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Computing the spectral action for fuzzy geometries:
from random noncommutative geometry to

bi-tracial multimatrix models

Carlos I. Pérez-Sánchez

Abstract. A fuzzy geometry is a certain type of spectral triple whose Dirac operator crucially
turns out to be a finite matrix. This notion incorporates familiar examples like fuzzy spheres and
fuzzy tori. In the framework of random noncommutative geometry, we use Barrett’s characteriza-
tion of Dirac operators of fuzzy geometries in order to systematically compute the spectral action
S.D/ D Tr f .D/ for 2n-dimensional fuzzy geometries. In contrast to the original Chamseddine–
Connes spectral action, we take a polynomial f with f .x/!1 as jxj ! 1 in order to obtain
a well-defined path integral that can be stated as a random matrix model with action of the type
S.D/ D N � trF C

P
i trAi � trBi , being F , Ai and Bi noncommutative polynomials in 22n�1

complex N � N matrices that parametrize the Dirac operator D. For arbitrary signature—thus for
any admissible KO-dimension—formulas for 2-dimensional fuzzy geometries are given up to a sex-
tic polynomial, and up to a quartic polynomial for 4-dimensional ones, with focus on the octo-matrix
models for Lorentzian and Riemannian signatures. The noncommutative polynomials F , Ai and Bi
are obtained via chord diagrams and satisfy: independence of N ; self-adjointness of the main poly-
nomial F (modulo cyclic reordering of each monomial); also up to cyclicity, either self-adjointness
or anti-self-adjointness of Ai and Bi simultaneously, for fixed i . Collectively, this favors a free
probabilistic perspective for the large-N limit we elaborate on.

1. Introduction

In some occasions, the core concept of a novel research avenue can be traced back to a
defiant attitude towards a no-go theorem. However uncommon this is, some prolific theo-
ries that arose from a slight perturbation of the original assumptions, aiming at an escape
from the no-go, have shaped the modern landscape of mathematical physics. Arguably,
the best-known story fitting this description is supersymmetry.

Another illustration is found in noncommutative geometry (NCG) applications to par-
ticle physics: In an attempt to unify all fundamental interactions, the proposal of trading
gravitation coupled to matter on a usual spacetime manifold M by pure gravitation
on an extended space M � F is bound to fail—as a well-known symmetry argument
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(amidst other objections) shows—as far as spacetime is extended by an ordinary mani-
fold F . Rebelling against the no-go result, while not giving up a gravitational unification
approach, shows the way out of the realm of commutative spaces (manifolds) after restat-
ing the symmetries in an algebraic fashion. For the precise argument we refer to [25,
Sec. 9.9] and for the details on the obstruction to [32, 56, 70].

Following the path towards a noncommutative description of the ‘internal space’ F
(initially a two-point space), Connes was able to incorporate the Higgs field on a geomet-
rically equal footing with gauge fields, simultaneously avoiding the Kaluza–Klein tower
that an augmentation of spacetime by an ordinary space F would cause. As a matter
of fact, not only the Higgs sector but the whole classical action of the Standard Model
of particle physics has been geometrically derived [4, 17] from the Chamseddine–Connes
spectral action1 [16]. The three-decade-old history of the impact of Connes’ groundbreak-
ing idea on the physics beyond the Standard Model is told in [19] (to whose comprehensive
references one could add later works [9,10,13,55]); see his own review [24] for the impact
of the spectral formalism on mathematics.

On top of the very active quest for the noncommutative internal space F that corre-
sponds to a chosen field theory, it is pertinent to point out that such theory is classical and
that quantum field theory tools (for instance, the renormalization group) are adapted to it.
The proposals on presenting noncommutative geometries in an inherently quantum setting
are diverse: A spin network approach led to the concept of gauge networks, along with a
blueprint for spin foams in NCG, as a quanta of NCG [54]; therein, from the spectral action
(for Dirac operators) on gauge networks, the Wilson action for Higgs-gauge lattice the-
ories and the Kogut–Susskind Hamiltonian (for a 3-dimensional lattice) were derived, as
an interesting result of the interplay among lattice gauge theory, spin networks and NCG.
Also, significant progress on the matter of fermionic second quantization of the spectral
action, relating it to the von Neumann entropy, has been proposed in [18]; and a bosonic
second quantization was undertaken more recently in [28]. The context of this paper is
a different, random geometrical approach motivated by the path-integral quantization of
noncommutative geometries

Z D

Z
M

e�Trf .D/dD; (1.1)

where S.D/ D Trf .D/ is the (bosonic) spectral action. The integration is over the space
M of geometries encoded by Dirac operators D on a Hilbert space that, in commutative
geometry, corresponds to the square integrable spinors HM (well defining this Z is a
fairly simplified version of the actual open problem stated in [25, Ch. 18.4]). The meaning
of this partition function Z is not clear for Dirac operators corresponding to an ordinary

1To be precise, in this article ‘spectral action’ means ‘bosonic spectral action’. The derivation of the
Standard Model requires also a fermionic spectral action hJ z ;D z i where z is a matrix (see [30]) of
classical fermions. See [52] for a physics review and [71] and [25, Sections 9–18] for detailed mathematical
exposition.
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spacetimeM . In order to get a finite-rank Dirac operator one can, on the one hand, truncate
the algebra C1.M/ and the Hilbert space HM in order to get a well-defined measure dD
on the space of geometries M, now parametrized by finite, albeit large, matrices. On the
other hand, one does not want to fall in the class of lattice geometries [46] nor finite
geometries [51].

Fuzzy geometries are finite-dimensional geometries that escape the classification of
finite geometries given in [51], depicted in terms of the Krajewski diagrams, and [61].
In fact, fuzzy geometries retain also a (finite-dimensional) model of the spinor space
that is not present in a finite geometry. Moreover, in contradistinction to lattices, fuzzy
geometries are genuinely—and not only in spirit—noncommutative. In particular, the
path-integral quantization of fuzzy geometries differs also from the approach in [46] for
lattice geometries.

Of course, fuzziness is not new [53] and can be understood as limited spatial resolu-
tion on spaces. The prototype is the space spanned by finitely many spherical harmonics
approximating the algebra of functions on the sphere S2. This picture is in line with mod-
els of quantum gravity, since classical spacetime is expected to break down at scales below
Planck length [29].

Although the three components of a spectral triple have sometimes been evoked in the
study of fuzzy spaces [26] and their Dirac operators on some fuzzy spaces are well studied
(e.g. the Grosse–Prešnajder Dirac operator [41]), a novelty in [5] is their systematic spec-
tral triple formulation; for instance, fuzzy tori, elsewhere addressed (e.g. [27,68]), acquire
a spectral triple [7]. Spectral triples are data that algebraically generalize spin manifolds.
More precisely, when the spectral triple is commutative (i.e. the algebraic structure that
generalizes the algebra of coordinates is commutative, with additional assumptions we
omit) a strong theorem is the ability to construct, out of it, an oriented, smooth manifold,
with its metric and spinc structure. This has been proven by Connes [23] taking some
elements from previous constructs by Rennie–Várilly [67].

This paper computes the spectral action for fuzzy geometries. Compared with the
smooth case, our methods are simpler. For an ordinary manifold M or an almost com-
mutative space M � F (being F a finite geometry [71, Sec. 8]), one commonly relies on
a heat kernel expansion

Tr.e�tD
2

/ �
X
n�0

t
n�dim.M/

2 an.D
2/; .tC ! 0/;

which allows, for f of the Laplace–Stieltjes transform type f .x/ D
R

RC e�tx
2
d�.t/,

to determine the spectral action Trf .D=ƒ/ in terms of the Seeley–DeWitt coefficients
a2n.D

2/ [36], being t D ƒ�1 the inverse of the cutoff ƒ; see also [31]. The elements
of Gilkey’s theory are not used here. Crucially, f is instead assumed to be a polynomial
(with f .x/!1 for jxj ! 1), which enables one to directly compute traces of pow-
ers of the Dirac operator. This alteration of the Chamseddine–Connes spectral action—in
which f is typically a symmetric bump function around the origin—comes from a con-
vergence requirement for the path-integral (1.1), as initiated by Barrett–Glaser in [8] (a
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polynomial spectral action itself is already considered in [54], though, for gauge networks
arising from embedded quivers in a spin manifold).

1.1. Recent and parallel progress in random NCG

‘Random NCG’ is a short name for the construction of probability measures on families
of finite-dimensional2 Dirac operators, which is in line with equation (1.1). Since this par-
tition function resembles the canonical ensemble in statistical physics, ‘random NCG’ is
called ‘Dirac ensembles’ elsewhere [49]. Also the terminology ‘dynamical fuzzy spectral
triples’ is used in [35], where the Batalin–Vilkovisky formalism is addressed for this type
of models.

Initially, the motivation of [8] was to access information about fuzzy geometries by
looking at the statistics of the eigenvalues of D using Markov chain Monte Carlo sim-
ulations3. This and a posterior study [6] deliver evidence for a phase transition to a 2-
dimensional behavior (also of significance in quantum gravity [14]). Glaser explored the
phase transition of the fuzzy-sphere—like .1; 3/ case—that is of KO-dimension 2, as satis-
fied by the Grosse–Prešnajder operator—together with that of .1; 1/ and .2; 0/ geometries
of KO-dimensions 0 and 6, respectively. For the .1; 3/ geometry, the spectral action used in
the numerical simulations of [37] was obtained inside MCMCv4, a computer code aimed
at simulating random fuzzy geometries; the formula (in C++ language) for the spectral
action can be found in the file Dirac.cpp of [38].

In [44], algebraic relations among the moments EŒ 1
N

TrN .Ka1K
b
2K

c
1K

d
2 /� (for a, b, c,

d 2 Z>0) of the N � N matrices K1, K2 that parametrize the Dirac operator in dimen-
sion 2 (see Section 4 for details) are found, using the loop equations. The phase diagram
(spanned by the second moment and by the coupling constant) of a quadratic-quartic
theory is explored. In [48] and [44] results are reported in agreement with computer sim-
ulations [37].

By using the chord-diagrams techniques of the present paper, a Yang–Mills(–Higgs)
gauge theory was obtained in [65] from the spectral action on fuzzy geometries (in the
sense that the sectors of the Yang–Mills–Higgs theory on a smooth manifold are identifi-
able with those of [65].

The partition function (1.1) should be interpreted as ‘convergent integral’. If this is
rather grasped as a ‘formal integral’, we have a tool to generate random maps of certain
kind (edge-colored [66] maps which might be stuffed [11], as the renormalization flow
yields an effective action with more traces). The correlation functions obey Topological
Recursion [3]. A recent review of it is [45].

2Most properly, as we will see, the terminology should be ‘random finite-dimensional spectral triples’.
Notice however, that not all finite-dimensional spectral triples are considered in this class.

3Formulas for the spectral action for geometries of signature .0; 3/, which lead to a tetra-matrix model
were presented in [8, App. A.6] (strictly seen, these lead to an octo-matrix model, but a simplification is
allowed by the fact that the product of all gamma matrices is a scalar). Concerning this paper, our solely
analytic approach to spectral action computations yields, out of a single general proof, a formula for any
admissible KO-dimension, as it will become apparent in Proposition 5.4.
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Aiming at the search of fixed points of the renormalization flow (which might be
candidate for a transition to a manifold phase) the Functional Renormalization Group is
developed from scratch in [64] for the matrix models that are motivated by random NCG.

1.2. Organization of this paper

Finally, the paper is organized as follows: the next section, based on [5], introduces
spectral triples and fuzzy geometries in a self-contained way. The definition is slightly
technical, but the essence of a fuzzy geometry can be understood from its matrix alge-
bra, its Hilbert space H and Barrett’s characterization of Dirac operators (Sections 2.3
and 2.4). In Section 3, we compute the spectral action in a general setting. A conve-
nient graphical description of ‘trace identities’ for gamma matrices (due to the Clifford
module structure of H , Section 3.1) is provided in terms of chord diagrams, which later
serve as organizational tool in the computation of Tr.Dm/, m 2 N. As the main results
in Sections 4 and 5, we derive formulas for the spectral action for 2- and 4-dimensional
fuzzy geometries, respectively. In the latter case, we elaborate on the Riemannian and
Lorentzian cases, being these the first reported (analytic) derivations for the spectral action
of d -dimensional fuzzy geometries with general Dirac operators in d > 3.

In Section 6, we restate our results, aiming at free probabilistic tools towards the large-
N limit (being N the matrix size in Barrett’s parametrization of the Dirac operator). In
order to define noncommutative (NC) distributions, one often departs from a self-adjoint
NC polynomial. It turns out that only a weaker concept (‘cyclic self-adjointness’) defined
here is satisfied by the main NC polynomial P in

Trf .D/ D N � TrN P C
X
i

TrN ˆi TrN ‰i I

the other NC polynomialsˆi and‰i (for fixed i ) either satisfy this very condition, or they
are both cyclically anti-self-adjoint. The trace TrN cannot tell apart these conditions from
the actual self-adjointness of an NC polynomial.

The conclusions and the outlook are presented in the last two sections. Even though
the text is self-contained, Supplementary Material is offered that might be of help for the
full understanding of this paper. It is available online at the article’s web page. Its content
is the following:

• Section I provides in detail computations of chord diagrams.

• Some properties of gamma matrices in general signature that were useful for the main
text appear in Section II.

• Section III gives the spectral action for Riemannian and Lorentzian signatures explic-
itly (for a quadratic-quartic potential)

• Some proofs omitted in the main text are located in Section IV.

• The definition of cyclic self-adjointness is given in Section V.

• Section VI relates a double-trace matrix model to expectations taken with respect to
an auxiliary (single-trace) matrix model.
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2. Fuzzy geometries as spectral triples

The formalism of spectral triples in noncommutative geometry can be very intricate and
its full machinery will not be used here. We refer to [71] for more details on the usage of
spectral triples in high energy physics.

The essential structure is the spectral triple .A;H ;D/, where A is a unital, involutive
algebra of bounded operators on a Hilbert space H . The Dirac operatorD is a self-adjoint
operator on H with compact resolvent and such that ŒD; a� is bounded for all a 2 A. On
H , the algebraic behavior between of the Dirac operator and the algebra A—and later
also among D and some additional operators on H—encodes geometrical properties. For
instance, the geodesic distance dg between two points x and y of a Riemannian (spin)
manifold .M; g/, can be recovered from

dg.x; y/ D sup
a2A

¹ja.x/ � a.y/j j a 2 A and kŒD; a�k � 1º;

being A the algebra of functions onM andD the canonical Dirac operator [22, Sec. VI.1].
Precisely, those additional operators lead to the concept of real, even spectral triple,

which allows to build physical models. Next definition, taken from [5], is given here by
completeness, since fuzzy geometries are a specific type of real (in this paper all of them
even) spectral triples.

Definition 2.1. A real, even spectral triple of KO-dimension s 2 Z=8Z consists in the
following objects and relations:

(i) an algebra A with involution �,

(ii) a Hilbert space H together with a faithful, �-algebra representation � W A!
L.H /,

(iii) an anti-linear unitarity (called real structure) J WH !H , hJv; Jwi D hw; vi,
being h � ; � i the inner product of H ,

(iv) a self-adjoint operator 
 W H ! H commuting with the representation � and
satisfying 
2 D 1 (called chirality),

(v) for each a; b 2 A, Œ�.a/; J�.b/J�1� D 0,

(vi) a self-adjoint operator D on H that satisfies�
ŒD; �.a/�; J�.b/J�1

�
D 0; a; b 2 A;

(vii) the relations

J 2 D �; (2.1a)

JD D �0DJ; (2.1b)

J
 D �00
J; (2.1c)

with the signs �; �0; �00 determined by s according to the following table:
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s 0 1 2 3 4 5 6 7

� C C � � � � C C

�0 C � C C C � C C

�00 C + � + C + � +

A fermion space of KO-dimension s is a collection of objects .A;H ; J; 
/ satisfying
axioms (i) through (v) and (vii), except for equation (2.1b).

2.1. Gamma matrices and Clifford modules

Given a signature .p; q/ 2 Z2�0, a spinor (vector) space V is a representation c of the
Clifford algebra4 C`.p; q/. Thus, elements of the basis ea and e Pa of Rp;q , a D 1; : : : ; p
and Pa D 1; : : : ; q, become endomorphisms c.ea/D 
a, c.e Pa/D 
 Pa of V . If d D qC p is
even, V is assumed to be irreducible, whereas only the eigenspaces V C; V � � V of 
 are,
if q C p is odd. The size of these square matrices (the Dirac gamma matrices) is 2bpCqc.

It follows from the relations of the Clifford algebra that


�
� D 
 Œ�
�� C
1

2
¹
�; 
�º D 
 Œ�
�� C g��1V ;

which can be used to iteratively compute products of gamma matrices in terms of g��

and their anti-symmetrization. Taking their trace TrV (contained in the spectral action)
gets rid of the latter, so we are left with dim V � g�1�1g�2�2 � � � . A product of an odd
number of gamma matrices is traceless; the trace of a product of 2n gamma matrices
can be expressed as a sum of over .2n � 1/ŠŠ products of n bilinears g�� that will be
represented diagrammatically.

2.2. Fuzzy geometries

Section 2.2 is based on [5]. A fuzzy geometry can be thought of as a finite-dimensional
approximation to a smooth geometry. A simple matrix algebra MN .C/ conveys infor-
mation about the resolution of a space (an inverse power of N , e.g. � 1=

p
N for the

fuzzy sphere S4N [69]) where the noncommutativity effects are no longer negligible. To
do geometry on a matrix algebra one needs additional information, which, in the case of
fuzzy geometries, is in line with the spectral formalism of NCG.

Definition 2.2 (Paraphrased from [5]). A fuzzy geometry of signature .p; q/ 2 Z2�0 is
given by

• a simple matrix algebra A with coefficients in K D R, C, H; in the latter case,
MN=2.H/ � MN .C/, otherwise A is MN .R/ or MN .C/—in this paper we take
always A DMN .C/;

4We recall that the Clifford algebra C`.p; q/ is the tensor algebra of RpCq modulo the relation
2g.v; w/ D v ˝ w C w ˝ v for each u; w 2 RpCq , being g D diag.C; : : : ;C;�; : : : ;�/ the quadratic
form with p positive and q negative signs, and C`.p; q/ is the complexification of C`.p; q/.
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• a hermitian C`.p; q/-module V with a chirality 
 . That is a linear map 
 W V ! V

satisfying 
� D 
 and 
2 D 1;

• a Hilbert space H D V ˝MN .C/ with inner product

hv ˝R;w ˝ Si D .v; w/Tr.R�S/

for each R; S 2MN .C/, being . � ; � / the inner product of V ;

• a left-A representation �.a/.v ˝R/ D v ˝ .aR/ on H , a 2 A and v ˝R 2 H ;

• three signs �; �0; �00 2 ¹�1;C1º determined through s WD q � p by the following table:

s � q � p .mod 8/ 0 1 2 3 4 5 6 7

� C C � � � � C C

�0 C � C C C � C C

�00 C + � + C + � +

• a real structure J D C ˝�, where � is complex conjugation and C is an anti-unitarity
on V satisfying C 2 D � and C
� D �0
�C for all gamma matrices �D 1; : : : ; pC q;

• a self-adjoint operator D on H satisfying the order-one condition�
ŒD; �.a/�; J�.b/J�1

�
D 0; for all a; b 2 AI

• a chirality � D 
 ˝ 1A for H , where 
 is the chirality of V . These signs impose on
the operators the following conditions:

J 2 D �; JD D �0DJ; J� D �00�J:

For s odd, � can be thought of as the identity 1H . The number d D pC q is the dimension
of the spectral triple and s D q � p is its KO-dimension.

We pick gamma matrices that satisfy

.
�/2 D C1; � D 1; : : : ; p; 
� hermitian; (2.2a)

.
�/2 D �1; � D p C 1; : : : ; p C q; 
� anti-hermitian; (2.2b)

in terms of which the chirality for V is given by 
 D .�i/s.s�1/=2
1 � � � 
pCq . For mixed
signatures it will be convenient to separate spatial from time like indices, and denote by
lowercase Roman the former (aD 1; : : : ;p) and by dotted indices5 ( PcD pC 1; : : : ;pC q)
the latter. The gamma matrices 
a are hermitian matrices squaring toC1, and 
 Pc’s denote
here the anti-hermitian matrices squaring to �1. Greek indices are spacetime indices
˛; ˇ; �; �; : : : 2 �d WD ¹1; 2; : : : ; dº.

We let the gamma matrices generate � WD h
1; : : : ; 
d iR as algebra; this splits as
�D�C˚��, where�C contains products of even number of gamma matrices and��

an odd number of them.

5Dotted indices are here unrelated to their usual interpretation in the theory of spinors. Also for the
Lorentzian signature, the 0; 1; 2; 3 numeration (without any dots) is used.
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2.3. General Dirac operator

Using the spectral triple axioms for fuzzy geometries, their Dirac operators can be char-
acterized as self-adjoint operators of the form [5, Sec. 5.1]

D.v ˝R/ D
X
I

!Iv ˝ .KIRC �
0RKI /; v 2 V;R 2MN .C/; (2.3)

with ¹!I ºI a linearly independent set and I an abstract index to be clarified now. For
r 2N�d , letƒr

d
be the set of r-tuples of increasingly ordered spacetime indices �i 2�d ,

i.e., ƒr
d
D ¹.�1; : : : ; �r / j �i < �j ; if i < j º: We let ƒ

d
D
S
� rƒ

r
d

, whose odd part is
denoted by ƒ�

d
,

ƒ�d D ¹.�1; : : : ; �r / j for some odd r , 1 � r � d &�i < �j if i < j º

D ¹1; : : : ; dº [ ¹.�1; �2; �3/ j 1 � �1 < �2 < �3 � dº

[ ¹.�1; �2; �3; �4; �5/ j 1 � �1 < �2 < � � � < �5 � dº [ : : :

The most general Dirac operator in dimension d writes in terms of products �I of gamma
matrices that correspond to indices I in these sets, each bearing a matrix coefficient kI ,

D.p;q/
D

´P
I2ƒ�

d
�I ˝ kI for d D p C q even,P

I2ƒ
d
�I ˝ kI for d D p C q odd.

(2.4)

We elaborate on each of the tensor-factors, �I and kI . First, �I is the ordered product of
gamma matrices with all single indices appearing in I ,

�I D 
�1 � � � 
�r ;

for I D .�1; : : : ; �r / 2 ƒ
r
d

. This can be thought of as each gamma matrix 
� corre-
sponding to a one-form dx� (in fact, via Clifford multiplication for canonical spectral
triples) and ƒd as the basis elements of the exterior algebra. The set ƒd D

S
� rƒ

r
d

can
thus be seen as an abstract backbone of the de Rham algebra ��dR D

L
r �

r
dR and ƒr

d

of the r-forms �rdR. There are #.ƒr
d
/ D

�
d
r

�
independent r-tuple products of gamma

matrices. We now separate the cases according to the parity of s (or of d ). Second,
kI .R/ D .KIR C �

0RKI / is an operator on MN .C/ 3 R, which needs a dimension-
dependent characterization.

2.4. Characterization of the Dirac operator in even dimensions

We constrain the discussion to even (KO-)dimension. In Definition 2.2, the table implies
�0 D 1; on top of this, the self-adjointness ofD implies that for each I , both !I and R 7!
.KIR C RK

�
I / are either hermitian or both anti-hermitian. In terms of the matrices KI ,

this condition reads K�I D CKI or K�I D �KI , respectively. In the first case, we write
KI D HI , in the latter KI D LI . One can thus split the sum in equation (2.3) as

D.v ˝R/ D
X
I

!Iv ˝ .HIRCRHI /C
X
I

!Iv ˝ .LIR �RLI /: (2.5)
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Additionally, since d D 2p � s is even, 

a C 
a
 D 0. Hence, the same anti-commuta-
tion relation 
! C !
 D 0 holds for each ! 2 ��. This leads to the splitting

D D
X
I2ƒ�

d

�I ˝ ¹HI ; � º C
X
I2ƒ�

d

˛I ˝ ŒLI ; � �; (2.6)

where each ˛I and �I is an odd product of gamma matrices, and ƒ�
d

is the set of multi-
indices of an odd number of indices � 2 ¹1; : : : ; dº. In summary,

.�I /� D �I 2 ��; .˛I /� D �˛I 2 ��; H�I D HI ; L�I D �LI :

We generally treat commutators and anti-commutators as (noncommuting) letters kID
¹KI ; � º˙, for each I 2 ƒd . The sign eI D ˙ determines the type of the letter for kI ,
being the latter defined by the rule

if eI D

´
C1 then KI D HI ; therefore kI D hI ;

�1 then KI D LI ; therefore kI D lI ;
(2.7)

so kI .R/ D KIRC eIRKI , for R 2MN .C/. Explicitly, one has

D.p;q/
D

X
�


� ˝ k� C
X
�;�;�


�
�
� ˝ k��� C : : :

C

X
c��� �c��� ˝ kc��� C

X
O�

� O� ˝ k O�;

which runs through
P
� 


�1
�2 � � � 
�d=2 ˝ k�1�2����d=2 if the 4 divides d , or throughX
�

��1����d=2�1 ˝ k�1�2����d=2�1 C
X
�

��1����d=2C1 ˝ k�1�2����d=2�1

if d is even but not divisible by 4. Hatted indices are, as usual, those excluded from
¹1; : : : ; dº,

2�� � � � � D .1; 2; : : : ; � � 1; �C 1; : : : ; � � 1; � C 1; : : : ; � � 1; �C 1; : : : ; d /: (2.8)

In order for a Dirac operator to be self-adjoint, kI is constrained by the parity of
r D r.I /, being jI j D 2r � 1, and by the number u.I / of spatial gamma matrices in
the product �I . In a mixed signature setting, p; q > 0, an arbitrary I 2 ƒ�

d
has the form

I D .a1; : : : ; at ; Pc1; : : : ; Pcu/ for 0� t � p and 0� u� q, and so the corresponding matrix
satisfies

.�I /� D .�1/uCb.uCt/=2c�I D .�1/uCr�1�I : (2.9)

The first equality is shown in detail in Supplementary Material, Section II. The second is
just due to .�1/b.uCt/=2c D .�1/b.2r�1/=2c D .�1/r�1. This decides whether kI should be
an ‘hI -operator’ or an ‘lI -operator’ (see equation (2.7)), which is summarized in Table 1.
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u.I / r.I / kI

even odd hI
odd odd lI
even even lI
odd even hI

Table 1. For I D .a1; : : : ; au; Pc1; : : : ; Pct / 2 ƒ
2r�1
d

a hermitian matrix HI or an anti-hermitian
matrix LI parametrizes kI according to the shown operators hI D ¹HI ; � º or lI D ŒLI ; � �

For indices running where the dimension bounds allow, one has

D.p;q/
D

pX
aD1


a ˝ ha C

pCqX
PcDpC1


 Pc ˝ l Pc C
X
a;b;c


a
b
c ˝ labc

C

X
a;b; Pc


a
b
 Pc ˝ hab Pc C
X
a; Pb; Pc


a

Pb
 Pc ˝ l

a Pb Pc
C

X
Pa; Pb; Pc


 Pa

Pb
 Pc ˝ l

a Pb Pc
C : : :

C

´P
a �
Oa ˝ h Oa C

P
Pc �
O
�
c
˝ l O

�
c if q and d=2 have same parity,P

a �
Oa ˝ l Oa C

P
Pc �
O
�
c
˝ h O

�
c if q and d=2 have opposite parity:

The last term is a product of d � 1 D p C q � 1 matrices. This expression is again
determined by observing that the operator k O� is self-adjoint if .�1/uCd=2 equals C1
and otherwise anti-hermitian, being u the number of spatial gamma matrices in � O� D

1 � � �c
� � � � 
d . We proceed to give some examples.

Example 2.3 (Fuzzy d D 2 geometries). The next operators appear in [5]:

• Type .0; 2/. Then s D d D 2, so �0 D 1. The gamma matrices are anti-hermitian and
satisfy .
 i /2 D �1. The Dirac operator is

D.0;2/
D 


P1
˝ ŒL1; � �C 


P2
˝ ŒL2; � �:

• Type .1; 1/. Then d D 2, s D 0, so �0 D 1. The Dirac operator is

D.1;1/
D 
1 ˝ ¹H; � º C 


P2
˝ ŒL; � �:

• Type .2; 0/. Then d D 2, s D 6, so �0 D 1. The gamma matrices are hermitian and
satisfy .
 i /2 D C1. The Dirac operator is

D.2;0/
D 
1 ˝ ¹H1; � º C 


2
˝ ¹H2; � º:

Example 2.4 (Some fuzzy d D 4 geometries). For realistic models the most important
4-fuzzy geometries have signatures .0; 4/ and .1; 3/ corresponding to the Riemannian
and Lorentzian cases. We derive the first one in detail in order to arrive at the result in
[5, Ex. 10]. The rest follows from considering equation (2.9).
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• Type .0; 4/, s D 4, Riemannian. Notice that the gamma matrices are all anti-hermitian
and square to �1 in this case. Therefore, products of three gamma matrices are self-
adjoint: .
 Pa
 Pb
 Pc/� D .�/3
 Pc
 Pb
 Pa D 
 Pa
 Pb
 Pc . The accompanying operators have the
form ¹H

Pa Pb Pc
; � º for H

Pa Pb Pc
self-adjoint,

D.0;4/
D

X
Pa


 Pa ˝ ŒL Pa; � �C
X
Pa< Pb< Pc


 Pa

Pb
 Pc ˝ ¹H

Pa Pb Pc
; � º (2.10)

• Type .1; 3/, s D 2, Lorentzian. Call 
0 the only gamma matrix that squares toC1, and
denote the rest by 
 Pc , Pc D 1; 2; 3. Then

D.1;3/
D 
0 ˝ ¹H; � º C 
 Pc ˝ ŒL Pc ; � �

C

X
Pa< Pc


0
 Pa
 Pc ˝ ŒL Pa Pc ; � �C 

P1

P2

P3
˝ ¹ zH; � º: (2.11)

(For the Lorentzian signature, the dotted-index convention is redundant with the usual
0; 1; 2; 3 spacetime indices; then we henceforward drop it.)

• Type .4; 0/, s D�4D 4 .mod 8/. The opposite case to ‘Riemannian’: now all gamma
matrices are hermitian, square toC1, and triple products � Oa are skew-hermitian,

D.4;0/
D

X
a


a ˝ ¹Ha; � º C
X
a<b<c


a
b
c ˝ ŒLabc ; � �: (2.12)

Fuzzy geometries with odd s allow elements of �C also to parametrize Dirac opera-
tors,

D.p;q/
D

X
�


� ˝ k� C
X
�1;�2


�1
�2 ˝ k�1�2 C
X
�;�;�


�
�
� ˝ k��� C : : :

C

X
c��� �c��� ˝ kc��� C

X
b�� �b�� ˝ kb�� C

X
O�

� O� ˝ k O�: (2.13)

Examples of D for a d D 3 geometry are given in [5] and are not treated here.

2.5. Random fuzzy geometries

Given a fermion space of fixed signature .p; q/, that is to say, a list .A;H ; � ; J; �/

satisfying the listed properties in Definition 2.1 ignoring those concerning D, we con-
sider the space M �M.A;H ; J; �; p; q/ of all possible Dirac operators D that make of
.A;H ;D; J; �/ a real even spectral triple of signature .p; q/ 2 Z2�0.

The symmetries of a spectral triple are encoded in Aut.A/, Inn.A/ and Out.A/, none
of which implies the Dirac operator. This can be compared with the classical situation,
in which fixing the data .A;H ; J; �/ can be interpreted as imposing symmetries on the
system and subsequently finding compatible geometries, encoded in D 2 M, typically
via the extremization ıS.D0/ D 0 of an action functional S.D/ that eventually selects a
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unique classical solutionD0 2M. The random noncommutative setting that appears in [8],
on the other hand, considers ‘off-shell’ geometries. These can be stated as the following
matrix integral

Z.p;q/ D

Z
M

e�S.D/dD; S.D/ D Trf .D/; (2.14)

being f .x/ an ordinary6 polynomial of real coefficients and no constant term. We next
compute the spectral action Trf .D/.

3. Computing the spectral action

In the spectral action (2.14) the trace is taken on the Hilbert space H . We do not label it
but, to avoid confusion, we label traces on other spaces: the trace TrV is that of the spinor
space V , the trace of operators on the matrix space MN .C/ is denoted by TrMN .C/, and
TrN stands for the trace on CN .

A homogeneous element spanning the Dirac operatorDD
P
I !I ˝ kI contains a first

factor !I , consisting of products of gamma matrices, and a second factor kI determined
by a matrix that is either hermitian or anti-hermitian [5]. We describe each factor and then
give a general formula to compute the spectral action.

3.1. Traces of gamma matrices

We now rewrite the quantity

h�1 � � ��2ni WD
1

dimV
TrV .
�1 � � � 
�2n/ (3.1)

in terms of chord diagrams of 2n points7, to wit n (disjoint) pairings among 2n cyclically
ordered points. These are typically placed on a circle in whose interior the pairings are
represented by chords that might cross. One finds

h�1 � � ��2ni D
X

2n-pt chord
diagrams�

.�1/#¹crossings of chords in �º
2nY

i;jD1;
i��j

g�i�j (3.2)

where �� means that the point i is joined with j in the chord diagram �. We denote
the total number of crossings of chords by cr.�/. We count only simple crossings; for
instance, the sign of the 8-pt chord diagram with longest chords in the upper left corner of
Figure I.2 in the Supplementary Material is .�1/6.

6In contrast to noncommutative polynomials mentioned below.
7In a more involved context, these are called ‘chord diagrams with one backbone’ [2].
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It will be convenient to denote by CD2n the set of 2n-pt chord diagrams and to asso-
ciate a tensor ��1����2n with � 2 CD2n and an index set �1; : : : ; �2n 2 �d ,

��1����2n D .�1/#¹crossings of chords in �º
2nY

i;jD1;
i��j

g�i�j : (3.3)

This �-tensor is a version of the chord diagram � whose i -th point on the circle is deco-
rated with the spacetime index �i ; thus ��1����2n depends on the dimension, although it is
not explicitly so denoted. All known identities for traces of gamma matrices can be stated
in terms of these tensors, for instance

TrC4.
�1
�2
�3
�4/ D 4.g�1�2g�3�4 � g�1�3g�2�4 C g�1�4g�2�3/

in four dimensions: If �; �; � denote the three 4-pt chord diagrams, one can rewrite in terms
of their corresponding tensors

ζµ1µ2µ3µ4 =ξµ1µ2µ3µ4 =θµ1µ2µ3µ4 =

µ1

µ2

µ3

µ4

µ1

µ2

µ3

µ4

µ1

µ2

µ3

µ4; ζµ1µ2µ3µ4 =ξµ1µ2µ3µ4 =θµ1µ2µ3µ4 =

µ1

µ2

µ3

µ4

µ1

µ2

µ3

µ4

µ1

µ2

µ3

µ4; ζµ1µ2µ3µ4 =ξµ1µ2µ3µ4 =θµ1µ2µ3µ4 =

µ1

µ2

µ3

µ4

µ1

µ2

µ3

µ4

µ1

µ2

µ3

µ4 ;

(3.4)
the aforementioned trace identity as

TrV .
�1
�2
�3
�4/ D dimV.��1�2�3�4 C ��1�2�3�4 C ��1�2�3�4/:

For small n, this seems to be a heavy notation, which, however, will pay off for higher
values (the double factorial growth #CD2n D .2n � 1/ŠŠ notwithstanding) since by cyclic
symmetry one ends up computing few diagrams.

3.2. Traces of random matrices

The aim of this subsection is to compute traces of words of the form8 TrMN .C/.kI1 � � �kI2t /

using the isomorphismMN .C/ D N˝ xN (being N the fundamental representation) at the
level of the operators. By [8],

kI D KI ˝ 1N C eI � .1N ˝K
T
I /; eI D ˙:

The sign eI is determined by Table 1.

8Choosing the basis of MN .C/ that consists of the matrices �ij (i; j D 1; : : : ; N ) with only non-
zero entry equal 1 at the .i; j /-entry, the trace TrMN .C/ of an operator A W MN .C/ ! MN .C/ reads
TrMN .C/.A/D

P
i;j �

�
ij ŒA.�ij /�, where ¹��ij ºi;jD1;:::;N the dual basis. This basis is convenient to re-express

the operators l; h WMN .C/!MN .C/ given by l W m 7! ŒL;m� or h W m 7! ¹H;mº (for fixed complex N
by N matrices L� D �L, H� D H ) in terms TrN L and TrN H , respectively.
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Proposition 3.1. For any r 2 N,

TrMN .C/.kI1 � � � kIr / D
X
‡2Pr

sgn.I‡ / � TrN
�
KI‡c

�
� TrN

�
.KT /I‡

�
; (3.5)

where

• TrN and TrMN .C/ are the traces on End.N/ and End.MN .C//, respectively,

• Pr is the power set 2¹1;:::;rº of ¹1; : : : ; rº, thus ‡ c D ¹1; : : : ; rº n ‡ for ‡ 2 Pr ,

• sgn.I‡ / is .�1/#¹commutators appearing in all the kIj with j 2 ‡º, that is

sgn.I‡ / D
�Y
i2‡

eIi

�
2 ¹�1;C1º;

• and, finally, the cyclic order .: : :! r ! 1! 2! 3! : : :/ on the set ¹1; : : : ; rº,
which can be read off from the trace in the left-hand side of equation (3.5), induces a
cyclic order on a given subset „ D ¹b1; : : : ; b�º 2 Pr . Respecting this order, define

} KI„ D KIb1KIb2 � � �KIb�
and

} .KT /I„ D K
T
Ib1
KTIb2

� � �KTIb�
D .KIb�

� � �KIb2KIb1 /
T .

Proof. By induction on the number r � 1 of products, we prove first that

kI1 � � � kIr D
X
‡2Pr

Y
i2‡

sgn.I‡ /KI‡c ˝ .K
T /I‡ :

The statement holds for r D 2, by direct computation; we now prove that the statement
being true for r implies its veracity for r C 1. In the first line of the right-hand side of the
next equation we use the assumption and then directly compute

.kI1 � � � kIr /kIrC1 D

rY
wD1

�
KIw ˝ 1N C eIw � .1N ˝K

T /Iw
�

�
�
KIrC1 ˝ 1N C eIrC1 � .1N ˝K

T /IrC1
�

D

� X
‡2Pr

�Y
i2‡

eIi

�
KI‡c ˝ .K

T /I‡

�
�
�
KIrC1 ˝ 1N C eIrC1 � .1N ˝K

T /IrC1
�

D

X
‡2Pr

�Y
i2‡

eIi

�
KI‡cKIrC1 ˝ .K

T /I‡

C

X
‡2Pr

�Y
i2‡

eIi

�
eIrC1KI‡c ˝ .K

T /I‡K
T
IrC1

�
D

X
‚2PrC1

�Y
i2‚

eIi

�
�KI‚c ˝ .K

T /I‚ :
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To the last equality, one arrives by considering that any set‚ 2 P1Cr either contains r C 1
(thus ‚ D ‡ [ ¹r C 1º for some ‡ 2 Pr ) or does not (‚ D ‡ 2 Pr ). These two sets are
listed in the sum after the third equal sign (concretely, the second term and the first one,
respectively). Then, it only remains to take traces

TrMN .C/.kI1 � � � kIr / D
X
‡2Pr

sgn.I‡ / � TrN˝xN
�
KI‡c ˝ .K

T /I‡
�

D

X
‡2Pr

sgn.I‡ / � TrN
�
KI‡c

�
� TrN

�
.KT /I‡

�
:

3.3. The general structure of TrDm

From the analysis of the gamma matrices one infers that for a polynomial f .x/ D
P
ftx

t

the spectral action selects only the even coefficients Tr f .D/ D
P
f2t Tr.D2t /. In order

to compute the spectral action of any matrix geometry we only need to know the traces of
the even powers, which we now proceed to compute.

Proposition 3.2. Given a collection of multi-indices Ii 2 ƒ�d , let 2n denote the total
number of indices, 2n D 2n.I1; : : : ; I2t / WD jI1j C : : :C jI2t j. The even powers of the
Dirac operator satisfy

1

dimV
Tr.D2t / D

X
I1;:::;I2t2ƒd

² X
�2CD2n

�I1���I2t

�

h X
‡2P2t

sgn.I‡ / � TrN .KI‡c / � TrN ..KT /I‡ /
i³
;

(3.6)

in whose terms the spectral action S.D/ D Trf .D/ D
P
t f2t Tr.D2t / can be com-

pletely evaluated.

Proof. For t 2 N,

1

dimV
Tr.D2t / D

1

dimV
Tr
h� X

I2ƒd

�I ˝ kI

�2ti
D

X
I1;:::;I2t2ƒ

1

dimV
TrV .�I1 � � ��I2t /TrN .kI1 � � � kI2t

�
D

X
I1;:::;I2t2ƒ

hI1 � � � I2t iTrMN .C/.kI1 � � � kI2t /: (3.7)

One uses then equation (3.2) and Proposition 3.1 with the notation of equation (3.3).

Notice that since the indices �i of a multi-index I D .�1 � � ��jI j/ 2 ƒd are pairwise
different, the traces of the gamma matrices greatly simplify. This also ensures that there are
no contractions between indices of the same k-operator, say g��k����� (k’s with repeated
indices do not exist).
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In even dimension d , the Dirac operator is spanned by the number �.d/ of independent
odd products of gamma matrices. This equals

�.d/ D #.ƒ�d / D

 
d

1

!
C

 
d

3

!
C � � � C

 
d

d � 1

!
which can be rearranged (using Pascal’s identity) as

�.d/ D

 
d � 1

0

!
C

 
d � 1

1

!
C � � � C

 
d � 1

d � 2

!
C

 
d � 1

d � 1

!
D 2d�1:

The Dirac operator has then as many ‘matrix coefficients’ and is therefore parametrized
by (what will turn out to be a subspace of) MN .C/˚�.d/. In this manner, the ‘random
spectral action’ (2.14) becomes a �.d/-tuple matrix model.

Definition 3.3. Given integers t; n 2 N (interpreted as in Proposition 3.2) and a chord
diagram � 2 CD2n, its action (functional) an.�/ is a C-valued functional on the matrix
space MN .C/˚�.d/ defined by

an.�/ŒK � D
X

I1;:::;I2t2ƒ
�
d
;

2nD
P
i jIi j

�I1���I2t
h X
‡2P2t

sgn.I‡ / � TrN .KI‡c / � TrN ..KT /I‡ /
i

(3.8)

forK D ¹KIi 2MN .C/ j Ii 2 ƒ�d º 2MN .C/˚�.d/. We often shall omit the dependence
on the matrices and write only an.�/. We define the bi-trace functional as a sum over the
non-trivial subsets ‡ in equation (3.8)

bn.�/ŒK � D
X

I1;:::;I2t2ƒ
�
d
;

2nD
P
i jIi j

�I1���I2t
h X
‡2P2t ;
‡;‡c¤;

sgn.I‡ / � TrN .KI‡c / � TrN ..KT /I‡ /
i

(3.9)

and the single trace functional sn.�/ via an.�/ D N � sn.�/ C bn.�/. The factor N
ensures that sn does not depend on N (cf. Section 3.4).

The restriction 2n D
P
i jIi j allows one to exchange the sums over the multi-indices

I and the chord diagrams in equation (3.6). Then one can restate Proposition 3.2 as
.1= dimV /Tr.D2t / D N�2t CB2t , where

�2t D

t �.d�1/X
nDt

X
�2CD2n

sn.�/; (3.10)

B2t D

t �.d�1/X
nDt

X
�2CD2n

bn.�/: (3.11)

The parameter n lists all the numbers of points 2n D 2t; 2.t C 1/; : : : ; 2t � .d � 1/ that
chord diagrams contributing to Tr.D2t / can have in dimension d .

In view of equations (3.10) and (3.11), all boils down to computing the single trace
sn.�/ and multiple trace part bn.�/ of chord diagrams. We begin with the former.
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3.4. Single trace matrix model in the spectral action—manifest O.N/

For geometries with even KO-dimension s D q � p, the spectral action’s manifest leading
order inN can be found from the last proposition (see Section 6). Aiming at their large-N
limit we state the following.

Corollary 3.4. Let d D q C p (thus s) be even. The spectral action (2.14) for the fuzzy
.p; q/-geometry with Dirac operator D D D.p;q/ satisfies, for any polynomial f .x/ DP
1�r�m frx

r , the following:

1

dimV
Trf .D/ D

1

dimV

X
1�2t�m

f2t Tr
�
ŒD.p;q/�2t

�
D N

X
1�2t�m

f2t�2t CB

where 2n.I1; : : : ; I2t / D
P
i jIi j. Here, B stands for products of two traces, whose coef-

ficients are all independent of N , with �2t given by equation (3.10) and for � 2 CD2n,

sn.�/ D
X

I1;:::;I2t2ƒ
�
d
;

2nD
P
i jIi j

�I1:::I2t
°

TrN .KI1KI2 � � �KI2t /

C .eI1 � � � eI2t /TrN .KI2tKI2t�1 � � �KI1/
±
: (3.12)

Proof. For any given collection of multi-indices I1; : : : ; I2t one selects in Proposition 3.2
the two sets ‡ D ; and ‡ D ¹1; : : : ; 2tº which correspond with the first and second
summands between curly brackets. The overallN -factor corresponds to TrN .1N /. Clearly
any other subset ‡ has no factor of N since is of the form

TrN
� !Y
i2¹1;:::;2tºn‡

KIi

�
� TrN

�  Y
i2‡

KIi

�
;

where none of the products is empty. The arrows indicate the order in which the product
is performed (! preserves it and  inverts it, but this is irrelevant to the point of this
corollary). Therefore no trace of 1N appears. One easily arrives then to equation (3.12) by
excluding from an.�/ all the non-trivial sets, that is ‡;‡c ¤ ;.

3.5. Formula for TrD2 in any dimension and signature

We evaluate in this section Tr.D2/ for Dirac operators D of a fuzzy geometry in any
signature .p; q/.

Proposition 3.5. The Dirac operator of a fuzzy geometry of signature .p; q/ satisfies for
odd d D p C q

1

dimV
Tr
�
ŒD.p;q/�2

�
D 2

X
I2ƒd

.�1/u.I/C.
jI j
2 /
�
N � TrN .K2I /C eI .TrN KI /2

�
;
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being u.I / the number of spatial indices in I . If d is even, then the sum is only over
I 2 ƒ�

d
, and the expression reads

1

dimV
Tr
�
ŒD.p;q/�2

�
D 2

X
I2ƒ�

d

.�1/u.I/Cr.I /�1
�
N � TrN .K2I /C eI .TrN KI /2

�
;

with jI j D 2r.I / � 1.

Proof. In order to use equation (3.7), notice that hI1I2i ¤ 0 implies that I1; I2 2ƒd have
the same cardinality. If that were not the case (without loss of generality jI1j> jI2j), since
any non-zero term from hI1I2i arises from a contraction of indices (cf. equation (3.2)),
a different number of indices would imply that there is a chord connecting two indices
�i ; �j of I1 D .�1; : : : ; �r /. Since I1 2 ƒd , those indices are different, so g�i�j D 0.
Thus, only chord diagrams for pairings g�� of indices with � 2 I1 and � 2 I2 survive.
Since the indices of I1 and I2 are strictly increasing, both ordered sets have to agree. This
means that we only have to care about evaluating hII 0i, with I 0 D .�01; : : : ; �

0
w/ being a

copy of I D .�1; : : : ; �w/, i.e. �0i D �i . Since this last equality is the only possible index
repetition

h�1; : : : ; �w�
0
1; : : : ; �

0
wi D

X
2w-pt chord
diagrams �

.�1/cr.�/
Y
i;j;
i�j

g�i�
0
j ıij D .�1/

cr.�/
wY
�D1

g��

where � is the diagram with longest chords, that is joining antipodal points. The number
of crossings cr.�/ is

�
w
2

�
. An additional sign .�1/u comes from

Qw
iD1 g

�i�i , being u � q
the number of spatial indices in I , yielding

hI1I2i D ı
I1
I2
.�1/u.I1/C.

w
2/: (3.13)

From equation (3.7) with t D 1 one has

1

dimV
Tr
�
ŒD.p;q/�2

�
D

X
I1I22ƒ

hI1I2iTrMN .C/.kI1kI2
�

D

X
I2ƒ

.�1/u.I/C.
jI j
2 / TrN˝xN

��
KI ˝ 1N C eI ˝K

T
I

�2�
D

X
I2ƒ

.�1/u.I/C.
jI j
2 /
�

TrN .KI /TrN .1N /C TrN .1N /TrN .KTI /

C 2eI TrN .KI /TrN .KTI /
�
:

In the second equality we used equation (3.13). The third one follows from Proposi-
tion 3.1. For p C q even, the sum runs only over I 2 ƒ�

d
. In the sign appearing in

equation (3.13),
�
jI j
2

�
could then be replaced by r.I /� 1 with 2r.I /� 1D jI j, for

�
jI j
2

�
�

r � 1 .mod 2/.
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4. Two-dimensional fuzzy geometries in general signature

We compute traces ofD2,D4,D6 for 2-dimensional fuzzy geometries general signatures.
Concretely, for d D 2 the spinor space is V D C2.

4.1. Quadratic term

For a metric g D diag.e1; e2/ notice that e� D .�1/u.�/. Therefore, by Proposition 3.5
one gets

1

4
Tr
�
.D.p;q//2

�
D

X
�

.�1/u.�/N � TrN .K2�/C
X
�

ŒTrN .K�/�2

D N
X
�;�

g�� TrN .K�K�/C
X
�

ŒTrN .K�/�2; (4.1)

where u.�/ D 0 if � is time-like and if its spatial, u.�/ D 1. Case by case,8̂̂<̂
:̂
P2
aD1

�
�N � TrN .L2Pa/C ŒTrN .L Pa/�2

�
for .p; q/ D .0; 2/;

N � TrN .H 2 � L2/C ŒTrN .H/�2 C ŒTrN .L/�2 for .p; q/ D .1; 1/;P2
aD1

�
CN � TrN .H 2

a /C ŒTrN .Ha/�2
�

for .p; q/ D .2; 0/;

reproducing some of the formulas reported in [8, App. A].

4.2. Quartic term

In [8, App. A] also the quartic term for d D 2 was computed. We recompute for a general
d D 2 geometry of arbitrary signature aiming at illustrating the chord diagrams at work.
Since d D 2, multi-indices � 2 ƒ�2 are just spacetime indices � D 1; 2. Hence, after
Proposition 3.2,

1

2
Tr.D4/ D

X
�1;:::;�42ƒ

�
2

 
+ +

µ1

µ2

µ3

µ4 + +

µ1

µ2

µ3

µ4+ +

µ1

µ2

µ3

µ4

!

�

²
N � TrN .K�1K�2K�3K�4/

C

4X
iD1

e�i TrN .K�1 � � �bK�i � � �K�4/TrN .K�i /

C

X
1�i<j�4

e�i e�i
�

TrN .K�vK�w /TrN .K�iK�j /
�

C

4X
iD1

e � e�i � TrN .K�i /TrN .K�4 � � �bK�i � � �K�1/

C e �N � TrN .K�4K�3K�2K�1/
³
; (4.2)
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with e D e�1e�2e�3e�4 and ¹i; j; v; wº D �4. In the first line, the value of the chord
diagrams is g�1�2g�3�4 � g�1�3g�2�4 C g�1�4g�2�3 , the signs e� D ˙ appearing in
g D diag.e1; e2/ being determined by .p; q/. Summing over all indices, one gets

1

4
Tr
�
ŒD.p;q/�4

�
D N

�
TrN .K41 /C TrN .K42 /

C 4e1e2 TrN .K21K
2
2 / � 2e1e2 TrN .K1K2K1K2/

�
C 4

°
ŒTrN .K1K2/�2 C

X
�D1;2

TrN K� � TrN
�
K�.e1K

2
1 C e2K

2
2 /
�±

C 3
X
�D1;2

�
TrN .K2�/

�2
C 2e1e2 TrN .K21 / � TrN .K22 /: (4.3)

One gets directly the results of [8, App. A.3, A.4, A.5] by setting

K1 D

´
H1 for .p; q/ D .2; 0/ and .1; 1/;

L P1 for .p; q/ D .0; 2/;
(4.4)

and

K2 D

´
H2 for .p; q/ D .2; 0/;

L P2 for .p; q/ D .1; 1/ and .0; 2/:
(4.5)

The conventions for which these hold are .
�/� D e�
� (no sum, � D 1; 2).

4.3. Sextic term

We now compute the sixth-order term.

Proposition 4.1. Let g D diag.e1; e2/ denote the quadratic form associated to the signa-
ture .p; q/ of a 2-dimensional fuzzy geometry with Dirac operator D. Then

1

2
Tr.D6/ D N � �6ŒK1; K2�CB6ŒK1; K2�;

where the single-trace part is given by

�6ŒK1; K2� D 2 � TrN
®
e1K

6
1 C 6e2K

4
1K

2
2 � 6e2K

2
1 .K1K2/

2
C 3e2.K

2
1K2/

2

C e2K
6
2 C 6e1K

4
2K

2
1 � 6e1K

2
2 .K2K1/

2
C 3e1.K

2
2K1/

2
¯

and the bi-trace part is

B6ŒK1; K2� D 6TrN .K1/
°
2TrN .K51 /C 2TrN .K1K42 /

C 6e1e2 TrN .K31K
2
2 / � 2e1e2 TrN .K21K2K1K2/

�±
C 6TrN .K2/

°
2TrN .K52 /C 2TrN .K2K41 /

C 6e1e2 TrN .K32K
2
1 / � 2e1e2 TrN .K22K1K2K1/

�±
C 48TrN .K1K2/ �

�
e1 TrN .K31K2/C e2 TrN .K32K1/

�
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C 6TrN .K21 / �
°
e2
�
8TrN .K21K

2
2 / � 2TrN .K2K1K2K1/

�
C e1

�
5TrN .K41 /C TrN .K42 /

�±
C 6TrN .K22 / �

°
e1
�
8TrN .K21K

2
2 / � 2TrN .K1K2K1K2/

�
C e2

�
5TrN .K42 /C TrN .K41 /

�±
C 4

�
5ŒTrN .K31 /�

2
C 6e1e2 TrN .K1K22 /TrN .K31 /C 9ŒTrN K21K2�

2

C 5ŒTrN .K32 /�
2
C 6e1e2 TrN .K21K2/TrN .K32 /C 9ŒTrN K1K22 �

2
�
:

Proof. The part h�1 � � ��6i concerning the chord diagrams evaluates to

.�1/0g�1�2g�3�4g�5�6 C .�1/1g�1�2g�3�5g�4�6 C .�1/0g�1�2g�3�6g�4�5

C .�1/1g�1�3g�2�4g�5�6 C .�1/2g�1�3g�2�5g�4�6 C .�1/1g�1�3g�2�6g�4�5

C .�1/0g�1�4g�2�3g�5�6 C .�1/3g�1�4g�2�5g�3�6 C .�1/2g�1�4g�2�6g�3�5

C .�1/1g�1�5g�2�3g�4�6 C .�1/2g�1�5g�2�4g�3�6 C .�1/1g�1�5g�2�6g�3�4

C .�1/0g�6�1g�2�3g�4�5 C .�1/1g�6�1g�2�4g�3�5 C .�1/0g�6�1g�2�5g�3�4

(4.6)

but it is actually useful to depict these terms as in Figure 1, for then, due to the cyclicity of
TrN , one can compute by classes (modulo �Z6=3-rotations) of diagrams. To each class, a
Roman number is assigned,

I II III IV V

;

I II III IV V

;

I II III IV V

;

I II III IV V

;

I II III IV V

: (4.7)

One can relabel the �j -indices to obtain

1

dimV
Tr.D6/ D

X
�2CD6

a.�/ D 3a.I/C 6a.II/C 2a.III/C 3a.IV/C a.V/;

the factors being the multiplicity of each diagram class. The single-trace part �6 can be
computed for each diagram directly (in the Supplementary Material one of these is shown).
We simplified the notation: a3 as a, and similarly we shall write b for b3, since therein
only 6-pt diagrams appear (a power 2t � 2 of the Dirac operator determines the number
of points of the chord diagrams only for dimensions d � 2).

We now compute the bi-trace term. Defining

O��� D e�e� � TrN .K�/ � TrN .K�K�K�K�K�/; (4.8a)

P��� D e�e� � TrN .K�/ � TrN .K�K�K2�K�/; (4.8b)

Q��� D e�e� � TrN .K�/ � TrN .K�K2�K
2
� /; (4.8c)

R��� D e� � TrN .K�K�/ � TrN .K�K�K2� /; (4.8d)
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h�1 � � ��6i D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

µ1

µ2

µ3µ4

µ5

µ6

+

+

+

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;

Figure 1. On the proof of Proposition 4.1.

S��� D e� � TrN .K�K�/ � TrN .K�K�K�K�/; (4.8e)

T��� D e�e�e� � TrN .K2�/ � TrN .K�K�K�K�/; (4.8f)

U��� D e�e�e� � TrN .K2�/ � TrN .K2�K
2
� /; (4.8g)

V��� D ŒTrN .K�K�K�/�2; (4.8h)

W��� D e�e� � TrN .K�K2� / � TrN .K�K2� /; (4.8i)

we can find by direct computation, that for any of the 6-pt chord diagrams � there are
integers p�; q�; : : : ; v�; w� such that

b.�/ D
X
�;�;�

o�O��� C p�P��� C q�Q��� (4.9a)

C r�R��� C s�S��� C t�T��� C u�U��� (4.9b)

C v�V��� C w�W���: (4.9c)

The terms O;P;Q come from the .1; 5/ partition of 6, i.e.

TrN .1 matrix/ � TrN .5 matrices/I

R; S; T; U terms come from the .2; 4/ partition and W; V from the .3; 3/ partition of
6. This claim is verified by direct computation; the proof for b.I/ is presented in the
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Supplementary Material and the rest is similarly obtained by

b.I/ D C2
X
�;�;�

�
4O��� C 2P��� C 6R��� C 6S���

C 2T��� C U��� C 4V��� C 6W���
�
; (4.10a)

b.II/ D �2
X
�;�;�

�
2O��� C 2P��� C 2Q��� C 8R��� C 4S���

C T��� C 2U��� C 4V��� C 6W���
�
; (4.10b)

b.III/ D C2
X
�;�;�

�
6Q��� C 12R��� C 3U��� C 4V��� C 6W���

�
; (4.10c)

b.IV/ D C2
X
�;�;�

�
2P��� C 4Q��� C 8R��� C 4S���

C 3U��� C 4V��� C 6W���
�
; (4.10d)

b.V/ D �2
X
�;�;�

�
6O��� C 6R��� C 6S��� C 3T��� C 4V��� C 6W���

�
: (4.10e)

One then performs the sums explicitly and arrives at the claim for B D
P
� b.�/.

5. Four-dimensional geometries in general signature

We compute now the spectral action for 4-dimensional fuzzy geometries.

5.1. The term TrD2

For any four-dimensional geometry pC q D 4 of signature .p;q/ there are eight matrices,
K1 ,K2, K3, K4, X1, X2, X3 and X4 2MN .C/, parametrizing the Dirac operator

D.p;q/
D

4X
�D1


� ˝ k� C �
O�
˝ x�: (5.1)

Here, the lower case operators on MN .C/ are related to said matrices by

k� D ¹K�; � ºe� and x� D ¹X�; � ºe O�

where given a sign "D˙, the braces ¹A;Bº" D AB C "BA represent a commutator or an
anti-commutator. As before, � O1 D 
2
3
4, � O2 D 
1
3
4, etc., but in favor of a lighter
notation we have replaced K O� by X�. The metric here is g D diag.e1; e2; e3; e4/ and the
spinor space is V D C4.

The numbers u.�/ and u. O�/ of spatial subindices of each (multi-)index, � and O�, can
be written in terms of the signs e� and e O� that define the (anti-)hermiticity conditions—
namely .
�/� D e�


� and .
 O�/� D e O�

O� . First, trivially, e� D .�1/u.�/. On the other

hand, since u.�/C u. O�/ is the total number q of spatial indices, one has, by the Supple-
mentary Material, Section II,

e O� D .�1/
u. O�/Cb3=2c

D .�1/qC1Cu.�/ D e�.�1/
qC1:
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Since the spinor space is four-dimensional, by Proposition 3.5 one has

1

2 � 4
Tr
�
.D.p;q//2

�
D

4X
�D1

.�1/u.�/Cb1=2c
�
N � TrN .K2�/C e�.TrN K�/2

�
C

4X
�D1

.�1/u. O�/Cb3=2c
�
N � TrN .X2� /C e O�.TrN X�/2

�
D

4X
�D1

e�N � TrN
�
K2� C .�1/

qC1X2�
�

C .TrN K�/2 C .TrN X�/2: (5.2)

In Section III in the Supplementary Material we specialize equation (5.2) to fuzzy Rie-
mannian and Lorentzian geometries. Before, it will be useful to obtain the quartic term in
order to integrate it with the quadratic one.

5.2. The term TrD4

To access Tr.D4/ we now detect the non-vanishing chord diagrams.

5.2.1. Non-vanishing chord diagrams. In four dimensions, chord diagrams of various
number of points (2nD 4;6;8;10;12) have to be computed to access Tr.D4/. Next propo-
sition helps to see the only non-trivial diagrams and requires some new notation. With each
multi-index Ii running over eight values Ii D �; O� (�;� D�4), the 84 decorations for the
tensor �I1I2I3I4 fall into the following � -types:

|I1 |
I2|

I3

|I4 χ D �I1I2I3I4 2

8̂<̂
: | µ2

|

µ3

|µ4

|
µ1

τ1 ; | µ1

|

µ2

|µ3

|||
ν̂

τ2 ;

|µ1

||| ν̂1

|
µ2

|||ν̂2 τ3 ;

|µ1

| µ2

|||
ν̂1

|||ν̂2 τ4 ;

|µ

||| ν̂1

|||
ν̂2

|||ν̂3 τ5 ;

|||ν̂1

||| ν̂2

|||
ν̂3

|||ν̂4 τ6

9>=>;: (5.3)

The leftmost diagram � is of generic type. On the other hand, not only do the diagrams in
the list indicate the number of points (the total number of bars transversal to the circle),
they also state how these are grouped: normal indices �i D 1; : : : ; 4 being a single line and
multiple O�i a triple line. Although they are in fact ordinary chord diagrams, they cannot
have contractions between the grouped lines due to the strict increasing ordering of their
indices.

If a diagram � accepts a decoration of the type �i in the left-hand side of (5.3), up
to rotation, we symbolically write � 2 �i . In the � -types of the right-hand side, however,
I1 corresponds strictly to the upper index of the respective diagram in the list, I2 to the
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rightmost, and so on clockwise. One can sum over the �i classes—since we are interested
in products of �I1���I4 with traces (which are cyclic) and products of two traces (which are
summed over all the subsets of ¹1; 2; 3; 4º, see equation (3.8) for details)—and in order to
do so, one has to include symmetry factors, namely ¹1; 4; 2; 4; 4; 1º in that order. All the
chord diagrams contributing to Tr.D4/ in d D 4 are then covered by�X

�2�4

C4
X
�2�2

C2
X
�2�3

C4
X
�2�4

C4
X
�2�5

C

X
�2�6

�
: (5.4)

A cross check is that the symmetry factors add up to 16 and, since each (multi-)index in the
list (5.3) can take four values, the number of all diagram index decorations is 44 � 16D 84.
Which of them survives is shown next.

Proposition 5.1. Let g D diag.e1; e2; e3; e4/ denote the quadratic form given by the sig-
nature .p; q/. For any �; �; �1; �2; �3; �4; �1; �2; �3; �4 D 1; : : : ; 4 the following holds
for each one of the diagrams � of the type �i—defined by equation (5.3)—indicated to the
right of each equation:

��1�2�3�4 D e�1e�3ı
�2
�1
ı�4�3 � e�1e�2ı

�3
�1
ı�4�2 C e�1e�3ı

�4
�1
ı�3�2 ; (�1)

� O��1�2�3 D .�1/j� jC1e�1e�2e�3ı��1�2�3 ; (�2)

where � D �.�; �/ WD
�
˛1˛2˛3
�1�2�3

�
2 Sym¹˛1; ˛2; ˛3º, with O� D .˛1; ˛2; ˛3/ ordered as

˛1 < ˛2 < ˛3. Also

ı˛��� D

´
1 when ¹˛;�; �; �º D �4;

0 otherwise;
(5.5)

(i.e. ı˛��� is the Levi-Civita symbol in absolute value). Whenever not all the four indices
�1; �2; �1; �2 agree,

��1 O�1�2 O�2 D �.�1/�1C�2e1e2e3e4.ı
�1
�1
ı�2�2 � ı

�2
�1
ı�1�2/� e�1

� Y
˛¤�1

e˛

�
ı�2�1 ı

�2
�1
; (�3)

��1�2 O�1 O�2 D C.�1/�1C�2e1e2e3e4.ı
�1
�1
ı�2�2 � ı

�2
�1
ı�1�2/� e�1

� Y
˛¤�1

e˛

�
ı�2�1 ı

�2
�1
; (�4)

(see below for the sign choice). Otherwise these two diagrams satisfy �� O�� O� D e1e2e3e4
and ��� O� O� D �e1e2e3e4. Moreover, letting � D �.�; �/ D

�
�1�2�3
�1�2�3

�
2 Sym¹�1; �2; �3º,

with O� D .�1; �2; �3/ ordered as �1 < �2 < �3, one has

�� O�1 O�2 O�3 D .�1/j� jC1e�1e�2e�3ı��1�2�3 ; (�5)

and, finally, if � 2 �6

� O�1 O�2 O�3 O�4 D ˙
�
e�1e�3ı

�2
�1
ı�4�3 � e�1e�2ı

�3
�1
ı�4�2 C e�1e�3ı

�4
�1
ı�3�2

�
: (�6)

The upper signs in equations (�3), (�4) and (�6) are taken if � has minimal crossings.

Proof. See Supplementary Material.
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The minimality condition on the crossings, assumed for the �3;4;6 classes, is meant
to shorten the proof. Exactly for those classes, the spacetime indices do not necessarily
determine a unique diagram by assuming that it does not vanish. This requirement can be
left out, and in that case equation (�6) should have a global sign ˙ that depends on the
diagram; in the �3;4 cases (�3) and (�4) the term e�1

�Q
˛¤�1

e˛
�
ı
�2
�1 ı

�2
�1 would undergo

a diagram-dependent sign change. However, as we will see, these will be ‘effectively’
replaced by the minimal-crossing diagram, so the simplified claim suffices.

This is based on the following Lemma, where we assume that any of the chord cross-
ings of each diagram is transversal.

Lemma 5.2 ([1]). For any n 2 N, the sum of the crossing parities of all diagrams with
n-chords is 1, X

�2CD2n

.�1/#¹crossings of �º
D 1: (5.6)

The proof by Aizenman–Warzel given in [1, Lemma 4.4], can be restated in terms of
chord diagrams:

Proof. By induction in n. Since CD2 consists of a single chord, there are no crossings
and the sum (5.6) equals indeed .�1/0. We take (5.6) as induction hypothesis and proveP
�2CD2nC2.�1/

#¹crossings of �º D 1. For a 2 ¹2; 3; : : : ; 2.nC 1/º, denote by � Oa 2 CDn the
diagram obtained from � after removing the chord .1a/; see Figure 2. We can thus split
CD2nC2 in 2nC 1 copies ¹CD2nIaºa of CD2n, where CD2nIa is the image of � 7! � Oa.
Then X

�2CD2nC2

.�1/cr.�/
D

2nC2X
aD2

X
�a2CD2nIa

.�1/cr.� Oa/.�1/#¹crossings between � Oa and .1a/º (5.7)

where we recall that cr.�/D #¹crossings of (all chords of) �º for any chord diagram �. To
determine the second sign, notice that the crossings between the chord diagram � and the
chord .1a/ have all parity .�1/a. Therefore,X

�2CD2nC2

.�1/cr.�/
D

2nC2X
aD2

.�1/a
X

�a2CD2nIa

.�1/cr.� Oa/

D

2nC2X
aD2

.�1/a D 1 � 1C 1 � � � � C 1 D 1:

χ =

a

1 χâ =

Figure 2. The parity of the crossings respects .�1/a (independent from the particular �).
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In the line change we used the induction hypothesis
P
�a2CD2nIa.�1/

cr.� Oa/ for each copy
CD2nIa of CD2n.

As a last piece of preparation, we need to determine the signs eI1eI2eI3eI4 for each
�i -type. These turn out to be constant and fully determined by the �i -type.

Claim 5.3. Assuming that for I1; I2; I3; I4 2 ƒ�dD4 the tensor �I1I2I3I4 does not vanish,
then eI1eI2eI3eI4 reads in each case

e�1e�2e�3e�4 � C1; (5.8)

e O�e�1e�2e�3 � �1; (5.9)

e�1e�2e O�1e O�2 � C1; (5.10)

e�e O�1e O�2e O�3 � �1; (5.11)

e O�1e O�2e O�3e O�4 � C1: (5.12)

Proof. See Supplementary Material.

5.2.2. Main claim. With help of these two results, we state the main one. We recall that
the definition of the permutation �.�; �/, appearing next, is given in equation (5.5).

Proposition 5.4. For a 4-dimensional fuzzy geometry of signature .p; q/, the purely quar-
tic spectral action 1

4
Tr.D4/ D N�4 CB4 is given by

�4 D TrN
°
2
X
�

K4� CX
4
�

C 4
X
�<�

e�e�
�
2K2�K

2
� C 2X

2
�X

2
� �K�K�K�K� �X�X�X�X�

�
�

X
˛;ˇ;�;�

ı˛ˇ��e˛eˇ
�
.K�X�/

2
C 2K2�X

2
�

�
C 2.�1/q

X
�

�
.K�X�/

2
� 2K2�X

2
�

�
C 8.�1/qC1

X
�;�

.�1/j�.�;�/jı��1�2�3e�
�
X�K�1K�2K�3 CK�X�1X�2X�3

�±
;

(5.13)

and

B4 D 8
X
�;�

.�1/qC1e� TrN X� � TrN .X�X2� /C e� TrN .K�/ � TrN .K�K2� /

C

4X
�;�D1

°
2TrN .X2�/ � TrN .X2� /C 4e�e�

�
TrN .X�X�/

�2±
C

4X
�;�D1

°
2TrN .K2�/ � TrN .K2� /C 4e�e�

�
TrN .K�K�/

�2±
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C 4

4X
�D1

°
2.�1/1Cqe� TrN .K�/ � TrN .K�X2�/C 2e� TrN .X�/ � TrN .X�K2�/

C .�1/1Cq TrN .X2�/ � TrN .K2�/C 2
�

TrN .K�X�/
�2±

� 8

4X
�;�D1

.�1/j�.�;�/jı��1�2�3 �
®
� TrN .X�/ � TrN .K�1K�2K�3/

C e�2e�3
�

TrN K�1 � TrN .X�K�2K�3/
�

C TrN X�1 � TrN .K�X�2X�3/C .�1/
q TrN K� � TrN .X�1X�2X�3/

¯
C 24

4X
�¤�D1

.�1/1Cqe� TrN .K�/ � TrN
�
K�X

2
�

�
C e� TrN .X�/ � TrN

�
K2�X�

�
C 12

X
�¤�

°
2
�

TrN .K�X�/
�2
C e�e�.�1/

qC1 TrN .K2�/ � TrN .X2� /
±
: (5.14)

The eight matrices K�; X� satisfy the following (anti-)hermiticity conditions:

K�� D e�K� and X�� D e�.�1/
qC1X� for any � 2 �4; (5.15)

where each e� 2 ¹C1;�1º is determined by g D diag.e1; e2; e3; e4/.

Proof. We first find �4 D
P6
nD2 sn.�/ using equations (5.3) and (5.4). By direct compu-

tation X
�2CD2

s2.�/ D 2
X
�

TrN .K4�/C 8
X
�<�

e�e� TrN .K2�K
2
� /

� 4
X
�<�

e�e� TrN .K�K�K�K�/: (5.16)

In view of (5.8) and (5.12) and the similarity of the �1 and �6 type diagrams, one gets the
same result by replacing K� by K O� D X�, namelyX

�2CD6

s6.�/ D 2
X
�

TrN .X4�/C 8
X
�<�

e�e� TrN .X2�X
2
� /

� 4
X
�<�

e�e� TrN .X�X�X�X�/: (5.17)

Next, using equation (5.9), the 6-pt diagrams are evaluated,X
�2CD3

s3.�/ D 4
X
�;�

TrN
�
ı��1�2�3e�1e�2e�3.�1/

1Cj��j

� .X�K�1K�2K�3 �K�3K�2K�1X�/
�

D �8
X
�;�

TrN
�
ı��1�2�3e�1e�2e�3.�1/

j��jX�K�1K�2K�3
�

D 8.�1/1Cq
X
�;�

TrN
�
ı��1�2�3e�.�1/

j��jX�K�1K�2K�3
�
: (5.18)
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Here, again using the duality between �2 and �5 evident in Proposition 5.1 and Claim 5.3,
the s5 term can be computed by swapping each K� matrix with the K O� matrix,X

�2CD5

s5.�/ D
X
�2CD3

s3.�/

ˇ̌̌̌
K�$X� for all � D 1; 2; 3; 4

(5.19)

(but there is no sign swap e� $ e O�).
Finally, we split the sum

P
�2CD4 D 2

P
�2�3
C4

P
�2�4

in order to compute the
term s4. The calculation simplifies using equation (5.10) and noticing that (for �1 D
�2 D �1 D �2 being false), one hasX

�;�

.�1/�1C�2.ı�1�1ı
�2
�2
� ı�2�1ı

�1
�2
/
�

TrN .K�1X�1K�2X�2/

C e�1e�2e O�1e O�2 TrN .X�2K�2X�1K�1/
�

D

X
�¤�

.�1/�C� TrN
®
K�X�K�X� CX�K�X�K�

�K�X�K�X� �X�K�X�K�
¯
D 0; (5.20)

using the cyclicity of the trace. Therefore, in both equations (�3) and (�4) the only contri-
bution to s4 comes from the term e�1

�Q
˛¤� e˛

�
ı
�2
�1 ı

�2
�1 (which require �i ¤ �i ) and from

the terms �� O�� O� and ��� O� O�. These terms appear, respectively, in the first and second lines
of X

�2CD4

s4.�/ D �
X

˛;ˇ;�;�

ı˛ˇ��e˛eˇ TrN
�
.K�X�/

2
C 2K2�X

2
�

�
C 2e1e2e3e4

X
�

TrN
�
.K�X�/

2
� 2K2�X

2
�

�
: (5.21)

Expressing this via the delta ı˛ˇ�� is motivated by

e�

�Y
�¤�

e�

�
D

Y
�¤�;
�¤�

e�:

We now compute in steps the bi-tracial functional

B4 D

X
I2.ƒ�4 /

�4

² X
�2CD2n.I/

�I1I2I3I4 �
h 4X
iD1

eIi TrN .KI1 � � �bKIi � � �KI4/ � TrN KIi

C

X
1�i<j�4

X
v;w¤i;j

eIi eIj
�

TrN .KIvKIw /TrN .KIiKIj /
�

C

4X
iD1

�Y
j¤i

eIj

�
TrN .KIi / � TrN .KI4 � � �bKIi � � �KI1/

i³
: (5.22)
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The contribution to B4 arising from the term in the square brackets in the first, second
and third lines are referred to as the .1; 3/, .2; 2/ and .3; 1/ partitions, respectively. For a
fixed number 2r of points, these are denoted by

P
� b�r .�/, for � 2 ¹.1; 3/; .2; 2/; .3; 1/º.

In view of the partial duality established in Proposition 5.1, we obtain the contributions to
B4 by similarity; thus we first compute 12-pt and 4-pt diagrams together and later 6-pt and
10-pt diagrams. This duality would be perfect if both replacements K� $ K O�.D X�/ and
e� $ e O� would swap the equations (�1$ �6) and (�2$ �5) in Proposition 5.1. However,
e� $ e O� is not needed for the swapping to hold.

We begin with the 12-pt diagrams for the .1; 3/ and .3; 1/ partitions. As consequence
of Claim 5.3,

X
�2�6

b
.1;3/
6 .�/C b

.3;1/
6 .�/ D

4X
�1;:::;�4D1

� O�1 O�2 O�3 O�4
�
e O�1 TrN X�1 � TrN .X�2¹X�3 ; X�4º/

C cyclic
�

D 4
X
�;�

e�e�e O� TrN X� � TrN .X�¹X� ; X�º/

D 8
X
�;�

.�1/qC1e� TrN X� � TrN .X�X2� / (5.23)

after some simplification; the last equality follows from equation (II.2) from the Supple-
mentary Material. The .2; 2/ partition evaluates similarly toX

�2�6

b
.2;2/
6 .�/ D 2

X
�;�

®
e�e�e

2
O� Tr.X2�/ � Tr.X2� /C 2e�e�e O�e O� Tr.X�X�/2

¯
D

4X
�;�D1

°
2TrN .X2�/ � TrN .X2� /C 4e�e�

�
TrN .X�X�/

�2±
; (5.24)

since e�e�e O�e O� D .�1/2.1Cq/ by equation (II.2) from the Supplementary Material. One
then computes

P
�2�6

b6.�/ by summing equations (5.24) and (5.23).
The 4-pt diagrams contain ordinary indices and their computation is not illuminating.

Since it moreover resembles that for the 12-pt diagrams we omit it and present the result

X
�2�1

b2.�/ D

4X
�;�D1

8e� TrN .K�/ � TrN .K�K2� /

C

4X
�;�D1

°
2TrN .K2�/ � TrN .K2� /C 4e�e�

�
TrN .K�K�/

�2±
: (5.25)

We now present the computation of 6-pt and 10-pt diagrams. Again, we remark that the
terms corresponding to the .1;3/ and .3;1/ partitions agree,

P
�b

.1;3/
3 .�/D

P
�b

.3;1/
3 .�/.
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In order to see this, first we notice that
P
� b

.1;3/
3 .�/ equals

4
X
�;�

.�1/1Cj� jı��1�2�3 �
®
� TrN X� � TrN .K�1K�2K�3/

C e�2e�3 TrN K�1 � TrN .X�K�2K�3/

C e�1e�3 TrN K�2 � TrN .X�K�1K�3/

C e�1e�2 TrN K�3 � TrN .X�K�1K�2/
¯
;

due to equation (�2) and e O�e�1e�2e�3 D �1 (see Claim 5.3). But also departing fromP
� b

.3;1/
3 .�/, using (5.9) to convert the triple signs to a single one (e.g. e O�e�1e�3D

�e�2 ), renaming indices (which gets rid of the minus sign via the skew-symmetric fac-
tor .�1/1Cj� j) one gets to the same expression. Thus,

P
� b

.1;3/
3 .�/C

P
� b

.3;1/
3 .�/ equals

8
X
�;�

.�1/1Cj� j �
®
�TrN X� �TrN .K�1K�2K�3/C e�2e�3 TrN K�1 �TrN .X�K�2K�3/

¯
:

Using the skew-symmetry of .�1/1Cj� j and the cyclicity of the trace, one proves easily that
the .2; 2/ partition b

.2;2/
3 vanishes, and so does in fact b

.2;2/
5 . Thus, the only contributions

from 10-pt diagrams are the partitions .1; 3/ and .3; 1/ which can be computed similarly
as for the 6-pt contributions, by a similar token. ThusX
�2CD10

b5.�/ D 2
X
�2�5

b
.1;3/
5 .�/

D �8
X

�;�1;�2;�3

ı��1�2�3.�1/
j�� je�1e�2e�3

�
�
e� TrN K� � TrN .X�1X�2X�3/C e�1 TrN X�1 � TrN .K�X�2X�3/

C e�2 TrN X�2 � TrN .K�X�1X�3/C e�3 TrN X�3 � TrN .K�X�1X�2/
�
:

By performing the sum of the terms in the last line one sees that they cancel out due to
the skew-symmetry of .�1/j�� j. The only contribution comes therefore from the two first
terms in the square brackets, which are directly seen to yieldX
�2CD10

b5.�/ D �8
X

�;�1;�2;�3

ı��1�2�3.�1/
j�� j �

�
.�1/q TrN K� � TrN .X�1X�2X�3/

C e�2e�3 TrN X�1 � TrN .K�X�2X�3/
�
:

Concerning the 8-pt diagrams,X
�2CD8

b4.�/ D
X

�1;�2;�1;�2;
not all equal

�
2��1 O�1�2 O�2 C 4��1�2 O�1 O�2

�
¹non-trivial partitionsº

C

X
�

.2�� O�� O� C 4��� O� O�/¹non-trivial partitionsº: (5.26)
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The sum over the 8-pt chord diagrams is splitted in the �3 and �4 types with their symmetry
factors; in each line these are, respectively, the two summands in parenthesis. Here ‘non-
trivial partitions’ in curly brackets refers to .1; 3/, .2; 2/ and .3; 1/. We call the second
line�, for which straightforward computation yields

� D 4.�1/1Cq
4X

�D1

°
2e� TrN .K�/ � TrN .K�X2�/C 2e O� TrN .X�/ � TrN .X�K2�/

C TrN .X2�/ � TrN .K2�/C 2.�1/
1Cq

�
TrN .K�X�/

�2± (5.27)

by rewriting e1e2e3e4 D .�1/q . We now compute the first line of equation (5.26) consid-
ering first only the �3 diagrams (the �4-type is addressed later). The sum .1; 3/C .3; 1/ of
partitions can be straightforwardly obtained,

2
X

�1;�2;�1;�2;
not all equal

��1 O�1�2 O�2¹.1; 3/C .3; 1/ partitionsº

D 2
X

�1;�2;�1;�2;
not all equal

h
� .�1/�1C�2e1e2e3e4.ı

�1
�1
ı�2�2 � ı

�2
�1
ı�1�2/ � e�1

� Y
˛¤�1

e˛

�
ı�2�1 ı

�2
�1

i
�
�
e�1 TrN .K�1/ � TrN

�
X�1¹K�2 ; X�2º

�
C e�2 TrN .K�2/ � TrN

�
K�1¹X�1 ; X�2º

�
C e�1 TrN .X�1/ � TrN

�
K�1¹K�2 ; X�2º

�
C e�2 TrN .X�2/ � TrN

�
K�1¹K�2 ; X�1º

��
D �8

X
�¤�

� Y
˛¤�

e˛

��
TrN .K�/ � TrN .K�X2� /C e�e O� TrN .X�/ � TrN

�
K2�X�//

D 8
X
�¤�

.�1/1Cqe� TrN .K�/ � TrN
�
K�X

2
�

�
C e� TrN .X�/ � TrN

�
K2�X�

�
: (5.28)

In the first equality we just used the expression for ��1 O�1�2 O�2 . In order to obtain the second
one, it can be shown that the terms proportional to .ı�1�1ı

�2
�2 � ı

�2
�1ı

�1
�2/ cancel out. Using

equation (II.2) from the Supplementary Material one simplifies the signs to obtain the last
equality. The condition of � ¤ � in the sum of the last equations reflects only the fact
that the four indices cannot coincide (cf. assumptions in Proposition 5.1). The remaining
partition reads

2
X

�1;�2;�1;�2;
not all equal

��1 O�1�2 O�2 � ¹.2; 2/ partitionº

D �4
X
�¤�

� Y
˛¤�

e˛

��
2e O� TrN .K�X�/2 C e� TrN .K2�/ � TrN .X2� /

�
D C4

X
�¤�

®
2
�

TrN .K�X�/
�2
C e�e�.�1/

qC1 TrN .K2�/ � TrN .X2� /
¯
: (5.29)
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Using a similar approach (which would be redundant here), one can similarly show
that the contribution of the �4-diagrams is precisely twice that of �3, obtaining in total
3 � [equations (5.28) + (5.29)] for the 8-pt diagrams. The claim follows from

�4 D

6X
rD2

X
�2CD2r

sr .�/ and B4 D

X
�

6X
rD2

X
�2CD2r

b�r .�/ (5.30)

where � runs over the non-trivial partitions � 2 ¹.1; 3/; .2; 2/; .3; 1/º.

Remark 5.5. Each anti-hermitian parametrizing matrix L can be replaced by a traceless
one L0 D L � .TrN L=N/ � 1N , since L appears in D only via anti-commutators; since
TrN L is purely imaginary, L0 is also anti-hermitian.

6. Large-N limit via free probability?

Random matrix theory provides an important class of noncommutative probability spaces
that can be studied with free probability [43,57,58]. (The potentials for such random matri-
ces have a single trace, but this is not essential: other models whose potentials feature two
or more traces—called trace polynomials—are elsewhere considered in related contexts
[12,15,47] in probability.) One could start with noncommutative self-adjoint polynomials
P 2 Rhx1; : : : ; x�i, to wit, P.x1; : : : ; x�/ D P.x1; : : : ; x�/�, if each of the noncommu-
tative variables xi satisfies formal self-adjointness x�i D xi . For instance, the following
polynomials are self-adjoint:

P2.x1; : : : ; x�/ D x
2
1 C � � � C x

2
� C

�

2

X
i¤j

xixj ; (6.1a)

P4.x1; : : : ; x�/ D x
4
1 C � � � C x

4
� C

1

2

X
i¤j

�
�1xixjxixj C �2x

2
i x
2
j

�
; (6.1b)

being �i ; � real coupling constants. One can instead evaluate P in square matrices of size,
say, N and define

d�N .X.N// D d�N .X
.N/
1 ; : : : ; X .N/� / D CN � e�N

2 TrN ŒP.X
.N/
1 ;:::;X

.N/
� /�

� dƒ.X .N/1 / � � � dƒ.X .N/� / (6.2)

being CN a normalization constant and ƒ the Lebesgue measure

dƒ.Y / D
Y
i

dYi i
Y
i<j

<.dYij /=.dYij /; Y 2MN .C/:

The distributions 'N defined by

'N .X
.N/
j1

; : : : ; X
.N/
jk

/ D

Z
TrN .X

.N/
j1
� � �X

.N/
j1

/d�N .X.N// (6.3)
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are of interest in free probability. As shown in Sections 3, 4 and 5, we have devel-
oped a geometrically interesting way to produce noncommutative polynomials. Although
these are not directly self-adjoint, self-adjointness is not essential in order for one to
ponder the possible convergence of the measures they define. As far as the trace does
not detect it, the weaker notion of cyclic self-adjointness suffices. This requirement is
satisfied by polynomials in P 2 ChZ1; : : : ; Zni that fulfill TrN ŒP �.Z1; : : : ; Zn/� D
TrN ŒP.Z1; : : : ; Zn/�, where Z1; : : : ; Zn are either hermitian or anti-hermitian N � N
matrices. In the Supplementary Material we provide a definition of this relaxed kind of
self-adjointness (Definition V.1) that does not make reference to a matrix realization, but
that concept will be clear from the next examples.

Example 6.1. Consider the formal adjoint P � of the NC polynomial P given by

P.h; l1; l2; l3/ D l1
®
h.l2l3 � l3l2/C l2.l3h � hl3/C l3.hl2 � l2h/

¯
:

Recalling that the h’s (resp. the l’s) are hermitian (resp. anti-hermitian), one obtains

ŒP.h; l1; l2; l3/�
�
D .hŒl2; l3�C l2Œl3; h�C l3Œh; l2�/

�l�1

D
®
.l2l3 � l3l2/hC .l3h � hl3/l2 C .hl2 � l2h/l3

¯
l1

D .hŒl2; l3�C l2Œl3; h�C l3Œh; l2�/l1; (6.4)

where Œ � ; � � is the commutator in Rhh; l1; l2; l3i. Clearly P � ¤ P , but up to the cyclic
permutation � 2 Z=4Z defined by bringing the letter l1 from the last to the first position
of each word, a bijection of words in P is established. Hence P is cyclic self-adjoint. On
the other hand, take ‰.h; l2; l3/ D .l2l3 � l3l2/h. By a similar token, one sees that ‰ is
cyclically anti-self-adjoint.

It would not be surprising that the spectral action Trf .D/ for fuzzy geometries (since
it has to be real) in any dimension and allowed KO-dimension leads for any ordinary
polynomial f to the type of NC polynomials we just introduced. Preliminarily, we verify
this statement only for the explicit computations we performed in this article:

Corollary 6.2. For the cases

• d D 2, in arbitrary signature and being f a sextic polynomial; and

• Riemannian and Lorentzian signatures (d D 4) being f quartic polynomial,

the spectral action Trf .D/ D dimV.N � �f CBf / for fuzzy geometries has the form

�f D TrN P and Bf D
X
i

TrN ˆi � TrN ‰i ; (6.5)

where P;ˆi ; ‰i 2 Rhx1; : : : ; z�.d/i with �.d/ D 2d�1 are NC polynomials such that

• P is cyclically self-adjoint

• and ˆi and ‰i are both either cyclically self-adjoint or both cyclically anti-self-
adjoint.
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7. Conclusions

We computed the spectral action Tr f .D/ for fuzzy geometries of even dimension d ,
whose ‘quantization’ was stated as a 2d�1-matrix model with action

Trf .D/ D dimV.N � �f CBf /

being the single trace �f and bi-tracial parts Bf of the form

�f D TrN F; Bf D
P
i .TrN ˝TrN /¹ˆi ˝‰iº:

With the aid of chord diagrams that encode non-vanishing traces on the spinor space V ,
we organized the obtention of (finitely many) noncommutative polynomials F ,ˆi and‰i
in 2d�1 hermitian or anti-hermitian matrices in MN .C/. These polynomials are defined
up to cyclic permutation of their words and have integer coefficients that are independent
of N . We commented on a free probabilistic perspective towards the large-N limit of the
spectral action and adapted the concept of self-adjoint noncommutative polynomial to a
more relaxed one (cyclic self-adjointness) that is satisfied by F . Furthermore, for fixed i ,
either both ˆi and ‰i are cyclic self-adjoint or both are cyclically anti-self-adjoint.

On the one hand, we elaborated on 2-dimensional fuzzy geometries in arbitrary signa-
ture .p; q/. When quantized (or randomized), the corresponding partition function is

Z.p;q/ D

Z
Mp;q

e�S.D/dK1dK2; D D D.K1; K2/; p C q D 2: (7.1)

The space Mp;q of Dirac operators is Mp;q D .HN /
�p � su.N /�q , but this simple

parametrization does not generally hold for d > 2. Here su.N / D Lie.SU.N // stands
for the (Lie algebra of) traceless N � N skew-hermitian matrices and HN for hermitian
matrices. Concretely, in Section 4 formulas for S.D/ D Tr.D2 C �4D

4 C �6D
6/ are

deduced, but the present method enables to obtain S.D/ D Tr f .D/ for a polynomial f .
This first result is an extension (by the sextic term) of the spectral action presented by
Barrett–Glaser [8] up to quartic polynomials in d D 2.

On the other hand, the novelties (to the best of our knowledge) are the analytic deriva-
tions we provided for Riemannian and Lorentzian fuzzy geometries—and in fact, in arbi-
trary signature in 4 dimensions—as well as a systematic approach that maps random
fuzzy geometries to multi-matrix bi-tracial models. For one thing, this sheds some light
on arbitrary-dimensional geometries and, for the other thing, on extensions to (quan-
tum) models including bosonic fields. For the quadratic-quartic spectral action S.D/ D
Tr.D2 C �4D

4/ computed in Section 5 one could study the octo-matrix model

Z.p;q/ D

Z
Mp;q

e�S.D/
4Y

�D1

dK�dX�; D D D.K�; X�/; p C q D 4; (7.2)

being, in particular,

Mp;q
D

´
H�4N � su.N /�4 p D 0; q D 4 (Riemannian);

H�2N � su.N /�6 p D 1; q D 3 (Lorentzian):
(7.3)



From random NCG to bi-tracial multimatrix models 1173

For the rest of the signatures, Mp;q can be readily obtained with the aid of equation (II.2)
from the Supplementary Material as described for the Lorentzian and Riemannian cases.
As a closing point, it is pertinent to remark that determining whether the Dirac operator of
a fuzzy geometry is a truncation of a spinc geometry is a subtle problem addressed in [39]
from the viewpoint of the Heisenberg uncertainty principle.

8. Outlook

We present a miscellanea of shortly described topics for further work:

• Gauge theory. The NCG-framework pays off in high energy physics precisely for
gauge-Higgs theories. A natural step would be to come back to this initial motiva-
tion and to define almost commutative fuzzy geometries (ongoing project) in order to
derive from them the Yang–Mills–Higgs theory on a fuzzy base. The classical action
of that model was obtained in [65], which remains to be quantized in full detail. A pos-
sibility is to follow the BV-formalism [35] for the dynamic fuzzy geometry (without
matter).

• Analytic approach. A non-perturbative approach to matrix models, which led to the
solvability of all quartic matrix models [40] (after key progress in [59]) consists in
exploiting the U.N /-Ward–Takahashi identities in order to descend the tower of the
Schwinger–Dyson (or loop) equations (SDE). This was initially formulated for a quar-
tic analogue of Kontsevich’s model [50], but the Grosse–Wulkenhaar approach (SDE
C Ward Identity [42]) showed also applicability to tensor field theory [60, 63], and
seems to be flexible. A first use of the SDE equations of Dirac ensembles is [44].

• Topological Recursion. Probably the analytic approach would lead to a (or multiple)
Topological Recursion (TR), as it appeared in [40]. Alternatively, one could build
upon the direct TR-approach [3]. Namely, the blobbed [11] Topological Recursion
[20, 33, 34] has been lately applied [3] to general multi-trace models that encompass
the 1-dimensional version of the models derived here. An extension of their TR to
dimension d � 2 would be interesting.

• Combinatorics. Finally, chord diagrams are combinatorically interesting by them-
selves. For instance, together with decorated versions known as Jacobi and Gauß
diagrams, they are used in algebraic knot theory [21, Sections 3.4 and 4] in order
to describe Vassiliev invariants. Those appearing here are related to the Penner matrix
model [62]. One can still explore their generating function [2] in relation to the matrix
model with action

S.X/ D TrN ŒX2=2 � st � .1 � tX/�1�;

for X 2 HN . The free energies Fg of this Andersen–Chekhov–Penner–Reidys–
Sułkowski (ACPRS) model ZACPRS D e

P
g N

2�2gFg generate numbers that are more-
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over important in computational biology, as they encode topologically non-trivial com-
plexes of interacting RNA molecules. These numbers are related to the isomorphism
classes of chord diagrams with a certain number of cuts in the circle, leaving segments
(‘backbones’, cf. [2]) but also a connected diagram. For the ACPRS-model there is
also a Topological Recursion ([2]).
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