Supplementary Material to "Computing the spectral action for fuzzy geometries: from random noncommutative geometry to bi-tracial multimatrix models"

This Supplementary Material contains the following sections:

- Section [I](#page-0-0) presents in detail how to obtain from chord diagrams noncommutative polynomials that contribute to the spectral action
- Section [II](#page-5-0) gives and proves properties of the gamma matrices in general signature
- Section [III](#page-6-0) departs from the main result and displays for Riemannian and Lorenzian signatures explicitly the spectral action for a quadratic-quartic potential in the Dirac operator
- Section [IV](#page-11-0) gives all the proofs that were skipped in the main text by sake of conciseness
- Section [V](#page-14-0) is the definition of cyclically self-adjoint polynomial without reference to a matrix realization
- Section [VI,](#page-15-0) finally, presents a double-trace matrix model restated as differential operators on (single-trace) auxiliary matrix model.

I. FULL COMPUTATION OF ONE CHORD DIAGRAM

We perform some explicit computations left out in the proof of Proposition 4.1. Since $t = 2n = 6$ will be constant in this section, we drop the subindices *n* in a_n , b_n and s_n . Exclusively in this section, we abbreviate the traces as follows:

$$
|\mu_i\mu_j\ldots\mu_m|:=\mathrm{Tr}_N(K_{\mu_i}K_{\mu_j}\cdots K_{\mu_m})\qquad \mu_i,\mu_j,\ldots,\mu_m\in\{1,2\}.
$$

Then the action functional $a(\chi)$ of a chord diagram χ of six points is given by

$$
\mathfrak{a}(\chi) = \sum_{\mu_1\mu_2\ldots\mu_6} (-1)^{\mathrm{cr}(\chi)} \bigg(\prod_{w\sim\chi v} g^{\mu_v\mu_w}\bigg) \bigg(\sum_{\Upsilon\in\mathscr{P}_6} \Big[\prod_{i\in\Upsilon} e_{\mu_i}\Big] \cdot |\mu(\Upsilon^c)| \cdot |\mu(\Upsilon)|\bigg) ,
$$

that is,

$$
\sum_{\mu_1\mu_2\ldots\mu_6} (-1)^{\text{cr}} \langle \chi \rangle \prod_{w \sim \chi v} g^{\mu_v \mu_w} \bigg[N \big(|\mu_1 \mu_2 \ldots \mu_6| + e |\mu_6 \mu_5 \ldots \mu_1| \big) + \sum_i e_i (|\mu_1 \mu_2 \ldots \widehat{\mu_i} \ldots \mu_6| + e |\mu_6 \mu_5 \ldots \widehat{\mu_i} \ldots \mu_1|) \cdot |\mu_i| + \sum_{i < j} e_i e_j (|\mu_1 \mu_2 \ldots \widehat{\mu_i} \ldots \widehat{\mu_j} \ldots \mu_6| + e |\mu_6 \mu_5 \ldots \widehat{\mu_j} \ldots \widehat{\mu_i} \ldots \mu_1|) \cdot |\mu_i \mu_j| + \sum_{i < j < k} e_i e_j e_k \big(|\mu_1 \mu_2 \ldots \widehat{\mu_i} \ldots \widehat{\mu_j} \ldots \widehat{\mu_k} \ldots \mu_6| \cdot |\mu_i \mu_j \mu_k| \big) \bigg],
$$

where $e = e(\mu_1, \dots, \mu_6) = e_{\mu_1} \cdots e_{\mu_6}$. We just conveniently listed the terms corresponding to Υ and Υ^c together, in the first line displaying those with $\#\Upsilon = 0$ and $\#\Upsilon = 6$ ('trivial partitions'); in the second $\#\Upsilon = 1$ or 5; on the third line $\#\Upsilon = 2$ or 4; the fourth line corresponds to the $\#\Upsilon = 3$ cases. We also used the fact that e_{μ} is a sign \pm , and that $e \cdot e_{\mu_i} e_{\mu_j} \cdots e_{\mu_v}$ equals the product of the e_{μ_r} 's with $r \neq i, j, \dots, v$, i.e. precisely those not appearing in $e_{\mu i}e_{\mu j} \cdots e_{\mu v}$. But since in the non-vanishing terms *e* implies a repetition of indices by pairs, $e \equiv 1$ for non-vanishing terms. Then we gain a factor 2 for those terms (i.e. except for traces of three matrices) and $a(\chi)$ is therefore given by

$$
\sum_{\mu_1\mu_2...\mu_6} \left((-1)^{\text{cr}(\chi)} \prod_{w \sim \chi v} g^{\mu_v \mu_v} \right) \cdot \left\{ \sum_{\mu_1,\mu_2,...,\mu_6} 2N |\mu_1 \mu_2 \dots \mu_6| \right. \tag{I.1a}
$$

$$
+\sum_{i} 2e_i|\mu_1\mu_2\ldots\widehat{\mu_i}\ldots\mu_6|\cdot|\mu_i| \tag{I.1b}
$$

$$
+\sum_{i (I.1c)
$$

$$
+\sum_{i (I.1d)
$$

We thus compute the first diagram of 6-points by giving line by line last expression. We perform first the computation for the third line [\(I.1c\)](#page-1-0) (since this is the longest) explicitly, which can be expanded as

$$
2\sum_{\mu} \mu_{\delta} \left(\mu_{\mu} e_{\mu} \mu_{\mu} \mu_{\mu} \mu_{\mu} \right) + \mu_{\mu} \mu_{\mu} \mu_{\mu} \mu_{\mu} \mu_{\mu} \mu_{\mu} \mu_{\mu} \mu_{\mu} \right) + \mu_{\mu} \mu_{\
$$

The diagram's meaning is the sign and product of $g^{\mu_v \nu_w}$'s before the braces in eq. [\(I.1\)](#page-1-1). After contraction with the term in square brackets in [\(I.2\)](#page-1-2) one gets

$$
2\sum_{\mu,\nu,\rho} (e_{\mu}e_{\nu}e_{\rho})\Big\{e_{\rho}|\mu\nu|\cdot|\rho\nu\mu\rho|+e_{\rho}|\mu\nu|\cdot|\rho\rho\mu\nu|+e_{\rho}|\mu\nu|\cdot|\nu\rho\mu\rho|+e_{\mu}e_{\rho}e_{\nu}|\mu^2|\cdot|\nu\rho\nu\rho|+e_{\rho}|\mu\nu|\cdot|\rho\nu\rho\mu|+e_{\rho}|\mu\nu|\cdot|\rho\mu\rho\nu|+e_{\mu}e_{\rho}e_{\nu}|\mu^2|\cdot|\nu\rho\nu\rho|+e_{\rho}|\mu\nu|\cdot|\nu\rho\mu\rho|+e_{\rho}|\mu\nu|\cdot|\rho\nu\mu\rho|+e_{\rho}|\mu\nu|\cdot|\rho\nu\rho\mu|+e_{\rho}|\mu\nu|\cdot|\nu\rho^2\mu|+e_{\mu}e_{\rho}e_{\nu}|\mu^2|\cdot|\nu\rho^2\nu|+e_{\rho}|\mu\nu|\cdot|\nu\mu\rho^2|+e_{\rho}|\mu\nu|\cdot|\rho\mu\nu\rho|+e_{\rho}|\mu\nu|\cdot|\mu\rho\nu\rho|\Big\},
$$

where the signs $e_{\mu}e_{\nu}e_{\rho}$ are due to $g^{\lambda\sigma} = e_{\lambda}\delta^{\lambda\sigma}$ (no sum). Following the notation of eq. [\(4.8\)](#page-0-1), using the cyclicity of the trace and renaming indices, this expression can be written as

$$
2\sum_{\mu,\nu,\rho} (6R_{\mu\nu\rho} + 6S_{\mu\nu\rho} + 2T_{\mu\nu\rho} + U_{\mu\nu\rho}). \tag{I.1c'}
$$

Similarly, for the terms obeying $\#\Upsilon$ or $\#\Upsilon^c = 1$, i.e. line [\(I.1b\)](#page-1-3), one has

$$
2\sum_{\mu} \mu_{\mathbf{S}} \left(\sum_{\mu_3}^{\mu_6} \mu_2 \right) \times \left\{ e_{\mu_1} |\mu_1| \cdot |\mu_2 \mu_3 \mu_4 \mu_5 \mu_6| + e_{\mu_2} |\mu_2| \cdot |\mu_1 \mu_3 \mu_4 \mu_5 \mu_6| + e_{\mu_3} |\mu_3| \cdot |\mu_1 \mu_2 \mu_4 \mu_5 \mu_6| + e_{\mu_4} |\mu_4| \cdot |\mu_1 \mu_2 \mu_3 \mu_5 \mu_6| + e_{\mu_5} |\mu_5| \cdot |\mu_1 \mu_2 \mu_3 \mu_4 \mu_6| + e_{\mu_6} |\mu_6| \cdot |\mu_1 \mu_2 \mu_3 \mu_4 \mu_5| \right\},
$$

which amounts to

$$
2\sum_{\mu,\nu,\rho} e_{\nu}e_{\rho}|\mu| \cdot \left\{ |\nu\rho\nu\mu\rho| + |\nu\mu\rho\nu\rho| + |\nu\rho\mu\nu\rho| + |\nu\mu\rho\nu\rho| + |\mu\nu\rho\nu\rho| + |\nu\rho\mu\rho\nu| \right\},\
$$

or, relabeling, to

$$
2\sum_{\mu,\nu,\rho} (4O_{\mu\nu\rho} + 2P_{\mu\nu\rho}). \tag{I.1b'}
$$

The terms with $\#\Upsilon = 3$ remain to be computed:

$$
\sum_{\mu_{4}} \sum_{\mu_{4}}^{\mu_{6}} \sum_{\mu_{4}}^{\mu_{1}} \times \left\{ (e_{\mu_{1}}e_{\mu_{2}}e_{\mu_{3}} + e_{\mu_{4}}e_{\mu_{5}}e_{\mu_{6}})|\mu_{1}\mu_{2}\mu_{3}| \cdot |\mu_{4}\mu_{5}\mu_{6}| + (e_{\mu_{1}}e_{\mu_{2}}e_{\mu_{4}} + e_{\mu_{3}}e_{\mu_{5}}e_{\mu_{6}})|\mu_{1}\mu_{2}\mu_{4}| \cdot |\mu_{3}\mu_{5}\mu_{6}| + (e_{\mu_{1}}e_{\mu_{2}}e_{\mu_{5}} + e_{\mu_{3}}e_{\mu_{4}}e_{\mu_{6}})|\mu_{1}\mu_{2}\mu_{5}| \cdot |\mu_{3}\mu_{4}\mu_{6}| + (e_{\mu_{1}}e_{\mu_{2}}e_{\mu_{6}} + e_{\mu_{3}}e_{\mu_{4}}e_{\mu_{5}})|\mu_{1}\mu_{2}\mu_{6}| \cdot |\mu_{3}\mu_{4}\mu_{5}| + (e_{\mu_{1}}e_{\mu_{3}}e_{\mu_{4}} + e_{\mu_{2}}e_{\mu_{5}}e_{\mu_{6}})|\mu_{1}\mu_{3}\mu_{4}| \cdot |\mu_{2}\mu_{5}\mu_{6}| + (e_{\mu_{1}}e_{\mu_{3}}e_{\mu_{5}} + e_{\mu_{2}}e_{\mu_{4}}e_{\mu_{5}})|\mu_{1}\mu_{3}\mu_{5}| \cdot |\mu_{2}\mu_{4}\mu_{6}| + (e_{\mu_{1}}e_{\mu_{3}}e_{\mu_{6}} + e_{\mu_{2}}e_{\mu_{4}}e_{\mu_{5}})|\mu_{1}\mu_{3}\mu_{6}| \cdot |\mu_{2}\mu_{4}\mu_{5}| + (e_{\mu_{1}}e_{\mu_{4}}e_{\mu_{5}} + e_{\mu_{2}}e_{\mu_{3}}e_{\mu_{6}})|\mu_{1}\mu_{4}\mu_{5}| \cdot |\mu_{2}\mu_{3}\mu_{6}| + (e_{\mu_{1}}e_{\mu_{4}}e_{\mu_{6}} + e_{\mu_{2}}e_{\mu_{3}}e_{\mu_{5}})|\mu_{1}\mu_{4}\mu_{6}| \cdot |\mu_{2}\mu_{3}\mu_{4}| + (e_{\mu_{1}}e_{\mu_{5}}e_{\mu_{6}} + e_{\mu_{2}}e_{\mu
$$

Although $Tr_N(M_1M_2M_3) = Tr_N(M_3M_2M_1)$ is false for general matrices M_1, M_2 and M_3 (e.g. for $M_j = \sigma_j$, the Pauli matrices), having at our disposal only two matrices, *K*₁ and *K*₂, the relation $Tr_N(K_\mu K_\nu K_\rho) = Tr_N(K_\rho K_\nu K_\mu)$ does hold. This fact was used to obtain the last equation. Contracting with the diagram, as we already did for other partitions, one gets

$$
\sum_{\mu,\nu,\rho} 8V_{\mu\nu\rho} + 12W_{\mu\nu\rho} \,. \tag{I.1d'}
$$

By collecting the terms from the three equations with primed tags, the bi-trace term for the I-diagrams one obtains

$$
\mathfrak{b}(\mathbf{I}) = +2 \sum_{\mu,\nu,\rho} \left(4O_{\mu\nu\rho} + 2P_{\mu\nu\rho} + 6R_{\mu\nu\rho} + 6S_{\mu\nu\rho} + 2T_{\mu\nu\rho} + U_{\mu\nu\rho} + 4V_{\mu\nu\rho} + 6W_{\mu\nu\rho} \right),
$$

which is a claim amid the proof of Proposition [4.1.](#page-0-1)

Notice that these integer coefficients add up to 62, and so will these (denoted p_x, q_x, \ldots, w_x in the main text) in absolute value for a general diagram χ . There are two missing terms to get the needed $2^6 = \# \mathcal{P}_6$ terms. These are the trivial cases $\Upsilon, \Upsilon^c = \emptyset$, which can be readily computed.

For the I-diagram,

$$
\mathfrak{s}(I) = 2N \cdot \sum_{\mu} \sum_{\mu_5}^{\mu_6} \sum_{\mu_4}^{\mu_1} \sum_{\mu_3}^{\mu_2} \times |\mu_1 \mu_2 \mu_3 \mu_4 \mu_5 \mu_6|
$$

= 2N \cdot \sum_{\mu, \nu, \rho} e_{\mu} e_{\nu} e_{\rho} |\mu \nu \rho \nu \mu \rho|
= 2N \cdot \text{Tr}_N \left\{ e_1 K_1^6 + 2e_2 (K_1 K_2)^2 K_1^2 + e_1 (K_2^2 K_1)^2 + e_2 K_2^6 + 2e_1 (K_2 K_1)^2 K_2^2 + e_2 (K_1^2 K_2)^2 \right\}.

The single-trace action S_6 in Proposition [4.1](#page-0-1) is then obtained by summing over all 6-point chord diagrams \sum_{χ} $\mathfrak{s}(\chi)$, whose values are found by similar computations.

FIGURE I.1. Splitting of a chord diagram for indices of a mixed signature. One of the diagrams appearing in the computation of $\langle a_1 \cdots a_6 \dot{c}_1 \cdots \dot{c}_8 \rangle$ 14 points, all of which split into two (of 8 and 6 points). The equality of diagrams means equality of the product of the bilinears $g^{a_i a_j}$ and $g^{c_l c_k}$ determined by the depicted chords and the signs for simple crossing

Remark I.1. For a mixed signature, $q, p > 0$, any non-vanishing $\langle \mu_1 ... \mu_{2n} \rangle$ has the form (up to a reordering sign) $\langle a_1 \dots a_{2r} \dot{c}_1 \dots \dot{c}_{2u} \rangle$ with $r + u = n$. Since $g^{a\dot{c}}$ vanishes, any chord diagram χ in the sum of eq. [\(3.2\)](#page-0-1) splits into a pair (σ, ρ) of smaller chord diagrams, of 2*r* and 2*u* points, whose chords do not cross (see Fig. [I.1\)](#page-3-0), so $cr(\chi)$ = $cr(\sigma) + cr(\rho)$. Therefore

$$
\langle a_1 \dots a_{2r} \dot{c}_1 \dots \dot{c}_{2u} \rangle = \sum_{\substack{2n-\text{pt chord} \\ \text{diagrams } \chi}} (-1)^{\text{cr}(\chi)} \prod_{\substack{i,j \\ i \sim \chi j}} g^{a_i a_j} \times \prod_{\substack{u,v \\ u \sim \chi v}} g^{\dot{c}_u \dot{c}_v} \\
\quad = \sum_{\substack{(2r,2u)-\text{pt chord} \\ \text{diagrams }(\rho,\sigma)}} (-1)^{\text{cr}(\sigma)} \prod_{\substack{i,j \\ i \sim \rho j}} g^{a_i a_j} \times (-1)^{\text{cr}(\rho)} \prod_{\substack{u,v \\ u \sim \sigma v}} g^{\dot{c}_u \dot{c}_v} \\
\quad = \langle a_1 \dots a_{2r} \rangle \langle \dot{c}_1 \dots \dot{c}_{2u} \rangle.
$$
 (I.4)

4

 \bigwedge^{α} β μ ν ξ ζ θ þ \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \sim \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ h \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \sim \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \sim $\lambda - \frac{\alpha}{L}$ $\lambda - \frac{\alpha}{L}$ β μ ν ξ ζ θ λ α β μ ν ξ ζ θ h $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ h \bigwedge^{α} \bigwedge^{α} $\sqrt{\bigwedge^{\mu}}$ ν ξ θ \vdash \bigwedge^{α} \bigwedge^{α} $\left\langle \bigwedge^{\mu} \right\rangle^{\mu}$ ν ξ θ \sim \bigwedge^{α} \bigwedge^{α} $\left\langle \bigcap\nolimits^{\mu}\right\rangle$ ν ξ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\langle \sim \rangle^{\mu}$ ν ξ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\langle \bigwedge \bigcup^{\mu}$ ν ξ θ h λ λ λ λ β μ ν ξ ζ θ \sim \bigwedge^{α} \bigwedge^{α} $\langle \bigwedge^{\mu}$ ν ξ θ \vdash $\lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha$ β μ ν ξ ζ θ \sim $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ ν ξ ζ θ h $\lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ h $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ /- $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ ν ξ ζ θ \sim $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\ll \sqrt{D^{\mu}}$ ν ξ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \sim $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ (~ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ $ξ$ ^{$ν$} ζ θ \vdash $\lambda - \frac{\alpha}{L}$ $\lambda - \frac{\alpha}{L}$ β μ ϵ ^ν ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \sim \bigwedge^{α} \bigwedge^{α} \bigwedge^{α} $\langle \bigwedge^{\mu}$ ν ξ θ \vdash \bigwedge^{α} \bigwedge^{α} \bigwedge^{α} $\&\wedge\&\quad$ ν ξ θ \bigwedge^{α} \bigwedge^{α} \bigwedge^{α} $\left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle ^{\mu}\right\rangle$ ν ξ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \sim $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \sim $\lambda - \frac{\alpha}{L}$ $\lambda - \frac{\alpha}{L}$ β μ ν ξ ζ θ λ α β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha$ μ ν ξ ζ θ \vdash \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \vdash \bigwedge^{α} \bigwedge^{α} μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\langle \bigwedge^{\mu} C^{\mu} \rangle$ ν ξ θ \sim $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β $\langle\bigwedge^{\mathcal{V}}\bigvee^{\mu}$ ν ξ θ \sim $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θβ $\lambda \rightarrow \beta$ μ ν ξ ζ θ \sim $\lambda \rightarrow \beta$ μ $\begin{matrix} \begin{matrix} 1 \\ 2 \end{matrix} & \begin{matrix} 1$ θ h $\lambda \rightarrow \beta$ $\lambda \rightarrow \beta$ μ ν ξ ζ θ \vdash $\bigwedge^{\alpha} \beta$ $\bigwedge^{\alpha} \beta$ μ $\begin{matrix} \begin{matrix} \downarrow \end{matrix} & \downarrow \end{matrix}$ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\langle\!\!\langle\!\!\langle \times\rangle\!\!\rangle^{\mu}$ ν ξ θ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash \bigwedge^{α} \bigwedge^{α} β μ ν ξ ζ θ (– \bigwedge^{α} \bigwedge^{α} β μ ν ξ ζ θ f- $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ f- $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ ϵ ^ν ζ θ \vdash $\lambda \rightarrow \alpha$ β $\chi \nleftrightarrow^{\mu}$ ν ξ θ $\lambda \rightarrow \beta$ μ ν ξ ζ θ \vdash $\lambda \rightarrow \beta$ μ ν ξ ζ θ f- $\lambda \rightarrow \beta$ $\lambda \rightarrow \beta$ μ ν ξ ζ θ f- $\lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash $\lambda \rightarrow \alpha$ μ ν ξ ζ θ f- $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β $\langle \langle \rangle \rangle^{\mu}$ ν ξ θ \sim $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle ^{\mu}\right\rangle$ ν ξ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\langle \bigcirc \rangle^{\mu}$ ν ξ θ $\lambda \rightarrow \alpha$ $\chi \nleftrightarrow^{\mu}$ ν ξ θ h $\lambda \rightarrow \alpha$ μ ν ξ ζ θ h $\lambda \rightarrow \alpha$ μ ν ξ ζ θ $\lambda \rightarrow \alpha$ μ ν ξ ζ θ $\lambda \rightarrow \alpha$ μ ν ξ ζ θ \sim $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β μ ν ξ ζ θ λ α β μ $\frac{1}{5}$ ζ θ \sim $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β $\langle \bigotimes^{\mu}$ ν ξ θ \sim $\lambda \rightarrow \beta$ $\lambda \rightarrow \beta$ $\zeta \cap \varphi^{\mu}$ ν ξ θ $\lambda \rightarrow \alpha \qquad \lambda \rightarrow \alpha$ β $\left\langle \bigwedge \right\rangle ^{\mu}$ ν ξ θ \vdash $\lambda \rightarrow \alpha \lambda \rightarrow \alpha$ β μ ν ξ ζ θ \vdash λ

FIGURE I.2. The 7!! = 105 chord diagrams with eight points. These assist to compute $\text{Tr}_V(\gamma^\alpha \gamma^\beta \cdots \gamma^\beta \gamma^\lambda)$ in any dimension with diagonal metric of any signature. The sign of a diagram χ is $(-1)^{\# {\{\text{simple crossings of }\chi\}}}$. Thus, the 'pizza-cut' diagram in the upper left corner that appears as a summand in the normalized trace ⟨*αβµνξζθλ*⟩ evaluates to $(-1)^{1+2+3} g^{\xi\alpha} g^{\zeta\beta} g^{\theta\mu} g$ where $\langle \cdots \rangle$ = $(1/\dim V)\text{Tr}_V(\cdots)$

For the metric $g^{\mu\nu} = \text{diag}(+,\ldots,+,-,\ldots,-)$ the two factors are

$$
\langle a_1 \dots a_{2r} \rangle = \sum_{\substack{2r-\text{pt chord} \\ \text{diagrams } \rho}} (-1)^{\text{cr}(\sigma)} \prod_{\substack{i,j \\ i \sim_\rho j}} \delta^{a_i a_j} , \qquad (I.5a)
$$

$$
\langle \dot{c}_1 \dots \dot{c}_{2u} \rangle = (-1)^u \sum_{\substack{2u-\text{pt chord} \\ \text{diagrams } \sigma}} (-1)^{\text{cr}(\rho)} \prod_{\substack{w,v \\ w \sim_\sigma v}} \delta^{\dot{c}_w \dot{c}_v} . \tag{I.5b}
$$

II. SOME PROPERTIES OF GAMMA MATRICES

In order to deal with *d*-dimensional matrix geometries we prove some of the properties of the corresponding gamma matrices.

First, notice that in any signature for each multi-index $I = (\mu_1, \dots, \mu_r) \in \Lambda_d$ one has

$$
\gamma^{\mu_r} \cdots \gamma^{\mu_1} = (-1)^{r(r-1)/2} \gamma^{\mu_1} \cdots \gamma^{\mu_r} = (-1)^{\lfloor r/2 \rfloor} \gamma^{\mu_1} \cdots \gamma^{\mu_r} . \tag{II.1}
$$

This can be proven by induction on the number $r - 1$ of products. For $r = 2$, this is just $\{\gamma^{\mu_1}, \gamma^{\mu_2}\} = 0$, which holds since the indices are different. Suppose that eq. [\(II.1\)](#page-5-1) holds for an $r \in \mathbb{N}$. Then if $(\mu_1, \dots, \mu_{r+1}) \in \Lambda_d$, one has

$$
\gamma^{\mu_{r+1}}\gamma^{\mu_r} \cdots \gamma^{\mu_2}\gamma^{\mu_1} = (-1)^r (\gamma^{\mu_r} \cdots \gamma^{\mu_2}\gamma^{\mu_1})\gamma^{\mu_{r+1}}
$$

=
$$
(-1)^{r+r(r-1)/2}\gamma^{\mu_1} \cdots \gamma^{\mu_{r+1}}
$$

=
$$
(-1)^{r(r+1)/2}\gamma^{\mu_1} \cdots \gamma^{\mu_{r+1}} = (-1)^{\lfloor (r+1)/2 \rfloor}\gamma^{\mu_1} \cdots \gamma^{\mu_{r+1}}.
$$

Now let us fix a signature (p, q) . We dot the spacial indices $\dot{c} = 1, \ldots, q$ and leave the temporal in usual Roman lowercase, $a = 1, \ldots, p$. Given a mult-index $I =$ $(a_1, \ldots, a_t, \dot{c}_1, \ldots, \dot{c}_u) \in \Lambda_d$ (so $t \leq p$ and $u \leq q$) it will be useful to know whether Γ^1 is hermitian or anti-hermitian. We compute its hermitian conjugate $(\Gamma^I)^*$:

$$
(\gamma^{a_1} \dots \gamma^{a_t} \gamma^{c_1} \dots \gamma^{c_u})^* = (\gamma^{c_u})^* \dots (\gamma^{c_1})^* (\gamma^{a_t})^* \dots (\gamma^{a_1})^*
$$

$$
= (-1)^u \gamma^{c_u} \dots \gamma^{c_1} \gamma^{a_t} \dots \gamma^{a_1}
$$

$$
= (-1)^{u + \lfloor (u+t)/2 \rfloor} \gamma^{a_1} \dots \gamma^{a_t} \gamma^{c_1} \dots \gamma^{c_u}.
$$

With the conventions set in eq. (2.2) , have the following

- In Riemannian signature (0*, d*) a product of *u* gamma matrices associated to $I \in \Lambda_d$ is (anti-)hermitian if $u(u + 1)/2$ is even (odd).
- In $(d, 0)$ -signature a product of *u* gamma matrices associated to $I \in \Lambda_d$ is hermitian if $t(t-1)/2$ is even, and anti-hermitian if it is odd.

In the main text, it will be useful to know that

$$
e_{\mu}e_{\hat{\mu}} = (-1)^{q+1}
$$
 \t\t\t $d = 4$, with signature (p, q) . (II.2)

This follows from $(\Gamma^{\hat{\mu}})^* = e_{\hat{\mu}} \Gamma^{\hat{\mu}}$, from $e_1 e_2 e_3 e_4 = (-1)^q$ and from

$$
(\Gamma^{\hat{\mu}})^* = (\gamma^4)^* \cdots (\widehat{\gamma^{\mu}})^* \cdots (\gamma^1)^* = -e_1e_2e_3e_4e_{\mu}\gamma^1 \cdots \widehat{\gamma^{\mu}} \cdots \gamma^4 = -e_1e_2e_3e_4e_{\mu}\Gamma^{\hat{\mu}}.
$$

III. SPECTRAL ACTION FOR RIEMANNIAN AND LORENTZIAN GEOMETRIES

Before writing down the action functionals for Riemannian and Lorentzian geometries, it will be helpful to restate eqs. [\(5.13\)](#page-0-1) and [\(5.14\)](#page-0-1) via

$$
- \sum_{\alpha,\beta,\mu,\nu} \delta_{\alpha\beta\mu\nu} e_{\alpha} e_{\beta} \text{Tr}_N \left[(K_{\mu} X_{\nu})^2 + 2K_{\mu}^2 X_{\nu}^2 \right]
$$

$$
= (-1)^{1+q} \sum_{\mu \neq \nu} 2e_{\mu} e_{\nu} \text{Tr}_N \left[(K_{\mu} X_{\nu})^2 + 2K_{\mu}^2 X_{\nu}^2 \right]
$$

and by writing out ('cycl.' next means equality after cyclic reordering)

$$
8(-1)^{q+1} \sum_{\mu,\nu} (-1)^{|\sigma(\nu,\mu)|} \delta_{\mu\nu_1\nu_2\nu_3} e_{\mu}(X_{\mu} K_{\nu_1} K_{\nu_2} K_{\nu_3} + K_{\mu} X_{\nu_1} X_{\nu_2} X_{\nu_3})
$$

\n
$$
\stackrel{\text{cycl.}}{=} -8(-1)^q \Big[e_1 X_1 \Big(K_2[K_3, K_4] + K_3[K_4, K_2] + K_4[K_2, K_3] \Big) \qquad (III.1)
$$

\n
$$
+ e_2 X_2 \Big(K_1[K_3, K_4] + K_3[K_4, K_1] + K_4[K_1, K_3] \Big)
$$

\n
$$
+ e_3 X_3 \Big(K_1[K_2, K_4] + K_2[K_4, K_1] + K_4[K_1, K_2] \Big)
$$

\n
$$
+ e_4 X_4 \Big(K_1[K_2, K_3] + K_2[K_3, K_1] + K_3[K_1, K_2] \Big) \Big]
$$

\n
$$
-8(-1)^q \Big[e_1 K_1 \Big(X_2[X_3, X_4] + X_3[X_4, X_2] + X_4[X_2, X_3] \Big)
$$

\n
$$
+ e_2 K_2 \Big(X_1[X_3, X_4] + X_3[X_4, X_1] + X_4[X_1, X_3] \Big)
$$

\n
$$
+ e_3 K_3 \Big(X_1[X_2, X_4] + X_2[X_4, X_1] + X_4[X_1, X_2] \Big) \Big|,
$$

as well as

$$
- 8 \sum_{\nu,\mu} (-1)^{|\sigma(\mu,\nu)|} \delta_{\nu\mu_1\mu_2\mu_3} \cdot \left\{ - \text{Tr}_N X_{\nu} \cdot \text{Tr}_N (K_{\mu_1} K_{\mu_2} K_{\mu_3}) \right.+ e_{\mu_2} e_{\mu_3} (\text{Tr}_N K_{\mu_1} \cdot \text{Tr}_N (X_{\nu} K_{\mu_2} K_{\mu_3}) + \text{Tr}_N X_{\mu_1} \cdot \text{Tr}_N (K_{\nu} X_{\mu_2} X_{\mu_3}) \right) + (-1)^q \text{Tr}_N K_{\nu} \cdot \text{Tr}_N (X_{\mu_1} X_{\mu_2} X_{\mu_3}) \right\}
$$
(III.2)
= + 24 \text{Tr}_N X_1 \cdot \text{Tr}_N (K_2[K_3, K_4]) + 24 \text{Tr}_N X_2 \cdot \text{Tr}_N (K_1[K_3, K_4])
+ 24 \text{Tr}_N X_3 \cdot \text{Tr}_N (K_1[K_2, K_4]) + 24 \text{Tr}_N X_4 \cdot \text{Tr}_N (K_1[K_2, K_3])
- 8 \text{Tr}_N K_1 \cdot \text{Tr}_N (e_3 e_4[K_3, K_4] X_2 + e_2 e_4[K_2, K_4] X_3 + e_2 e_3[K_2, K_3] X_4)

$$
- 8\text{Tr}_N K_2 \cdot \text{Tr}_N (e_3e_4[K_3, K_4]X_1 + e_1e_4[K_4, K_1]X_3 + e_1e_3[K_3, K_1]X_4)
$$

\n
$$
- 8\text{Tr}_N K_3 \cdot \text{Tr}_N (e_2e_4[K_2, K_4]X_1 + e_1e_4[K_4, K_1]X_2 + e_1e_2[K_1, K_2]X_4)
$$

\n
$$
- 8\text{Tr}_N K_4 \cdot \text{Tr}_N (e_2e_3[K_2, K_3]X_1 + e_1e_3[K_1, K_3]X_2 + e_1e_2[K_1, K_2]X_3)
$$

\n
$$
+ (-1)^{1+q} \Big\{ 24\text{Tr}_N K_1 \cdot \text{Tr}_N (X_2[X_3, X_4]) + 24\text{Tr}_N K_2 \cdot \text{Tr}_N (X_1[X_3, X_4])
$$

\n
$$
+ 24\text{Tr}_N K_3 \cdot \text{Tr}_N (X_1[X_2, X_4]) + 24\text{Tr}_N K_4 \cdot \text{Tr}_N (X_1[X_2, X_3]) \Big\}
$$

\n
$$
- 8\text{Tr}_N X_1 \cdot \text{Tr}_N (e_3e_4[X_3, X_4]K_2 + e_2e_4[X_2, X_4]K_3 + e_2e_3[X_2, X_3]K_4)
$$

\n
$$
- 8\text{Tr}_N X_2 \cdot \text{Tr}_N (e_3e_4[X_3, X_4]K_1 + e_1e_4[X_4, X_1]K_3 + e_1e_3[X_3, X_1]K_4)
$$

\n
$$
- 8\text{Tr}_N X_3 \cdot \text{Tr}_N (e_2e_4[X_2, X_4]K_1 + e_1e_4[X_4, X_1]K_2 + e_1e_2[X_1, X_2]K_4)
$$

\n
$$
- 8\text{Tr}_N X_4 \cdot \text{Tr}_N (e_2e_3[X_2, X_3]K_1 + e_1e_3[X_1, X_3]K_2 + e_1e_2[X_1, X_2]K
$$

From these expressions the Riemannian and Lorentzian cases are next derived.

III.1. **Riemannian fuzzy geometries.** The metric $g = \text{diag}(-1, -1, -1, -1)$ implies *e*_µ = −1 for each $\mu \in \Delta_4$ and $q = 4$. The Dirac operator $D = D(L, \tilde{H})$ (Ex. [2.4\)](#page-0-1) is parametrized by four anti-hermitian matrices $K_{\mu} = L_{\mu}$ (where $[L_{\mu}, \cdot]$ corresponds to the derivatives ∂_{μ} in the smooth case) and four hermitian matrices $X_{\mu} = \tilde{H}_{\mu}$ (corresponding to the spin connection ω_{μ} in the smooth spin geometry case represented by $[\tilde{H}_{\mu}, \cdot]$ here). In Example [2.4](#page-0-1) above these have been called $\tilde{H}_1 = H_{234}, \ldots, \tilde{H}_4 =$ *H*₁₂₃. The bi-tracial octo-matrix model has the following quadratic part

$$
\frac{1}{8}\text{Tr}\left([D^{\text{Riemann}}]^2\right) = N \sum_{\mu=1}^4 \text{Tr}[\tilde{H}_{\mu}^2 - L_{\mu}^2] + (\text{Tr}_N \tilde{H}_{\mu})^2 + (\text{Tr}_N L_{\mu})^2, \qquad (III.3)
$$

which directly follows from eq. (5.2) . The quartic part is more complicated:

$$
\frac{1}{4}\text{Tr}\left([D^{\text{Riemann}}]^4\right) = N\mathcal{S}_4^{\text{Riemann}} + \mathcal{B}_4^{\text{Riemann}}
$$

having single-trace action

$$
\mathcal{S}_4^{\text{Riemann}} = \text{Tr}_N \left\{ 2 \sum_{\mu} (L_{\mu}^4 + \tilde{H}_{\mu}^4) + 4 \sum_{\mu < \nu} (2L_{\mu}^2 L_{\nu}^2 + 2\tilde{H}_{\mu}^2 \tilde{H}_{\nu}^2 - L_{\mu} L_{\nu} L_{\mu} L_{\nu} - \tilde{H}_{\mu} \tilde{H}_{\nu} \tilde{H}_{\mu} \tilde{H}_{\nu}) - \sum_{\mu \neq \nu} \left[2(L_{\mu} \tilde{H}_{\nu})^2 + 4L_{\mu}^2 \tilde{H}_{\nu}^2 \right] + \sum_{\mu} \left[2(L_{\mu} \tilde{H}_{\mu})^2 - 4L_{\mu}^2 \tilde{H}_{\mu}^2 \right] \right\}
$$

$$
+ 8\Big[\tilde{H}_1(L_2[L_3, L_4] + L_3[L_4, L_2] + L_4[L_2, L_3]\Big) + \tilde{H}_2(L_1[L_3, L_4] + L_3[L_4, L_1] + L_4[L_1, L_3]\Big) + \tilde{H}_3(L_1[L_2, L_4] + L_2[L_4, L_1] + L_4[L_1, L_2]\Big) + \tilde{H}_4(L_1[L_2, L_3] + L_2[L_3, L_1] + L_3[L_1, L_2]\Big)\Big] + 8\Big[L_1(\tilde{H}_2[\tilde{H}_3, \tilde{H}_4] + \tilde{H}_3[\tilde{H}_4, \tilde{H}_2] + \tilde{H}_4[\tilde{H}_2, \tilde{H}_3]\Big) + L_2(\tilde{H}_1[\tilde{H}_3, \tilde{H}_4] + \tilde{H}_3[\tilde{H}_4, \tilde{H}_1] + \tilde{H}_4[\tilde{H}_1, \tilde{H}_3]\Big) + L_3(\tilde{H}_1[\tilde{H}_2, \tilde{H}_4] + \tilde{H}_2[\tilde{H}_4, \tilde{H}_1] + \tilde{H}_4[\tilde{H}_1, \tilde{H}_2]\Big) + L_4(\tilde{H}_1[\tilde{H}_2, \tilde{H}_3] + \tilde{H}_2[\tilde{H}_3, \tilde{H}_1] + \tilde{H}_3[\tilde{H}_1, \tilde{H}_2]\Big)\Big],
$$
(III.4)

and bi-tracial action

$$
\mathcal{B}_{4}^{\text{Riemann}} = 8 \sum_{\mu,\nu} \text{Tr}_{N} \tilde{H}_{\mu} \cdot \text{Tr}_{N} (\tilde{H}_{\mu} \tilde{H}_{\nu}^{2}) - \text{Tr}_{N} (L_{\mu}) \cdot \text{Tr}_{N} (L_{\mu} L_{\nu}^{2}) \qquad (\text{III.5})
$$
\n
$$
+ \sum_{\mu,\nu=1}^{4} \left\{ 2 \text{Tr}_{N} (\tilde{H}_{\mu}^{2}) \cdot \text{Tr}_{N} (\tilde{H}_{\nu}^{2}) + 4 \left[\text{Tr}_{N} (\tilde{H}_{\mu} \tilde{H}_{\nu}) \right]^{2} \right\}
$$
\n
$$
+ \sum_{\mu,\nu=1}^{4} \left\{ 2 \text{Tr}_{N} (L_{\mu}^{2}) \cdot \text{Tr}_{N} (L_{\nu}^{2}) + 4 \left[\text{Tr}_{N} (L_{\mu} L_{\nu}) \right]^{2} \right\}
$$
\n
$$
+ 4 \sum_{\mu=1}^{4} \left\{ 2 \text{Tr}_{N} L_{\mu} \cdot \text{Tr}_{N} (L_{\mu} \tilde{H}_{\mu}^{2}) - 2 \text{Tr}_{N} \tilde{H}_{\mu} \cdot \text{Tr}_{N} (\tilde{H}_{\mu} L_{\mu}^{2}) \right.
$$
\n
$$
- \text{Tr}_{N} (\tilde{H}_{\mu}^{2}) \cdot \text{Tr}_{N} (L_{\mu}^{2}) + 2 \left[\text{Tr}_{N} (L_{\mu} \tilde{H}_{\mu}) \right]^{2} \right\}
$$
\n
$$
+ 24 \sum_{\mu \neq \nu=1}^{4} \text{Tr}_{N} L_{\mu} \cdot \text{Tr}_{N} (L_{\mu} X_{\nu}^{2}) - \text{Tr}_{N} \tilde{H}_{\nu} \cdot \text{Tr}_{N} (L_{\mu}^{2} \tilde{H}_{\nu})
$$
\n
$$
+ 12 \sum_{\mu \neq \nu} \left\{ 2 \left[\text{Tr}_{N} (L_{\mu} \tilde{H}_{\nu}) \right]^{2} - \text{Tr}_{N} (L_{\mu}^{2}) \cdot \text{Tr}_{N} (\tilde{H}_{\nu}^{2}) \right\}
$$
\n
$$
+ 24 \text{Tr}_{N
$$

$$
- 8Tr_N L_2 \cdot Tr_N \left([L_3, L_4] \tilde{H}_1 + [L_4, L_1] \tilde{H}_3 + [L_3, L_1] \tilde{H}_4 \right)
$$

\n
$$
- 8Tr_N L_3 \cdot Tr_N \left([L_2, L_4] \tilde{H}_1 + [L_4, L_1] \tilde{H}_2 + [L_1, L_2] \tilde{H}_4 \right)
$$

\n
$$
- 8Tr_N L_4 \cdot Tr_N \left([L_2, L_3] \tilde{H}_1 + [L_1, L_3] \tilde{H}_2 + [L_1, L_2] \tilde{H}_3 \right)
$$

\n
$$
- 24Tr_N L_1 \cdot Tr_N \left(\tilde{H}_2 [\tilde{H}_3, \tilde{H}_4] \right) - 24Tr_N L_2 \cdot Tr_N \left(\tilde{H}_1 [\tilde{H}_3, \tilde{H}_4] \right)
$$

\n
$$
- 24Tr_N L_3 \cdot Tr_N \left(\tilde{H}_1 [\tilde{H}_2, \tilde{H}_4] \right) - 24Tr_N L_4 \cdot Tr_N \left(\tilde{H}_1 [\tilde{H}_2, \tilde{H}_3] \right)
$$

\n
$$
- 8Tr_N \tilde{H}_1 \cdot Tr_N \left([\tilde{H}_3, \tilde{H}_4] L_2 + [\tilde{H}_2, \tilde{H}_4] L_3 + [\tilde{H}_2, \tilde{H}_3] L_4 \right)
$$

\n
$$
- 8Tr_N \tilde{H}_2 \cdot Tr_N \left([\tilde{H}_3, \tilde{H}_4] L_1 + [\tilde{H}_4, \tilde{H}_1] L_3 + [\tilde{H}_3, \tilde{H}_1] L_4 \right)
$$

\n
$$
- 8Tr_N \tilde{H}_3 \cdot Tr_N \left([\tilde{H}_2, \tilde{H}_4] L_1 + [\tilde{H}_4, \tilde{H}_1] L_2 + [\tilde{H}_1, \tilde{H}_2] L_4 \right)
$$

\n
$$
- 8Tr_N \tilde{H}_4 \cdot Tr_N \left([\tilde{H}_2, \tilde{H}_3] L_1 + [\tilde{H}_1, \tilde{H}_3] L
$$

III.2. Lorentzian fuzzy geometries. Here we keep the usual conventions: the index 0 for time and (undotted) Latin spatial indices $a = 1, 2, 3$. In the Lorentzian setting *g* = diag(+1*,* −1*,* −1*,* −1), so *q* = 3, *e*⁰ = +1 and *e^a* = −1 for each spatial *a*. A parametrization of the Dirac operator of the form $D = D(H, L_a, Q, R_a)$ by six antihermitian matrices $K_a = L_a$, $X_a = R_a$ and two hermitian matrices $K_0 = H$ and $X_0 = Q$ follows. As before, we give first the quadratic part and then the quartic. The former follows from eq. [\(5.2\)](#page-0-1),

$$
\frac{1}{8} \text{Tr} \, D^2 = N \text{Tr}_N \left\{ H^2 + Q^2 - \sum_a (L_a^2 + R_a^2) \right\} \n+ (\text{Tr}_N H)^2 + (\text{Tr}_N Q)^2 + \sum_a (\text{Tr}_N L_a)^2 + (\text{Tr}_N R_a)^2.
$$
\n(III.6)

Using eqs. [\(III.1\)](#page-6-1) and [\(III.2\)](#page-6-2) to rewrite Proposition [5.4,](#page-0-1) one gets

$$
\mathcal{S}_4^{\text{Lorentz}} = \text{Tr}_N \left\{ 2H^4 + 2Q^4 + \sum_a \left(L_a^4 + R_a^4 \right) - \sum_a \left[2(L_a R_a)^2 + 4L_a^2 \right] \right.
$$

+
$$
\sum_a \left[-8H^2 L_a^2 - 8Q^2 R_a^2 + 4(HL_a)^2 + 4(QR_a)^2 \right]
$$

+
$$
\sum_{a < c} \left[8L_a^2 L_c^2 + 8R_a^2 R_c^2 - 4(L_a L_c)^2 - 4(R_a R_c)^2 \right]
$$

-
$$
\sum_a \left[2(HR_a)^2 + 4H^2 R_a^2 + 2(L_a Q)^2 + 4L_a^2 Q^2 \right]
$$

+
$$
\sum_{a \neq c} 2(L_a R_c)^2 + 4L_a^2 R_c^2 - 2(HQ)^2 + 4H^2 Q^2
$$

$$
+ 8 [Q(L_1[L_2, L_3] + L_2[L_3, L_1] + L_3[L_1, L_2])
$$

\n
$$
- R_1 (H[L_2, L_3] + L_2[L_3, H] + L_3[H, L_2])
$$

\n
$$
- R_2 (H[L_1, L_3] + L_1[L_3, H] + L_3[H, L_1])
$$

\n
$$
- R_3 (H[L_1, L_2] + L_1[L_2, H] + L_2[H, L_1])
$$

\n
$$
+ 8 [H (R_1[R_2, R_3] + R_2[R_3, R_1] + R_3[R_1, R_2])
$$

\n
$$
- L_1 (Q[R_2, R_3] + R_2[R_3, Q] + R_3[Q, R_2])
$$

\n
$$
- L_2 (Q[R_1, R_3] + R_1[R_3, Q] + R_3[Q, R_1])
$$

\n
$$
- L_3 (Q[R_1, R_2] + R_1[R_2, Q] + R_2[Q, R_1])
$$

\n(III.7)

and

$$
\mathcal{B}_{4}^{\text{Lorentz}} = 8 \text{Tr}_{N} Q \cdot \text{Tr}_{N} \left\{ Q^{3} - \sum_{a} (QR_{a}^{2} + 3L_{a}Q^{2}) + QH^{2} \right\}
$$
(III.8)
\n
$$
+ 3L_{1}[L_{2}, L_{3}] + [R_{3}, R_{2}]L_{1} + [R_{3}, R_{1}]L_{2} + [R_{2}, R_{2}]L_{3} \right\}
$$
\n
$$
+ 8 \text{Tr}_{N} H \cdot \text{Tr}_{N} \left\{ H^{3} - \sum_{a} (HL_{a}^{2} - 3HR_{a}^{2}) + HQ^{2} \right.
$$
\n
$$
+ 3R_{1}[R_{2}, R_{3}] + [L_{3}, L_{2}]R_{1} + [L_{3}, L_{1}]R_{2} + [L_{2}, L_{1}]R_{3} \right\}
$$
\n
$$
+ 8 \sum_{a} \text{Tr}_{N} R_{a} \cdot \text{Tr}_{N} \left\{ R_{a} H^{2} - R_{a} \sum_{c} R_{c}^{2} - L_{a}R_{a}^{2} \right.
$$
\n
$$
+ 3H^{2} R_{a} - 3 \sum_{c(c \neq a)} R_{a}^{2} L_{c} \right\}
$$
\n
$$
- 8 \text{Tr}_{N} R_{1} \cdot \text{Tr}_{N} \left([R_{2}, R_{3}]H - [R_{3}, Q]L_{2} - [R_{2}, Q]L_{3} + 3H[L_{3}, L_{2}] \right)
$$
\n
$$
- 8 \text{Tr}_{N} R_{2} \cdot \text{Tr}_{N} \left([R_{1}, R_{3}]H - [R_{3}, Q]L_{1} - [Q, R_{1}]L_{3} + 3H[L_{3}, L_{1}] \right)
$$
\n
$$
- 8 \text{Tr}_{N} R_{3} \cdot \text{Tr}_{N} \left([R_{1}, R_{2}]H - [Q, R_{2}]L_{1} - [Q, R_{1}]L_{2} + 3H[L_{2}, L_{1}] \right)
$$
\n
$$
+ 8 \sum_{a} \text{Tr}_{N} L_{a} \cdot \text{Tr}_{N} \left\{ L_{a} H^{2} - L_{a} \sum_{c} L_{c}^{2} - R_{a} L_{a}^{2} \right.
$$
\n<

$$
- 8Tr_N L_1 \cdot Tr_N ([L_2, L_3]Q - [L_3, H]R_2 - [L_2, H]R_3 + 3Q[R_3, R_2])
$$

\n
$$
- 8Tr_N L_2 \cdot Tr_N ([L_1, L_3]Q - [L_3, H]R_1 - [H, L_1]R_3 + 3Q[R_3, R_1])
$$

\n
$$
- 8Tr_N L_3 \cdot Tr_N ([L_1, L_2]Q - [H, L_2]R_1 - [H, L_1]R_2 + 3Q[R_2, R_1])
$$

\n
$$
+ 6 [Tr_N Q^2]^2 + \sum_a \{ 4Tr_N (R_a^2) \cdot Tr_N (Q^2) - 8 [Tr_N (QR_a)]^2 \}
$$

\n
$$
+ \sum_{a,c} (2Tr_N (R_a^2) \cdot Tr_N (R_c^2) + 4 [Tr (R_a R_c)]^2)
$$

\n
$$
+ 6 [Tr_N H^2]^2 + \sum_a \{ 4Tr_N (L_a^2) \cdot Tr_N (H^2) - 8 [Tr_N (HL_a)]^2 \}
$$

\n
$$
+ \sum_{a,c} (2Tr_N (L_a^2) \cdot Tr_N (L_c^2) + 4 [Tr (L_a L_c)]^2)
$$

\n
$$
+ 4Tr_N (Q^2) \cdot Tr_N (H^2) + 8 [Tr_N (HQ_0)]^2
$$

\n
$$
+ 4 \sum_a Tr_N (R_a^2) \cdot Tr_N (L_a^2) + 8 [Tr_N (L_a R_a)]^2
$$

\n
$$
+ 24 \sum_a \{ [Tr_N (HR_a)]^2 + [Tr_N (QL_a)]^2 \}
$$

\n
$$
+ 12 \sum_{a \neq c} 2 [Tr_N (L_a R_c)]^2 + Tr_N (L_a^2) \cdot Tr_N (R_c^2)
$$

\n
$$
- 12 \sum_a \{ Tr_N (L_a^2) \cdot Tr_N (Q^2) + Tr_N (R_a^2) \cdot Tr_N (H^2) \}.
$$

IV. PROOFS SKIPPED IN THE MAIN ARTICLE

Proof of Proposition [5.1.](#page-0-1) The proof is by direct, even if in cases lengthy, computation. One first seeks the conditions one has to impose on the indices for a diagram not to vanish, typically in terms of Kronecker deltas, and then one computes their coefficients in terms of the quadratic form $g = diag(e_1, e_2, e_3, e_4)$. We order the proof by similarity of the statements:

- *Type* τ_1 . The τ_1 -type diagram is well-known, for it is the only one here without any single multi-index (see the end of Sec. [3.1\)](#page-0-1).
- *Type* τ_6 . Notice that at least two pairings of the ν_l 's are needed for the diagram not to vanish: $\nu_i = \nu_j =: \nu$ and $\nu_t = \nu_r =: \mu$ with $\{i, j, t, r\} = \Delta_4$. Therefore, the Kronecker deltas are placed precisely as for the τ_1 type. The computation of their *e*-factors is a matter of counting: for each chord joining two points labeled with, say, α there is an e_{α} factor. There are 6 such chords, labeled by ${e_{\alpha}}_{\alpha\neq\nu}\cup{e_{\rho}}_{\rho\neq\mu}$, for in $\hat{\nu}$ all the indices $\alpha\neq\nu$ appear and similarly for $\hat{\mu}$. Thus, if $\nu \neq \alpha \neq \mu$, e_{α} appears twice, so $e_{\alpha}^2 = 1$. The two remaining chordlabels are those appearing either in ${e_{\alpha}}_{\alpha \neq \nu}$ or in ${e_{\rho}}_{\rho \neq \mu}$. Thus the factor is $e_{\mu}e_{\nu}$ and we only have to compute the sign: the $\hat{\mu}\hat{\nu}\hat{\mu}\hat{\nu}$ configuration with minimal crossings has sign $(-1)^5$. For $\hat{\mu}\hat{\mu}\hat{\nu}\hat{\nu}$ and $\hat{\mu}\hat{\nu}\hat{\nu}\hat{\mu}$ the crossings yield a positive sign $(-1)^6$.
- *Type* τ_2 . Since $\hat{\nu} \in \Lambda_{d=4}^-$, all the three indices α_i in $\hat{\nu} = (\alpha_1, \alpha_2, \alpha_3)$ different. For this diagram not to vanish, the set equality $\{\alpha_1, \alpha_2, \alpha_3\} = \{\mu_1, \mu_2, \mu_3\}$ should hold, i.e. a permutation $\sigma \in {\mu_1, \mu_2, \mu_3}$ with $\alpha_{\sigma(i)} = \mu_i$ is needed. This says first, that *ν* cannot be any of μ_i (whence the $\delta_{\nu\mu_1\mu_2\mu_3}$) and second, that each of the three chords yields a factor e_{μ_i} with a sign $(-1)^{|\sigma|+1}$. The extra minus is due to the convention to place the indices, e.g. for 4123 , the numbers 123123 are put cyclicly; this permutation σ is the identity, which nevertheless looks like the 'V diagram' in eq. [\(4.7\)](#page-0-1).
- *Type* τ_5 . Suppose that two indices of a non-vanishing diagram agree. Then either $\mu = \nu_i$ or (wlog) $\nu_1 = \nu_2$. In the first case notice that in μ and $\hat{\nu}_i$ the indices 1*,* 2*,* 3*,* 4 all appear listed. This implies for the remaining two multiindices have to be of the form $\hat{\nu}_l = (***)$ and $\hat{\nu}_m = (1*4)$ or $\hat{\nu}_l = (1**)$ and $\hat{\nu}_m = (* 4)$ where $\{i, l, m\} = \{1, 2, 3\}$ and $* \in \Delta_4$.
	- $\hat{\nu}$ In the first case, $\hat{\nu}_l = (***)$ and $\hat{\nu}_m = (1*4)$ the numbers ρ , ρ , 2, 3 (for some $\rho \in \Delta_4$) should fill the placeholders $*$. Then ρ has to appear in both $\hat{\nu}_l$ and $\hat{\nu}_m$, but no value of ρ fulfills this if the increasing ordering is to be preserved, hence we are only left with next case
	- δ If $\hat{\nu}_l$ = (1 ∗ ∗) and $\hat{\nu}_m$ = (* * 4), say $\hat{\nu}_l$ = (1*wx*) and $\hat{\nu}_m$ = (*yz*4), then $\{w, x\}$ and $\{y, z\}$ are the sets $\{2, \rho\}$ and $\{3, \rho\}$ (not necessarily in this order), for some ρ . Clearly, ρ cannot be either 1 or 4 since each appears once in one multi-index. But $\rho = 2, 3$ would force also a repetition of indices in at least one multi-index, which contradicts $\hat{\nu}_m, \hat{\nu}_l \in \Lambda_4^-$.

This contradiction implies that if μ equals some ν_i then the diagram vanishes. By a similar analysis one sees that a repetition $\nu_i = \nu_j$ implies also that the diagram is zero. Hence the diagram is a multiple of $\delta_{\mu\nu_1\nu_2\nu_3}$. Thereafter it is easy to compute the *e*-coefficients following a similar argument to the given for the type τ_2 diagram to arrive at the sign $(-1)^{|\lambda|+1}$ for λ a permutation of $\{\nu_1, \nu_2, \nu_3\}.$

- *Type* τ_3 . If no indices coincide then one gets two different numbers $i, j \in \Delta_4$ appearing exactly once in the list $\mu_1, \hat{\nu}_1, \mu_2, \hat{\nu}_2$. Since these cannot be matched by a chord, a non-zero diagram requires repetitions.
	- γ If $\mu_1 = \mu_2$ then $\nu_1 = \nu_2$. Since by hypothesis the four cannot agree the minimal crossings for this configuration is seen to be one, so the sign is (-1). The *e*-factors are: e_{μ_1} for the chord between μ_1 and μ_2 , the product of three $\prod_{\alpha \neq \nu_1} e_{\alpha}$, for the three chords between $\hat{\nu}_1$ and $\hat{\nu}_2$. This accounts for $-e_{\mu_1}$ \prod *α*̸=*ν* e_{α} $\Big) \delta^{\mu_2}_{\mu_1} \delta^{\nu_2}_{\nu_1}.$
	- \sim If $\mu_1 = \nu_1$, then again $\mu_2 = \nu_2$ in order for the indices listed in $\mu_1, \hat{\nu}_1, \mu_2, \hat{\nu}_2$ to appear precisely twice. Since $\mu_1 = \nu_1$ implies that μ_1 does not appear in $\hat{\nu}_1$, there is one chord (thus a factor e_α) for each $\alpha \in \Delta_4$. After straightforward (albeit neither brief nor very illuminating) computation one finds the sign $(-1)^{\mu_1+\mu_2+1}$. All in all, one gets $(-1)^{\mu_1+\mu_2+1}e_1e_2e_3e_4\delta_{\mu_1}^{\nu_1}\delta_{\mu_2}^{\nu_2}$.
	- γ If $\mu_1 = \nu_2$, then again $\mu_2 = \nu_1$. But this is the same as the last point with $\nu_1 \leftrightarrow \nu_2$. This accounts for $(-1)^{\mu_1+\mu_2}e_1e_2e_3e_4\delta^{\nu_2}_{\mu_1}\delta^{\nu_1}_{\mu_2}$.
- *Type* τ_4 . Mutatis mutandis from the type τ_3 .

FIGURE IV.3. The diagram $\chi^{\hat{2}\hat{4}\hat{2}\hat{4}}(\phi,\psi)$ shows the nested structure of two *τ*₁-type diagrams, ϕ and ψ , in a τ_6 -type referred to in Remark [IV.1](#page-13-0)

Remark IV.1*.* We just used the 'minimal' number of crossings for diagrams with a more than two-fold index repetition. For instance, for the four point diagram evaluated in $\chi^{1111} = 1$ there might be one crossing or no crossings, but crucially two diagrams have no crossing so $\sum_{\chi} \chi^{1111} \times \text{traces} = (1 - 1 + 1) \times \text{traces}$. This reappears in the computation of twelve-point diagrams in a nested fashion, as shown in Figure [IV.3.](#page-13-1) If we pick $\hat{2}\hat{4}\hat{2}\hat{4}$ as configuration of the indices, then imposing $\chi^{\hat{2}\hat{4}2\hat{4}} \neq 0$ does not determine $\chi \in \text{CD}_6$: the lines joining the two 2-indices and the two 4-indices diagonally are mandatory, but for the four 1-indices and four 3-indices one can choose at the blobs tagged with ϕ , ψ one of three possibilities (shown in the diagrams of eq. [\(3.4\)](#page-0-1) as θ , ξ , ζ). Then there are 9 possible sign values. Again, it is essential that there are 5 positive and 4 negative global signs in $\{\chi^{2\hat{4}2\hat{4}}(\phi,\psi)\}_{\psi,\phi\in\{\theta,\xi,\zeta\}}$ and the sum $\sum_{\chi}\chi^{2\hat{4}2\hat{4}}$ (traces) can be replaced by the diagram with minimal crossings (of global positive sign).

Proof of Claim [5.3.](#page-0-1) To obtain these relations one needs Proposition [5.1.](#page-0-1) The first and last cases are obvious, since $\chi^{I_1I_2I_3I_4} \neq 0$ requires in each case a repetition $e_{\mu_i}^2 e_{\mu_j}^2 = 1$ or $e_{\hat{\nu}_i}^2 e_{\hat{\nu}_j}^2 = 1$.

For the second, $e_{\hat{v}}e_{\mu_1}e_{\mu_2}e_{\mu_3} = (-1)^{u(\hat{v}) + \lfloor 3/2 \rfloor + \sum_i u(\mu_i)}$, by Appendix [II.](#page-5-0) The nonvanishing of $\chi^{\hat{\nu}\mu_1\mu_2\mu_3}$ implies that $\hat{\nu}$ is the multi-index containing μ_1, μ_2, μ_3 , so $u(\mu_1)$ + $u(\mu_2) + u(\mu_3) = u(\hat{\nu})$ and eq. [\(5.9\)](#page-0-1) follows.

For the third identity, if $\chi^{\mu_1\mu_2\hat{\nu}_1\hat{\nu}_2}$ (and thus $\chi^{\mu_1\hat{\nu}_1\mu_2\hat{\nu}_2}$) does not vanish, then it is either of the form $\chi^{\mu\mu\hat{\mu}\hat{\mu}}$, $\chi^{\mu\mu\hat{\nu}\hat{\nu}}$ or $\chi^{\mu\nu\hat{\mu}\hat{\nu}}$ ($\mu \neq \nu$). Only for the latter one needs a non-trivial check:

$$
e_{\mu}e_{\nu}e_{\hat{\mu}}e_{\hat{\nu}} = e_{\mu} \cdot (-1)^{1 + u(\Delta_4 - {\{\mu\}})} e_{\nu} \cdot (-1)^{1 + u(\Delta_4 - {\{\nu\}})} = e_{\mu}e_{\nu}(-1)^{2u(\Delta_4 - {\{u,v\}})} (-1)^{u(\mu) + u(\nu)},
$$

and since $e_{\mu} = (-1)^{u(\mu)}$, $e_{\mu}e_{\nu}e_{\hat{\mu}}e_{\hat{\nu}} = 1$. In either case, eq. [\(5.10\)](#page-0-1) follows.

We are left with the fourth identity. By assumption all the indices $\nu_j \neq \nu_i \neq \mu$ if $i \neq j$. Then by eq. [\(2.9\)](#page-0-1)

$$
e_{\mu}e_{\hat{\nu}_1}e_{\hat{\nu}_2}e_{\hat{\nu}_3} = e_{\mu} \cdot (-1)^{3 \times [3/2] + u(\Delta_4 \setminus {\{\nu_1\}}) + u(\Delta_4 \setminus {\{\nu_2\}}) + u(\Delta_4 \setminus {\{\nu_3\}})} = -e_{\mu}(-1)^{3u(\mu)}(-1)^{2u(\nu_1)}(-1)^{2u(\nu_2)}(-1)^{2u(\nu_3)} = -1
$$

From the first to the second line we used $\Delta_4 - \{\nu_1\} = \{\mu, \nu_2, \nu_3\}$, and similar relations. □

Proof of Corollary [6.2.](#page-0-1) Up to an irrelevant (as to assess cyclic self-adjointness) ambiguity in a global factor for Φ_i and Ψ_i , all the NC polynomials can be read off from eqs. (4.1) , (4.3) and Proposition [4.1](#page-0-1) for the $d = 2$ case. For $d = 4$, the result follows by inspection of each term, which is immediate since formulae [\(III.8\)](#page-10-0), [\(III.5\)](#page-8-0), [\(III.3\)](#page-7-0) and [\(III.6\)](#page-9-0) are given in terms of commutators. Then one uses that $[h, l]^* = [h, l]$, $[h_1, h_2]^* = -[h_1, h_2]$ and $[l_1, l_2]^* = -[l_1, l_2]$.

The only non-obvious part is dealing with expressions like

$$
\mathcal{P} = Q\{L_1[L_2, L_3] + L_2[L_3, L_1] + L_3[L_1, L_2]\},\,
$$

which appears in S_4^{Lorentz} according to eq. [\(III.7\)](#page-10-1). However, if *P* is the NC polynomial given in eq. [\(6.4\)](#page-0-1) then P equals $P(Q, L_1, L_2, L_3)$, hence it is cyclic self-adjoint by Ex-ample [6.1.](#page-0-1) Also for the NC polynomial Ψ defined there, $-8Tr_N L_1 \cdot Tr_N (\Psi(Q, L_2, L_3))$ appears in the expression given by eq. [\(III.8\)](#page-10-0) for $\mathcal{B}_4^{\text{Lorentz}}$, being both $\Phi(L_1) = L_1$ and Ψ cyclically anti-self-adjoint. \Box

V. DEFINITION OF 'CYCLICALLY SELF-ADJOINTNESS'

Definition V.1. Given variables z_1, \ldots, z_k , each of which satisfies either formal selfadjointness (i.e. for an involution $*, z_i^* = +z_i$ holds, in whose case we let $z_i =: h_i$) or formal anti-self-adjointness ($z_i^* = -z_i$; and if so, write $z_i =: l_i$), a noncommutative (NC) polynomial $P \in \mathbb{R} \langle z_1, \ldots, z_{\kappa} \rangle$ is said to be *cyclically self-adjoint* if the following conditions hold:

• for each word w (or monomial) of P there exists a word w' in P such that

$$
[w(z_1,\ldots,z_\kappa)]^* = +(\sigma \cdot w')(z_1,\ldots,z_\kappa) \text{ holds for some } \sigma \in \mathbb{Z}/|w'| \mathbb{Z}, \quad (V.1)
$$

being

- \sqrt{w} the length of the word *w* (or order of the monomial *w*) and
- $\delta \sigma \cdot w'$ the action of $\mathbb{Z}/|w'| \mathbb{Z}$ on the word w' by cyclic permutation of its letters.
- The map defined by $w \mapsto w'$ is a bijection in the set of the words of *P*.

Similarly, a polynomial $G \in \mathbb{R}\langle z_1, \ldots, z_{\kappa} \rangle$ is *cyclic anti-self-adjoint* if for each of its words *w* if there exist a $\sigma \in \mathbb{Z}/|w'| \mathbb{Z}$ for which the condition

$$
[w(z_1,\ldots,z_\kappa)]^* = -(\sigma \cdot w')(z_1,\ldots,z_\kappa) \tag{V.2}
$$

holds, and if, additionally, the map that results from this condition, $w \mapsto w'$, is a bijection in the set of words of *G*.

VI. AN AUXILIARY MODEL FOR THE $d = 1$ CASE

One could reformulate the partition functions of $d = 1$ -models in terms of auxiliary models that do not contain multi-traces, if these are interpreted at least as formal integrals. We pick for concreteness the signature $(p, q) = (1, 0)$ and the polynomial $f(x) = (x^2 + \lambda x^4)/2$ for the spectral action $\text{Tr } f(D)$. We explain why the ordinary matrix model given by $\mathcal{Z}_{(1,0)}^{\text{aux}} = \int_{\mathbb{H}_N} e^{\gamma \text{Tr} H - \alpha \text{Tr}(H^2) + \beta \text{Tr}(H^3) - N\lambda \text{Tr}(H^4)} dH$ over the hermitian $N \times N$ matrices \mathbb{H}_N , allows to restate the quartic-quadratic (1,0)-type Barrett-Glaser model with partition function

$$
\mathcal{Z}_{(1,0)}^{\text{BG}} = \int_{\mathcal{M}} e^{-\frac{1}{2}\text{Tr}\left(D^2 + \lambda D^4\right)} dD \tag{VI.1}
$$

as formally equivalent to the functional

$$
\langle \exp\{-(3\lambda \text{Tr} H^2 + 4\lambda \text{Tr} H \cdot \text{Tr} H^3 + (\text{Tr} H)^2)\}\rangle_{\text{aux},0} , \qquad (VI.2)
$$

where the expectation value of an observable Φ is taken with respect to the auxiliary model

$$
\langle \Phi \rangle_{\text{aux}} = \frac{1}{\mathcal{Z}_{(1,0)}^{\text{aux}}} \int_{\mathbb{H}_N} \Phi(H) e^{-\mathcal{S}(H)} dH,
$$

being $\mathscr{S}(H) = \alpha \text{Tr}(H^2) + N\lambda \text{Tr}(H^4) + \gamma \text{Tr} H + \beta \text{Tr}(H^3)$. The zero subindex 'aux,0' means evaluation in the parameters

$$
\alpha = N, \gamma = \beta = 0. \tag{VI.3}
$$

Indeed, one can use the explicit form of the Dirac operator $D = \{H, \cdot\}$ to rewrite the integral in terms of the matrix *H*. One gets

$$
\frac{1}{2}\text{Tr}(D^2 + \lambda D^4) = N[\text{Tr}(H^2) + \lambda \text{Tr}(H^4)]
$$
(VI.4)
+ 3\lambda[\text{Tr}(H^2)]^2 + 4\lambda \text{Tr} H \cdot \text{Tr} H^3 + [\text{Tr}(H)]^2
= N[\text{Tr}(H^2) + \lambda \text{Tr}(H^4)] + \mathfrak{b}[H].

The second line of eq. [\(VI.4\)](#page-15-1) contains the bi-tracial terms; this term will be denoted by $\mathfrak{b}[H]$. Inserting last equations into [\(VI.1\)](#page-15-2)

$$
\mathcal{Z}_{(1,0)}^{\text{BG}} = \int_{\mathbb{H}_N} e^{-N \text{Tr} (H^2 + \lambda H^4)} e^{-\mathfrak{b}[H]} \text{d}H
$$

Since $\mathscr{S}(H)|_{\alpha=N,\gamma=\beta=0} = N[\text{Tr}(H^2)+\lambda \text{Tr}(H^4)]$, one can replace the first exponential by $e^{-\mathscr{S}(H)}$ and evaluate the parameters as in eq. [\(VI.3\)](#page-15-3):

$$
\mathcal{Z}_{(1,0)}^{\text{BG}} = \int_{\mathbb{H}_N} \left[e^{-\mathscr{S}(H)} \right]_0 e^{-\mathfrak{b}[H]} dH.
$$

If one knows the partition function $\mathcal{Z}^{\text{aux}}_{(1,0)}$, one can compute the model in question by taking out $e^{-b(H)}$ from the integral and accordingly substituting the traces by the appropriate derivatives:

$$
\mathcal{Z}_{(1,0)}^{\text{BG}} = \left[e^{-\mathfrak{b}_{\partial}} \int_{\mathbb{H}_N} e^{-\mathscr{S}(H)} dH \right]_0 \quad \text{where } \mathfrak{b}_{\partial} = 3\lambda \partial_{\alpha}^2 + 4\lambda \partial_{\beta} \partial_{\gamma} + \partial_{\alpha} \,. \quad \text{(VI.5)}
$$

That is $\mathcal{Z}_{(1,0)}^{BG} = [e^{-\mathfrak{b}_{\partial}} \mathcal{Z}_{(1,0)}^{aux}]_0$, which also proves eq. [\(VI.2\)](#page-15-4). This motivates to look for similar methods in order restate, for $d \geq 2$, the bi-tracial part of the models addressed here as single-trace auxiliary multi-matrix models.