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Self-adjoint local boundary problems on
compact surfaces. II. Family index

Marina Prokhorova

Abstract. The paper presents a first step towards a family index theorem for classical self-adjoint
boundary value problems. We address here the simplest non-trivial case of manifolds with boundary,
namely the case of two-dimensional manifolds. The first result of the paper is an index theorem
for families of first order self-adjoint elliptic differential operators with local boundary conditions,
parametrized by points of a compact topological space X . We compute the K1 (X)-valued index in
terms of the topological data over the boundary. The second result is the universality of the index:
we show that the index is a universal additive homotopy invariant for such families if the vanishing
on families of invertible operators is assumed.

Preface

An index theory for families of elliptic operators on a closed manifold was developed
by Atiyah and Singer in [5]. For a family of such operators, parametrized by points of
a compact space X, the K°(X)-valued analytical index was computed there in purely
topological terms. An analog of this theory for self-adjoint elliptic operators on closed
manifolds was developed by Atiyah, Patodi, and Singer in [3]; the index of a family in
this case takes values in the K group of a base space.

If a manifold has a non-empty boundary, the situation becomes more complicated.
The integer-valued index of a single boundary value problem was computed by Atiyah
and Bott [2] and Boutet de Monvel [7]. This result was generalized to the K 0(X)-valued
index for families of boundary value problems by Melo, Schick, and Schrohe in [17].

Manifolds with boundary: self-adjoint case. The case of self-adjoint boundary value
problems, however, remains largely open. While Boutet de Monvel’s pseudo-differential
calculus allows to investigate boundary value problems of different types in a uniform
manner, self-adjoint operators seem to lack such a theory. In this case, two different kinds
of boundary conditions, global and local, were investigated separately and by different
methods.

For Dirac operators on odd-dimensional manifolds with global boundary conditions
of Atiyah—Patodi-Singer type, Melrose and Piazza computed the odd Chern character of
the K1(X)-valued index [19], which determines the index up to a torsion. This result is
an odd analog of [18].
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Self-adjoint case: local boundary conditions. For Dirac operators with classical (that
is, local) boundary conditions some partial results were obtained in [10, 15,21,26].

If the base space is a circle, then the analytical index takes values in K1(S!) = Z and
may be identified with the spectral flow. The spectral flow for curves of Dirac operators
over a compact surface was computed by the author in [21] in a very special case, where all
the operators have the same symbol and are considered with the same boundary condition.
Later the results of [21] were generalized to manifolds of higher dimension by Katsnelson
and Nazaikinskii in [15] and by Gorokhovsky and Lesch in [10].

For compact manifolds of arbitrary dimension, Katsnelson and Nazaikinskii expressed
the spectral flow of a curve of Dirac operators with local boundary conditions as the
(integer-valued) index of the suspension of the curve [15]. See also [25] for a similar
result in a more general context.

Gorokhovsky and Lesch considered the straight line between the operators D ® Id and
g(D ®1d)g*, where D is a Dirac operator on an even-dimensional compact manifold M
and g is a smooth map from M to the unitary group U(C"). They take the same local
boundary condition for all the operators along this line. Using the heat equation approach,
they expressed the spectral flow along this line in terms of the spectral flow of boundary
Dirac operators [10].

The result of Gorokhovsky and Lesch was generalized to the higher spectral flow
case by Yu. In the general situation, the higher spectral flow is defined for a self-adjoint
family parametrized by points of the product X = Y x S! provided that the restriction
to Y x {pt} has vanishing index in K'(Y). The higher spectral flow of such a family
takes values in K°(Y') and may be identified with the K'(X)-valued index of the family.
Yu considered a Y -parametrized family of Dirac operators on a manifold M, with local
boundary conditions, whose K!(Y)-valued index vanishes. From such a family and a map
M — U(C™), he constructed a family of straight lines of Dirac operators, as in [10]. He
expressed the higher spectral flow of such a family in terms of the higher spectral flow of
the family of boundary Dirac operators [26].

Unfortunately, the methods of [10, 15,26] use essentially the specific nature of Dirac
operators and cannot be applied to more general classes of self-adjoint elliptic differential
operators. In [23], the author generalized results of [21] in a different direction, computing
the spectral flow for curves of arbitrary first order self-adjoint elliptic differential opera-
tors on a compact oriented surface with boundary.

Family index. In this paper, we generalize the results of [23] to families of such boundary
value problems parametrized by points of an arbitrary compact space X . Our results may
be viewed as a first step towards a general family index theorem for classical self-adjoint
boundary value problems.

As well as in [23], we address here the simplest non-trivial case of manifolds with
boundary, namely the case of two-dimensional manifolds. We consider first order self-
adjoint elliptic differential operators on such manifolds, with local, or classical, boundary
conditions (that is, boundary conditions defined by general pseudo-differential operators,
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in particular boundary conditions of Atiyah—Patodi—Singer type, are not allowed). As it
happens, in this setting all the work can be done by topological means only, without using
pseudo-differential calculus.

The first result of the paper is a family index theorem: we define the K'(X)-valued
topological index in terms of the topological data of the family over the boundary, and
show that the analytical and the topological index coincide.

The second result of the paper is the universality of the index for families of such
boundary value problems. We show that the Grothendieck group of homotopy classes
of such families modulo the subgroup of invertible families is the K!-group of the base
space, with an isomorphism given by the index. In fact, we prove stronger results, dealing
with the semigroup of such families without passing to the Grothendieck group.

Added in proofs. Recently, Ivanov [11] proved a family index theorem for first order
self-adjoint local boundary value problems on manifolds of arbitrary dimension.

1. Introduction

Conventions. Throughout the paper a “Hilbert space” always means a separable complex
Hilbert space of infinite dimension, a “compact space” always means a compact Hausdorff
topological space, and a “surface” always means a smooth compact oriented connected
surface with non-empty boundary. By the “symbol of a differential operator” we always
mean its principal symbol.

Family index for unbounded operators. Let H be a Hilbert space. Denote by R (H) the
space of regular (that is, closed and densely defined) operators on H equipped with the
graph topology. Recall that this topology (which is also often called the gap topology) is
induced by the metric §(A1, A2) = || Py — P2||, where P; denotes the orthogonal projection
of H & H onto the graph of A4;.

Denote by R%*(H ) the subspace of R (H) consisting of self-adjoint operators and by
CRR**(H) the subspace consisting of self-adjoint operators with compact resolvents.

The Cayley transform A > k(A) = (4 —i)(A 4 i)~! is a continuous embedding of
R**(H) into the unitary group U(H ). It takes CRR**(H ) into the subgroup Ug (H) of
U(H) consisting of unitaries u such that the operator 1 —u is compact. Hence CRR*(H )
can be considered as a subspace of Ug(H).

As is well known, the group [X, Ug (H)] of homotopy classes of maps from a com-
pact topological space X to Uk (H) is naturally isomorphic to K'(X). We define the
family index ind(y) of a continuous map y: X — €RR**(H) as the homotopy class of
the composition k o y: X — U (H) considered as an element of K (X),

ind(y) = [k oy] € [X, Ug(H)] = K'(X).

More generally, this definition works as well for graph continuous families of regular self-
adjoint operators with compact resolvents acting on fibers of a Hilbert bundle over X. See
Section 2 for details.
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Local boundary value problems on a surface. Throughout the paper, M is a fixed
smooth compact oriented surface with a non-empty boundary dM . Let A be a first order
formally self-adjoint elliptic differential operator acting on sections of a Hermitian smooth
vector bundle £ over M. Denote by Ej the restriction of E to dM . A local boundary con-
dition for A is defined by a smooth subbundle L of Ej; the corresponding unbounded
operator Ay on the space L2(E) of square-integrable sections of E has the domain

dom(Az) = {u € H'(E):ulypy is a section of L},

where H!(E) denotes the first order Sobolev space of sections of E. (More precisely, the
boundary condition above means that the boundary trace of u is an element of H'/2(L);
see explanation in Section 3.)

Let n denote the outward conormal to the boundary dM . The conormal symbol o (1)
of A is self-adjoint and thus defines a symplectic structure on the fibers of Ey given by the
symplectic 2-form wy: Ex @ Ex — C, wx(u,v) = (io(ny) u, v) for x € dM. Green’s
formula for A can be written as

(A, v) 120y — (. Av)r2gy = (o (Mulon. vlom) g,

= w(ulop,vlom) foru,v € H'(E).

Let (ny, &) be a positive oriented frame in 7,;°M, x € oM. Since A is elliptic,
o(tny + &) = to(ny) + o(§) is non-degenerate for every ¢ € R. Hence the fiber endo-
morphism (the symbol of a tangential operator) b(£) = o (nx) " 'o(£) has no eigenvalues
on the real axis. The generalized eigenspaces E; and E; of b(&) corresponding to eigen-
values with a positive, resp. a negative, imaginary part do not depend on the choice of £.
The subspaces E j , resp. E, are fibers of a smooth subbundle £ ; ,resp. E 3 of Ey, so
Ej is naturally decomposed into the direct sum E ;’ ® E; . Moreover, E ;’ and Ej are
Lagrangian subbundles of Ej (that is, o (n) takes them to their orthogonal complements).

A local boundary condition L is elliptic for Aif LN Ef =L NE; =0and L+E} =
L + E; = Ej; in this case Ay is a regular operator on L?(E) with compact resolvents.
If, in addition, L is a Lagrangian subbundle of Ej, then the regular operator Ay, is self-
adjoint. We denote by EII(E) the set of all such pairs (A4, L).

Topological data. Following [23], from an element (4, L) € ElI( E) we extract a topolog-
ical data which contains all the information we need to compute the family index. These
data are encoded in a vector subbundle F = F(A, L) of Ey, which depends only on L
and the restriction of the symbol of A to the boundary.

As was shown by the author in [23, Proposition 4.3], self-adjoint elliptic local bound-
ary conditions L for A are in a one-to-one correspondence with self-adjoint bundle auto-
morphisms 7" of E;". This correspondence is given by the rule

L=XKerPr with Pr =PF(1+ion) 'TP"),

where P denotes the projection of Ej onto E E;" along Ey and P~ =1— Pt
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Notice that P7 is a bundle projection of Ey onto E ; along L, so the local boundary
condition given by L can be written equivalently in the form Pr(u|yps) = 0 using a bundle
projection (a particular case of a pseudo-differential projection), as is customary in the
study of boundary value problems.

If A is a Dirac-type operator, then E ;‘ and £ are mutually orthogonal; in this case L
can be written (fiber-wise) as L = {u™ @ u~ € Eff ® Ej: io(n)ju™ = Tu™}.

We associate with a pair (4, L) € ElI(E) the subbundle ' = F(A, L) of Ej, whose
fibers Fy, x € dM are spanned by the generalized eigenspaces of Ty corresponding to
negative eigenvalues.

Analytical index for maps. We equip EII(E) with the C '-topology on symbols of oper-
ators, the C°-topology on their free terms, and the C!-topology on boundary condi-
tions. The natural inclusion ¢: Ell(E) — €RR*(L2(E)), (4, L) — A is continuous;
see Proposition 4.1. For a compact space X, this inclusion associates the analytical index
ind,(y) := ind(1 o y) € K'(X) with every continuous map y: X — EII(E).

Analytical index for families. More generally, let & be a locally trivial fiber bundle
over X, whose fibers &, are smooth Hermitian vector bundles over M and the struc-
ture group is the group U(&y) of smooth unitary bundle automorphisms of &, (we equip
this group with the C!-topology). We denote by Vectx, ps the class of all such bun-
dles &. Notice that we cannot consider arbitrary vector bundles over X x M, since we
need smoothness with respect to coordinates on M .

Let EII(§) denote the fiber bundle over X associated with & and having the fiber
ElI(&,) over x € X. A section of ElI(&) is a family x — (A, L) € Ell(&,) of operators
and boundary conditions parametrized by points of X. The natural inclusion ElI(&,) —
CRR?(L2(E,)) allows to define the analytical index for such families. Our first result is
computation of the analytical index in terms of the topological data of a family (A, L)
over dM .

Topological index. With each family (Ax, Ly) as above we associate its topological
index taking values in K!(X).

Let y: x > (Ay, L,) be a section of ElI(€). The family (F(Ax, L))xex determines
the subbundle ¥ = F (y) of &5 = &|xxanm . Let [F] be the class of F in K°(X x dM).

The second factor dM is the disjoint union of boundary components dM;, each of
which is a circle. Using the natural homomorphism K°(X x S!) — K!(X) and taking the
sum over the boundary components, we obtain the homomorphism Ind;: K°(X x dM) —
K'(X).

Finally, we define the topological index of y as the value of Ind; evaluated on [¥] €
K°%(X x M),

indi(y) := Ind, [f()/)] e K'(X).

Index theorem. The first main result of this paper is an index theorem. It was first
announced by the author in [22].
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Theorem 10.3. The analytical index of y is equal to its topological index:

ind,(y) = ind(y).

If the base space X is a circle, then y is a one-parameter family of operators. In this
case, up to the identification K'(S!) = Z, the analytical index of y coincides with the
spectral flow of y and the topological index of y coincides with ¢y (¥ (y))[dM x S1].
Thus, for X = S, our index theorem takes the form of [23, Theorem Al].

Properties of the analytical index. The proof of the index theorem is based on the fol-
lowing properties of the analytical index.

(I0) Vanishing on families of invertible operators.

(I1) Homotopy invariance.

(I2) Additivity with respect to direct sum of operators and boundary conditions.
(I3) Functoriality with respect to base changes.

(I4) Multiplicativity with respect to twisting by Hermitian vector bundles over the
base space.

(I5) Normalization: the analytical index of a loop y: S — ElI(E) coincides with the
spectral flow of y up to the natural isomorphism K!(S!) = Z.

Here by an “invertible operator” we mean a boundary value problem (A, L) such that the
unbounded operator Az has no zero eigenvalues (since Ay, is self-adjoint, this condition
is equivalent to the invertibility of Az ).

These properties follow immediately from the analogous properties of the family index
for unbounded operators on a Hilbert space; see Section 2 for details. As it happens, these
properties alone are sufficient to prove our index theorem.

Universality of the topological index. To describe all invariants of families of self-
adjoint elliptic local boundary problems over M satisfying properties (10)—(I5), we note
first that the topological index satisfies properties (I1)—(14). Property (I0), however, is
purely analytical, so its connection with the topological index is not clear a priori. We
manage this problem, replacing temporarily (I0) by two topological properties, (T*) and
(T™®), which will be stated below.

First, we replace the subspace ElI°(E) of Ell(E) consisting of invertible operators by
the following two special subspaces of ElI(E):

« EIlI*(E) consists of all (4, L) € EII(E) with positive definite automorphism 7';

» EII"(E) consists of all (4, L) € Ell(E) with negative definite automorphism 7.

Let E1I°(&), EI* (&), and EII™ (&) denote the corresponding subbundles of ElI(§). We
show that every section of ElI*' (&) or EII (&) is homotopic to a section of EII°(§); see
Propositions 9.3 and 10.1.

In addition to this, we consider “locally constant” families of operators, that is, sec-
tions 1y X (4, L) of Ell(W K E), where an element (A4, L) € ElI(E) is twisted by a
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vector bundle W over X. See Section 6 for details. Since every (4, L) € ElI(E) is con-
nected by a path with an invertible operator, every section of the form 1y X (4, L) is
homotopic to a section of EII(W X E).

Finally, as a substitute for (I0), we take the following two properties:

(T*) vanishing on sections of EllI* (€) and EII"(&);
(T™®) vanishing on “locally constant” sections.

In Section 8, we prove a number of results concerning the universal nature of the
topological index; here we show only two of them.

Theorem 1.1 (This is a particular case of Theorem 8.5; see Remark 8.6). Let X be a com-
pact space and A a commutative monoid. Suppose that we associate an element ®(y) € A
with every section y of EI(8) for every & € Vect x, p. Then the following two conditions
are equivalent:

(1) D satisfies properties (Ti), (T and an, a2);

(2) ® has the form ®(y) = 9(ind((y)) for some (unique) monoid homomorphism
¥:K'(X) - A.

Theorem 8.7. Suppose that we associate an element ®x (y) € K1 (X) with every section
y of E1I(8) for every compact space X and every & € Vect x, M- Then the following two
conditions are equivalent:

(1) the family ® = (®x) satisfies properties (TT), (T®) and (11)—(14);
(2) there is an integer m such that ® = m - ind,.

Theorem 8.7 is deduced from Theorem 1.1 combined with the following result proven
in the appendix.

Proposition B.1. Let % be a natural self-transformation of the functor X — K'(X)
respecting the K°(-)-module structure. Then ¥ is multiplication by an integer, that is,
there is m € Z such that Ox (1) = mu for every X and every i € K'(X). In particular,
if Og1 is the identity, then Ox is the identity for every X.

The proof of the index theorem. As was noted above, every invariant ® satisfying
properties (I0) and (I1) satisfies also (T*) and (T®). Thus Theorem 8.7 implies that
every invariant & satisfying properties (10)—(I4) has the form ® = m - ind;. Applying
this to the analytical index, we see that it is an integer multiple of the topological index:
ind, = m - ind, for some integer factor m = m(M), which does not depend on X, but can
depend on M.

To compute m, it is sufficient to consider the simplest non-trivial base space, namely
X = S, where the analytical index is just the spectral flow. The spectral flow was com-
puted by the author in [21] for an annulus and in [23] for an arbitrary surface. By [23, Lem-
mas 11.3 and 11.5], the value of m (M) is the same for all surfaces M, and by [21, Theo-
rem 4], m(M) = 1 for an annulus M . These two results together imply that m(M) = 1 for
any surface M . It follows that the analytical index and the topological index of y coincide.
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Universality of the analytical index. The second main goal of the paper is universality
of the analytical index. We obtain a number of results in this direction in Section 11,
combining our index theorem with results of Section 8.

Universality for maps. Recall that every complex vector bundle over M is trivial and
that EII(E) is empty for bundles E of odd rank. For k € N, we denote by 2k, the trivial
vector bundle over M of rank 2k with the standard Hermitian structure.

Theorem 11.4. Let y: X — Ell(2ky), y': X — E_H(iju) be continuous maps. Then the
following two conditions are equivalent:

(1) indy(y) = inda(y");

(2) there are | € N and maps B: X — ENI°(2(I —k)u), B': X — ENI°Q2( — k') um)
such thaty ® B and y' ® B’ are homotopic as maps from X to Ell(21yr).

Semigroup of elliptic operators. The disjoint union

Elly = | | ENkn)
keN

has the natural structure of a (non-commutative) graded topological semigroup with re-
spect to the direct sum of operators and boundary conditions. The set [X, Ellp/] of homo-
topy classes of maps from X to Ells has the induced semigroup structure. The semigroup
[X,Ellj] is commutative; see Proposition 8.9.

Denote by Ell%, = [ [ ElI°(2kas) the subsemigroup of Ellss consisting of invertible
operators. The inclusion EI19, < Elly, induces the homomorphism

[X.EI,] — [X. Elly:

we will denote by [X, Ellp/]° its image. The analytical index is homotopy invariant and
vanishes on families of invertible operators, so it factors through [X, Ellas]/[X, Ellp]°. In
other words, there exists a (unique) monoid homomorphism «,: [X, Ellps]/[X, Ellp]® —
K'(X) such that the following diagram is commutative:

C(X,Ellyy) — [X,Ellyy] —— [X,Elly]/[X, Ellp]°

L
ind,

K'(X)

Theorem 11.6. The quotient [X, Ellps]/[X, Ellp]° is an Abelian group isomorphic to
K1(X), with an isomorphism given by k.

The family index is a universal homotopy invariant for maps from X to CRR**(H),
but the space ElI(E) is only a tiny part of €RR%2(L2(E)). Universality is usually lost
after passing to a subspace, so we cannot expect from the analytical index to be a universal
invariant for ElI(E). Indeed, it follows from our index theorem that for any given E the
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map ind,: [X, Ell(E)] — K!(X) is neither injective nor surjective for general X. It is
surprising that universality can still be restored by considering all vector bundles over M
together.

Universality for families. Denote by 2kx, »r € Vect x, pr the trivial bundle over X with
the fiber 2k, .

Theorem 11.1. Let y; be a section of EII(&;), i = 1,2. Then the following two conditions
are equivalent:

(1) ind,y(y1) = inda(y2);

(2) therearek € N, sections ﬁlo of ElI° (2kx, m), and sections yio of ENI°(&;) such that
Y1 @y @ BY and y? & y2 ® BY are homotopic sections of &1 & E ® 2kx, m.

Let V be a subclass of Vectx, ps closed under direct sums and containing the trivial
bundle 2ky, ps for every k € N. In particular, V may coincide with the whole Vect x_ s.

Theorem 11.2. Let X be a compact space and A a commutative monoid. Suppose that
we associate an element ®(y) € A with every section y of EII(8) for every & € V. Then
the following two conditions are equivalent:

(1) @ satisfies properties (10)—(12);

(2) © has the form ®(y) = ¥ (ind,(y)) for some (unique) monoid homomorphism
¥ K1(X) = A.

Theorem 11.3. Suppose that we associate an element ®x (y) € K1 (X) with every section
y of EII(€) for every compact space X and every & € Vect x, pr. Then the following two
conditions are equivalent:

(1) the family ® = (®y) satisfies properties (10)—(14);
(2) ® has the form ®x (y) = m - ind,(y) for some integer m.

Theorems 8.7 and 11.3 are stated here as statements about the category of compact
spaces and continuous maps (maps come into picture due to property (I3)). However,
these theorems still remain valid if one replaces this category by the category of finite
CW-complexes and continuous maps or by the category of smooth closed manifolds and
smooth maps. The choice of such a category comes into the proofs of these theorems only
through Proposition B.1, and we prove this proposition for each of these three categories.

2. Family index for self-adjoint unbounded operators
In order to deal with unbounded self-adjoint operators (in particular, with self-adjoint

differential operators) directly, one needs an analogue of the Atiyah—Singer theory [4]; cf.
[6, 8, 12]. This section is devoted to such an analogue adapted to our framework.
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The functor K. Let H be a Hilbert space. Denote by B(H ) the space of bounded linear
operators H — H with the norm topology.

The subspace of unitary operators U(H) C B(H) is a topological group with the
multiplication defined by composition. Let U (H) be the subspace of U(H ) consisting
of operators u such that 1 — u is a compact operator. It is a closed subgroup of U(H).

The group structure on U (H) induces a (non-commutative) group structure on the
space C(X, Ug(H)) of continuous maps from a compact space X to Ux (H). Passing
to the set of connected components of C(X, Ux(H)) defines a group structure on the
set [X, Ug (H)] of homotopy classes of maps from X to Ux (H). As is well known, the
resulting group [X, Ug (H)] is naturally isomorphic to the classical K!-theory K!(X)
of X. In particular, it is commutative.

The space of regular operators. Recall that an unbounded operator A on H is a linear
operator defined on a subspace £ of H and taking values in H; the subspace D is called
the domain of A and is denoted by dom(A4). An unbounded operator A is called closed if
its graph is closed in H @ H and densely defined if its domain is dense in H. It is called
regular if it is closed and densely defined.

Associating with a regular operator on H the orthogonal projection on its graph defines
an inclusion of the set of regular operators on H into the space Proj(H @ H) C B(H & H)
of projections in H & H . Let R(H ) be the set of regular operators on H together with the
topology induced from the norm topology on Proj(H & H) by this inclusion. This topol-
ogy is usually called the graph topology, or gap topology. On the subset B(H) C R(H)
it coincides with the usual norm topology [9, Addendum, Theorem 1]. So, B(H) is a
subspace of JR(H ); it is open and dense in R(H ) [6, Proposition 4.1].

A family {Ay }xex of unbounded operators A, € R(H) defined by a family of differ-
ential operators and boundary conditions with continuously varying coefficients leads to a
continuous map X — R(H). See, for example, [23, Appendix A.5]. This property plays
a fundamental role in this circle of questions.

Remark 2.1. Another useful topology on the set of regular operators is the Riesz topology,
induced by the bounded transform A — A(1 + A*A)~"/2 from the norm topology on
B(H). By definition, the bounded transform takes a Riesz continuous family of regular
Fredholm operators to a norm continuous family of bounded Fredholm operators, so the
index of such a family can be defined in a classical way. The Riesz topology is well suited
for the theory of differential operators on closed manifolds, but, except for several special
cases, it is unknown whether families of regular operators on L?(E) defined by boundary
value problems for sections of E are Riesz continuous.

Self-adjoint regular operators. Recall that the adjoint operator of an operator A €
R(H) is an unbounded operator A* with the domain

dom(A*) = {u € H:there exists v € H such that (Aw,u) = (w,v) for all w € dom(A)}.

For u € dom(A4*) such an element v is unique and A*u = v by definition. An operator A
is called self-adjoint it A* = A (in particular, dom(A*) = dom(A)).
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Let R%(H) C R(H) be the subspace of self-adjoint regular operators. For A€ R¥(H ),
the operator A + i:dom(A) — H is bijective, and the inverse operator (A + i)~! is
bounded [14, Theorem 3.16]. A self-adjoint regular operator A is said to be an operator
with compact resolvents if (A + i)~! is a compact operator. Let CRR**(H) C R%(H)
be the subspace of such operators.

The homotopy type of ERR%*(H). Booss-Bavnbek, Lesch, and Phillips have shown in
[6] that the space FR**(H ) of Fredholm self-adjoint regular operators is path connected
and that the spectral flow defines the surjective homomorphism

T (FR¥(H)) — Z.

They conjectured that FR%4(H ) is a classifying space for the functor K, and this conjec-
ture was proven by Joachim in [12]. Along the way he proves (crucially using the results
of [8]) that ERR*(H ) is a classifying space for K!. In our context, CRR*(H ) appears
to be a more natural choice of classifying space than FR*(H ).

The results of Joachim imply that for a compact space X the set of homotopy classes
[X, CRR*(H)] of maps X — CRR*(H) is naturally isomorphic to K'(X). The element
of K'(X) corresponding to a map y: X — CRR%*(H) deserves to be called the family
index of y. At the same time, the proofs of the basic properties of this family index depend
on a fairly advanced machinery used in [8, 12], and the needed properties are not even
stated explicitly in these papers.

By this reason, we will use another, more elementary, approach to the family index. It
is based on the Cayley transform and is a natural development of an idea from [6].

The Cayley transform. The Cayley transform of a self-adjoint regular operator A4 is the
unitary operator defined by the formula

kK(A) = (A—i)(A+i)! e UH).

Proposition 2.2. The map k: R*(H) — U(H ) is a continuous embedding. If A has com-
pact resolvents, then k(A) € Ux (H).

Proof. The first part of the proposition is proven in [6, Theorem 1.1]. The second part
follows from the identity 1 — k(A4) = 2i (A + i)~ L. [ ]

Family index for maps. Recall that K'(X) = [X, Ug (H)]. The Cayley transform
K CRR¥(H) — Uk (H) 2.1
induces the map
Kt [ X CRR¥(H)] — [X, Uk (H)] = K1 (X). (2.2)

It is proved in [24] that (2.1) is a homotopy equivalence and thus the induced map (2.2)
is bijective for every compact space X . This motivates our definition of the family index.
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Let y: X — €RR**(H) be a continuous map. We define the family index ind(y) of y as
the homotopy class of the composition k o y: X — Uk (H) considered as an element of
K1 (X). In other terms,

ind(y) = [k o y] € [X, Uk (H)] = K" (X). (2.3)

One can also define in this way the family index of maps X — FR%(H). But for our
purposes it is sufficient to consider only maps X — €RR*(H).

Families of regular operators. More generally, one can consider X -parametrized fam-
ilies (Tx)xex of regular operators acting on an X -parametrized family of Hilbert spaces
(Hy)xex, 1.€., on the fibers of a Hilbert bundle # — X.

In more details, let # — X be a Hilbert bundle, that is, a locally trivial fiber bundle
over X with a fiber H and the structure group U(H') (we consider only Hilbert bundles
with separable fibers of infinite dimension). Recall that the group U(H) continuously
acts on the space R(H ) by conjugations: (T, g) — gTg~!. The subspace CRR**(H) is
invariant under this action. This allows to associate with J¢ the fiber bundle CRR*(H)
having CRR**(Hy) as the fiber over x € X. We equip the set I CRR*(H) of sections
of ERR%(H) with the compact-open topology.

By the Kuiper theorem [16], the unitary group U(H) is contractible. Therefore, every
Hilbert bundle # is trivial and a trivialization is unique up to homotopy. Choice of a
trivialization identifies sections of CRR**(H) with maps from X to CRR**(H). The
Sfamily index of a section of CRR**(H) is defined as the index of the corresponding map
X — CRR*(H). This definition does not depend on the choice of trivialization.

Connection with topological K -theory. Let again X be a compact space. The group
K'(X) may also be defined as the direct limit lim, o [X, U(C™)] with respect to the
sequence of embeddings

U(C') = U(C?) & -+ = U(C") = U(C"T!) — ... (2.4)

given by the rule u — u & 1.

Choice of an orthonormal basis in H allows to identify (2.4) with a sequence of sub-
groups of Uk (H). By results of Palais [20], the resulting inclusion j: Uso — Uk (H)
of the direct limit U oo = lim,— o0 U(C™) is a homotopy equivalence. In particular, every
continuous map u: X — Ug(H) is homotopic to a composition j o v for some map
v: X — Ueo- Since X is compact, every map from X to U, takes values in some U(C").
Therefore, every map u: X — Ug (H) is homotopic to a map X — U(C") C Uk (H)
for sufficiently large n. Similarly, if two maps u, v: X — U(C") are homotopic as maps
to U (H ), then they are homotopic as maps to U(C™) for some m = n.

The definition of addition in the group [X, Ux(H)] given in the beginning of the
section uses the multiplicative structure of U g (H ). The standard definition of addition
in lim, [X, U(C")] associates with a pair of maps u, v: X — U(C") the direct sum
u®v: X — U(C?"), so that [u] + [v] = [u & v] € K'(X). These two definitions are
equivalent, since ¥ @ v and uv @ 1 are homotopic.
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Let now # be a Hilbert bundle over X with a fiber H. The structure group U(H ) of K
acts on CRR**(H) and Uk (H ) by conjugations. The Cayley transform x: CRR*(H ) —
Uk (H) is equivariant with respect to this action. Therefore, « can be applied point-wise
to sections of CRR*(H). For a section y of CRR**(H), the Cayley transform u = k(y)
is a section of Ug ().

Choose a trivialization J: # — Hy, where Hyx denotes the trivial Hilbert bundle
H x X — X. The composition ¥’ = J o u is a map from X to Ux(H) and thus is
homotopic to v’ @ 1 for some map v': X — U(C") C Ux(H). The classes of u and v’
in K!(X) coincide. Returning back to J# by applying J ~!, we obtain a trivial subbundle
E of J of finite rank and a unitary bundle automorphism v of E such that the sections u
and v @ 1 of Ug(H) = Ug(E & EL) are homotopic.

Conversely, let E be a (not necessarily trivial) vector bundle over X. A bundle auto-
morphism v of E defines an element [v] € K!(X) as follows. Lift £ to the product
X x [0, 1] and identify the restrictions of £ to X x {0} and X x {1} twisting the first
one by v. This construction gives a vector bundle over X x S! which we denote by E,.
Let [E,] denote the class of E, in K°(X x S!). The group K°(X x S') is naturally
isomorphic to the direct sum K°(X) @ K'(X); denote by

a: KO(X x S — K1(X) (2.5)

the projection to the second summand. Then [v] = «[E,] € K'(X). If E is a subbundle
of a Hilbert bundle # and u = v @ 1 is a section of U (H), then [u] = [v] in K1 (X).

Twisting. One of the key properties of the index that we need in the paper is its multi-
plicativity with respect to twisting by vector bundles.

Let V be a finite-dimensional complex vector space equipped with a Hermitian struc-
ture. An unbounded operator A on H can be twisted by V, resulting in the unbounded
operator ly ® Aon V ® H with the domain dom(ly ® A) =V ® dom(A). If an isomor-
phism V 2 C¢ is chosen, then VV ® H can be identified with the direct sum of d copies of
H and 1y ® A can be identified with the direct sum of d copies of A. If A € CRR**(H),
then Iy ® A € CRR¥*(V ® H).

Let now W be a finite rank Hermitian vector bundle over X. A Hilbert bundle # over
X can be twisted by W, giving rise to another Hilbert bundle W ® # over X with the fiber
W@ H)y = Wy ® Hy over x € X. A section y of ERR**(H) can be twisted by W,
resulting in the section 1y ® y of CRR**(W ® H#) suchthat (1w ® y)(x) = 1w, ® y(x).
Since the Cayley transform is additive with respect to direct sums and equivariant with
respect to conjugation by unitaries, k(1 ® y) = lyw ® «(y).

Choose a subbundle E C J of finite rank and a unitary bundle automorphism v of
E such that the sections «(y) and v @ 1 of Uk (H) are homotopic. Then the sections
lw @ k(y) and (1w @ v) @ lyygeL of Ug(W ® H) are also homotopic. The vector
bundle (W ® E)1,, gy is isomorphic to p*W ® E,, where p denotes the projection X x
S! — X. Since (2.5) is a homomorphism of K°(X)-modules, we get

[lw ® v] = a[(W ® E)iyeu] = a(p* W] [Ey]) = W]-a[E)] = W] [v] € K' (X).
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It follows that
ind(lw ®y) =[1w @k (»)]=[1w @v]=[W] - [v]=[W]- [k(y)]=[W] - ind(y) € K' (X).

Properties of the family index. In fact, we do not need an exact definition of the family
index to prove the main results of the paper. All we need is the following properties of the
index.

Proposition 2.3. The family index has the following properties for all compact spaces X,
Y and Hilbert bundles ¥, ¥y, J1 over X.

(I0) Vanishing. The index of a family of invertible operators vanishes.

(I1) Homotopy invariance. If y and y' are homotopic sections of CRR*(H), then
ind(y) = ind(y’).

(I12) Additivity. ind(yo @ y1) = ind(yo) + ind(yy) for all sections y; of CERR?(H;),
i=01

(I3) Functoriality. Let f:Y — X be a continuous map and y a section of CRR=(H).
Then ind(f*y) = f*ind(y) € K'(Y), where f*y = y o f is the section of
CRRA(f*H).

(I4) Twisting. ind(ly ® y) = [W] - ind(y) for every section y of CRR™(JH) and
every Hermitian vector bundle W over X, where [W] denotes the class of W in
KO(X).

(I5) Normalization. For aloop y: S' — €RR*(H), the index of y coincides with the
spectral flow of y up to the natural isomorphism K1 (S') = Z.

(I6) Conjugacy invariance. The index of a section of CRR*(HK) is invariant with
respect to the conjugation by a unitary bundle automorphism of #. In other
words, ind(uyu*) = ind(y) for every section y of CRR*(JH) and every section
u of U(H).

Proof. (I1) and (I3) follow immediately from the definition of the index.

(I4) is proven in the previous subsection.

(I0) The Cayley transform takes the subspace of CRR**(H) consisting of invert-
ible operators to the subspace U?((H) ={u € Ug(H):u + 1isinvertible} of Ug (H).
The space U?{(H ) is contractible, with the contraction given by the formula A,(u) =
exp(t log(u)), where log: U(C) \ {—1} — i(—m, w) C iR is the branch of the natural
logarithm. Therefore, for every section y of €RR**(H) consisting of invertible opera-
tors, the composition « o y is a section of ‘L(OK (#) homotopic to the identity section, so
ind(y) = [k 0 y] = 0.

(I2) Let u; = x(y;). The Cayley transform is additive with respect to direct sums, so
k(yo ® v1) = k(yo) ® k(y1). Let E; be a trivial subbundle of #; of finite rank and let
v; be a unitary bundle automorphism of E; such that the sections «(y;) and v; & 1 of
Uk (J;) are homotopic. Then «(yo) D k(y1) and (vo & v1) @ 1 are also homotopic, and
ind(yo @ y1) = [vo & v1] = [vo] + [v1] = ind(yo) + ind(y1).
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(I5) follows from [6, Proposition 2.17].

(I6) Since the unitary group of a Hilbert space is contractible, there is a homotopy
(u¢)¢efo,1] connecting ug = 1 and u; = u. Itinduces the homotopy v; = u;vu} connecting
the sections v = «(y) and uvu™* of Uk (H). Therefore, ind(uyu*) = [uvu*] = [v] =
ind(y) € K1 (X). [

3. Elliptic local boundary value problems

Throughout the paper, M is a smooth compact connected oriented surface with a non-
empty boundary dM and a fixed Riemannian metric.

Operators. Denote by Ell(E) the set of first order formally self-adjoint elliptic differen-
tial operators acting on sections of a smooth Hermitian complex vector bundle E over M .
Recall that an operator A is called elliptic if its (principal) symbol o4 (£) is non-degenerate
for every non-zero cotangent vector § € T*M. An operator A is called formally self-
adjoint if it is symmetric on the domain C§°(E), that s, if [}, (Au,v)ds = [,,(u, Av)ds
for any smooth sections u, v of E with compact supports in M \ dM . Throughout the
paper, all differential operators are supposed to have smooth (C °°) coefficients.

Local boundary conditions. The differential operator A € Ell(E) with the domain
C§°(E) is a symmetric unbounded operator on the Hilbert space L?(E) of L2-sections
of E. This operator can be extended to a regular self-adjoint operator on L2(E) by impos-
ing appropriate boundary conditions. We will consider only local boundary conditions.
Denote by Ej the restriction of E to the boundary dM of M. A smooth subbundle L of
Ey defines a local boundary condition for A; the corresponding unbounded operator Ay,
on L2(E) has the domain

dom(Ar) = {u € H'Y(E):u|sp is a section of L}, 3.1

where H!(E) denotes the first order Sobolev space (the space of sections of E which are
in L2 together with all their first derivatives). We will often identify a pair (A, L) with the
operator Ay,.

To give a precise meaning to the notation in the right-hand side of (3.1), recall that
the restriction map C*°(E) — C°(Ejy) taking a section u to u|ps extends continuously
to the trace map t: H'(E) — H'/?(Ej). The smooth embedding L < Ej defines the
natural inclusion H'/2(L) < H'/2(Ej). By the condition “u|yy is a section of L” in
(3.1) we mean that the trace 7(u) lies in the image of this inclusion.

Decomposition of E. To describe when a subbundle L is an “appropriate boundary con-
dition,” give first some properties of self-adjoint elliptic symbols on a surface.

Proposition 3.1 ([23, Proposition 4.1]). Let o be the symbol of an operator A € El(E).
Then the rank of E is even and E is naturally decomposed into the direct (not necessarily
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orthogonal) sum E = ET @ E~ of two smooth subbundles ET = E*(0) and E~ =
E~(0) of equal rank satisfying the following conditions. For any positive oriented frame
(e1,e2) in TYM, x € M, the fibers E;’ and E . are invariant subspaces of the operator
Ox = o(e1) o (e2) € End(Ey). All eigenvalues of the restriction of Qx to E, resp.
E;, have a positive, resp. a negative, imaginary part. Finally, 0(§)E} = (E})* and
o(§)E; = (E;)™* for any non-zero & € TXM.

Self-adjoint elliptic boundary conditions. Denote £ = E ™[5 and E F=E*|ju. Let
n be the outward conormal to dM . The conormal symbol o (1) of A defines a symplectic
structure on the fibers of Ej given by the symplectic 2-form wy (u, v) = (io(n)u, v) for
u,v € Ex, x € 0M. With respect to this symplectic structure, £ ;‘ and E are Lagrangian
subbundles of Ejy.

A smooth subbundle L of Ej is an elliptic boundary condition for A (or, what is one
and the same, Shapiro-Lopatinskii boundary condition) if

LNEf =LNE; =0 and L+Ej =L+ E; =Ej. (3.2)

If additionally L is a Lagrangian subbundle of Ej, thatis, o(n)L = L+, then Lisa self-
adjoint boundary condition for A. See, e.g., [23, Sections 3 and 4] for a more detailed
description.

We denote by ElI(E) the set of all pairs (A4, L) such that A € ElI(E) and L is a smooth
Lagrangian subbundle of Ej satisfying condition (3.2).

Proposition 3.2 ([23, Proposition 4.2]). For every (A, L) € EI(E), the unbounded oper-
ator Ay is a regular self-adjoint operator on L?(E) with compact resolvents.

4. The analytical index

For a smooth complex vector bundle V' over a smooth manifold N, we denote by Gr(V)
the smooth bundle over N whose fiber over x € N is the complex Grassmanian Gr(Vy).
In the same manner, we define the smooth bundle End(V') of fiber endomorphisms. We
will identify sections of Gr(}') with subbundles of V' and sections of End(V") with bundle
endomorphisms of V.

The topology on El(E). We equip Ell(E) with the C!-topology on symbols and the
C-topology on free terms of operators. To be more precise, notice that M is homotopy
equivalent to a wedge of circles, so the tangent bundle 7'M is trivial. Hence we can choose
smooth global sections ey, e; of TM such that (e;(x), e2(x)) is an orthonormal frame of
TxM for any x € M. Choose a smooth unitary connection V on E. Each A € ElI(E) can
be written uniquely as A = a; Vi + a2V, + a, where V; = V,, and a1, a,, a are bundle
endomorphisms. Therefore, the choice of (eq, €2, V) defines the inclusion

Ell(E) < C®(End(E))* x C®(End(E)), a\Vy +asVs +a — ((a1,a2),a),
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where C*°(End(E)) denotes the space of smooth sections of End(E). We equip Ell(E)
with the topology induced by the inclusion

Ell(E) < C'(End(E))* x C°(End(E))
and equip Ell(E) with the topology induced by the inclusion
Ell(E) < EIl(E) x C'(Gr(Ey))

(with the product topology on the last space). Thus defined topologies on ElI(E) and
ElI(E) are independent of the choice of a frame (e, e) and a connection V.

Proposition 4.1 ([23, Proposition 5.1]). The natural inclusion
CEI(E) — CRR¥(L*(E)), (A.L)+— AL @.1)
is continuous.

The analytical index of a map. Let y be a continuous map from a compact topological
space X to Ell(E). We define the analytical index of y to be the index of the composition
of y with the inclusion ¢: Ell(E) < €RR*(L2(E)) and will denote it by ind,(y).

More generally, the index can be defined for a family of elliptic operators acting on a
family of bundles; we describe such a situation below.

Families of elliptic operators. For a smooth Hermitian vector bundle E over M, we
denote by U(E) the group of smooth unitary bundle automorphisms of E with the C!-
topology.

The continuous action of the topological group U(E) on E induces the continuous
embedding U(E)< U(L?(E)). The action of U(E) on ElI(E) given by the rule g(A, L)=
(gAg™!, gL) is continuous and compatible with the action of U(E) on R(L?(E)).

Denote by Vect x the class of all Hermitian vector bundles over X and by Vectjy; the
class of all smooth Hermitian vector bundles over M. Denote by Vect x, as the class of
all locally trivial fiber bundles over X with fibers & € Vect§; and the structure group
U(&y). Note that in the case of disconnected X the fibers over different points of X are
not necessarily isomorphic.

Let & € Vecty, pr. We will denote by EII(€) the locally trivial fiber bundle over X
with the fiber EII(€,) associated with &. A section of ElI(€) is just a family of elliptic
operators acting on fibers of a family (&) of vector bundles over M parametrized by
points of X. We denote by I' EII(€) the space of sections of Ell(&) equipped with the
compact-open topology.

The analytical index of a family. A bundle & € Vectx, »s defines the Hilbert bundle
H = H (&) over X, whose fiber over x € X is H, = L?(E,). Note that the fibers #,
over different points x are isomorphic as Hilbert spaces even if &, are not isomorphic as
vector bundles over M.
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The natural embedding ¢: EII(E) < €RR*(L2(E)) is U(E)-equivariant and thus
defines the bundle embedding ElI(§) < CRR*(H), which we still will denote by . For
a section y of EII(8), t(y) is a section of CRR*(H). The analytical index ind,(y) of y
is defined as the family index of ¢(y).

Invertible operators. We denote by ElI°(E) the subspace of Ell(E) consisting of all
pairs (A, L) such that the unbounded operator A7 has no zero eigenvalues (since Ay, is
self-adjoint, this condition is equivalent to the invertibility of Ay ). For & € Vect x, s, we
denote by ElI°(&) the subbundle of EII(€), whose fiber over x € X is EII°(&y).

Property (I0) of Proposition 2.3 implies that the analytical index vanishes on sections
of El1°(&); our proof of the index theorem will rely heavily upon this fact.

5. The topological index

The first main result of the paper is computation of the analytical index of a section y: x
(Ax, Ly) of ElI(&) in terms of topological data of y over the boundary. These data are
encoded in the family ¥ = (¥ )xex of vector bundles over dM with ¥, = F(Ay, Ly).

The correspondence between boundary conditions and automorphisms of E;". Let
A € ElI(E). Define EY = ET(A) and E~ = E~(A) as in Proposition 3.1. Let E, resp.
Ea_, be the restriction of ET, resp. E~, to the boundary oM.

Suppose for a moment that E; and E; are mutually orthogonal subbundles of Ej
(this holds, in particular, for Dirac-type operators). With every subbundle L C Ej satisfy-
ing condition (3.2), we can associate the projection of £ onto E 3+ along L. Composing
this projection with —i o (n): E;” — (E; )* = E;, we obtain the bundle automorphism T
of E; . Conversely, with every bundle automorphism 7" of E; we associate the subbundle
L of Ej given by the formula

L={ut®u € Ef @ Ey = Eyicmut =Tu}. (5.1

The automorphism 7' is self-adjoint if and only if L is Lagrangian, so we obtain a bijection
between the set of all self-adjoint elliptic local boundary conditions for A and the set of
all self-adjoint bundle automorphisms of Ej .

This simple trick does not work in the general case, where E ;‘ and £ are not mutu-
ally orthogonal. However, it can be modified to obtain such a bijection for the general
case as well, though in a bit more complicated manner. Namely, we associate with L an
automorphisms 7" of £ making the following diagram commutative (see [23, Section 4]
for details):

io(n)\

Pt
L > Ef y (E)*L

Pfl Pii| | (PT)*
oS s Ej
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Proposition 5.1 ([23, Proposition 4.3]). Let A € Ell(E). Denote by P the projection of
Ejy onto E;‘ along Ey andby P~ =1 — P the projection of Ey onto Ey along E;
Then the following statements hold.
(1) There is a one-to-one correspondence between smooth subbundles L of Ey sat-
isfying condition (3.2) and smooth bundle automorphisms T of Ej . This corre-
spondence is given by the formula

L =KerPr with Pr = PY(1+io(n)”'TP7); (5.2)

here Pr is the projection of Ey onto E; along L.
(2) For L and T as above, L is Lagrangian if and only if T is self-adjoint.
IfE; and E; are mutually orthogonal, then (5.2) is equivalent to (5.1).

It is shown in [23, Proposition 5.3] that the correspondence (A4, L) — (A, T) is a
homeomorphism. This allows us to move freely from (A4, L) to (4, T) and back; we will
use it further without special mention in constructions of homotopies.

Definition of F(A, L). The map F from ElI(E) to the space of smooth subbundles of
Ej is defined as follows. Let (A, L) € ElI(E) and let T be the self-adjoint automorphism
of E; given by formula (5.2). We define Fy as the invariant subspace of Ty spanned
by the generalized eigenspaces of Ty corresponding to negative eigenvalues. Subspaces
Fy of E_ smoothly depend on x € dM and therefore are fibers of a smooth subbundle
F=F(A,L)of E; . Being a subbundle of £, F (A, L) is also a smooth subbundle of Ejy.
Moreover, the map F:Ell(E) — C!(Gr(Ej)) is continuous; see [23, Proposition 5.3].

Subbundles, restrictions, and forgetting of smooth structure. For V € Vectx, y, we
denote by 'V, € Vect x, sps the locally trivial bundle over X whose fiber over x € X is the
restriction of Vy to dM .

Let N be a smooth manifold (in our case it will be either M or dM), and let V €
Vect x, y. We say that W C 'V is a subbundle of V if W € Vectx, y and ‘W, is a smooth
subbundle of V, for every x € X.

We will denote by (V) the vector bundle over X x N whose restriction to {x} x N is
the fiber V, with forgotten smooth structure.

Definition of ¥ (y). Let y be a section of EII(€), & € Vect x, . By [23, Propositions 5.2
and 5.3], E~(Ay) and F(Ax, Ly) C E~(Ay) continuously depend on x. Hence they
define the subbundle &~ (y) of & whose fiber over x is £~ (Ay) and the subbundle ¥ =
F (y) of & (y) whose fiber over x is F(Ax, Lx).

The homomorphism Ind;. The boundary dM is a disjoint union of circles, so the natural
homomorphism

K°X)® K°(OM) @ K'(X) ® K' (M) — K°(X x M)
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is an isomorphism. Denote by a the projection of K°(X x M) on the second summand
K'(X) ® K'(0M) of this direct sum. The orientation of M induces an orientation of dM
and thus defines the identification of K'(dM) = @;":1 K'(0M;) with Z™, where dM,
j =1,...,m, are the boundary components. Denote by § the homomorphism K!(dM) =
Z™ — Z given by the formula (ay,...,a,) — Z;‘n=1 a;. Equivalently, § is the connecting
homomorphism of the exact sequence

KMy S kYoM s KOM, oM = 7.,

where i denotes the inclusion 9M <> M and the identification of K°(M, M) with Z is
given by the orientation of M.
We define the topological index homomorphism

Ind;: K°(X x 0M) — K1(X)

to be the composition

KO(X x aM) 2% K'(X) @ K'(0M) 2% k'(X) ® Z = K'(X). (5.3)

The topological index. We define the topological index of a section y of ElI(€) by the
formula

ind(y) = Ind, [5‘7()/)], 54
where [#] denotes the class of () in K%(X x dM).

6. Properties of the topological index

Properties of the homomorphism Ind;. Denote by G? the image of the homomorphism
K°(X x M) — K°(X x dM) induced by the embedding of X x M to X x M.
Denote by G¥® the image of the natural homomorphism

K°X)® K°(0M) — K°(X x OM).

Recall that this homomorphism takes the tensor product [W] ® [V] of the classes of vector
bundles W over X and V over dM to the class of their external tensor product [W X V] €
K%(X x dM).

Denote by G the subgroup of K°(X x dM) spanned by G? and G%.

Proposition 6.1. The homomorphism Ind, is surjective with the kernel G. In other words,
the following sequence is exact:

0— G — KX x M) 225 K1 (X) - 0.
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Proof. The groups K*(M) and K*(dM) are free of torsion, so the first two rows of the
following commutative diagram are short exact sequences:

0 —— K'X)® K M) —— KX xM) —2— K'(X)® K!(M) —— 0

lld ®i* l(ld xi)* lld ®i*

0 —— K%X)® K°(0M) — KO%(X x 0M) —2 K'(X) ® K} (M) — 0

m} lld ®8

K'(X)®Z

|

0

Taking tensor product of the exact sequence
" P
KY (M)~ K'OM) = KO(M, M) =7 — 0

by K!(X), we see that the right column of this diagram is also exact.
It follows from the diagram that Ind, vanishes on both G* and G?. Both «zy and Id ®3
are surjective, so Ind, is also surjective. Finally,

K°(X x0M)/G = Im(aty)/ Im (ct o (Id xi)*)
= (K'(X)® K'(0M))/(K'"(X) ® K'(M)) = K'(X) ® Z,

and the quotient map is given by the composition (Id ®§) o g = Ind,. This completes the
proof of the proposition. ]

Special subspaces. The following two subspaces of Ell(E) will play a special role:
« ElI*(E) consists of all (4, T') € Ell(E) with positive definite T';
» EII"(E) consists of all (4, T) € ElI(E) with negative definite T

Proposition 6.2. Let y be a section of EII(8). Then the following statements hold:
e F(y) =0ifand only if y is a section of EIIT (§);
s F(y) =&, (y)ifand only if y is a section of EII"(&).

Proof. This follows immediately from the definition of ¥ . ]

Denote by I'* ElI(§) the subspace of I ElI(§) consisting of sections y that can be
written in the form

y =y @®y"” withy e TEI"(&')and y” € TEIl (&”) (6.1)
for some orthogonal decomposition & =~ &' & &§”.
Proposition 6.3. The class of ¥ (y) in K°(X x dM) lies in G? for every y € T*EII(6).
Proof. For y defined by (6.1), ¥ (y) = F(y") = &5 (y"),s0 [F(y)] € Go. [
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Twisting. A bundle & € Vect x, ;s can be twisted by W € Vect x, giving rise to another
bundle from Vect x, s, which we denote by W ® &. If W is a subbundle of a trivial vector
bundle ky, then W ® & is a subbundle of the direct sum of k copies of &, whose fiber
overx € X is Wy ® &;.

A section y of ElI(€) can be twisted by W, resulting in the section 1y ® y of
El(W ® &). This construction induces the map 1y ®: ElI(§) — El(W ® &).

For W € Vecty and E € Vecty; we denote by W K E the tensor product W ® &,
where & is the trivial bundle over X with the fiber E. For (4, L) € Ell(E) we denote by
lw X (4, L) the section 1y ® y of W K E, where y: X — EII(E) is the constant map
x+ (A, L).

Denote by T'® ElI(&) the subspace of I' ElI(€) consisting of sections y having the form

y =P 1w ®(4;. L) (6.2)

for some (A4;, L;) € EI(E;), E; € Vect§7, and W; € Vect x with respect to some decom-
position of & into the orthogonal direct sum @, W; K E;.

Proposition 6.4. The class of ¥ (y) in K°(X x M) lies in G® for every y € TR EII(8).

Proof. For y defined by formula (6.2), we have that
[F(] =D [Wi B F(4;, Li)] € G .
i
Properties of the topological index. A continuous map f:Y — X induces the map
fé:r Ell(€) — T EII(f*&) for every & € Vecty, pr. On the other hand, f induces the

homomorphism f*: K1(X) — K!(Y). We will use this functoriality to state property
(T3) in the following proposition.

Proposition 6.5. The topological index has the following properties for every &, 8’ €
Vectx, pm.

(TO) The topological index vanishes on T+ ElI(&) and T® EII(8).

(T1) indi(y) = ind(y") if y and y’ are homotopic sections of EI(&).

(T2) indi(y ® y’) = ind,(y) + ind,(y") € K°(X) for every section y of ENl(€) and y’

of E1I(&).
(T3) ind(f*y) = f*ind(y) € KX (Y) for any section y of E1I(§) and any continuous
map .Y — X.

(T4) ind (1w ®y)=[W]-ind,(y) for every section y of E1I(§) and every W € Vect x.
(T5) Foraloop y:S' — EI(E),

indi(y) = c1(F (y))[0M x S'] (6.3)

up to the natural identification K'(S') == 7. Here c¢1(F) is the first Chern class
of F, [0M x S'] is the fundamental class of M x S', and M is equipped



Self-adjoint local boundary problems on compact surfaces. 11 1235

with an orientation in such a way that the pair (outward normal to IM , positive
tangent vector to dM ) has a positive orientation.

Vanishing of ind, on T® EII(&) is a corollary of (T3) and (T4); however, we prefer to
give this property separately in (TO) for a reason which will be clear later.

Proof. (T0) If y e T+ EII(&), then [F (y)] € G? by Proposition 6.3. If y e T® EII(€), then
[% (y)] € G® by Proposition 6.4. In both cases, Proposition 6.1 implies that ind,(y) = 0.

(T1)If y and y’ are homotopic sections of EII(€), then F (y) and F (y’) are homotopic
subbundles of &y. Thus the subbundles (¥ (y)) and (¥ (y’)) of (&) are homotopic, so
they are isomorphic as vector bundles and their classes in K°(X x dM) coincide. This
implies that ind;(y) = ind.(y’).

M) F(y@y)=F ()SF (V). 50 [F(y®y)]=[F MI+[F (¥)]in K°(X x OM).
Applying the homomorphism Ind,, we obtain the equality ind,(y ®y’) =ind,(y) +ind,(y’)
in K1(X).

(T3) F(f*y) = [*F (), so [F(f*Y)] = [*[F ()] € K°(Y x 0M). Since the
homomorphism Ind;: K°(X x M) — K!(X) is natural by X, we have ind,(f*y) =
S indi(y).

(TH (F(Aw @) =W & (F(y)),s0 [F (lw ® y)] = [W]-[F (y)] € K*(X x IM).
Both ay: KO(X x M) — K" (X)® K1 (M) and Id®5: KN (X))@ K (M) — K (X)RZ
are homomorphisms of K°(X)-modules, so their composition Ind;: K°(X x M) —
K'(X) is also a homomorphism of K°(X)-modules. Combining all this together, we get
ind((lw ® y) = [W]-ind(y).

(T5) Itis easy to check that, for X =S and up to the natural identification K'(S!) = Z,
Ind; [V] = ¢1(V)[0M x S'] for every vector bundle V over dM x S!. This implies for-
mula (6.3) and completes the proof of the proposition. ]

7. Dirac operators

For k € N, we denote by kj; the trivial vector bundle over M of rank k& with the stan-
dard Hermitian structure. Denote by kx, s € Vect x, yr the trivial bundle over X with the
fiber k.

0Odd Dirac operators. Recall that A € ElI(E) is called a Dirac operator if 04(§)? =
|€]|? Idg for all £ € T*M . We denote by Dir(E) the subspace of Ell(E) consisting of all
odd Dirac operators, that is, operators having the form

0 A~
A= ( A ) 1)
with respect to the chiral decomposition E = E*(A4) & E~(A). Denote by Dir(E) the

subspace of Ell(E) consisting of all pairs (A4, L) such that A € Dir(E). The following two
subspaces of Dir(E) will play a special role:

Dir"(E) = Dir(E) NEIY(E), Dir (E) = Dir(E) NEll"(E).
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We denote by Dir(&) the subbundle of EII(E), whose fiber over x € X is Dir(&,). Simi-
larly, denote by Dir* (&) and Dir~ (&) the subbundles of Dir(&), whose fibers over x € X
are Dir™ (&,) and Dir~ (&), respectively.

Realization of bundles. We will need the following result in our proofs.

Proposition 7.1. Let 'V € Vecty, p and let 'W be a subbundle of Vy. Then there is a
section y of Dir(V @ V) such that 8~ (y) =V @ 0 and ¥ (y) = W. In particular, every
vector bundle over X x M is isomorphic to (¥ (y)) for some y: X — Dir(2kyy), k € N.

Proof. Let us choose smooth global sections e;, e; of TM such that (e1(y), e2(y)) is a
positive oriented frame in 7, M for every y € M. Choose a smooth unitary connection
V¥ on each fiber Vy in such a way that V* continuously depends on x with respect to
the C!-topology on the space of smooth connections on Vy. (Such a connection can be
constructed using a partition of unity subordinated to a finite open covering of X trivi-
alizing V.) Then Dy = —i V] + V_ is the Dirac operator acting on sections of Vy and
depending continuously on x. Let D’ be the operator formally adjoint to Dy. Since the
operation of taking a formally adjoint operator is a continuous transformation of ElI(E),
D' is continuous by x. Thus the operator Ay = ([‘)’x %i) is an odd self-adjoint Dirac
operator acting on sections of V, @ V, and depending continuously on x.

Let Ty be the self-adjoint automorphism of E~(Ax) = Vj » @ 0 equal to minus the
identity on ‘W, and to the identity on the orthogonal complement of ‘W, in V.. Let L,
be the subbundle of V, & Vy corresponding to 7y by formula (5.1). Then (Ax, Ly) €
Dir(Vy @ Vy) and F(Ay, L) = W,. The section y:x > (A, Ly) of Dir(V @ V) satisfies
conditions §~(y) = V and ¥ (y) = W, which proves the first claim of the proposition.

Suppose now that we are given an isomorphism class of a vector bundle over X x oM .
We can realize it as a subbundle of a trivial vector bundle kx«yps for some k € N. By
Proposition A.2 from the appendix, this subbundle is homotopic (and thus isomorphic) to
W = (‘W) for some subbundle ‘W of kx aar. Applying the conclusion above to V = kx, ps
and ‘W, we obtain a section y of Dir('V @ V) such that W = F(y). Since V@ V =
2ky, p is trivial, y is just a map from X to Dir(2kps). This completes the proof of the
proposition. ]

Image in K°(X x dM). Denote by I'* Dir(&) the subspace of I" Dir(&) consisting of
sections y that can be written in the form y = y’ @ y” with y’ € I' Dirt(&’) and y” €
I" Dir~(&") for some orthogonal decomposition & =~ &' @ &”.

Proposition 7.2. The subgroup G° of K°(X x 0M) is generated by the classes [F ()]
with y running over T'* Dir(2ky, pr) and k running over N.

Proof. The subgroup G? is generated by the images j *[V'] with V € Vecty xar. By Propo-
sition A.2, every such V' is isomorphic to (V) for some subbundle V of kx, s for some
(sufficiently large) k. Let V' be the subbundle of kx, s whose fibers V., are the orthogonal
complements of fibers 'V, in kjs. By Proposition 7.1, there are sections y € I' Dir(V @ V)
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andy’ € T Dir(V' @ V') suchthat 8~ (y) =V, F(y) = V5, & (y') =V, and F (y') = 0.
By Proposition 6.2, y e T Dir~('V & V) and y’ e I' Dir " (V' @ V’). Identifying (V & V) &
VaeV)with(VeV)d (Ve V) =2kx u, weidentify y @ y’ with an element of
' *Dir(2kx, ar). By construction, F (y @ y') = Vy ® 0,50 j*[V] = [Vs3] = [F (y ® ¥')].
This completes the proof of the proposition. |

Tensor product. Twisting respects Dirac operators and their grading, so its restriction to
Dir(&) defines the map 1y ®: Dir(§) — Dir(W ® &).

Denote by '™ Dir(&) the subspace of T® ElI(&) consisting of sections y having the
formy = @, 1w, ® (4;, L;) for some (4;, L;) € Dir(E;), E; € VectSs, and W; € Vect x
with respect to some decomposition of & into the orthogonal direct sum ; W; X E;.

Proposition 7.3. The subgroup G® of K°(X x 0M) is generated by the classes [F (y)]
with y running over T'® Dir(2kx pr) and k running over N.

Proof. The subgroup G® is generated by the classes of external tensor products [W X V]
with W € Vecty and V' € Vectgy,. Choose an embedding of W to a trivial vector bun-
dle nx over X, and let W’ be the orthogonal complement of W in ny. By Proposition
7.1 applied to a one-point base space, we can realize V as F(A, L) for some (A4, L) €
Dir(2kys), k € N. Choose arbitrary (4’, L') € Dirt (2kps). Then y = 1y B (A4, L) is
a section of Dir(W X 2kps) and ' = 1y K (A, L') is a section of Dirt (W' K 2kyy).
Identifying W X 2k & W' X 2kps with (W & W') K 2kpr = 2nkyx, p, we obtain the
section y @ y’ € T®DirQnky, p) with (F(y @y) =(WRV)® (W R0)=WR V.
This completes the proof of the proposition. ]

Surjectivity of the topological index.

Proposition 7.4. For every i € K'(X), there are k € N and y: X — Dir(2ky) such that
p = indi(y).

Proof. By Proposition 6.1, the homomorphism Ind,: K%(X x M) — K (X) is surjective,
so i = Ind; A for some A € K%(X x OM). We can realize A as [V] — [nxxan] for some
vector bundle V over X x dM and n € N. By Proposition 7.1, V is isomorphic to (¥ (y))

for some y: X — Dir(2kyy). The trivial vector bundle 7 x xaps is the restriction of 71 xx s
to X X dM, so [nxxam] € Goc Ker Ind;. Combining all this, we obtain

indi(y) = Ind, [V] = Ind, [V] — Ind; [nxxopm] = Ind; A = p.

This completes the proof of the proposition. ]

8. Universality of the topological index

Homotopies that fix operators. In this subsection, we will deal with those deformations
of sections of ElI(&) that fix an operator family (A4 ) and change only boundary conditions

(Lx).
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Let us fix an odd Dirac operator D € Dir(2;,). Denote by §T, resp. §~, the constant
map from X to (D,Id) € Dirt (2y), resp. (D, —1d) € Dir~(237). We denote by k8%, resp.
k§~, the direct sum of k copies of §, resp. §~.

Proposition 8.1. Ler y:x — (Ax, Ly) and y':x +— (Ax. L)) be sections of E1I(8) differ-
ing only by boundary conditions. Then the following statements hold.

() If (F(y)) and (F (y")) are homotopic subbundles of (€5 (y)), then y and y' are
homotopic sections of E11(8).

(2) If (F(y)) and (¥ (y")) are isomorphic as vector bundles, then the sections y ®k§™
and y' @ k8t of EI(€ @ 2kx, pm) are homotopic for some k € N.

Q) If [F(y)] = [F()] € KO(X x M), then the sections y & 1§~ & k8T and
Y ® 16~ @ kst of E(E @ 2lx, m ® 2kx. p) are homotopic for some [,k € N.

Proof. Recall that &5 (y) depends only on operators, so 5 (y) = &; (y'); denote it by
€, . Denote ¥ = ¥ (y) and ¥’ = F ().

(1) Let A: x — A, be the corresponding section of Ell(&). Denote by £ (4) C I EIl(E)
the space of all lifts of # to sections of ElI(€). Denote by £¥(+4) the subspace of £(A)
consisting of sections (Ax, Ty ) such that the self-adjoint automorphism 7 is unitary for
every x € X. The subspace £*(+) is a strong deformation retract of £(4), with the
retraction given by the formula hs(Ay, Ty) = (Ax, (1 — s + s|Tx|~")Ty). Since hy pre-
serves J, it is sufficient to prove the first claim of the proposition for y, y’ € £*(A).

Suppose that (') and (¥') are homotopic subbundles of (€;°). Then ¥ and ¥ are
homotopic subbundles of &5 by Proposition A.3 from the appendix. An element y €
&L (A) is uniquely defined by the subbundle # (y) of €, (y). Hence a homotopy between
¥ and ¥’ defines the path in £% () C I Ell(&) connecting y with y’.

(2)If (¥) and (F') are isomorphic as vector bundles, then they are homotopic as sub-
bundles of (€;7) @ kxxam for k large enough. Thus the sections y & ké* and y’ @ kST
of Ell(& @ 2kx, pr) satisfy conditions of the first claim of the proposition and therefore
are homotopic.

(3) The equality [#] = [F] implies that the vector bundles (¥ ) and (F') are stably
isomorphic, thatis, (¥) ® Ixxop = (F(y ®167)) and (F') @ lxxom = (F (Y @ 157))
are isomorphic for some integer /. It remains to apply the second part of the proposition
to the sections y @ /8~ and y’ @ 18~ of EII(€ @ 2lx, um). |

The case of different operators. For a section y:x — (A, Ty) of ElI(§) we denote by
y T the section of ElIT (&) given by the rule x — (A, Id).

Proposition 8.2. Let y; be a section of EN(&;), €1, 8, € Vecty, p, i = 1,2. Suppose
that [F (y1)] = [F (y2)] € K°(X x OM). Then the sections y; & )/2+ @18 ® kST and
y1+ @y, IS~ kST of EN(E) ® & @ 2x, i D 2kx, ) are homotopic for 1, k large
enough.
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Proof. The sections ] = y1 @ v, and y; = y;" @ y» of Ell(§; @ &) differ only by
boundary conditions and thus fall within the framework of Proposition 8.1. By Proposition
6.2, ¥ (y{) = # (yi). It remains to apply the third part of Proposition 8.1 to y; and y;. =

Commutativity. The direct sum of operators is a non-commutative operation. However,
it is commutative up to homotopy, as the following proposition shows.

Proposition 8.3. Let f: X — Ell(2ky), g: X — Ell(2lyr) be continuous maps. Then
f ®gand g ® f are homotopic as maps from X to EN((2k + 21) ).

Proof. Let J; be the unitary automorphism of C2*2! gjven by the formula u & v
v @ u foru € C* v e C?. Let us choose a path J: [0, 1] — U(C**2!) connecting
Jo = Id with J;. Denote by J; the unitary bundle automorphism of (2k + 2/)s induced
by Js. Then the map h: [0, 1] x X — ElI((2k + 2)a) defined by the formula A4 (x) =
Jo(f(x) @ g(x)) gives a desired homotopy between f @ gand g & f. L]

Universality of the topological index. Now we are ready to state our first universality
result.

Theorem 8.4. Let y; be a section of EII(&;), &, &> € Vectx p, i = 1,2. Then the fol-
lowing two conditions are equivalent:

(1) indi(y1) = indi(y2);
(2) there are k,l € N and sections ﬂti el E(ka,M), ,3[IZ € F&D_ir(le,M) such
that
1@y BT @ BT and v @1, ® 5 & Y 8.1)

are homotopic sections of EIl(&1 & &> ® 2kx, m @ 2lx m).

Proof. (2)=(1) follows immediately from properties (T0)—(T2) of the topological index.

Let us prove (1)=(2). Suppose that ind;(y;) = ind;(y2). Then Ind;(A; — A5) = O for
Ai = [F (vi)] € K°(X x dM). Proposition 6.1 implies that A1 — A, = A% + A® for some
1% e G? and A® € G®.

By Proposition 7.2, A% = [37(/33)] — [.’F(ﬂ?)] for some ,6‘1’ ,Bg € T+ Dir(2nx, ) (one
can equate the ranks of corresponding trivial bundles by adding several copies of §7 if
needed). Similarly, by Proposition 7.3 A® = [37(/353)] — [37(,3?)] for some ,Big ,BEE €
I'® Dir(21 x,m) (one can equate the ranks of corresponding trivial bundles by increasing
the ranks of ambient trivial bundles for IV and W in construction of ,le if needed; see the
proof of Proposition 7.3). Combining all this, we obtain

[Fnesfes)]=[7(rep ep)]

Adding sections of Elt (6; ®2Ix, m ® 2nx, i) to the sections on both sides of this equal-
ity, we obtain

[F(ner eBRep)e (o) )] =7 (i ore(BFep]) o (fFop))].
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The third part of Proposition 8.1 implies that
@y, ® BT © L) S (B ® )T @58 @r18*

and
rerneBRephtrelepd) oss @5t

are homotopic for some integers s, ¢. Using Proposition 8.3 to rearrange terms, taking
k =2n+1+ s +t, and defining ﬂii € I'* Dir(2ky, p) by the formula

BE=plo Bl o BT @5 @18t for{i, j} ={1,2},
we obtain the second condition of the theorem. [

Universality for families. Our next goal is to describe invariants of families of elliptic
operators satisfying the same properties as the topological index. Let ®(y) be such an
invariant. We start with the first three properties (T0)—(T2) of the topological index:

(E*) ® vanishes on I ElI(8);

(E¥) ® vanishes on T® EII(8);

(E1) ®(y) = ®(y’) if y and y’ are homotopic sections of EII(&);

(E2) ®(y ®y') = O(y) + ®(y’) for every section y of ElI(&) and y’ of EII(§”).

Let V be a subclass of Vect x, ps satisfying the following condition:

V is closed under direct sums
and contains the trivial bundle 2ky, 3 for every k € N. 8.2)

In particular, V can coincide with the whole Vect x, ur.

Theorem 8.5. Let X be a compact space and A a commutative monoid. Suppose that we
associate an element ®(y) € A with every section y of EII(§) for every & € V. Then the
following two conditions are equivalent:

(1) @ satisfies properties (E¥), (E®), (E1), (E2) forall &,8" € V;

(2) @ has the form ®(y) = 9(ind((y)) for some (unique) monoid homomorphism
¥:KY(X) — A.

Remark 8.6. In the case V = Vect x, 37, the property (E¥) in the statement of this theorem
can be replaced by the property (T*) from Section 1, namely vanishing of ® on sections of
Ell* (&) and ElI™(&). Indeed, a section from I'* EII(&) is a sum of sections of EIIT (&)
and ElI=(&”) for some & and &”, so (T*) together with (E2) implies (E*). Similarly,
(E™) can be replaced by the property (T®) from Section 1, namely vanishing of ® on
sections having the form 1y X (A, L). Therefore, for V = Vect x, s, Theorem 8.5 takes
the form of Theorem 1.1.

Proof. (2)=(1) follows immediately from properties (T0)—(T2) of the topological index.
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Let us prove (1)=(2). We show first that

indi(y1) = indi(y2) implies ®(y1) = P(y2) (8.3)

for all y; € TEI(&;), &1, &, € V. Indeed, if ind;(y;) = ind;(y»), then by Theorem 8.4
the sections (8.1) are homotopic for some k,/ € N, ,BIi € I'* Dir(2kx, p), and ,3? €
I'® Dir(2lx,ar). Properties (E1) and (E2) then imply that

D(y1) + (yy) + PBE) + P(BY) = B(y2) + DY) + P(BY) + D(BY).

(E%) implies that ®(y;") = ®(B*) = 0, while (E®) implies that (8¥) = 0. Thus we
obtain ®(y;) = ®(y,), which proves (8.3).

Next we define the homomorphism #: K!(X) — A. Let 4 be an arbitrary element of
K'(X). By Proposition 7.4, there exist k € N and a section 8 of D_ir(2kx, M) such that
1 =1ind(B). In order to satisfy condition (2) of the theorem, we have to put (i) = ®(8).
The correctness of this definition follows from (8.3).

Let now y be an arbitrary section of EIl(§) and & = ind,(y). By the definition above,
¥ () =P(B) for some B such that u=ind,(B). Then ind,(y) = =ind(B), so (8.3) implies
that ®(y) = O®(B) = ¥ (u) = ¥ (ind,(y)). This completes the proof of the theorem. |

Universality for families: functoriality and twisting. Our next goal is to describe fam-
ilies ® = (®y) of K'(X)-valued invariants satisfying two more properties in addition to
(E®), (E¥), (E1), (E2):
(BE3) Oy (fgy) = [*Px(y) € K'(Y) for every section y of Ell(€) and every con-
tinuous map f:Y — X;

(E4) Ox(lw ® y) = [W]- ®x(y) for every section y of ElI(€) and every W € Vect x.

Theorem 8.7. Suppose that we associate an element ®x (y) € K1 (X) with every section
y of EN(8) for every compact topological space X and every & € Vectx, pr. Then the
following two conditions are equivalent:
(1) the family ® = (®x) satisfies properties (E¥), (E®), (E1)—(E4) for all €,&'
Vect X, M

(2) there is an integer m such that ® has the form ®y = m - ind,.

Remark 8.8. As well as in Remark 8.6, the property (E*) in the statement of this theorem
can be replaced by (T*) and (E®) can be replaced by (T,

Proof. (2)=(1) follows immediately from properties (T0)—(T4) of the topological index.
Let us prove (1)=(2). By Theorem 8.5, for every compact space X there is a homo-

morphism
Ox:K'(X) — K'(X) such that ®x(y) = 9x(indi(y)) (8.4)

for every & € Vect x, pr and every section y of Ell(§). Moreover, such a homomorphism
Ux is unique.
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Let f:Y — X be a continuous map and p € K'(X). By property (T5) of the topo-
logical index y = ind,(y) for some y € T'EII(§), & € Vectx, p. By (T3) ind((fg'y) =
f*indi(y) and by (E3) @y (fg'y) = f*®x(y). Substituting this to (8.4), we obtain

Oy (f* 1) = Oy (f*ind(y)) = dy (ind(f¢'y)) = Py (fey)
= f"Px(y) = fMOx ind(y) = fIx ().

Thus the family (Jy) defines a natural transformation ¥ of the functor X — K!(X) to
itself.

Similarly, (T4) and (E4) imply that ¢ respects the K°(-)-module structure on K'(-);
that is, 9y (Ap1) = A%y (1) for every compact space X and every A € K%(X), u € K1 (X).

We show in Proposition B.1 of Appendix B that the only natural transformations sat-
isfying this property are multiplications by an integer. Hence, there is an integer m such
that ¥ (1) = mu for every X and every i € K'(X). Substituting this identity to (8.4),
we obtain the second condition of the theorem. ]

The semigroup of elliptic operators. The disjoint union

E_HM = ]_[ E_H(Zk M)
keN
has the natural structure of a (non-commutative) graded topological semigroup, with the
grading by k and the semigroup operation given by the direct sum of operators and bound-
ary conditions. We denote by E_llx, u the trivial bundle over X with the fiber Ellss and by

['Elly, » = C(X,Elly)

the topological semigroup of its sections, with the compact-open topology.
We will use the following two special subsemigroups of T’ E_llx, M:

F:I:E_HX,M = L[ FiE_H(2kX,M) and FIXE_HX’M = L[ F&E_H(ZkX’M).
keN keN

The subsemigroup of I" E_HX’ » spanned by T'* E_llx, a and T® E_llx, m will play a special
role; we denote it by R E_llx, M-

The homotopy classes. The set 77o(I" Ellx, 5s) = [X, Ellps] of homotopy classes of maps
from X to Ellj; has the induced semigroup structure.

Proposition 8.9. The semigroup [X,Ellp] is commutative for any topological space X .

Proof. Let f.g: X — Ellpy be continuous maps. For every k,/ € N the inverse images
£ V(Ell(2kpr)) and g~ (Ell(2/37)) are open and closed in X, so their intersection Xp is
also open and closed. By Proposition 8.3, the restrictions of f @ g and g @ f to Xy ; are
homotopic as maps from Xy ; to EIl((2k + 2/)r) (the proof of Proposition 8.3 does not
use compactness of X and works as well for arbitrary topological space). Since X is the
disjoint union of Xy ;, this implies that f @ g and g @ f are homotopic as maps from X
to Ells . Therefore, the classes of fHgandg® fin [X,E_IIM] coincide, so [X,E_IIM] is
commutative. This completes the proof of the proposition. ]
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The topological index as a homomorphism. A continuous map y: X — Elljs defines
the partition of X by subsets X, where X consists of points X such that y(x) has the
grading k. Since the grading is continuous, all X are open-and-closed subsets of X.
Since X is compact, all but a finite number of X} are empty, so this partition is finite. The
restriction of y to X takes values in EIl(2kjs), so ¥ can be identified with a section of
E_H(Sy), where &, € Vectx, p is the bundle whose restriction to Xy is the trivial bundle
over X with the fiber 2k . Thus the topological index of y is well defined.

Since the topological index is additive with respect to direct sums, it defines the mon-
oid homomorphism ind;: C(X,Ell3s) — K'(X). Since the topological index is homotopy
invariant, this homomorphism factors through the projection C (X, Ellzs) — [X; Ellp].

The inclusion ['=¥ E_HX’ =T E_llx, M induces the homomorphism

7'L’0(F:|:x E_HX,M) — JT()(F E_HX,M) = [X;E_HM];
we denote its image by [X; Elljs]*¥.

Since the topological index vanishes on r+ E_llx’ u and T® E_HX’ M, it factors through
the quotient [X; Ellps]/[X; Ellpz]*™. In other words, there exists a monoid homomor-
phism

k2 [X:Ellar]/[X: Ellp ™™ — K'(X)

such that the following diagram is commutative:
C(X;E_HM) e [X;E_HM] e [X;E_HM]/[X;E_HM]:HZ]
l”’ 8.5)
K'(X)

ind;

Theorem 8.10. Let X be a compact topological space. Then [X, Ellps]/[X; Ellp]T® is
an Abelian group isomorphic to K'(X), with an isomorphism given by ;.

Note that, for any given k, the restriction of k; to a given rank,

[X,EN2kx, )] /[X:ENCkx, a0) | — K1(X),

in general is neither injective nor surjective, so we need to take the direct sum for all the
ranks to obtain universality.

Proof. Denote the commutative monoid [X, Ellas]/[X; Ella/]*® by A and the composi-
tion of horizontal arrows on diagram (8.5) by @, so that ind; = «; o ®. By definition, ® is
additive, homotopy invariant, surjective, and vanishes on both I" * E_llx, ap and T® E_llx, M-

Suppose first that X is connected. Then [X, Elljs] = Lk [X,Ell(2kps)], so @ and A
satisfy the first condition of Theorem 8.5 with V = {2kx as}. Thus ® = ¢ o ind; for
some monoid homomorphism ©#: K!(X) — A. By Proposition 6.5, the topological index
is surjective. Thus k; and ¢ are mutually inverse and «; is an isomorphism. This completes
the proof of the theorem in the case of connected X .
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In the general case, we need to extend the set {2kx, as}ren of trivial bundles. Let
V be the set of all bundles &, with y € ' Elly . An element & of V is defined by a
partition of X by open-and-closed subsets X, k € N, such that all but a finite number
of X} are empty. For such a partition, & is defined as the disjoint union of trivial bundles
2kx,, m. A continuous map from X to E_llx, M is nothing else than a section of a bundle
Ell(€) with & € V. Obviously, V is closed under direct sums and contains all trivial
bundles 2kx, r. Hence the triple (V, ®, A) satisfies the first condition of Theorem 8.5,
and therefore ® = 1 o ind, for some monoid homomorphism #: K!(X) — A. Taking into
account that both @ and ind, are surjective, we see that x, and ¥} are mutually inverse and
thus «; is an isomorphism. This completes the proof of the theorem. ]

9. Deformation retraction

Proposition 9.1. The natural embedding Dir(€) — El(&) is a bundle homotopy equiva-
lence for every & € Vectx, . Moreover, there exists a fiberwise deformation retraction h
of EN(€) onto a subbundle of Dir(€) having the following properties for every s € [0, 1],
A € Ell(Ey), and As = hs(A):

(1) E7(4s) = E(A);

(2) the symbol of As depends only on s and the symbol a4 of A;

(3) the map hi;: 04 — 04, defined by (2) is U(Ex)-equivariant;

(4) if A € Dir(Ey), then o4, = 04.

In the case of one-point space X, this result was proved in [23, Proposition 9.5]. We
will use it to construct such a deformation retraction for an arbitrary compact space X .

Proof. Let (X') be a finite open covering of X such that the restrictions of & to X’ are triv-
ial. Choose trivializations f%:&|y: — E' x X'. Forx € X', denote by f, € U(Ey, E') the
isomorphism of the fibers given by f?. The homeomorphism Ell(€,) — Ell(E?) induced
by £ will also be denoted by f}.

Choose a partition of unity (p;), p; € C(X*, C*®(M)), subordinated to the covering
(X%). Let h*: [0, 1] x Ell(E") — EII(E?) be a deformation retraction of EIl(E?) onto a
subspace of Dir(E") satisfying the conditions of [23, Proposition 9.5].

For x € X' and A € Ell(€,), we define an element A’ of Ell(€) by the formula
SI(ALY = hi( fI(A)). From [23, Proposition 9.5], we obtain the following.

(@) Al = Aand A} € Dir(&,) for every i.

(b) The symbol of A§ depends only on s and the symbol o of A and is independent
of i; denote it by oy.

(¢) The map o + o5 defined by (b) is U(&y)-equivariant.
(d) E(o5) = E"(0).
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(e) If A € Dir(&y), then g, = o forall s € [0, 1].
(f) If A, B € Ell(Ey) and the symbols of A} and B} coincide, then A’ = Bi.
We claim that the bundle map #: [0, 1] x Ell(&) — ElI(&) defined by the formula

hs(A) = pi(x)AL  for A € Ell(E,) 9.1)

is a desired deformation retraction. The rest of the proof is devoted to the verification of
this claim.

First note that (a) implies that 7y = Id. A convex combination of self-adjoint elliptic
operators with the symbol oy is again a self-adjoint elliptic operator with the symbol oy,
so (b) implies that 04, = 0, and A, € Ell(Ey). (c) implies condition (3) of the proposition,
(e) implies (4), and (d) implies (1).

The chiral decomposition of an odd Dirac operator A’i is defined by its symbol o and
hence is independent of 7, so (a) and (b) imply that Im 2; C Dir(&).

Suppose that A € Im hy; that is, A = By for some B € Ell(&y). Then A € Dir(&y),
and (e) implies that 04, = 04 = op,. Hence the symbols of A’i and Bi coincide, and (f)
implies that Al = Bi. Substituting this to (9.1), we obtain A; = By; thatis, i1 (A) = A.
Thus the restriction of &; on its image is the identity.

It remains to prove the homotopy equivalence part. Let A € Dir(Ex). Then 4; =
h1(A) also lies in Dir(&y), but Ay is not necessarily odd for s € (0, 1), so we should
change a homotopy a little. Since the symbols of A and A coincide, the formula /2 (A) =
(1 —5)A + sA; defines a continuous bundle map 4': [0, 1] x Dir(€) — Dir(&) such that
hy =1d and b, = h;. It follows that the restriction of /; to Dir(&) and the identity map
Idpir(g) are homotopic as bundle maps from Dir(€) to Dir(€). On the other hand, the
map h1: Ell(€) — ElI(€) is homotopic to Idgy(g) via the homotopy /. It follows that
h1:Ell(&) — Dir(&) is homotopy inverse to the embedding Dir(&) < ElI(&); that is, this
embedding is a bundle homotopy equivalence. This completes the proof of the proposi-
tion. ]

Proposition 9.2. For every & € Vectx, p, the natural embeddings I Dir(&) — I' Ell(8)
and T Dir(&) < T Ell(8) are homotopy equivalences. Moreover,

(1) there exists a deformation retraction of I' EINl(&) onto a subspace of T' Dir(&)
preserving &~ (y);

(2) there exists a deformation retraction of T EIl(8) onto a subspace of T Dir(&)
preserving both §~(y) and F (y).

Proof. (1) The fiberwise deformation retraction & from Proposition 9.1 induces the defor-
mation retraction H on the space of sections satisfying the conditions of the proposition.

(2) Denote by p the natural projection I' EIl(§) — I" ElI(&), which forgets boundary
conditions. We define the deformation retraction H: [0, 1] x ' EIl(§) — I" EII(§) by the
formula Hy(y)(x) = (Hs(py)(x), T(x)) for y: x > (A(x), T(x)). Since &~ (H,(py)) =
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€7 (y), Hy(y) is well defined. By definition of H, the subbundles ¥ (H,(y)) and ¥ (y)
of &5 (y) coincide for every s € [0, 1] and y € I EI(E).

(3) The fiberwise homotopy /4’ from Proposition 9.1 induces the homotopy between
the restriction of Hy to I Dir(&) and the identity map of I Dir(&), as well as the homo-
topy between the restriction of H; to I' Dir(€) and the identity map of I" Dir(&). The
same arguments as in the proof of Proposition 9.1 show that Hy: " Ell(&) — I" Dir(§) is
homotopy inverse to the embedding I" Dir(€) < I" ElI(§) and H,: T Ell(§) — I' Dir(&)
is homotopy inverse to the embedding I" Dir(&) < I"ElI(&). This completes the proof of
the proposition. ]

Retraction of special subspaces. The following proposition is one of the key ingredients
in the proof of the index theorem.

Proposition 9.3. There exists a deformation retraction of T EII* (&) onto a subspace of
I’ Dirt (&) and a deformation retraction of T EII™ (&) onto a subspace of T Dir~(&).

Proof. Let H be a deformation retraction of I" EII(§) onto a subspace of T' Dir(§) sat-
isfying the conditions of Proposition 9.2. For y € T'EllT (&) and y; = H(y), we have
that ¥ (ys) = F(y) = 0, so by Proposition 6.2, y; € I'ElI* (&) for all 5. In particular,
y1 € TEINY(8) N T Dir(€) = I' Dirt (€). For y € TENI"(8) and ys = H,(y), we have
that F (y5) = F(y) = &7 (y) = & (ys), so by Proposition 6.2, y; € T ElI™(&) for all s.
In particular, y; € T EII"(&) N T Dir(€) = I' Dir (&). This completes the proof of the
proposition. ]

10. Index theorem

Invertible Dirac operators. We have no means to detect the invertibility of an arbitrary
element of ElI(E) by purely topological methods. However, there is a big class of odd
Dirac operators which are necessarily invertible.

Proposition 10.1 ([23, Proposition 10.1]). If (A, L) is an element of Dir* (E) or Dir(E),
then Ar has no zero eigenvalues. In other words, both Dirt (E) and Dir~ (E) are sub-
spaces of EII°(E).

Vanishing of the analytical index. Taking into account Proposition 9.3, we are now able
to describe, in purely topological terms, a big class of sections of EII(&) which are homo-
topic to families of invertible operators.

Proposition 10.2. Let y be an element of T* EN(€) or TR EI(&). Then y is homotopic
to a section of EI°(&), and hence ind,(y) = 0.

Proof. (1)If y e TTEI(&), then y =y’ @ y” with y’ € TEII*(&’) and y” € TElI"(&")
for some orthogonal decomposition & = &" & &”. By Proposition 9.3, y’ is homotopic
to some y; € I'Dir* (&) and y” is homotopic to some |’ € " Dir~(§”). By Proposition
10.1, y} and y} are sections of EII°(&’) and EII°(8”), respectively. It follows that y is
homotopic to y; @ y}, which is a section of ElI°(€).
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(2) Suppose that y = 1y X (A, L) for some (A, L) € Ell(E) and W € Vect . Since
Ay is Fredholm, A7 — A is invertible for some A € R, thatis, (4 — A, L) € ElI°(E). The
path 4: [0, 1] — T'™® Ell(W K E) given by the formula h; = 1y X (A — sA, L) connects
y with 1y ® (4 — A, L) € ElI°(W R E).

In the general case, for y = @ 1w, ® (4;, L;) € T¥EII(E), we take such a homotopy
as described above for every direct summand 1y, X (A4;, L;) independently. The direct
sum of these homotopies gives a required homotopy of y to a section /1 (y) € TR EI°(E).

(3) It follows from the homotopy invariance of the analytical index and its vanishing
on sections of E11°(&) that ind,(y) = 0. |

Index theorem. Now we are able to prove our index theorem.

Theorem 10.3. Let X be a compact space and let & € Vectx, p. Then the analytical
index is equal to the topological index for every section y of E1I(8):

ind,(y) = indi(y). (10.1)
In particular, this equality holds for every continuous map y: X — EI(E), E € Vect§y.

Proof. By Proposition 2.3, & = ind, satisfies conditions (E0)—(E4). By Proposition 10.2,
® satisfies conditions (E*) and (E®). By Theorem 8.7, there is an integer m such that
ind,(y) = m -ind(y) for every section y of Ell(&), every & € Vect x, 3, and every com-
pact space X. The factor m does not depend on X, but can depend on M .

For X = S, the analytical index of y coincides with the spectral flow sf(y) by
Proposition 2.3, while the topological index of y coincides with ¢1 (¥ (y))[0M x S!] by
Proposition 6.5. Hence it is sufficient to compute the quotient

sf(y)

m = m(M) = 1 (F (7)) [0M x 1]

for some loop y: S! — Dir(2kys) such that the denominator of this quotient does not
vanish.

For the case of an annulus, this computation was performed by the author in [21,
Theorem 4] by a direct evaluation; it was shown there that the factor m for the annulus is
equal to 1. Moreover, the value of m (M) is the same for all surfaces M [23, Lemmas 11.3
and 11.5]. These two results together imply that m (M) = 1 for any surface M . Therefore,
ind,(y) = ind,(y), which completes the proof of the theorem. ]

11. Universality of the analytical index

Recall that we denoted by ElI°(E) the subspace of ElI(E) consisting of all pairs (4, L)
such that the unbounded operator Az has no zero eigenvalues, and by EII°(&) the sub-
bundle of ElI(€) whose fiber over x € X is ElI°(&y). Sections of EI1°(&) correspond to
families of invertible self-adjoint elliptic boundary problems.
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Theorem 11.1. Let X be a compact space, and let y; be a section of EI(E;), & €
Vectx, pr, i = 1, 2. Then the following two conditions are equivalent:

(1) indy(y1) = inda(y2);
(2) there are k €N, sections ,3? of Bl 2kx, p), and sections )/io of E1°(&;) such that
Y1 @y ® BY and y? @y, ® B are homotopic sections of El(8, @ &, ® 2kx. um).

Proof. (2)=(1) follows immediately from properties (I0)—(12) of the family index.
Let us prove (1)=(2). By Theorem 10.3, the equality

ind,(y;) = ind,(y) implies indi(y;) = indi(y>).

By Theorem 8.4, there are ,Bli € FiD_ir(2nX’M) and ,Bt& € FgD_ir(le,M), i =1,2,such
that the direct sums y; @ y,7 @ BE @ ¥ and y;” @ y» @ B & B are homotopic. By
Proposition 10.2, yi‘" is homotopic to a section yio of E11°(&;) and ,Bli @ ,31& is homotopic
to a section B2 of ElI®(2kx.a), k = n + 1. This completes the proof of the theorem. m

Universality for families. In Section 8, we considered invariants satisfying properties
(E®), (E®), and (E1)—(E4). Now we replace the topological properties (E*), (E¥) by the
following analytical property:

(E0) @ vanishes on sections of EII°(&).

Theorem 11.2. Let X be a compact topological space and A a commutative monoid.
Let V be a subclass of Vect x, p satisfying condition (8.2). Suppose that we associate an
element ®(y) € A with every section y of EN(E) for every & € V. Then the following two
conditions are equivalent:

(1) D satisfies properties (E0)—(E2);

(2) @ has the form ®(y) = ¥ (ind,(y)) for some (unique) monoid homomorphism
¥ KY(X) > A.

Proof. (2)=(1) follows from properties (I0)—(12) of the family index. (1)=>(2) follows
from Theorem 8.4, Proposition 10.2, and Theorem 10.3. [

Theorem 11.3. Suppose that we associate an element ®x (y) € K1 (X) with every section
y of E1I(8) for every compact space X and every & € Vect x, M- Then the following two
conditions are equivalent:

(1) the family ® = (®y) satisfies properties (E0)—(E4);
(2) ® has the form Ox(y) = m -ind,(y) for some integer m.

Proof. (2)=(1) follows from properties (I0)—-(I4) of the family index. (1)=(2) follows
from Theorem 8.7, Proposition 10.2, and Theorem 10.3. [

Universality for maps. Theorem 11.1 applied to trivial bundles &; and &, takes the fol-
lowing form.
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Theorem 11.4. Let X be a compact space and let y: X — Ell(2ky), v': X — E_H(ij’u)
be continuous maps. Then the following two conditions are equivalent:

(1) indy(y) = inda(y');
(2) there are n € N and maps B: X — EI°(2(n —k)pr), B’ X — ENI°Q2(n — k') ar)
such that the maps y @ B and y’ @ B’ from X to ENl(2nys) are homotopic.

Theorem 11.2 applied to the set V = {2kx, as} of trivial bundles takes the following
form.

Theorem 11.5. Let X be a compact space and A a commutative monoid. Suppose that
we associate an element ®(y) € A with every map y: X — Ell(2kyy) for every integer k.
Then the following two conditions are equivalent:

(1) @ is homotopy invariant, additive with respect to direct sums, and vanishes on
maps to EII®(2kp);

(2) @ has the form ®(y) = ¥ (ind,(y)) for some (unique) monoid homomorphism
¥: K'(X) = A.

The analytical index as a homomorphism. Denote by E_lllou the disjoint union of sub-
spaces Ell®(2kps) C Ell(2kyy) for all k € N3 it is a subsemigroup of Ellps. The inclusion
E_llgl C Elly induces the homomorphism [X E_llg,[] — [X,Ellj]; we denote by [X, Ellz,]°
its image.

Since the analytical index is additive with respect to direct sums, it defines the monoid
homomorphism ind,: C (X, Ells) — K'(X). Since the analytical index is homotopy invari-
ant, this homomorphism factors through the homomorphism C(X, Ellps) — [X; Ellp].
Since the analytical index vanishes on maps to EIl%,, it factors through [X, Ellzs]/
[X,Ell]°. In other words, there exists a monoid homomorphism

ia: [X.Ellp]/[X,Elly]° — K'(X)
such that the following diagram is commutative:

C(X,Ellyy) — [X,Ellyy] —— [X, Elly]/[X, Ellp]°
l”“ (11.1)
K'(X)

ind,

Theorem 11.6. Let X be a compact space. Then [X, Elly]/[X, Ellp]° is an Abelian
group isomorphic to K'(X), and the homomorphism kg on diagram (11.1) is an isomor-
phism.

Proof. Denote the commutative monoid [X, Elljs]/[X, Ellf]° by A and the composi-
tion of horizontal arrows on diagram (11.1) by ®. The homomorphism & factors through
[X,Ellj] and vanishes on maps to EII°(2kjs). By Theorem 11.5, ® = & o ind, for some
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(unique) monoid homomorphism ©#: K'(X) — A. By definition, ® is surjective. By The-
orem 10.3, ind, = ind,; by Proposition 6.5 (T5), ind; is surjective. Thus k, and ¢ are
mutually inverse monoid homomorphisms, so k, is an isomorphism. This completes the
proof of the theorem. |

A. Smoothing

This appendix is devoted to the proof of two technical results: Propositions A.2 and A.3,
that are used in the main part of the paper.

Smoothing of maps. Let Z and Z’ be compact smooth manifolds and let  be a non-
negative integer. We denote by C™**°(Z, Z’) the space C*°(Z, Z') of smooth maps from
Z to Z' equipped with the topology induced by the natural inclusion C*°(Z, Z') —
C"(Z,7).

Proposition A.1. Let X be a compact space and let Z, Z' be compact smooth manifolds.
Then for every non-negative integer r the following statements hold.

(1) The space C™*°(Z, Z') is locally contractible.

(2) The space C(X x Z,Z') = C(X,C(Z,Z")) is locally contractible and contains
C(X,C*(Z,Z")) as a dense subset. In particular, every f € C(X,C(Z,Z")) is
homotopic to some F € C(X,C*>®(Z,Z")).

(3) If continuous maps fy, f1: X — C"°(Z, Z’) are homotopic as maps from X to
C(Z,Z'), then they are homotopic as maps from X to C">*°(Z, Z'). Moreover,
H" (fo. f1) is a dense subset of H°( fo, f1), where K" (fo, f1) denotes the sub-
space of C([0,1] x X, C"*°(Z, Z")) consisting of maps [ such that f|iyxx = fi
fori =0,1.

Proof. Let us choose a smooth embedding of Z’ to R” for some n; let p: N — Z’ be its
normal bundle. Denote by N, the e-neighborhood of the zero section in N.

Let ¢ > 0 be small enough, so that the restriction of the geodesic map ¢g: N — R” to
N, is an embedding. This embedding allows to identify N, with the s-neighborhood of Z’
in R”. We denote the restriction of p to N, again by p; we will use only this small part of
the normal bundle from now on. The map p takes a point u € N, to the (unique) closest
point on Z’.

(2a) Let f be an arbitrary element of C(X x Z, Z"). For every s € [0, 1] and every
two points u, v € Z’ such that |u — v|jge < &, the point w = su + (1 — s)v lies in N,
lw—pw)| =d(w.Z') < ||lw—v], and

[p(w) —ull = lp(w) —w +w —ul| < lv—w| + w—ul = [lv-ul <&,
so p(w) lies in the e-neighborhood of u. Thus the formula

hi(g) = po(sf +(1—9g) (A1)
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defines the contracting homotopy of the e-neighborhood

Upe ={g € C(X xZ,Z'):|lg = fllcxxz,rn) < €}

of finC(X x Z,Z’). It follows that C(X x Z, Z’) is locally contractible.

(OHIf f e C(X,C"*°(Z,Z")), then formula (A.1) defines the contracting homotopy
of C(X,C"*®(Z,Z")) N Uy, to f. In the particular case of a one-point space X, this
implies the first claim of the proposition.

(2b) For every y € X, choose g, € C*°(Z,R") such that ||g, — f(¥)|c(z,r) <&
Then

X, ={xeX:|gy— f®llczr <&} (A.2)

is an open neighborhood of y. Since X is compact, the open covering (X,),ex of X
contains a finite sub-covering (Xy)ye7. Choose a partition of unity (py)yes subordinated
to this finite covering. We define the map g’: X — C*°(Z,R") by the formula g’(x) =
> yer Py(X)gy. Obviously, g’ is continuous. By (A.2), [|g’'(x)(z) — f(x)(2)| < e for
every x € X, z € Z, so the image of g’ lies in C*®(Z, N;). The composition g = p o g’ is
a continuous map from X to C*°(Z, Z’). Moreover, g and f are homotopic as continuous
maps from X x Z to Z’, with a homotopy given by the formula (A.1). This proves the
density of C(X,C*®(Z,Z’)) in C(X,C(Z, Z")) and completes the proof of the second
claim of the proposition.

(3) Let f:]0,1]x X — C(Z, Z’) be ahomotopy between fy, f1 € C(X,C">®(Z,Z")).
By the second claim of the proposition, C([0, 1]x X, C*(Z, Z")) is dense in C([0, 1]x X,
C(Z, Z")). Thus there is a continuous map F:[0, 1] x X — C"*°(Z, Z’) such that
| F — fllcqo,11xxxz, 7y < €. The last inequality implies that || F; — fillc(xxz,rr) < €
fori =0, 1, where F; = F|(;xx. Applying again the second claim of the proposition, we
obtain a homotopy 2®: [0, 1] x X — C™%(Z, Z') between F; and f; such that

119 — fillc(xxz,rmy <& foralls € [0, 1].

Concatenating /9, F, and V) and suitably reparametrizing the result, we obtain the path
in C(X,C"*°(Z,Z")) connecting fo with f; and lying in the e-neighborhood of f. This
proves the third claim of the proposition. ]

Smoothing of subbundles. Let us recall some designations from the main part of the
paper. Let X be a topological space and Z a smooth manifold. We denoted by Vectx, z
the class of all locally trivial fiber bundles & over X, whose fiber & is a smooth Hermitian
vector bundle over Z for every x € X and the structure group is the group U(&) of smooth
unitary bundle automorphisms of &, equipped with the C'-topology. We say that W C 'V
is a subbundle of V € Vectx, z if W € Vect x, z and Wy is a smooth subbundle of 'V, for
every x € X.For 'V € Vectx, z, we denoted by (V) the vector bundle over X x Z whose
restriction to {x} x Z is the fiber V, with the forgotten smooth structure. Similarly, for a
subbundle ‘W of V we denote by (‘W) the corresponding vector subbundle of (V).
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Proposition A.2. Let X be a compact space, Z a compact smooth manifold, and V a
subbundle of a trivial vector bundle kx xz. Then V is homotopic to (V) for some subbun-
dle V of k x,z. In particular, every vector bundle over X x Z is isomorphic to ('V) for
some 'V € Vecty, 7.

Proof. Let f: X x Z — Gr(C¥) be the continuous map corresponding to the embedding
V <> kxxz. By Proposition A.1(2), f considered as a map from X to C(Z, Gr(CK)) is
homotopic to a continuous map F: X — C1%°(Z,Gr(C¥)). Such a map F defines a fiber
bundle V over X, whose fiber Vy is a smooth subbundle of kz given by the smooth map
F(x): Z — Gr(C¥). A homotopy between F and f induces the homotopy between the
vector subbundles (V) and V of kxxz.

Let x¢ be an arbitrary point of X and Fy = F(x¢). By Proposition A.1 (1), there is
a contractible neighborhood U’ of Fy in C1*°(Z, Gr(C¥)). Let & be a corresponding
contracting homotopy. Then the restriction of F to U = F~1(U’) C X is homotopic, as a
map from U to C >°°(Z, Gr(C¥)), to the constant map U 3 x +> Fy, with the homotopy
Hg(x) = hs(F(x)). It follows that the restriction of 'V to U is a trivial bundle. Thus 'V €
Vect x, z and 'V is a subbundle of k x, z, which completes the proof of the proposition. =

Proposition A.3. Let X and Z be as in Proposition A.2. Let & € Vectx, z and let Vo, V;
be subbundles of &. Suppose that (Vo) and (V) are homotopic as subbundles of ().
Then Vo and 'V are homotopic subbundles of &.

Proof. Consider first the case of a trivial & = kx, z. Then V; can be identified with a
continuous map F;: X — C™(Z,Gr(C¥)),i = 1,2. Since (Vo) and ('V;) are homotopic
as subbundles of (&), Fo and F; are homotopic as maps from X to C(Z, Gr(C¥)). By
Proposition A.1 (3), they are homotopic as maps from X to C™*(Z, Gr(Ck)). It follows
that Vy and V; are homotopic subbundles of &.

Let now & be an arbitrary element of Vecty, z.

Denote by '€ the vector space of continuous maps X > x > I'b®&,, where L&,
denotes the space of smooth sections of &, with the C !-topology. It is finitely generated as
an A-module, where A = C(X, C1*°(Z, C)). Indeed, let (X;) be a finite open covering
of X such that the restriction &; of & to X; is a trivial bundle with a fiber E;. Let (p;) be
a partition of unity subordinated to this finite covering, and let (v;;) be a finite generating
set for ' E;. Then u;; = p;v;; form a finite generating set for re.

Let (ui)f-‘=1 be a finite generating set for the A-module T'8. For every x € X, the
set (u;(x)) of smooth sections of &, generates &, as a C*°(Z, C)-module and thus
defines the smooth surjective bundle morphism 7,:kz — &, continuously depending
on x. Then the kernel K of m, continuously depends on x and is locally trivial. Thus
the family (K) of smooth vector subbundles of kz defines the subbundle KX of k x, 7.
Denote by K the continuous map from X to C1%(Z, Gr(C¥)) corresponding to X .
Obviously, subbundles of & are in one-to-one correspondence with subbundles of k x, z
containing XK.
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Let Vy, V; be subbundles of &. Denote by Wy, W, the corresponding subbundles
of k x, z and by Fy, F; the corresponding maps from X to C1*°(Z, Gr(Ck)). If (Vo)
and (V1) are homotopic as subbundles of (&), then there is a homotopy 4: [0, 1] x X —
C(Z,Gr(Ck)) between Fy and F; such that i3(x)(z) D K(x)(z) for every s € [0, 1],
xeX,andz € Z.

Equip Gr(C¥) with a smooth Riemannian metric. For L € Gr(C¥) denote by Grz (C¥)
the submanifold of Gr(C¥) consisting of subspaces of C¥ containing L. Denote by
pr: Np — Grz(C¥) the normal bundle of Grz (C¥) in Gr(C¥), and by Np ¢ the e-neighbor-
hood of the zero section in Nz. Let ¢ > 0 be small enough, so that for every L € Gr(Ck)
the geodesic map gz: Nz, — Gr(CK) is an embedding. Similarly to the proof of Proposi-
tion A.1, we identify Nz, . with the e-neighborhood of Gry, (C*) in Gr(C*). The map pr.
smoothly depends on L with respect to this identification.

By Proposition A.1 (3), there is a homotopy H:[0,1]x X —C*(Z,Gr(Ck)) between
Fy and F; such that the distance between Hg(x)(z) and hg(x)(z) is less then ¢ for all s,
x, and z. Then the continuous map F: [0, 1] x X — C1*°(Z, Gr(C¥)) defined by the
formula Fy(x)(z) = pkx)(z)(Hs(x)(z)) is a homotopy between Fy and F; such that
Fs(x)(z) D K(x)(z) for every s, x, and z. Thus F defines the homotopy ('W;) between
Wo and W; such that J is a subbundle of ‘W, for every s € [0, 1]. Factoring by X, we
obtain the homotopy (Vs) between Vy and V; as subbundles of &, which completes the
proof of the proposition. ]

B. Natural transformations of K!

The purpose of this appendix is to prove the following result, which we use in the main
part of the paper.

Let € be one of the following categories: the category of compact Hausdorff spaces
and continuous maps, the category of finite CW-complexes and continuous maps, or the
category of smooth closed manifolds and smooth maps. We consider K! as a functor from
€ to the category of Abelian groups.

Proposition B.1. Let ¥ be a natural self-transformation of the functor X — K'(X)
respecting the K°(-)-module structure (that is, % (A) = A (u) for every object X of
€ and every A € K°(X), u € K'(X)). Then ¢ is multiplication by some integer m; that
is, Ox () = mu for every object X of € and every u € K'(X). In particular, if Og1 is
the identity, then Oy is the identity for every X.

Proof. K'(U(1)) is an infinite cyclic group, so dy(1) is multiplication by some integer;
denote this integer by m.

Let X be an object of € and u € K'(X). Thereis n € N and a continuous map f: X —
U(n) such that © = f*B, where B denotes the element of K!(U(n)) corresponding to the
canonical representation U(n) — Aut(C”). If X is a smooth manifold, then f can be
chosen to be smooth. Since @ is natural, 9x it = f* (dy)B). Therefore, it is sufficient to
show that Yy, B = mpB.
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Let T = U(1)" be the maximal torus in U(n) consisting of diagonal matrices and let
V =U(n)/T be the flag manifold. Let 7: V x T — U(n) be the natural projection given
by the formula 7 (g7, u) = gug™".

Denoteby L1, ..., L, the canonical linear bundles over V, and let /; = [L;] € K°(V).
Let o; be the element of K!(T') corresponding to the projection of 7 = U(1)" on the i-th
factor. We denote the liftings of L;, [;, and ; to V' x T by the same letters. The lifting of
B can be written in these notations as 7*f = Y ', /;a;.

The element o; is lifted from U(1) and $y ;) is multiplication by m, hence v xr (c;)

= ma;. Since Yy xr is a K(V x T')-module homomorphism, we have that

7* v B) = dyxr(r*B) =Y dyxr(lici)

i=1

n n
=Y L Vyxr(e) =Y L -ma; = x*(mp):;
i=1 i=1
that is, 7* (dy@)p — mpP) = 0. To complete the proof of the proposition, it is sufficient
to show the injectivity of the homomorphism 7*: K!(U(n)) — K!'(V x T), which we
perform in the following lemma. |

Lemma B.2. The homomorphism 7*: K*(U(n)) — K*(V x T) is injective.

Proof. The k-th exterior power U(n) — Aut(A¥ C") of the canonical representation
U(n) — Aut(C") defines the element of K!(U(n)); denote this element by Bx. The ring
K*(U(n)) is the exterior algebra over Z generated by 81, ..., Bx [1, Theorem 2.7.17].
Therefore, for every non-zero u € K*(U(n)), there is u’ € K*(U(n)) such that u - ' =
cub, where b = By - ... B, and ¢, is a non-zero integer. Thus the injectivity of 7* is
equivalent to the condition that ¢ - 7*b # 0 in K*(V x T) for every integer ¢ # 0.

By the Kiinneth formula [1, Theorem 2.7.15], K*(T') is the exterior algebra over Z
generated by the elements oy, . ..,a, € K'(T). Applying the Kiinneth formula one more
time, we obtain K*(V x T) = K*(V) ® K*(T). The group K*(T) is free Abelian and
K*(V) is torsion-free, so K*(V) ® K*(T) is also torsion-free. Hence we should only
prove that 7*b # 0. Let us compute 7*b.

n
7*Br = Z (Zai-nlj)=2aili Z Hlj
I1c{1,..,n} i€l jel i=1 Ic{1,...n}]\{i}jel
|I|=k I|=k—1
n
=Y ali[A*TE, (B.1)
i=1

where we denoted E; = @j# L;. Since [L; @ E;] = n, we have that

[AFE;] + LIAFVE] = [A*(L; @ E)] = <Z)
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n

where (k) are the binomial coefficients. Induction by k gives [A¥ E;] = g (I;), where the

polynomials g € Z[x] are defined by the formula g (x) = Zj;o(—l)j (¢ ;)x7. Sub-
stituting this to (B.1), we get 7*Bx = Y 7_; ®iliqk—1(l;). Taking the product of these

identities for k running from 1 to n and using the identity []/; = 1, we obtain

n
n*b:l—[ﬂ*ﬂk=Q(ll,...,ln)-al-...-otn, (B.2)
k=1

where Q € Z[x1, ..., x,] is the determinant of the matrix (qx—;(X;))i k=1,...n. Since
(—1)*g (x) is a unital polynomial of degree k, the polynomial Q is equal up to sign to

the Vandermonde determinant d, (x1,...,x,) = det(xf‘_l) = ]_[i>j (xi — xj).
It will be more convenient for us to use ux = Iy — 1 as the generators of K°(V)
instead of /;. The ring homomorphism Z[xi, ..., x,] — K°(V) sending x; to u; is

surjective; its kernel is the ideal J, generated by the elementary symmetric polynomi-
als ox(x1,...,x,), k = 1,...,n [1, Proposition 2.7.13]. Obviously, d,(ly,...,1l;) =
[lis; G = 1) = [lis ;i —uy) = dn(ur, ... un).

Let us show that

n—1

dn(xl,...,x,,)En!l_[xllg_|r1 mod J,. (B.3)
k=1

Indeed, d>(x1, x2) = X2 — x1 = 2x, mod J,. Let n > 2 and suppose that

n—2
dy—1(x1,...,xp—1) = (n —1)! 1_[ x’,ﬁH mod J,_1. (B.4)
k=1
Since og (x1,...,Xp—1) + Xn0k—1(x1,...,xXp—1) =0k (x1,...,x,) =0 mod J,, induction
by k implies that o (x1,...,Xp—1) = (—l)kx,]f mod J,, for all k. Hence

n—1
l—[ (xp — xj) = Z(—l)kak(xl,...,xn_l)xf’fl*k = nx;l“1 mod J,. (B.5)
k=0

1<j<n—1
The inverse image of the ideal J,—; under the projection
ZIx1, ..., xn] = Z[x1, ..., xXn]/(xn) = Z[x1, ..., Xn-1]

is the ideal generated by x, and J,. Taking into account induction assumption (B.4), we
obtain

n—1
1_[ (xi —xj) = (n—1)! 1_[ x’k‘_l + x, f mod Jy (B.6)
1sj<isn—1 k=2

for some [ € Z[xy,...,x,]. Multiplying (B.6) by (B.5), we get

n
1_[ (xi—xj)zn!nx,f_l +nf-x} mod J,. B.7)
k=2

1<j<i<n
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Since x1,..., X, are roots of the polynomial x* — o1x"~! + -+ + (—1)"0,, their n-th
powers x lie in J,, so nf - x}; = 0 mod J,, and (B.3) follows from (B.7). Therefore,
(B.4) implies (B.3), so (B.3) holds for all n > 2. _

The quotient Z[x1,...,x,]/Jn is a free Abelian group with the generators ]_[Z;ll x]ikﬂ ,
0 < jx < k [13, Theorem 3.28]. The right-hand side of (B.3) coincides with one of these
generators up to the factor n!, so it does not vanish in Z[xy, ..., X,]/J,. Equivalently,
d,(uy, ..., uy,) does not vanish in K°(V). Taking into account that oy - ... - &, # 0 in
K*(T), we finally obtain

n—1
m*b = (D)2 [Tugyon oo #0 in K*(V x T). (B.8)
k=1
This completes the proof of the lemma and of the proposition. ]
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