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Leibniz bialgebras, relative Rota–Baxter operators,
and the classical Leibniz Yang–Baxter equation

Rong Tang and Yunhe Sheng

Abstract. In this paper, first we introduce the notion of a Leibniz bialgebra and show that matched
pairs of Leibniz algebras, Manin triples of Leibniz algebras, and Leibniz bialgebras are equivalent.
Then we introduce the notion of a (relative) Rota–Baxter operator on a Leibniz algebra and construct
the graded Lie algebra that characterizes relative Rota–Baxter operators as Maurer–Cartan elements.
By these structures and the twisting theory of twilled Leibniz algebras, we further define the classi-
cal Leibniz Yang–Baxter equation, classical Leibniz r-matrices, and triangular Leibniz bialgebras.
Finally, we construct solutions of the classical Leibniz Yang–Baxter equation using relative Rota–
Baxter operators and Leibniz-dendriform algebras.

1. Introduction

The paper aims to establish the bialgebraic theory for Leibniz algebras. In particular, it
answers the questions: What is a triangular Leibniz bialgebra?, What is a classical Leibniz
Yang–Baxter equation?, and What is a classical Leibniz r-matrix?

1.1. Leibniz algebras and Leibniz bialgebras

Leibniz algebras were first discovered by Bloh who called them D-algebras [9]. Then
Loday rediscovered this algebraic structure and called them Leibniz algebras [29, 31].
Recently Leibniz algebras was studied from different aspects due to applications in both
mathematics and physics. In particular, integration of Leibniz algebras were studied in
[12, 15] and deformation quantization of Leibniz algebras was studied in [16]. As the
underlying structures of embedding tensors, Leibniz algebras also have applications in
higher gauge theories [26, 36].

For a given algebraic structure, a bialgebra structure on this algebra is obtained by
a comultiplication together with some compatibility conditions between the multiplica-
tion and the comultiplication. Among various bialgebras, Lie bialgebras have important
applications in both mathematics and mathematical physics, e.g., a Lie bialgebra is the
algebraic structure corresponding to a Poisson–Lie group and the classical structure of a
quantized universal enveloping algebra [14, 17].
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The purpose of this paper is to study the bialgebra theory for Leibniz algebras with
the motivation from the great importance of Lie bialgebras. We define a skew-symmetric
quadratic Leibniz algebra using a skew-symmetric bilinear form. This is supported by the
fact that the operad of Lie algebras is a cyclic operad, but the operad of Leibniz algebras
is an anticyclic operad. Actually, it is observed by Chapoton in [13] using the operad the-
ory that one should use the aforementioned skew-symmetric invariant bilinear form on
a Leibniz algebra. We define Manin triples and dual representations of Leibniz algebras
using the skew-symmetric quadratic Leibniz algebras. We introduce the notion of a Leib-
niz bialgebra and show that matched pairs of Leibniz algebras, Manin triples of Leibniz
algebras, and Leibniz bialgebras are equivalent. Even though we obtain some nice results
totally parallel to the context of Lie bialgebras, we need to emphasize that our bialgebra
theory is not a generalization of Lie bialgebras, namely the restriction of our theory on Lie
algebras is independent of Lie bialgebras.

1.2. Triangular Leibniz bialgebras: relative Rota–Baxter operator approach

Due to the importance of the classical Yang–Baxter equation and triangular Lie bialgebras,
it is natural to define the Leibniz analogue of the classical Yang–Baxter equation and
triangular Leibniz bialgebras. This is a very hard problem due to that the representation
theory of Leibniz algebras is not good, e.g., there is no tensor product in the module
category of Leibniz algebras. We solve this problem using relative Rota–Baxter operators
and the twisting theory of twilled Leibniz algebras.

The notion of a relative Rota–Baxter operator (originally called an O-operator) on a
Lie algebra was introduced by Kupershmidt [27], which can be traced back to Bordemann
[11]. A relative Rota–Baxter operator gives rise to a skew-symmetric r-matrix in a larger
Lie algebra [4]. In the context of associative algebras, relative Rota–Baxter operators give
rise to dendriform algebras [22, 30], play important role in the bialgebra theory [5], and
lead to the splitting of operads [6].

The twisting theory was introduced by Drinfeld in [18] motivated by the study of
quasi-Lie bialgebras and quasi-Hopf algebras. As a useful tool in the study of bialgebras,
the twisting theory was further applied to associative algebras and Poisson geometry; see
[23, 25, 32, 38] for more details.

In this paper, we introduce the notion of a relative Rota–Baxter operator on a Leib-
niz algebra. We construct the graded Lie algebra that characterizes relative Rota–Baxter
operators as Maurer–Cartan elements. Using this graded Lie algebra, we give the defini-
tion of a classical Leibniz Yang–Baxter equation. Moreover, we give the twisting theory
of twilled Leibniz algebras, by which we define triangular Leibniz bialgebras. We also
use relative Rota–Baxter operators and Leibniz-dendriform algebras to give solutions of
the classical Leibniz Yang–Baxter equations in some larger Leibniz algebras. Note that
embedding tensors studied in [35] are special relative Rota–Baxter operators on Leibniz
algebras, which play important roles in mathematical physics [10, 26].
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1.3. Outline of the paper

In Section 2, we introduce the notions of a Manin triple of Leibniz algebras and a Leibniz
bialgebra. We prove the equivalence between matched pairs of Leibniz algebras, Manin
triples of Leibniz algebras, and Leibniz bialgebras. The main innovation is that we use a
skew-symmetric invariant bilinear form instead of a symmetric invariant bilinear form in
the definition of a skew-symmetric quadratic Leibniz algebra.

In Section 3, we make preparations for our later study of triangular Leibniz algebras. In
Section 3.1, we give the graded Lie algebra that characterizes Leibniz algebras as Maurer–
Cartan elements and some technical tools. In Section 3.2, we introduce the notion of a
relative Rota–Baxter operator on a Leibniz algebra and construct the graded Lie algebra
that characterizes it as a Maurer–Cartan element. In Section 3.3, we introduce the notion
of a twilled Leibniz algebra. The twisting theory of twilled Leibniz algebras is studied in
detail for the purpose to define triangular Leibniz bialgebras.

In Section 4, we study triangular Leibniz bialgebras. We define the classical Leib-
niz Yang–Baxter equation and a classical Leibniz r-matrix using the graded Lie algebra
given in Section 3.2, and then define a triangular Leibniz bialgebra successfully using the
twisting theory of a twilled Leibniz algebra given in Section 3.3.

In Section 5, we construct solutions of the classical Leibniz Yang–Baxter equation
using relative Rota–Baxter operators and Leibniz-dendriform algebras.

Quantization of Lie bialgebras and deformation quantization of Leibniz algebras were
studied in [16,19]. It is natural to study quasi-triangular Leibniz bialgebras and their quan-
tization. On the other hand, classical r-matrices play an important role in the study of
integrable systems. It is natural to investigate whether classical Leibniz r-matrices can
be applied to some integrable systems. It is also natural to investigate the global objects
corresponding to Leibniz bialgebras. We will study these questions in the future.

In this paper, we work over an algebraically closed field K of characteristic 0 and all
the vector spaces are over K and finite-dimensional.

2. Skew-symmetric quadratic Leibniz algebras and Leibniz
bialgebras

Definition 2.1. A Leibniz algebra is a vector space g together with a bilinear operation
Œ�; ��g W g˝ g! g such that�

x; Œy; z�g
�

g
D
�
Œx; y�g; z

�
g
C
�
y; Œx; z�g

�
g
; 8x; y; z 2 g:

This is in fact a left Leibniz algebra. In this paper, we only consider left Leibniz alge-
bras.

A representation of a Leibniz algebra .g; Œ�; ��g/ is a triple .V I �L; �R/, where V is a
vector space and �L; �R W g! gl.V / are linear maps such that the following equalities
hold for all x; y 2 g:

�L
�
Œx; y�g

�
D
�
�L.x/; �L.y/

�
; (2.1)
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�R
�
Œx; y�g

�
D
�
�L.x/; �R.y/

�
; (2.2)

�R.y/ ı �L.x/ D ��R.y/ ı �R.x/: (2.3)

Define the left multiplicationL W g! gl.g/ and the right multiplicationR W g! gl.g/

by Lxy D Œx; y�g and Rxy D Œy; x�g, respectively, for all x; y 2 g. Then .gIL;R/ is a
representation of .g; Œ�; ��g/, which is called the regular representation. Define two linear
mapsL�;R� W g! gl.g�/with x!L�x and x!R�x for all x;y 2 g; � 2 g�, respectively,
by

hL�x�; yi D �
˝
�; Œx; y�g

˛
;

˝
R�x�; y

˛
D �

˝
�; Œy; x�g

˛
: (2.4)

If there is a Leibniz algebra structure on the dual space g�, we denote the left multiplica-
tion and the right multiplication by L and R, respectively.

2.1. Skew-symmetric quadratic Leibniz algebras and the Leibniz analogue of the
string Lie 2-algebra

It is observed by Chapoton in [13] using the operad theory that one needs to use skew-
symmetric bilinear forms instead of symmetric bilinear forms on a Leibniz algebra. This
is the key ingredient in our study of Leibniz bialgebras.

Definition 2.2 ([13]). A skew-symmetric quadratic Leibniz algebra is a Leibniz algebra
.g; Œ�; ��g/ equipped with a nondegenerate skew-symmetric bilinear form ! 2 ^2g� such
that the following invariant condition holds:

!
�
x; Œy; z�g

�
D !

�
Œx; z�g C Œz; x�g; y

�
; 8x; y; z 2 g: (2.5)

Remark 2.3. In the original definition of a nondegenerate skew-symmetric invariant bi-
linear form on a Leibniz algebra .g; Œ�; ��g/ given in [13], there is a superfluous condition

!
�
x; Œy; z�g

�
D �!

�
Œy; x�g; z

�
: (2.6)

In fact, by (2.5), for all x; y; z 2 g, we have

�!
�
Œy; x�g; z

�
D !

�
z; Œy; x�g

�
D !

�
Œz; x�g C Œx; z�g; y

�
D !

�
x; Œy; z�g

�
:

Remark 2.4. Note that we use skew-symmetric bilinear forms instead of symmetric bilin-
ear forms and use the invariant condition (2.5) instead of the invariant condition

B
�
Œx; y�g; z

�
D B

�
x; Œy; z�g

�
and this is the main ingredient in our study of Leibniz bialgebras. In [8], the authors
use symmetric bilinear forms and the invariant condition B.Œx; y�g; z/ D B.x; Œy; z�g/ to
study Leibniz bialgebras so that one has to add some strong conditions. As we will see,
everything in the following study is natural in the sense that we do not need to add any
extra conditions on the Leibniz algebra.
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Recall that a quadratic Lie algebra is a Lie algebra .k; Œ�; ��k/ equipped with a nonde-
generate symmetric bilinear form B 2 Sym2.k�/, which is invariant in the sense that

B
�
Œx; y�g; z

�
D B

�
x; Œy; z�g

�
; 8x; y; z 2 k:

Associated to a quadratic Lie algebra .k; Œ�; ��k; B/, we have a closed 3-form x‚ 2 ^3k�

given by
x‚.x; y; z/ D B

�
x; Œy; z�k

�
;

which is known as the Cartan 3-form.
Let .g; Œ�; ��g;!/ be a skew-symmetric quadratic Leibniz algebra. Define‚ 2 ˝3g� by

‚.x; y; z/ D !
�
x; Œy; z�g

�
; 8x; y; z 2 g: (2.7)

This 3-tensor can be viewed as the Leibniz analogue of the Cartan 3-form on a quadratic
Lie algebra as the following lemma shows.

Lemma 2.5. With the above notations, ‚ is a 3-cocycle on the Leibniz algebra .g; Œ�; ��g/
with values in the trivial representation .KI 0; 0/, i.e., @‚ D 0.

Proof. For all x; y; z; w 2 g, by the fact that Œg;g�g is a left center, we have

.@‚/.x; y; z; w/ D �‚
�
Œx; y�g; z; w

�
�‚

�
y; Œx; z�g; w

�
�‚

�
y; z; Œx; w�g

�
C‚

�
x; Œy; z�g; w

�
C‚

�
x; z; Œy; w�g

�
�‚

�
x; y; Œz; w�g

�
D �!

�
Œx; y�g; Œz; w�g

�
� !

�
y;
�
Œx; z�g; w

�
g

�
� !

�
y;
�
z; Œx; w�g

�
g

�
C !

�
x;
�
Œy; z�g; w

�
g

�
C !

�
x;
�
z; Œy; w�g

�
g

�
� !

�
x;
�
y; Œz; w�g

�
g

�
D !

�
y;
�
x; Œz; w�g

�
g

�
� !

�
y;
�
Œx; z�g; w

�
g

�
� !

�
y;
�
z; Œx; w�g

�
g

�
C !

�
x;
�
Œy; z�g C Œz; y�g; w

�
g

�
D 0;

which finishes the proof.

Consequently, given a skew-symmetric quadratic Leibniz algebra .g; Œ�; ��g;!/, we can
construct a Leibniz 2-algebra (2-term Lod1-algebra) [2, 28, 34], which can be viewed as
the Leibniz analogue of the string Lie 2-algebra associated to a semisimple Lie algebra [3].

On the graded vector space K˚ g, define l1 W K! g to be the zero map and define l2
and l3 by 8̂̂<̂

:̂
l2.x; y/ D Œx; y�g; 8x; y 2 g;

l2.x; s/ D l2.s; x/ D 0; 8x 2 g; s 2 K;

l3.x; y; z/ D ‚.x; y; z/ D !
�
x; Œy; z�g

�
; 8x; y; z 2 g:

Theorem 2.6. Let .g; Œ�; ��g; !/ be a skew-symmetric quadratic Leibniz algebra. Then
.K;g; l1 D 0; l2; l3/ is a Leibniz 2-algebra.

Proof. It follows from Lemma 2.5 and we omit the details.
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Remark 2.7. A semisimple Lie algebra with the Killing form is naturally a quadratic Lie
algebra. How to construct a skew-symmetric bilinear form associated to a Leibniz algebra
such that it is invariant in the sense of (2.5) is not known yet.

2.2. Matched pairs, Manin triples of Leibniz algebras, and Leibniz bialgebras

In this subsection, first we recall the notion of a matched pair of Leibniz algebras. Then
we introduce the notions of a Manin triple of Leibniz algebras and a Leibniz bialge-
bra. Finally, we prove the equivalence between matched pairs of Leibniz algebras, Manin
triples of Leibniz algebras, and Leibniz bialgebras.

Definition 2.8 ([1]). Let .g1; Œ�; ��g1/ and .g2; Œ�; ��g2/ be two Leibniz algebras. If there
exists a representation .�L1 ; �

R
1 / of g1 on g2 and a representation .�L2 ; �

R
2 / of g2 on g1

such that the identities

�R1 .x/Œu; v�g2 �
�
u; �R1 .x/v

�
g2
C
�
v; �R1 .x/u

�
g2
� �R1

�
�L2 .v/x

�
u

C �R1
�
�L2 .u/x

�
v D 0; (2.8)

�L1 .x/Œu; v�g2 �
�
�L1 .x/u; v

�
g2
�
�
u; �L1 .x/v

�
g2
� �L1

�
�R2 .u/x

�
v

� �R1
�
�R2 .v/x

�
u D 0; (2.9)�

�L1 .x/u; v
�

g2
C �L1

�
�R2 .u/x

�
v C

�
�R1 .x/u; v

�
g2
C �L1

�
�L2 .u/x

�
v D 0; (2.10)

�R2 .u/Œx; y�g1 �
�
x; �R2 .u/y

�
g1
C
�
y; �R2 .u/x

�
g1
� �R2

�
�L1 .y/u

�
x

C �R2
�
�L1 .x/u

�
y D 0; (2.11)

�L2 .u/Œx; y�g1 �
�
�L2 .u/x; y

�
g1
�
�
x; �L2 .u/y

�
g1
� �L2

�
�R1 .x/u

�
y

� �R2
�
�R1 .y/u

�
x D 0; (2.12)�

�L2 .u/x; y
�

g1
C �L2

�
�R1 .x/u

�
y C

�
�R2 .u/x; y

�
g1
C �L2

�
�L1 .x/u

�
y D 0 (2.13)

hold for all x; y 2 g1 and u; v 2 g2, then we call .g1; g2I .�L1 ; �
R
1 /; .�

L
2 ; �

R
2 // a matched

pair of Leibniz algebras.

Proposition 2.9 ([1]). Let .g1;g2I .�L1 ; �
R
1 /; .�

L
2 ; �

R
2 // be a matched pair of Leibniz alge-

bras. Then there is a Leibniz algebra structure on g1 ˚ g2 defined by

ŒxC u;yC v�‰D Œx;y�g1 C �
R
2 .v/xC �

L
2 .u/yC Œu;v�g2 C �

L
1 .x/vC �

R
1 .y/u: (2.14)

In the Lie algebra context, to relate matched pairs of Lie algebras to Lie bialgebras
and Manin triples for Lie algebras, we need the notion of the coadjoint representation,
which is the dual representation of the adjoint representation. Now we investigate the dual
representation in the Leibniz algebra context.

Lemma 2.10. Let .V I �L; �R/ be a representation of a Leibniz algebra .g; Œ�; ��g/. Then�
V �I .�L/�;�.�L/� � .�R/�

�
is a representation of .g; Œ�; ��g/, which is called the dual representation of .V I �L; �R/.
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Proof. It follows from (2.1)–(2.3) and we omit the details.

Definition 2.11. A Manin triple of Leibniz algebras is a triple .G ;g1;g2/, where

� .G ; Œ�; ��G ; !/ is a skew-symmetric quadratic Leibniz algebra,

� both g1 and g2 are isotropic subalgebras of .G ; Œ�; ��G /,

� G D g1 ˚ g2 as vector spaces.

Example 2.12. Let .g; Œ�; ��g/ be a Leibniz algebra. Then .g ËL�;�L��R� g�; g; g�/ is a
Manin triple of Leibniz algebras, where the natural nondegenerate skew-symmetric bilin-
ear form ! on g˚ g� is given by

!.x C �; y C �/ D h�; yi � h�; xi; 8x; y 2 g; �; � 2 g�: (2.15)

For a Leibniz algebra .g�; Œ�; ��g�/, let4 W g!˝2g be the dual map of Œ�; ��g� W ˝2g�!
g�, i.e.,

h4x; � ˝ �i D
˝
x; Œ�; ��g�

˛
:

Definition 2.13. Let .g; Œ�; ��g/ and .g�; Œ�; ��g�/ be Leibniz algebras. Then .g;g�/ is called
a Leibniz bialgebra if the following conditions hold:

(a) for all x; y 2 g, we have

�
�
.Ry ˝ Id/4x

�
D .Rx ˝ Id/4y;

where � W g˝ g! g˝ g is the exchange operator defined by �.x˝ y/D y ˝ x;

(b) for all x; y 2 g, we have

4Œx; y�g D
�
.Id˝Ry � Ly ˝ Id �Ry ˝ Id/ ı .IdC �/

�
4x

C .Id˝ Lx C Lx ˝ Id/4y:

Until now, we have recalled the notion of a matched pair and introduced the notions
of a Manin triple of Leibniz algebras and a Leibniz bialgebra. Similar to the case of Lie
algebras, these objects are equivalent when we consider the dual representation of the
regular representation in a matched pair of Leibniz algebras. The following theorem is the
main result in this section.

Theorem 2.14. Let .g; Œ�; ��g/ and .g�; Œ�; ��g�/ be two Leibniz algebras. Then the following
conditions are equivalent:

(i) .g;g�/ is a Leibniz bialgebra;

(ii) .g; g�I .L�;�L� � R�/; .L�;�L� �R�// is a matched pair of Leibniz alge-
bras;

(iii) .g˚ g�;g;g�/ is a Manin triple of Leibniz algebras, where the invariant skew-
symmetric bilinear form on g˚ g� is given by (2.15).
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Proof. First we prove that (ii) is equivalent to (iii).
Let .g;g�I .L�;�L� �R�/; .L�;�L� �R�// be a matched pair of Leibniz algebras.

Then .g˚ g�; Œ�; ��‰/ is a Leibniz algebra, where Œ�; ��‰ is given by (2.14). We only need
to prove that ! satisfies the invariant condition (2.5). For all x; y; z 2 g and �; �; ˛ 2 g�,
we have

!
�
x C �; Œy C �; z C ˛�‰

�
D
˝
�; Œy; z�g

˛
� h�;L�˛yi � h�;R

�
˛yi C h�;L

�
�zi

� hL�y˛; xi C hL
�
z�; xi C hR

�
z�; xi �

˝
Œ�; ˛�g� ; x

˛
D
˝
�; Œy; z�g

˛
C
˝
Œ˛; ��g� ; y

˛
C
˝
Œ�; ˛�g� ; y

˛
�
˝
Œ�; ��g� ; z

˛
C
˝
˛; Œy; x�g

˛
�
˝
�; Œz; x�g

˛
�
˝
�; Œx; z�g

˛
�
˝
Œ�; ˛�g� ; x

˛
:

Moreover, we have

!
�
Œx C �; z C ˛�‰ C Œz C ˛; x C ��‰; y C �

�
D !

�
Œx; z�g �R�˛x �R

�
z � C Œ�; ˛�g� C Œz; x�g �R�� z �R

�
x˛ C Œ˛; ��g� ; y C �

�
D �hR�z �; yi C

˝
Œ�; ˛�g� ; y

˛
� hR�x˛; yi C

˝
Œ˛; ��g� ; y

˛
�
˝
�; Œx; z�g

˛
C h�;R�˛xi �

˝
�; Œz; x�g

˛
C h�;R�� zi

D
˝
�; Œy; z�g

˛
C
˝
Œ�; ˛�g� ; y

˛
C
˝
˛; Œy; x�g

˛
C
˝
Œ˛; ��g� ; y

˛
�
˝
�; Œx; z�g

˛
�
˝
Œ�; ˛�g� ; x

˛
�
˝
�; Œz; x�g

˛
�
˝
Œ�; ��g� ; z

˛
:

Thus, ! satisfies the invariant condition (2.5).
Conversely, let .G ; g; g�/ be a Manin triple of Leibniz algebras with the invariant

bilinear form given by (2.15). For all x 2 g, � 2 g�, assume that

Œx; ��G D �
L
1 .x/� C �

R
2 .�/x; Œ�; x�G D �

R
1 .x/� C �

L
2 .�/x;

for some �L1 , �R1 W g! gl.g�/ and �L2 , �R2 W g
� ! gl.g/. By (2.5), we have˝

�; �R2 .�/x
˛
D !

�
�; Œx; ��G

�
D !

�
Œ�; ��g� C Œ�; ��g� ; x

�
D hR��CL��; xi D �h�;R

�
� x CL��xi;

which implies that �R2 D �L� �R�, and˝
�L1 .x/�; y

˛
D �!

�
y; Œx; ��G

�
D �!

�
Œy; ��G C Œ�; y�G ; x

�
D �!

�
�; Œx; y�g

�
D �h�; Lxyi D hL

�
x�; yi;

which implies that �L1 D L
�. Similarly, we have �R1 D �L

� � R� and �L2 D L�. Thus,
.g;g�I .L�;�L� �R�/; .L�;�L� �R�// is a matched pair.

Next we prove that (i) is equivalent to (ii).
Let .g; Œ�; ��g/ and .g�; Œ�; ��g�/ be Leibniz algebras. Consider their representations

.g�IL�;�L� � R�/ and .gIL�;�L� �R�/. For all x; y 2 g, �; � 2 g�, consider the
left-hand side of (2.13); then we have

ŒL��x; y�g CL�.�L�x�R�x/�y C
�
.�L�� �R�� /x; y

�
g
CL�L�x�y D �L�R�x�y � ŒR

�
� x; y�g:
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Furthermore, by straightforward computations, we have˝
�L�R�x�y � ŒR

�
� x; y�g; �

˛
D
˝
y; ŒR�x�; ��g�

˛
� hRyR�� x; �i

D h4y;R�x� ˝ �i � h4x;R
�
y�˝ �i

D �
˝
.Rx ˝ Id/.4y/; � ˝ �

˛
C
˝
.Ry ˝ Id/.4x/; �˝ �

˛
D �

˝
.Rx ˝ Id/.4y/; � ˝ �

˛
C
˝
�
�
.Ry ˝ Id/.4x/

�
; � ˝ �

˛
:

Therefore, (2.13) is equivalent to

.Rx ˝ Id/.4y/ D �
�
.Ry ˝ Id/.4x/

�
: (2.16)

The left-hand side of (2.12) is equal to

L�� Œx; y�g � ŒL
�
�x; y�g � Œx;L

�
�y�g �L�.�L�x�R�x/�y � .�L�.�L�y�R�y /� �R�.�L�y�R�y /�/x:

Furthermore, by straightforward computations, we have˝
L�� Œx; y�g � ŒL

�
�x; y�g � Œx;L

�
�y�g CL�L�x�y CL�R�x�y

�L�L�y�x �L�R�y�x �R�L�y�x �R�R�y�x; �
˛

D �
˝
Œx; y�g; Œ�; ��g�

˛
�
˝
x; Œ�; R�y��g�

˛
�
˝
y; Œ�; L�x��g�

˛
�
˝
y; ŒL�x�; ��g�

˛
�
˝
y; ŒR�x�; ��g�

˛
C
˝
x; ŒL�y�; ��g�

˛
C
˝
x; ŒR�y�; ��g�

˛
C
˝
x; Œ�; L�y��g�

˛
C
˝
x; Œ�; R�y��g�

˛
D �

˝
4Œx; y�g; � ˝ �

˛
� h4x; � ˝R�y�i � h4y; � ˝ L

�
x�i � h4y;L

�
x� ˝ �i

� h4y;R�x� ˝ �i C h4x;L
�
y� ˝ �i C h4x;R

�
y� ˝ �i C h4x; �˝ L

�
y�i

C h4x; �˝R�y�i

D �
˝
4Œx; y�g; � ˝ �

˛
C
˝
.Id˝Ry/4x; � ˝ �

˛
C
˝
.Id˝ Lx/4y; � ˝ �

˛
C
˝
.Lx ˝ Id/4y; � ˝ �

˛
C
˝
.Rx ˝ Id/4y; � ˝ �

˛
�
˝
.Ly ˝ Id/4x; � ˝ �

˛
�
˝
.Ry ˝ Id/4x; � ˝ �

˛
�
˝
�
�
.Id˝ Ly/C .Id˝Ry/

�
4x; � ˝ �

˛
:

Therefore, (2.12) is equivalent to

4Œx; y�gD
�
Id˝Ry � Ly˝ Id �Ry˝ Id � � ı .Id˝Ly/ � � ı .Id˝Ry/

�
.4x/

C .Id˝Lx C Lx˝ IdCRx˝ Id/.4y/: (2.17)

The left-hand side of (2.11) is equal to

.�L�� �R�� /Œx; y�g C Œx;L
�
�y CR�� y�g � Œy;L

�
�x CR�� x�g

CL�L�y�x CR�L�y�x �L�L�x�y �R�L�x�y:
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Furthermore, by straightforward computations, we have˝
.�L�� �R�� /Œx; y�g C Œx;L

�
�y CR�� y�g � Œy;L

�
�x CR�� x�g

CL�L�y�x CR�L�y�x �L�L�x�y �R�L�x�y; �
˛

D
˝
Œx; y�g; Œ�; ��g�

˛
C
˝
Œx; y�g; Œ�; ��g�

˛
C
˝
y; Œ�; L�x��g�

˛
C
˝
y; ŒL�x�; ��g�

˛
�
˝
x; Œ�; L�y��g�

˛
�
˝
x; ŒL�y�; ��g�

˛
�
˝
x; ŒL�y�; ��g�

˛
�
˝
x; Œ�; L�y��g�

˛
C
˝
y; ŒL�x�; ��g�

˛
C
˝
y; Œ�; L�x��g�

˛
D
˝
4Œx; y�g; � ˝ �

˛
C
˝
�
�
4Œx; y�g

�
; � ˝ �

˛
�
˝
.Id˝ Lx/4y; � ˝ �

˛
�
˝
�
�
.Lx ˝ Id/4y

�
; � ˝ �

˛
C
˝
.Id˝ Ly/4x; � ˝ �

˛
C
˝
�
�
.Ly ˝ Id/4x

�
; � ˝ �

˛
C
˝
.Ly ˝ Id/4x; � ˝ �

˛
C
˝
�
�
.Id˝ Ly/4x

�
; � ˝ �

˛
�
˝
.Lx ˝ Id/4y; � ˝ �

˛
�
˝
�
�
.Id˝ Lx/4y

�
; � ˝ �

˛
:

Therefore, (2.11) is equivalent to

4Œx; y�g C �
�
4Œx; y�g

�
D
�
Id˝ Lx C � ı .Lx ˝ Id/C Lx ˝ IdC � ı .Id˝ Lx/

�
4y

�
�
Id˝ Ly C � ı .Ly ˝ Id/C Ly ˝ IdC � ı .Id˝ Ly/

�
4x: (2.18)

By (2.16) and (2.17), we deduce that

4Œx; y�g C �
�
4Œx; y�g

�
D
�
Id˝Ry � Ly ˝ Id�Ry ˝ Id„ ƒ‚ …�� ı .Id˝ Ly/�� ı .Id˝Ry/�4x
C
�
Id˝ Lx C Lx ˝ IdCRx ˝ Id„ ƒ‚ … �4y

C
�
� ı .Id˝Ry/ � � ı .Ly ˝ Id/�� ı .Ry ˝ Id/„ ƒ‚ …�Id˝ Ly�Id˝Ry

�
4x

C
�
� ı .Id˝ Lx/C � ı .Lx ˝ Id/C � ı .Rx ˝ Id/„ ƒ‚ … �4y

D the right-hand side of (2.18):

Thus, by (2.12) and (2.13), we can deduce that (2.11) holds.
Consider the left-hand side of (2.10), it equals �L�

R�
�
x
� � ŒR�x�; ��g� . For all y 2 g,

we have˝
� L�R�

�
x� � ŒR

�
x�; ��g� ; y

˛
D
˝
�; ŒR�� x; y�g

˛
C h�;L�R�x�yi D

˝
�; ŒR�� x; y�g CL�R�x�y

˛
;

which implies that (2.10) is equivalent to (2.13).
Similarly, if (2.10) holds, we can deduce that (2.9) is equivalent to (2.12). Further-

more, by (2.9) and (2.10), we can deduce that (2.8) holds naturally. Therefore, .g; g�I
.L�;�L� � R�/; .L�;�L� �R�// is a matched pair of Leibniz algebras if and only
if (2.16) and (2.17) hold. Note that (2.16) is exactly Condition (a) in Definition 2.13.
Furthermore, if (2.16) holds, (2.17) is exactly Condition (b) in Definition 2.13. Thus,
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.g;g�/ is a Leibniz bialgebra if and only if .g;g�I .L�;�L� �R�/; .L�;�L� �R�// is
a matched pair of Leibniz algebras.

Corollary 2.15. Let .g; g�/ be a Leibniz bialgebra. Then .g�; g/ is also a Leibniz bi-
algebra.

3. (Relative) Rota–Baxter operators and the twisting theory

In this section, first we recall the graded Lie algebra whose Maurer–Cartan elements are
Leibniz algebra structures, and define the bidegree of a multilinear map which is the
technical tool in our later study. Then we introduce the notion of a relative Rota–Baxter
operator on a Leibniz algebra, and construct the graded Lie algebra whose Maurer–Cartan
elements are relative Rota–Baxter operators. Finally, we give the twisting theory of twilled
Leibniz algebras. These structures and theories are the main ingredients in our later study
of Leibniz bialgebras.

3.1. Lifts and bidegrees of multilinear maps

A permutation � 2 Sn is called an .i; n � i/-shuffle if �.1/ < � � � < �.i/ and �.i C 1/ <
� � � < �.n/. If i D 0 or n, we assume that � D Id. The set of all .i; n � i/-shuffles will be
denoted by S.i;n�i/. The notion of an .i1; : : : ; ik/-shuffle and the set S.i1;:::;ik/ are defined
analogously.

Let g be a vector space. We consider the graded vector space

C �.g;g/ D
M
n�1

C n.g;g/ D
M
n�1

Hom.˝ng;g/:

The Balavoine bracket on the graded vector space C �.g;g/ is given by

ŒP;Q�B D P NıQ � .�1/
pqQ NıP; (3.1)

for all P 2 CpC1.g;g/;Q 2 C qC1.g;g/, where P NıQ 2 CpCqC1.g;g/ is defined by

P NıQ D

pC1X
kD1

P ık Q; (3.2)

and ık is defined by

.P ık Q/.x1; : : : ; xpCqC1/ D
X

�2S.k�1;q/

.�1/� .�1/.k�1/q

P
�
x�.1/; : : : ; x�.k�1/;Q.x�.k/; : : : ; x�.kCq�1/; xkCq/; xkCqC1; : : : ; xpCqC1

�
:

(3.3)

The following theorem is well known.

Theorem 3.1 ([7,21]). With the above notations, .C �.g;g/; Œ�; ��B/ is a graded Lie algebra.
Its Maurer–Cartan elements are precisely the Leibniz algebra structures on g.
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Let g1 and g2 be vector spaces and elements in g1 will be denoted by x; y; xi and
elements in g2 will be denoted by u; v; vi . Let c W g˝n2 ! g1 be a linear map. We can
construct a linear map Oc 2 C n.g1 ˚ g2;g1 ˚ g2/ by

Oc
�
.x1; v1/˝ � � � ˝ .xn; vn/

�
WD
�
c.v1; : : : ; vn/; 0

�
:

In general, for a given linear map f W gi.1/˝ gi.2/˝ � � � ˝ gi.n/! gj , i.1/; : : : ; i.n/; j 2
¹1; 2º, we define a linear map Of 2 C n.g1 ˚ g2;g1 ˚ g2/ by

Of WD

´
f on gi.1/ ˝ gi.2/ ˝ � � � ˝ gi.n/;

0 all other cases:

We call the linear map Of a horizontal lift of f , or simply a lift. Let H W g2 ! g1 be a
linear map. Its lift is given by yH.x; v/ D .H.v/; 0/. Obviously we have yH ı yH D 0.

We denote by gl;k the direct sum of all .l C k/-tensor powers of g1 and g2, where l
(resp. k) is the number of g1 (resp. g2). By the properties of the Hom-functor, we have

C n.g1 ˚ g2;g1 ˚ g2/ Š
X
lCkDn

Hom.gl;k ;g1/˚
X
lCkDn

Hom.gl;k ;g2/; (3.4)

where the isomorphism is the horizontal lift.

Definition 3.2. A linear map f 2Hom.˝n.g1˚ g2/;g1˚ g2/ has a bidegree l jk, which
is denoted by kf k D l jk if f satisfies the following conditions

(i) l C k C 1 D n;

(ii) if X is an element in glC1;k , then f .X/ 2 g1;

(iii) if X is an element in gl;kC1, then f .X/ 2 g2;

(iv) all the other case, f .X/ D 0.

A linear map f is said to be homogeneous if f has a bidegree. We have l C k � 0,
k; l��1 because n�1 and lC1, kC1�0. For instance, the lift yH 2C 1.g1˚g2;g1˚g2/

of H W g2 ! g1 has the bidegree �1j1.
It is obvious that we have the following lemmas.

Lemma 3.3. Let f1; : : : ; fk 2 C n.g1 ˚ g2; g1 ˚ g2/ be homogeneous linear maps and
the bidegrees of fi are different. Then f1C � � � C fk D 0 if and only if f1 D � � � D fk D 0.

Lemma 3.4. If kf kD�1jl (resp. l j � 1) and kgkD�1jk (resp. kj � 1), then Œf;g�BD 0.

Proof. Assume that kf k D �1jl and kgk D �1jk. Then f and g are both horizontal lifts
of linear maps in C �.g2; g1/. By the definition of the lift, we have f ıi g D g ıj f D 0
for any i; j . Thus, we have Œf; g�B D 0.

Lemma 3.5. Let f 2 C n.g1 ˚ g2; g1 ˚ g2/ and g 2 Cm.g1 ˚ g2; g1 ˚ g2/ be homo-
geneous linear maps with bidegrees lf jkf and lg jkg , respectively. Then the composition
f ıi g 2 C

nCm�1.g1 ˚ g2;g1 ˚ g2/ is a homogeneous linear map of the bidegree lf C
lg jkf C kg .
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Lemma 3.6. If kf k D lf jkf and kgk D lg jkg , then Œf;g�B has the bidegree lf C lg jkf C
kg .

Proof. By Lemma 3.5 and (3.1), we have kŒf; g�Bk D lf C lg jkf C kg .

3.2. (Relative) Rota–Baxter operators

First we introduce the notion of a (relative) Rota–Baxter operator and give some examples.

Definition 3.7. Let .g; Œ�; ��g/ be a Leibniz algebra.

(i) A linear operator R W g! g is called a Rota–Baxter operator if�
R.x/;R.y/

�
g
D R

��
R.x/; y

�
g
C
�
x;R.y/

�
g

�
; 8x; y 2 g: (3.5)

(ii) Let .V I �L; �R/ be a representation of .g; Œ�; ��g/. A relative Rota–Baxter opera-
tor on g with respect to the representation .V I�L; �R/ is a linear mapK W V ! g

such that

ŒKv1; Kv2�g D K
�
�L.Kv1/v2 C �

R.Kv2/v1
�
; 8v1; v2 2 V: (3.6)

(iii) Let K W V ! g (resp. K 0 W V 0 ! g0) be a relative Rota–Baxter operator on
.g; Œ�; ��g/ (resp. .g0; Œ�; ��g0/) with respect to the representation .V I�L; �R/ (resp.
.V I�L

0
;�R
0
/). A homomorphism fromK toK 0 is a pair .�;'/, where � W g! g0

is a Leibniz algebra homomorphism, ' W V ! V 0 is a linear map such that for
all x 2 g, u 2 V ,

K 0 ı ' D � ıK; (3.7)

'�L.x/.u/ D �L
0�
�.x/

��
'.u/

�
; (3.8)

'�R.x/.u/ D �R
0�
�.x/

��
'.u/

�
: (3.9)

In particular, if � and ' are invertible, then .�;'/ is called an isomorphism from
K to K 0.

We denote by RBOLeibniz the category of relative Rota–Baxter operators on Leibniz
algebras.

Remark 3.8. When .g; Œ�; ��g/ is a Lie algebra and �R D ��L, we obtain the notion of a
relative Rota–Baxter operator (an O-operator) on a Lie algebra with respect to a represen-
tation.

Example 3.9. Consider the 2-dimensional Leibniz algebra .g; Œ�; ��/ given with respect to
a basis ¹e1; e2º by

Œe1; e1� D 0; Œe1; e2� D 0; Œe2; e1� D e1; Œe2; e2� D e1:

Let ¹e�1 ; e
�
2 º be the dual basis. Then K D

�
a11 a12
a21 a22

�
is a relative Rota–Baxter operator on

.g; Œ�; ��/ with respect to the representation .g�IL�;�L� �R�/ if and only if

ŒKe�i ; Ke
�
j � D K.L

�

Ke�i
e�j � L

�

Ke�j
e�i �R

�

Ke�j
e�i /; 8i; j D 1; 2:
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Thus, we obtain

a21.a11 C a21/ D a12.a11 C a21/;

a22.a11 C a21/ D 0;

a21.a12 C a22/ D a22a11 C .a12 C 2a22/a12;

a22.a21 C a12 C 2a22/ D 0;

a22.a11 C a21/ D �a22.a11 C a12/;

�a22.a21 C a22/ D 0;

a22.a12 C a22/ D 0:

Summarizing the above discussion, we have the following.

(i) If a22 D 0, then K D
� a11 a12
a21 0

�
is a relative Rota–Baxter operator on .g; Œ�; ��/

with respect to the representation .g�IL�;�L� �R�/ if and only if

.a12 � a21/a12 D .a12 � a21/.a11 C a21/ D 0:

In particular, any K D
�
a b
b 0

�
or K D

�
a 0
�a 0

�
is a relative Rota–Baxter operator.

(ii) If a22 6D 0, then K D
�
cca11 a12
a21 a22

�
is a relative Rota–Baxter operator on .g; Œ�; ��/

with respect to the representation .g�IL�;�L� �R�/ if and only if

a11 D �a12 D �a21 D a22:

In the sequel, we construct the graded Lie algebra that characterizes relative Rota–
Baxter operators as Maurer–Cartan elements.

Let .V I �L; �R/ be a representation of a Leibniz algebra .g; Œ�; ��g/. Then there is a
Leibniz algebra structure on g˚ V given by

Œx C u; y C v�Ë D Œx; y�g C �
L.x/v C �R.y/u; (3.10)

for all x;y 2 g, u;v 2 V . This Leibniz algebra is called the semidirect product of .g; Œ�; ��g/
and .V I �L; �R/, and denoted by g Ë�L;�R V . We denote the above semidirect product
Leibniz multiplication by y�1.

Consider the graded vector space

C �.V;g/ WD
M
n�1

C n.V;g/ D
M
n�1

Hom.˝nV;g/:

Theorem 3.10. With the above notations, .C �.V;g/; ¹�; �º/ is a graded Lie algebra, where
the graded Lie bracket ¹�; �º W Cm.V;g/ � C n.V;g/! CmCn.V;g/ is defined by

¹g1; g2º D .�1/
jg1j
�
Œy�1; Og1�B; Og2

�
B; (3.11)

for all g1 2 Cm.V;g/, g2 2 C n.V;g/. Moreover, its Maurer–Cartan elements are relative
Rota–Baxter operators on the Leibniz algebra .g; Œ�; ��g/ with respect to the representation
.V I �L; �R/.
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Proof. The graded Lie algebra .C �.V; g/; ¹�; �º/ is obtained via the derived bracket [24,
39]. In fact, the Balavoine bracket Œ�; ��B associated to the direct sum vector space g˚ V

gives rise to a graded Lie algebra .C �.g˚ V; g˚ V /; Œ�; ��B/. Since y�1 is the semidirect
product Leibniz algebra structure on the vector space g˚ V , by Theorem 3.1, we deduce
that .C �.g˚ V;g˚ V /; Œ�; ��B; d D Œy�1; ��B/ is a differential graded Lie algebra. Obviously
C �.V; g/ is an abelian subalgebra. Further, we define the derived bracket on the graded
vector space C �.V;g/ by

¹g1; g2º WD .�1/
jg1jŒd. Og1/; Og2�B D .�1/

jg1j
�
Œy�1; Og1�B; Og2

�
B;

for all g1 2 Cm.V; g/, g2 2 C n.V; g/. By Lemma 3.6, the derived bracket ¹�; �º is closed
on C �.V; g/, which implies that .C �.V; g/; ¹�; �º/ is a graded Lie algebra. Moreover, it is
straightforward to obtain the concrete graded Lie bracket ¹�; �º on the graded vector space
C �.V;g/ D

LC1
kD1 C

k.V;g/.
For all K 2 C 1.V;g/ and v1; v2 2 V , we have

¹K;Kº.v1; v2/ D 2
�
ŒKv1; Kv2�g �K

�
�L.Kv1/v2 C �

R.Kv2/v1
��
:

Thus, Maurer–Cartan elements are precisely relative Rota–Baxter operators on g with
respect to the representation .V I �L; �R/.

This is the main ingredient in our later study of the classical Leibniz Yang–Baxter
equation and the classical Leibniz r-matrix. Recently, using this graded Lie algebra, the
cohomology theory of relative Rota–Baxter operators on Leibniz algebras was established
in [37].

3.3. Twilled Leibniz algebras and the twisting theory

Let .G ; Œ�; ��G / be a Leibniz algebra with a decomposition into two subspaces1, G Dg1˚g2.
For later convenience, we use � to denote the multiplication Œ�; ��G , i.e.,

�
�
.x; u/; .y; v/

�
WD
�
.x; u/; .y; v/

�
G
:

Lemma 3.11. Any � 2 C 2.G ;G / is uniquely decomposed into four homogeneous linear
maps of bidegrees 2j � 1, 1j0, 0j1, and �1j2,

� D y�1 C y�1 C y�2 C y�2:

Proof. By (3.4), C 2.G ;G / is decomposed into

C 2.G ;G / D .2j � 1/C .1j0/C .0j1/C .�1j2/;

where .i jj / is the space of linear maps of the bidegree i jj . By Lemma 3.3, � is uniquely
decomposed into homogeneous linear maps of bidegrees 2j � 1, 1j0, 0j1, and �1j2.

1Here g1 and g2 are not necessarily subalgebras.
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Denote Pgi ŒX; Y �G by ŒX; Y �i , for X; Y 2 G , i D 1; 2, where Pg1 and Pg2 are the
natural projections from G to g1 and g2, respectively. The multiplication Œ.x;u/; .y;v/�G is
uniquely decomposed by the canonical projections Pg1 and Pg2 into eight multiplications:

Œx; y�G D
�
Œx; y�1; Œx; y�2

�
; Œx; v�G D

�
Œx; v�1; Œx; v�2

�
;

Œu; y�G D
�
Œu; y�1; Œu; y�2

�
; Œu; v�G D

�
Œu; v�1; Œu; v�2

�
:

Write � D y�1 C y�1 C y�2 C y�2 as in Lemma 3.11. Then we obtain

y�1
�
.x; u/; .y; v/

�
D
�
0; Œx; y�2

�
; (3.12)

y�1
�
.x; u/; .y; v/

�
D
�
Œx; y�1; Œx; v�2 C Œu; y�2

�
; (3.13)

y�2
�
.x; u/; .y; v/

�
D
�
Œx; v�1 C Œu; y�1; Œu; v�2

�
; (3.14)

y�2
�
.x; u/; .y; v/

�
D
�
Œu; v�1; 0

�
: (3.15)

Observe that y�1 and y�2 are lifted linear maps of �1.x;y/ WD Œx;y�2 and �2.u;v/ WD Œu;v�1.

Definition 3.12. The triple .G ;g1;g2/ is called a twilled Leibniz algebra if �1 D �2 D 0,
or, equivalently, g1 and g2 are subalgebras of G .

Lemma 3.13. The triple .G ;g1;g2/ is a twilled Leibniz algebra if and only if the following
three conditions hold:

1

2
Œy�1; y�1�B D 0; (3.16)

Œy�1; y�2�B D 0; (3.17)
1

2
Œy�2; y�2�B D 0: (3.18)

Proof. By Lemma 3.6 and Lemma 3.3, the proof is straightforward.

Proposition 3.14. There is a one-to-one correspondence between matched pairs of Leib-
niz algebras and twilled Leibniz algebras.

Proof. Let .g1;g2I .�L1 ; �
R
1 /; .�

L
2 ; �

R
2 // be a matched pair of Leibniz algebras. By Propo-

sition 2.9, we obtain that .g1 ˚ g2; Œ�; ��‰/ is a Leibniz algebra. We denote this Leibniz
algebra simply by g1 ‰ g2. Then .g1 ‰ g2;g1;g2/ is a twilled Leibniz algebra.

Conversely, if .G ;g1;g2/ is a twilled Leibniz algebra, then .�L1 ; �
R
1 / is a representation

of g1 on g2 and .�L2 ; �
R
2 / is a representation of g2 on g1, where �L1 , �R1 , �L2 , �R2 are defined

by

�L1 .x/u D Œx; u�2; �R1 .x/u D Œu; x�2; �L2 .u/x D Œu; x�1; �R2 .u/x D Œx; u�1:

By Lemma 3.13, Œy�1; y�2�B D 0, which is equivalent to (2.8)–(2.13). Thus, .g1; g2I

.�L1 ; �
R
1 /; .�

L
2 ; �

R
2 // is a matched pair of Leibniz algebras.

Let .G ; Œ�; ��G / be a Leibniz algebra with a decomposition into two subspaces, G D

g1 ˚ g2, and � D y�1 C y�1 C y�2 C y�2 the Leibniz multiplication. Let yH be the lift of
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a linear map H W g2 ! g1. Then eŒ�; yH�B is an automorphism of the graded Lie algebra
.C �.G ;G /; Œ�; ��B/.

Definition 3.15. The transformation �H WD eŒ�; yH�B� is called a twisting of � by H .

Lemma 3.16. �H D e� yH ı� ı .e yH ˝ e yH /.

Proof. For all .x1; v1/, .x2; v2/ 2 G , we have

Œ�; yH�B
�
.x1; v1/; .x2; v2/

�
D .�Nı yH � yH Nı�/

�
.x1; v1/; .x2; v2/

�
D �

��
H.v1/; 0

�
; .x2; v2/

�
C�

�
.x1; v1/;

�
H.v2/; 0

��
� yH

�
�
�
.x1; v1/; .x2; v2/

��
:

By yH ı yH D 0, we have�
Œ�; yH�B; yH

�
B

�
.x1; v1/; .x2; v2/

�
D Œ�; yH�B

��
H.v1/; 0

�
; .x2; v2/

�
C Œ�; yH�B

�
.x1; v1/;

�
H.v2/; 0

��
� yH

�
Œ�; yH�B

�
.x1; v1/; .x2; v2/

��
D 2�

��
H.v1/; 0

�
;
�
H.v2/; 0

��
� 2 yH�

��
H.v1/; 0

�
; .x2; v2/

�
� 2 yH�

�
.x1; v1/;

�
H.v2/; 0

��
:

Moreover, we have��
Œ�; yH�B; yH

�
B;
yH
�
B

�
.x1; v1/; .x2; v2/

�
D �6 yH�

��
H.v1/; 0

�
;
�
H.v2/; 0

��
;�

� � �
�
Œ„ƒ‚…

i

�; yH�B; yH
�
B; : : : ;

yH
�
B

�
.x1; v1/; .x2; v2/

�
D 0; 8i � 4;

and

eŒ�;
yH�B� D �C Œ�; yH�B C

1

2

�
Œ�; yH�B; yH

�
B C

1

6

��
Œ�; yH�B; yH

�
B;
yH
�
B: (3.19)

Thus, we have

�H D � � yH ı�C� ı . yH ˝ Id/C� ı .Id˝ yH/

� yH ı� ı .Id˝ yH/ � yH ı� ı . yH ˝ Id/

C� ı . yH ˝ yH/ � yH ı� ı . yH ˝ yH/:

By yH ı yH D 0, we have

e�
yH
ı� ı .e

yH
˝ e

yH /

D .Id � yH/ ı� ı
�
.IdC yH/˝ .IdC yH/

�
D �C� ı .Id˝ yH/C� ı . yH ˝ Id/C� ı . yH ˝ yH/ � yH ı�

� yH ı� ı .Id˝ yH/ � yH ı� ı . yH ˝ Id/ � yH ı� ı . yH ˝ yH/:

Thus, we obtain that �H D e� yH ı� ı .e yH ˝ e yH /.
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Proposition 3.17. The twisting �H is a Leibniz algebra structure on G .

Proof. By �H D e� yH ı� ı .e yH ˝ e yH /, we have

Œ�H ; �H �B D 2�
H
Nı�H D 2e�

yH
ı .�Nı�/ ı .e

yH
˝ e

yH
˝ e

yH /

D e�
yH
ı Œ�;��B ı .e

yH
˝ e

yH
˝ e

yH / D 0;

which implies that �H is a Leibniz algebra structure on G by Theorem 3.1.

Corollary 3.18. e yH W .G ; �H /! .G ; �/ is an isomorphism between Leibniz algebras.

The twisting operations are completely determined by the following result.

Proposition 3.19. Write� WD y�1 C y�1 C y�2 C y�2 and�H WD y�H1 C y�
H
1 C y�

H
2 C

y�H2 .
Then one has

y�H1 D
y�1;

y�H1 D y�1 C Œ
y�1; yH�B;

y�H2 D y�2 C Œy�1;
yH�B C

1

2

�
Œy�1; yH�B; yH

�
B;

y�H2 D
y�2 C Œy�2; yH�B C

1

2

�
Œy�1; yH�B; yH

�
B C

1

6

��
Œy�1; yH�B; yH

�
B;
yH
�
B:

Proof. It follows from a direct but tedious computation. We omit the details.

In the sequel, we consider a special case of the above twisting theory. Let .V I �L; �R/
be a representation of a Leibniz algebra .g; Œ�; ��g/. Consider the twilled Leibniz algebra
.g Ë�L;�R V; g; V /. Denote the Leibniz multiplication Œ�; ��Ë by �. Write � D y�1 C y�2.
Then y�2 D 0.

Theorem 3.20. With the above notations, let H W V ! g be a linear map. The twisting
..g˚ V;�H /;g; V / is a twilled Leibniz algebra if and only ifH is a relative Rota–Baxter
operator on the Leibniz algebra .g; Œ�; ��g/ with respect to the representation .V I �L; �R/.
Moreover, the Leibniz algebra structure on V is given by

Œu; v�H WD �
L
�
H.u/

�
v C �R

�
H.v/

�
u; 8u; v 2 V: (3.20)

Proof. By Proposition 3.19, the twisting has the form

y�H1 D y�1; (3.21)

y�H2 D Œy�1;
yH�B; (3.22)

y�H2 D
1

2

�
Œy�1; yH�B; yH

�
B: (3.23)

Thus, the twisting ..g˚ V;�H /;g; V / is a twilled Leibniz algebra if and only if y�H2 D 0,
which implies that H is a relative Rota–Baxter operator by Theorem 3.10.

By Lemma 3.13, we deduce that y�H2 is a Leibniz algebra multiplication on V . It is
straightforward to deduce that the multiplication on V is given by (3.20).
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4. The classical Leibniz Yang–Baxter equation and triangular
Leibniz bialgebras

In this section, first we construct a Leibniz bialgebra using a symmetric relative Rota–
Baxter operator. Then we define the classical Leibniz Yang–Baxter equation using the
graded Lie algebra obtained in Theorem 3.10. Its solutions are called classical Leibniz
r-matrices. Using the twisting theory given in Section 3, we define a triangular Leib-
niz bialgebra successfully. Finally, we generalize a result by Semenov-Tian-Shansky [33]
about the relation between the operator form and the tensor form of a classical r-matrix to
the context of Leibniz algebras.

LetK W g�! g be a relative Rota–Baxter operator on a Leibniz algebra .g; Œ�; ��g/with
respect to the representation .g�IL�;�L� � R�/. Let � be the Leibniz multiplication of
the semidirect product Leibniz algebra gËL�;�L��R�g�. By Theorem 3.20, ..g˚g�;�K/;

g; g�/ is a twilled Leibniz algebra. Moreover, by Corollary 3.18, e yK W .g˚ g�; �K/!

.g˚ g�; �/ is an isomorphism between Leibniz algebras.
First by Theorem 3.20, we have the following corollary.

Corollary 4.1. Let K W g� ! g be a relative Rota–Baxter operator on g with respect
to the representation .g�IL�;�L� � R�/. Then g�K WD .g

�; Œ�; ��K/ is a Leibniz algebra,
where Œ�; ��K is given by

Œ�; ��K D L
�
K�� � L

�
K�� �R

�
K��; 8�; � 2 g�:

Proposition 4.2. Let K W g� ! g be a relative Rota–Baxter operator on .g; Œ�; ��g/ with
respect to the representation .g�IL�;�L� � R�/. Then e yK preserves the bilinear form
! given by (2.15) if and only if K� D K. Here K� is the dual map of K, i.e., hK�; �i D
h�;K��i, for all �; � 2 g�.

Proof. By yK ı yK D 0, we have e yK D IdC yK. For all x; y 2 g, �; � 2 g�, we have

!
�
e
yK.x C �/; e

yK.y C �/
�

D !.x C �; y C �/C !
�
x C �;K.�/

�
C !

�
K.�/; y C �

�
C !

�
K.�/;K.�/

�
D !.x C �; y C �/C

˝
�;K.�/

˛
�
˝
�;K.�/

˛
D !.x C �; y C �/C

˝
.K� �K/�; �

˛
:

Thus, !.e yK.x C �/; e yK.y C �// D !.x C �; y C �/ if and only if K� D K.

Proposition 4.3. Let K W g� ! g be a relative Rota–Baxter operator on .g; Œ�; ��g/ with
respect to the representation .g�IL�;�L� � R�/ and K� D K. Then .g˚ g�; �K/ is
a skew-symmetric quadratic Leibniz algebra with the invariant bilinear form ! given by
(2.15) and e yK is an isomorphism from the skew-symmetric quadratic Leibniz algebra
.g˚ g�; �K/ to .g˚ g�; �/.
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Proof. Since e yK is a Leibniz algebra isomorphism and preserves the bilinear form !, for
all X; Y;Z 2 g˚ g�, we have

!
�
X;�K.Y;Z/

�
D !

�
X; e�

yK�.e
yKY; e

yKZ/
�
D !

�
e
yKX;�.e

yKY; e
yKZ/

�
D !

�
�.e

yKX; e
yKZ/C�.e

yKZ; e
yKX/; e

yKY
�

D !
�
�K.X;Z/C�K.Z;X/; Y

�
;

which implies that .g ˚ g�; �K/ is a skew-symmetric quadratic Leibniz algebra. It is
obvious that e yK is an isomorphism from the quadratic Leibniz algebra .g˚ g�; �K/ to
.g˚ g�; �/.

By Corollary 4.1, Proposition 4.3, and Theorem 2.14, we obtain the following.

Theorem 4.4. Let K W g� ! g be a relative Rota–Baxter operator on a Leibniz algebra
.g; Œ�; ��g/ with respect to the representation .g�I L�; �L� � R�/ and K� D K. Then
.g;g�K/ is a Leibniz bialgebra, where the Leibniz algebra g�K is given in Corollary 4.1.

Let .g; Œ�; ��g/ be a Leibniz algebra. We consider the representation .g�IL�;�L� �R�/
of .g; Œ�; ��g/. By Theorem 3.10, we have the following corollary.

Corollary 4.5. Let .g; Œ�; ��g/ be a Leibniz algebra. Then .C �.g�;g/; ¹�; �º/ is a graded Lie
algebra, where ¹�; �º is given by (3.11).

In the sequel, to define the classical Leibniz Yang–Baxter equation, we transfer the
above graded Lie algebra structure to the tensor space.

For all k � 1 and P 2 ˝kC1g, �1; : : : ; �kC1 2 g�, we define

‰ W ˝kC1g! Hom.˝kg�;g/˝
‰.P /.�1; : : : ; �k/; �kC1

˛
D hP; �1 ˝ � � � ˝ �k ˝ �kC1i (4.1)

and

‡ W Hom.˝kg�;g/!˝kC1g˝
‡.f /; �1 ˝ � � � ˝ �k ˝ �kC1

˛
D
˝
f .�1; : : : ; �k/; �kC1

˛
: (4.2)

Obviously, we have ‰ ı ‡ D Id, ‡ ı‰ D Id.

Theorem 4.6. Let .g; Œ�; ��g/ be a Leibniz algebra. Then there is a graded Lie bracket ŒŒ�; ���
on the graded space

L
k�2.˝

kg/ given by�
ŒP;Q�

�
WD ‡

®
‰.P /;‰.Q/

¯
; 8P 2 ˝mC1g; Q 2 ˝nC1g:

Proof. By ‰ ı ‡ D Id, ‡ ı ‰ D Id, we transfer the graded Lie algebra structure on
C �.g�;g/ to that on the graded space

L
k�2.˝

kg/.

The general formula of ŒŒP;Q�� is very sophisticated. But for P D x ˝ y and Q D
z ˝ w, there is an explicit expression, which is enough for our application.
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Lemma 4.7. For x ˝ y, z ˝ w 2 g˝ g, one has�
Œx ˝ y; z ˝ w�

�
D z ˝ Œw; x�g ˝ y � Œw; x�g ˝ z ˝ y � Œx; w�g ˝ z ˝ y

C z ˝ x ˝ Œw; y�g C x ˝ z ˝ Œy; w�g C x ˝ Œy; z�g ˝ w

� Œy; z�g ˝ x ˝ w � Œz; y�g ˝ x ˝ w: (4.3)

Proof. For all � 2 g�, we have ‰.x ˝ y/.�/ D hx; �iy. By Corollary 4.5, for all
�1; �2 2 g�, we have®

‰.x ˝ y/;‰.z ˝ w/
¯
.�1; �2/

D �‰.x ˝ y/.L�‰.z˝w/�1�2/C‰.x ˝ y/.L
�
‰.z˝w/�2

�1/

C‰.x ˝ y/.R�‰.z˝w/�2�1/C
�
‰.z ˝ w/�1; ‰.x ˝ y/�2

�
g

C
�
‰.x ˝ y/�1; ‰.z ˝ w/�2

�
g
�‰.z ˝ w/.L�‰.x˝y/�1�2/

C‰.z ˝ w/.L�‰.x˝y/�2�1/C‰.z ˝ w/.R
�
‰.x˝y/�2

�1/:

Thus, for all �1; �2; �3 2 g�, we have˝�
Œx ˝ y; z ˝ w�

�
; �1 ˝ �2 ˝ �3

˛
D
˝®
‰.x ˝ y/;‰.z ˝ w/

¯
.�1; �2/; �3

˛
D �

˝
‰.x ˝ y/.L�‰.z˝w/�1�2/; �3

˛
C
˝
‰.x ˝ y/.L�‰.z˝w/�2�1/; �3

˛
C
˝
‰.x ˝ y/.R�‰.z˝w/�2�1/; �3

˛
C
˝�
‰.z ˝ w/�1; ‰.x ˝ y/�2

�
g
; �3
˛

C
˝�
‰.x ˝ y/�1; ‰.z ˝ w/�2

�
g
; �3
˛
�
˝
‰.z ˝ w/.L�‰.x˝y/�1�2/; �3

˛
C
˝
‰.z ˝ w/.L�‰.x˝y/�2�1/; �3

˛
C
˝
‰.z ˝ w/.R�‰.x˝y/�2�1/; �3

˛
D �hz; �1ihx;L

�
w�2ihy; �3i C hz; �2ihx;L

�
w�1ihy; �3i

C hz; �2ihx;R
�
w�1ihy; �3i C hz; �1ihx; �2i

˝
Œw; y�g; �3

˛
C hx; �1ihz; �2i

˝
Œy; w�g; �3

˛
� hx; �1ihz; L

�
y�2ihw; �3i

C hx; �2ihz; L
�
y�1ihw; �3i C hx; �2ihz;R

�
y�1ihw; �3i

D hz; �1i
˝
Œw; x�g; �2

˛
hy; �3i �

˝
Œw; x�g; �1

˛
hz; �2ihy; �3i

�
˝
Œx; w�g; �1

˛
hz; �2ihy; �3i C hz; �1ihx; �2i

˝
Œw; y�g; �3

˛
C hx; �1ihz; �2i

˝
Œy; w�g; �3

˛
C hx; �1i

˝
Œy; z�g; �2

˛
hw; �3i

�
˝
Œy; z�g; �1

˛
hx; �2ihw; �3i �

˝
Œz; y�g; �1

˛
hx; �2ihw; �3i;

which implies that (4.3) holds.

Moreover, we can obtain the tensor form of a relative Rota–Baxter operator on g with
respect to the representation .g�IL�;�L� �R�/.

Proposition 4.8. Let K W g� ! g be a linear map.

(i) K is a relative Rota–Baxter operator on g with respect to the representation
.g�IL�;�L� �R�/ if and only if the tensor form ‡.K/ 2 g˝ g satisfies��

‡.K/;‡.K/
��
D 0:
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(ii) K D K� if and only if ‡.K/ D �.‡.K//, i.e., ‡.K/ 2 Sym2.g/.

Proof. Since ‰ is a graded Lie algebra isomorphism from the graded Lie algebra
.
L
k�2.˝

kg/; ŒŒ�; ���/ to .C �.g�; g/; ¹�; �º/, we deduce that ¹K; Kº D 0 if and only if
ŒŒ‡.K/;‡.K/�� D 0. The other conclusion is obvious.

Definition 4.9. Let .g; Œ�; ��g/ be a Leibniz algebra and r 2 Sym2.g/. Then equation�
Œr; r�

�
D 0 (4.4)

is called the classical Leibniz Yang–Baxter equation in g and r is called a classical Leibniz
r-matrix.

Example 4.10. Consider the 2-dimensional Leibniz algebra .g; Œ�; ��/ defined with respect
to a basis ¹e1; e2º by

Œe1; e1� D 0; Œe1; e2� D 0; Œe2; e1� D e1; Œe2; e2� D e1:

For all r D ae1 ˝ e1 C be1 ˝ e2 C be2 ˝ e1 C ce2 ˝ e2 2 Sym2.g/, by Lemma 4.7, we
have �

Œr; r�
�
D 4c.aC b/e2 ˝ e1 ˝ e1 � 2c.aC b/e1 ˝ e2 ˝ e1

� 2c.aC b/e1 ˝ e1 ˝ e2 C 2c.b C c/e2 ˝ e1 ˝ e2

� 4c.b C c/e1 ˝ e2 ˝ e2 C 2c.b C c/e2 ˝ e2 ˝ e1:

Summarizing the above computation, we have

(i) if c D 0, then any r D ae1 ˝ e1 C b.e1 ˝ e2 C e2 ˝ e1/ is a classical Leibniz
r-matrix;

(ii) if c 6D 0, then ŒŒr; r�� D 0 if and only if a D c D �b. Thus, any

r D c.e1 ˝ e1 � e1 ˝ e2 � e2 ˝ e1 C e2 ˝ e2/

is a classical Leibniz r-matrix.

Remark 4.11. For rDae1˝e1Cbe1˝e2Cbe2˝ e1Cce2˝e2, we have r].e�1 ; e
�
2 /D

.e1; e2/
�
a b
b c

�
, where r] D ‰.r/ W g� ! g is defined by hr].�/; �i D hr; � ˝ �i for all

�;�2g�. The above classical Leibniz r-matrices actually correspond to symmetric relative
Rota–Baxter operators given in Example 3.9.

Corollary 4.12. Let .g; Œ�; ��g/ be a Leibniz algebra and r 2 Sym2.g/ a solution of the
classical Leibniz Yang–Baxter equation in g. Then .g;g�

r]
/ is a Leibniz bialgebra.

Proof. By r 2 Sym2.g/ and ŒŒr; r�� D 0, we deduce that r] W g� ! g is a relative Rota–
Baxter operator on g with respect to the representation .g�IL�;�L� � R�/ and .r]/� D
r]. By Theorem 4.4, we obtain that .g;g�

r]
/ is a Leibniz bialgebra.
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Definition 4.13. Let .g; Œ�; ��g/ be a Leibniz algebra and r 2 Sym2.g/ a solution of the
classical Leibniz Yang–Baxter equation in g. We call the Leibniz bialgebra .g; g�

r]
/ the

triangular Leibniz bialgebra associated to the classical Leibniz r-matrix r .

Remark 4.14. In Section 2, we define a Leibniz bialgebra, which is equivalent to a Manin
triple of Leibniz algebras. Note that there is no cohomology theory that can be used in the
theory of Leibniz bialgebras. Thus, there is not an obvious way to define a “cobound-
ary Leibniz bialgebra”. Nevertheless, using the twisting method in the theory of twilled
Leibniz algebras, we define triangular Leibniz bialgebras successfully.

In the Lie algebra context, we know that the dual description of a classical r-matrix
is a symplectic structure on a Lie algebra. Now we investigate the dual description of
a classical Leibniz r-matrix. A symmetric 2-form B 2 Sym2.g�/ on a Leibniz algebra
.g; Œ�; ��g/ induces a linear map B\ W g! g� by˝

B\.x/; y
˛
WD B.x; y/; 8x; y 2 g:

B is said to be nondegenerate if B\ W g! g� is an isomorphism. Similarly, r 2 Sym2.g/

is said to be nondegenerate if r] W g� ! g is an isomorphism.

Proposition 4.15. r 2 Sym2.g/ is a nondegenerate solution of the classical Leibniz Yang–
Baxter equation in a Leibniz algebra g if and only if the symmetric nondegenerate bilinear
form B on g defined by

B.x; y/ WD
˝
.r]/�1.x/; y

˛
; 8x; y 2 g; (4.5)

satisfies the “closed” condition

B
�
z; Œx; y�g

�
D �B

�
y; Œx; z�g

�
CB

�
x; Œy; z�g

�
CB

�
x; Œz; y�g

�
: (4.6)

Proof. Let r 2 Sym2.g/ be nondegenerate. It is obvious that B is symmetric and nonde-
generate.

Since r] W g�! g is an invertible linear map, for all x;y;z 2 g, there are �1; �2; �3 2 g�

such that r].�1/ D x, r].�2/ D y, and r].�3/ D z. Since r] is a relative Rota–Baxter
operator on g with respect to the representation .g�IL�;�L� � R�/ and .r]/� D r], we
have

B
�
z; Œx; y�g

�
D
˝
.r]/�1.z/; Œx; y�g

˛
D
˝
�3;
�
r].�1/; r

].�2/
�

g

˛
D
˝
�3; r

].L�
r].�1/

�2/
˛
�
˝
�3; r

].L�
r].�2/

�1/
˛
�
˝
�3; r

].R�
r].�2/

�1/
˛

D
˝
r].�3/; L

�

r].�1/
�2
˛
�
˝
r].�3/; L

�

r].�2/
�1
˛
�
˝
r].�3/; R

�

r].�2/
�1
˛

D�
˝�
r].�1/; r

].�3/
�

g
; �2
˛
C
˝�
r].�2/; r

].�3/
�

g
; �1
˛
C
˝�
r].�3/; r

].�2/
�

g
; �1
˛

D�B
�
Œx; z�g; y

�
CB

�
Œz; y�g; x

�
CB

�
Œy; z�g; x

�
:

Thus, B satisfies (4.6).



R. Tang and Y. Sheng 1202

At the end of this section, we generalize a Semenov-Tian-Shansky’s result in [33] to
the context of Leibniz algebras.

Lemma 4.16. Let .g; Œ�; ��g; !/ be a skew-symmetric quadratic Leibniz algebra. Then
!\ W g! g� is an isomorphism from the regular representation .gIL;R/ to its dual rep-
resentation .g�IL�;�L� �R�/.

Proof. For all x; y; z 2 g, by (2.6) we have˝
!\.Lxy/ � L

�
x!

\.y/; z
˛
D !

�
Œx; y�g; z

�
C
˝
!\.y/; Lxz

˛
D !

�
Œx; y�g; z

�
C !

�
y; Œx; z�g

�
D 0:

Thus, we have !\ ı Lx D L�x ı !
\. By (2.5), we have˝

!\.Rxy/ � .�L
�
x �R

�
x/!

\.y/; z
˛
D !

�
Œy; x�g; z

�
�
˝
!\.y/; .Lx CRx/z

˛
D !

�
Œy; x�g; z

�
� !

�
y; Œx; z�g C Œz; x�g

�
D 0:

Thus, we have !\ ıRx D .�L�x �R
�
x/ ı !

\.

Theorem 4.17. Let .g; Œ�; ��g; !/ be a skew-symmetric quadratic Leibniz algebra and K W
g�! g a linear map. ThenK is a relative Rota–Baxter operator on .g; Œ�; ��g/ with respect
to the representation .g�IL�;�L� �R�/ if and only ifK ı !\ is a Rota–Baxter operator
on .g; Œ�; ��g/.

Proof. For all x; y 2 g, by Lemma 4.16, we have

.K ı !\/
��
K!\.x/; y

�
g
C
�
x;K!\.y/

�
g

�
D K

�
!\.LK!\.x/y/C !

\RK!\.y/x
�

D K
�
L�
K!\.x/

!\.y/ � L�
K!\.y/

!\.x/ �R�
K!\.y/

!\.x/
�
;

which implies the conclusion.

Corollary 4.18. Let .g; Œ�; ��g; !/ be a skew-symmetric quadratic Leibniz algebra. Then
r 2 Sym2.g/ is a solution of the classical Leibniz Yang–Baxter equation in g if and only
if r] ı !\ is a Rota–Baxter operator on .g; Œ�; ��g/, i.e.,�

r] ı !\.x/; r] ı !\.y/
�

g
D .r] ı !\/

��
r] ı !\.x/; y

�
g
C
�
x; r] ı !\.y/

�
g

�
:

Remark 4.19. In [20], the authors defined R˙-matrix for Leibniz algebras as a direct
generalization of Semenov-Tian-Shansky’s approach in [33], without any bialgebra theory
for Leibniz algebras. It is straightforward to see that theirRC-matrices in a Leibniz algebra
are simply Rota–Baxter operators on the Leibniz algebra. By the above corollary, if r is
a classical Leibniz r-matrix in a skew-symmetric quadratic Leibniz algebra .g; Œ�; ��g; !/,
then r] ı !\ is an RC-matrix.

Our bialgebra theory for Leibniz algebras enjoys many good properties parallelling to
that for Lie algebras. This justifies its correctness.
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5. Solutions of the classical Leibniz Yang–Baxter equations

In this section, first we show that a relative Rota–Baxter operator on a Leibniz algebra
.g; Œ�; ��g/ with respect to a representation .V I �L; �R/ gives rise to a solution of the clas-
sical Leibniz Yang–Baxter equation in a larger Leibniz algebra. Then we introduce the
notion of a Leibniz-dendriform algebra, which is the underlying algebraic structure of
a relative Rota–Baxter operator on a Leibniz algebra. Leibniz-dendriform algebras play
important roles in our study of the classical Leibniz Yang–Baxter equation. There is a
natural solution of the classical Leibniz Yang–Baxter equation in the semidirect product
Leibniz algebra A ËL�C;�L�C�R�B A

� associated to a Leibniz-dendriform algebra .A;F;G/.

Lemma 5.1. Let .V I �L; �R/ be a representation of a Leibniz algebra .g; Œ�; ��g/. Then,
the dual representation .g�˚V IL�Ë;�L

�
Ë � R

�
Ë/ of the regular representation .g˚V �I

LË; RË/ of the semidirect product Leibniz algebra g Ë.�L/�;�.�L/��.�R/� V � has the fol-
lowing properties:

L�Ë.x/� D L
�
x� 2 g�; L�Ë.x/v D �

L.x/v 2 V;

L�Ë.�/� D 0; L�Ë.�/v 2 g�;

.�L�Ë �R
�
Ë/.x/� D .�L

�
x �R

�
x/�; .�L�Ë �R

�
Ë/.x/v D �

R.x/v 2 V;

.�L�Ë �R
�
Ë/.�/� D 0; .�L�Ë �R

�
Ë/.�/v 2 g�;

for all x 2 g, v 2 V , � 2 g�, � 2 V �.

Theorem 5.2. A linear map K W V ! g is a relative Rota–Baxter operator on a Leibniz
algebra .g; Œ�; ��g/ with respect to a representation .V I �L; �R/ if and only if K C K�

is a relative Rota–Baxter operator on the Leibniz algebra g Ë.�L/�;�.�L/��.�R/� V � with
respect to the dual representation .g� ˚ V IL�Ë;�L

�
Ë �R

�
Ë/ of the regular representation

.g˚ V �ILË; RË/, i.e., the tensor form ‡.K CK�/ is a solution of the classical Leibniz
Yang–Baxter equation in the Leibniz algebra g Ë.�L/�;�.�L/��.�R/� V �.

Proof. Let K W V ! g be a relative Rota–Baxter operator on a Leibniz algebra .g; Œ�; ��g/
with respect to a representation .V I �L; �R/. By Lemma 5.1, for all u; v 2 V , we have

.KCK�/
�
L�Ë
�
.KCK�/u

�
v�.L�ËCR

�
Ë/
�
.KCK�/v

�
u
�
�
�
.KCK�/u; .KCK�/v

�
Ë

D .K CK�/
�
�L.Ku/v C �R.Kv/u

�
� ŒKu;Kv�Ë

D K
�
�L.Ku/v C �R.Kv/u

�
� ŒKu;Kv�g

D 0: (5.1)

For all u; v 2 V; � 2 g�, we have˝
.K CK�/

�
L�Ë
�
.K CK�/u

�
� C .�L�Ë �R

�
Ë/
�
.K CK�/�

�
u
�

�
�
.K CK�/u; .K CK�/�

�
Ë
; v
˛

D
˝
K�
�
L�Ku� C .�L

�
Ë �R

�
Ë/.K

��/u
�
� .�L/�.Ku/K��; v

˛
D
˝
L�Ku� C .�L

�
Ë �R

�
Ë/.K

��/u;Kv
˛
C
˝
K��; �L.Ku/v

˛
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D �
˝
�; ŒKu;Kv�g

˛
�
˝
u; .�L/�.Kv/K�� C .�R/�.Kv/K��

˛
C
˝
u; .�L/�.Kv/K��

˛
C
˝
�;K.�L.Ku/v/

˛
D �

˝
�; ŒKu;Kv�g

˛
�
˝
u; .�R/�.Kv/K��

˛
C
˝
�;K

�
�L.Ku/v

�˛
D �

˝
�; ŒKu;Kv�g

˛
C
˝
K.�R.Kv/u/; �

˛
C
˝
�;K

�
�L.Ku/v

�˛
D 0:

Similarly, we can show that for all X; Y 2 g� ˚ V , we have

.K CK�/
�
L�Ë
�
.K CK�/X

�
Y C .�L�Ë �R

�
Ë/
�
.K CK�/Y

�
X
�

�
�
.K CK�/X; .K CK�/Y

�
Ë
D 0;

which implies that K C K� is a relative Rota–Baxter operator on the Leibniz algebra
g Ë.�L/�;�.�L/��.�R/� V � with respect to the representation .g� ˚ V IL�Ë;�L

�
Ë �R

�
Ë/.

Conversely, let K C K� be a relative Rota–Baxter operator on the Leibniz algebra
g Ë.�L/�;�.�L/��.�R/� V � with respect to the representation .g�˚ V IL�Ë;�L

�
Ë �R

�
Ë/. By

(5.1), we deduce that K W V ! g is a relative Rota–Baxter operator on .g; Œ�; ��g/ with
respect to the representation .V I �L; �R/.

In the sequel, we introduce the notion of a Leibniz-dendriform algebra as the underly-
ing algebraic structure of a relative Rota–Baxter operator on a Leibniz algebra.

Definition 5.3. A Leibniz-dendriform algebra is a vector space A equipped with two
binary operations B and CW A˝ A! A such that for all x; y; z 2 A, we have

.x C y/ C z D x C .y C z/ � y C .x C z/ � .x B y/ C z; (5.2)

x C .y B z/ D .x C y/ B z C y B .x C z/C y B .x B z/; (5.3)

x B .y B z/ D .x B y/ B z C y C .x B z/ � x B .y C z/: (5.4)

Let .A;B;C/ and .A0;B0;C0/ be Leibniz-dendriform algebras. A linear map f W A! A0

is called a homomorphism if for all x; y 2 A,

f .x B y/ D f .x/ B0 f .y/; f .x C y/ D f .x/ C0 f .y/:

Let Leib-Dend be the category whose objects are Leibniz-dendriform algebras and
morphisms are the homomorphisms of Leibniz-dendriform algebras. Leibniz-dendriform
algebras are generalizations of Leibniz algebras and left-symmetric algebras as the fol-
lowing two examples show.

Example 5.4. Let .g; Œ�; ��g/ be a Leibniz algebra. We define two binary operations B and
CW g˝ g! g by

x C y D Œx; y�g; x B y D 0; 8x; y 2 g:

Then .g;B;C/ is a Leibniz-dendriform algebra.
Conversely, a Leibniz-dendriform algebra in which the operation BD 0 is exactly a

Leibniz algebra.
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Example 5.5. Let .V; �V / be a left-symmetric algebra, i.e., the following equality holds:

.x �V y/ �V z � x �V .y �V z/ D .y �V x/ �V z � y �V .x �V z/:

We define two binary operations B and CW V ˝ V ! V by

x C y D x �V y; x B y D �y �V x; 8x; y 2 V:

Then .V;B;C/ is a Leibniz-dendriform algebra.
Conversely, a Leibniz-dendriform algebra in which x B y D �y B x is exactly a

left-symmetric algebra.

Proposition 5.6. Let .A;B;C/ be a Leibniz-dendriform algebra. Then the binary opera-
tion Œ�; ��B;C W A˝ A! A given by

Œx; y�B;C D x C y C x B y; 8x; y 2 A; (5.5)

defines a Leibniz algebra, which is called the sub-adjacent Leibniz algebra of .A;B;C/
and .A;B;C/ is called a compatible Leibniz-dendriform algebra structure on .A; Œ�; ��B;C/.

Proof. For all x; y; z 2 A, we have�
x; Œy; z�B;C

�
B;C
D Œx; y C z C y B z�B;C

D x C .y C z/C x B .y C z/C x C .y B z/C x B .y B z/:

On the other hand, we have�
Œx; y�B;C; z

�
B;C
C
�
y; Œx; z�B;C

�
B;C

D Œx C y C x B y; z�B;C C Œy; x C z C x B z�B;C

D .x C y/ C z C .x C y/ B z C .x B y/ C z C .x B y/ B z

C y C .x C z/C y B .x C z/C y C .x B z/C y B .x B z/:

Thus, .A; Œ�; ��B;C/ is a Leibniz algebra.

Example 5.7. Let V be a vector space. On the vector space gl.V /˚ V , for all A; B 2
gl.V /, u; v 2 V , define two binary operations B and CW .gl.V /˚ V /˝ .gl.V /˚ V /!

gl.V /˚ V by

.AC u/ C .B C v/ D AB C Av; .AC u/ B .B C v/ D �BA:

Then .gl.V /˚ V;B;C/ is a Leibniz-dendriform algebra. Its sub-adjacent Leibniz algebra
is exactly the one underlying an omni-Lie algebra introduced by Weinstein in [40].

Let .A;B;C/ be a Leibniz-dendriform algebra. Define two linear maps LC W A!

gl.A/ and RB W A! gl.A/ by

LC.x/y D x C y; RB.x/y D y B x; 8x; y 2 A: (5.6)
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Proposition 5.8. Let .A;B;C/ be a Leibniz-dendriform algebra. Then .AILC; RB/ is
a representation of the sub-adjacent Leibniz algebra .A; Œ�; ��B;C/. Moreover, the identity
map IdA W A! A is a relative Rota–Baxter operator on the Leibniz algebra .A; Œ�; ��B;C/
with respect to the representation .AILC; RB/.

Proof. By (5.2), for all x; y; z 2 A, we have�
LC

�
Œx; y�B;C

�
�
�
LC.x/; LC.y/

��
z

D Œx; y�B;C C z � x C .y C z/C y C .x C z/ D 0:

Thus, we have LC.Œx; y�B;C/ D ŒLC.x/; LC.y/�. By (5.3), we have�
RB

�
Œx; y�B;C

�
�
�
LC.x/; RB.y/

��
z D z B Œx; y��x C .z B y/C .x C z/ B y D 0;

which implies that RB.Œx; y�B;C/ D ŒLC.x/; RB.y/�. By (5.3) and (5.4), we have�
RB.y/LC.x/CRB.y/RB.x/

�
z D .x C z/ B y C .z B x/ B y

D x C .z B y/ � z B .x C y/ � z B .x B y/

C z B .x B y/�x C .z B y/C z B .x C y/D 0:

Thus, we have RB.y/LC.x/D �RB.y/RB.x/. Therefore, .AILC;RB/ is a representa-
tion of the sub-adjacent Leibniz algebra .A; Œ�; ��B;C/. Moreover, we have

IdA
�
LC

�
IdA.x/

�
y CRB

�
IdA.y/

�
x
�
D x C y C x B y D

�
IdA.x/; IdA.y/

�
B;C

:

Thus, we obtain that IdA WA!A is a relative Rota–Baxter operator on the Leibniz algebra
.A; Œ�; ��B;C/ with respect to the representation .AILC; RB/.

Proposition 5.9. Let .A;B;C/ and .A0;B0;C0/ be Leibniz-dendriform algebras and f
a homomorphism from A to A0. Then .f; f / is a relative Rota–Baxter operator homomor-
phism from IdA to IdA0 .

Proof. It follows a direct computation. We omit the details.

Proposition 5.10. LetK W V ! g be a relative Rota–Baxter operator on a Leibniz algebra
.g; Œ�; ��g/ with respect to a representation .V I�L; �R/. Then there is a Leibniz-dendriform
algebra structure on V given by

u BK v WD �
R.Kv/u; u CK v WD �

L.Ku/v; 8u; v 2 V: (5.7)

Proof. By (2.1) and (3.6), we have

u CK .v CK w/ � v CK .u CK w/ � .u BK v/ CK w � .u CK v/ CK w

D �L.Ku/�L.Kv/w��L.Kv/�L.Ku/w��L
�
K
�
�R.Kv/u

��
w��L

�
K
�
�L.Ku/v

��
w

D �L
�
ŒKu;Kv�g

�
w � �L

�
K
�
�R.Kv/u

��
w � �L

�
K
�
�L.Ku/v

��
w

D 0;

which implies that (5.2) in Definition 5.3 holds.
Similarly, we can show that (5.3) and (5.4) also hold.
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Proposition 5.11. LetK W V ! g andK 0 W V 0! g0 be two relative Rota–Baxter operators
and .�; '/ a homomorphism (resp. an isomorphism) from K to K 0. Then ' is a homo-
morphism (resp. an isomorphism) of Leibniz-dendriform algebras from .V;BK ;CK/ to
.V 0;BK0 ;CK0/.

Proof. For all u; v 2 V , we have

'.u BK v/ D '
�
�R.Kv/u

�
D �R

0�
�.Kv/

�
'.u/

D �R
0�
K 0'.v/

�
'.u/ D '.u/ BK0 '.v/:

Similarly, we obtain '.u CK v/ D '.u/ CK0 '.v/.

Theorem 5.12. Propositions 5.8 and 5.9 give us a functor F W Leib-Dend! RBOLeibniz.
Conversely, Propositions 5.10 and 5.11 give us a functor G W RBOLeibniz ! Leib-Dend.
Moreover, F is a left adjoint for G.

Proof. Let .A;B;C/ be a Leibniz-dendriform algebra. Then IdA W A! A is a relative
Rota–Baxter operator on the Leibniz algebra .A; Œ�; ��B;C/ with respect to the representa-
tion .AILC; RB/. Furthermore, for all x; y 2 A, we have

x BIdA y D RB.y/x D x B y;

x CIdA y D LC.x/y D x C y:

Thus, we have .GF/.A;B;C/D .A;B;C/. Let f be a Leibniz-dendriform algebra homo-
morphism from .A;B;C/ to .A0;B0;C0/. By Proposition 5.9 and Proposition 5.11, we
have .GF/.f / D f . We deduce that GF D IdLeib-Dend. Thus, we have the identity natural
transformation � (the unit of the adjunction)

� D IdIdLeib-Dend W IdLeib-Dend! GF D IdLeib-Dend:

Moreover, for any Leibniz-dendriform algebra .A;B;C/, relative Rota–Baxter operator
K W V ! g and Leibniz-dendriform algebra homomorphism f W A! G.K/, we have

f .x B y/ D f .x/ BK f .y/ D �
R
�
Kf .y/

�
f .x/;

f .x C y/ D f .x/ CK f .y/ D �
L
�
Kf .x/

�
f .y/:

Thus, there is exactly one relative Rota–Baxter operator homomorphism .K ı f; f / from
IdA W A! A to K W V ! g such that the following diagram commutes:

A
IdA //

f !!

GF.A/ D A

G.Kıf;f /yy
G.K/;

which implies that F is a left adjoint for G.
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By Example 5.4 and Proposition 5.10, we get the following conclusion.

Corollary 5.13. Let K W V ! g be a relative Rota–Baxter operator on a Leibniz algebra
.g; Œ�; ��g/ with respect to an antisymmetric representation .V I �L; �R D 0/. Then there is
a Leibniz algebra structure on V given by

Œu; v�K WD �
L.Ku/v; 8u; v 2 V: (5.8)

By Example 5.5 and Proposition 5.10, we get the following conclusion.

Corollary 5.14. Let K W V ! g be a relative Rota–Baxter operator on a Leibniz algebra
.g; Œ�; ��g/ with respect to a symmetric representation .V I �L; �R D ��L/. Then there is a
left-symmetric algebra structure on V given by

u �K v WD �
L.Ku/v; 8u; v 2 V: (5.9)

We give a sufficient and necessary condition for the existence of a compatible Leibniz-
dendriform algebra structure on a Leibniz algebra.

Proposition 5.15. There is a compatible Leibniz-dendriform algebra structure on a Leib-
niz algebra .g; Œ�; ��g/ if and only if there exists an invertible relative Rota–Baxter operator
K W V ! g on g with respect to a representation .V I�L; �R/. Furthermore, the compatible
Leibniz-dendriform algebra structure on g is given by

x B y WD K
�
�R.y/K�1x

�
; x C y WD K

�
�L.x/K�1y

�
; 8x; y 2 g: (5.10)

Proof. LetK W V ! g be an invertible relative Rota–Baxter operator on g with respect to
a representation .V I �L; �R/. By Proposition 5.10, there is a Leibniz-dendriform algebra
on V given by

u BK v WD �
R.Kv/u; u CK v WD �

L.Ku/v; 8u; v 2 V:

Since K is an invertible relative Rota–Baxter operator, we obtain that

x B y WD K.K�1x B K�1x/ D K
�
�R.y/K�1x

�
;

x C y WD K.K�1x C K�1y/ D K
�
�L.x/K�1y

�
is a Leibniz-dendriform algebra on g. By (3.6), we have

x B y C x C y D K
�
�R.y/K�1x

�
CK

�
�L.x/K�1y

�
D K

�
�R
�
K.K�1y/

�
K�1x

�
CK

�
�L
�
K.K�1x/

�
K�1y

�
D Œx; y�g:

On the other hand, let .g;B;C/ be a compatible Leibniz-dendriform algebra of the
Leibniz algebra .g; Œ�; ��g/. By Proposition 5.8, .gILC; RB/ is a representation of the
Leibniz algebra .g; Œ�; ��g/. Moreover, Idg W g! g is a relative Rota–Baxter operator on
the Leibniz algebra .g; Œ�; ��g/ with respect to the representation .gILC; RB/.
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Theorem 5.16. Let .A;B;C/ be a Leibniz-dendriform algebra. Then

r WD

nX
iD1

.e�i ˝ ei C ei ˝ e
�
i / (5.11)

is a symmetric solution of the classical Leibniz Yang–Baxter equation in the Leibniz alge-
bra A ËL�C;�L�C�R�B A

�, where ¹e1; : : : ; enº is a basis of A and ¹e�1 ; : : : ; e
�
nº is its dual

basis. Moreover, r is nondegenerate and the induced bilinear form B on A ËL�C;�L�C�R�B
A� is given by

B.x C �; y C �/ D h�; yi C h�; xi: (5.12)

Proof. Since .A;B;C/ is a Leibniz-dendriform algebra, the identity map IdA W A!A is
a relative Rota–Baxter operator on the sub-adjacent Leibniz algebra .A; Œ�; ��B;C/ with re-
spect to the representation .AILC;RB/. By Theorem 5.2, r D

Pn
iD1.e

�
i ˝ eiC ei ˝ e

�
i / is

a symmetric solution of the classical Leibniz Yang–Baxter equation inAËL�C;�L�C�R�BA
�.

It is obvious that the corresponding bilinear form B 2 Sym2.A˚ A�/ is given by (5.12).
The proof is finished.

The above results can be viewed as the Leibniz analogue of the results given in [4].
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