
Supplementary Material to “Computing the
spectral action for fuzzy geometries: from

random noncommutative geometry to
bi-tracial multimatrix models”

This Supplementary Material contains the following sections:
• Section I presents in detail how to obtain from chord diagrams noncommutative

polynomials that contribute to the spectral action
• Section II gives and proves properties of the gamma matrices in general signa-

ture
• Section III departs from the main result and displays for Riemannian and Loren-

zian signatures explicitly the spectral action for a quadratic-quartic potential in
the Dirac operator

• Section IV gives all the proofs that were skipped in the main text by sake of
conciseness

• Section V is the definition of cyclically self-adjoint polynomial without refer-
ence to a matrix realization

• Section VI, finally, presents a double-trace matrix model restated as differential
operators on (single-trace) auxiliary matrix model.

I. FULL COMPUTATION OF ONE CHORD DIAGRAM

We perform some explicit computations left out in the proof of Proposition 4.1. Since
t = 2n = 6 will be constant in this section, we drop the subindices n in an, bn and sn.
Exclusively in this section, we abbreviate the traces as follows:

|µiµj . . . µm| := TrN (KµiKµj · · ·Kµm) µi, µj , . . . , µm ∈ {1, 2} .
Then the action functional a(χ) of a chord diagram χ of six points is given by

a(χ) =
∑

µ1µ2...µ6

(−1)cr(χ)
( ∏
w∼χv

gµvµw

)( ∑
Υ∈P6

[ ∏
i∈Υ

eµi

]
· |µ(Υc)| · |µ(Υ)|

)
,

that is,∑
µ1µ2...µ6

(−1)cr(χ) ∏
w∼χv

gµvµw

[
N

(
|µ1µ2 . . . µ6| + e|µ6µ5 . . . µ1|

)
+

∑
i

ei
(
|µ1µ2 . . . µ̂i . . . µ6| + e|µ6µ5 . . . µ̂i . . . µ1|

)
· |µi|

+
∑
i<j

eiej
(
|µ1µ2 . . . µ̂i . . . µ̂j . . . µ6| + e|µ6µ5 . . . µ̂j . . . µ̂i . . . µ1|

)
· |µiµj |

+
∑
i<j<k

eiejek

(
|µ1µ2 . . . µ̂i . . . µ̂j . . . µ̂k . . . µ6| · |µiµjµk|

)]
,

where e = e(µ1, . . . , µ6) = eµ1 · · · eµ6 . We just conveniently listed the terms corre-
sponding to Υ and Υc together, in the first line displaying those with #Υ = 0 and
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#Υ = 6 (‘trivial partitions’); in the second #Υ = 1 or 5; on the third line #Υ = 2 or
4; the fourth line corresponds to the #Υ = 3 cases. We also used the fact that eµ is a
sign ±, and that e ·eµieµj · · · eµv equals the product of the eµr ’s with r ̸= i, j, . . . , v, i.e.
precisely those not appearing in eµieµj · · · eµv . But since in the non-vanishing terms e
implies a repetition of indices by pairs, e ≡ 1 for non-vanishing terms. Then we gain a
factor 2 for those terms (i.e. except for traces of three matrices) and a(χ) is therefore
given by ∑

µ1µ2...µ6

(
(−1)cr(χ) ∏

w∼χv

gµvµv

)
·

{ ∑
µ1,µ2,...,µ6

2N |µ1µ2 . . . µ6| (I.1a)

+
∑
i

2ei|µ1µ2 . . . µ̂i . . . µ6| · |µi| (I.1b)

+
∑
i<j

2eiej |µ1µ2 . . . µ̂i . . . µ̂j . . . µ6| · |µiµj | (I.1c)

+
∑
i<j<k

eiejek|µ1µ2 . . . µ̂i . . . µ̂j . . . µ̂k . . . µ6| · |µiµjµk|
}
. (I.1d)

We thus compute the first diagram of 6-points by giving line by line last expression. We
perform first the computation for the third line (I.1c) (since this is the longest) explicitly,
which can be expanded as

2
∑
µ

µ1

µ2

µ3µ4

µ5

µ6

×
[
eµ1eµ2 |µ1µ2| · |µ3µ4µ5µ6| + eµ1eµ3 |µ1µ3| · |µ2µ4µ5µ6|

+eµ1eµ4 |µ1µ4| · |µ2µ3µ5µ6| + eµ1eµ5 |µ1µ5| · |µ2µ3µ4µ6|
+eµ1eµ6 |µ1µ6| · |µ2µ3µ4µ5| + eµ2eµ3 |µ2µ3| · |µ1µ4µ5µ6|
+eµ2eµ4 |µ2µ4| · |µ1µ3µ5µ6| + eµ2eµ5 |µ2µ5| · |µ1µ3µ4µ6|
+eµ2eµ6 |µ2µ6| · |µ1µ3µ4µ5| + eµ3eµ4 |µ3µ4| · |µ1µ2µ5µ6|
+eµ3eµ5 |µ3µ5| · |µ1µ2µ4µ6| + eµ3eµ6 |µ3µ6| · |µ1µ2µ4µ5|
+eµ4eµ5 |µ4µ5| · |µ1µ2µ3µ6| + eµ4eµ6 |µ4µ6| · |µ1µ2µ3µ5|

+eµ5eµ6 |µ5µ6| · |µ1µ2µ3µ4|
]
. (I.2)

The diagram’s meaning is the sign and product of gµvνw ’s before the braces in eq. (I.1).
After contraction with the term in square brackets in (I.2) one gets

2
∑
µ,ν,ρ

(eµeνeρ)
{
eρ|µν| · |ρνµρ| + eρ|µν| · |ρρµν| + eρ|µν| · |νρµρ|

+eµeρeν |µ2| · |νρνρ| + eρ|µν| · |ρνρµ| + eρ|µν| · |ρµρν|
+eµeρeν |µ2| · |νρνρ| + eρ|µν| · |νρµρ| + eρ|µν| · |ρνµρ| (I.3)

+eρ|µν| · |ρνρµ| + eρ|µν| · |νρ2µ| + eµeρeν |µ2| · |νρ2ν|

+eρ|µν| · |νµρ2| + eρ|µν| · |ρµνρ| + eρ|µν| · |µρνρ|
}
,

where the signs eµeνeρ are due to gλσ = eλδ
λσ (no sum). Following the notation of

eq. (4.8), using the cyclicity of the trace and renaming indices, this expression can be
written as

2
∑
µ,ν,ρ

(6Rµνρ + 6Sµνρ + 2Tµνρ + Uµνρ) . (I.1c′)
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Similarly, for the terms obeying #Υ or #Υc = 1, i.e. line (I.1b), one has

2
∑
µ

µ1

µ2

µ3µ4

µ5

µ6

×
{
eµ1 |µ1| · |µ2µ3µ4µ5µ6| + eµ2 |µ2| · |µ1µ3µ4µ5µ6|

+eµ3 |µ3| · |µ1µ2µ4µ5µ6| + eµ4 |µ4| · |µ1µ2µ3µ5µ6|

+eµ5 |µ5| · |µ1µ2µ3µ4µ6| + eµ6 |µ6| · |µ1µ2µ3µ4µ5|
}
,

which amounts to

2
∑
µ,ν,ρ

eνeρ|µ| ·
{

|νρνµρ| + |νµρνρ| + |νρµνρ| + |νµρνρ| + |µνρνρ| + |νρµρν|
}
,

or, relabeling, to

2
∑
µ,ν,ρ

(4Oµνρ + 2Pµνρ) . (I.1b′)

The terms with #Υ = 3 remain to be computed:

∑
µ

µ1

µ2

µ3µ4

µ5

µ6

×
{

(eµ1eµ2eµ3 + eµ4eµ5eµ6)|µ1µ2µ3| · |µ4µ5µ6|

+(eµ1eµ2eµ4 + eµ3eµ5eµ6)|µ1µ2µ4| · |µ3µ5µ6|

+(eµ1eµ2eµ5 + eµ3eµ4eµ6)|µ1µ2µ5| · |µ3µ4µ6|

+(eµ1eµ2eµ6 + eµ3eµ4eµ5)|µ1µ2µ6| · |µ3µ4µ5|

+(eµ1eµ3eµ4 + eµ2eµ5eµ6)|µ1µ3µ4| · |µ2µ5µ6|

+(eµ1eµ3eµ5 + eµ2eµ4eµ6)|µ1µ3µ5| · |µ2µ4µ6|

+(eµ1eµ3eµ6 + eµ2eµ4eµ5)|µ1µ3µ6| · |µ2µ4µ5|

+(eµ1eµ4eµ5 + eµ2eµ3eµ6)|µ1µ4µ5| · |µ2µ3µ6|

+(eµ1eµ4eµ6 + eµ2eµ3eµ5)|µ1µ4µ6| · |µ2µ3µ5|

+(eµ1eµ5eµ6 + eµ2eµ3eµ4)|µ1µ5µ6| · |µ2µ3µ4|
}
.

Although TrN (M1M2M3) = TrN (M3M2M1) is false for general matricesM1,M2 and
M3 (e.g. for Mj = σj , the Pauli matrices), having at our disposal only two matrices,
K1 and K2, the relation TrN (KµKνKρ) = TrN (KρKνKµ) does hold. This fact was
used to obtain the last equation. Contracting with the diagram, as we already did for
other partitions, one gets ∑

µ,ν,ρ

8Vµνρ + 12Wµνρ . (I.1d′)

By collecting the terms from the three equations with primed tags, the bi-trace term for
the I-diagrams one obtains

b(I) = +2
∑
µ,ν,ρ

(
4Oµνρ + 2Pµνρ + 6Rµνρ + 6Sµνρ

+ 2Tµνρ + Uµνρ + 4Vµνρ + 6Wµνρ

)
,

which is a claim amid the proof of Proposition 4.1.
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Notice that these integer coefficients add up to 62, and so will these (denoted pχ, qχ, . . . , wχ
in the main text) in absolute value for a general diagram χ. There are two missing terms
to get the needed 26 = #P6 terms. These are the trivial cases Υ,Υc = ∅, which can
be readily computed.

For the I-diagram,

s(I) = 2N ·
∑
µ

µ1

µ2

µ3µ4

µ5

µ6

× |µ1µ2µ3µ4µ5µ6|

= 2N ·
∑
µ,ν,ρ

eµeνeρ|µνρνµρ|

= 2N · TrN
{
e1K

6
1 + 2e2(K1K2)2K2

1 + e1(K2
2K1)2

+ e2K
6
2 + 2e1(K2K1)2K2

2 + e2(K2
1K2)2

}
.

The single-trace action S6 in Proposition 4.1 is then obtained by summing over all
6-point chord diagrams

∑
χ s(χ), whose values are found by similar computations.

ċ5
ċ6 ċ7

ċ8
a1
a2
a3

a4a5a6
ċ1

ċ2

ċ3

ċ4

ċ1

ċ2

ċ3

ċ4ċ5

ċ6

ċ7

ċ8

= ×

a1

a2

a3a4

a5

a6

FIGURE I.1. Splitting of a chord diagram for indices of a mixed signature.
One of the diagrams appearing in the computation of ⟨a1 · · · a6ċ1 · · · ċ8⟩
14 points, all of which split into two (of 8 and 6 points). The equality
of diagrams means equality of the product of the bilinears gaiaj and gċlċk

determined by the depicted chords and the signs for simple crossing

Remark I.1. For a mixed signature, q, p > 0, any non-vanishing ⟨µ1 . . . µ2n⟩ has the
form (up to a reordering sign) ⟨a1 . . . a2r ċ1 . . . ċ2u⟩ with r+ u = n. Since gaċ vanishes,
any chord diagram χ in the sum of eq. (3.2) splits into a pair (σ, ρ) of smaller chord
diagrams, of 2r and 2u points, whose chords do not cross (see Fig. I.1), so cr(χ) =
cr(σ) + cr(ρ). Therefore

⟨a1 . . . a2r ċ1 . . . ċ2u⟩ =
∑

2n-pt chord
diagrams χ

(−1)cr(χ) ∏
i,j
i∼χj

gaiaj ×
∏
u,v
u∼χv

gċuċv

=
∑

(2r,2u)-pt chord
diagrams (ρ,σ)

(−1)cr(σ) ∏
i,j
i∼ρj

gaiaj × (−1)cr(ρ) ∏
u,v
u∼σv

gċuċv

= ⟨a1 . . . a2r⟩⟨ċ1 . . . ċ2u⟩ . (I.4)
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FIGURE I.2. The 7!! = 105 chord diagrams with eight points.
These assist to compute TrV (γαγβ · · · γθγλ) in any dimension with
diagonal metric of any signature. The sign of a diagram χ is
(−1)#{simple crossings of χ}. Thus, the ’pizza-cut’ diagram in the upper left
corner that appears as a summand in the normalized trace ⟨αβµνξζθλ⟩
evaluates to (−1)1+2+3gξαgζβgθµgλν , where ⟨· · · ⟩ =
(1/ dimV )TrV (· · · )
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For the metric gµν = diag(+, . . . ,+,−, . . . ,−) the two factors are

⟨a1 . . . a2r⟩ =
∑

2r-pt chord
diagrams ρ

(−1)cr(σ) ∏
i,j
i∼ρj

δaiaj , (I.5a)

⟨ċ1 . . . ċ2u⟩ = (−1)u
∑

2u-pt chord
diagrams σ

(−1)cr(ρ) ∏
w,v
w∼σv

δċw ċv . (I.5b)

II. SOME PROPERTIES OF GAMMA MATRICES

In order to deal with d-dimensional matrix geometries we prove some of the proper-
ties of the corresponding gamma matrices.

First, notice that in any signature for each multi-index I = (µ1, . . . , µr) ∈ Λd one
has

γµr · · · γµ1 = (−1)r(r−1)/2γµ1 · · · γµr = (−1)⌊r/2⌋γµ1 · · · γµr . (II.1)

This can be proven by induction on the number r − 1 of products. For r = 2, this is
just {γµ1 , γµ2} = 0, which holds since the indices are different. Suppose that eq. (II.1)
holds for an r ∈ N. Then if (µ1, . . . , µr+1) ∈ Λd, one has

γµr+1γµr · · · γµ2γµ1 = (−1)r(γµr · · · γµ2γµ1)γµr+1

= (−1)r+r(r−1)/2γµ1 · · · γµr+1

= (−1)r(r+1)/2γµ1 · · · γµr+1 = (−1)⌊(r+1)/2⌋γµ1 · · · γµr+1 .

Now let us fix a signature (p, q). We dot the spacial indices ċ = 1, . . . , q and leave
the temporal in usual Roman lowercase, a = 1, . . . , p. Given a mult-index I =
(a1 . . . , at, ċ1, . . . , ċu) ∈ Λd (so t ≤ p and u ≤ q) it will be useful to know whether ΓI
is hermitian or anti-hermitian. We compute its hermitian conjugate (ΓI)∗:

(γa1 . . . γatγ ċ1 . . . γ ċu)∗ = (γ ċu)∗ . . . (γ ċ1)∗(γat)∗ . . . (γa1)∗

= (−1)uγ ċu . . . γ ċ1γat . . . γa1

= (−1)u+⌊(u+t)/2⌋γa1 . . . γatγ ċ1 . . . γ ċu .

With the conventions set in eq. (2.2), have the following

• In Riemannian signature (0, d) a product of u gamma matrices associated to
I ∈ Λd is (anti-)hermitian if u(u+ 1)/2 is even (odd).

• In (d, 0)-signature a product of u gamma matrices associated to I ∈ Λd is
hermitian if t(t− 1)/2 is even, and anti-hermitian if it is odd.

In the main text, it will be useful to know that

eµeµ̂ = (−1)q+1 d = 4, with signature (p, q) . (II.2)

This follows from (Γµ̂)∗ = eµ̂Γµ̂, from e1e2e3e4 = (−1)q and from

(Γµ̂)∗ = (γ4)∗ · · · (̂γµ)∗ · · · (γ1)∗ = −e1e2e3e4eµγ
1 · · · γ̂µ · · · γ4 = −e1e2e3e4eµΓµ̂ .
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III. SPECTRAL ACTION FOR RIEMANNIAN AND LORENTZIAN GEOMETRIES

Before writing down the action functionals for Riemannian and Lorentzian geome-
tries, it will be helpful to restate eqs. (5.13) and (5.14) via

−
∑

α,β,µ,ν

δαβµνeαeβTrN
[
(KµXν)2 + 2K2

µX
2
ν

]
= (−1)1+q ∑

µ̸=ν
2eµeνTrN

[
(KµXν)2 + 2K2

µX
2
ν

]
and by writing out (‘cycl.’ next means equality after cyclic reordering)

8(−1)q+1 ∑
µ,ν

(−1)|σ(ν,µ)|δµν1ν2ν3eµ(XµKν1Kν2Kν3 +KµXν1Xν2Xν3)

cycl.
≡ − 8(−1)q

[
e1X1

(
K2[K3, K4] +K3[K4, K2] +K4[K2, K3]

)
(III.1)

+ e2X2
(
K1[K3, K4] +K3[K4, K1] +K4[K1, K3]

)
+ e3X3

(
K1[K2, K4] +K2[K4, K1] +K4[K1, K2]

)
+ e4X4

(
K1[K2, K3] +K2[K3, K1] +K3[K1, K2]

)]

− 8(−1)q
[
e1K1

(
X2[X3, X4] +X3[X4, X2] +X4[X2, X3]

)
+ e2K2

(
X1[X3, X4] +X3[X4, X1] +X4[X1, X3]

)
+ e3K3

(
X1[X2, X4] +X2[X4, X1] +X4[X1, X2]

)
+ e4K4

(
X1[X2, X3] +X2[X3, X1] +X3[X1, X2]

)]
,

as well as

− 8
∑
ν,µ

(−1)|σ(µ,ν)|δνµ1µ2µ3 ·
{

− TrNXν · TrN (Kµ1Kµ2Kµ3)

+ eµ2eµ3

(
TrNKµ1 · TrN (XνKµ2Kµ3) + TrNXµ1 · TrN (KνXµ2Xµ3)

)
+ (−1)qTrNKν · TrN (Xµ1Xµ2Xµ3)

}
(III.2)

= + 24TrNX1 · TrN
(
K2[K3, K4]

)
+ 24TrNX2 · TrN

(
K1[K3, K4]

)
+ 24TrNX3 · TrN

(
K1[K2, K4]

)
+ 24TrNX4 · TrN

(
K1[K2, K3]

)
− 8TrNK1 · TrN

(
e3e4[K3, K4]X2 + e2e4[K2, K4]X3 + e2e3[K2, K3]X4

)
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− 8TrNK2 · TrN
(
e3e4[K3, K4]X1 + e1e4[K4, K1]X3 + e1e3[K3, K1]X4

)
− 8TrNK3 · TrN

(
e2e4[K2, K4]X1 + e1e4[K4, K1]X2 + e1e2[K1, K2]X4

)
− 8TrNK4 · TrN

(
e2e3[K2, K3]X1 + e1e3[K1, K3]X2 + e1e2[K1, K2]X3

)
+ (−1)1+q

{
24TrNK1 · TrN

(
X2[X3, X4]

)
+ 24TrNK2 · TrN

(
X1[X3, X4]

)
+ 24TrNK3 · TrN

(
X1[X2, X4]

)
+ 24TrNK4 · TrN

(
X1[X2, X3]

)}
− 8TrNX1 · TrN

(
e3e4[X3, X4]K2 + e2e4[X2, X4]K3 + e2e3[X2, X3]K4

)
− 8TrNX2 · TrN

(
e3e4[X3, X4]K1 + e1e4[X4, X1]K3 + e1e3[X3, X1]K4

)
− 8TrNX3 · TrN

(
e2e4[X2, X4]K1 + e1e4[X4, X1]K2 + e1e2[X1, X2]K4

)
− 8TrNX4 · TrN

(
e2e3[X2, X3]K1 + e1e3[X1, X3]K2 + e1e2[X1, X2]K3

)
.

From these expressions the Riemannian and Lorentzian cases are next derived.

III.1. Riemannian fuzzy geometries. The metric g = diag(−1,−1,−1,−1) implies
eµ = −1 for each µ ∈ ∆4 and q = 4. The Dirac operator D = D(L, H̃) (Ex. 2.4)
is parametrized by four anti-hermitian matrices Kµ = Lµ (where [Lµ, • ] corresponds
to the derivatives ∂µ in the smooth case) and four hermitian matrices Xµ = H̃µ (cor-
responding to the spin connection ωµ in the smooth spin geometry case represented by
[H̃µ, • ] here). In Example 2.4 above these have been called H̃1 = H234, . . . , H̃4 =
H123. The bi-tracial octo-matrix model has the following quadratic part

1
8Tr

(
[DRiemann]2

)
= N

4∑
µ=1

Tr[H̃2
µ − L2

µ] + (TrN H̃µ)2 + (TrN Lµ)2 , (III.3)

which directly follows from eq. (5.2). The quartic part is more complicated:

1
4Tr

(
[DRiemann]4

)
= NSRiemann

4 + BRiemann
4

having single-trace action

SRiemann
4 = TrN

{
2

∑
µ

(L4
µ + H̃

4
µ)

+ 4
∑
µ<ν

(2L2
µL

2
ν + 2H̃2

µH̃
2
ν − LµLνLµLν − H̃µH̃νH̃µH̃ν)

−
∑
µ ̸=ν

[
2(LµH̃ν)2 + 4L2

µH̃
2
ν

]
+

∑
µ

[
2(LµH̃µ)2 − 4L2

µH̃
2
µ

]



9

+ 8
[
H̃1

(
L2[L3, L4] + L3[L4, L2] + L4[L2, L3]

)
+ H̃2

(
L1[L3, L4] + L3[L4, L1] + L4[L1, L3]

)
+ H̃3

(
L1[L2, L4] + L2[L4, L1] + L4[L1, L2]

)
+ H̃4

(
L1[L2, L3] + L2[L3, L1] + L3[L1, L2]

)]

+ 8
[
L1

(
H̃2[H̃3, H̃4] + H̃3[H̃4, H̃2] + H̃4[H̃2, H̃3]

)
+ L2

(
H̃1[H̃3, H̃4] + H̃3[H̃4, H̃1] + H̃4[H̃1, H̃3]

)
+ L3

(
H̃1[H̃2, H̃4] + H̃2[H̃4, H̃1] + H̃4[H̃1, H̃2]

)
+ L4

(
H̃1[H̃2, H̃3] + H̃2[H̃3, H̃1] + H̃3[H̃1, H̃2]

)]}
, (III.4)

and bi-tracial action

BRiemann
4 = 8

∑
µ,ν

TrN H̃µ · TrN (H̃µH̃
2
ν) − TrN (Lµ) · TrN (LµL2

ν) (III.5)

+
4∑

µ,ν=1

{
2TrN (H̃2

µ) · TrN (H̃2
ν) + 4

[
TrN (H̃µH̃ν)

]2
}

+
4∑

µ,ν=1

{
2TrN (L2

µ) · TrN (L2
ν) + 4

[
TrN (LµLν)

]2
}

+ 4
4∑

µ=1

{
2TrN Lµ · TrN (LµH̃

2
µ) − 2TrN H̃µ · TrN (H̃µL

2
µ)

− TrN (H̃2
µ) · TrN (L2

µ) + 2
[
TrN (LµH̃µ)

]2
}

+ 24
4∑

µ ̸=ν=1
TrN Lµ · TrN

(
LµX

2
ν

)
− TrN H̃ν · TrN

(
L2
µH̃ν

)

+ 12
∑
µ ̸=ν

{
2
[
TrN (LµH̃ν)

]2
− TrN (L2

µ) · TrN (H̃2
ν)

}

+ 24TrN H̃1 · TrN
(
L2[L3, L4]

)
+ 24TrN H̃2 · TrN

(
L1[L3, L4]

)
+ 24TrN H̃3 · TrN

(
L1[L2, L4]

)
+ 24TrN H̃4 · TrN

(
L1[L2, L3]

)
− 8TrN L1 · TrN

(
[L3, L4]H̃2 + [L2, L4]H̃3 + [L2, L3]H̃4

)
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− 8TrN L2 · TrN
(
[L3, L4]H̃1 + [L4, L1]H̃3 + [L3, L1]H̃4

)
− 8TrN L3 · TrN

(
[L2, L4]H̃1 + [L4, L1]H̃2 + [L1, L2]H̃4

)
− 8TrN L4 · TrN

(
[L2, L3]H̃1 + [L1, L3]H̃2 + [L1, L2]H̃3

)
− 24TrN L1 · TrN

(
H̃2[H̃3, H̃4]

)
− 24TrN L2 · TrN

(
H̃1[H̃3, H̃4]

)
− 24TrN L3 · TrN

(
H̃1[H̃2, H̃4]

)
− 24TrN L4 · TrN

(
H̃1[H̃2, H̃3]

)
− 8TrN H̃1 · TrN

(
[H̃3, H̃4]L2 + [H̃2, H̃4]L3 + [H̃2, H̃3]L4

)
− 8TrN H̃2 · TrN

(
[H̃3, H̃4]L1 + [H̃4, H̃1]L3 + [H̃3, H̃1]L4

)
− 8TrN H̃3 · TrN

(
[H̃2, H̃4]L1 + [H̃4, H̃1]L2 + [H̃1, H̃2]L4

)
− 8TrN H̃4 · TrN

(
[H̃2, H̃3]L1 + [H̃1, H̃3]L2 + [H̃1, H̃2]L3

)
.

III.2. Lorentzian fuzzy geometries. Here we keep the usual conventions: the index
0 for time and (undotted) Latin spatial indices a = 1, 2, 3. In the Lorentzian setting
g = diag(+1,−1,−1,−1), so q = 3, e0 = +1 and ea = −1 for each spatial a. A
parametrization of the Dirac operator of the form D = D(H,La, Q,Ra) by six anti-
hermitian matrices Ka = La, Xa = Ra and two hermitian matrices K0 = H and
X0 = Q follows. As before, we give first the quadratic part and then the quartic. The
former follows from eq. (5.2),

1
8TrD2 = NTrN

{
H2 +Q2 −

∑
a(L2

a +R2
a)

}
+ (TrNH)2 + (TrNQ)2 +

∑
a

(TrN La)2 + (TrNRa)2 . (III.6)

Using eqs. (III.1) and (III.2) to rewrite Proposition 5.4, one gets

SLorentz
4 = TrN

{
2H4 + 2Q4 +

∑
a

(
L4
a +R4

a

)
−

∑
a

[
2(LaRa)2 + 4L2

a

]
+

∑
a

[
− 8H2L2

a − 8Q2R2
a + 4(HLa)2 + 4(QRa)2

]
+

∑
a<c

[
8L2

aL
2
c + 8R2

aR
2
c − 4(LaLc)2 − 4(RaRc)2

]
−

∑
a

[
2(HRa)2 + 4H2R2

a + 2(LaQ)2 + 4L2
aQ

2
]

+
∑
a̸=c

2(LaRc)2 + 4L2
aR

2
c − 2(HQ)2 + 4H2Q2
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+ 8
[
Q

(
L1[L2, L3] + L2[L3, L1] + L3[L1, L2]

)
−R1

(
H[L2, L3] + L2[L3, H] + L3[H,L2]

)
−R2

(
H[L1, L3] + L1[L3, H] + L3[H,L1]

)
−R3

(
H[L1, L2] + L1[L2, H] + L2[H,L1]

)]

+ 8
[
H

(
R1[R2, R3] +R2[R3, R1] +R3[R1, R2]

)
− L1

(
Q[R2, R3] +R2[R3, Q] +R3[Q,R2]

)
− L2

(
Q[R1, R3] +R1[R3, Q] +R3[Q,R1]

)
− L3

(
Q[R1, R2] +R1[R2, Q] +R2[Q,R1]

)]}
, (III.7)

and

BLorentz
4 = 8TrNQ · TrN

{
Q3 −

∑
a(QR2

a + 3LaQ2
)

+QH2 (III.8)

+ 3L1[L2, L3] + [R3, R2]L1 + [R3, R1]L2 + [R2, R2]L3

}
+ 8TrNH · TrN

{
H3 −

∑
a(HL2

a − 3HR2
a

)
+HQ2

+ 3R1[R2, R3] + [L3, L2]R1 + [L3, L1]R2 + [L2, L1]R3)
}

+ 8
∑
a

TrNRa · TrN
{
RaH

2 −Ra
∑
cR

2
c − LaR

2
a

+ 3H2Ra − 3 ∑
c(c̸=a) R

2
aLc

}
− 8TrNR1 · TrN

(
[R2, R3]H − [R3, Q]L2 − [R2, Q]L3 + 3H[L3, L2]

)
− 8TrNR2 · TrN

(
[R1, R3]H − [R3, Q]L1 − [Q,R1]L3 + 3H[L3, L1]

)
− 8TrNR3 · TrN

(
[R1, R2]H − [Q,R2]L1 − [Q,R1]L2 + 3H[L2, L1]

)
+ 8

∑
a

TrN La · TrN
{
LaH

2 − La
∑
c L

2
c −RaL

2
a

+ 3LaQ2 − 3 ∑
c(c ̸=a) LaR

2
c

}
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− 8TrN L1 · TrN
(
[L2, L3]Q− [L3, H]R2 − [L2, H]R3 + 3Q[R3, R2]

)
− 8TrN L2 · TrN

(
[L1, L3]Q− [L3, H]R1 − [H,L1]R3 + 3Q[R3, R1]

)
− 8TrN L3 · TrN

(
[L1, L2]Q− [H,L2]R1 − [H,L1]R2 + 3Q[R2, R1]

)
+ 6

[
TrNQ2

]2
+

∑
a

{
4TrN (R2

a) · TrN (Q2) − 8
[
TrN (QRa)

]2}
+

∑
a,c

(
2TrN (R2

a) · TrN (R2
c) + 4

[
Tr(RaRc)

]2
)

+ 6
[
TrNH2

]2
+

∑
a

{
4TrN (L2

a) · TrN (H2) − 8
[
TrN (HLa)

]2}
+

∑
a,c

(
2TrN (L2

a) · TrN (L2
c) + 4

[
Tr(LaLc)

]2
)

+ 4TrN (Q2) · TrN (H2) + 8
[
TrN (HQ)

]2

+ 4
∑
a

TrN (R2
a) · TrN (L2

a) + 8
[
TrN (LaRa)

]2

+ 24
∑
a

{[
TrN (HRa)

]2
+

[
TrN (QLa)

]2}
+ 12

∑
a̸=c

2
[
TrN (LaRc)

]2
+ TrN (L2

a) · TrN (R2
c)

− 12
∑
a

{
TrN (L2

a) · TrN (Q2) + TrN (R2
a) · TrN (H2)

}
.

IV. PROOFS SKIPPED IN THE MAIN ARTICLE

Proof of Proposition 5.1. The proof is by direct, even if in cases lengthy, computation.
One first seeks the conditions one has to impose on the indices for a diagram not to
vanish, typically in terms of Kronecker deltas, and then one computes their coefficients
in terms of the quadratic form g = diag(e1, e2, e3, e4). We order the proof by similarity
of the statements:

• Type τ1. The τ1-type diagram is well-known, for it is the only one here without
any single multi-index (see the end of Sec. 3.1).

• Type τ6. Notice that at least two pairings of the νl’s are needed for the diagram
not to vanish: νi = νj =: ν and νt = νr =: µ with {i, j, t, r} = ∆4. Therefore,
the Kronecker deltas are placed precisely as for the τ1 type. The computation
of their e-factors is a matter of counting: for each chord joining two points
labeled with, say, α there is an eα factor. There are 6 such chords, labeled by
{eα}α̸=ν ∪· {eρ}ρ ̸=µ, for in ν̂ all the indices α ̸= ν appear and similarly for µ̂.
Thus, if ν ̸= α ̸= µ, eα appears twice, so e2

α = 1. The two remaining chord-
labels are those appearing either in {eα}α̸=ν or in {eρ}ρ ̸=µ. Thus the factor
is eµeν and we only have to compute the sign: the µ̂ν̂µ̂ν̂ configuration with
minimal crossings has sign (−1)5. For µ̂µ̂ν̂ν̂ and µ̂ν̂ν̂µ̂ the crossings yield a
positive sign (−1)6.
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• Type τ2. Since ν̂ ∈ Λ−
d=4, all the three indices αi in ν̂ = (α1, α2, α3) different.

For this diagram not to vanish, the set equality {α1, α2, α3} = {µ1, µ2, µ3}
should hold, i.e. a permutation σ ∈ {µ1, µ2, µ3} with ασ(i) = µi is needed.
This says first, that ν cannot be any of µi (whence the δνµ1µ2µ3) and second,
that each of the three chords yields a factor eµi with a sign (−1)|σ|+1. The extra
minus is due to the convention to place the indices, e.g. for 4̂123, the numbers
123123 are put cyclicly; this permutation σ is the identity, which nevertheless
looks like the ‘V diagram’ in eq. (4.7).

• Type τ5. Suppose that two indices of a non-vanishing diagram agree. Then
either µ = νi or (wlog) ν1 = ν2. In the first case notice that in µ and ν̂i the
indices 1, 2, 3, 4 all appear listed. This implies for the remaining two multi-
indices have to be of the form ν̂l = (∗ ∗ ∗) and ν̂m = (1 ∗ 4) or ν̂l = (1 ∗ ∗) and
ν̂m = (∗ ∗ 4) where {i, l,m} = {1, 2, 3} and ∗ ∈ ∆4.

♢ In the first case, ν̂l = (∗ ∗ ∗) and ν̂m = (1 ∗ 4) the numbers ρ, ρ, 2, 3 (for
some ρ ∈ ∆4) should fill the placeholders ∗. Then ρ has to appear in both
ν̂l and ν̂m, but no value of ρ fulfills this if the increasing ordering is to be
preserved, hence we are only left with next case

♢ If ν̂l = (1 ∗ ∗) and ν̂m = (∗ ∗ 4), say ν̂l = (1wx) and ν̂m = (yz4),
then {w, x} and {y, z} are the sets {2, ρ} and {3, ρ} (not necessarily in this
order), for some ρ. Clearly, ρ cannot be either 1 or 4 since each appears
once in one multi-index. But ρ = 2, 3 would force also a repetition of
indices in at least one multi-index, which contradicts ν̂m, ν̂l ∈ Λ−

4 .
This contradiction implies that if µ equals some νi then the diagram vanishes.
By a similar analysis one sees that a repetition νi = νj implies also that the
diagram is zero. Hence the diagram is a multiple of δµν1ν2ν3 . Thereafter it is
easy to compute the e-coefficients following a similar argument to the given
for the type τ2 diagram to arrive at the sign (−1)|λ|+1 for λ a permutation of
{ν1, ν2, ν3}.

• Type τ3. If no indices coincide then one gets two different numbers i, j ∈ ∆4
appearing exactly once in the list µ1, ν̂1, µ2, ν̂2. Since these cannot be matched
by a chord, a non-zero diagram requires repetitions.

♢ If µ1 = µ2 then ν1 = ν2. Since by hypothesis the four cannot agree the
minimal crossings for this configuration is seen to be one, so the sign is
(−1). The e-factors are: eµ1 for the chord between µ1 and µ2, the product
of three

∏
α̸=ν1 eα, for the three chords between ν̂1 and ν̂2. This accounts

for −eµ1

( ∏
α̸=ν

eα

)
δµ2
µ1δ

ν2
ν1 .

♢ If µ1 = ν1, then again µ2 = ν2 in order for the indices listed in µ1, ν̂1, µ2, ν̂2
to appear precisely twice. Since µ1 = ν1 implies that µ1 does not appear in
ν̂1, there is one chord (thus a factor eα) for each α ∈ ∆4. After straightfor-
ward (albeit neither brief nor very illuminating) computation one finds the
sign (−1)µ1+µ2+1. All in all, one gets (−1)µ1+µ2+1e1e2e3e4δ

ν1
µ1δ

ν2
µ2 .

♢ If µ1 = ν2, then again µ2 = ν1. But this is the same as the last point with
ν1 ↔ ν2. This accounts for (−1)µ1+µ2e1e2e3e4δ

ν2
µ1δ

ν1
µ2 .

• Type τ4. Mutatis mutandis from the type τ3. □
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4̂

2̂

4̂

2̂

φ

ψ

1 2 3

1

3
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123
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FIGURE IV.3. The diagram χ2̂4̂2̂4̂(ϕ, ψ) shows the nested structure of two
τ1-type diagrams, ϕ and ψ, in a τ6-type referred to in Remark IV.1

Remark IV.1. We just used the ‘minimal’ number of crossings for diagrams with a
more than two-fold index repetition. For instance, for the four point diagram evaluated
in χ1111 = 1 there might be one crossing or no crossings, but crucially two diagrams
have no crossing so

∑
χ χ

1111 × traces = (1 − 1 + 1) × traces. This reappears in the
computation of twelve-point diagrams in a nested fashion, as shown in Figure IV.3. If
we pick 2̂4̂2̂4̂ as configuration of the indices, then imposing χ2̂4̂2̂4̂ ̸= 0 does not deter-
mine χ ∈ CD6: the lines joining the two 2-indices and the two 4-indices diagonally
are mandatory, but for the four 1-indices and four 3-indices one can choose at the blobs
tagged with ϕ, ψ one of three possibilities (shown in the diagrams of eq. (3.4) as θ, ξ, ζ).
Then there are 9 possible sign values. Again, it is essential that there are 5 positive and
4 negative global signs in {χ2̂4̂2̂4̂(ϕ, ψ)}ψ,ϕ∈{θ,ξ,ζ} and the sum

∑
χ χ

2̂4̂2̂4̂(traces) can be
replaced by the diagram with minimal crossings (of global positive sign).

Proof of Claim 5.3. To obtain these relations one needs Proposition 5.1. The first and
last cases are obvious, since χI1I2I3I4 ̸= 0 requires in each case a repetition e2

µi
e2
µj

= 1
or e2

ν̂i
e2
ν̂j

= 1.

For the second, eν̂eµ1eµ2eµ3 = (−1)u(ν̂)+⌊3/2⌋+
∑

i
u(µi), by Appendix II. The non-

vanishing of χν̂µ1µ2µ3 implies that ν̂ is the multi-index containing µ1, µ2, µ3, so u(µ1)+
u(µ2) + u(µ3) = u(ν̂) and eq. (5.9) follows.

For the third identity, if χµ1µ2ν̂1ν̂2 (and thus χµ1ν̂1µ2ν̂2) does not vanish, then it is
either of the form χµµµ̂µ̂, χµµν̂ν̂ or χµνµ̂ν̂ (µ ̸= ν). Only for the latter one needs a
non-trivial check:

eµeνeµ̂eν̂ = eµ · (−1)1+u(∆4−{µ})eν · (−1)1+u(∆4−{ν})

= eµeν(−1)2u(∆4−{u,v})(−1)u(µ)+u(ν),

and since eµ = (−1)u(µ), eµeνeµ̂eν̂ = 1. In either case, eq. (5.10) follows.
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We are left with the fourth identity. By assumption all the indices νj ̸= νi ̸= µ if
i ̸= j. Then by eq. (2.9)

eµeν̂1eν̂2eν̂3 = eµ · (−1)3×⌊3/2⌋+u(∆4\{ν1})+u(∆4\{ν2})+u(∆4\{ν3})

= −eµ(−1)3u(µ)(−1)2u(ν1)(−1)2u(ν2)(−1)2u(ν3) = −1

From the first to the second line we used ∆4 −{ν1} = {µ, ν2, ν3}, and similar relations.
□

Proof of Corollary 6.2. Up to an irrelevant (as to assess cyclic self-adjointness) ambi-
guity in a global factor for Φi and Ψi, all the NC polynomials can be read off from
eqs. (4.1), (4.3) and Proposition 4.1 for the d = 2 case. For d = 4, the result fol-
lows by inspection of each term, which is immediate since formulae (III.8), (III.5),
(III.3) and (III.6) are given in terms of commutators. Then one uses that [h, l]∗ = [h, l],
[h1, h2]∗ = −[h1, h2] and [l1, l2]∗ = −[l1, l2].

The only non-obvious part is dealing with expressions like

P = Q{L1[L2, L3] + L2[L3, L1] + L3[L1, L2]} ,

which appears in SLorentz
4 according to eq. (III.7). However, if P is the NC polynomial

given in eq. (6.4) then P equals P (Q,L1, L2, L3), hence it is cyclic self-adjoint by Ex-
ample 6.1. Also for the NC polynomial Ψ defined there, −8TrN L1 ·TrN (Ψ(Q,L2, L3))
appears in the expression given by eq. (III.8) for BLorentz

4 , being both Φ(L1) = L1 and
Ψ cyclically anti-self-adjoint. □

V. DEFINITION OF ‘CYCLICALLY SELF-ADJOINTNESS’

Definition V.1. Given variables z1, . . . , zκ, each of which satisfies either formal self-
adjointness (i.e. for an involution ∗, z∗

i = +zi holds, in whose case we let zi =: hi)
or formal anti-self-adjointness (z∗

i = −zi; and if so, write zi =: li), a noncommutative
(NC) polynomial P ∈ R⟨z1, . . . , zκ⟩ is said to be cyclically self-adjoint if the following
conditions hold:

• for each word w (or monomial) of P there exists a word w′ in P such that

[w(z1, . . . , zκ)]∗ = +(σ · w′)(z1, . . . , zκ) holds for some σ ∈ Z/|w′|Z , (V.1)

being
♢ |w| the length of the word w (or order of the monomial w) and
♢ σ · w′ the action of Z/|w′|Z on the word w′ by cyclic permutation of its

letters.
• The map defined by w 7→ w′ is a bijection in the set of the words of P .

Similarly, a polynomial G ∈ R⟨z1, . . . , zκ⟩ is cyclic anti-self-adjoint if for each of its
words w if there exist a σ ∈ Z/|w′|Z for which the condition

[w(z1, . . . , zκ)]∗ = −(σ · w′)(z1, . . . , zκ) (V.2)

holds, and if, additionally, the map that results from this condition, w 7→ w′, is a
bijection in the set of words of G.
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VI. AN AUXILIARY MODEL FOR THE d = 1 CASE

One could reformulate the partition functions of d = 1-models in terms of auxil-
iary models that do not contain multi-traces, if these are interpreted at least as formal
integrals. We pick for concreteness the signature (p, q) = (1, 0) and the polynomial
f(x) = (x2 + λx4)/2 for the spectral action Trf(D). We explain why the ordinary
matrix model given by Zaux

(1,0) =
∫
HN

eγTrH−αTr(H2)+βTr(H3)−NλTr(H4)dH over the her-
mitian N × N matrices HN , allows to restate the quartic-quadratic (1,0)-type Barrett-
Glaser model with partition function

ZBG
(1,0) =

∫
M

e− 1
2 Tr(D2+λD4)dD (VI.1)

as formally equivalent to the functional

⟨exp{−(3λTrH2 + 4λTrH · TrH3 + (TrH)2)}⟩aux,0 , (VI.2)

where the expectation value of an observable Φ is taken with respect to the auxiliary
model

⟨Φ⟩aux = 1
Zaux

(1,0)

∫
HN

Φ(H)e−S (H)dH ,

being S (H) = αTr(H2)+NλTr(H4)+γTrH+βTr(H3). The zero subindex ‘aux,0’
means evaluation in the parameters

α = N, γ = β = 0 . (VI.3)

Indeed, one can use the explicit form of the Dirac operator D = {H, • } to rewrite
the integral in terms of the matrix H . One gets

1
2Tr(D2 + λD4) = N [Tr(H2) + λTr(H4)] (VI.4)

+ 3λ[Tr(H2)]2 + 4λTrH · TrH3 + [Tr(H)]2

= N [Tr(H2) + λTr(H4)] + b[H] .
The second line of eq. (VI.4) contains the bi-tracial terms; this term will be denoted by
b[H]. Inserting last equations into (VI.1)

ZBG
(1,0) =

∫
HN

e−NTr(H2+λH4)e−b[H]dH

Since S (H)|α=N,γ=β=0 = N [Tr(H2)+λTr(H4)], one can replace the first exponential
by e−S (H) and evaluate the parameters as in eq. (VI.3):

ZBG
(1,0) =

∫
HN

[
e−S (H)

]
0
e−b[H]dH .

If one knows the partition function Zaux
(1,0) , one can compute the model in question by

taking out e−b(H) from the integral and accordingly substituting the traces by the ap-
propriate derivatives:

ZBG
(1,0) =

[
e−b∂

∫
HN

e−S (H)dH
]

0
where b∂ = 3λ∂2

α + 4λ∂β∂γ + ∂α . (VI.5)

That is ZBG
(1,0) = [e−b∂ Zaux

(1,0) ]0, which also proves eq. (VI.2). This motivates to look for
similar methods in order restate, for d ≥ 2, the bi-tracial part of the models addressed
here as single-trace auxiliary multi-matrix models.


