shows that, without any assumption on A
or C , we have a contractive inclusion

SB.E;C ��/! SB.E;C /��: (4.3)

Of course, if A satisfies (1.1) then SB.E;C / DMB.E;C / isometrically and we recover
Theorem 4.1.

Remark 4.3. The converse inclusion to (4.1) holds in general: we claim that we have a
contractive inclusion

MB.E;C /�� !MB.E;C ��/: (4.4)

Indeed, let ui W E ! C be a net with kuikmb � 1 tending weak* to u W E ! C ��. Let
t 2 C˝ E with ktkmax � 1, say with t 2 F ˝ E with F � C f.d. Then ŒIdC ˝ u�.t/ 2

BŒF˝maxC��� . Note that since F is f.d., we have

ŒF ˝max C �
��
� ŒC˝max C �

��
\ ŒF ˝ C ���:

We have clearly an isometric inclusion ŒF ˝max C �
�� � ŒC ˝max C �

��. Moreover, (see
[29, Thm. 8.22]) we have an isometric embedding

C�� ˝bin C
��
� ŒC˝max C �

��:

Since F � C, the norm induced by C��˝bin C
�� on F ˝C �� coincides with that induced

by C˝nor C
��. By Kirchberg’s theorem to the effect that (1.12) holds when A D C (see

[29, Thm. 9.10]), we have C˝nor C
�� D C˝max C

��. Thus we find kukMB.E;C��/ � 1.
This proves the claim.
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Remark 4.4. We will use an elementary perturbation argument as follows. Let A; C be
C �-algebras and let E � A be a f.d. subspace. Let v W E ! C . For any ı > 0 there is
" > 0 (possibly depending on E) satisfying the following: for any map v0 W A! C such
that kv0

jE
� vk � ", there is a map v00 W A! C such that

v00
jE D v and kv00 � v0kmb � ı; and hence kv00kmb � kv

0
kmb C ı:

A

v0

!!

E
?�

OO

v0 jE�v

// C

A

v00�v0

!!

E
?�

OO

v
// C

Let � D v � v0
jE

. Let k�kN denote the nuclear norm (in the Banach space sense) of � W
E ! C . By definition (here E and C are Banach spaces with E f.d.), this is the infimum
of
Pd
1 kfj kE�kcj kC over all the possible representations of � as �.x/ D

Pd
1 fj .x/cj

(x 2 E). Let kE D kIdEkN . It is immediate that for any � W E ! C we have k�kN �
kEk�k. By Hahn–Banach, � admits an extension z� W A! E with

kz�kN � k�kN � kEk�k � "kE :

Let v00 D v0 C z�. Then v00
jE
D v and

kv00 � v0kmb � kv
00
� v0kN D kz�kN � "kE :

Whence the announced result with ı D "kE :

Theorem 4.5. Assume that A satisfies (1.1) (or merely the conclusion of Theorem 4.1).
Let C be a C �-algebra. Let E � X be a f.d. subspace of a separable subspace X � A.
Then for any " > 0, any map v W E ! C admits an extension zv W X ! C such that
kzvkmb � .1C "/kvkmb.

X

zv

!!

E
?�

OO

v // C

Proof. Let E1 � E be any finite dimensional superspace with E1 � X . Our first goal will
be to show that for any " > 0 there is an extension w W E1 ! C such that wjE D v with
kwkmb � kvkmb C ".

By Theorem 2.9 and by (2.2), there is a decomposable map zv W A! C �� such that

kzvkD.A;C��/ D kzvkMB.A;C��/ � kvkmb;

which is an extension of v in the sense that zvjE D iCv where iC WC !C �� is the canonical
inclusion. Let v1 W E1 ! C �� be the restriction of zv such that v1 D zvjE1 . A fortiori,
kv1 W E1 ! C ��kmb � kvkmb. By Theorem 4.1 there is a net of maps vi W E1 ! C with
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kvikmb � kvkmb that tend weak* to v1. It follows that the restrictions vi
jE

tend weak* to
v1jE D zvjE D iCv. This means that vi

jE
.x/ tends weakly in C (i.e. for �.C;C �/) to v.x/

for any x 2E . By a well-known application of Mazur’s theorem (see e.g. [29, Rem. A.10]
for details), passing to suitable convex combinations of the vi ’s, we can get a similar
net such that in addition vi

jE
tends pointwise in norm to v. Since E is f.d. this implies

kvi
jE
� vk ! 0. By perturbation (see Remark 4.4), for any " > 0 we can find w W E1! C

such that wjE D v with kwkmb � kvkmb C ", so we reach our first goal.
Lastly, we use the separability of X to form an increasing sequence .En/ of f.d. sub-

spaces of X with dense union such that E0 D E. Let w0 D v W E0 ! C . By induction,
we can find a sequence of maps wn W En! C such that wnC1jEn D wn and kwnC1kmb �

kwnkmb C 2
�n�1ı. By density this extends to a linear operator w W X ! C such that

kwkmb � kw0kmb C ı D kvkmb C ı. This completes the proof.

Remark 4.6. Actually, it suffices by Remark 4.2 to assume that X � A satisfies (1.1) (in
place of A) for the preceding proof to be valid. We rephrase this in the next statement.

Theorem 4.7. Let E � X be a f.d. subspace of a separable subspace X � A of a C �-
algebra. For any " > 0, any map v W E ! C into a C �-algebra C admits an extension
zv W X ! C such that kzvksb � .1C "/kvksb.

Remark 4.8. Let A; C be unital C �-algebras. Let E � A be an operator system and
let u W E ! C be a unital map. Recall (see Remark 2.6) that u is m.p. if and only if
kukmb D 1. We will denote by Fump.E; C / the class of u.m.p. maps u W E ! C . This is
clearly an admissible class and it is pointwise closed.

We will need the following consequence of Theorem 4.1 for u.m.p. maps:

Corollary 4.9. Let A; C be unital C �-algebras. Assume that A satisfies the conclusion
of Theorem 4.1. Let E � A be a f.d. operator system. Let u W E ! C �� be a u.m.p. map.
There is a net of u.m.p. maps ui W E ! C tending pointwise weak* to u.

Proof. By Theorem 4.1 there is a net of maps vi W E ! C with kvikmb � 1 tending
pointwise weak* to u. Replacing vi by .vi C .vi /�/=2, we may assume each vi self-
adjoint (see Remark 2.7). Moreover, since u.1/ D 1, we may observe that vi .1/ � 1! 0

in the weak topology (i.e. �.C; C �/) of C . Passing to convex combinations, we may
assume (by Mazur’s theorem) that kvi .1/� 1k ! 0. By Lemma 2.20 there is a unital map
ui 2MP.E;C / such that kui � vik ! 0. Since vi ! u pointwise weak*, we also have
ui ! u pointwise weak*.

Theorem 4.10. Let A; C be unital C �-algebras. Assume that A satisfies the conclusion
of Theorem 4.1. Let E � X be a f.d. operator subsystem of a separable operator system
X �A. Let u WE!C be a u.m.p. map. Then for any "> 0 there is a u.m.p. map v WX!C

such that kvjE � uk < ".
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Proof. We may assume that we have an increasing sequence of f.d. operator systems .En/
with E0 D E such that

S
En D X . We give ourselves "n > 0 such that

P
n�1 "n < ".

The plan is to construct a sequence of u.m.p. maps vn W En ! C such that v0 D u and
kvnC1jEn � vnk< "nC1 for all n� 0. Then the map v defined by v.x/D limvn.x/ for x 2S
En extends by density to a u.m.p. map v WX ! C such that kvjE � uk �

P
n�1 "n < ".

The sequence .vn/ will be constructed by induction starting from v0 D u. Assume
that we have constructed v0; : : : ; vn (n � 0) satisfying the announced properties and let us
produce vnC1. Since kvnkmb D 1 by Theorem 2.9 and (2.2) there is a (still unital) map zvn W
A! C �� such that zvnjEn D iCvn with k zvnkmb D 1. By Remark 2.6, the map zvn is u.m.p.
(see also Remark 2.13). A fortiori, zvnjEnC1 WEnC1!C �� is u.m.p. By Corollary 4.9 there
is a net .ui / of u.m.p. maps fromEnC1 toC such that ui � zvnjEnC1 tends weak* to 0. Since
En � EnC1, the restrictions .ui � zvn/jEn also tend weak* to 0. Thus, ui jEn � vn tends
weak* to 0 when i !1. Since ui jEn � vn takes values in C , this tends to 0 weakly in C .
Passing to convex combinations of the maps ui we may assume that limikui jEn � vnkD 0.
Choosing i large enough, we have kui jEn � vnk < "nC1, so we may set vnC1 D ui . This
completes the induction step.

5. A “new” lifting theorem

We start by what is now a special case of Theorem 3.6. Let C=	 be a quotient C �-algebra
with quotient map q W C ! C=	.

Lemma 5.1. Let E � A a f.d. subspace. Then any u W E! C=	 admits a lifting yu W E!
C such that

kyuksb D kuksb:

Proof. By (iii)) (i) in Theorem 3.6 it suffices to show that the classes

F .E; C / D ¹u W E ! C j kuksb � 1º

satisfy assertion (iii) in Theorem 3.6 with X D E. This is precisely what (4.3) says.

Remark 5.2. In the situation of Lemma 5.1, consider u W E ! C=	. We claim that if the
mapMB.E;C ��/!MB.E;C /�� is contractive then u admits a lifting yu W E! C such
that

kyukmb D kukmb:

Indeed, just as in the preceding proof, we may apply (iii)) (i) in Theorem 3.6 to the class

F .E; C / D ¹u W E ! C j kukmb � 1º:

Theorem 5.3. Let X � A be a separable subspace of a C �-algebra A. Then any u 2
SB.X;C=	/ admits a lifting yu W X ! C with kyukSB.X;C/ D kukSB.X;C=	/: If A satisfies
property (1.1), then any u2MB.X;C=	/ admits a lifting yu WX!C with kyukMB.X;C/D
kukMB.X;C=	/:
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Proof. Let u 2 SB.X; C=	/. Let E � X be a f.d. subspace. By Lemma 5.1, there is
uE W E ! C lifting ujE with

kuEkSB.E;C/ � kujEkSB.E;C=	/ � kukSB.X;C=	/:

Let " > 0. By Theorem 4.5, the map uE admits an extension fuE W X ! C such that

k
fuEkSB.X;C/ � .1C "/kuEkSB.E;C/ � .1C "/kukSB.X;C=	/:

Since for any x 2 X we have x 2 F for some f.d. F � X , we have qfuE .x/ D u.x/

whenever E � F . Therefore, the map u W X ! C=	 is in the pointwise closure of the
liftable maps ¹.1 C "/�1qfuE j E � Xº. By normalization, the liftings ¹.1 C "/�1fuE j
E � Xº are in the unit ball of SB.X; C / and the latter is an admissible class. Thus, the
conclusion of the first part follows from Arveson’s principle. The second part is obvious
since (1.1) implies that MB.E;C / D SB.E;C / isometrically for any C .

Let A;C be unital C �-algebras. Let E � A be an operator system. Further, recall that
Fump.E; C / denotes the class of unital maps in MP.E;C / (see Remarks 2.6 or 4.8).

Theorem 5.4. Assume that A satisfies the conclusion of Theorem 4.1. Let X � A be a
separable operator system. Any u 2 Fump.X;C

��/ is the pointwise weak* limit of a net in
Fump.X; C /.

Proof. LetE�X be a f.d. operator system. By Corollary 4.9 there is a net ui2Fump.E;C /

such that ui ! ujE pointwise weak*. By Theorem 4.10 there are maps vi 2 Fump.X; C /

such that kvi jE � uik ! 0, and hence .vi � u/jE ! 0 pointwise weak*. This implies that
u is in the pointwise weak* closure of Fump.X; C /.

By Theorem 3.6 we may state:

Corollary 5.5. If A satisfies (1.1) any separable operator systemX � A has the Fump-LP.

Corollary 5.6. AssumeA;C unital andA separable. IfA satisfies (1.1) or merely the con-
clusion of Theorem 4.1, any unital u 2CP .A;C=	/ admits a unital lifting yu 2CP .A;C /.

Proof. By Remarks 2.4 and 2.6, a unital map u W A ! C is c.p. if and only if u 2
Fump.A; C /.

6. Proof of Theorem 1.2

We first note that C D C �.F1/ satisfies property (1.1).

Lemma 6.1. For any free group F (in particular for F D F1) the C �-algebra C �.F/
satisfies (1.1).
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Proof. We outline the argument already included in [29, Thm. 9.11]. By the main idea
in [26] it suffices to check (1.2) for any t 2 `1.¹Diº/˝E when E is the span of the
unit and a finite number of the free unitary generators, say U1; : : : ; Un of C �.F/ (and
actually n D 2 suffices). Let U0 D 1 for convenience. It is known (see [27, pp. 257–258]
or [29, pp. 130–131]) that for any C �-algebraD and any .xj /0�j�n 2DnC1, with respect
to the inclusion E � C, we have

X xj ˝ Uj




D˝maxE

D inf
°

X a�j aj



1=2

X b�j bj


1=2±

where the infimum runs over all possible decompositions xj D a�j bj in D. Using this
characterization, it is immediate that ktk`1.¹Di º/˝maxE � supi2IktikDi˝maxE .

Proof of Theorem 1.2. Assume (i). We may assume that A is unital so that A D C=	 for
some 	 and there is a unital c.p. lifting r W A! C. Then, using

k.IdDi ˝ r/.ti /kmax � ktikmax

for any ti 2 Di ˝ E (see Remark 2.4), we easily pass from “C satisfies (ii)0’ (which is
Lemma 6.1) to “A satisfies (ii)0’. This proves (i)) (ii).

Conversely, assume (ii). By Corollary 5.6, A has the Fucp-LP, and hence (i) holds by
Proposition 3.9.

To prove (ii)) (ii)C, we use another fact. For any x D x� with kxk � 1 in C where
C is any unital C �-algebra, we have

x 2 CC, k1 � xk � 1:

Using this, one easily checks (ii)) (ii)C. Now assume (ii)C. Using kxk D kx�xk1=2 one
can reduce checking (ii) when all ti ’s are self-adjoint. Then using the same fact we obtain
(ii)C) (ii).

Note: an alternate route is to use

kxk � 1,





�1 xx� 1

�




M2.C/

� 1:

Using this with M2.Di / in place of Di , one easily checks (ii)C) (ii).

Actually, the preceding proof can be adapted to use only the conclusion of Theorem 4.1
to obtain the LP, therefore we have the following theorem.

Theorem 6.2. A separable C �-algebra A has the LP (or equivalently the property in
(1.1)) if and only if the natural map MB.E; C ��/! MB.E; C /�� is contractive for all
f.d. subspaces E � A and all C �-algebras C . In fact, it suffices to have this in the case
C D C.

Proof. Assume A unital for simplicity. By Theorem 4.1 it suffices to show the “if” part.
The latter is contained in Corollary 5.6. To justify the last assertion, we reduce the LP to
the case when C is separable, and view C as a quotient of C.
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7. LP and ultraproducts

Let U be an ultrafilter on a set I . Recall that the ultraproduct .Di /U of a family .Di /i2I
of C �-algebras is defined as the quotient

`1.¹Diº/=c
U
0 .¹Diº/;

where
cU
0 .¹Diº/ D

®
x 2 `1.¹Diº/ j lim

U
kxikDi D 0

¯
:

It is usually denoted as
Q
i2I Di=U. For short we will also denote it just by .Di /U.

Recall that, for each i 2 I , we have trivially a contractive morphism `1.¹Diº/! Di
and hence also `1.¹Diº/˝max A! Di ˝max A, whence a contractive morphism

‰ W `1.¹Diº/˝max A! `1.¹Di ˝max Aº/; (7.1)

which, after passing to the quotient gives us a contractive morphism

`1.¹Diº/˝max A! .Di ˝max A/U:

The latter morphism obviously vanishes on cU
0 .¹Diº/ ˝ A, and hence also on its clo-

sure in `1.¹Diº/˝max A, i.e. on cU
0 .¹Diº/˝max A. Thus we obtain a natural contractive

morphism

.`1.¹Diº/˝max A/=.c
U
0 .¹Diº/˝max A/! .Di ˝max A/U:

By (1.7) we have for any C �-algebra A

.Di /U ˝max A D .`1.¹Diº/˝max A/=.c
U
0 .¹Diº/˝max A/;

whence a natural contractive morphism

ˆ W .Di /U ˝max A! .Di ˝max A/U: (7.2)

In this section, we will show that (7.2) is isometric for any .Di /U if and only if A has
the LP.

Theorem 7.1. Let A be a separable C �-algebra. The following are equivalent:

(i) The algebra A satisfies (1.1) (i.e. A has the LP).

(ii) For any family .Di /i2I of C �-algebras and any ultrafilter on I we have

8t 2
hY
i2I

Di=U
i
˝ A; ktkmax D lim

U
ktikDi˝maxA:

In other words, we have a natural isometric embeddinghY
i2I

Di=U
i
˝max A �

Y
i2I

ŒDi ˝max A�=U:
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Proof. Assume (i). If A satisfies (1.1), ‰ in (7.1) is isometric. We claim that (7.2) must
also be isometric, or equivalently, injective. Indeed, let z 2 .Di /U ˝max A such that
ˆ.z/ D 0. Let z0 2 `1.¹Diº/ ˝max A lifting z. Then ‰.z0/ 2 cU

0 .¹Di ˝max Aº/. This
means that for any " > 0 there is a set ˛ 2 U such that supi2˛k‰.z

0/ikDi˝maxA < ". Let
P˛ W `1.¹Diº/! `1.¹Diº/ be the projection onto ˛ defined for any x 2 `1.¹Diº/ by
P˛.x/i D xi if i 2 ˛ and P˛.x/i D 0 otherwise. Since (7.1) is isometric we have

kŒP˛ ˝ IdA�.z0/k D k‰.ŒP˛ ˝ IdA�.z0//k D sup
i2˛

k‰.z0/ikDi˝maxA � ":

Denoting by q W `1.¹Diº/˝max A! .Di /U ˝max A the quotient map, since q.z0/ D z,
this implies

kzk D kq.z0/k D kq.ŒP˛ ˝ IdA�.z0//k � kŒP˛ ˝ IdA�.z0/k � ":

Since " > 0 is arbitrary, we conclude that z D 0, proving our claim. This proves (i)) (ii).
Assume (ii). Consider the set OI formed of all the finite subsets of I , viewed as directed

with respect to the inclusion order. Let U be a non-trivial ultrafilter on OI refining this net.
Let d D .di /i2I 2 `1.¹Di j i 2 I º/. For any J 2 OI we setDJ D `1.¹Di j i 2 J º/. Using
natural coordinate projections we have a natural morphism d D .di /i2I 7! .dJ /J2 OI 2

`1.¹DJ j J 2 OI º/. Clearly,

k.dJ /Uk D lim
U
kdJ k D kdk`1.¹Di ji2I º/:

Let  1 W `1.¹Di j i 2 I º/! .DJ /U be the corresponding isometric �-homomorphism.
We claim that we have a c.p. contraction  2 W .DJ /U! `1.¹D

��
i j i 2 I º/ such that the

composition  2 1 coincides with the inclusion `1.¹Di j i 2 I º/ � `1.¹D��i j i 2 I º/.
Indeed, consider d D .dJ /U 2 .DJ /U. For any J 2 OI we may write dJ D .dJ .i//i2J 2
`1.¹Di j i 2 J º/. Fix i 2 I . We will define  2.d/ by its i -th coordinate  2i .d/ taking
values in D��i . Note that i 2 J for all J far enough in the net. We then set

 2i .d/ D weak* lim
U
dJ .i/:

It is then easy to check our claim.
By (1.11) the composition  2 1 is max-isometric, and k 2kmb � 1 by Remark 2.4,

therefore 1 is max-isometric. In particular, (takingC DA) 1˝ IdA defines an isometric
embedding

`1.¹Di j i 2 I º/˝max A � .DJ /U ˝max A:

By (ii) we have an isometric embedding .DJ /U ˝max A �
Q
J2 OI

ŒDJ ˝max A�=U: It fol-
lows that for any t D .ti / 2 `1.¹Di j i 2 I º/˝max A we may write

ktk`1.¹Di ji2I º/˝maxA D lim
U
ktJ kDJ˝maxA;

and since ktJ kDJ˝maxA D supi2J ktikDi˝maxA for any finite J , the inequality in (1.1) fol-
lows. This proves (ii)) (i).
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8. The non-separable case

Let us say that a (not necessarily separable) C �-algebra has the LP if for any separa-
ble subspace E there is a separable C �-subalgebra As with the LP that contains E. For
example, all nuclear C �-algebras and also C �.F/ for any free group F have the LP.

To tackle the non-separable case the following statement will be useful.

Proposition 8.1. Let A be a C �-algebra. Let E � A be a separable subspace. There is
a separable C �-subalgebra As satisfying E � As � A such that, for any C �-algebra D,
the �-homomorphismD˝max As !D˝max A is isometric. In other words, the inclusion
As ! A is max-isometric.

Proof. By Remark 2.18 it suffices to prove this for D D C. The latter case is proved in
detail in [29, Prop. 7.24] (except that the factors are flipped).

Remark 8.2. Let As � A be a C �-subalgebra. Assume that the inclusion i W As ! A

is max-isometric. We claim that for any von Neumann algebra M the map IdM ˝ i W
M ˝ As !M ˝ A extends to an isometric morphism M ˝nor As !M ˝nor A.

Indeed, our assumption implies that there is a c.c.p. map (a so called “weak expecta-
tion”) T W A! A��s such that TjAs W As ! A��s coincides with the canonical inclusion;
see [8, p. 88] or [29, Thm. 7.29] for a detailed proof. By Lemma 1.11 and Remark 1.15
the claim follows.

Remark 8.3. If As ! A is max-isometric, for any E � As the spaces MBE�As .E; C /
and MBE�A.E; C / associated to the respective embeddings are (isometrically) identical
for any C . By Theorem 6.2, this shows that A has the LP if and only if kMB.E;C ��/!
MB.E; C /��k D 1 for any f.d. subspace E � A. Moreover, if A satisfies (1.1) then As
also does.

More precisely:

Corollary 8.4. A C �-algebra A satisfies the property in (1.1) if and only if for any sep-
arable subspace E � A there is a separable C �-subalgebra As satisfying (1.1) such that
E � As � A.

Proof. Let t 2 `1.¹Diº/˝ E with E � As � A as in the proposition. Then t satisfies
(1.2) with respect to A if and only if it does with respect to As .

It is now easy to extend Theorems 1.2 and 1.13 to the non-separable case:

Theorem 8.5. A (not necessarily separable) C �-algebra has the LP if and only if it satis-
fies the property (1.1). Moreover, Theorem 1.13 remains valid in the non-separable case.

Proof. The first part follows from the separable case by Corollary 8.4. For the second part,
assume that A satisfies (1.1). Let t 2M ˝ E with E f.d. Let As be as in Proposition 8.1.
Then ktkM˝maxA D ktkM˝maxAs . By Remark 8.2 we also have ktkM˝norA D ktkM˝norAs .
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By the separable case of Theorem 1.13 we know that ktkM˝norAs D ktkM˝maxAs . There-
fore, ktkM˝norA D ktkM˝maxA. This shows that (i)0) (ii) in Theorem 1.13 remains valid
in the non-separable case. The other implications have already been proved there.

Remark 8.6. We will not enumerate all the other non-separable variants of the equivalent
forms of the LP, except for the following one, that is in some sense the weakest lifting
requirement sufficient for the LP: a C �-algebra A has the LP if and only if for any separa-
ble operator system E � A and any �-homomorphism u W A! C=	, the restriction ujE
admits a c.c.p. lifting. Indeed, if the latter holds and if A is assumed unital for simplic-
ity, writing A D C �.F/=	 for some large enough free group F , it is easy to deduce the
desired LP for A from that of C �.F/. This proves the “if” part. The converse is clear, say,
by Proposition 3.9 applied to some separable As � A.

9. On the OLP

Let X be an operator space. The associated universal unital C �-algebra C �u hXi is char-
acterized by the following property: it contains X completely isometrically, is gener-
ated by X and the unit and any complete contraction u W X ! C into a unital C �-
algebra (uniquely) extends to a unital �-homomorphism from C �u hXi to C (see e.g. [29,
Thm. 2.25]).

Following [22], we say thatX has the OLP ifC �u hXi has the LP. By the universal prop-
erty of C �u hXi, it is easy to check that X has the OLP if and only if any u 2 CB.X;C=	/
into an arbitrary quotient C �-algebra admits a lifting Ou 2 CB.X; C / such that k Oukcb D

kukcb. See [22, Thm. 2.12] for various examples of X with the OLP.
Note that, with respect to the inclusionX �AD C �u hXi, the norm induced onD˝X

by the max-norm onD ˝A can be identified with the so called ı-norm (see [27, p. 240]).
We merely recall that the associated completion D ˝ı X can be identified as an operator
space with the quotient ŒD ˝h X ˝h D�= ker.Q/ where Q W D ˝h X ˝h D ! D ˝ı X

is associated to the product mapD ˝D!D. We have then isometrically when we view
X as sitting in A D C �u hXi,

D ˝ı X D D ˝max X: (9.1)

This implies that we have also isometrically for any C �-algebra C ,

MB.X;C / D CB.X;C /: (9.2)

ConsiderE �X f.d. Let C be a C �-algebra. Recall (see Theorem 2.9) that the unit ball of
the spaceMB.E;C / is formed of the maps u W E ! C that extend to some Pu W A! C ��

with k Pukdec � 1. Let zu D PujX W X ! C ��. Then kzukcb � 1, so u extends to a complete
contraction zu WX!C ��. Conversely, if u extends to a complete contraction zu WX!C ��,
then zu extends to a �-homomorphism � W A! C ��, and this implies kukMB.E;C/ � 1.
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Therefore, in this case

kukMB.E;C/ D kukext.E;C/; (9.3)

where (recall iC W C ! C �� denotes the canonical inclusion)

kukext.E;C/ D inf¹kzukcb j zu W X ! C ��; zujE D iCuº:

Whence the following characterization of the OLP. The equivalence (i), (iii) already
appears in [22, Prop. 2.9].

Theorem 9.1. Let X be a separable operator space. The following are equivalent:

(i) X has the OLP.

(ii) For any C �-algebra C and any f.d. subspace E � X we have an isometric
identity

ext.E; C ��/ D ext.E; C /��:

(iii) For any C �-algebra C , every complete contraction u W X ! C �� is the point-
wise-weak* limit of a net of complete contractions ui W X ! C .

(iv) For any family .Di /i2I of C �-algebras, the natural mapping

`1.¹Diº/˝ı X ! `1.¹Di ˝ı Xº/

is isometric.

Proof. (i) ) (ii) follows from Theorem 4.1 and (9.3). (ii) , (iii) is easy. (i) , (iii)
follows from Theorem 3.6 with F the class of complete contractions. (i)) (iv) is clear
by (9.1) since (by Theorem 1.2) the LP for C �u hXi implies that it satisfies the property
in (1.1).

Assume (iv). Then by (9.1) and (9.2) we have SB.X;C / DMB.X;C / D CB.X;C /
isometrically for any C . By Theorem 5.3, (i) holds.

In particular, we may apply this when X is a maximal operator space. Then kzukcb D

kzuk for any zu W X ! C (or any zu W X ! C ��). This case is closely related to several
results of Ozawa in his PhD thesis and in [22]; see also Oikhberg [21]. The property
(ii) in Theorem 9.1 is reminiscent of Johnson and Oikhberg extendable local reflexivity
from [17]. It gives some information on the existence of bounded liftings in the Banach
space setting.

10. Illustration: Property (T) groups

To illustrate the focus our paper gives to the property in (1.1) and its variants, we turn to
Kazhdan’s property (T), following [16,22,32]. The proof of Theorem 10.1 below is merely
a reformulation of an argument from [16, Thm. G], but appealing to (1.1) is perhaps a bit
quicker.
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Theorem 10.1 ([16]). LetG be a discrete group with property (T). Let .Nn/ be an increas-
ing sequence of normal subgroups of G and let N1 D

S
Nn. If C �.G=N1/ has the LP

then N1 D Nn for all large enough n.

Proof. Let S �G be a finite unital generating subset. LetGn DG=Nn andG1 DG=N1.
Let qn W G ! Gn and q1 W G ! G1 denote the quotient maps. Let Mn D �Gn.Gn/

00

denote the von Neumann algebra of Gn, and MU its ultraproduct with respect to a non-
trivial ultrafilter U. We will define unitary representations �n and �U on G. We set
�n.t/D �Gn.qn.t// for any t 2 G. LetQU W `1.¹Mnº/!MU be the quotient map. We
set �U.t/ D QU..�n.t///. Since the kernel of G 3 t 7! �U.t/ contains N1, it defines a
unitary representation on G=N1 and hence we have

jS j D



X

S

�U.s/˝ �U.s/





MU˝maxMU

�




X
S

�U.s/˝ UG=N1.q1.s//





MU˝maxC�.G=N1/
:

Let A D C �.G=N1/. Using (1.1) for A we find

jS j � lim
n;U




X
S

�n.s/˝ UG=N1.q1.s//





Mn˝maxA
: (10.1)

Also note that the LP of A implies

Mn ˝max A DMn ˝nor A:

For some Hilbert space Hn there is a faithful representation �n W Mn ˝nor A! B.Hn/

that is normal in the first variable. By a well-known argument, (10.1) implies that the
sequence ¹�n ˝ UG=N1 ı q1º, viewed as unitary representations of G in B.Hn/, admits
(asymptotically) almost invariant vectors. By property (T) for all n large enough, �n ˝
UG=N1 ı q1 must admit an invariant unit vector in Hn. This means there is a unit vector
� 2 Hn such that

8t 2 G �n
�
�n.t/˝ UG=N1 ı q1.t/

�
.�/ D �:

Recall �n D �Gn ı qn. Let

8g 2 Gn f .g/ D h�; �n.�Gn.g/˝ 1/.�/i:

Then f is a normal state on Mn such that f .g/ D 1 whenever g 2 N1=Nn � Gn. As is
well known, we may rewrite f as f .g/ D h�; �Gn.g/�i for some unit vector � 2 `2.Gn/.
Now, f .g/ D 1 whenever g 2 N1=Nn � Gn means that �Gn.g/� D � whenever g 2
N1=Nn � Gn. From this follows that N1=Nn must be finite and hence N1 is the union
of finitely many translates of Nn by points, say t1; : : : ; tk in N1. Choosing m � n so that
t1; : : : ; tk 2 Nm we conclude that Nm D N1.
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Corollary 10.2 ([16]). Let � be a discrete group with (T). If C �.�/ has the LP then � is
finitely presented.

Proof. We quickly repeat the proof in [16]. By a result of Shalom [30], any property (T)
discrete group � is a quotient of a finitely presented group G with property (T). Enumer-
ating the (a priori countably many) relations that determine � , we can find a sequence
Nn and N1 as in Theorem 10.1 with G=Nn finitely presented such that � D G=N1. By
Theorem 10.1, if C �.�/ has the LP then � D G=Nn for some n and hence � is finitely
presented.

Remark 10.3. Let U be a non-trivial ultrafilter on N. If we do not assume the sequence
.Nn/ nested, let N1 be defined by

t 2 N1, lim
U
1t2Nn D 1:

Then the same argument shows that jqn.ker.q1//j<1 for all n “large enough” along U.

As pointed out in [16] there is a continuum of property (T) groups that are not finitely
presented, namely those considered earlier by Ozawa in [24]. By the preceding corollary,
C �.G/ fails the LP for all those Gs.

11. Some uniform estimates derived from (1.1)

In this section, our goal is to show that property (1.1) has surprisingly strong “local”
consequences. The results are motivated by the construction in [28] and our hope to find
a separable A with LLP but failing LP (see Remark 1.17).

Definition 11.1. Let B;C be C �-algebras. Let E � B be a self-adjoint subspace and let
" > 0. A linear map  W E ! C will be called an "-morphism if

(i) k k � 1C ",

(ii) for any x; y 2 E with xy 2 E we have k .xy/ �  .x/ .y/k � "kxkkyk;

(iii) for any x 2 E we have k .x�/ �  .x/�k � "kxk.

Lemma 11.2. Let A be any unital C �-algebra and let D be another C �-algebra. Let
t 2 D ˝ A.

(i) Then for any ı > 0 there is " > 0 and a f.d. operator system D � A such that
t 2 D ˝D and for any C �-algebra C and any v 2 CP".D; C / where

CP".D; C / D ¹v W D! C; 9v0 2 CP.D; C / with kv0k � 1 and kv � v0k � "º;

we have
k.IdD ˝ v/.t/kmax � .1C ı/ktkmax: (11.1)
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(ii) Assume t 2 .D ˝ A/Cmax. Then for any ı > 0 there is " > 0 and a f.d. operator
system D � A such that t 2 D ˝ D and for any C �-algebra C and any v 2
CP".D; C / we have

d..IdD ˝ v/.t/; .D ˝max C/C/ � ı; (11.2)

where the distance d is meant in D ˝max C .

(iii) For any ı > 0 there is " > 0 and a f.d. subspace E � A such that t 2 D ˝ E

and for any "-morphism  W E ! C (C any other C �-algebra) we have

k.IdD ˝  /.t/kD˝maxC � .1C ı/ktkD˝maxA:

Proof. By Remark 1.5 we may assumeD unital. Let t 2D˝A. Let E � A f.d. such that
t 2 D ˝ E. First note that (see Remark 1.6 or Proposition 8.1) there is a separable C �-
subalgebra B with E � B � A such that ktkD˝maxB D ktkD˝maxA. Moreover, assuming
ktkD˝maxA D 1 (for simplicity), if t 2 .D ˝ A/Cmax D .D ˝ A/ \ .D ˝max A/C (which
means that t is of finite rank with t D t� and k1 � tkD˝maxA � 1) there is a B such that
in addition t 2 .D ˝ B/Cmax. It follows that we may assume A separable without loss of
generality. Then let .En/ be an increasing sequence of f.d. subspaces (or operator systems
if we wish) such that E � E0 and A D

S
En.

(i) We may assume by homogeneity that ktkmax D 1. We will work with the sequence
.En; 1=n/. The idea is that this sequence “tends” to .A; 0/. For any n 2N we define ın by

1C ın D supk.IdD ˝ v/.t/kmax;

where the sup runs over all C ’s and v 2 CP1=n.En; C /. Note that this is finite because the
rank of t is so. For any n there is Cn and vn 2 CP1=n.En; Cn/ such that

k.IdD ˝ vn/.t/kmax � 1C ın � 1=n: (11.3)

Let L D `1.¹Cnº/ and 	 D c0.¹Cnº/. Consider the quotient space L D L=	 so that for
any family x D .xn/ 2 `1.¹Cnº/ the image of x under the quotient mapQ W `1.¹Cnº/!
L satisfies

kQ.x/k D lim supkxnk:

Note that by (1.7) we have

D ˝max L D ŒD ˝max L�=ŒD ˝max 	�: (11.4)

The net .vn/ defines a c.p. map v from A to L with kvk � 1. It follows (see Remark 2.4)
that k.IdD ˝ v/.t/kD˝maxL � 1. By (1.7) we have

k.IdD ˝ v/.t/kD˝maxL D k.IdD ˝ v/.t/k.D˝maxL/=.D˝max	/:

We have a natural morphism D ˝max L! D ˝max Cn for each n and hence a natural
morphism D ˝max L! `1.¹D ˝max Cnº/, taking D ˝max 	 to c0.¹D ˝max Cnº/. This
implies

lim sup
n
k.IdD ˝ vn/.t/kD˝maxCn � k.IdD ˝ v/.t/kD˝maxL � 1:
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Therefore, by (11.3),
lim sup

n
ın � 0:

Thus, for all n large enough we have ın < ı. This proves (i).
(ii) For any n, let ın denote the supremum of the left-hand side of (11.2) over all C ’s

and all v 2 CP1=n.En; C /. We introduce vn and v 2 CP.A;L/ by proceeding as in the
preceding argument. Now, .IdD ˝ v/.t/ 2 .D ˝L/Cmax, which, in view of (11.4), implies

lim sup d..IdD ˝ vn/.t/; .D ˝max Cn/C/ D 0:

We conclude as for part (i).
Lastly, (iii) is proved similarly to (i).

Lemma 11.3. Let A be any unital C �-algebra satisfying (1.1). Let E � A be a f.d. sub-
space. Then for any ı > 0 there is " > 0 and a f.d. operator system D � A containing E
such that the following holds.

(i) For any C �-algebras C;D and any v 2 CP".D; C / (in particular for any v 2
CP.D; C / with kvk � 1) we have

8t 2 D ˝E k.IdD ˝ v/.t/kmax � .1C ı/ktkmax: (11.5)

In other words,
kvjEkMB.E;C/ � 1C ı: (11.6)

(ii) For any C �-algebras C , D and any v 2 CP".D; C / we have

8t 2 .D ˝ C/Cmax d..IdD ˝ v/.t/; .D ˝max C/C/ � ıktkmax; (11.7)

where the distance d is meant in D ˝max C .

(iii) For any C �-algebras C , D and "-morphism  W D! C we have

k.IdD ˝  /.t/kD˝maxC � .1C ı/ktkD˝maxA:

Proof. It is easy to see (by Remark 1.6 or Proposition 8.1) that we may restrict to separa-
bleD’s. We then assemble the set I as the disjoint union of unit balls ofD ˝max E, when
D is an arbitrary separable C �-algebra (say viewed as quotient of C). Let ti 2 Di ˝ E
be the element corresponding to i 2 I . By (1.2) we know that ktk`1.¹Di º/˝maxA � 1; and
hence ktk`1.¹Di º/˝maxE � 1. LetD D `1.¹Diº/ so that t 2D˝E. Let " > 0 and D�E

be associated to t as in Lemma 11.2. For any v 2 CP".D; C / we have

k.IdD ˝ v/.t/kmax � .1C ı/ktkmax � 1C ı:

A fortiori, using the canonical morphisms D ! Di ,

sup
i2I

k.IdDi ˝ v/.ti /kmax � 1C ı;

equivalently we conclude kvkMB.E;C/ � 1C ı.
(ii) and (iii) are proved similarly. A priori they lead to distinct D’s but since replacing

D by a larger f.d. one preserves the 3 properties, we may obtain all 3 for a common D.
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Remark 11.4. In the converse direction, assume that for any E and ı > 0 there is D � E
such that, for any C , any v 2 CP.D;C / satisfies (11.6). If A (separable unital for simplic-
ity) has the LLP then A satisfies (1.1). Indeed, assuming the LLP, any quotient morphism
q W C! A will admit unital c.p. local liftings on arbitrarily large f.d. operator systems D
in A. By (11.6), we have local liftings uE W E ! C with kuEkmb � 1C ı on arbitrarily
large f.d. subspaces E in A. From the latter, it is now easy to transplant (1.1) from C to A
(as in the proof of (i)) (ii) in Theorem 1.2). Thus, the property described in part (i) of
Lemma 11.3 can be interpreted as describing what is missing in the LLP to get the LP.

Our last result is a reformulation of the equivalence of the LP and the property in (1.1).
Under this light, the LP appears as a very strong property.

Theorem 11.5. Let A be a C �-algebra. The following are equivalent:

(i) The algebra A satisfies (1.1) (i.e. it has the lifting property LP).

(ii) For any f.d. E � A there is P D PE 2 C˝ E with kP kC˝maxA � 1 such that
for any unital separable C �-algebra D and any t 2 BD˝maxE there is a unital
�-homomorphism2 qD W C! D such that

ŒqD ˝ IdA�.P / D t:

(ii)0 For any f.d. E � A there is a unital separable C �-algebra C and P D PE 2
C ˝ E with kP kC˝maxA � 1 such that the same as (ii) holds with C in place
of C.

(iii) For any f.d. E � A and " > 0 there is P D PE 2 C˝E with kP kC˝maxA � 1

such that for any unital separable C �-algebraD and any t 2 BD˝maxE there is
a unital �-homomorphism qD W C! D such that

kŒqD ˝ IdA�.P / � tkmax < ":

(iii)0 For any f.d. E � A and " > 0 there is a unital separable C �-algebra C and
P 2 C ˝E such that the same as (iii) holds with C in place of C.

(iv) Same as (iii)0 restricted to D D C.

Proof. Assume (i). We view the set of all possible D’s as the set of quotients of C. Let
I be the disjoint union of the sets BD˝maxE . Let t D .ti /i2I be the family of all possible
t 2 BD˝maxE . By (1.2), we have

ktk`1.¹Di º/˝maxE � 1:

Let q W C �.F/! `1.¹Diº/ be a surjective �-homomorphism. Let t 0 2 C �.F/˝ E be a
lifting of t such that kt 0kC�.F/˝maxE � 1. There is a copy of F1, say F 0 � F such that

2Here, actually, we could use instead of a �-homomorphism a u.c.p. map or a q with kqkmb � 1.
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t 0 2 C �.F 0/ ˝ E. Then C �.F 0/ � C �.F/. Let C D C �.F 0/. We can take for qD the
restriction of qi to C �.F 0/ ' C, and we set P D t 0 viewed as sitting in C˝E. This gives
us (i)) (ii) and (ii)) (ii)0 is trivial.

(ii)) (iii) and (iii)) (iii)0)(iv) are trivial.
Assume (iii)0. Let Q W C! C be a quotient unital morphism. Let P 2 C ˝ E be as

in (iii)0. Let P 0 2 C˝ E with kP 0kmax � 1 be such that ŒQ˝ IdE �.P 0/ D P (this exists
by the assertion following (1.8)). Then P 0 has the property required in (iii). Thus (iii)0)
(iii). Similarly (ii)0) (ii).

The implication (iv)) (iii)0 is easy to check similarly using the fact that any D is a
quotient of C. We skip the details. It remains to show (iii)) (i).

Assume (iii). We will show (1.2). We need a preliminary elementary observation. Let
.ej / be a normalized algebraic basis of E. Then it is easy to see that there is a constant c
(depending on E and .ej /) such that for any D and any dj ; d 0j 2 D we have

sup
j

kdj � d
0
j k � c



X.dj � d
0
j /˝ ej




D˝maxE

: (11.8)

Now, let ti 2 BDi˝maxE . Let P 2 BC˝maxE be as in (iii). For some quotient morphism
qi W C! Di we have

kti � Œq
i
˝ IdA�.P /kC˝maxE � ":

Let Pi D P and Ci D C for all i 2 I . Clearly (since P 7! .Pi / is a �-homomorphism on
C˝ A),

k.Pi /k`1.¹Ci º/˝maxE � kP kC˝maxE � 1:

Note .qi / W `1.¹Ciº/! `1.¹Diº/ is a �-homomorphism. Let .t 0i / D Œq
i ˝ IdA�.Pi /. We

have
k.t 0i /k`1.¹Di º/˝maxE � 1 and sup

i

kti � t
0
ikC˝maxE � ":

By the triangle inequality and (11.8) we have k.ti / � .t 0i /k`1.¹Di º/˝maxE � c dim.E/".
Therefore, k.ti /k`1.¹Di º/˝maxE � 1C c dim.E/". Since " > 0 is arbitrary for any fixed E,
this means that (1.2) holds whence (i) (and the LP by Theorem 1.2).

In passing we note:

Corollary 11.6. For the property in (1.1) it suffices to check the case when I D N (and
Di D C for all i 2 I ).

Proof. We already observed that Di D C for all i 2 I suffices (see Proposition 1.8).
Assume that (1.2) holds for I D N and Di D C. In the proof of (i) ) (ii) in Theo-
rem 11.5 we may use for the set I the disjoint union of dense sequences in BDk˝maxE with
k 2 N and Dk D C. Then I is countable and with the latter I the proof of (i)) (ii) in
Theorem 11.5 gives us (iii) in Theorem 11.5. By (iii)) (i) in Theorem 11.5, the corollary
follows.
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Remark 11.7. Let P denote the (non-closed) �-algebra generated by the free unitary
generators of C. Let P 2 C˝ E be as in (ii) in Theorem 11.5. Note for any " > 0 there
is Q 2 P ˝E with kQ � P k^ < " (where k k^ denotes the projective norm), and hence
also kqD.Q/� tk^ < ". After a suitable normalization we may also assume kQkmax < 1.
Then Q has a factorization in products in

S
Mn.C/ and

S
Mn.A/ and a further Blecher–

Paulsen type factorization in the style described in [27, §26]. Thus we find a common
pattern in the approximate factorization of all the elements of BD˝maxE .

The simplest illustration of this phenomenon is the case when A D C and E is the
span of the unitary generators .Ui /. In that case we have t D

P
di ˝ Ui 2 BD˝maxE if

and only if for any " > 0 there is a factorization of the form di D aib
�
i with ai ; bi 2 D

such that k
P
aia
�
i k
1=2 D k

P
bib
�
i k
1=2 < 1 C " (see [29, pp. 130–131]). Equivalently,

this holds if and only if for any " > 0 there are ai ; bi 2 D such that k
P
aia
�
i k
1=2 D

k
P
bib
�
i k
1=2 D 1 and

P
ikdi � aib

�
i k < ". Let us assume that the latter holds. Consider

first the column operator space Cn, then its universal C �-algebra C �u hCni, and lastly the
free product C D C �u hCni � C

�
u hCni. Let e.1/i1 2 C and e.2/i1 2 C denote the natural basis

of the column space Cn of each free factor. Let PE D
P
e
.1/
i1 e

.2/�

i1 ˝ Ui 2 C ˝ E. By
our assumption on .di /, there is a �-homomorphism qD W C ˝E such that qD.e.1/i1 /D ai
and qD.e.2/i1 / D bi and hence kqD.PE /�

P
di ˝ Uik � ". This illustrates property (iii)0

from Theorem 11.5. Note in passing that since the column space Cn has the OLP, the free
product C D C �u hCni � C

�
u hCni has the LP. The latter algebra can be substituted with C

in many questions involving tensor products.
Using the preceding remark, one can give an independent proof of Lemma 11.3.

Acknowledgments. I am grateful to Jean Roydor and Mikael de la Salle for stimulating
and useful comments.
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