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On anchored Lie algebras and the Connes–Moscovici
bialgebroid construction

Paolo Saracco

Abstract. We show how the Connes–Moscovici bialgebroid construction naturally provides uni-
versal objects for Lie algebras acting on non-commutative algebras. As a supplement, we see how
these objects interact with the study of flat bimodule connections.

Introduction

Given a Hopf algebra H (possibly with bijective antipode S ) over a field k and a left
H -module algebra A, one can turn the vector space A˝H ˝ A into a left bialgebroid
H WD A ˇ H ˇ A over A in a natural way. This procedure has been introduced inde-
pendently, and under different forms, by Connes and Moscovici [10] in their study of the
index theory of transversely elliptic operators, and by Kadison [27] in connection with
his work on (pseudo-)Galois extensions. Later, Panaite and Van Oystaeyen proved in [39]
that the two constructions are in fact equivalent (isomorphic asA-bialgebroids) and that, as
algebras, they are particular instances of the L-R-smash product introduced in [40]. Nev-
ertheless, following [5], we refer to the bialgebroid AˇH ˇA as the Connes–Moscovici
bialgebroid.

Following the foregoing and, in particular, in view of the results in [39], two observa-
tions were made, that triggered the present investigation,

(i) that whenever a Lie algebra L acts by derivations on an associative algebra A
(for the sake of simplicity, let us call it an A-anchored Lie algebra), then A
becomes naturally an Uk.L/-module algebra and

(ii) that the associated Connes–Moscovici bialgebroid construction satisfies a uni-
versal property (both as Ae-ring and as A-bialgebroid, see [39, Proposition 3.1
and Theorem 3.2]) which suggests the possibility thatAˇUk.L/ˇA plays for
an A-anchored Lie algebra L the same role played by the universal enveloping
algebra for a Lie algebra.
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Among anchored Lie algebras we find the well-known Lie–Rinehart algebras, which
are in particular Lie algebras acting on commutative algebras. As it can be inferred from
the substantial literature on the topic, Lie–Rinehart algebras are a deeply investigated area,
in particular for its connections with differential geometry (the global sections of a Lie
algebroid L ! M form a Lie–Rinehart algebra over C1.M/). Rinehart himself gave
an explicit construction of the universal enveloping algebra U.R; L/ of a Lie–Rinehart
algebra in [44] and proved a Poincaré–Birkhoff–Witt theorem for the latter. Other equi-
valent constructions are provided in [16, §3.2], [23, page 64], [48, §18]. The universal
property of U.R; L/ as an algebra is spelled out in [23, page 64] and [32, page 174]
(where it is attributed to Feld’man). Its universal property as an A-bialgebroid is codified
in the Cartier–Milnor–Moore Theorem for U.R; L/ proved in [35, §3], where Moerdijk
and Mrčun show that the construction of the universal enveloping algebra provides a left
adjoint to the functor associating any cocommutative bialgebroid with its Lie–Rinehart
algebra of primitive elements and they find natural conditions under which this adjunction
becomes an equivalence (as it has been done in [34] for cocommutative bialgebras and Lie
algebras). Further algebraic and categorical properties and applications are investigated in
[2, 17, 23–25].

However, there are many important examples of Lie algebras acting by derivations
on associative algebras which are not necessarily commutative (actually, any Lie algebra
acts by derivations on its universal enveloping algebra and any associative algebra acts
by inner derivations on itself). Furthermore, while the space of primitive elements of a
bialgebra is always a Lie algebra and a primitively generated bialgebra is always cocom-
mutative, the space of primitive elements of a bialgebroid is not, in general, a Lie–Rinehart
algebra and not every primitively generated bialgebroid is necessarily cocommutative. A
third observation that stood up for the present investigation is that, instead, the space of
primitive elements of a bialgebroid is always a Lie algebra acting by derivations on the
base algebra.

These facts, together with the two foregoing observations (i) and (ii), called for the
study of Lie algebras L acting on non-commutative algebras A in their own right and, in
particular, for the study of the associated Connes–Moscovici bialgebroidAˇUk.L/ˇA,
as it has been done for Lie–Rinehart algebras and their universal enveloping algebras.

In the present paper, we are mainly concerned with two universal properties of BL WD

AˇUk.L/ˇA, as anAe-ring and as anA-bialgebroid, which reflect the two well-known
universal properties of universal enveloping algebras reported above. The first one (Theo-
rem 2.9) exhibitsAˇUk.L/ˇA as the universalAe-ring associated with theA-anchored
Lie algebra L, similarly to what happens for U.R; L/ in [23, page 64]. Namely, for any
Ae-ring �A W Ae ! R and any k-Lie algebra morphism �L W L! L.R/ such that�

�L.X/; �A.a˝ b
o/
�
D �A.X � .a˝ b

o//

for all a; b 2 A and all X 2 L, there exists a unique morphism of Ae-rings ˆ W BL ! R

extending �L. This naturally affects the study of the representations of L (see Corol-
lary 2.10). The second universal property (Proposition 3.4) exhibits Aˇ Uk.L/ˇ A as
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the universal A-bialgebroid associated with the A-anchored Lie algebra L, similarly to
what happens for U.R;L/ in [35, Theorem 3.1(i)]. Namely, for any A-bialgebroid B and
any morphism of k-Lie algebras �L W L ! B which lands into the space Prim.B/ of
primitive elements of B and that is compatible with the anchors, there exists a unique
morphism of A-bialgebroids ˆ W BL ! B that extends �L.

Parallel to the new insights into the structure of bialgebroids over non-commutative
base, which have been the author’s original motivation for the present study and that are
mainly collected in Sections 3 and 4, the representation theory of anchored Lie algebras
provide also an alternative, derivation-based approach to non-commutative differential
calculus over associative algebras, as shown briefly in Section 5. In this, the universal
property of AˇUk.L/ˇA as an Ae-ring and its bialgebroid structure play a crucial role
in deducing categorical properties of the associated flat bimodule connections.

Concretely, after a first section devoted to recalling some definitions and some pre-
liminary results, we introduce A-anchored Lie algebras in Section 2.1 and we prove that
the Connes–Moscovici bialgebroid associated to an A-anchored Lie algebra satisfies the
stated universal property as Ae-ring in Section 2.2 (Theorem 2.9). In Section 3.1, we
detail how taking the space of primitives of an A-bialgebroid induces a functor from the
category of A-bialgebroids to the category of A-anchored Lie algebras and in Section 3.2
we show that the Connes–Moscovici construction provides a natural left adjoint to this
latter functor (Theorem 3.6) and, at the same time, we prove the second universal prop-
erty of Aˇ Uk.L/ˇ A (Proposition 3.4). At this point, by finding inspiration from the
Milnor–Moore and the Moerdijk–Mrčun theorems, we look for intrinsic conditions on a
bialgebroid that allow us to recognize it as a Aˇ Uk.L/ˇ A for a certain A-anchored
Lie algebra. Section 4 is devoted to finding a first answer (Theorem 4.14). After studying
in more detail the space of primitives of a Connes–Moscovici bialgebroid in Section 4.1,
we tackle the question in the general framework in Section 4.2 and in the particular case of
bialgebroids over a commutative base in Section 4.3. Finally, we conclude with some final
remarks about future lines of investigation in Section 4.4. As a supplement, in Section 5
we show how representations of an A-anchored Lie algebra L are naturally equivalent to
certain flat bimodule connections on the first-order differential calculus Homk.L;A/ and
we comment on how this research direction can be extended further and connected with
the differential calculi studied by Dubois-Violette and collaborators (see, e.g., [12–14]).

Notation

All over the paper, we assume a certain familiarity of the reader with the language of
monoidal categories and of (co)monoids therein (see, for example, [30, VII]).

We work over a ground field k of characteristic 0. All vector spaces are assumed to be
over k. The unadorned tensor product ˝ stands for ˝k. All (co)algebras and bialgebras
are intended to be k-(co)algebras and k-bialgebras, that is to say, (co)algebras and bialgeb-
ras in the symmetric monoidal category of vector spaces .Vectk;˝;k/. Every (co)module
has an underlying vector space structure. Identity morphisms IdV are often denoted by V .



P. Saracco 1010

In order to avoid confusion between indexes of elements and coproducts or coactions,
we will adopt the following variant of the Heyneman–Sweedler’s Sigma Notation. For c
in a coalgebra C , m in a left C -comodule M and n in a right C -comodule N we write

�C .c/D
X

c.1/˝ c.2/; �M .m/D
X

m.�1/˝m.0/; �N .n/D
X

n.0/˝ n.1/:

Given an algebra A, we denote by Ao its opposite algebra. We freely use the canonical
isomorphism between the category of left A-modules AMod and that of right Ao-modules
ModAo . We also set Ae WD A˝ Ao and we identify the category of left Ae-modules AeMod
with that of A-bimodulesAModA. Recall that any morphism of algebras � W Ae ! R leads
to two commuting algebra maps s W A! R, a 7! a˝ 1o, and t W Ao! R, ao 7! 1˝ ao,
(i.e. s.a/t.bo/ D t .bo/s.a/ for all a; b 2 A) and conversely. Given two R-bimodules M
and N , this gives rise to several A-module structures on M and N and it leads to several
ways of considering the tensor product overA between the underlyingA-bimodules. In the
present paper, we focus on the A-bimodule structure induced by Ae acting on the left via
� and which we denote by sM to . We usually consider this bimodule structure when taking
tensor products. If we want to stress the fact thatM is considered as a left Ae-module, we
may also write �M . Therefore, given two R-bimodules M and N , we consider the tensor
product A-bimodule

M ˝AN WD sM to ˝A sN to D
M ˝N˝

t .ao/m˝ n �m˝ s.a/n j m 2M;n 2 N; a 2 A
˛ : (1)

Inside M ˝A N , we will also consider the distinguished subspace

M �A N WD
°X

i

mi ˝A ni 2M ˝A N
ˇ̌ X

i

mi t .a
o/˝A ni D

X
i

mi ˝A nis.a/
±
; (2)

which is often called Takeuchi–Sweedler’s �-product. It is anA-subbimodule with actions

a �
�X

i

mi ˝A ni

�
D

X
i

s.a/mi ˝A ni

and �X
i

mi ˝A ni

�
� a D

X
i

mi ˝A t .a
o/ni

for all
P
i mi ˝A ni 2M �A N and a 2 A (see [48, Definition 2.1] and [49, page 460]).

In particular, the following relations hold for allm 2M , n 2N ,
P
i mi ˝A ni 2M �A N

and for all a 2 A:

t .ao/m˝A n
(1)
Dm˝A s.a/n and

X
i

mi t .a
o/˝A ni

(2)
D

X
i

mi ˝A nis.a/: (3)

For the sake of clarity, it will be useful to set

a FmG bD s.a/t.bo/mD �.a˝ bo/m; bImJ aDms.a/t.bo/Dm�.a˝ bo/ (4)

for m 2 �M � and a; b 2 A.
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1. Preliminaries

We begin by collecting some facts about bimodules, corings and bialgebroids that will be
needed in the sequel. The aim is to keep the exposition self-contained. Many results and
definitions we will present herein hold in a more general context and under less restrictive
hypotheses, but we preferred to limit ourselves to the essentials.

Given a (preferably, non-commutative) k-algebra A, the category of A-bimodules
forms a non-strict monoidal category .AModA;˝A; A; a; l; r/. Nevertheless, all over the
paper we will behave as if the structural natural isomorphisms

aM;N;P W .M ˝A N/˝A P !M ˝A .N ˝A P /;

.m˝A n/˝A p 7! m˝A .n˝A p/;

lM W A˝AM !M; a˝A m 7! a �m;

rM WM ˝A A!M; m˝A a 7! m � a;

were “the identities”, that is, as if AModA was a strict monoidal category.

1.1. Graded and filtered A-bimodules

As far as we are concerned, we assume A to be filtered over Z with filtration

Fn.A/ D 0 for all n < 0 and Fn.A/ D A for all n � 0

and we assume it to be graded over Z with grading

A0 D A and An D 0 for all n ¤ 0:

By a graded A-bimodule we mean an A-bimodule M with a family of A-subbimodules
¹Mn j n2Zº such thatM D

L
n2ZMn. By a filteredA-bimodule we mean anA-bimodule

M with a chain of A-subbimodules ¹Fn.M/ j n 2 Zº, that is Fp.M/ � Fq.M/ if p � q.
The filtration is said to be exhaustive if M D

S
n2Z Fn.M/. Given a filtered A-bimodule

M , one can consider the associated graded bimodule gr.M/ defined by

grn.M/ WD
Fn.M/

Fn�1.M/
and gr.M/ WD

M
n2Z

grn.M/:

In what follows we will be interested in positively filtered and graded bimodules, that is,
those for which the negative terms are 0.

Given two filtered bimodules M;N , we can perform their tensor product M ˝A N
and this is still a filtered bimodule: the k-th term of the filtration on M ˝A N is the A-
subbimodule generated by the elements m˝A n such that m 2 Fs.M/, n 2 Ft .N / and
s C t D k; analogously for two graded A-bimodules. With these tensor products, we have
that the categories .AFModA ;˝A;A/ and .AGModA ;˝A;A/ of filtered and graded bimod-
ules, respectively, are monoidal categories (it follows, for instance, from [36, Chapter A,
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Proposition I.2.14 and Chapter D, Lemma VIII.1]). Morphisms of filtered (respectively,
graded) bimodules are A-bilinear maps that respect the filtration (respectively, grading).

The result we are principally interested in is that the construction of the graded bimod-
ule associated to a filtered bimodule is functorial (see, for example, [36, chapter D, §III]).
Moreover, the natural surjection

'M;N W gr.M/˝A gr.N /! gr.M ˝A N/; (5)

uniquely determined by

.mC Fs�1.M//˝A .nC Ft�1.N // 7! .m˝A n/C FsCt�1.M ˝A N/

form 2 Fs.M/ and n 2 Ft .N / (see [36, page 318]), and the isomorphism '0 W AŠ gr.A/
endow the functor

gr.�/ W AFModA ! AGModA ; M 7! gr.M/;

with a structure of lax monoidal functor (see [1, Definition 3.1]). For further details about
filtered and graded bimodules, we refer the reader to [36].

1.2. A-corings

Now, we recall that an A-coring is a monoid in the monoidal category of A-bimodules
.AModA;˝A; A/. More concretely, an A-coring is an A-bimodule C endowed with a
comultiplication �C W C ! C ˝A C and a counit "C W C ! A such that

.�C ˝A C/ ı�C D .C ˝A�C / ı�C and ."C ˝A C/ ı�C DC D .C ˝A "C / ı�C :

(6)
For the general theory of corings and their comodules, we refer to [8].

Later on, we will be particularly interested in (exhaustively) filtered A-corings such
that the associated graded components are projective asA-bimodules. These areA-corings
C endowed with an increasing filtration ¹Fn.C/ j n 2 Nº as A-bimodules such that C DS
n Fn.C/, grn.C/ D Fn.C/=Fn�1.C/ is a projective A-bimodule and

�C .Fn.C// �
X
iCjDn

Fi .C/˝A Fj .C/ (7)

for all n � 0 (i.e., �C is a morphism of filtered A-bimodules). We will refer to these
A-corings as graded projective filtered A-corings. By convention, we put F�1.C/ D 0.
Notice that the inclusion (7) makes sense in view of the following well-known result for
filtered (bi)modules (see, for instance, [16, Lemma B.1]).

Lemma 1.1. Let C be an A-bimodule with filtration ¹Fn.C/ j n 2 Nº such that grn.C/ is
a projective A-bimodule for all n � 0. Then

Fn.C/ Š

nM
kD0

Fk.C/

Fk�1.C/
(8)
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for all n � 0 and so Fn.C/ is a projective A-bimodule. Moreover, the canonical map

gr.C/˝A gr.C/! gr.C ˝A C/;�
� C Fh.C/

�
˝A

�
� 0 C Fk.C/

�
7! � ˝A �

0
C FhCkC1.C ˝A C/;

from (5) is an isomorphism of A-bimodules. If, in addition, the filtration ¹Fn.C/ j n 2 Nº
is exhaustive, then C Š gr.C/ as A-bimodules and, in particular, C is a projective A-
bimodule.

Proof. By definition and projectivity of grn.C/, we have a split short exact sequence

0 �! Fn�1.C/ �! Fn.C/ �! grn.C/ �! 0

of A-bimodules, which implies that, as A-bimodules,

Fn.C/ Š Fn�1.C/˚ grn.C/:

By proceeding recursively, one reaches (8). The second claim follows from [31, The-
orem C.24]. About the last claim in the statement, saying that the filtration is exhaustive
means that C Š lim

�!n
.Fn.C// asA-bimodules. Since (8) means thatFn.C/ŠFn.gr.C// as

A-bimodules, we have that C Š lim
�!n

.Fn.C//Š lim
�!n

.Fn.gr.C///Š gr.C/ as claimed.

Analogously to the theory of filtered coalgebras (see, for example, [47, §11.1]), the
graded A-bimodule gr.C/ associated to a graded projective filtered A-coring C becomes
a graded A-coring in a natural way, as the subsequent Proposition 1.2 formalizes.

For the sake of clarity, by a gradedA-coring we mean anA-coring D endowed with an
N-grading ¹Dn j n 2 Nº as A-bimodule such that every Dn is projective as A-bimodule,

�D.Dn/ �
M
iCjDn

Di ˝A Dj for all n 2 N and "D.Dn/ D 0 for all n � 1:

It can be seen as a comonoid in the monoidal category of graded A-bimodules. Notice that
�D is uniquely determined by the A-bilinear maps

�
Œn�

D
W Dn !

M
iCjDn

Di ˝A Dj

obtained by (co)restriction of �D to the graded components of D and D ˝A D and
which, in turn, are uniquely determined by the A-bilinear maps

�
Œh;k�

D
WD

�
Dn

�
Œn�
D
��!

M
iCjDn

Di ˝A Dj

pD
h;k

��! Dh ˝A Dk

�
(9)

for all n � 0 and for all hC k D n. Following [3, Definition 2.2], we say that the graded
A-coring D is strongly graded whenever �Œh;k�

D
is injective for all h; k 2 N.
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Proposition 1.2. Let C be a graded projective filtered A-coring. Then theA-coring struc-
ture on C induces an A-coring structure on gr.C/. Moreover, for any morphism of graded
projective filteredA-corings f W C!B, the induced gradedA-bilinear morphism gr.f / W
gr.C/! gr.B/ is a morphism of graded A-corings.

Proof. The first claim follows from the functoriality of gr.�/ and from the fact that �C W

C! C ˝A C and "C W C!A are filtered morphisms ofA-bimodules. In fact, they induce
graded morphisms of A-bimodules

gr.C/
gr.�C /
����! gr.C ˝A C/ Š gr.C/˝A gr.C/ and gr.C/

gr."C /
����! gr.A/ Š A;

which provides an A-coring structure on gr.C/, since gr.�/ is lax monoidal. Concerning
the second claim, it is enough to apply gr.�/ to the diagrams expressing the comultiplica-
tivity and counitality of f .

Remark 1.3. For any morphism f W C ! B of filtered A-corings, we have that

grn.C/
�
Œn�
gr.C/
//

grn.f /

��

L
iCjDn gri .C/˝A grj .C/L

iCjDn gri .f /˝Agrj .f /
��

grn.B/
�
Œn�
gr.B/

//
L
iCjDn gri .B/˝A grj .B/

(10)

commutes for all n � 0.

Corollary 1.4 (of Proposition 1.2). The assignment C 7! gr.C/ induces a functor gr.�/
from the category of graded projective filtered A-corings to the category of graded A-
corings.

1.3. A-bialgebroids

Next, we recall the definition of a left bialgebroid. It can be considered as a revised version
of the notion of a �A-bialgebra as it appears in [45, Definition 4.3]. However, we prefer
to mimic [29] as presented in [7, Definition 2.2] (in light of [7, Theorem 3.1], this is
something we may do).

Definition 1.5. A left bialgebroid is the datum consisting of

(B1) a pair .A;B/ of k-algebras, called the base algebra and the total algebra respect-
ively,

(B2) a k-algebra map �B W A
e ! B, inducing a source sB W A ! B and a target

tB W A
o ! B which are k-algebra maps, and making of B an Ae-bimodule,

(B3) an A-coring structure .B; �B ; "B/ on the A-bimodule �B D sBto ,

satisfying
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(B4) �B takes values into B �A B and �B W B ! B �A B is a morphism of k-
algebras, where the algebra structure on B �A B is given by the component-
wise product

.� ˝A �/.�
0
˝A �

0/ D �� 0 ˝A ��
0; (11)

for all �; � 0; �; �0 2 B,

(B5) "B

�
�sB.".�

0//
�
D "B.��

0/ D "B

�
�tB."B.�

0/o/
�

for all �; � 0 2 B,

(B6) "B.1B/ D 1A.

A k-linear map "B W B ! A which is left Ae-linear and satisfies (B5) and (B6) is called
a left character on the Ae-ring B (see [5, Lemma 2.5 and following]).

A morphism of left bialgebroids from .A;B/ to .A0;B 0/ is a pair of k-algebra morph-
isms �0 W A! A0 and �1 W B ! B 0 such that

�1 ı sB D sB0 ı �0; �1 ı tB D tB0 ı �0; "B0 ı �1 D �0 ı "B

and

B
�1 //

�B

��

B 0

�B0

��

B ˝A B
�1˝A�1

// B 0 ˝A B 0 // // B 0 ˝A0 B
0

commutes. In this paper, we will focus on left bialgebroids over a fixed base algebra A,
that we call left A-bialgebroids. A morphism of left A-bialgebroids between B and B 0 is
then an algebra map � W B ! B 0 such that

� ı sB D sB0 ; � ı tB D tB0 ; "B0 ı � D "B ; .� ˝A �/ ı�B D �B0 ı �:

The category of left A-bialgebroids will be denoted by BialgdA.

We will often omit to specify the A-bialgebroid B in writing the comultiplication�B

or the counit "B , when it is clear from the context.

Remark 1.6. Let us make explicit some of the relations involved in the definition of a
left bialgebroid and some of their consequences. In terms of elements of A and B, and by
resorting to Sweedler Sigma Notation, relations (6) becomeX

�.1/.1/ ˝A �.1/.2/ ˝A �.2/ D
X

�.1/ ˝A �.2/.1/ ˝A �.2/.2/;X
s
�
".�.1//

�
�.2/ D � D

X
t
�
".�.2//

o
�
�.1/

(12)

for all � 2 B. Moreover, for all a; b 2 A the A-bilinearity of � forcesX�
s.a/t.bo/�

�
.1/
˝A

�
s.a/t.bo/�

�
.2/
D

X
s.a/�.1/ ˝A t .b

o/�.2/:

In particular,

�.s.a// D s.a/˝A 1B and �.t.ao// D 1B ˝A t .a
o/ (13)



P. Saracco 1016

for all a 2 A. As a consequence, the multiplicativity of � forces

�.�s.a// D �.�/�.s.a// D
�X

�.1/ ˝A �.2/

�
.s.a/˝A 1B/

D

X
�.1/s.a/˝A �.2/;

�.�t.ao// D �.�/�.t.ao// D
�X

�.1/ ˝A �.2/

�
.1B ˝A t .a

o//

D

X
�.1/ ˝A �.2/t .a

o/;

(14)

for all � 2 B. The A-bilinearity of " becomes

"
�
s.a/t.bo/�

�
D a".�/b (15)

and since it also preserves the unit, we have that

".s.a// D ".s.a/1B/ D a".1B/ D a D ".1B/a D ".t.a
o//: (16)

Therefore, in light of the character condition on ",

".�s.a//
(B5)
D "

�
�t
�
".s.a//o

�� (16)
D ".�t.ao//: (17)

One may also define, in a symmetric way, the notion of a right bialgebroid (see
[28, §2]). Henceforth, however, all the bialgebroids we consider will be left bialgebroids,
whence we will often omit to specify the adjective “left”.

Example 1.7. Let us give some examples.

(a) Any bialgebra over a field k is a k-bialgebroid.

(b) On the algebra A˝ Ao we may consider the morphisms

s W A! A˝ Ao; a 7! a˝ 1o;

t W Ao ! A˝ Ao; bo 7! 1˝ bo;

� W A˝ Ao ! .A˝ Ao/˝A .A˝ A
o/; a˝ bo 7! .a˝ 1o/˝A .1˝ b

o/;

" W A˝ Ao ! A; a˝ bo 7! ab:

These make of A˝ Ao an A-bialgebroid (see [29, Example 3.1]).

(c) Assume that A is a finite-dimensional algebra over k and set B WD Endk.A/.
Consider s W A! B given by left multiplication and t W A! B given by right
multiplication. The morphism

B ˝B ! Homk.A˝ A;A/; f ˝ g 7! Œa˝ b 7! f .a/g.b/�

induces an isomorphism B ˝A B Š Homk.A˝ A;A/. In view of this, one can
endow B with a structure of A-bialgebroid with source s, target t , � given by

�.f /.a˝ b/ D f .ab/

(up to the latter isomorphism) and " by evaluation at 1A (see [29, page 56]).
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(d) Let R! S be a depth two ring extension (see [28, Definition 3.1]) and set A WD
CS .R/, the centralizer ofR in S . Then the ring of endomorphisms B WD EndR.S/
of S as an R-bimodule satisfies

B ˝A B Š RHomR.S ˝R S; S/; f ˝A g 7! Œs ˝R s
0
7! f .s/g.s0/�;

as above (see [28, Proposition 3.11]) and we may endow it with an A-bialgebroid
structure exactly as in (c) ([28, Theorem 4.1]).

(e) Let .H;m; u;�; "/ be a bialgebra and let A be a braided commutative algebra in
H
HYD . This means that A is at the same time a leftH -module algebra (that is, an
algebra in the monoidal category .HMod;˝; k/ of left H -modules) with action
H ˝ A! A; h˝ a 7! h � a, satisfying

h � .ab/ D
X

.h.1/ � a/.h.2/ � b/ and h � 1A D ".h/1A

for all h 2 H , a; b 2 A, and a left H -comodule algebra with coaction � W A!
H ˝ A, satisfying

�.ab/ D
X

a.�1/b.�1/ ˝ a.0/b.0/ and �.1A/ D 1H ˝ 1A

for all a; b 2 A. Furthermore, these structures are required to satisfyX
h.1/a.�1/ ˝ h.2/ � a.0/ D

X
.h.1/ � a/.�1/h.2/ ˝ .h.1/ � a/.0/

and
P
.a.�1/ � b/a.0/ D ab for all a; b 2 A and h 2 H (the latter expresses the

braided commutativity). Under these conditions, the smash product algebraH#A
is an A-bialgebroid with

.h˝ a/.h0 ˝ b/ D
X

h.1/h
0
˝ .h.2/ � b/a;

1H#A D 1H ˝ 1A;

s.a/ D
X

a.�1/ ˝ a.0/;

t .ao/ D 1H ˝ a;

�.h˝ a/ D
X

.h.1/ ˝ 1A/˝A .h.2/ ˝ a/;

".h˝ a/ D ".h/a

for all a; b 2 A, h; h0 2 H . This is a left-left symmetrical version of [5, Example
3.4.7] and [7, Theorem 4.1].

(f) Connes–Moscovici bialgebroid (see [10, 39] and [5, Example 3.4.6]). Let H be
a Hopf algebra (in fact, a bialgebra would suffice) and let A be an H -module
algebra. The vector space B WD A˝H ˝ A becomes an algebra via

.a˝ h˝ b/.a0 ˝ h0 ˝ b0/ D
X

a.h.1/ � a
0/˝ h.2/h

0
˝ .h.3/ � b

0/b (18)
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and unit 1A ˝ 1H ˝ 1A. It can be endowed with an A-bialgebroid structure as
follows:

sB.a/ WD a˝ 1H ˝ 1A;

tB.a
o/ WD 1A ˝ 1H ˝ a;

�B.a˝ h˝ b/ WD
X

.a˝ h.1/ ˝ 1A/˝A .1A ˝ h.2/ ˝ b/;

"B.a˝ h˝ b/ WD a"H .h/b:

Following [39], we will denote this bialgebroid by A ˇ H ˇ A, avoiding the
use of symbols like # or Ë;Ì in order to avoid confusion with two-sided smash
or crossed products in the sense of [19]. Notice that for all a; a0; b; b0 2 A and
h 2 H we have

a F .a0 ˝ h˝ b0/ G b
(4)
D .a˝ 1H ˝ 1A/.1A ˝ 1H ˝ b/.a

0
˝ h˝ b0/

(18)
D aa0 ˝ h˝ b0b;

a I .a0 ˝ h˝ b0/ J b (4)
D .a0 ˝ h˝ b0/.b ˝ 1H ˝ 1A/.1A ˝ 1H ˝ a/

(18)
D

X
a0.h.1/ � b/˝ h.2/ ˝ .h.3/ � a/b

0:

Remark 1.8. It is known that an Ae-ring is a left bialgebroid if and only if the category
BMod of left B-modules is monoidal in such a way that the forgetful functor BMod!
AeMod is a monoidal functor (see, for example, [45, Theorem 5.1]). In particular, the tensor
product of two B-modules M and N is M ˝A N with diagonal action � ˘ .m˝A n/ WDP
.�.1/ ˘m/˝A .�.2/ ˘ n/ and A is a B-module with

� ˘ a WD ".�t.ao// (17)
D ".�s.a//: (19)

It is, in fact, a left B-module algebra (see [5, §3.7.1] for a right-handed analogue). In
particular, for all a; b 2 A and all � 2 B we haveX

.�.1/ ˘ a/.�.2/ ˘ b/ D � ˘ ab and � ˘ 1A D ".�/: (20)

2. The Connes–Moscovici bialgebroid as universal Ae-ring

In this section, we introduce A-anchored Lie algebras and we show that the Connes–
Moscovici bialgebroidAˇUk.L/ˇA naturally associated to anA-anchored Lie algebra
satisfies a universal property as Ae-ring. In particular, unless stated otherwise, we assume
to work over a fixed base algebra A, possibly non-commutative. We conclude the section
with an extension of the PBW theorem to bialgebroids of the form Aˇ Uk.L/ˇ A.
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2.1. A-anchored Lie algebras

Definition 2.1. An A-anchored Lie algebra is an ordinary Lie algebra L over k together
with a Lie algebra morphism ! W L! Derk.A/, called the anchor. We will often write
X � a for !.X/.a/. A morphism of A-anchored Lie algebras between .L; !/ and .L0; !0/
is a Lie algebra morphism f W L! L0 such that !0 ı f D !. The category of A-anchored
Lie algebras and their morphisms will be denoted by AnchLieA. As a matter of notation,
we may write simply .A;L; !/ to mean the A-anchored Lie algebra .L; !/.

Remark 2.2. The reader needs to be warned that the terminology “A-anchored” used here
is inspired from the literature, but it neither strictly coincides with the classical notion of
A-anchored module, nor it properly extends it. In fact, in the literature, an “A-anchored
module” [42, §1] (also called “A-module with arrow” [41, §3] or “A-module fléché” [43,
§1]) is an A-module M over a commutative algebra A together with an A-linear map
M ! Derk.A/. Since, in the present framework, A is assumed to be preferably non-
commutative, the vector space Derk.A/ does not carry any natural A-module structure
and hence we do not have any reasonable way to speak about an A-linear anchor. In spite
of this, in order to limit the proliferation of different terminology in the field and trusting
that the non-commutative context will help in distinguishing between the two notions, we
decided to adopt the term “A-anchored” in this framework as well.

Example 2.3. Let us give a few important examples.

(a) The Lie algebra Derk.A/ with the identity map is an A-anchored Lie algebra.

(b) Any Lie algebra L is a Uk.L/-anchored Lie algebra.

(c) Any k-algebra A, with the associated Lie algebra structure L.A/ D .A; Œ�;��A/

given by the commutator bracket, is an A-anchored Lie algebra with anchor
induced by the adjoint representation. Namely,

L.A/! Derk.A/; a 7!
�
b 7! Œa; b�A

�
:

(d) A Lie–Rinehart algebra over a commutative algebraR (called in this way in hon-
our of G. S. Rinehart, who studied them in [44] under the name of .K;R/-Lie al-
gebras) is a Lie algebraL endowed with a (left)R-module structureR˝ L! L,
r ˝ X 7! r � X , and with a Lie algebra morphism ! W L! Derk.R/ such that,
for all r 2 R and X; Y 2 L,

!.r �X/ D r � !.X/ and ŒX; r � Y � D r � ŒX; Y �C !.X/.r/ � Y:

Clearly, any Lie–Rinehart algebra over R is an R-anchored Lie algebra.

(e) Let B be an A-bialgebroid and consider the vector space of primitive elements

Prim.B/ WD
®
X 2 B j �.X/ D X ˝A 1C 1˝A X

¯
:

This is a Lie algebra with the commutator bracket. Assume that X 2 Prim.B/. In
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light of Equation (20), X acts on A by derivations, which means that the assign-
ment

!B W Prim.B/! Derk.A/; X 7! X ˘ .�/;

is well defined. Moreover,

!B.XY � YX/.a/ D .XY / ˘ a � .YX/ ˘ a D X ˘ .Y ˘ a/ � Y ˘ .X ˘ a/
D !B.X/.!B.Y /.a// � !B.Y /.!B.X/.a//

D Œ!B.X/; !B.Y /�.a/

implies that !B is a morphism of Lie algebras and hence it is an anchor for
Prim.B/. As a matter of notation, we write �B W Prim.B/! B for the canonical
inclusion.

Definition 2.4. Assume that .L; !/ is an A-anchored Lie algebra.

(L1) An A-anchored Lie ideal .L0; !0/ in .L; !/ is a Lie ideal L0 in L together with
an anchor !0 such that the inclusion L0 � L is a morphism in AnchLieA. Equival-
ently, it is vector subspaceL0 �L such that ŒX;X 0�L 2L0 for allX 0 2L0;X 2L
with anchor !0 given by the restriction of !.

(L2) An A-anchored Lie subalgebra .L00; !00/ in .L; !/ is a Lie subalgebra L00 of
L together with an anchor !00 such that the inclusion L00 � L is a morphism in
AnchLieA. Equivalently, it is a vector subspace L00 � L such that ŒX 00; Y 00�L 2 L00

for all X 00; Y 00 2 L00 with anchor !00 given by the restriction of !.

(L3) If we have two A-anchored Lie algebras .L0; !0/ and .L00; !00/ and a Lie algebra
morphism ı W L00 ! Derk.L0/ such that�

!00.X 00/; !0.X 0/
�
D !0

�
ı.X 00/.X 0/

�
(21)

in Derk.A/ for all X 0 2 L0 and all X 00 2 L00, then we define the semi-direct
product of .L0; !0/ and .L00; !00/ to be the k-vector space L00 � L0 with Lie
bracket �

.X 00; X 0/; .Y 00; Y 0/
�

WD
�
ŒX 00; Y 00�L00 ; ı.X

00/.Y 0/ � ı.Y 00/.X 0/C ŒX 0; Y 0�L0
�

(22)

and anchor

L! Derk.A/; .X 00; X 0/ 7! !00.X 00/C !0.X 0/: (23)

We denote it by .L00 Ëı L0; !ı/.

For the sake of brevity, from now on we will only speak about ideals and subalgebras
without reporting the syntagma “A-anchored Lie” in front. Definition 2.4(L3) is consistent
in view of the following results.
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Lemma 2.5. The semi-direct product .L;!/ of two A-anchored Lie algebras .L0;!0/ and
.L00; !00/ is an A-anchored Lie algebra.

Proof. The fact that the semi-direct product is a Lie algebra follows from the fact that, as
Lie algebras, it is the semi-direct product of L0 and L00. Thus, we only need to check that
!ı is a Lie algebra morphism. To this aim, we compute directly�

!ı
�
.X 00; X 0/

�
; !ı

�
.Y 00; Y 0/

��
(23)
D
�
!00.X 00/C !0.X 0/; !00.Y 00/C !0.Y 0/

�
D
�
!00.X 00/; !00.Y 00/

�
C
�
!0.X 0/; !00.Y 00/

�
C
�
!00.X 00/; !0.Y 0/

�
C
�
!0.X 0/; !0.Y 0/

�
(21)
D !00

�
ŒX 00; Y 00�L00

�
C !0

�
ı.X 00/.Y 0/

�
� !0

�
ı.Y 00/.X 0/

�
C !0

�
ŒX 0; Y 0�L0

�
(23)
D !ı

��
ŒX 00; Y 00�L00 ; ı.X

00/.Y 0/ � ı.Y 00/.X 0/C ŒX 0; Y 0�L0
��

(22)
D !ı

��
.X 00; X 0/; .Y 00; Y 0/

��
for all X 0; Y 0 2 L0 and all X 00; Y 00 2 L00.

The following lemma should not be surprising.

Lemma 2.6. Let .L; !/ be an A-anchored Lie algebra and let .L0; !0/ and .L00; !00/ be
subalgebras of .L; !/. Then there exists a semi-direct product .L00 Ëı L0; !ı/ of .L0; !0/
and .L00; !00/ such that L00 Ëı L0 ! L, .X 00; X 0/ 7! X 00 C X 0, is an isomorphism of A-
anchored Lie algebras if and only if

• .L0; !0/ is an ideal in .L; !/;

• L D L00 C L0 as k-vector spaces;

• L0 \ L00 D 0 (that is, L D L00 ˚ L0).

If this is the case, then ı W L00 ! Derk.L0/ is given by X 00 7! ŒX 00;��L.

Proof. In one direction, notice that .L0; !0/ is an ideal in .L00 Ëı L0; !ı/ via the canonical
morphism L0 ! L00 ˚ L0, X 0 7! .0; X 0/, and that .L00; !00/ is a subalgebra of .L00 Ëı
L0; !ı/ via the canonical morphism L00 ! L00 ˚ L0, X 00 7! .X 00; 0/. Furthermore, one
recovers ı as �

.X 00; 0/; .0; X 0/
�
D
�
0; ı.X 00/.X 0/

�
for all X 0 2 L0; X 00 2 L00. In the other direction, assume that .L0; !0/ is an ideal in .L; !/
and that L D L00 ˚ L0 as k-vector spaces. Consider further the assignment ı W L00 !
Derk.L0/ given by X 00 7! ŒX 00; ��L (which is well defined because L0 is an ideal). It
satisfies �

!00.X 00/; !0.X 0/
�
D !.X 00/ ı !.X 0/ � !.X 0/ ı !.X 00/

D !
�
ŒX 00; X 0�L

�
D !

�
ı.X 00/.X 0/

�
D !0

�
ı.X 00/.X 0/

�
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for all X 0 2 L0, X 00 2 L00, which is (21), and so we may perform the semi-direct product
.L00 Ëı L0; !ı/. Then�

X 00 CX 0; Y 00 C Y 0
�
L
D ŒX 00; Y 00�L C ŒX

0; Y 00�L C ŒX
00; Y 0�L C ŒX

0; Y 0�L

D ŒX 00; Y 00�L00 C
�
ı.X 00/.Y 0/ � ı.Y 00/.X 0/C ŒX 0; Y 0�L0

�
;

so that L00 ˚ L0 Š L is a morphism of Lie algebras and moreover

!.X 00 CX 0/ D !.X 00/C !.X 0/ D !00.X 00/C !0.X 0/;

whence it is of A-anchored Lie algebras, too.

Remark 2.7. The reader has to be warned that, despite the definition of ideal and of
semi-direct product in Definition 2.4 has been inspired by the subsequent Lemma 4.1
and Proposition 4.3 and by the results in Section 4.3, they may turn out to be improper
terminologies in the future. In fact, it is not true in general that the quotient of an A-
anchored Lie algebra by an ideal is an A-anchored Lie algebra (unless the ideal has the
zero anchor) or that .L;!/ is a semi-direct product of .L0; !0/ and .L00; !00/ if and only if
there is a short exact sequence of A-anchored Lie algebras

0! L0
f
�! L

g
�! L00 ! 0 (24)

such that g admits a section � which is a morphism of A-anchored Lie algebras. On the
one hand, the canonical projection L00 Ëı L0 ! L00 is not a morphism of A-anchored Lie
algebras because it is not compatible with the anchors. On the other hand, in order to have
that !00 ı g D ! and that ! ı f D !0, we should have had that

!0 D ! ı f D !00 ı g ı f D 0;

which is not the case in general.
What one may observe is that .L;!/ is a semi-direct product of .L0; !0/ and .L00; !00/

if and only if there is a short exact sequence of Lie algebras (24) such that g admits a
section � and both f and � are morphisms of A-anchored Lie algebras (but g is not, in
general).

2.2. A universal Ae-ring construction

Assume that we are given an A-anchored Lie algebra .L;!/. Recall that we may consider
the universal enveloping algebra Uk.L/ of L and that there is a canonical injective k-
linear map

jL W L! Uk.L/; X 7! x; (25)

which allows us to identify X with its image x in Uk.L/. The anchor ! makes of A a left
representation of L with L acting as derivations, that is, we have a Lie algebra morphism

L
!
�! Derk.A/ � L.Endk.A// (26)
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where we have that L.Endk.A// is the Lie algebra associated to the associative algebra
.Endk.A/; ı; idA/. By the universal property of the universal enveloping algebra, there is
a unique algebra morphism

� W Uk.L/! Endk.A/

which extends !.

Lemma 2.8. The base algebra A is naturally an Uk.L/-module algebra.

Proof. See, for instance, [11, Example 6.1.13(3)]. Explicitly,

x � a D !.X/.a/; x � 1A
(26)
D 0 and u � a D �.u/.a/ (27)

for all X 2 L, u 2 Uk.L/ and a 2 A.

As a consequence of Lemma 2.8, we may consider the Connes–Moscovici A-bialge-
broid Aˇ Uk.L/ˇ A. For the sake of simplicity, we will often denote it by BL. As an
Ae-ring, it comes endowed with a Lie algebra morphism

JLWL! L.BL/; X 7! 1˝ x ˝ 1;

which satisfies �
JL.X/; �BL

.a˝ bo/
�

BL
D �BL

.X � .a˝ bo// (28)

for all a; b 2 A and all X 2 L, where

X � .a˝ bo/ D .X � a/˝ bo C a˝ .X � b/o

is the L-module structure on the tensor product of two L-modules. Equivalently, �BL
W

Ae ! BL is a morphism of L-modules, where BL has the L-module structure induced
by JL.

The Ae-ring BL with JL is universal among pairs .R; �L/ satisfying these properties.

Theorem 2.9. Given an Ae-ring R with k-algebra morphism �A W A
e ! R and given a

Lie algebra morphism �L W L! L.R/ such that�
�L.X/; �A.a˝ b

o/
�

R
D �A.X � .a˝ b

o//; (29)

for all a; b 2 A and all X 2 L, there exists a unique morphism of Ae-rings ˆ W BL ! R

such that ˆ ı JL D �L. It is explicitly given by

ˆ W BL ! R; a˝ u˝ b 7! �A.a˝ b
o/�0.u/; (30)

where �0 W Uk.L/! R is the unique morphism of k-algebras such that �0 ı jL D �L.
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Proof. By the universal property of the universal enveloping k-algebra Uk.L/, there
exists a unique morphism of k-algebras �0 W Uk.L/! R such that �0 ı jL D �L. Now,
set U WD Uk.L/ and consider the k-linear map

ˆ W Aˇ U ˇ A! R; a˝ u˝ b 7! �A.a˝ b
o/�0.u/

of (30). It follows immediately from the definition that

ˆ ı �BL
D �A and ˆ ı JL D �L:

Now, a straightforward check using (29) and induction on a PBW basis of U shows that

�0.u/�A.a˝ b
o/ D

X
�A
�
.u.1/ � a/˝ .u.3/ � b/

o
�
�0.u.2// (31)

for all u 2 U and a; b 2 A. In view of this, we have

ˆ
�
.a˝ u˝ b/.a0 ˝ v ˝ b0/

�
(18)
D

X
ˆ
�
a.u.1/ � a

0/˝ u.2/v ˝ .u.3/ � b
0/b
�

(30)
D

X
�A
�
a.u.1/ � a

0/˝ ..u.3/ � b
0/b/o

�
�0.u.2/v/

D

X
�A.a˝ b

o/�A
�
.u.1/ � a

0/˝ .u.3/ � b
0/o
�
�0.u.2//�

0.v/

(31)
D �A.a˝ b

o/�0.u/�A.a
0
˝ b0

o
/�0.v/

D ˆ.a˝ u˝ b/ˆ.a0 ˝ v ˝ b0/

for all u; v 2 U , a; a0; b; b0 2 A. Thus, ˆ is a morphism of Ae-rings and it is clearly the
unique one satisfying ˆ ı JL D �L.

Corollary 2.10. Given an A-anchored Lie algebra .L; !/, any representation � W L!
Endk.M/ of L into an A-bimodule M satisfying the Leibniz condition

�.X/.a �m � b/ D a � �.X/.m/ � b C !.X/.a/ �m � b C a �m � !.X/.b/ (32)

for all a; b 2 A, X 2 L and m 2 M , makes of M a left A ˇ Uk.L/ ˇ A-module, and
conversely.

Proof. If M is an A-bimodule, then the assignments

sE W A! Endk.M/; a 7! Œm 7! a �m�;

and
tE W A

o
! Endk.M/; bo 7! Œm 7! m � b�;

make of Endk.M/ an Ae-ring with �A W Ae ! Endk.M/; a˝ bo 7! sE .a/tE .b
o/. If we

consider the Lie algebra morphism �L WD �, then equation (32) is exactly condition (29)
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and hence there is a unique morphism of Ae-rings R W A ˇ Uk.L/ ˇ A ! Endk.M/

such that R ı JL D �. The other way around, if we have a morphism of Ae-rings R W
AˇUk.L/ˇA! Endk.M/ and we compose it with JL we get a Lie algebra morphism
�L W L! Endk.M/ such that

�L.X/.a �m � b/

D .R.1A ˝ x ˝ 1A/ ı �A.a˝ b
o//.m/

D R..1A ˝ x ˝ 1A/.a˝ 1U ˝ b//.m/

(18)
D R

�
.a˝ x ˝ b/C .!.X/.a/˝ 1U ˝ b/C .a˝ 1U ˝ !.X/.b//

�
.m/

D a � �L.X/.m/ � b C !.X/.a/ �m � b C a �m � !.X/.b/:

Remark 2.11. Observe that the algebra maps �0 W Uk.L/!R and �A W Ae !R satisfy
(31) if and only if they satisfyX

�0.u.1//�A

�
a˝

�
S.u.2// � b

�o�
D

X
�A.u.1/ � a˝ b

o/�0.u.2//

for all u2U , a;b 2A. This implies that theAe-ring morphismˆ W Aˇ Uk.L/ˇ A! R

in Theorem 2.9 coincides, up to the isomorphism of A-bialgebroids from [39, Theorem
2.5], with the algebra map ! of [39, Proposition 3.1].

Proposition 2.12. Let B WD ¹X˛ j ˛ 2 Sº be a k-basis for L, where S is an ordered
set of indexes. Then BL is a free left Ae-module with basis given by 1A ˝ 1U ˝ 1A and
1A ˝ x˛1 � � � x˛n ˝ 1A where the x˛1 � � � x˛n ’s are the cosets of the standard monomials
X˛1 � � �X˛n in the basis B (see [26, §V.2]).

Proof. It follows from the PBW theorem (see, for instance, [26, Theorem V.2.3]) and the
definition of the left Ae-module structure on BL.

3. The Connes–Moscovici bialgebroid as universal enveloping
bialgebroid

Our next aim is to prove that the Connes–Moscovici bialgebroid BL D Aˇ Uk.L/ˇ A

satisfies a universal property as A-bialgebroid as well, in the form of an adjunction be-
tween the category of A-anchored Lie algebras and the category of A-bialgebroids.

3.1. The primitive functor

In light of Example 2.3(e), we may consider the assignment

P W BialgdA ! AnchLieA

given on objects by P .B/ D .Prim.B/; !B/ and on morphisms by simply (co)restricting
any � W B ! B 0 to the primitive elements, that is � ı �B D �B0 ı P .�/. The latter gives
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a well-defined morphism of A-anchored Lie algebras because it is compatible with the
commutator bracket and

!B0.�.X//.a/ D "B0.�.X/tB0.a
o// D "B0.�.X/�.tB.a

o///

D "B0.�.XtB.a
o/// D "B.XtB.a

o// D !B.X/.a/

for all X 2 Prim.B/ and a 2 A. Summing up, we have the following result.

Proposition 3.1. There is a well-defined functor P W BialgdA ! AnchLieA which assigns
to every A-bialgebroid B its Lie algebra of primitive elements Prim.B/ with anchor !B W

Prim.B/! Derk.A/ sending X to

!B.X/ W A! A; a 7! !B.X/.a/ D X ˘ a: (33)

Next lemma states a property of the primitive elements of an A-bialgebroid that we
already observed for BL in (28) and that will be useful to prove the universal property in
the forthcoming section.

Lemma 3.2. For B an A-bialgebroid, every primitive element X 2 Prim.B/ satisfies

Xt.ao/ � t .ao/X D t
�
"
�
Xt.ao/

�o� and Xs.a/ � s.a/X D s
�
"
�
Xs.a/

��
(34)

for all a 2 A. In particular,�
X; �B.a˝ b

o/
�

B
D �B

�
X ˘ .a˝ bo/

�
(35)

for all X 2 Prim.B/ and all a; b 2 A.

Proof. In view of the definition of B ˝A B and of B �A B we have that

Xt.ao/˝A 1B C t .a
o/˝A X

(3)
D X ˝A s.a/C 1B ˝A Xs.a/:

By resorting to the left-hand side identity in (3), this relation can be written equivalently
as

Xt.ao/˝A 1B C t .a
o/˝A X D t .a

o/X ˝A 1B C 1B ˝A Xs.a/ (36)

or
Xt.ao/˝A 1B C 1B ˝A s.a/X D X ˝A s.a/C 1B ˝A Xs.a/: (37)

By applying B ˝A " to both sides of (36) and by recalling that ".X/ D 0, we get

Xt.ao/ D t .ao/X C t
�
"
�
Xs.a/

�o� (17)
D t .ao/X C t

�
"
�
Xt.ao/

�o�
:

If we apply instead "˝A B to (37) then we get

s
�
"
�
Xt.ao/

��
C s.a/X D Xs.a/;

which gives the other relation in (34).
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3.2. An adjunction between AnchLieA and BialgdA

We show now how the Connes–Moscovici bialgebroid construction provides a left adjoint
to the functor P in a way that mimics the well-known “universal enveloping algebra/space
of primitives” adjunction

Bialgk

Prim.�/
		

a

Liek:

Uk.�/

II

(38)

Remark 3.3. Despite being well-known, it seems that no “classical” reference explicitly
reports the adjunction (38) in the form we stated it here. Nevertheless, it is straightforward
to check that the involved functors are well defined (they are, in fact, slight adjustments of
the functors considered in [34, page 239]) and that they form an adjoint pair. The unitL!
Prim.Uk.L// (induced by the canonical map jL of (25)) and the counitUk.Prim.B//!B

(the unique algebra morphism extending the Lie algebra inclusion Prim.B/ � L.B/) are
the obvious natural morphism which are proved to be bijective in [34, Theorem 5.18].

Proposition 3.4. Let .L; !/ be an A-anchored Lie algebra. Given an A-bialgebroid B

and given a Lie algebra morphism �L W L! L.B/ such that �L.L/ � Prim.B/ and

�L.X/ ˘ a D !.X/.a/ (39)

for all a 2 A and for all X 2 L, there exists a unique morphism of A-bialgebroids ˆ W
BL ! B such that ˆ ı JL D �L and it is explicitly given by (30).

Proof. Set U WDUk.L/ and let �0 WU !B be the unique k-algebra map extending �L. In
view of (35) and (39), �B and �L satisfy (29). Thus, by Theorem 2.9, there exists a unique
morphism of Ae-rings ˆ W BL ! B satisfying ˆ ı JL D �L. Moreover, �B W A

e ! B

is always a morphism of A-bialgebroids, where Ae has the A-bialgebroid structure from
Example 1.7(b). Therefore, in view of Remark 2.11 and of [39, Theorem 3.2], if we show
that .1A; �0/ W .k; U /! .A;B/ is a morphism of bialgebroids, then we can conclude that
ˆ is a morphism of A-bialgebroids and finish the proof. Equivalently, we need to check
that �0 W U ! B satisfiesX

�0.u.1//˝A �
0.u.2// D

X
�0.u/.1/ ˝A �

0.u/.2/ (40)

and
"B.�

0.u// D "U .u/1A (41)

for all u 2 U . Since, in view of the PBW theorem, U admits a k-basis of the form

¹1U º [ ¹x1 � � � xn j n � 1;X1; : : : ; Xn 2 Lº;
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it is enough to check (40) and (41) on the elements of this basis. A direct computation
shows that "B.�

0.1U // D "B.1B/ D 1A D "U .1U /1A and that

"B

�
�0.x1 � � � xn/

�
D "B

�
�0.x1 � � � xn�1/�

0.xn/
� (B5)
D "B

�
�0.x1 � � � xn�1/s."B.�

0.xn///
�

D "B

�
�0.x1 � � � xn�1/s."B.�L.Xn///

�
D 0 D "U .x1 � � � xn/1A

for all n � 1. Therefore, relation (41) holds. Concerning (40), we notice first of all that

�0.1U /˝A �
0.1U / D 1B ˝A 1B D

X
�0.1U /.1/ ˝A �

0.1U /.2/;

which shows that it is satisfied for u D 1U , and we prove by induction on n � 1 that it
also holds for u D x1 � � � xn, where X1; : : : ; Xn 2 L. For n D 1 we haveX

�0.x.1//˝A �
0.x.2// D �

0.x/˝A �
0.1U /C �

0.1U /˝A �
0.x/

D �L.X/˝A 1B C 1B ˝A �L.X/

D

X
�0.x/.1/ ˝A �

0.x/.2/:

Assume now that (40) holds for n � 1, that is, that we haveX
�0..x1 � � � xn/.1//˝A �

0..x1 � � � xn/.2// D
X

�0.x1 � � � xn/.1/ ˝A �
0.x1 � � � xn/.2/

(42)
for all X1; : : : ; Xn 2 L and hence, in particular,X

�0..x1 � � � xn/.1//˝A �
0..x1 � � � xn/.2// 2 B �A B:

Let us computeX
�0..x1x2 � � � xnC1/.1//˝A �

0..x1x2 � � � xnC1/.2//

D

X
�0..x1/.1/.x2 � � � xnC1/.1//˝A �

0..x1/.2/.x2 � � � xnC1/.2//

D

X
�0..x1/.1//�

0..x2 � � � xnC1/.1//˝A �
0..x1/.2//�

0..x2 � � � xnC1/.2//

(11)
D

�X
�0..x1/.1//˝A �

0..x1/.2//
�

�

�X
�0..x2 � � � xnC1/.1//˝A �

0..x2 � � � xnC1/.2//
�

(42)
D .�L.X1/˝A 1B C 1B ˝A �L.X1//

�X
�0.x2 � � � xnC1/.1/ ˝A �

0.x2 � � � xnC1/.2/

�
(11)
D

X
�0.x1/.1/�

0.x2 � � � xnC1/.1/ ˝A �
0.x1/.2/�

0.x2 � � � xnC1/.2/

D

X
.�0.x1/�

0.x2 � � � xnC1//.1/ ˝A .�
0.x1/�

0.x2 � � � xnC1//.2/

D

X
�0.x1x2 � � � xnC1/.1/ ˝A �

0.x1x2 � � � xnC1/.2/;

so that it holds for nC 1 and we may conclude that it holds for every n by induction.
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Corollary 3.5. Let .L;!/ be an A-anchored Lie algebra. Given an A-bialgebroid B and
given a morphism of A-anchored Lie algebras �L W .L;!/! .Prim.B/; !B/, there exists
a unique morphism of A-bialgebroids ˆ W BL ! B such that ˆ ı JL D �B ı �L, where
�B W Prim.B/! B is the canonical inclusion.

Proof. The morphism of Lie algebras .�B ı �L/ W L! L.B/ satisfies (39) if and only if
�L is of A-anchored Lie algebras.

Theorem 3.6. The assignment

B W AnchLieA ! BialgdA; .L; !/ 7! Aˇ Uk.L/ˇ A

induces a well-defined functor which is left adjoint to the functor

P W BialgdA ! AnchLieA; B 7! .Prim.B/; !B/;

where !B W Prim.B/! Derk.A/ is the anchor of equation (33). Write

#B W Uk.Prim.B//! B

for the unique algebra map extending the inclusion �B W Prim.B/ � B. Then the unit and
the counit of this adjunction are given by


L W .L; !/! .Prim.Aˇ Uk.L/ˇ A/; !AˇUk.L/ˇA/;

X 7! JL.X/ D 1A ˝ x ˝ 1A;
(43)

and

�B W Aˇ Uk.Prim.B//ˇ A! B; a˝ u˝ b 7! sB.a/tB.b
o/#B.u/;

respectively, where x D jL.X/, as usual. Furthermore, every component of the unit is a
monomorphism and hence B is faithful.

Proof. We need to see how B operates on morphisms. Let f W .L; !/! .L0; !0/ be a
morphism of A-anchored Lie algebras. In view of the fact that

!BL
.
L.X//.a/

(43)
D !BL

.1A ˝ x ˝ 1A/.a/
(33)
D .1A ˝ x ˝ 1A/ ˘ a

(19)
D "BL

�
.1A ˝ x ˝ 1A/.a˝ 1U ˝ 1A/

�
(18)
D "BL

�
.x � a/˝ 1U ˝ 1A C a˝ x ˝ 1A C a˝ 1U ˝ .x � 1A/

�
(27)
D x � aC a"U .x/

(27)
D !.X/.a/

for all X 2 L and a 2 A, the morphism 
L W L ! Prim.BL/ induced by JL (namely,
we have JL D �BL

ı 
L) is a morphism of A-anchored Lie algebras for every L in
AnchLieA and hence, by Corollary 3.5, there exists a unique morphism of A-bialgebroids
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ˆ W BL ! BL0 such that ˆ ı JL D JL0 ı f D �BL0
ı 
L0 ı f and it is explicitly given

by (30). We set B.f / D ˆ.
In order to conclude, consider the natural assignment

BialgdA.Aˇ Uk.L/ˇ A;B/! AnchLieA.L; Prim.B//;

‰ 7! Prim.‰/ ı 
L:
(44)

Corollary 3.5 states that for every �L in AnchLieA.L; Prim.B// there exists a unique ˆ
in BialgdA.Aˇ Uk.L/ˇ A;B/ such that ˆ ı JL D �B ı �L, which implies that (44) is
bijective.

Remark 3.7. In the context of the proof above, let F W U ! U 0 be the unique k-algebra
morphism satisfying F ı jL D jL0 ı f . Since

 W U ! BL0 ; u 7! 1A ˝ F.u/˝ 1A;

is a k-algebra morphism such that  ı jL D JL0 ı f , the unique morphism of A-bialge-
broids B.f / W BL ! BL0 induced by f W L! L0 has the form

B.f /.a˝ u˝ b/ D a˝ F.u/˝ b

for all a; b 2 A and u 2 U . Thus, if f W .L; !/! .L0; !0/ is a morphism of A-anchored
Lie algebras, we will also write A ˇ U.f / ˇ A to denote the A-bialgebroid morphism
B.f /, where U.f / W Uk.L/! Uk.L

0/ is the unique k-algebra morphism such that

U.f / ı jL D jL0 ı f:

Example 3.8. Let A be a finite-dimensional algebra and let B D Endk.A/ with the
A-bialgebroid structure of Example 1.7(c). It is clear that Prim.B/ D Derk.A/. Then,
the image of the associated Connes–Moscovici bialgebroid A ˇ Uk.Derk.A// ˇ A in
Endk.A/ via �B is the Ae-subring of Endk.A/ generated by Ae and Derk.A/. In this
sense, it can be interpreted as the derivation Ae-ring of A in the sense of [33, Chapter 15,
§1.4].

In particular, the counit of the adjunction is not surjective in general. We will see with
Corollary 4.4 why also the unit is not surjective.

4. An intrinsic description of A ˇ Uk.L/ ˇ A

Inspired by the results of Milnor–Moore and Moerdijk–Mrčun, which give an intrinsic
description of those bialgebras/bialgebroids that are universal enveloping algebras of Lie
algebras/Lie–Rinehart algebras, we look for necessary and sufficient conditions on an A-
bialgebroid B in order to claim that it is a Connes–Moscovici bialgebroidAˇUk.L/ˇA

for some A-anchored Lie algebra .L; !/.
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4.1. The primitives of the Connes–Moscovici bialgebroid

To begin with, we need a more detailed analysis of the space of primitives of BL.

Lemma 4.1. Let B be an A-bialgebroid. Then the k-vector subspace

hsB � tBi WD ¹sB.a/ � tB.a
o/ j a 2 Aº � B

is an ideal in Prim.B/. The Lie bracket is explicitly given by�
sB.a/ � tB.a

o/; sB.b/ � tB.b
o/
�
D sB

�
Œa; b�A

�
� tB

�
Œa; b�oA

�
and the anchor by

!0B W hsB � tBi ! Derk.A/; sB.a/ � tB.a
o/ 7! Œa;��A;

for all a; b 2 A.

Proof. Set s WD sB and t WD tB . The fact that hs � ti is contained in Prim.B/ follows from

�B.s.a/ � t .a
o//

(13)
D s.a/˝A 1B � 1B ˝A t .a

o/

(3)
D
�
s.a/ � t .ao/

�
˝A 1B � 1B ˝A

�
s.a/ � t .ao/

�
:

The fact that it is a Lie ideal in Prim.B/ with respect to the commutator bracket follows
because �

X; s.a/ � t .ao/
�

B
D Xs.a/ �Xt.ao/ � s.a/X C t .ao/X

(34)
D s

�
".Xs.a//

�
� t
�
".Xt.ao//o

�
(B5)
D s

�
".Xs.a//

�
� t
�
".Xs.a//o

�
2 hs � ti:

Now, a direct computation shows that�
s.a/ � t .ao/; s.b/ � t .bo/

�
B
D s

�
Œa; b�A

�
� t
�
Œa; b�oA

�
for all a; b 2 A as claimed. Furthermore,

!B

�
s.a/ � t .ao/

�
.b/

(33)
D
�
s.a/ � t .ao/

�
˘ b

(19)
D "B.s.a/s.b// � "B.t.a

o/t.bo// D Œa; b�A

for all a; b 2 A and hence the proof is concluded.

Lemma 4.1 makes it clear why the counit �B W BPrim.B/ ! B of Theorem 3.6 is not
injective in general. Namely, every element of the form

a˝ 1U ˝ 1A � 1A ˝ 1U ˝ a � 1A ˝ .sB.a/ � tB.a
o//˝ 1A

for a 2 A lives in the kernel of �B .
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Example 4.2. Consider the A-bialgebroid B D Endk.A/ from Example 1.7(c). As we
have seen in Example 3.8, the primitive elements of B are the derivations of A. It is easy
to see that hs � ti are exactly the inner derivations.

For H a Hopf algebra and A an H -module algebra, we will often write

1A ˝ Prim.H/˝ 1A

for ¹1A ˝ h˝ 1A j h 2 Prim.H/º.

Proposition 4.3. For any Hopf algebra H and any H -module algebra A, we have that
1A ˝ Prim.H/ ˝ 1A and hs � ti are subalgebras of Prim.A ˇ H ˇ A/. Moreover, we
have an isomorphism of A-anchored Lie algebras�

1A ˝ Prim.H/˝ 1A
�
Ëı hs � ti Š Prim.AˇH ˇ A/

given by the vector space sum.

Proof. The fact that hs � ti is an ideal in Prim.A ˇ H ˇ A/ has been established in
Lemma 4.1 for a general A-bialgebroid. The fact that 1A ˝ Prim.H/˝ 1A is a subalgebra
is a straightforward computation. Moreover, notice that if

1A ˝X ˝ 1A D a˝ 1H ˝ 1A � 1A ˝ 1H ˝ a

for some X 2 Prim.H/ and some a 2 A, then

0 D .A˝ "H ˝ A/.1A ˝X ˝ 1A/ D .A˝ "H ˝ A/.a˝ 1H ˝ 1A � 1A ˝ 1H ˝ a/

D a˝ 1A � 1A ˝ a

which implies that

a˝ 1H ˝ 1A � 1A ˝ 1H ˝ a D �.a˝ 1
o
A � 1A ˝ a

o/.1A ˝ 1H ˝ 1A/ D 0:

In view of Lemma 2.6, we are left to check that

Prim.AˇH ˇ A/ � .1A ˝ Prim.H/˝ 1A/C hs � ti: (45)

Let us consider a primitive element � 2 AˇH ˇ A. Fix a basis ¹ei j i 2 Sº for A as
a vector space, where S is some set of indexes with a distinguished index 0 and e0 D 1A.
Write

� D
X
i;j

ei ˝ hij ˝ ej

where almost all the hij are 0. Consider also the dual elements ¹e�i j i 2 Sº of the ei ’s.
Since � is primitive, the following relation holdsX

i;j

.ei ˝ .hij /.1/ ˝ 1A/˝A .1A ˝ .hij /.2/ ˝ ej /

D

X
i;j

.ei ˝ hij ˝ ej /˝A .1A ˝ 1H ˝ 1A/

C .1A ˝ 1H ˝ 1A/˝A .ei ˝ hij ˝ ej /: (46)
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For k ¤ 0 ¤ l , let us apply the k-linear morphism .e�
k
˝H ˝ A/˝A .A˝H ˝ e

�
l
/ to

both sides of the identity (46). We find out thatX
..hkl /.1/ ˝ 1A/˝A .1A ˝ .hkl /.2// D 0

from which it follows that hkl D 0, by applying .H ˝ A/ ˝A .A ˝ "H / to both sides
again. Therefore,

� D 1A ˝ h00 ˝ 1A C
X
i¤0

ei ˝ hi0 ˝ 1A C
X
i¤0

1A ˝ h0i ˝ ei :

Consider again the identity (46), that now rewritesX
.1A ˝ .h00/.1/ ˝ 1A/˝A .1A ˝ .h00/.2/ ˝ 1A/

C

X
i¤0

.ei ˝ .hi0/.1/ ˝ 1A/˝A .1A ˝ .hi0/.2/ ˝ 1A/

C

X
i¤0

.1A ˝ .h0i /.1/ ˝ 1A/˝A .1A ˝ .h0i /.2/ ˝ ei /

D .1A ˝ h00 ˝ 1A/˝A .1A ˝ 1H ˝ 1A/C .1A ˝ 1H ˝ 1A/˝A .1A ˝ h00 ˝ 1A/

C

X
i¤0

.ei ˝ hi0 ˝ 1A/˝A .1A ˝ 1H ˝ 1A/

C .1A ˝ 1H ˝ 1A/˝A .ei ˝ hi0 ˝ 1A/

C

X
i¤0

.1A ˝ h0i ˝ ei /˝A .1A ˝ 1H ˝ 1A/

C .1A ˝ 1H ˝ 1A/˝A .1A ˝ h0i ˝ ei /:

If we apply .1�A ˝H ˝ A/˝A .A˝H ˝ 1
�
A/ then we get thatX

..h00/.1/ ˝ 1A/˝A .1A ˝ .h00/.2//

D .h00 ˝ 1A/˝A .1A ˝ 1H /C .1H ˝ 1A/˝A .1A ˝ h00/

C

X
i¤0

.1H ˝ 1A/˝A .ei ˝ hi0/C .h0i ˝ ei /˝A .1A ˝ 1H /: (47)

By resorting to the k-linear isomorphism .H ˝ A/ ˝A .A ˝ H/ Š H ˝ A ˝ H , the
equality (47) becomesX

.h00/.1/ ˝ 1A ˝ .h00/.2/ D h00 ˝ 1A ˝ 1H C 1H ˝ 1A ˝ h00

C

X
i¤0

h0i ˝ ei ˝ 1H C 1H ˝ ei ˝ hi0: (48)

By applying H ˝ 1�A ˝H to both sides of the identity (48) we get thatX
.h00/.1/ ˝ .h00/.2/ D h00 ˝ 1H C 1H ˝ h00;
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whence h00 is primitive in H , and by applying H ˝ e�
k
˝H for all k ¤ 0 we get

1H ˝ hk0 C h0k ˝ 1H D 0: (49)

By applying further H ˝ "H we find that h0k D �".hk0/1H and hence from (49) we
deduce that

0 D 1H ˝ hk0 � ".hk0/1H ˝ 1H D 1H ˝ .hk0 � ".hk0/1H /;

which in turn entails that hk0 � ".hk0/1H D 0 by applying "H ˝H to both sides, that is,
hk0 D ".hk0/1H for all k ¤ 0. Summing up,

� D 1A ˝ h00 ˝ 1A C
X
k¤0

".hk0/.ek ˝ 1H ˝ 1A � 1A ˝ 1H ˝ ek/

which proves that the inclusion (45) holds.

Corollary 4.4. For any A-anchored Lie algebra .L; !/ we have

Prim.Aˇ Uk.L/ˇ A/ Š L Ëı
˝
sBL
� tBL

˛
:

Proof. It follows from [34, Theorem 5.18] that Prim.Uk.L// D L. Moreover, it is clear
that L Š 1A ˝ L˝ 1A as A-anchored Lie algebras.

It is evident from Corollary 4.4 why, in general, the unit 
L W L! Prim.BL/ from
Theorem 3.6 cannot be surjective.

4.2. Primitively generated bialgebroids

Let B be an A-bialgebroid and consider the Ae-bimodule

MB WD A
e
˝ Prim.B/˝ Ae:

There is a canonical Ae-bilinear map 'B WMB ! B given by

Ae ˝ Prim.B/˝ Ae
�B˝�B˝�B
���������! B ˝B ˝B

m2
��! B;

where �B W Prim.B/! B is the inclusion and

m2 W B ˝B ˝B ! B; x ˝ y ˝ z 7! xyz:

Therefore, by the universal property of the tensor Ae-ring TAe .MB/ (considered as the
free Ae-ring on the Ae-bimodule MB ; see [30, Theorem VII.3.2] or [37, Proposition
1.4.1]), there exists a unique morphism of Ae-rings

ˆB W TAe .MB/! B (50)

that extends 'B . We set &B WMB ! TAe .MB/ for the canonical inclusion.
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Since TAe .MB/ is a graded Ae-ring with grading given by

TAe .MB/0 WD A
e and TAe .MB/n WDMB ˝Ae � � � ˝Ae MB .n times/;

for all n � 1, B inherits a natural filtration as Ae-ring given by

Fn.B/ WD ˆB

� nM
kD0

TAe .MB/k

�
: (51)

We set by definition F�1.B/ WD 0, as usual. Notice that F1.B/ is the Ae-subbimodule of
B generated by Ae and Prim.B/, thus we call ¹Fn.B/ j n 2 Nº the primitive filtration.

Example 4.5. Let .L; !/ be an A-anchored Lie algebra and consider the Connes–
Moscovici bialgebroid BL D Aˇ Uk.L/ˇ A. Recall that Uk.L/ is a filtered k-algebra
with filtration induced by the canonical projection Tk.L/! Uk.L/. Then

Fn.Aˇ Uk.L/ˇ A/ D A˝ Fn.Uk.L//˝ A: (52)

Definition 4.6. We say that an A-bialgebroid B is primitively generated if

B D
[
n�0

Fn.B/:

Remark 4.7. Definition 4.6 is given in the same spirit of [34, page 239]. In particular,
the Connes–Moscovici bialgebroid AˇUk.L/ˇA of an A-anchored Lie algebra .L;!/
is primitively generated. Notice also that B is primitively generated if and only if ˆB of
(50) is surjective.

Proposition 4.8. The canonical morphism ˆB is natural in B 2 BialgdA. Namely, every
morphism � WB!B 0 ofA-bialgebroids induces a morphism T� W TAe .MB/! TAe .MB0/

of graded Ae-rings in a functorial way and the following diagram commutes

TAe .MB/
T�
//

ˆB

��

TAe .MB0/

ˆB0

��

B
�

// B 0:

(53)

Proof. By the universal property of the tensor Ae-ring and a standard argument, any
morphism � W B ! B 0 of A-bialgebroids induces a unique morphism T� W TAe .MB/!

TAe .MB0/ of graded Ae-rings extending Ae ˝ P .�/˝ Ae . It satisfies

� ıˆB D ˆB0 ı T� :

Corollary 4.9. Any morphism � W B ! B 0 of A-bialgebroids is filtered with respect to
the primitive filtration, that is to say, �.Fn.B// � Fn.B 0/ for all n � 0. In particular, the
component of the counit �B corresponding to an A-bialgebroid B is a filtered morphism.
Furthermore, �B is surjective if and only if B is primitively generated.
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Proof. The fact that any morphism ofA-bialgebroids is filtered follows from the commut-
ativity of (53) and the definition of the primitive filtration. Now, set U WD Uk.Prim.B//
and L WD Prim.B/. Since, by Proposition 4.3,

Prim.Aˇ U ˇ A/ D .1A ˝ L˝ 1A/˚ hsBL
� tBL

i

and since P .�B/.1A ˝ X ˝ 1A/ D X for all X 2 Prim.B/, it is clear that P .�B/ is sur-
jective. Thus, T�B

W TAe .MBL
/ ! TAe .MB/ is surjective as well and we know from

Example 4.5 that ˆBL
is surjective. Since, by naturality of ˆB , the following diagram

commutes

TAe .MBL
/

T�B // //

ˆBL
����

TAe .MB/

ˆB

��

BL �B

// B;

�B is surjective if and only if ˆB is.

Example 4.10. Let A D Matn.k/ be the algebra of n � n matrices with coefficients in k,
for n � 2. Consider again the bialgebroid B D Endk.A/ of Example 1.7(c), its space of
primitive elements Prim.B/D Derk.A/ and the associated Connes–Moscovici bialgebroid
Aˇ Uk.Derk.A//ˇ A as in Example 3.8. Every f 2 Endk.A/ is uniquely determined
by the images f .Ei;j / D

P
h;k f

i;j

h;k
Eh;k for all i; j and it satisfies

f .M/ D
X
h;k

�X
i;j

mi;jf
i;j

h;k

�
Eh;k D

X
h;k

X
i;j

f
i;j

h;k
Eh;iMEj;k

D �B

� X
i;j;h;k

f
i;j

h;k
Eh;i ˝Ej;k

�
.M/;

whence �B is surjective and B is primitively generated.

Let B be an A-bialgebroid. Recall that, given the filtered left Ae-module B with
filtration ¹Fn.B/ j n� 0º as in (51), we can consider the associated graded leftAe-module
gr.B/ as in Section 1.1. Since �B is a morphism of filtered Ae-modules, it induces a left
Ae-linear homomorphism

gr.�B/ W gr.Aˇ U.Prim.B//ˇ A/! gr.B/:

The following lemma, which should be well known, is implicitly needed in the proof
of Theorem 4.13 below. Its statement resembles closely [35, Remark 2.4]. Its proof can be
deduced from the results in [16, Appendix B] and it follows closely the argument reported
in [47, page 229] for coalgebras over a field, but we sketch it here for the sake of the
reader.
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Lemma 4.11. Let B be a primitively generated A-bialgebroid. Then .sBto ; �B ; "B/ is
a filtered A-coring with the primitive filtration. In particular, if grn.B/ is a projective left
Ae-module for all n � 0, then Fn.B/ is a projective left Ae-module for all n � 0, the map

gr.B/˝A gr.B/! gr.B ˝A B/;

.x C Fh.B//˝A .y C Fk.B// 7! x ˝A y C FhCkC1.B ˝A B/;

is an isomorphism of left Ae-modules and the A-coring structure on B induces an A-
coring structure on gr.B/. Furthermore, any morphism � W B ! B 0 of primitively gen-
erated A-bialgebroids which are graded projective as A-corings induces a morphism of
graded A-corings gr.�/ W gr.B/! gr.B 0/.

Proof. It follows from Lemma 1.1 and Proposition 1.2, once proved that B with the
filtration ¹Fn.B/ j n 2 Nº is a filtered A-coring. To this aim observe that, as a left Ae-
submodule of B, Fn.B/ is generated by 1B and by elements of the form X1 � � �Xk for
1 � k � n and Xi 2 Prim.B/ for all i . By applying �B we find that

�B.1B/ D 1B ˝A 1B 2 F0.B/˝A F0.B/;

and that

�B.X1 � � �Xk/ D

kY
iD1

.Xi ˝A 1B C 1B ˝A Xi / D
X
tCsDk

Xp1 � � �Xpt ˝A Xq1 � � �Xqs

belongs to
P
tCsDk Ft .B/˝A Fs.B/, where

¹pi j 1 � i � tº [ ¹qj j 1 � j � sº D ¹1; : : : ; kº;

p1 < p2 < � � �< pt and q1 < q2 < � � �< qs . By left Ae-linearity of�B , we may conclude
that it is filtered. On the other hand, "B is obviously filtered (by definition of the filtration
on A). Therefore, .sBto ; �B ; "B/ is in fact a filtered A-coring.

In view of Lemma 4.11 and by mimicking [35, page 3140] and Section 1.2, we give
the following definition.

Definition 4.12. A primitively generated A-bialgebroid B is called graded projective if
each associated graded component grn.B/ is a projective left Ae-module.

The following can be understood as an analogue of the celebrated Heyneman–Radford
Theorem for coalgebras [20, Proposition 2.4.2] (extending the earlier Heyneman–
Sweedler Theorem [21, Lemma 3.2.6]).

Theorem 4.13. Let � W B ! B 0 be a morphism of graded projective primitively gener-
ated A-bialgebroids. If gr.B/ is strongly graded as an A-coring and � is injective when
restricted to the left Ae-submodule of B generated by Prim.B/, then � is injective.
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Proof. In order to prove that � is injective, we are going to prove that gr.�/ is injective.
In view of [36, Chapter D, Corollary III.6], the latter implies that � is injective as well.

To this aim, let us prove that grn.�/ is injective for every n � 0. To begin with, let us
prove that gr0.�/ is injective. Since gr0.B/ D F0.B/=F�1.B/ D F0.B/ D ˆB.A

e/, we
may take

P
i sB.ai /tB.b

o
i / as generic element in ker.gr0.�//. Then

0 D gr0.�/
�X

i

sB.ai /tB.b
o
i /
�
D

X
i

sB0.ai /tB0.b
o
i /:

By applying "B0 to both sides we find out that
P
i aibi D 0 in A, whenceX

i

ai ˝ b
o
i D

X
i

.ai ˝ 1
o
A/.bi ˝ 1

o
A � 1A ˝ b

o
i /

in Ae and soX
i

sB.ai /tB.b
o
i / D

X
i

sB.ai /.sB.bi / � tB.b
o
i // 2 A

e
� hsB � tBi:

Being � injective on Ae � Prim.B/, we conclude that
P
i sB.ai /tB.b

o
i / D 0 and hence

gr0.�/ is injective.
To prove that gr1.�/ is injective, notice that an element in F1.B/=F0.B/ is of the

form X
i

sB.ai /tB.b
o
i /C

X
j

sB.a
0
j /tB.b

0
j
o
/Xj sB.a

00
j /tB.b

00
j
o
/C F0.B/

(35)
D

X
j

sB.a
0
ja
00
j /tB..b

00
j b
0
j /
o/Xj C F0.B/

forXj 2 Prim.B/ and ai ; bi ; a0j ; b
0
j ; a
00
j ; b
00
j 2 A for all i; j . Therefore, we may assume thatP

i sB.ai /tB.b
o
i /Xi CF0.B/ is a generic element belonging to ker.gr1.�//. This implies

that

0 D gr1.�/
�X

i

sB.ai /tB.b
o
i /Xi C F0.B/

�
D

X
i

sB0.ai /tB0.b
o
i /�.Xi /C F0.B

0/

and hence there exists
P
j sB0.a

0
j /tB0.b

0
j
o
/ 2 F0.B

0/ such thatX
i

sB0.ai /tB0.b
o
i /�.Xi /C

X
j

sB0.a
0
j /tB0.b

0
j
o
/ D 0

in B 0. By applying "B0 again we find out that
P
j a
0
j b
0
j D 0 and henceX

j

sB0.a
0
j /tB0.b

0
j
o
/ D

X
j

sB0.a
0
j /.sB0.b

0
j / � tB0.b

0
j
o
// 2 Ae � hsB0 � tB0i:
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Summing up,

0 D
X
i

sB0.ai /tB0.b
o
i /�.Xi /C

X
j

sB0.a
0
j /.sB0.b

0
j / � tB0.b

0
j
o
//

D �
�X

i

sB.ai /tB.b
o
i /Xi C

X
j

sB.a
0
j /.sB.b

0
j / � tB.b

0
j
o
//
�
;

but, being � injective on Ae � Prim.B/, this yields that

0 D
X
i

sB.ai /tB.b
o
i /Xi C

X
j

sB.a
0
j /.sB.b

0
j / � tB.b

0
j
o
//

in B and hence X
i

sB.ai /tB.b
o
i /Xi C F0.B/ D 0:

Finally, let us prove that grn.�/ is injective for all n � 1 by induction. We just showed
the case n D 1. Assume that gr1.�/; : : : ; grn.�/ are all injective for a certain n � 1 and
consider an element z 2 ker.grnC1.�//. Consider also the canonical projections

pB
h;k W

M
iCjDnC1

gri .B/˝A grj .B/! grh.B/˝A grk.B/

for hC k D nC 1, as in (9). For all p; q such that p C q D nC 1 we have that

pB0

h;k ı

� M
iCjDnC1

gri .�/˝A grj .�/
�
D .grh.�/˝A grk.�// ı p

B
h;k : (54)

Therefore, for all 1 � h � n we have that

0 D .pB0

h;k ı�
ŒnC1�

gr.B0/ ı .grnC1.�///.z/
(10)
D

�
pB0

h;k ı

� M
iCjDnC1

gri .�/˝A grj .�/
�
ı�

ŒnC1�

gr.B/

�
.z/

(54)
D
�
.grh.�/˝A grk.�// ı p

B
h;k ı�

ŒnC1�

gr.B/

�
.z/:

By the induction hypothesis and projectivity of grs.B/ and grs.B 0/ as left Ae-modules
for all s � 0, we know that grh.�/˝A grk.�/ is injective and hence�

pB
h;k ı�

ŒnC1�

gr.B/

�
.z/ D 0

for all hC k D nC 1, 1 � h � n. Since gr.B/ is strongly graded by hypothesis, pB
h;k
ı

�
ŒnC1�

gr.B/ is injective and hence z D 0.

Theorem 4.14. Let B be an A-bialgebroid. Then we have an isomorphism

B Š Aˇ Uk.L/ˇ A

for an A-anchored Lie algebra .L; !/ if and only if
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(CM1) L is a subalgebra of Prim.B/ and Prim.B/ Š L Ëı hsB � tBi,
(CM2) B is graded projective and primitively generated,

(CM3) the left Ae-submodule of B generated by L is 0 (in which case we require �B

to be injective) or it is free and generated by a k-basis of L,

(CM4) Ae � hsB � tBi \ Ae � L D 0 (in particular, Ae � Prim.B/ D .Ae � L/˚ .Ae �
hsB � tBi/).

Proof. We want to apply Theorem 4.13 to show that the conditions listed are sufficient.
First of all, let us prove that for anyA-anchored Lie algebra .L;!/ the Connes–Moscovici
bialgebroid BL is graded projective and that gr.BL/ is strongly graded (we already know
that BL is primitively generated from Example 4.5 and Remark 4.7).

In view of (52), we know that Fn.BL/ D A˝ Fn.Uk.L//˝ A. By exactness of the
tensor product over a field, the short exact sequence of k-vector spaces

0 �! Fn�1.Uk.L// �! Fn.Uk.L// �! grn.Uk.L// �! 0

induces a short exact sequence of left Ae-modules

0�!A˝Fn�1.Uk.L//˝A�!A˝Fn.Uk.L//˝A�!A˝ grn.Uk.L//˝A�! 0:

Therefore, we have grn.BL/ Š A˝ grn.Uk.L//˝ A as left Ae-modules. In particular,
grn.BL/ is a free left Ae-module.

To show that gr.BL/ is strongly graded, consider an element

z WD
X
˛;ˇ

a˛ ˝ u˛;ˇ ˝ bˇ 2 A˝ grn.U /˝ A

such that .pBL

h;k
ı�

Œn�

gr.BL/
/.z/D 0 for some h; k satisfying hC k D n, where the elements

¹a˛º˛ in A are linearly independent over k as well as the elements ¹bˇ ºˇ . Now, consider
the commutative diagram

A˝ grn.U /˝ A
a�˛˝grn.U /˝b

�
ˇ

//

�
Œn�
gr.BL/

��

grn.U /

�
Œn�
gr.U /

��

L
iCjDn.A˝ gri .U /˝ A/˝A .A˝ grj .U /˝ A/

p
BL
h;k

��

.A˝ grh.U /˝ A/˝A .A˝ grk.U /˝ A/

Š

��

L
iCjDn gri .U /˝ grj .U /

p
gr.U /
h;k

��

A˝ grh.U /˝ A˝ grk.U /˝ A
a�˛˝grh.U /˝1

�
A˝grk.U /˝b

�
ˇ

// grh.U /˝ grk.U /:



On anchored Lie algebras and the Connes–Moscovici bialgebroid construction 1041

If we plug z in it and we recall that gr.U / is strongly graded (that is, pgr.U /
h;k

ı�
Œn�

gr.U / is
injective for all n � 0 and for all hC k D n) then we find u˛;ˇ D 0 for all ˛; ˇ and hence
z D 0.

Now, the inclusion of A-anchored Lie algebras L ! Prim.B/ extends uniquely to
a morphism of A-bialgebroids ‰ W BL ! B, in view of the universal property of BL

(Corollary 3.5). Moreover, similarly to what we did in the proof of Corollary 4.9, one can
show that ‰ is surjective (because B is primitively generated and P .‰/ is surjective).
Therefore, to conclude by applying Theorem 4.13 we are left to check that the candidate
isomorphism ‰ is injective when restricted to Ae � Prim.BL/. Since

Prim.BL/ D .1A ˝ L˝ 1A/˚ hsBL
� tBL

i;

a generic element in Ae � Prim.BL/ is of the formX
i;j

ai;j ˝ xi ˝ bi;j C
X
h;k

a00h;ka
0
h ˝ 1U ˝ b

00
h;k � a

00
h;k ˝ 1U ˝ a

0
hb
00
h;k

for Xi 2 L and ai;j ; bi;j ; a00h;k ; b
00
h;k
; a0
h
2 A, where we may assume that the Xk’s are

elements of a k-basis of L, without loss of generality. Thus,

0 D ‰.
X
i;j

ai;j ˝ xi ˝ bi;j C
X
h;k

a00h;ka
0
h ˝ 1U ˝ b

00
h;k � a

00
h;k ˝ 1U ˝ a

0
hb
00
h;k/

D

X
i;j

sB.ai;j /tB.bi;j /Xi C
X
h;k

sB.a
00
h;ka

0
h/tB.b

00
h;k/ �

X
h;k

sB.a
00
h;k/tB.a

0
hb
00
h;k/:

By (CM4), this entails that

0 D
X
i;j

sB.ai;j /tB.bi;j /Xi (55)

and
0 D

X
h;k

sB.a
00
h;ka

0
h/tB.b

00
h;k/ � sB.a

00
h;k/tB.a

0
hb
00
h;k/: (56)

By (CM3), relation (55) yields thatX
j

ai;j ˝ bi;j D 0

in Ae for all i . Relation (56), instead, implies that

0 D �B

�X
h;k

a00h;ka
0
h ˝ b

00
h;k � a

00
h;k ˝ a

0
hb
00
h;k

�
:

However, sinceAe �L is a free leftAe-module with action given via �B (or �B is injective
by hypothesis), �B itself has to be injective and hence

0 D
X
h;k

a00h;ka
0
h ˝ b

00
h;k � a

00
h;k ˝ a

0
hb
00
h;k ;
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which, in turn, yields

0 D
X
h;k

a00h;ka
0
h ˝ 1U ˝ b

00
h;k � a

00
h;k ˝ 1U ˝ a

0
hb
00
h;k :

Summing up, (CM1) ensures the existence of a morphism ‰ and (CM2) entails that ‰ is
surjective. Conditions (CM3) and (CM4), instead, allow us to conclude that ‰ is injective
on Ae � Prim.BL/ and hence, by Theorem 4.13, ‰ is injective on BL. Thus, ‰ is an
isomorphism.

The fact that the conditions (CM1)–(CM4) are necessary is clear.

Remark 4.15. In the context of the proof above, observe that if L D 0, then Prim.B/ D
hsB � tBi. If moreover B is primitively generated, then‰ W Aˇ kˇA!B is surjective
and it coincides with �B W A

e ! B up to the isomorphism Aˇ kˇ A Š Ae . This is the
point where injectivity of �B enters the picture.

Example 4.16. Let AD Matn.k/ for n � 2 and let B D Endk.A/ as in Example 1.7(c). It
follows from the Skolem–Noether theorem that every derivation ofA is inner. In particular,
Prim.B/ D hsB � tBi and conditions (CM1) and (CM4) are satisfied. Moreover, as we
have seen in Example 4.10, B is also primitively generated and, in fact, grn.B/ D 0 for
all n � 1.

In order to apply Theorem 4.14, we are left to show that �B is injective (notice that we
already know it is surjective), but a straightforward computation reveals that �B coincides
with the composition of isomorphisms

Matn.k/˝ Matn.k/o
Matn.k/˝.�/T
���������! Matn.k/˝ Matn.k/ Š Matn2.k/ Š Endk.Matn.k//:

Therefore, (CM2) and (CM3) are satisfied as well and, by Theorem 4.14,

B Š Aˇ Uk.0/ˇ A:

4.3. Bialgebroids over commutative algebras

A slightly more favorable situation is provided by the case of bialgebroids over a com-
mutative base.

Let us assume henceforth that A is a commutative k-algebra. This implies that now
we can consider the target tB of an A-bialgebroid B as an algebra map tB W A! B and
hence we will omit the .�/o. By Lemma 4.1, we may consider the quotient Lie algebra

Prim.B/ WD Prim.B/=hsB � tBi;

which is A-anchored with anchor !B induced by !B , because now hsB � tBi is abelian
with zero anchor. This induces a well-defined functor

P 0 W BialgdA ! AnchLieA; B 7! Prim.B/:
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As we have seen in Proposition 4.3 and in Corollary 4.4, BL satisfies the additional
property that Prim.BL/ Š Prim.BL/ Ëı hsBL

� tBL
i as A-anchored Lie algebras. If we

restrict our attention to the full subcategory BialgdA of BialgdA composed by all those A-
bialgebroids B such that Prim.B/ Š Prim.B/ Ëı hsB � tBi as A-anchored Lie algebras,
then the functors B and P 0 induce functors

P W BialgdA ! AnchLieA; B 7! Prim.B/

and
B W AnchLieA ! BialgdA; .L; !/ 7! Aˇ Uk.L/ˇ A:

It can be shown that, in this case, we always have a natural isomorphism


L WD
�
L


L
�! Prim.BL/� Prim.BL/

�
inducing a surjective map

BialgdA.BL;B/! AnchLieA..L; !/; .Prim.B/; !B//;

which, however, is not injective in general (that is, B and P are not adjoint functors).
Nevertheless, we may always consider a “preferred” morphism of A-bialgebroids

�B WD

�
Aˇ Uk

�
Prim.B/

�
ˇ A

AˇUk.�B/ˇA
���������! Aˇ Uk

�
Prim.B/

�
ˇ A

�B
��! B

�
induced by a chosen injection �B W Prim.B/! Prim.B/ and by the counit of the adjunction
in Theorem 3.6. Since the hypothesis on Prim.B/ ensures that

P .�B/ W Prim.Aˇ Uk

�
Prim.B/

�
ˇ A/! Prim.B/

is an epimorphism, we may conclude that B is primitively generated if and only if �B is
surjective, as in Corollary 4.9, and we may restate Theorem 4.14 in the present framework.

Theorem 4.17. Let B be an A-bialgebroid over a commutative algebra A. Then

B Š Aˇ Uk.Prim.B//ˇ A

if and only if

(CM1) Prim.B/ Š Prim.B/ Ëı hsB � tBi,
(CM2) B is graded projective and primitively generated,

(CM3) the left Ae-submodule of B generated by Prim.B/ is 0 (in which case we
require �B to be injective) or it is free and generated by a k-basis of Prim.B/,

(CM4) Ae � hsB � tBi \ Ae � Prim.B/ D 0.

Example 4.18. Let A WD CŒX� and consider the A-bialgebroid

H WD C
h
x; y; t; z;

1

t

i
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studied in [15, §5.6] and inspired by the coordinate ring of the Malgrange’s groupoid. Its
bialgebroid structure is uniquely determined by

sH .X/ D x; tH .X/ D y; "H .x/ D X D "H .y/;

"H .t/ D 1; "H .z/ D 0; �H .x/ D x ˝A 1;

�H .y/ D 1˝A y; �H .t/ D t ˝A t; �H .z/ D z ˝A t C t
2
˝A z

and ordinary multiplication and unit. The ideal 	 D ht � 1i generated by t � 1 in H is a
bi-ideal (it is an ideal by construction and a coideal by [8, §2.4]) and hence the quotient
H=	 is an A-bialgebroid. It can be identified with B WD CŒu; v; w� with

s.X/ D u; t.X/ D w; ".u/ D X D ".w/; ".v/ D 0;

�.u/ D u˝A 1; �.w/ D 1˝A w; �.v/ D v ˝A 1C 1˝A v:

The space of primitive elements of B is

Prim.B/ D hui � wi j i � 0i ˚Cv

with Prim.B/ Š Cv, whence (CM1), (CM3) and (CM4) are satisfied (in this case, ı � 0
by Lemma 2.6, as everything is commutative). Concerning (CM2), we observe that B with
the foregoing structures is the free left Ae-module generated by ¹vk j k � 0º, whence it is
primitively generated and graded projective (even free). Thus, Theorem 4.17 ensures that

B Š Aˇ UC.Cv/ˇ A:

The same conclusion could have been drawn by observing that B Š CŒX� ˝ CŒY � ˝
CŒX� is the scalar extension commutative (Hopf) CŒX�-bialgebroid obtained from the
Hopf algebra CŒY � and that, as Hopf algebras, CŒY � Š UC.CY /.

4.4. Final Remarks

An additional step which deserve to be taken is to restrict the attention further to those
A-bialgebroids B over a commutative algebra A such that sB D tB (for example, cocom-
mutativeA-bialgebroids). However, in this case the Connes–Moscovici construction is not
the correct construction to look at. One may prove that the assignment

Aˇ Uk.L/ˇ A! A # Uk.L/; a˝ u˝ b 7! ab ˝ u

provides a surjective homomorphism of A-bialgebroids with kernel the ideal generated
by hsBL

� tBL
i in BL. The A-bialgebroid structure on A # Uk.L/ is that of extension of

scalars with trivial coaction on A, that is to say,

s D t W a 7! a˝ 1Uk.L/;

" W a˝ u 7! a".u/;

� W a˝ u 7!
X

.a˝ u.1//˝A .1A ˝ u.2//



On anchored Lie algebras and the Connes–Moscovici bialgebroid construction 1045

and semi-direct product algebra structure, that is,

.a˝ u/.b ˝ v/ D
X

a.u.1/ � b/˝ u.2/v and 1A#Uk.L/ D 1A ˝ 1Uk.L/:

In view of the results from Section 2.2 and Section 3.2, the foregoing observations sug-
gest that A # Uk.L/ would be the right A-bialgebroid construction to consider, in order
to recover the universal property of Theorem 2.9 and an adjunction as in Theorem 3.6.
Nevertheless, we keep this question for a future investigation.

5. The finite-dimensional case and flat bimodule connections

In this last section, we show how, for a finite-dimensional A-anchored Lie algebra .L;!/,
representations of .A; L; !/ in the sense of Corollary 2.10 naturally give rise to a fam-
ily of A-bimodules with flat bimodule connection for the first-order differential calculus
Homk.L; A/. As a consequence, we see how the latter forms a closed monoidal category
with closed monoidal underlying functor toA-bimodules and with the associated Connes–
Moscovici bialgebroid A ˇ Uk.L/ ˇ A as the bialgebroid representing it in the spirit
of [18]. For the general theory of differential calculi and bimodule connections, we refer
the reader to [4, 12].

5.1. Anchored Lie algebras, representations and bimodule connections

Recall (e.g. from [4, Definition 1.1] or [12, §6]) that a (generalised) first-order differential
calculus over a k-algebra A is an A-bimodule �1 with a derivation d 2 Derk.A;�1/ (the
exterior derivative), that is, a k-linear map d W A! �1 satisfying

d.ab/ D d.a/ � b C a � d.b/

for all a; b 2 A. A first-order differential calculus .�1; d / is parallelised with cotangent
codimension n if �1 is free as a left and right A-module, with basis of cardinality n
([4, Definition 1.2]).

Proposition 5.1. There is a bijective correspondence between k-linear morphisms ! W
L ! Derk.A/ and derivations d W A ! Homk.L; A/ making of �1 D Homk.L; A/ a
first-order differential calculus, where the A-bimodule structure on �1 is provided by
the regular A-bimodule structure on A. In particular, the first-order differential calculus
.�1 D Homk.L; A/; d/ associated with .A; L; !/ is parallelised with cotangent dimen-
sion n if and only if L is a finite-dimensional k-vector space of dimension n.

Proof. The first claim follows from the bijective correspondence

‰A W Homk.L; Homk.A;N //
oo // Homk.A; Homk.L;N //

f
� // Œa 7! ŒX 7! f .X/.a/��

ŒX 7! Œa 7! g.a/.X/�� g
�oo

(57)
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induced by the Hom-tensor adjunction, where N is any A-bimodule. The second one fol-
lows from the fact that Homk.L;A/ Š A

dimk.L/ as left and right A-module.

Let ! W L! Derk.A/ be a k-linear map. By following [22, §1], we set �0 WD A and

�n WD Homk.ƒ
nL;A/;

for all n � 1, that is, �n is the space of n-linear alternating functions from L � � � � � L

to A. For the sake of the interested reader, these are the n-dimensional A-cochains of
[9, §23]. For every f 2 �n and for all X;X1; : : : ; Xn 2 L we set

.X � f /.X1 ˝ � � � ˝Xn/ WD !.X/
�
f .X1 ˝ � � � ˝Xn/

�
�

nX
iD1

f .X1 ˝ � � � ˝ ŒX;Xi �˝ � � � ˝Xn/;

fX .X1 ˝ � � � ˝Xn�1/ WD f .X ˝X1 ˝ � � � ˝Xn�1/;

and we define the differentials d W�n!�nC1 inductively by setting d.a/.X/D!.X/.a/
and

d.f /X D X � f � d.fX / (58)

for all a 2 A, X 2 L, f 2 �n with n � 1. In the notation of [12, §3], (58) reads

.iX ı d/.f / D LX .f / � .d ı iX /.f /:

Lemma 5.2. The complex .��; d / is a cochain complex if and only if ! W L! Derk.A/
is a morphism of Lie algebras.

Proof. If ! is a morphism of Lie algebras then A is an L-module and the claim follows
from [22, §1]. Conversely, if .��; d / is a cochain complex then, for all a 2 A, X; Y 2 L,

0 D d2.a/.X ˝ Y / D !.X/!.Y /.a/ � !.Y /!.X/.a/ � !
�
ŒX; Y �

�
.a/:

Therefore, if .L; !/ is an A-anchored Lie algebra, then .��; d / provides a DGA with

.f ^ g/.X1˝ � � � ˝XpCq/ WD
X
S

.�1/�.S/f .Xs1 ˝ � � � ˝Xsp /g.Xt1 ˝ � � � ˝Xtq / (59)

as multiplication for all f 2 �p , g 2 �q , where the sum runs over all ordered subsets
S D .s1; : : : ; sp/ of ¹1; 2; : : : ; p C qº, .t1; : : : ; tq/ is an ordered complement of S and
�.S/ D

Pq
jD1 S.j / with S.j / equal to the number of indices i for which si is greater

than tj .
Let .�1; d / be a differential calculus on the algebraA. Recall from [12, §10] that a left

bimodule connection (also called left bimodule covariant derivative) on anA-bimoduleM
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is a k-linear map r WM ! �1 ˝AM (the left connection) together with an A-bimodule
map � WM ˝A �1 ! �1 ˝AM (the intertwining map) such that

r.a �m/ D a � r.m/C d.a/˝A m and r.m � a/ D r.m/ � aC �.m˝A d.a//

(60)
for all a 2 A, m 2M . The curvature R WM ! �2 ˝AM of r is defined by

R.m/ WD
�
.d ˝AM/ � .^˝AM/ ı .�1 ˝A r/

��
r.m/

�
(i.e., R D r2) and r is said to be flat if R D 0. Furthermore, a bimodule with left con-
nection .M;r; �/ is called extendable ([4, Definition 4.10]) if for all n � 1, � extends to
�n WM ˝A �

n ! �n ˝AM such that

.^˝AM/ ı .�n ˝A �m/ ı .�n ˝A �
m/ D �mCn ı .M ˝A ^/

as maps from M ˝A �
n ˝A �

m to �mCn ˝AM .
Assume henceforth that .L; !/ is an A-anchored Lie algebra such that L is finite-

dimensional as k-vector space with dual basis ¹ei ; e�i j i D 1; : : : ; nº. For every A-bimod-
ule M we have an isomorphism of A-bimodules

ˆM W �
1 ˝AM oo // Homk.L;M/

f ˝A m
� // ŒX 7! f .X/ �m�P

i 1Ae
�
i ˝A '.ei / ':

�oo

(61)

Inspired by Corollary 2.10, we may take as definition of representation of .A; L; !/ an
A-bimodule M together with a Lie algebra map � W L! Endk.M/ such that

�.X/.a �m � b/ D a � �.X/.m/ � b C !.X/.a/ �m � b C a �m � !.X/.b/ (62)

for all a; b 2 A, X 2 L, m 2M .

Proposition 5.3. There is a bijective correspondence between A-bimodules M together
with a k-linear morphism � W L ! Endk.M/ and A-bimodules M together with a k-
linear morphism r W M ! �1 ˝A M . Furthermore, for every A-bimodule M we have
an A-bilinear isomorphism � WM ˝A �

1 ! �1 ˝AM uniquely determined by

ˆM .�.m˝A f //.X/ D m � f .X/ (63)

for all m 2M , f 2 �1 and X 2 L, where ˆM is the isomorphism (61).

Proof. Since we have the isomorphism of A-bimodules ˆM of (61) and an analogue ‰M
of the bijective correspondence (57), we have a bijective correspondence between maps
� W L! Endk.M/ and maps r WM ! �1 ˝AM given by the relation

ˆM ı r D ‰M .�/: (64)
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Furthermore, we may consider the chain of A-bilinear isomorphisms

M ˝A �
1
ŠM ˝A A˝ L

�
ŠM ˝ L� Š Homk.L;M/ Š L� ˝M

Š L� ˝ A˝AM Š �
1
˝AM

which descends from the finite-dimensionality of L. It is straightforward to check that the
composition � of the latter ones satisfies (63).

Lemma 5.4. Under the correspondence established in Proposition 5.3, .M;r; �/ is an
A-bimodule with left bimodule connection and invertible intertwining satisfying (63) if
and only if (62) holds.

Proof. For all a 2 A, m 2M , X 2 L, we compute, up to the isomorphism (61),

ˆM
�
r.a �m/

�
.X/ D �.X/.a �m/;

ˆM
�
a � r.m/C d.a/˝A m

�
.X/ D a � �.X/.m/C !.X/.a/ �m;

ˆM
�
r.m � a/

�
.X/ D �.X/.m � a/

and, in view of (63),

ˆM
�
r.m/ � aC �.m˝A d.a//

�
.X/ D �.X/.m/ � aCm � !.X/.a/:

Lemma 5.5. Under the correspondence established in Lemma 5.4, .M;r; �/ is, in addi-
tion, an A-bimodule with flat left bimodule connection and invertible intertwining satisfy-
ing (63) if and only if � W L! Endk.M/ is, in addition, a Lie algebra map.

Proof. Observe that the A-bilinear isomorphism �1 ˝AM Š Homk.L;M/ of (61) can
be extended to an A-bilinear isomorphism �n ˝AM Š Homk.ƒ

nL;M/. In particular,
for every m 2 M we can see R.m/ as an element in Homk.ƒ

2L;M/, up to the latter
isomorphism. For all X; Y 2 L and for every m 2M we have that R.m/ satisfies

R.m/.X ˝ Y / D ��.ŒX; Y �/.m/ � �.Y /.�.X/.m//C �.X/.�.Y /.m//:

Summing up, we proved the following theorem.

Theorem 5.6. We have an isomorphism of categories between the category of represent-
ations .M; �/ of .A; L; !/ in the sense of Corollary 2.10 and the full subcategory of the
category of A-bimodules with flat left bimodule connection and invertible intertwining
.M;r; �/ such that � satisfies (63).

The interested reader may check that an A-bimodule with left bimodule connection
.M;r; �/ as in Theorem 5.6 is extendable and satisfies the condition of [4, Lemma 4.74].

Theorem 5.7. Let .L;!/ be an A-anchored Lie algebra with L of finite dimension n. For
.��; d / induced by .A;L;!/ as in Proposition 5.1, the category of A-bimodules with flat
left bimodule connection and invertible intertwining .M;r; �/, where � satisfies (63), is
a closed monoidal category with closed monoidal underlying functor to A-bimodules.
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Proof. By Theorem 5.6, the category of A-bimodules with flat left bimodule connection
and invertible intertwining .M;r; �/, where � satisfies (63), is isomorphic to the cat-
egory of representations of .A; L; !/ which, in turn, is isomorphic to the category of
AˇUk.L/ˇA-modules (by Corollary 2.10). Since Uk.L/ is an involutive Hopf algebra,
Aˇ Uk.L/ˇ A is a Hopf algebroid with antipode in the sense of Böhm and Szlachányi
[6, Definition 4.1] (see [27, Theorem 3.1], [39, Remark 2.6]). In particular, it is a �A-
Hopf algebra in the sense of Schauenburg [46, Theorem and Definition 3.5], whence the
category ofAˇUk.L/ˇA-modules is a closed monoidal category with closed monoidal
forgetful functor to A-bimodules.

Let us conclude this subsection with an elementary example.

Example 5.8. Let A be any algebra and @ 2 Derk.A/ a derivation on A. The (generalised)
derivation calculus over A (see [4, Example 1.7]) is given by the regular A-bimodule
�1 D A with exterior derivative d D @. If we let L WD kY and ! W L! Derk.A/; Y 7! @,
then �1 Š Homk.L; A/ as A-bimodules. The datum of a left connection r on an A-
bimodule M is equivalent to the datum of a k-linear endomorphism h W M ! M such
that the left-hand side of (60) is satisfied,

h.a �m/ D a � h.m/C @.a/ �m

for all a 2 A,m 2M . That is to say, a left module structure over the skew polynomial ring
AŒY I@� (also called Ore extension; see [33, §1.2.3] and [38, §I.1]). The left connectionr is
a bimodule connection if and only if there exists anA-bilinear endomorphism � WM !M

such that
h.m � a/ D h.m/ � aC �.m/ � @.a/

for all a 2 A, m 2M . Since the additional condition (63) implies that � D IdM , we have
that an A-bimodule with left bimodule connection as in Theorem 5.7 is an A-bimodule
together with a k-linear endomorphism h such that

h.a �m/ D a � h.m/C @.a/ �m and h.m � a/ D h.m/ � aCm � @.a/

for all a 2 A, m 2M . These are bimodules over AŒY I @� whose left and right action by Y
coincide. In the particular case of A D CŒX� and @ W CŒX�! CŒX� uniquely determined
by @.X/ D 1, an A-bimodule is a C-vector space M together with two commuting endo-
morphisms f and g (representing the left and the right action by X ) and the datum of a
left bimodule connection r as in Theorem 5.7 on M is equivalent to the datum of a third
endomorphism h WM !M such that

h ı f D f ı hC IdM and h ı g D g ı hC IdM :

These are exactly the modules over the bialgebroid B D Aˇ UC.Cv/ˇ A of Example
4.18.
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5.2. Final remarks and further directions

As correctly noticed by the referee, there is a relationship between the theory of connec-
tions on A-(bi)modules with respect to the so called derivation-based differential calculi
studied by M. Dubois-Violette and collaborators (see [12] for a summary of the topic)
and the connections arising as discussed above from a slightly more general notion than
anchored Lie algebras. We sketch it briefly here, for the sake of the interested reader, but
it will be the subject of a future work.

Anchored Lie algebras and Lie–Rinehart algebras are the extreme cases of a more gen-
eral, unifying notion. A central anchored Lie algebra over A is a Lie algebra L endowed
with a (left) Z.A/-module structure Z.A/ ˝ L ! L; z ˝ X 7! z � X , and with a Lie
algebra morphism ! W L! Derk.A/ such that

!.z �X/ D z � !.X/ and ŒX; z � Y � D z � ŒX; Y �C !.X/.z/ � Y

for all z 2 Z.A/ and X; Y 2 L, where Z.A/ is the centre of A. Anchored Lie algeb-
ras correspond to the case Z.A/ D k, while Lie–Rinehart algebras correspond to the case
Z.A/DA. The study of central anchored Lie algebras and, in particular, of the flat bimod-
ule connections arising from them as in Section 5.1 is related to the flat left bimodule
�1Der.A/-connections on central A-bimodules with respect to the derivation-based differ-
ential calculus �1Der.A/ introduced by Dubois-Violette and Michor in [14, §3.4].

To see how, recall that �1Der.A/ is, by definition,
Z.A/

Hom.Derk.A/; A/ and that a
central A-bimodule is an A-bimodule whose left and right Z.A/-module structures coin-
cide (i.e., z �m D m � z for all z 2 Z.A/ and m 2M ). Now, given a central anchored Lie
algebra .A;L; !/, Proposition 5.1 can be adapted to prove that

Z.A/Hom.L;Derk.A// Š Derk.A;Z.A/Hom.L;A//;

whence �1 WD
Z.A/

Hom.L; A/ becomes a first-order differential calculus on A via the
derivation induced by !. If we define a representation of .A; L; !/ to be a central A-
bimodule M together with a Lie algebra map � W L! Endk.M/ such that

�.z �X/.m/ D z � �.X/.m/;

�.X/.a �m � b/ D a � �.X/.m/ � b C !.X/.a/ �m � b C a �m � !.X/.b/

for all a;b 2A,X 2L,m2M , and if we assume thatL is finitely generated and projective
as a (left) Z.A/-module, then one can prove, along the lines of Section 5.1, that we have
an isomorphism of categories between the category of representations .M;�/ of .A;L;!/
and the full subcategory of the category of central A-bimodules with flat left bimodule
connection and invertible intertwining .M;r; �/ such that � satisfies the analogue of (63).

In the particular case of L D Derk.A/ with ! equal to the identity, �1 D �1Der.A/

by definition and we find that representations of .A;Derk.A/; Id/ in a central A-bimodule
M are derivation-based flat connections on M in the sense of [13, §2] (see also [12,
page 296]).
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