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Self-adjoint local boundary problems on
compact surfaces. II. Family index

Marina Prokhorova

Abstract. The paper presents a first step towards a family index theorem for classical self-adjoint
boundary value problems. We address here the simplest non-trivial case of manifolds with boundary,
namely the case of two-dimensional manifolds. The first result of the paper is an index theorem
for families of first order self-adjoint elliptic differential operators with local boundary conditions,
parametrized by points of a compact topological space X . We compute the K1.X/-valued index in
terms of the topological data over the boundary. The second result is the universality of the index:
we show that the index is a universal additive homotopy invariant for such families if the vanishing
on families of invertible operators is assumed.

Preface
An index theory for families of elliptic operators on a closed manifold was developed
by Atiyah and Singer in [5]. For a family of such operators, parametrized by points of
a compact space X , the K0.X/-valued analytical index was computed there in purely
topological terms. An analog of this theory for self-adjoint elliptic operators on closed
manifolds was developed by Atiyah, Patodi, and Singer in [3]; the index of a family in
this case takes values in the K1 group of a base space.

If a manifold has a non-empty boundary, the situation becomes more complicated.
The integer-valued index of a single boundary value problem was computed by Atiyah
and Bott [2] and Boutet de Monvel [7]. This result was generalized to the K0.X/-valued
index for families of boundary value problems by Melo, Schick, and Schrohe in [17].

Manifolds with boundary: self-adjoint case. The case of self-adjoint boundary value
problems, however, remains largely open. While Boutet de Monvel’s pseudo-differential
calculus allows to investigate boundary value problems of different types in a uniform
manner, self-adjoint operators seem to lack such a theory. In this case, two different kinds
of boundary conditions, global and local, were investigated separately and by different
methods.

For Dirac operators on odd-dimensional manifolds with global boundary conditions
of Atiyah–Patodi–Singer type, Melrose and Piazza computed the odd Chern character of
the K1.X/-valued index [19], which determines the index up to a torsion. This result is
an odd analog of [18].
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Self-adjoint case: local boundary conditions. For Dirac operators with classical (that
is, local) boundary conditions some partial results were obtained in [10, 15, 21, 26].

If the base space is a circle, then the analytical index takes values in K1.S1/ Š Z and
may be identified with the spectral flow. The spectral flow for curves of Dirac operators
over a compact surface was computed by the author in [21] in a very special case, where all
the operators have the same symbol and are considered with the same boundary condition.
Later the results of [21] were generalized to manifolds of higher dimension by Katsnelson
and Nazaikinskii in [15] and by Gorokhovsky and Lesch in [10].

For compact manifolds of arbitrary dimension, Katsnelson and Nazaikinskii expressed
the spectral flow of a curve of Dirac operators with local boundary conditions as the
(integer-valued) index of the suspension of the curve [15]. See also [25] for a similar
result in a more general context.

Gorokhovsky and Lesch considered the straight line between the operatorsD˝ Id and
g.D ˝ Id/g�, where D is a Dirac operator on an even-dimensional compact manifold M
and g is a smooth map from M to the unitary group U.Cn/. They take the same local
boundary condition for all the operators along this line. Using the heat equation approach,
they expressed the spectral flow along this line in terms of the spectral flow of boundary
Dirac operators [10].

The result of Gorokhovsky and Lesch was generalized to the higher spectral flow
case by Yu. In the general situation, the higher spectral flow is defined for a self-adjoint
family parametrized by points of the product X D Y � S1 provided that the restriction
to Y � ¹ptº has vanishing index in K1.Y /. The higher spectral flow of such a family
takes values in K0.Y / and may be identified with the K1.X/-valued index of the family.
Yu considered a Y -parametrized family of Dirac operators on a manifold M , with local
boundary conditions, whoseK1.Y /-valued index vanishes. From such a family and a map
M ! U.Cn/, he constructed a family of straight lines of Dirac operators, as in [10]. He
expressed the higher spectral flow of such a family in terms of the higher spectral flow of
the family of boundary Dirac operators [26].

Unfortunately, the methods of [10, 15, 26] use essentially the specific nature of Dirac
operators and cannot be applied to more general classes of self-adjoint elliptic differential
operators. In [23], the author generalized results of [21] in a different direction, computing
the spectral flow for curves of arbitrary first order self-adjoint elliptic differential opera-
tors on a compact oriented surface with boundary.

Family index. In this paper, we generalize the results of [23] to families of such boundary
value problems parametrized by points of an arbitrary compact space X . Our results may
be viewed as a first step towards a general family index theorem for classical self-adjoint
boundary value problems.

As well as in [23], we address here the simplest non-trivial case of manifolds with
boundary, namely the case of two-dimensional manifolds. We consider first order self-
adjoint elliptic differential operators on such manifolds, with local, or classical, boundary
conditions (that is, boundary conditions defined by general pseudo-differential operators,
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in particular boundary conditions of Atiyah–Patodi–Singer type, are not allowed). As it
happens, in this setting all the work can be done by topological means only, without using
pseudo-differential calculus.

The first result of the paper is a family index theorem: we define the K1.X/-valued
topological index in terms of the topological data of the family over the boundary, and
show that the analytical and the topological index coincide.

The second result of the paper is the universality of the index for families of such
boundary value problems. We show that the Grothendieck group of homotopy classes
of such families modulo the subgroup of invertible families is the K1-group of the base
space, with an isomorphism given by the index. In fact, we prove stronger results, dealing
with the semigroup of such families without passing to the Grothendieck group.

Added in proofs. Recently, Ivanov [11] proved a family index theorem for first order
self-adjoint local boundary value problems on manifolds of arbitrary dimension.

1. Introduction

Conventions. Throughout the paper a “Hilbert space” always means a separable complex
Hilbert space of infinite dimension, a “compact space” always means a compact Hausdorff
topological space, and a “surface” always means a smooth compact oriented connected
surface with non-empty boundary. By the “symbol of a differential operator” we always
mean its principal symbol.

Family index for unbounded operators. LetH be a Hilbert space. Denote by R.H/ the
space of regular (that is, closed and densely defined) operators on H equipped with the
graph topology. Recall that this topology (which is also often called the gap topology) is
induced by the metric ı.A1;A2/DkP1 �P2k, wherePi denotes the orthogonal projection
of H ˚H onto the graph of Ai .

Denote by Rsa.H/ the subspace of R.H/ consisting of self-adjoint operators and by
CRRsa.H/ the subspace consisting of self-adjoint operators with compact resolvents.

The Cayley transform A 7! �.A/ D .A � i/.AC i/�1 is a continuous embedding of
Rsa.H/ into the unitary group U.H/. It takes CRRsa.H/ into the subgroup UK.H/ of
U.H/ consisting of unitaries u such that the operator 1�u is compact. Hence CRRsa.H/

can be considered as a subspace of UK.H/.
As is well known, the group ŒX;UK.H/� of homotopy classes of maps from a com-

pact topological space X to UK.H/ is naturally isomorphic to K1.X/. We define the
family index ind./ of a continuous map  WX ! CRRsa.H/ as the homotopy class of
the composition � ı  WX ! UK.H/ considered as an element of K1.X/,

ind./ D Œ� ı � 2
�
X;UK.H/

�
D K1.X/:

More generally, this definition works as well for graph continuous families of regular self-
adjoint operators with compact resolvents acting on fibers of a Hilbert bundle over X . See
Section 2 for details.
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Local boundary value problems on a surface. Throughout the paper, M is a fixed
smooth compact oriented surface with a non-empty boundary @M . Let A be a first order
formally self-adjoint elliptic differential operator acting on sections of a Hermitian smooth
vector bundle E overM . Denote by E@ the restriction of E to @M . A local boundary con-
dition for A is defined by a smooth subbundle L of E@; the corresponding unbounded
operator AL on the space L2.E/ of square-integrable sections of E has the domain

dom.AL/ D
®
u 2 H 1.E/Wuj@M is a section of L

¯
;

where H 1.E/ denotes the first order Sobolev space of sections of E. (More precisely, the
boundary condition above means that the boundary trace of u is an element of H 1=2.L/;
see explanation in Section 3.)

Let n denote the outward conormal to the boundary @M . The conormal symbol �.n/
of A is self-adjoint and thus defines a symplectic structure on the fibers of E@ given by the
symplectic 2-form !x WEx ˝ Ex ! C, !x.u; v/ D hi�.nx/ u; vi for x 2 @M . Green’s
formula for A can be written as

hAu; viL2.E/ � hu;AviL2.E/ D
˝
i�.n/uj@M ; vj@M

˛
L2.E@/

D !
�
uj@M ; vj@M

�
for u; v 2 H 1.E/:

Let .nx ; �/ be a positive oriented frame in T �xM , x 2 @M . Since A is elliptic,
�.tnx C �/ D t�.nx/C �.�/ is non-degenerate for every t 2 R. Hence the fiber endo-
morphism (the symbol of a tangential operator) b.�/ D �.nx/�1�.�/ has no eigenvalues
on the real axis. The generalized eigenspaces ECx and E�x of b.�/ corresponding to eigen-
values with a positive, resp. a negative, imaginary part do not depend on the choice of �.
The subspaces ECx , resp. E�x , are fibers of a smooth subbundle EC

@
, resp. E�

@
, of E@, so

E@ is naturally decomposed into the direct sum EC
@
˚ E�

@
. Moreover, EC

@
and E�

@
are

Lagrangian subbundles of E@ (that is, �.n/ takes them to their orthogonal complements).
A local boundary condition L is elliptic for A if L\EC

@
DL\E�

@
D0 and LCEC

@
D

LC E�
@
D E@; in this case AL is a regular operator on L2.E/ with compact resolvents.

If, in addition, L is a Lagrangian subbundle of E@, then the regular operator AL is self-
adjoint. We denote by Ell.E/ the set of all such pairs .A;L/.

Topological data. Following [23], from an element .A;L/ 2 Ell.E/we extract a topolog-
ical data which contains all the information we need to compute the family index. These
data are encoded in a vector subbundle F D F.A; L/ of E@, which depends only on L
and the restriction of the symbol of A to the boundary.

As was shown by the author in [23, Proposition 4.3], self-adjoint elliptic local bound-
ary conditions L for A are in a one-to-one correspondence with self-adjoint bundle auto-
morphisms T of E�

@
. This correspondence is given by the rule

L D KerPT with PT D PC
�
1C i�.n/�1TP�

�
;

where PC denotes the projection of E@ onto EC
@

along E�
@

and P� D 1 � PC.
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Notice that PT is a bundle projection of E@ onto EC
@

along L, so the local boundary
condition given byL can be written equivalently in the formPT .uj@M /D 0 using a bundle
projection (a particular case of a pseudo-differential projection), as is customary in the
study of boundary value problems.

If A is a Dirac-type operator, then EC
@

and E�
@

are mutually orthogonal; in this case L
can be written (fiber-wise) as L D ¹uC ˚ u� 2 EC

@
˚E�

@
W i�.n/uC D T u�º.

We associate with a pair .A; L/ 2 Ell.E/ the subbundle F D F.A;L/ of E�
@

, whose
fibers Fx , x 2 @M are spanned by the generalized eigenspaces of Tx corresponding to
negative eigenvalues.

Analytical index for maps. We equip Ell.E/ with the C 1-topology on symbols of oper-
ators, the C 0-topology on their free terms, and the C 1-topology on boundary condi-
tions. The natural inclusion �W Ell.E/ ,! CRRsa.L2.E//, .A; L/ 7! AL is continuous;
see Proposition 4.1. For a compact space X , this inclusion associates the analytical index
inda./ WD ind.� ı / 2 K1.X/ with every continuous map  WX ! Ell.E/.

Analytical index for families. More generally, let E be a locally trivial fiber bundle
over X , whose fibers Ex are smooth Hermitian vector bundles over M and the struc-
ture group is the group U.Ex/ of smooth unitary bundle automorphisms of Ex (we equip
this group with the C 1-topology). We denote by VectX;M the class of all such bun-
dles E . Notice that we cannot consider arbitrary vector bundles over X �M , since we
need smoothness with respect to coordinates on M .

Let Ell.E/ denote the fiber bundle over X associated with E and having the fiber
Ell.Ex/ over x 2 X . A section of Ell.E/ is a family x 7! .Ax ; Lx/ 2 Ell.Ex/ of operators
and boundary conditions parametrized by points of X . The natural inclusion Ell.Ex/ ,!
CRRsa.L2.Ex// allows to define the analytical index for such families. Our first result is
computation of the analytical index in terms of the topological data of a family .Ax ; Lx/
over @M .

Topological index. With each family .Ax ; Lx/ as above we associate its topological
index taking values in K1.X/.

Let  W x 7! .Ax ; Lx/ be a section of Ell.E/. The family .F.Ax ; Lx//x2X determines
the subbundle F D F ./ of E@ D EjX�@M . Let ŒF � be the class of F in K0.X � @M/.

The second factor @M is the disjoint union of boundary components @Mj , each of
which is a circle. Using the natural homomorphismK0.X � S1/!K1.X/ and taking the
sum over the boundary components, we obtain the homomorphism IndtWK

0.X � @M/!

K1.X/.
Finally, we define the topological index of  as the value of Indt evaluated on ŒF � 2

K0.X � @M/,
indt./ WD Indt

�
F ./

�
2 K1.X/:

Index theorem. The first main result of this paper is an index theorem. It was first
announced by the author in [22].
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Theorem 10.3. The analytical index of  is equal to its topological index:

inda./ D indt./:

If the base space X is a circle, then  is a one-parameter family of operators. In this
case, up to the identification K1.S1/ Š Z, the analytical index of  coincides with the
spectral flow of  and the topological index of  coincides with c1.F .//Œ@M � S1�.
Thus, for X D S1, our index theorem takes the form of [23, Theorem A].

Properties of the analytical index. The proof of the index theorem is based on the fol-
lowing properties of the analytical index.

(I0) Vanishing on families of invertible operators.

(I1) Homotopy invariance.

(I2) Additivity with respect to direct sum of operators and boundary conditions.

(I3) Functoriality with respect to base changes.

(I4) Multiplicativity with respect to twisting by Hermitian vector bundles over the
base space.

(I5) Normalization: the analytical index of a loop  WS1 ! Ell.E/ coincides with the
spectral flow of  up to the natural isomorphism K1.S1/ Š Z.

Here by an “invertible operator” we mean a boundary value problem .A;L/ such that the
unbounded operator AL has no zero eigenvalues (since AL is self-adjoint, this condition
is equivalent to the invertibility of AL).

These properties follow immediately from the analogous properties of the family index
for unbounded operators on a Hilbert space; see Section 2 for details. As it happens, these
properties alone are sufficient to prove our index theorem.

Universality of the topological index. To describe all invariants of families of self-
adjoint elliptic local boundary problems over M satisfying properties (I0)–(I5), we note
first that the topological index satisfies properties (I1)–(I4). Property (I0), however, is
purely analytical, so its connection with the topological index is not clear a priori. We
manage this problem, replacing temporarily (I0) by two topological properties, (T˙) and
(T�), which will be stated below.

First, we replace the subspace Ell0.E/ of Ell.E/ consisting of invertible operators by
the following two special subspaces of Ell.E/:

• EllC.E/ consists of all .A;L/ 2 Ell.E/ with positive definite automorphism T ;

• Ell�.E/ consists of all .A;L/ 2 Ell.E/ with negative definite automorphism T .

Let Ell0.E/, EllC.E/, and Ell�.E/ denote the corresponding subbundles of Ell.E/. We
show that every section of EllC.E/ or Ell�.E/ is homotopic to a section of Ell0.E/; see
Propositions 9.3 and 10.1.

In addition to this, we consider “locally constant” families of operators, that is, sec-
tions 1W � .A; L/ of Ell.W � E/, where an element .A; L/ 2 Ell.E/ is twisted by a
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vector bundle W over X . See Section 6 for details. Since every .A; L/ 2 Ell.E/ is con-
nected by a path with an invertible operator, every section of the form 1W � .A; L/ is
homotopic to a section of Ell0.W �E/.

Finally, as a substitute for (I0), we take the following two properties:

(T˙) vanishing on sections of EllC.E/ and Ell�.E/;

(T�) vanishing on “locally constant” sections.

In Section 8, we prove a number of results concerning the universal nature of the
topological index; here we show only two of them.

Theorem 1.1 (This is a particular case of Theorem 8.5; see Remark 8.6). LetX be a com-
pact space andƒ a commutative monoid. Suppose that we associate an elementˆ./ 2ƒ
with every section  of Ell.E/ for every E 2 VectX;M . Then the following two conditions
are equivalent:

(1) ˆ satisfies properties (T˙), (T�) and (I1), (I2);

(2) ˆ has the form ˆ./ D #.indt.// for some (unique) monoid homomorphism
# WK1.X/! ƒ.

Theorem 8.7. Suppose that we associate an element ˆX ./ 2 K1.X/ with every section
 of Ell.E/ for every compact space X and every E 2 VectX;M . Then the following two
conditions are equivalent:

(1) the family ˆ D .ˆX / satisfies properties (T˙), (T�) and (I1)–(I4);

(2) there is an integer m such that ˆ D m � indt.

Theorem 8.7 is deduced from Theorem 1.1 combined with the following result proven
in the appendix.

Proposition B.1. Let # be a natural self-transformation of the functor X 7! K1.X/

respecting the K0. � /-module structure. Then # is multiplication by an integer, that is,
there is m 2 Z such that #X .�/ D m� for every X and every � 2 K1.X/. In particular,
if #S1 is the identity, then #X is the identity for every X .

The proof of the index theorem. As was noted above, every invariant ˆ satisfying
properties (I0) and (I1) satisfies also (T˙) and (T�). Thus Theorem 8.7 implies that
every invariant ˆ satisfying properties (I0)–(I4) has the form ˆ D m � indt. Applying
this to the analytical index, we see that it is an integer multiple of the topological index:
inda D m � indt for some integer factor m D m.M/, which does not depend on X , but can
depend on M .

To compute m, it is sufficient to consider the simplest non-trivial base space, namely
X D S1, where the analytical index is just the spectral flow. The spectral flow was com-
puted by the author in [21] for an annulus and in [23] for an arbitrary surface. By [23, Lem-
mas 11.3 and 11.5], the value of m.M/ is the same for all surfaces M , and by [21, Theo-
rem 4],m.M/D 1 for an annulusM . These two results together imply thatm.M/D 1 for
any surfaceM . It follows that the analytical index and the topological index of  coincide.



M. Prokhorova 1220

Universality of the analytical index. The second main goal of the paper is universality
of the analytical index. We obtain a number of results in this direction in Section 11,
combining our index theorem with results of Section 8.

Universality for maps. Recall that every complex vector bundle over M is trivial and
that Ell.E/ is empty for bundles E of odd rank. For k 2 N, we denote by 2kM the trivial
vector bundle over M of rank 2k with the standard Hermitian structure.

Theorem 11.4. Let  WX ! Ell.2kM /,  0WX ! Ell.2k0M / be continuous maps. Then the
following two conditions are equivalent:

(1) inda./ D inda.
0/;

(2) there are l 2 N and maps ˇWX ! Ell0.2.l � k/M /, ˇ0WX ! Ell0.2.l � k0/M /
such that  ˚ ˇ and  0 ˚ ˇ0 are homotopic as maps from X to Ell.2lM /.

Semigroup of elliptic operators. The disjoint union

EllM D
a
k2N

Ell.2kM /

has the natural structure of a (non-commutative) graded topological semigroup with re-
spect to the direct sum of operators and boundary conditions. The set ŒX;EllM � of homo-
topy classes of maps fromX to EllM has the induced semigroup structure. The semigroup
ŒX;EllM � is commutative; see Proposition 8.9.

Denote by Ell0M D
`
k2N Ell0.2kM / the subsemigroup of EllM consisting of invertible

operators. The inclusion Ell0M ,! EllM induces the homomorphism

ŒX;Ell0M �! ŒX;EllM �I

we will denote by ŒX; EllM �0 its image. The analytical index is homotopy invariant and
vanishes on families of invertible operators, so it factors through ŒX;EllM �=ŒX;EllM �0. In
other words, there exists a (unique) monoid homomorphism �aW ŒX;EllM �=ŒX;EllM �0 !
K1.X/ such that the following diagram is commutative:

C.X;EllM / ŒX;EllM � ŒX;EllM �=ŒX;EllM �0

K1.X/

inda

�a

Theorem 11.6. The quotient ŒX; EllM �=ŒX; EllM �0 is an Abelian group isomorphic to
K1.X/, with an isomorphism given by �a.

The family index is a universal homotopy invariant for maps from X to CRRsa.H/,
but the space Ell.E/ is only a tiny part of CRRsa.L2.E//. Universality is usually lost
after passing to a subspace, so we cannot expect from the analytical index to be a universal
invariant for Ell.E/. Indeed, it follows from our index theorem that for any given E the
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map indaW ŒX; Ell.E/� ! K1.X/ is neither injective nor surjective for general X . It is
surprising that universality can still be restored by considering all vector bundles over M
together.

Universality for families. Denote by 2kX;M 2 VectX;M the trivial bundle over X with
the fiber 2kM .

Theorem 11.1. Let i be a section of Ell.Ei /, i D 1; 2. Then the following two conditions
are equivalent:

(1) inda.1/ D inda.2/;

(2) there are k 2N, sections ˇ0i of Ell0.2kX;M /, and sections 0i of Ell0.Ei / such that
1 ˚ 

0
2 ˚ ˇ

0
1 and 01 ˚ 2 ˚ ˇ

0
2 are homotopic sections of E1 ˚ E2 ˚ 2kX;M .

Let V be a subclass of VectX;M closed under direct sums and containing the trivial
bundle 2kX;M for every k 2 N. In particular, V may coincide with the whole VectX;M .

Theorem 11.2. Let X be a compact space and ƒ a commutative monoid. Suppose that
we associate an element ˆ./ 2 ƒ with every section  of Ell.E/ for every E 2 V . Then
the following two conditions are equivalent:

(1) ˆ satisfies properties (I0)–(I2);

(2) ˆ has the form ˆ./ D #.inda.// for some (unique) monoid homomorphism
# WK1.X/! ƒ.

Theorem 11.3. Suppose that we associate an elementˆX ./ 2K1.X/ with every section
 of Ell.E/ for every compact space X and every E 2 VectX;M . Then the following two
conditions are equivalent:

(1) the family ˆ D .ˆX / satisfies properties (I0)–(I4);

(2) ˆ has the form ˆX ./ D m � inda./ for some integer m.

Theorems 8.7 and 11.3 are stated here as statements about the category of compact
spaces and continuous maps (maps come into picture due to property (I3)). However,
these theorems still remain valid if one replaces this category by the category of finite
CW-complexes and continuous maps or by the category of smooth closed manifolds and
smooth maps. The choice of such a category comes into the proofs of these theorems only
through Proposition B.1, and we prove this proposition for each of these three categories.

2. Family index for self-adjoint unbounded operators

In order to deal with unbounded self-adjoint operators (in particular, with self-adjoint
differential operators) directly, one needs an analogue of the Atiyah–Singer theory [4]; cf.
[6, 8, 12]. This section is devoted to such an analogue adapted to our framework.
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The functorK1. LetH be a Hilbert space. Denote by B.H/ the space of bounded linear
operators H ! H with the norm topology.

The subspace of unitary operators U.H/ � B.H/ is a topological group with the
multiplication defined by composition. Let UK.H/ be the subspace of U.H/ consisting
of operators u such that 1 � u is a compact operator. It is a closed subgroup of U.H/.

The group structure on UK.H/ induces a (non-commutative) group structure on the
space C.X;UK.H// of continuous maps from a compact space X to UK.H/. Passing
to the set of connected components of C.X;UK.H// defines a group structure on the
set ŒX;UK.H/� of homotopy classes of maps from X to UK.H/. As is well known, the
resulting group ŒX;UK.H/� is naturally isomorphic to the classical K1-theory K1.X/
of X . In particular, it is commutative.

The space of regular operators. Recall that an unbounded operator A on H is a linear
operator defined on a subspace D of H and taking values in H ; the subspace D is called
the domain of A and is denoted by dom.A/. An unbounded operator A is called closed if
its graph is closed in H ˚H and densely defined if its domain is dense in H . It is called
regular if it is closed and densely defined.

Associating with a regular operator onH the orthogonal projection on its graph defines
an inclusion of the set of regular operators onH into the space Proj.H˚H/�B.H˚H/

of projections inH ˚H . Let R.H/ be the set of regular operators onH together with the
topology induced from the norm topology on Proj.H ˚H/ by this inclusion. This topol-
ogy is usually called the graph topology, or gap topology. On the subset B.H/ � R.H/

it coincides with the usual norm topology [9, Addendum, Theorem 1]. So, B.H/ is a
subspace of R.H/; it is open and dense in R.H/ [6, Proposition 4.1].

A family ¹Axºx2X of unbounded operators Ax 2R.H/ defined by a family of differ-
ential operators and boundary conditions with continuously varying coefficients leads to a
continuous map X ! R.H/. See, for example, [23, Appendix A.5]. This property plays
a fundamental role in this circle of questions.

Remark 2.1. Another useful topology on the set of regular operators is the Riesz topology,
induced by the bounded transform A 7! A.1 C A�A/�1=2 from the norm topology on
B.H/. By definition, the bounded transform takes a Riesz continuous family of regular
Fredholm operators to a norm continuous family of bounded Fredholm operators, so the
index of such a family can be defined in a classical way. The Riesz topology is well suited
for the theory of differential operators on closed manifolds, but, except for several special
cases, it is unknown whether families of regular operators on L2.E/ defined by boundary
value problems for sections of E are Riesz continuous.

Self-adjoint regular operators. Recall that the adjoint operator of an operator A 2
R.H/ is an unbounded operator A� with the domain

dom.A�/D
®
u 2H W there exists v 2H such that hAw;ui D hw;vi for all w 2 dom.A/

¯
:

For u 2 dom.A�/ such an element v is unique and A�u D v by definition. An operator A
is called self-adjoint if A� D A (in particular, dom.A�/ D dom.A/).
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Let Rsa.H/�R.H/ be the subspace of self-adjoint regular operators. ForA2Rsa.H/,
the operator A C i W dom.A/ ! H is bijective, and the inverse operator .A C i/�1 is
bounded [14, Theorem 3.16]. A self-adjoint regular operator A is said to be an operator
with compact resolvents if .AC i/�1 is a compact operator. Let CRRsa.H/ � Rsa.H/

be the subspace of such operators.

The homotopy type of CRRsa.H /. Booss-Bavnbek, Lesch, and Phillips have shown in
[6] that the space FRsa.H/ of Fredholm self-adjoint regular operators is path connected
and that the spectral flow defines the surjective homomorphism

�1
�
FRsa.H/

�
! Z:

They conjectured that FRsa.H/ is a classifying space for the functorK1, and this conjec-
ture was proven by Joachim in [12]. Along the way he proves (crucially using the results
of [8]) that CRRsa.H/ is a classifying space for K1. In our context, CRRsa.H/ appears
to be a more natural choice of classifying space than FRsa.H/.

The results of Joachim imply that for a compact space X the set of homotopy classes
ŒX;CRRsa.H/� of mapsX!CRRsa.H/ is naturally isomorphic toK1.X/. The element
of K1.X/ corresponding to a map  WX ! CRRsa.H/ deserves to be called the family
index of  . At the same time, the proofs of the basic properties of this family index depend
on a fairly advanced machinery used in [8, 12], and the needed properties are not even
stated explicitly in these papers.

By this reason, we will use another, more elementary, approach to the family index. It
is based on the Cayley transform and is a natural development of an idea from [6].

The Cayley transform. The Cayley transform of a self-adjoint regular operator A is the
unitary operator defined by the formula

�.A/ D .A � i/.AC i/�1 2 U.H/:

Proposition 2.2. The map �WRsa.H/!U.H/ is a continuous embedding. IfA has com-
pact resolvents, then �.A/ 2 UK.H/.

Proof. The first part of the proposition is proven in [6, Theorem 1.1]. The second part
follows from the identity 1 � �.A/ D 2i.AC i/�1.

Family index for maps. Recall that K1.X/ D ŒX;UK.H/�. The Cayley transform

�WCRRsa.H/! UK.H/ (2.1)

induces the map

��W
�
X;CRRsa.H/

�
!
�
X;UK.H/

�
D K1.X/: (2.2)

It is proved in [24] that (2.1) is a homotopy equivalence and thus the induced map (2.2)
is bijective for every compact space X . This motivates our definition of the family index.
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Let  WX ! CRRsa.H/ be a continuous map. We define the family index ind./ of  as
the homotopy class of the composition � ı  WX ! UK.H/ considered as an element of
K1.X/. In other terms,

ind./ D Œ� ı � 2
�
X;UK.H/

�
D K1.X/: (2.3)

One can also define in this way the family index of maps X ! FRsa.H/. But for our
purposes it is sufficient to consider only maps X ! CRRsa.H/.

Families of regular operators. More generally, one can consider X -parametrized fam-
ilies .Tx/x2X of regular operators acting on an X -parametrized family of Hilbert spaces
.Hx/x2X , i.e., on the fibers of a Hilbert bundle H ! X .

In more details, let H ! X be a Hilbert bundle, that is, a locally trivial fiber bundle
over X with a fiber H and the structure group U.H/ (we consider only Hilbert bundles
with separable fibers of infinite dimension). Recall that the group U.H/ continuously
acts on the space R.H/ by conjugations: .T; g/ 7! gTg�1. The subspace CRRsa.H/ is
invariant under this action. This allows to associate with H the fiber bundle CRRsa.H /

having CRRsa.Hx/ as the fiber over x 2 X . We equip the set � CRRsa.H / of sections
of CRRsa.H / with the compact-open topology.

By the Kuiper theorem [16], the unitary group U.H/ is contractible. Therefore, every
Hilbert bundle H is trivial and a trivialization is unique up to homotopy. Choice of a
trivialization identifies sections of CRRsa.H / with maps from X to CRRsa.H/. The
family index of a section of CRRsa.H / is defined as the index of the corresponding map
X ! CRRsa.H/. This definition does not depend on the choice of trivialization.

Connection with topological K -theory. Let again X be a compact space. The group
K1.X/ may also be defined as the direct limit limn!1ŒX;U.Cn/� with respect to the
sequence of embeddings

U.C1/ ,! U.C2/ ,! � � � ,! U.Cn/ ,! U
�
CnC1

�
,! � � � (2.4)

given by the rule u 7! u˚ 1.
Choice of an orthonormal basis in H allows to identify (2.4) with a sequence of sub-

groups of UK.H/. By results of Palais [20], the resulting inclusion j WU1 ! UK.H/

of the direct limit U1 D limn!1U.Cn/ is a homotopy equivalence. In particular, every
continuous map uWX ! UK.H/ is homotopic to a composition j ı v for some map
vWX!U1. SinceX is compact, every map fromX to U1 takes values in some U.Cn/.
Therefore, every map uWX ! UK.H/ is homotopic to a map X ! U.Cn/ � UK.H/

for sufficiently large n. Similarly, if two maps u; vWX ! U.Cn/ are homotopic as maps
to UK.H/, then they are homotopic as maps to U.Cm/ for some m > n.

The definition of addition in the group ŒX;UK.H/� given in the beginning of the
section uses the multiplicative structure of UK.H/. The standard definition of addition
in limnŒX;U.Cn/� associates with a pair of maps u; vW X ! U.Cn/ the direct sum
u ˚ vWX ! U.C2n/, so that Œu� C Œv� D Œu ˚ v� 2 K1.X/. These two definitions are
equivalent, since u˚ v and uv ˚ 1 are homotopic.
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Let now H be a Hilbert bundle overX with a fiberH . The structure group U.H/ of H

acts on CRRsa.H/ and UK.H/ by conjugations. The Cayley transform �WCRRsa.H/!

UK.H/ is equivariant with respect to this action. Therefore, � can be applied point-wise
to sections of CRRsa.H /. For a section  of CRRsa.H /, the Cayley transform uD �./

is a section of UK.H /.
Choose a trivialization J WH ! HX , where HX denotes the trivial Hilbert bundle

H � X ! X . The composition u0 D J ı u is a map from X to UK.H/ and thus is
homotopic to v0 ˚ 1 for some map v0WX ! U.Cn/ � UK.H/. The classes of u and v0

in K1.X/ coincide. Returning back to H by applying J�1, we obtain a trivial subbundle
E of H of finite rank and a unitary bundle automorphism v of E such that the sections u
and v ˚ 1 of UK.H / D UK.E ˚E

?/ are homotopic.
Conversely, let E be a (not necessarily trivial) vector bundle over X . A bundle auto-

morphism v of E defines an element Œv� 2 K1.X/ as follows. Lift E to the product
X � Œ0; 1� and identify the restrictions of E to X � ¹0º and X � ¹1º twisting the first
one by v. This construction gives a vector bundle over X � S1 which we denote by Ev .
Let ŒEv� denote the class of Ev in K0.X � S1/. The group K0.X � S1/ is naturally
isomorphic to the direct sum K0.X/˚K1.X/; denote by

˛WK0.X � S1/! K1.X/ (2.5)

the projection to the second summand. Then Œv� D ˛ŒEv� 2 K1.X/. If E is a subbundle
of a Hilbert bundle H and u D v ˚ 1 is a section of UK.H /, then Œu� D Œv� in K1.X/.

Twisting. One of the key properties of the index that we need in the paper is its multi-
plicativity with respect to twisting by vector bundles.

Let V be a finite-dimensional complex vector space equipped with a Hermitian struc-
ture. An unbounded operator A on H can be twisted by V , resulting in the unbounded
operator 1V ˝A on V ˝H with the domain dom.1V ˝A/D V ˝ dom.A/. If an isomor-
phism V ŠCd is chosen, then V ˝H can be identified with the direct sum of d copies of
H and 1V ˝A can be identified with the direct sum of d copies of A. If A 2 CRRsa.H/,
then 1V ˝ A 2 CRRsa.V ˝H/.

Let now W be a finite rank Hermitian vector bundle over X . A Hilbert bundle H over
X can be twisted byW , giving rise to another Hilbert bundleW ˝H overX with the fiber
.W ˝H /x D Wx ˝Hx over x 2 X . A section  of CRRsa.H / can be twisted by W ,
resulting in the section 1W ˝  of CRRsa.W ˝H / such that .1W ˝ /.x/D 1Wx ˝ .x/.
Since the Cayley transform is additive with respect to direct sums and equivariant with
respect to conjugation by unitaries, �.1W ˝ / D 1W ˝ �./.

Choose a subbundle E � H of finite rank and a unitary bundle automorphism v of
E such that the sections �./ and v ˚ 1 of UK.H / are homotopic. Then the sections
1W ˝ �./ and .1W ˝ v/ ˚ 1W˝E? of UK.W ˝H / are also homotopic. The vector
bundle .W ˝ E/1W˝v is isomorphic to p�W ˝ Ev , where p denotes the projection X �
S1 ! X . Since (2.5) is a homomorphism of K0.X/-modules, we get

Œ1W ˝ v� D ˛
�
.W ˝E/1W˝v

�
D ˛

�
p�ŒW � � ŒEv�

�
D ŒW � � ˛ŒEv� D ŒW � � Œv� 2 K

1.X/:
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It follows that

ind.1W ˝/D
�
1W ˝�./

�
D Œ1W ˝v�D ŒW � � Œv�D ŒW � �

�
�./

�
D ŒW � � ind./2K1.X/:

Properties of the family index. In fact, we do not need an exact definition of the family
index to prove the main results of the paper. All we need is the following properties of the
index.

Proposition 2.3. The family index has the following properties for all compact spaces X ,
Y and Hilbert bundles H , H0, H1 over X .

(I0) Vanishing. The index of a family of invertible operators vanishes.

(I1) Homotopy invariance. If  and  0 are homotopic sections of CRRsa.H /, then
ind./ D ind. 0/.

(I2) Additivity. ind.0˚ 1/D ind.0/C ind.1/ for all sections i of CRRsa.Hi /,
i D 0; 1.

(I3) Functoriality. Let f WY !X be a continuous map and  a section of CRRsa.H /.
Then ind.f �/ D f � ind./ 2 K1.Y /, where f � D  ı f is the section of
CRRsa.f �H /.

(I4) Twisting. ind.1W ˝ / D ŒW � � ind./ for every section  of CRRsa.H / and
every Hermitian vector bundle W over X , where ŒW � denotes the class of W in
K0.X/.

(I5) Normalization. For a loop  WS1! CRRsa.H/, the index of  coincides with the
spectral flow of  up to the natural isomorphism K1.S1/ Š Z.

(I6) Conjugacy invariance. The index of a section of CRRsa.H / is invariant with
respect to the conjugation by a unitary bundle automorphism of H . In other
words, ind.uu�/ D ind./ for every section  of CRRsa.H / and every section
u of U.H /.

Proof. (I1) and (I3) follow immediately from the definition of the index.
(I4) is proven in the previous subsection.
(I0) The Cayley transform takes the subspace of CRRsa.H/ consisting of invert-

ible operators to the subspace U0
K.H/ D ¹u 2 UK.H/W uC 1 is invertibleº of UK.H/.

The space U0
K.H/ is contractible, with the contraction given by the formula ht .u/ D

exp.t log.u//, where logWU.C/ n ¹�1º ! i.��; �/ � iR is the branch of the natural
logarithm. Therefore, for every section  of CRRsa.H / consisting of invertible opera-
tors, the composition � ı  is a section of U0

K.H / homotopic to the identity section, so
ind./ D Œ� ı � D 0.

(I2) Let ui D �.i /. The Cayley transform is additive with respect to direct sums, so
�.0 ˚ 1/ D �.0/˚ �.1/. Let Ei be a trivial subbundle of Hi of finite rank and let
vi be a unitary bundle automorphism of Ei such that the sections �.i / and vi ˚ 1 of
UK.Hi / are homotopic. Then �.0/˚ �.1/ and .v0 ˚ v1/˚ 1 are also homotopic, and
ind.0 ˚ 1/ D Œv0 ˚ v1� D Œv0�C Œv1� D ind.0/C ind.1/.



Self-adjoint local boundary problems on compact surfaces. II 1227

(I5) follows from [6, Proposition 2.17].
(I6) Since the unitary group of a Hilbert space is contractible, there is a homotopy

.ut /t2Œ0;1� connecting u0D 1 and u1Du. It induces the homotopy vt Dutvu�t connecting
the sections v D �./ and uvu� of UK.H /. Therefore, ind.uu�/ D Œuvu�� D Œv� D

ind./ 2 K1.X/.

3. Elliptic local boundary value problems

Throughout the paper, M is a smooth compact connected oriented surface with a non-
empty boundary @M and a fixed Riemannian metric.

Operators. Denote by Ell.E/ the set of first order formally self-adjoint elliptic differen-
tial operators acting on sections of a smooth Hermitian complex vector bundle E overM .
Recall that an operatorA is called elliptic if its (principal) symbol �A.�/ is non-degenerate
for every non-zero cotangent vector � 2 T �M . An operator A is called formally self-
adjoint if it is symmetric on the domain C10 .E/, that is, if

R
M
hAu; vids D

R
M
hu;Avids

for any smooth sections u, v of E with compact supports in M n @M . Throughout the
paper, all differential operators are supposed to have smooth (C1) coefficients.

Local boundary conditions. The differential operator A 2 Ell.E/ with the domain
C10 .E/ is a symmetric unbounded operator on the Hilbert space L2.E/ of L2-sections
ofE. This operator can be extended to a regular self-adjoint operator on L2.E/ by impos-
ing appropriate boundary conditions. We will consider only local boundary conditions.
Denote by E@ the restriction of E to the boundary @M of M . A smooth subbundle L of
E@ defines a local boundary condition for A; the corresponding unbounded operator AL
on L2.E/ has the domain

dom.AL/ D
®
u 2 H 1.E/Wuj@M is a section of L

¯
; (3.1)

where H 1.E/ denotes the first order Sobolev space (the space of sections of E which are
in L2 together with all their first derivatives). We will often identify a pair .A;L/ with the
operator AL.

To give a precise meaning to the notation in the right-hand side of (3.1), recall that
the restriction map C1.E/! C1.E@/ taking a section u to uj@M extends continuously
to the trace map � WH 1.E/! H 1=2.E@/. The smooth embedding L ,! E@ defines the
natural inclusion H 1=2.L/ ,! H 1=2.E@/. By the condition “uj@M is a section of L” in
(3.1) we mean that the trace �.u/ lies in the image of this inclusion.

Decomposition of E . To describe when a subbundle L is an “appropriate boundary con-
dition,” give first some properties of self-adjoint elliptic symbols on a surface.

Proposition 3.1 ([23, Proposition 4.1]). Let � be the symbol of an operator A 2 Ell.E/.
Then the rank of E is even and E is naturally decomposed into the direct (not necessarily
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orthogonal) sum E D EC ˚ E� of two smooth subbundles EC D EC.�/ and E� D
E�.�/ of equal rank satisfying the following conditions. For any positive oriented frame
.e1; e2/ in T �xM , x 2 M , the fibers ECx and E�x are invariant subspaces of the operator
Qx D �.e1/

�1�.e2/ 2 End.Ex/. All eigenvalues of the restriction of Qx to ECx , resp.
E�x , have a positive, resp. a negative, imaginary part. Finally, �.�/ECx D .ECx /

? and
�.�/E�x D .E

�
x /
? for any non-zero � 2 T �xM .

Self-adjoint elliptic boundary conditions. DenoteE�
@
DE�j@M andEC

@
DECj@M . Let

n be the outward conormal to @M . The conormal symbol �.n/ of A defines a symplectic
structure on the fibers of E@ given by the symplectic 2-form !x.u; v/ D hi�.n/u; vi for
u; v 2 Ex , x 2 @M . With respect to this symplectic structure, EC

@
and E�

@
are Lagrangian

subbundles of E@.
A smooth subbundle L of E@ is an elliptic boundary condition for A (or, what is one

and the same, Shapiro-Lopatinskii boundary condition) if

L \EC
@
D L \E�@ D 0 and LCEC

@
D LCE�@ D E@: (3.2)

If additionally L is a Lagrangian subbundle of E@, that is, �.n/L D L?, then L is a self-
adjoint boundary condition for A. See, e.g., [23, Sections 3 and 4] for a more detailed
description.

We denote by Ell.E/ the set of all pairs .A;L/ such that A 2 Ell.E/ andL is a smooth
Lagrangian subbundle of E@ satisfying condition (3.2).

Proposition 3.2 ([23, Proposition 4.2]). For every .A;L/ 2 Ell.E/, the unbounded oper-
ator AL is a regular self-adjoint operator on L2.E/ with compact resolvents.

4. The analytical index

For a smooth complex vector bundle V over a smooth manifold N , we denote by Gr.V /
the smooth bundle over N whose fiber over x 2 N is the complex Grassmanian Gr.Vx/.
In the same manner, we define the smooth bundle End.V / of fiber endomorphisms. We
will identify sections of Gr.V / with subbundles of V and sections of End.V / with bundle
endomorphisms of V .

The topology on Ell.E/. We equip Ell.E/ with the C 1-topology on symbols and the
C 0-topology on free terms of operators. To be more precise, notice that M is homotopy
equivalent to a wedge of circles, so the tangent bundle TM is trivial. Hence we can choose
smooth global sections e1, e2 of TM such that .e1.x/; e2.x// is an orthonormal frame of
TxM for any x 2M . Choose a smooth unitary connection r on E. Each A 2 Ell.E/ can
be written uniquely as A D a1r1 C a2r2 C a, where ri D rei and a1, a2, a are bundle
endomorphisms. Therefore, the choice of .e1; e2;r/ defines the inclusion

Ell.E/ ,! C1
�

End.E/
�2
� C1

�
End.E/

�
; a1r1 C a2r2 C a 7!

�
.a1; a2/; a

�
;
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where C1.End.E// denotes the space of smooth sections of End.E/. We equip Ell.E/
with the topology induced by the inclusion

Ell.E/ ,! C 1
�

End.E/
�2
� C 0

�
End.E/

�
and equip Ell.E/ with the topology induced by the inclusion

Ell.E/ ,! Ell.E/ � C 1
�

Gr.E@/
�

(with the product topology on the last space). Thus defined topologies on Ell.E/ and
Ell.E/ are independent of the choice of a frame .e1; e2/ and a connection r.

Proposition 4.1 ([23, Proposition 5.1]). The natural inclusion

�WEll.E/ ,! CRRsa�L2.E/�; .A;L/ 7! AL (4.1)

is continuous.

The analytical index of a map. Let  be a continuous map from a compact topological
space X to Ell.E/. We define the analytical index of  to be the index of the composition
of  with the inclusion �WEll.E/ ,! CRRsa.L2.E// and will denote it by inda./.

More generally, the index can be defined for a family of elliptic operators acting on a
family of bundles; we describe such a situation below.

Families of elliptic operators. For a smooth Hermitian vector bundle E over M , we
denote by U.E/ the group of smooth unitary bundle automorphisms of E with the C 1-
topology.

The continuous action of the topological group U.E/ on E induces the continuous
embeddingU.E/,!U.L2.E//. The action ofU.E/ on Ell.E/ given by the rule g.A;L/D
.gAg�1; gL/ is continuous and compatible with the action of U.E/ on R.L2.E//.

Denote by VectX the class of all Hermitian vector bundles over X and by Vect1M the
class of all smooth Hermitian vector bundles over M . Denote by VectX;M the class of
all locally trivial fiber bundles over X with fibers Ex 2 Vect1M and the structure group
U.Ex/. Note that in the case of disconnected X the fibers over different points of X are
not necessarily isomorphic.

Let E 2 VectX;M . We will denote by Ell.E/ the locally trivial fiber bundle over X
with the fiber Ell.Ex/ associated with E . A section of Ell.E/ is just a family of elliptic
operators acting on fibers of a family .Ex/ of vector bundles over M parametrized by
points of X . We denote by � Ell.E/ the space of sections of Ell.E/ equipped with the
compact-open topology.

The analytical index of a family. A bundle E 2 VectX;M defines the Hilbert bundle
H D H .E/ over X , whose fiber over x 2 X is Hx D L

2.Ex/. Note that the fibers Hx

over different points x are isomorphic as Hilbert spaces even if Ex are not isomorphic as
vector bundles over M .
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The natural embedding �W Ell.E/ ,! CRRsa.L2.E// is U.E/-equivariant and thus
defines the bundle embedding Ell.E/ ,! CRRsa.H /, which we still will denote by �. For
a section  of Ell.E/, �./ is a section of CRRsa.H /. The analytical index inda./ of 
is defined as the family index of �./.

Invertible operators. We denote by Ell0.E/ the subspace of Ell.E/ consisting of all
pairs .A; L/ such that the unbounded operator AL has no zero eigenvalues (since AL is
self-adjoint, this condition is equivalent to the invertibility of AL). For E 2 VectX;M , we
denote by Ell0.E/ the subbundle of Ell.E/, whose fiber over x 2 X is Ell0.Ex/.

Property (I0) of Proposition 2.3 implies that the analytical index vanishes on sections
of Ell0.E/; our proof of the index theorem will rely heavily upon this fact.

5. The topological index

The first main result of the paper is computation of the analytical index of a section  Wx 7!
.Ax ; Lx/ of Ell.E/ in terms of topological data of  over the boundary. These data are
encoded in the family F D .Fx/x2X of vector bundles over @M with Fx D F.Ax ; Lx/.

The correspondence between boundary conditions and automorphisms of E�
@

. Let
A 2 Ell.E/. Define EC D EC.A/ and E� D E�.A/ as in Proposition 3.1. Let EC

@
, resp.

E�
@

, be the restriction of EC, resp. E�, to the boundary @M .
Suppose for a moment that EC

@
and E�

@
are mutually orthogonal subbundles of E@

(this holds, in particular, for Dirac-type operators). With every subbundle L � E@ satisfy-
ing condition (3.2), we can associate the projection of E�

@
onto EC

@
along L. Composing

this projection with �i�.n/WEC
@
! .EC

@
/? DE�

@
, we obtain the bundle automorphism T

of E�
@

. Conversely, with every bundle automorphism T of E�
@

we associate the subbundle
L of E@ given by the formula

L D
®
uC ˚ u� 2 EC

@
˚E�@ D E@W i�.n/u

C
D T u�

¯
: (5.1)

The automorphism T is self-adjoint if and only ifL is Lagrangian, so we obtain a bijection
between the set of all self-adjoint elliptic local boundary conditions for A and the set of
all self-adjoint bundle automorphisms of E�

@
.

This simple trick does not work in the general case, where EC
@

and E�
@

are not mutu-
ally orthogonal. However, it can be modified to obtain such a bijection for the general
case as well, though in a bit more complicated manner. Namely, we associate with L an
automorphisms T of E�

@
making the following diagram commutative (see [23, Section 4]

for details):

L EC
@

.EC
@
/?

E�
@

E�
@

P�

PC i�.n/

P�ort

T

.P�/�
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Proposition 5.1 ([23, Proposition 4.3]). Let A 2 Ell.E/. Denote by PC the projection of
E@ onto EC

@
along E�

@
and by P� D 1 � PC the projection of E@ onto E�

@
along EC

@
.

Then the following statements hold.

(1) There is a one-to-one correspondence between smooth subbundles L of E@ sat-
isfying condition (3.2) and smooth bundle automorphisms T of E�

@
. This corre-

spondence is given by the formula

L D KerPT with PT D PC
�
1C i�.n/�1TP�

�
I (5.2)

here PT is the projection of E@ onto EC
@

along L.

(2) For L and T as above, L is Lagrangian if and only if T is self-adjoint.

If EC
@

and E�
@

are mutually orthogonal, then (5.2) is equivalent to (5.1).

It is shown in [23, Proposition 5.3] that the correspondence .A; L/ 7! .A; T / is a
homeomorphism. This allows us to move freely from .A; L/ to .A; T / and back; we will
use it further without special mention in constructions of homotopies.

Definition of F.A;L/. The map F from Ell.E/ to the space of smooth subbundles of
E@ is defined as follows. Let .A;L/ 2 Ell.E/ and let T be the self-adjoint automorphism
of E�

@
given by formula (5.2). We define Fx as the invariant subspace of Tx spanned

by the generalized eigenspaces of Tx corresponding to negative eigenvalues. Subspaces
Fx of E�x smoothly depend on x 2 @M and therefore are fibers of a smooth subbundle
F DF.A;L/ ofE�

@
. Being a subbundle ofE�

@
, F.A;L/ is also a smooth subbundle ofE@.

Moreover, the map F WEll.E/! C 1.Gr.E@// is continuous; see [23, Proposition 5.3].

Subbundles, restrictions, and forgetting of smooth structure. For V 2 VectX;M , we
denote by V@ 2 VectX;@M the locally trivial bundle over X whose fiber over x 2 X is the
restriction of Vx to @M .

Let N be a smooth manifold (in our case it will be either M or @M ), and let V 2

VectX;N . We say that W � V is a subbundle of V if W 2 VectX;N and Wx is a smooth
subbundle of Vx for every x 2 X .

We will denote by hVi the vector bundle over X �N whose restriction to ¹xº �N is
the fiber Vx with forgotten smooth structure.

Definition of F ./. Let  be a section of Ell.E/, E 2 VectX;M . By [23, Propositions 5.2
and 5.3], E�.Ax/ and F.Ax ; Lx/ � E�.Ax/ continuously depend on x. Hence they
define the subbundle E�./ of E whose fiber over x is E�.Ax/ and the subbundle F D

F ./ of E�
@
./ whose fiber over x is F.Ax ; Lx/.

The homomorphism Indt. The boundary @M is a disjoint union of circles, so the natural
homomorphism

K0.X/˝K0.@M/˚K1.X/˝K1.@M/! K0.X � @M/
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is an isomorphism. Denote by ˛@ the projection of K0.X � @M/ on the second summand
K1.X/˝K1.@M/ of this direct sum. The orientation ofM induces an orientation of @M
and thus defines the identification of K1.@M/ D

Lm
jD1K

1.@Mj / with Zm, where @Mj ,
j D 1; : : : ;m, are the boundary components. Denote by ı the homomorphismK1.@M/D

Zm!Z given by the formula .a1; : : : ; am/ 7!
Pm
jD1 aj . Equivalently, ı is the connecting

homomorphism of the exact sequence

K1.M/
i�

��! K1.@M/
ı
�! K0.M; @M/ D Z;

where i denotes the inclusion @M ,! M and the identification of K0.M; @M/ with Z is
given by the orientation of M .

We define the topological index homomorphism

IndtWK
0.X � @M/! K1.X/

to be the composition

K0.X � @M/
˛@
��! K1.X/˝K1.@M/

Id˝ı
����! K1.X/˝ Z D K1.X/: (5.3)

The topological index. We define the topological index of a section  of Ell.E/ by the
formula

indt./ D Indt
�
F ./

�
; (5.4)

where ŒF � denotes the class of hF i in K0.X � @M/.

6. Properties of the topological index

Properties of the homomorphism Indt. Denote by G@ the image of the homomorphism
K0.X �M/! K0.X � @M/ induced by the embedding of X � @M to X �M .

Denote by G� the image of the natural homomorphism

K0.X/˝K0.@M/! K0.X � @M/:

Recall that this homomorphism takes the tensor product ŒW �˝ ŒV � of the classes of vector
bundlesW overX and V over @M to the class of their external tensor product ŒW � V � 2
K0.X � @M/.

Denote by G the subgroup of K0.X � @M/ spanned by G@ and G�.

Proposition 6.1. The homomorphism Indt is surjective with the kernel G. In other words,
the following sequence is exact:

0! G ! K0.X � @M/
Indt
���! K1.X/! 0:
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Proof. The groups K�.M/ and K�.@M/ are free of torsion, so the first two rows of the
following commutative diagram are short exact sequences:

0 K0.X/˝K0.M/ K0.X �M/ K1.X/˝K1.M/ 0

0 K0.X/˝K0.@M/ K0.X � @M/ K1.X/˝K1.@M/ 0

K1.X/˝ Z

0

Id˝i�

˛

.Id�i/� Id˝i�

˛@

Indt
Id˝ı

Taking tensor product of the exact sequence

K1.M/
i�

��! K1.@M/
ı
�! K0.M; @M/ D Z! 0

by K1.X/, we see that the right column of this diagram is also exact.
It follows from the diagram that Indt vanishes on both G� and G@. Both ˛@ and Id˝ı

are surjective, so Indt is also surjective. Finally,

K0.X � @M/=G D Im.˛@/= Im
�
˛@ ı .Id�i/�

�
D
�
K1.X/˝K1.@M/

�
=
�
K1.X/˝K1.M/

�
D K1.X/˝ Z;

and the quotient map is given by the composition .Id˝ı/ ı ˛@ D Indt. This completes the
proof of the proposition.

Special subspaces. The following two subspaces of Ell.E/ will play a special role:

• EllC.E/ consists of all .A; T / 2 Ell.E/ with positive definite T ;

• Ell�.E/ consists of all .A; T / 2 Ell.E/ with negative definite T .

Proposition 6.2. Let  be a section of Ell.E/. Then the following statements hold:

• F ./ D 0 if and only if  is a section of EllC.E/;

• F ./ D E�
@
./ if and only if  is a section of Ell�.E/.

Proof. This follows immediately from the definition of F .

Denote by �˙ Ell.E/ the subspace of � Ell.E/ consisting of sections  that can be
written in the form

 D  0 ˚  00 with  0 2 � EllC.E 0/ and  00 2 � Ell�.E 00/ (6.1)

for some orthogonal decomposition E Š E 0 ˚ E 00.

Proposition 6.3. The class of F ./ in K0.X � @M/ lies in G@ for every  2 �˙ Ell.E/.

Proof. For  defined by (6.1), F ./ D F . 00/ D E�
@
. 00/, so ŒF ./� 2 G@.
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Twisting. A bundle E 2 VectX;M can be twisted by W 2 VectX , giving rise to another
bundle from VectX;M , which we denote byW ˝ E . IfW is a subbundle of a trivial vector
bundle kX , then W ˝ E is a subbundle of the direct sum of k copies of E , whose fiber
over x 2 X is Wx ˝ Ex .

A section  of Ell.E/ can be twisted by W , resulting in the section 1W ˝  of
Ell.W ˝ E/. This construction induces the map 1W˝WEll.E/! Ell.W ˝ E/.

For W 2 VectX and E 2 Vect1M we denote by W � E the tensor product W ˝ E ,
where E is the trivial bundle over X with the fiber E. For .A; L/ 2 Ell.E/ we denote by
1W � .A; L/ the section 1W ˝  of W � E, where  WX ! Ell.E/ is the constant map
x 7! .A;L/.

Denote by ��Ell.E/ the subspace of � Ell.E/ consisting of sections  having the form

 D
M
i

1Wi � .Ai ; Li / (6.2)

for some .Ai ; Li / 2 Ell.Ei /, Ei 2 Vect1M , and Wi 2 VectX with respect to some decom-
position of E into the orthogonal direct sum

L
i Wi �Ei .

Proposition 6.4. The class of F ./ inK0.X � @M/ lies in G� for every  2 �� Ell.E/.

Proof. For  defined by formula (6.2), we have that�
F ./

�
D

X
i

�
Wi � F.Ai ; Li /

�
2 G�:

Properties of the topological index. A continuous map f W Y ! X induces the map
f �

E
W � Ell.E/! � Ell.f �E/ for every E 2 VectX;M . On the other hand, f induces the

homomorphism f �WK1.X/ ! K1.Y /. We will use this functoriality to state property
(T3) in the following proposition.

Proposition 6.5. The topological index has the following properties for every E; E 0 2

VectX;M .

(T0) The topological index vanishes on �˙ Ell.E/ and �� Ell.E/.

(T1) indt./ D indt.
0/ if  and  0 are homotopic sections of Ell.E/.

(T2) indt. ˚ 
0/D indt./C indt.

0/ 2 K0.X/ for every section  of Ell.E/ and  0

of Ell.E 0/.

(T3) indt.f
�/D f � indt./2K

1.Y / for any section  of Ell.E/ and any continuous
map f WY ! X .

(T4) indt.1W ˝/DŒW � � indt./ for every section  of Ell.E/ and every W 2VectX .

(T5) For a loop  WS1 ! Ell.E/,

indt./ D c1
�
F ./

�
Œ@M � S1� (6.3)

up to the natural identificationK1.S1/Š Z. Here c1.F / is the first Chern class
of F , Œ@M � S1� is the fundamental class of @M � S1, and @M is equipped
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with an orientation in such a way that the pair (outward normal to @M , positive
tangent vector to @M ) has a positive orientation.

Vanishing of indt on �� Ell.E/ is a corollary of (T3) and (T4); however, we prefer to
give this property separately in (T0) for a reason which will be clear later.

Proof. (T0) If  2�˙ Ell.E/, then ŒF ./�2G@ by Proposition 6.3. If  2�� Ell.E/, then
ŒF ./� 2 G� by Proposition 6.4. In both cases, Proposition 6.1 implies that indt./ D 0.

(T1) If  and  0 are homotopic sections of Ell.E/, then F ./ and F . 0/ are homotopic
subbundles of E@. Thus the subbundles hF ./i and hF . 0/i of hE@i are homotopic, so
they are isomorphic as vector bundles and their classes in K0.X � @M/ coincide. This
implies that indt./ D indt.

0/.
(T2) F .˚ 0/DF ./˚F . 0/, so ŒF .˚ 0/�D ŒF ./�CŒF . 0/� in K0.X � @M/.

Applying the homomorphism Indt, we obtain the equality indt.˚
0/D indt./Cindt.

0/

in K1.X/.
(T3) F .f �/ D f �F ./, so ŒF .f �/� D f �ŒF ./� 2 K0.Y � @M/. Since the

homomorphism IndtWK
0.X � @M/ ! K1.X/ is natural by X , we have indt.f

�/ D

f � indt./.
(T4) hF .1W ˝ /i DW ˝ hF ./i, so ŒF .1W ˝ /�D ŒW � � ŒF ./� 2K0.X � @M/.

Both ˛@WK0.X � @M/!K1.X/˝K1.@M/ and Id ı̋WK1.X/˝K1.@M/!K1.X/˝Z
are homomorphisms of K0.X/-modules, so their composition IndtWK

0.X � @M/ !

K1.X/ is also a homomorphism of K0.X/-modules. Combining all this together, we get
indt.1W ˝ / D ŒW � � indt./.

(T5) It is easy to check that, forXDS1 and up to the natural identificationK1.S1/ŠZ,
Indt ŒV � D c1.V /Œ@M � S

1� for every vector bundle V over @M � S1. This implies for-
mula (6.3) and completes the proof of the proposition.

7. Dirac operators

For k 2 N, we denote by kM the trivial vector bundle over M of rank k with the stan-
dard Hermitian structure. Denote by kX;M 2 VectX;M the trivial bundle over X with the
fiber kM .

Odd Dirac operators. Recall that A 2 Ell.E/ is called a Dirac operator if �A.�/2 D
k�k2 IdE for all � 2 T �M . We denote by Dir.E/ the subspace of Ell.E/ consisting of all
odd Dirac operators, that is, operators having the form

A D

�
0 A�

AC 0

�
(7.1)

with respect to the chiral decomposition E D EC.A/˚ E�.A/. Denote by Dir.E/ the
subspace of Ell.E/ consisting of all pairs .A;L/ such that A 2 Dir.E/. The following two
subspaces of Dir.E/ will play a special role:

DirC.E/ D Dir.E/ \ EllC.E/; Dir�.E/ D Dir.E/ \ Ell�.E/:
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We denote by Dir.E/ the subbundle of Ell.E/, whose fiber over x 2 X is Dir.Ex/. Simi-
larly, denote by DirC.E/ and Dir�.E/ the subbundles of Dir.E/, whose fibers over x 2 X
are DirC.Ex/ and Dir�.Ex/, respectively.

Realization of bundles. We will need the following result in our proofs.

Proposition 7.1. Let V 2 VectX;M and let W be a subbundle of V@. Then there is a
section  of Dir.V ˚ V/ such that E�./ D V ˚ 0 and F ./ D W . In particular, every
vector bundle over X � @M is isomorphic to hF ./i for some  WX ! Dir.2kM /, k 2 N.

Proof. Let us choose smooth global sections e1, e2 of TM such that .e1.y/; e2.y// is a
positive oriented frame in TyM for every y 2 M . Choose a smooth unitary connection
rx on each fiber Vx in such a way that rx continuously depends on x with respect to
the C 1-topology on the space of smooth connections on Vx . (Such a connection can be
constructed using a partition of unity subordinated to a finite open covering of X trivi-
alizing V .) Then Dx D �irxe1 C r

x
e2

is the Dirac operator acting on sections of Vx and
depending continuously on x. Let Dt

x be the operator formally adjoint to Dx . Since the
operation of taking a formally adjoint operator is a continuous transformation of Ell.E/,
Dt
x is continuous by x. Thus the operator Ax D

�
0 Dt

x
Dx 0

�
is an odd self-adjoint Dirac

operator acting on sections of Vx ˚ Vx and depending continuously on x.
Let Tx be the self-adjoint automorphism of E�.Ax/ D V@;x ˚ 0 equal to minus the

identity on Wx and to the identity on the orthogonal complement of Wx in Vx . Let Lx
be the subbundle of Vx ˚ Vx corresponding to Tx by formula (5.1). Then .Ax ; Lx/ 2
Dir.Vx ˚Vx/ andF.Ax ;Lx/DWx . The section  Wx 7! .Ax ;Lx/ of Dir.V ˚V/ satisfies
conditions E�./ D V and F ./ D W , which proves the first claim of the proposition.

Suppose now that we are given an isomorphism class of a vector bundle overX � @M .
We can realize it as a subbundle of a trivial vector bundle kX�@M for some k 2 N. By
Proposition A.2 from the appendix, this subbundle is homotopic (and thus isomorphic) to
W D hWi for some subbundle W of kX;@M . Applying the conclusion above to V D kX;M
and W , we obtain a section  of Dir.V ˚ V/ such that W D F ./. Since V ˚ V D

2kX;M is trivial,  is just a map from X to Dir.2kM /. This completes the proof of the
proposition.

Image in K0.X � @M/. Denote by �˙ Dir.E/ the subspace of � Dir.E/ consisting of
sections  that can be written in the form  D  0 ˚  00 with  0 2 � DirC.E 0/ and  00 2
� Dir�.E 00/ for some orthogonal decomposition E Š E 0 ˚ E 00.

Proposition 7.2. The subgroup G@ of K0.X � @M/ is generated by the classes ŒF ./�
with  running over �˙ Dir.2kX;M / and k running over N.

Proof. The subgroupG@ is generated by the images j �ŒV �with V 2VectX�M . By Propo-
sition A.2, every such V is isomorphic to hVi for some subbundle V of kX;M for some
(sufficiently large) k. Let V 0 be the subbundle of kX;M whose fibers V 0x are the orthogonal
complements of fibers Vx in kM . By Proposition 7.1, there are sections  2 �Dir.V ˚V/
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and  0 2 �Dir.V 0˚V 0/ such that E�./DV , F ./DV@, E�. 0/DV 0, and F . 0/D 0.
By Proposition 6.2,  2�Dir�.V ˚V/ and  02�DirC.V 0˚V 0/. Identifying .V ˚V/˚

.V 0 ˚ V 0/ with .V ˚ V 0/˚ .V ˚ V 0/ D 2kX;M , we identify  ˚  0 with an element of
�˙Dir.2kX;M /. By construction, F . ˚  0/D V@ ˚ 0, so j �ŒV �D ŒV@�D ŒF . ˚  0/�.
This completes the proof of the proposition.

Tensor product. Twisting respects Dirac operators and their grading, so its restriction to
Dir.E/ defines the map 1W˝WDir.E/! Dir.W ˝ E/.

Denote by �� Dir.E/ the subspace of �� Ell.E/ consisting of sections  having the
form  D

L
i 1Wi � .Ai ; Li / for some .Ai ;Li / 2 Dir.Ei /, Ei 2 Vect1M , andWi 2 VectX

with respect to some decomposition of E into the orthogonal direct sum
L
i Wi �Ei .

Proposition 7.3. The subgroup G� of K0.X � @M/ is generated by the classes ŒF ./�
with  running over �� Dir.2kX;M / and k running over N.

Proof. The subgroup G� is generated by the classes of external tensor products ŒW �V �
with W 2 VectX and V 2 Vect1

@M
. Choose an embedding of W to a trivial vector bun-

dle nX over X , and let W 0 be the orthogonal complement of W in nX . By Proposition
7.1 applied to a one-point base space, we can realize V as F.A; L/ for some .A; L/ 2
Dir.2kM /, k 2 N. Choose arbitrary .A0; L0/ 2 DirC.2kM /. Then  D 1W � .A; L/ is
a section of Dir.W � 2kM / and  0 D 1W 0 � .A0; L0/ is a section of DirC.W 0 � 2kM /.
Identifying W � 2kM ˚W 0 � 2kM with .W ˚W 0/� 2kM D 2nkX;M , we obtain the
section  ˚  0 2 ��Dir.2nkX;M /with hF . ˚  0/i D .W � V /˚ .W 0� 0/DW � V .
This completes the proof of the proposition.

Surjectivity of the topological index.

Proposition 7.4. For every � 2K1.X/, there are k 2N and  WX ! Dir.2kM / such that
� D indt./.

Proof. By Proposition 6.1, the homomorphism IndtWK
0.X � @M/!K1.X/ is surjective,

so � D Indt � for some � 2 K0.X � @M/. We can realize � as ŒV � � ŒnX�@M � for some
vector bundle V over X � @M and n 2N. By Proposition 7.1, V is isomorphic to hF ./i
for some  WX ! Dir.2kM /. The trivial vector bundle nX�@M is the restriction of nX�M
to X � @M , so ŒnX�@M � 2 G@ � Ker Indt. Combining all this, we obtain

indt./ D Indt ŒV � D Indt ŒV � � Indt ŒnX�@M � D Indt � D �:

This completes the proof of the proposition.

8. Universality of the topological index

Homotopies that fix operators. In this subsection, we will deal with those deformations
of sections of Ell.E/ that fix an operator family .Ax/ and change only boundary conditions
.Lx/.
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Let us fix an odd Dirac operator D 2 Dir.2M /. Denote by ıC, resp. ı�, the constant
map fromX to .D; Id/ 2DirC.2M /, resp. .D;� Id/ 2Dir�.2M /. We denote by kıC, resp.
kı�, the direct sum of k copies of ıC, resp. ı�.

Proposition 8.1. Let  Wx 7! .Ax ;Lx/ and  0Wx 7! .Ax ;L
0
x/ be sections of Ell.E/ differ-

ing only by boundary conditions. Then the following statements hold.

(1) If hF ./i and hF . 0/i are homotopic subbundles of hE�
@
./i, then  and  0 are

homotopic sections of Ell.E/.

(2) If hF ./i and hF . 0/i are isomorphic as vector bundles, then the sections ˚kıC

and  0 ˚ kıC of Ell.E ˚ 2kX;M / are homotopic for some k 2 N.

(3) If ŒF ./� D ŒF . 0/� 2 K0.X � @M/, then the sections  ˚ lı� ˚ kıC and
 0 ˚ lı� ˚ kıC of Ell.E ˚ 2lX;M ˚ 2kX;M / are homotopic for some l; k 2 N.

Proof. Recall that E�
@
./ depends only on operators, so E�

@
./ D E�

@
. 0/; denote it by

E�
@

. Denote F D F ./ and F 0 D F . 0/.
(1) Let AWx 7!Ax be the corresponding section of Ell.E/. Denote by L.A/�� Ell.E/

the space of all lifts of A to sections of Ell.E/. Denote by Lu.A/ the subspace of L.A/

consisting of sections .Ax ; Tx/ such that the self-adjoint automorphism Tx is unitary for
every x 2 X . The subspace Lu.A/ is a strong deformation retract of L.A/, with the
retraction given by the formula hs.Ax ; Tx/ D .Ax ; .1 � s C sjTxj�1/Tx/. Since hs pre-
serves F , it is sufficient to prove the first claim of the proposition for ;  0 2 Lu.A/.

Suppose that hF i and hF 0i are homotopic subbundles of hE�
@
i. Then F and F 0 are

homotopic subbundles of E�
@

by Proposition A.3 from the appendix. An element  2
Lu.A/ is uniquely defined by the subbundle F ./ of E�

@
./. Hence a homotopy between

F and F 0 defines the path in Lu.A/ � � Ell.E/ connecting  with  0.
(2) If hF i and hF 0i are isomorphic as vector bundles, then they are homotopic as sub-

bundles of hE�
@
i ˚ kX�@M for k large enough. Thus the sections  ˚ kıC and  0 ˚ kıC

of Ell.E ˚ 2kX;M / satisfy conditions of the first claim of the proposition and therefore
are homotopic.

(3) The equality ŒF � D ŒF 0� implies that the vector bundles hF i and hF 0i are stably
isomorphic, that is, hF i ˚ lX�@M D hF . ˚ lı�/i and hF 0i ˚ lX�@M D hF . 0 ˚ lı�/i
are isomorphic for some integer l . It remains to apply the second part of the proposition
to the sections  ˚ lı� and  0 ˚ lı� of Ell.E ˚ 2lX;M /.

The case of different operators. For a section  W x 7! .Ax ; Tx/ of Ell.E/ we denote by
C the section of EllC.E/ given by the rule x 7! .Ax ; Id/.

Proposition 8.2. Let i be a section of Ell.Ei /, E1; E2 2 VectX;M , i D 1; 2. Suppose
that ŒF .1/� D ŒF .2/� 2 K0.X � @M/. Then the sections 1 ˚ C2 ˚ lı

� ˚ kıC and
C1 ˚ 2 ˚ lı

� ˚ kıC of Ell.E1 ˚ E2 ˚ 2lX;M ˚ 2kX;M / are homotopic for l , k large
enough.
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Proof. The sections  01 D 1 ˚ 
C
2 and  02 D C1 ˚ 2 of Ell.E1 ˚ E2/ differ only by

boundary conditions and thus fall within the framework of Proposition 8.1. By Proposition
6.2, F . 0i / D F .i /. It remains to apply the third part of Proposition 8.1 to  01 and  02.

Commutativity. The direct sum of operators is a non-commutative operation. However,
it is commutative up to homotopy, as the following proposition shows.

Proposition 8.3. Let f WX ! Ell.2kM /, gWX ! Ell.2lM / be continuous maps. Then
f ˚ g and g ˚ f are homotopic as maps from X to Ell..2k C 2l/M /.

Proof. Let J1 be the unitary automorphism of C2kC2l given by the formula u ˚ v 7!
v ˚ u for u 2 C2k , v 2 C2l . Let us choose a path J W Œ0; 1�! U.C2kC2l / connecting
J0 D Id with J1. Denote by zJs the unitary bundle automorphism of .2k C 2l/M induced
by Js . Then the map hW Œ0; 1� � X ! Ell..2k C 2l/M / defined by the formula hs.x/ D
zJs.f .x/˚ g.x// gives a desired homotopy between f ˚ g and g ˚ f .

Universality of the topological index. Now we are ready to state our first universality
result.

Theorem 8.4. Let i be a section of Ell.Ei /, E1;E2 2 VectX;M , i D 1; 2. Then the fol-
lowing two conditions are equivalent:

(1) indt.1/ D indt.2/;

(2) there are k; l 2 N and sections ˇ˙i 2 �
˙Dir.2kX;M /, ˇ�i 2 �

�Dir.2lX;M / such
that

1 ˚ 
C
2 ˚ ˇ

˙
1 ˚ ˇ

�
1 and C1 ˚ 2 ˚ ˇ

˙
2 ˚ ˇ

�
2 (8.1)

are homotopic sections of Ell.E1 ˚ E2 ˚ 2kX;M ˚ 2lX;M /.

Proof. (2))(1) follows immediately from properties (T0)–(T2) of the topological index.
Let us prove (1))(2). Suppose that indt.1/ D indt.2/. Then Indt.�1 � �2/ D 0 for

�i D ŒF .i /� 2 K
0.X � @M/. Proposition 6.1 implies that �1 � �2 D �@ C �� for some

�@ 2 G@ and �� 2 G�.
By Proposition 7.2, �@ D ŒF .ˇ@2/�� ŒF .ˇ

@
1/� for some ˇ@1; ˇ

@
2 2 �

˙Dir.2nX;M / (one
can equate the ranks of corresponding trivial bundles by adding several copies of ıC if
needed). Similarly, by Proposition 7.3 �� D ŒF .ˇ�2 /� � ŒF .ˇ

�
1 /� for some ˇ�1 ; ˇ

�
2 2

�� Dir.2lX;M / (one can equate the ranks of corresponding trivial bundles by increasing
the ranks of ambient trivial bundles for V and W in construction of ˇ�i if needed; see the
proof of Proposition 7.3). Combining all this, we obtain�

F
�
1 ˚ ˇ

�
1 ˚ ˇ

@
1

��
D
�
F
�
2 ˚ ˇ

�
2 ˚ ˇ

@
2

��
:

Adding sections of EllC.Ei ˚ 2lX;M ˚ 2nX;M / to the sections on both sides of this equal-
ity, we obtain�

F
�
1˚

C
2 ˚

�
ˇ�1 ˚ˇ

@
1

�
˚
�
ˇ�2 ˚ˇ

@
2

�C��
D
�
F
�
C1 ˚2˚

�
ˇ�1 ˚ˇ

@
1

�C
˚
�
ˇ�2 ˚ˇ

@
2

���
:
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The third part of Proposition 8.1 implies that

1 ˚ 
C
2 ˚ .ˇ

�
1 ˚ ˇ

@
1/˚ .ˇ

�
2 ˚ ˇ

@
2/
C
˚ sı� ˚ tıC

and
C1 ˚ 2 ˚ .ˇ

�
1 ˚ ˇ

@
1/
C
˚ .ˇ�2 ˚ ˇ

@
2/˚ sı

�
˚ tıC

are homotopic for some integers s, t . Using Proposition 8.3 to rearrange terms, taking
k D 2nC l C s C t , and defining ˇ˙i 2 �

˙Dir.2kX;M / by the formula

ˇ˙i D ˇ
@
i ˚ .ˇ

@
j ˚ ˇ

�
j /
C
˚ sı� ˚ tıC for ¹i; j º D ¹1; 2º;

we obtain the second condition of the theorem.

Universality for families. Our next goal is to describe invariants of families of elliptic
operators satisfying the same properties as the topological index. Let ˆ./ be such an
invariant. We start with the first three properties (T0)–(T2) of the topological index:

(E˙) ˆ vanishes on �˙ Ell.E/;

(E�) ˆ vanishes on �� Ell.E/;

(E1) ˆ./ D ˆ. 0/ if  and  0 are homotopic sections of Ell.E/;

(E2) ˆ. ˚  0/ D ˆ./Cˆ. 0/ for every section  of Ell.E/ and  0 of Ell.E 0/.

Let V be a subclass of VectX;M satisfying the following condition:

V is closed under direct sums
and contains the trivial bundle 2kX;M for every k 2 N: (8.2)

In particular, V can coincide with the whole VectX;M .

Theorem 8.5. Let X be a compact space and ƒ a commutative monoid. Suppose that we
associate an element ˆ./ 2 ƒ with every section  of Ell.E/ for every E 2 V . Then the
following two conditions are equivalent:

(1) ˆ satisfies properties (E˙), (E�), (E1), (E2) for all E;E 0 2 V ;

(2) ˆ has the form ˆ./ D #.indt.// for some (unique) monoid homomorphism
# WK1.X/! ƒ.

Remark 8.6. In the case V DVectX;M , the property (E˙) in the statement of this theorem
can be replaced by the property (T˙) from Section 1, namely vanishing ofˆ on sections of
EllC.E/ and Ell�.E/. Indeed, a section from �˙ Ell.E/ is a sum of sections of EllC.E 0/
and Ell�.E 00/ for some E 0 and E 00, so (T˙) together with (E2) implies (E˙). Similarly,
(E�) can be replaced by the property (T�) from Section 1, namely vanishing of ˆ on
sections having the form 1W � .A;L/. Therefore, for V D VectX;M , Theorem 8.5 takes
the form of Theorem 1.1.

Proof. (2))(1) follows immediately from properties (T0)–(T2) of the topological index.
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Let us prove (1))(2). We show first that

indt.1/ D indt.2/ implies ˆ.1/ D ˆ.2/ (8.3)

for all i 2 � Ell.Ei /, E1; E2 2 V . Indeed, if indt.1/ D indt.2/, then by Theorem 8.4
the sections (8.1) are homotopic for some k; l 2 N, ˇ˙i 2 �

˙ Dir.2kX;M /, and ˇ�i 2
�� Dir.2lX;M /. Properties (E1) and (E2) then imply that

ˆ.1/Cˆ.
C
2 /Cˆ.ˇ

˙
1 /Cˆ.ˇ

�
1 / D ˆ.2/Cˆ.

C
1 /Cˆ.ˇ

˙
2 /Cˆ.ˇ

�
2 /:

(E˙) implies that ˆ.Ci / D ˆ.ˇ
˙
i / D 0, while (E�) implies that ˆ.ˇ�i / D 0. Thus we

obtain ˆ.1/ D ˆ.2/, which proves (8.3).
Next we define the homomorphism # WK1.X/! ƒ. Let � be an arbitrary element of

K1.X/. By Proposition 7.4, there exist k 2 N and a section ˇ of Dir.2kX;M / such that
�D indt.ˇ/. In order to satisfy condition (2) of the theorem, we have to put #.�/Dˆ.ˇ/.
The correctness of this definition follows from (8.3).

Let now  be an arbitrary section of Ell.E/ and � D indt./. By the definition above,
#.�/Dˆ.ˇ/ for some ˇ such that�Dindt.ˇ/. Then indt./D�Dindt.ˇ/, so (8.3) implies
that ˆ./ D ˆ.ˇ/ D #.�/ D #.indt.//. This completes the proof of the theorem.

Universality for families: functoriality and twisting. Our next goal is to describe fam-
ilies ˆ D .ˆX / of K1.X/-valued invariants satisfying two more properties in addition to
(E˙), (E�), (E1), (E2):

(E3) ˆY .f �E / D f
�ˆX ./ 2 K

1.Y / for every section  of Ell.E/ and every con-
tinuous map f WY ! X ;

(E4) ˆX .1W ˝ /D ŒW � �ˆX ./ for every section  of Ell.E/ and everyW 2VectX .

Theorem 8.7. Suppose that we associate an element ˆX ./ 2 K1.X/ with every section
 of Ell.E/ for every compact topological space X and every E 2 VectX;M . Then the
following two conditions are equivalent:

(1) the family ˆ D .ˆX / satisfies properties (E˙), (E�), (E1)–(E4) for all E; E 0 2

VectX;M ;

(2) there is an integer m such that ˆ has the form ˆX D m � indt.

Remark 8.8. As well as in Remark 8.6, the property (E˙) in the statement of this theorem
can be replaced by (T˙) and (E�) can be replaced by (T�).

Proof. (2))(1) follows immediately from properties (T0)–(T4) of the topological index.
Let us prove (1))(2). By Theorem 8.5, for every compact space X there is a homo-

morphism
#X WK

1.X/! K1.X/ such that ˆX ./ D #X
�

indt./
�

(8.4)

for every E 2 VectX;M and every section  of Ell.E/. Moreover, such a homomorphism
#X is unique.
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Let f W Y ! X be a continuous map and � 2 K1.X/. By property (T5) of the topo-
logical index � D indt./ for some  2 � Ell.E/, E 2 VectX;M . By (T3) indt.f

�
E
/ D

f � indt./ and by (E3) ˆY .f �E / D f
�ˆX ./. Substituting this to (8.4), we obtain

#Y .f
��/ D #Y

�
f � indt./

�
D #Y

�
indt.f

�
E /

�
D ˆY .f

�
E /

D f �ˆX ./ D f
�#X indt./ D f

�#X .�/:

Thus the family .#X / defines a natural transformation # of the functor X 7! K1.X/ to
itself.

Similarly, (T4) and (E4) imply that # respects the K0. � /-module structure on K1. � /;
that is, #X .��/D �#X .�/ for every compact spaceX and every � 2K0.X/, � 2K1.X/.

We show in Proposition B.1 of Appendix B that the only natural transformations sat-
isfying this property are multiplications by an integer. Hence, there is an integer m such
that #X .�/ D m� for every X and every � 2 K1.X/. Substituting this identity to (8.4),
we obtain the second condition of the theorem.

The semigroup of elliptic operators. The disjoint union

EllM WD
a
k2N

Ell.2kM /

has the natural structure of a (non-commutative) graded topological semigroup, with the
grading by k and the semigroup operation given by the direct sum of operators and bound-
ary conditions. We denote by EllX;M the trivial bundle over X with the fiber EllM and by

� EllX;M D C.X;EllM /

the topological semigroup of its sections, with the compact-open topology.
We will use the following two special subsemigroups of � EllX;M :

�˙ EllX;M D
a
k2N

�˙ Ell.2kX;M / and �� EllX;M D
a
k2N

�� Ell.2kX;M /:

The subsemigroup of � EllX;M spanned by �˙ EllX;M and �� EllX;M will play a special
role; we denote it by �˙� EllX;M .

The homotopy classes. The set �0.� EllX;M / D ŒX;EllM � of homotopy classes of maps
from X to EllM has the induced semigroup structure.

Proposition 8.9. The semigroup ŒX;EllM � is commutative for any topological space X .

Proof. Let f; gWX ! EllM be continuous maps. For every k; l 2 N the inverse images
f �1.Ell.2kM // and g�1.Ell.2lM // are open and closed in X , so their intersection Xk;l is
also open and closed. By Proposition 8.3, the restrictions of f ˚ g and g˚ f to Xk;l are
homotopic as maps from Xk;l to Ell..2k C 2l/M / (the proof of Proposition 8.3 does not
use compactness of X and works as well for arbitrary topological space). Since X is the
disjoint union of Xk;l , this implies that f ˚ g and g ˚ f are homotopic as maps from X

to EllM . Therefore, the classes of f ˚ g and g˚ f in ŒX;EllM � coincide, so ŒX;EllM � is
commutative. This completes the proof of the proposition.
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The topological index as a homomorphism. A continuous map  WX ! EllM defines
the partition of X by subsets Xk , where Xk consists of points X such that .x/ has the
grading k. Since the grading is continuous, all Xk are open-and-closed subsets of X .
Since X is compact, all but a finite number of Xk are empty, so this partition is finite. The
restriction of  to Xk takes values in Ell.2kM /, so  can be identified with a section of
Ell.E /, where E 2 VectX;M is the bundle whose restriction to Xk is the trivial bundle
over Xk with the fiber 2kM . Thus the topological index of  is well defined.

Since the topological index is additive with respect to direct sums, it defines the mon-
oid homomorphism indt WC.X;EllM /!K1.X/. Since the topological index is homotopy
invariant, this homomorphism factors through the projection C.X;EllM /! ŒX IEllM �.

The inclusion �˙� EllX;M ,! � EllX;M induces the homomorphism

�0.�
˙� EllX;M /! �0.� EllX;M / D ŒX IEllM �I

we denote its image by ŒX IEllM �˙�.
Since the topological index vanishes on �˙ EllX;M and �� EllX;M , it factors through

the quotient ŒX I EllM �=ŒX I EllM �˙�. In other words, there exists a monoid homomor-
phism

�t W ŒX IEllM �=ŒX IEllM �˙� ! K1.X/

such that the following diagram is commutative:

C.X IEllM / ŒX IEllM � ŒX IEllM �=ŒX IEllM �˙�

K1.X/

indt

�t (8.5)

Theorem 8.10. Let X be a compact topological space. Then ŒX; EllM �=ŒX I EllM �˙� is
an Abelian group isomorphic to K1.X/, with an isomorphism given by �t .

Note that, for any given k, the restriction of �t to a given rank,�
X;Ell.2kX;M /

�ı�
X IEll.2kX;M /

�˙�
! K1.X/;

in general is neither injective nor surjective, so we need to take the direct sum for all the
ranks to obtain universality.

Proof. Denote the commutative monoid ŒX;EllM �=ŒX IEllM �˙� by ƒ and the composi-
tion of horizontal arrows on diagram (8.5) by ˆ, so that indt D �t ıˆ. By definition, ˆ is
additive, homotopy invariant, surjective, and vanishes on both �˙EllX;M and ��EllX;M .

Suppose first that X is connected. Then ŒX; EllM � D
`
k ŒX; Ell.2kM /�, so ˆ and ƒ

satisfy the first condition of Theorem 8.5 with V D ¹2kX;M º. Thus ˆ D # ı indt for
some monoid homomorphism # WK1.X/! ƒ. By Proposition 6.5, the topological index
is surjective. Thus �t and # are mutually inverse and �t is an isomorphism. This completes
the proof of the theorem in the case of connected X .
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In the general case, we need to extend the set ¹2kX;M ºk2N of trivial bundles. Let
V be the set of all bundles E with  2 � EllX;M . An element E of V is defined by a
partition of X by open-and-closed subsets Xk , k 2 N, such that all but a finite number
of Xk are empty. For such a partition, E is defined as the disjoint union of trivial bundles
2kXk ;M . A continuous map from X to EllX;M is nothing else than a section of a bundle
Ell.E/ with E 2 V . Obviously, V is closed under direct sums and contains all trivial
bundles 2kX;M . Hence the triple .V ; ˆ; ƒ/ satisfies the first condition of Theorem 8.5,
and thereforeˆD # ı indt for some monoid homomorphism # WK1.X/!ƒ. Taking into
account that both ˆ and indt are surjective, we see that �t and # are mutually inverse and
thus �t is an isomorphism. This completes the proof of the theorem.

9. Deformation retraction

Proposition 9.1. The natural embedding Dir.E/ ,! Ell.E/ is a bundle homotopy equiva-
lence for every E 2 VectX;M . Moreover, there exists a fiberwise deformation retraction h
of Ell.E/ onto a subbundle of Dir.E/ having the following properties for every s 2 Œ0; 1�,
A 2 Ell.Ex/, and As D hs.A/:

(1) E�.As/ D E�.A/;

(2) the symbol of As depends only on s and the symbol �A of A;

(3) the map h0s W �A 7! �As defined by (2) is U.Ex/-equivariant;

(4) if A 2 Dir.Ex/, then �As D �A.

In the case of one-point space X , this result was proved in [23, Proposition 9.5]. We
will use it to construct such a deformation retraction for an arbitrary compact space X .

Proof. Let .X i / be a finite open covering ofX such that the restrictions of E toX i are triv-
ial. Choose trivializations f i WEjX i !Ei �X i . For x 2X i , denote by f ix 2U.Ex ;E

i / the
isomorphism of the fibers given by f i . The homeomorphism Ell.Ex/! Ell.Ei / induced
by f ix will also be denoted by f ix .

Choose a partition of unity .�i /, �i 2 C.X i ; C1.M//, subordinated to the covering
.X i /. Let hi W Œ0; 1� � Ell.Ei /! Ell.Ei / be a deformation retraction of Ell.Ei / onto a
subspace of Dir.Ei / satisfying the conditions of [23, Proposition 9.5].

For x 2 X i and A 2 Ell.Ex/, we define an element Ais of Ell.Ex/ by the formula
f ix .A

i
s/ D h

i
s.f

i
x .A//. From [23, Proposition 9.5], we obtain the following.

(a) Ai0 D A and Ai1 2 Dir.Ex/ for every i .

(b) The symbol of Ais depends only on s and the symbol � of A and is independent
of i ; denote it by �s .

(c) The map � 7! �s defined by (b) is U.Ex/-equivariant.

(d) E�.�s/ D E
�.�/.
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(e) If A 2 Dir.Ex/, then �s D � for all s 2 Œ0; 1�.

(f) If A;B 2 Ell.Ex/ and the symbols of Ai1 and B i1 coincide, then Ai1 D B
i
1.

We claim that the bundle map hW Œ0; 1� � Ell.E/! Ell.E/ defined by the formula

hs.A/ D
X
i

�i .x/A
i
s for A 2 Ell.Ex/ (9.1)

is a desired deformation retraction. The rest of the proof is devoted to the verification of
this claim.

First note that (a) implies that h0 D Id. A convex combination of self-adjoint elliptic
operators with the symbol �s is again a self-adjoint elliptic operator with the symbol �s ,
so (b) implies that �As D �s andAs 2 Ell.Ex/. (c) implies condition (3) of the proposition,
(e) implies (4), and (d) implies (1).

The chiral decomposition of an odd Dirac operator Ai1 is defined by its symbol �1 and
hence is independent of i , so (a) and (b) imply that Im h1 � Dir.E/.

Suppose that A 2 Im h1; that is, A D B1 for some B 2 Ell.Ex/. Then A 2 Dir.Ex/,
and (e) implies that �A1 D �A D �B1 . Hence the symbols of Ai1 and B i1 coincide, and (f)
implies that Ai1 D B

i
1. Substituting this to (9.1), we obtain A1 D B1; that is, h1.A/ D A.

Thus the restriction of h1 on its image is the identity.
It remains to prove the homotopy equivalence part. Let A 2 Dir.Ex/. Then A1 D

h1.A/ also lies in Dir.Ex/, but As is not necessarily odd for s 2 .0; 1/, so we should
change a homotopy a little. Since the symbols of A1 and A coincide, the formula h0s.A/D
.1 � s/AC sA1 defines a continuous bundle map h0W Œ0; 1� � Dir.E/! Dir.E/ such that
h00 D Id and h01 D h1. It follows that the restriction of h1 to Dir.E/ and the identity map
IdDir.E/ are homotopic as bundle maps from Dir.E/ to Dir.E/. On the other hand, the
map h1W Ell.E/ ! Ell.E/ is homotopic to IdEll.E/ via the homotopy hs . It follows that
h1WEll.E/! Dir.E/ is homotopy inverse to the embedding Dir.E/ ,! Ell.E/; that is, this
embedding is a bundle homotopy equivalence. This completes the proof of the proposi-
tion.

Proposition 9.2. For every E 2 VectX;M , the natural embeddings � Dir.E/ ,! � Ell.E/
and � Dir.E/ ,! � Ell.E/ are homotopy equivalences. Moreover,

(1) there exists a deformation retraction of � Ell.E/ onto a subspace of � Dir.E/
preserving E�./;

(2) there exists a deformation retraction of � Ell.E/ onto a subspace of � Dir.E/
preserving both E�./ and F ./.

Proof. (1) The fiberwise deformation retraction h from Proposition 9.1 induces the defor-
mation retraction H on the space of sections satisfying the conditions of the proposition.

(2) Denote by p the natural projection � Ell.E/! � Ell.E/, which forgets boundary
conditions. We define the deformation retraction xH W Œ0; 1� � � Ell.E/! � Ell.E/ by the
formula xHs./.x/D .Hs.p/.x/;T .x// for  Wx 7! .A.x/;T .x//. Since E�.Hs.p//D
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E�./, xHs./ is well defined. By definition of xH , the subbundles F . xHs.// and F ./

of E�
@
./ coincide for every s 2 Œ0; 1� and  2 � Ell.E/.

(3) The fiberwise homotopy h0 from Proposition 9.1 induces the homotopy between
the restriction of H1 to � Dir.E/ and the identity map of � Dir.E/, as well as the homo-
topy between the restriction of xH1 to � Dir.E/ and the identity map of � Dir.E/. The
same arguments as in the proof of Proposition 9.1 show thatH1W� Ell.E/! � Dir.E/ is
homotopy inverse to the embedding � Dir.E/ ,! � Ell.E/ and xH1W� Ell.E/! � Dir.E/
is homotopy inverse to the embedding � Dir.E/ ,! � Ell.E/. This completes the proof of
the proposition.

Retraction of special subspaces. The following proposition is one of the key ingredients
in the proof of the index theorem.

Proposition 9.3. There exists a deformation retraction of � EllC.E/ onto a subspace of
� DirC.E/ and a deformation retraction of � Ell�.E/ onto a subspace of � Dir�.E/.

Proof. Let xH be a deformation retraction of � Ell.E/ onto a subspace of � Dir.E/ sat-
isfying the conditions of Proposition 9.2. For  2 � EllC.E/ and s D xHs./, we have
that F .s/ D F ./ D 0, so by Proposition 6.2, s 2 � EllC.E/ for all s. In particular,
1 2 � EllC.E/ \ � Dir.E/ D � DirC.E/. For  2 � Ell�.E/ and s D xHs./, we have
that F .s/ D F ./ D E�./ D E�.s/, so by Proposition 6.2, s 2 � Ell�.E/ for all s.
In particular, 1 2 � Ell�.E/ \ � Dir.E/ D � Dir�.E/. This completes the proof of the
proposition.

10. Index theorem

Invertible Dirac operators. We have no means to detect the invertibility of an arbitrary
element of Ell.E/ by purely topological methods. However, there is a big class of odd
Dirac operators which are necessarily invertible.

Proposition 10.1 ([23, Proposition 10.1]). If .A;L/ is an element of DirC.E/ or Dir�.E/,
then AL has no zero eigenvalues. In other words, both DirC.E/ and Dir�.E/ are sub-
spaces of Ell0.E/.

Vanishing of the analytical index. Taking into account Proposition 9.3, we are now able
to describe, in purely topological terms, a big class of sections of Ell.E/ which are homo-
topic to families of invertible operators.

Proposition 10.2. Let  be an element of �˙ Ell.E/ or �� Ell.E/. Then  is homotopic
to a section of Ell0.E/, and hence inda./ D 0.

Proof. (1) If  2 �˙ Ell.E/, then  D  0˚  00 with  0 2 � EllC.E 0/ and  00 2 � Ell�.E 00/
for some orthogonal decomposition E Š E 0 ˚ E 00. By Proposition 9.3,  0 is homotopic
to some  01 2 � DirC.E 0/ and  00 is homotopic to some  001 2 � Dir�.E 00/. By Proposition
10.1,  01 and  001 are sections of Ell0.E 0/ and Ell0.E 00/, respectively. It follows that  is
homotopic to  01 ˚ 

00
1 , which is a section of Ell0.E/.
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(2) Suppose that  D 1W � .A;L/ for some .A;L/ 2 Ell.E/ and W 2 VectX . Since
AL is Fredholm, AL � � is invertible for some � 2 R, that is, .A � �;L/ 2 Ell0.E/. The
path hW Œ0; 1�! �� Ell.W � E/ given by the formula hs D 1W � .A � s�; L/ connects
 with 1W � .A � �;L/ 2 Ell0.W �E/.

In the general case, for  D
L
1Wi � .Ai ; Li / 2 �� Ell.E/, we take such a homotopy

as described above for every direct summand 1Wi � .Ai ; Li / independently. The direct
sum of these homotopies gives a required homotopy of  to a section h1./ 2 �� Ell0.E/.

(3) It follows from the homotopy invariance of the analytical index and its vanishing
on sections of Ell0.E/ that inda./ D 0.

Index theorem. Now we are able to prove our index theorem.

Theorem 10.3. Let X be a compact space and let E 2 VectX;M . Then the analytical
index is equal to the topological index for every section  of Ell.E/:

inda./ D indt./: (10.1)

In particular, this equality holds for every continuous map  WX ! Ell.E/, E 2 Vect1M .

Proof. By Proposition 2.3, ˆ D inda satisfies conditions (E0)–(E4). By Proposition 10.2,
ˆ satisfies conditions (E˙) and (E�). By Theorem 8.7, there is an integer m such that
inda./ D m � indt./ for every section  of Ell.E/, every E 2 VectX;M , and every com-
pact space X . The factor m does not depend on X , but can depend on M .

For X D S1, the analytical index of  coincides with the spectral flow sf./ by
Proposition 2.3, while the topological index of  coincides with c1.F .//Œ@M � S1� by
Proposition 6.5. Hence it is sufficient to compute the quotient

m D m.M/ D
sf./

c1
�
F ./

�
Œ@M � S1�

for some loop  W S1 ! Dir.2kM / such that the denominator of this quotient does not
vanish.

For the case of an annulus, this computation was performed by the author in [21,
Theorem 4] by a direct evaluation; it was shown there that the factor m for the annulus is
equal to 1. Moreover, the value ofm.M/ is the same for all surfacesM [23, Lemmas 11.3
and 11.5]. These two results together imply thatm.M/D 1 for any surfaceM . Therefore,
inda./ D indt./, which completes the proof of the theorem.

11. Universality of the analytical index

Recall that we denoted by Ell0.E/ the subspace of Ell.E/ consisting of all pairs .A; L/
such that the unbounded operator AL has no zero eigenvalues, and by Ell0.E/ the sub-
bundle of Ell.E/ whose fiber over x 2 X is Ell0.Ex/. Sections of Ell0.E/ correspond to
families of invertible self-adjoint elliptic boundary problems.
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Theorem 11.1. Let X be a compact space, and let i be a section of Ell.Ei /, Ei 2

VectX;M , i D 1; 2. Then the following two conditions are equivalent:

(1) inda.1/ D inda.2/;

(2) there are k2N, sections ˇ0i of Ell0.2kX;M /, and sections 0i of Ell0.Ei / such that
1˚

0
2 ˚ˇ

0
1 and 01 ˚2˚ˇ

0
2 are homotopic sections of Ell.E1˚E2˚2kX;M /.

Proof. (2))(1) follows immediately from properties (I0)–(I2) of the family index.
Let us prove (1))(2). By Theorem 10.3, the equality

inda.1/ D inda.2/ implies indt.1/ D indt.2/:

By Theorem 8.4, there are ˇ˙i 2 �
˙Dir.2nX;M / and ˇ�i 2 �

�Dir.2lX;M /, i D 1; 2, such
that the direct sums 1 ˚ C2 ˚ ˇ

˙
1 ˚ ˇ

�
1 and C1 ˚ 2 ˚ ˇ

˙
2 ˚ ˇ

�
2 are homotopic. By

Proposition 10.2, Ci is homotopic to a section 0i of Ell0.Ei / and ˇ˙i ˚ ˇ
�
i is homotopic

to a section ˇ0i of Ell0.2kX;M /, k D nC l . This completes the proof of the theorem.

Universality for families. In Section 8, we considered invariants satisfying properties
(E˙), (E�), and (E1)–(E4). Now we replace the topological properties (E˙), (E�) by the
following analytical property:

(E0) ˆ vanishes on sections of Ell0.E/.

Theorem 11.2. Let X be a compact topological space and ƒ a commutative monoid.
Let V be a subclass of VectX;M satisfying condition (8.2). Suppose that we associate an
elementˆ./ 2 ƒ with every section  of Ell.E/ for every E 2 V . Then the following two
conditions are equivalent:

(1) ˆ satisfies properties (E0)–(E2);

(2) ˆ has the form ˆ./ D #.inda.// for some (unique) monoid homomorphism
# WK1.X/! ƒ.

Proof. (2))(1) follows from properties (I0)–(I2) of the family index. (1))(2) follows
from Theorem 8.4, Proposition 10.2, and Theorem 10.3.

Theorem 11.3. Suppose that we associate an elementˆX ./ 2K1.X/ with every section
 of Ell.E/ for every compact space X and every E 2 VectX;M . Then the following two
conditions are equivalent:

(1) the family ˆ D .ˆX / satisfies properties (E0)–(E4);

(2) ˆ has the form ˆX ./ D m � inda./ for some integer m.

Proof. (2))(1) follows from properties (I0)–(I4) of the family index. (1))(2) follows
from Theorem 8.7, Proposition 10.2, and Theorem 10.3.

Universality for maps. Theorem 11.1 applied to trivial bundles E1 and E2 takes the fol-
lowing form.
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Theorem 11.4. Let X be a compact space and let  WX ! Ell.2kM /,  0WX ! Ell.2k0M /
be continuous maps. Then the following two conditions are equivalent:

(1) inda./ D inda.
0/;

(2) there are n 2 N and maps ˇWX ! Ell0.2.n � k/M /, ˇ0WX ! Ell0.2.n � k0/M /
such that the maps  ˚ ˇ and  0 ˚ ˇ0 from X to Ell.2nM / are homotopic.

Theorem 11.2 applied to the set V D ¹2kX;M º of trivial bundles takes the following
form.

Theorem 11.5. Let X be a compact space and ƒ a commutative monoid. Suppose that
we associate an element ˆ./ 2 ƒ with every map  WX ! Ell.2kM / for every integer k.
Then the following two conditions are equivalent:

(1) ˆ is homotopy invariant, additive with respect to direct sums, and vanishes on
maps to Ell0.2kM /;

(2) ˆ has the form ˆ./ D #.inda.// for some (unique) monoid homomorphism
# WK1.X/! ƒ.

The analytical index as a homomorphism. Denote by Ell0M the disjoint union of sub-
spaces Ell0.2kM / � Ell.2kM / for all k 2 N; it is a subsemigroup of EllM . The inclusion
Ell0M � EllM induces the homomorphism ŒX;Ell0M �! ŒX;EllM �; we denote by ŒX;EllM �0

its image.
Since the analytical index is additive with respect to direct sums, it defines the monoid

homomorphism indaWC.X;EllM/!K1.X/. Since the analytical index is homotopy invari-
ant, this homomorphism factors through the homomorphism C.X; EllM / ! ŒX I EllM �.
Since the analytical index vanishes on maps to Ell0M , it factors through ŒX; EllM �=
ŒX;EllM �0. In other words, there exists a monoid homomorphism

�aW ŒX;EllM �=ŒX;EllM �0 ! K1.X/

such that the following diagram is commutative:

C.X;EllM / ŒX;EllM � ŒX;EllM �=ŒX;EllM �0

K1.X/

inda

�a (11.1)

Theorem 11.6. Let X be a compact space. Then ŒX; EllM �=ŒX; EllM �0 is an Abelian
group isomorphic to K1.X/, and the homomorphism �a on diagram (11.1) is an isomor-
phism.

Proof. Denote the commutative monoid ŒX; EllM �=ŒX; EllM �0 by ƒ and the composi-
tion of horizontal arrows on diagram (11.1) by ˆ. The homomorphism ˆ factors through
ŒX;EllM � and vanishes on maps to Ell0.2kM /. By Theorem 11.5, ˆ D # ı inda for some
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(unique) monoid homomorphism # WK1.X/! ƒ. By definition, ˆ is surjective. By The-
orem 10.3, inda D indt; by Proposition 6.5 (T5), indt is surjective. Thus �a and # are
mutually inverse monoid homomorphisms, so �a is an isomorphism. This completes the
proof of the theorem.

A. Smoothing

This appendix is devoted to the proof of two technical results: Propositions A.2 and A.3,
that are used in the main part of the paper.

Smoothing of maps. Let Z and Z0 be compact smooth manifolds and let r be a non-
negative integer. We denote by C r;1.Z;Z0/ the space C1.Z;Z0/ of smooth maps from
Z to Z0 equipped with the topology induced by the natural inclusion C1.Z; Z0/ ,!
C r .Z;Z0/.

Proposition A.1. Let X be a compact space and let Z, Z0 be compact smooth manifolds.
Then for every non-negative integer r the following statements hold.

(1) The space C r;1.Z;Z0/ is locally contractible.

(2) The space C.X �Z;Z0/ D C.X; C.Z;Z0// is locally contractible and contains
C.X;C1.Z;Z0// as a dense subset. In particular, every f 2 C.X;C.Z;Z0// is
homotopic to some F 2 C.X;C1.Z;Z0//.

(3) If continuous maps f0; f1WX ! C r;1.Z;Z0/ are homotopic as maps from X to
C.Z; Z0/, then they are homotopic as maps from X to C r;1.Z; Z0/. Moreover,
H r .f0; f1/ is a dense subset of H0.f0; f1/, where H r .f0; f1/ denotes the sub-
space of C.Œ0; 1��X;C r;1.Z;Z0// consisting of maps f such that f j¹iº�X D fi
for i D 0; 1.

Proof. Let us choose a smooth embedding of Z0 to Rn for some n; let pWN ! Z0 be its
normal bundle. Denote by N" the "-neighborhood of the zero section in N .

Let " > 0 be small enough, so that the restriction of the geodesic map qWN ! Rn to
N" is an embedding. This embedding allows to identifyN" with the "-neighborhood ofZ0

in Rn. We denote the restriction of p to N" again by p; we will use only this small part of
the normal bundle from now on. The map p takes a point u 2 N" to the (unique) closest
point on Z0.

(2a) Let f be an arbitrary element of C.X � Z;Z0/. For every s 2 Œ0; 1� and every
two points u; v 2 Z0 such that ku � vkRn < ", the point w D suC .1 � s/v lies in N",
kw � p.w/k D d.w;Z0/ 6 kw � vk, and

kp.w/ � uk D kp.w/ � w C w � uk 6 kv � wk C kw � uk D kv � uk < ";

so p.w/ lies in the "-neighborhood of u. Thus the formula

his.g/ D p ı
�
sf C .1 � s/g

�
(A.1)
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defines the contracting homotopy of the "-neighborhood

Uf; " D
®
g 2 C.X �Z;Z0/W kg � f kC.X�Z;Rn/ < "

¯
of f in C.X �Z;Z0/. It follows that C.X �Z;Z0/ is locally contractible.

(1) If f 2 C.X; C r;1.Z;Z0//, then formula (A.1) defines the contracting homotopy
of C.X; C r;1.Z; Z0// \ Uf; " to f . In the particular case of a one-point space X , this
implies the first claim of the proposition.

(2b) For every y 2 X , choose gy 2 C1.Z;Rn/ such that kgy � f .y/kC.Z;Rn/ < ".
Then

Xy D
®
x 2 X W kgy � f .x/kC.Z;Rn/ < "

¯
(A.2)

is an open neighborhood of y. Since X is compact, the open covering .Xy/y2X of X
contains a finite sub-covering .Xy/y2I . Choose a partition of unity .�y/y2I subordinated
to this finite covering. We define the map g0WX ! C1.Z;Rn/ by the formula g0.x/ DP
y2I �y.x/gy . Obviously, g0 is continuous. By (A.2), kg0.x/.z/ � f .x/.z/k < " for

every x 2 X , z 2 Z, so the image of g0 lies in C1.Z;N"/. The composition g D p ı g0 is
a continuous map fromX to C1.Z;Z0/. Moreover, g and f are homotopic as continuous
maps from X � Z to Z0, with a homotopy given by the formula (A.1). This proves the
density of C.X; C1.Z; Z0// in C.X; C.Z; Z0// and completes the proof of the second
claim of the proposition.

(3) Let f W Œ0; 1��X!C.Z;Z0/ be a homotopy between f0; f12C.X;C r;1.Z;Z0//.
By the second claim of the proposition, C.Œ0; 1��X;C1.Z;Z0// is dense in C.Œ0; 1��X;
C.Z; Z0//. Thus there is a continuous map F W Œ0; 1� � X ! C r;1.Z; Z0/ such that
kF � f kC.Œ0;1��X�Z;Rn/ < ". The last inequality implies that kFi � fikC.X�Z;Rn/ < "

for i D 0; 1, where Fi D F j¹iº�X . Applying again the second claim of the proposition, we
obtain a homotopy h.i/W Œ0; 1� �X ! C r;1.Z;Z0/ between Fi and fi such that

kh.i/s � fikC.X�Z;Rn/ < " for all s 2 Œ0; 1�:

Concatenating h.0/, F , and h.1/ and suitably reparametrizing the result, we obtain the path
in C.X;C r;1.Z;Z0// connecting f0 with f1 and lying in the "-neighborhood of f . This
proves the third claim of the proposition.

Smoothing of subbundles. Let us recall some designations from the main part of the
paper. Let X be a topological space and Z a smooth manifold. We denoted by VectX;Z
the class of all locally trivial fiber bundles E overX , whose fiber Ex is a smooth Hermitian
vector bundle overZ for every x 2X and the structure group is the groupU.Ex/ of smooth
unitary bundle automorphisms of Ex equipped with the C 1-topology. We say that W � V

is a subbundle of V 2 VectX;Z if W 2 VectX;Z and Wx is a smooth subbundle of Vx for
every x 2 X . For V 2 VectX;Z , we denoted by hVi the vector bundle over X �Z whose
restriction to ¹xº �Z is the fiber Vx with the forgotten smooth structure. Similarly, for a
subbundle W of V we denote by hWi the corresponding vector subbundle of hVi.
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Proposition A.2. Let X be a compact space, Z a compact smooth manifold, and V a
subbundle of a trivial vector bundle kX�Z . Then V is homotopic to hVi for some subbun-
dle V of kX;Z . In particular, every vector bundle over X � Z is isomorphic to hVi for
some V 2 VectX;Z .

Proof. Let f WX �Z ! Gr.Ck/ be the continuous map corresponding to the embedding
V ,! kX�Z . By Proposition A.1 (2), f considered as a map from X to C.Z;Gr.Ck// is
homotopic to a continuous map F WX ! C 1;1.Z;Gr.Ck//. Such a map F defines a fiber
bundle V over X , whose fiber Vx is a smooth subbundle of kZ given by the smooth map
F.x/WZ ! Gr.Ck/. A homotopy between F and f induces the homotopy between the
vector subbundles hVi and V of kX�Z .

Let x0 be an arbitrary point of X and F0 D F.x0/. By Proposition A.1 (1), there is
a contractible neighborhood U 0 of F0 in C 1;1.Z;Gr.Ck//. Let h be a corresponding
contracting homotopy. Then the restriction of F to U D F �1.U 0/ � X is homotopic, as a
map from U to C 1;1.Z;Gr.Ck//, to the constant map U 3 x 7! F0, with the homotopy
Hs.x/ D hs.F.x//. It follows that the restriction of V to U is a trivial bundle. Thus V 2

VectX;Z and V is a subbundle of kX;Z , which completes the proof of the proposition.

Proposition A.3. Let X andZ be as in Proposition A.2. Let E 2 VectX;Z and let V0, V1
be subbundles of E . Suppose that hV0i and hV1i are homotopic as subbundles of hEi.
Then V0 and V1 are homotopic subbundles of E .

Proof. Consider first the case of a trivial E D kX;Z . Then Vi can be identified with a
continuous map Fi WX ! C r;1.Z;Gr.Ck//, i D 1; 2. Since hV0i and hV1i are homotopic
as subbundles of hEi, F0 and F1 are homotopic as maps from X to C.Z;Gr.Ck//. By
Proposition A.1 (3), they are homotopic as maps from X to C r;1.Z;Gr.Ck//. It follows
that V0 and V1 are homotopic subbundles of E .

Let now E be an arbitrary element of VectX;Z .
Denote by z�E the vector space of continuous mapsX 3 x 7! �1;1Ex , where �1;1Ex

denotes the space of smooth sections of Ex with theC 1-topology. It is finitely generated as
an A-module, where A D C.X;C 1;1.Z;C//. Indeed, let .Xi / be a finite open covering
of X such that the restriction Ei of E to Xi is a trivial bundle with a fiber Ei . Let .�i / be
a partition of unity subordinated to this finite covering, and let .vij / be a finite generating
set for �1Ei . Then uij D �ivij form a finite generating set for z�E .

Let .ui /kiD1 be a finite generating set for the A-module z�E . For every x 2 X , the
set .ui .x// of smooth sections of Ex generates �1Ex as a C1.Z;C/-module and thus
defines the smooth surjective bundle morphism �x W kZ ! Ex continuously depending
on x. Then the kernel Kx of �x continuously depends on x and is locally trivial. Thus
the family .Kx/ of smooth vector subbundles of kZ defines the subbundle K of kX;Z .
Denote by K the continuous map from X to C 1;1.Z; Gr.Ck// corresponding to K .
Obviously, subbundles of E are in one-to-one correspondence with subbundles of kX;Z
containing K .
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Let V0, V1 be subbundles of E . Denote by W0, W1 the corresponding subbundles
of kX;Z and by F0; F1 the corresponding maps from X to C 1;1.Z;Gr.Ck//. If hV0i
and hV1i are homotopic as subbundles of hEi, then there is a homotopy hW Œ0; 1� � X !
C.Z;Gr.Ck// between F0 and F1 such that hs.x/.z/ � K.x/.z/ for every s 2 Œ0; 1�,
x 2 X , and z 2 Z.

Equip Gr.Ck/with a smooth Riemannian metric. ForL 2Gr.Ck/ denote by GrL.Ck/

the submanifold of Gr.Ck/ consisting of subspaces of Ck containing L. Denote by
pLWNL!GrL.Ck/ the normal bundle of GrL.Ck/ in Gr.Ck/, and byNL;" the "-neighbor-
hood of the zero section in NL. Let " > 0 be small enough, so that for every L 2 Gr.Ck/

the geodesic map qLWNL;"! Gr.Ck/ is an embedding. Similarly to the proof of Proposi-
tion A.1, we identify NL;" with the "-neighborhood of GrL.Ck/ in Gr.Ck/. The map pL
smoothly depends on L with respect to this identification.

By Proposition A.1 (3), there is a homotopyH W Œ0;1��X!C1;1.Z;Gr.Ck// between
F0 and F1 such that the distance between Hs.x/.z/ and hs.x/.z/ is less then " for all s,
x, and z. Then the continuous map F W Œ0; 1� � X ! C 1;1.Z;Gr.Ck// defined by the
formula Fs.x/.z/ D pK.x/.z/.Hs.x/.z// is a homotopy between F0 and F1 such that
Fs.x/.z/ � K.x/.z/ for every s, x, and z. Thus F defines the homotopy .Ws/ between
W0 and W1 such that K is a subbundle of Ws for every s 2 Œ0; 1�. Factoring by K , we
obtain the homotopy .Vs/ between V0 and V1 as subbundles of E , which completes the
proof of the proposition.

B. Natural transformations of K 1

The purpose of this appendix is to prove the following result, which we use in the main
part of the paper.

Let C be one of the following categories: the category of compact Hausdorff spaces
and continuous maps, the category of finite CW-complexes and continuous maps, or the
category of smooth closed manifolds and smooth maps. We considerK1 as a functor from
C to the category of Abelian groups.

Proposition B.1. Let # be a natural self-transformation of the functor X 7! K1.X/

respecting the K0.�/-module structure (that is, #.��/ D �#.�/ for every object X of
C and every � 2 K0.X/, � 2 K1.X/). Then # is multiplication by some integer m; that
is, #X .�/ D m� for every object X of C and every � 2 K1.X/. In particular, if #S1 is
the identity, then #X is the identity for every X .

Proof. K1.U.1// is an infinite cyclic group, so #U.1/ is multiplication by some integer;
denote this integer by m.

LetX be an object of C and�2K1.X/. There is n2N and a continuous map f WX!
U.n/ such that �D f �ˇ, where ˇ denotes the element ofK1.U.n// corresponding to the
canonical representation U.n/ ! Aut.Cn/. If X is a smooth manifold, then f can be
chosen to be smooth. Since # is natural, #X� D f �.#U.n/ˇ/. Therefore, it is sufficient to
show that #U.n/ˇ D mˇ.
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Let T D U.1/n be the maximal torus in U.n/ consisting of diagonal matrices and let
V D U.n/=T be the flag manifold. Let � WV � T ! U.n/ be the natural projection given
by the formula �.gT; u/ D gug�1.

Denote byL1; : : : ;Ln the canonical linear bundles over V , and let li D ŒLi � 2K0.V /.
Let ˛i be the element ofK1.T / corresponding to the projection of T D U.1/n on the i -th
factor. We denote the liftings of Li , li , and ˛i to V � T by the same letters. The lifting of
ˇ can be written in these notations as ��ˇ D

Pn
iD1 li˛i .

The element ˛i is lifted from U.1/ and #U.1/ is multiplication by m, hence #V�T .˛i /
D m˛i . Since #V�T is a K0.V � T /-module homomorphism, we have that

��.#U.n/ˇ/ D #V�T .�
�ˇ/ D

nX
iD1

#V�T .li˛i /

D

nX
iD1

li � #V�T .˛i / D

nX
iD1

li �m˛i D �
�.mˇ/I

that is, ��.#U.n/ˇ � mˇ/ D 0. To complete the proof of the proposition, it is sufficient
to show the injectivity of the homomorphism ��WK1.U.n//! K1.V � T /, which we
perform in the following lemma.

Lemma B.2. The homomorphism ��WK�.U.n//! K�.V � T / is injective.

Proof. The k-th exterior power U.n/ ! Aut.ƒk Cn/ of the canonical representation
U.n/! Aut.Cn/ defines the element of K1.U.n//; denote this element by ˇk . The ring
K�.U.n// is the exterior algebra over Z generated by ˇ1; : : : ; ˇn [1, Theorem 2.7.17].
Therefore, for every non-zero � 2K�.U.n//, there is �0 2 K�.U.n// such that � � �0 D
c�b, where b D ˇ1 � : : : � ˇn and c� is a non-zero integer. Thus the injectivity of �� is
equivalent to the condition that c � ��b ¤ 0 in K�.V � T / for every integer c ¤ 0.

By the Künneth formula [1, Theorem 2.7.15], K�.T / is the exterior algebra over Z
generated by the elements ˛1; : : : ; ˛n 2 K1.T /. Applying the Künneth formula one more
time, we obtain K�.V � T / D K�.V /˝K�.T /. The group K�.T / is free Abelian and
K�.V / is torsion-free, so K�.V / ˝ K�.T / is also torsion-free. Hence we should only
prove that ��b ¤ 0. Let us compute ��b.

��ˇk D
X

I�¹1;:::;nº
jI jDk

�X
i2I

˛i �
Y
j2I

lj

�
D

nX
iD1

˛i li
X

I�¹1;:::;nºn¹iº
jI jDk�1

Y
j2I

lj

D

nX
iD1

˛i li Œƒ
k�1Ei �; (B.1)

where we denoted Ei D
L
j¤i Lj . Since ŒLi ˚Ei � D n, we have that

ŒƒkEi �C li Œƒ
k�1Ei � D

�
ƒk.Li ˚Ei /

�
D

 
n

k

!
;
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where
�
n
k

�
are the binomial coefficients. Induction by k gives ŒƒkEi � D qk.li /, where the

polynomials qk 2 ZŒx� are defined by the formula qk.x/ D
Pk
jD0.�1/

j
�
n
k�j

�
xj . Sub-

stituting this to (B.1), we get ��ˇk D
Pn
iD1 ˛i liqk�1.li /. Taking the product of these

identities for k running from 1 to n and using the identity
Q
li D 1, we obtain

��b D

nY
kD1

��ˇk D Q.l1; : : : ; ln/ � ˛1 � : : : � ˛n; (B.2)

where Q 2 ZŒx1; : : : ; xn� is the determinant of the matrix .qk�1.xi //i;kD1;:::;n. Since
.�1/kqk.x/ is a unital polynomial of degree k, the polynomial Q is equal up to sign to
the Vandermonde determinant dn.x1; : : : ; xn/ D det.xk�1i / D

Q
i>j .xi � xj /.

It will be more convenient for us to use uk D lk � 1 as the generators of K0.V /
instead of lk . The ring homomorphism ZŒx1; : : : ; xn� ! K0.V / sending xi to ui is
surjective; its kernel is the ideal Jn generated by the elementary symmetric polynomi-
als �k.x1; : : : ; xn/, k D 1; : : : ; n [1, Proposition 2.7.13]. Obviously, dn.l1; : : : ; ln/ DQ
i>j .li � lj / D

Q
i>j .ui � uj / D dn.u1; : : : ; un/.

Let us show that

dn.x1; : : : ; xn/ � nŠ

n�1Y
kD1

xkkC1 mod Jn: (B.3)

Indeed, d2.x1; x2/ D x2 � x1 � 2x2 mod J2. Let n > 2 and suppose that

dn�1.x1; : : : ; xn�1/ � .n � 1/Š

n�2Y
kD1

xkkC1 mod Jn�1: (B.4)

Since �k.x1; : : : ;xn�1/C xn�k�1.x1; : : : ;xn�1/D �k.x1; : : : ;xn/� 0 mod Jn, induction
by k implies that �k.x1; : : : ; xn�1/ � .�1/kxkn mod Jn for all k. Hence

Y
16j6n�1

.xn � xj / D

n�1X
kD0

.�1/k�k.x1; : : : ; xn�1/x
n�1�k
n � nxn�1n mod Jn: (B.5)

The inverse image of the ideal Jn�1 under the projection

ZŒx1; : : : ; xn�! ZŒx1; : : : ; xn�=.xn/ D ZŒx1; : : : ; xn�1�

is the ideal generated by xn and Jn. Taking into account induction assumption (B.4), we
obtain Y

16j<i6n�1

.xi � xj / � .n � 1/Š

n�1Y
kD2

xk�1k C xnf mod Jn (B.6)

for some f 2 ZŒx1; : : : ; xn�. Multiplying (B.6) by (B.5), we getY
16j<i6n

.xi � xj / � nŠ

nY
kD2

xk�1k C nf � xnn mod Jn: (B.7)
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Since x1; : : : ; xn are roots of the polynomial xn � �1xn�1 C � � � C .�1/n�n, their n-th
powers xni lie in Jn, so nf � xnn � 0 mod Jn, and (B.3) follows from (B.7). Therefore,
(B.4) implies (B.3), so (B.3) holds for all n > 2.

The quotient ZŒx1; : : : ;xn�=Jn is a free Abelian group with the generators
Qn�1
kD1 x

jk
kC1

,
0 6 jk 6 k [13, Theorem 3.28]. The right-hand side of (B.3) coincides with one of these
generators up to the factor nŠ, so it does not vanish in ZŒx1; : : : ; xn�=Jn. Equivalently,
dn.u1; : : : ; un/ does not vanish in K0.V /. Taking into account that ˛1 � : : : � ˛n ¤ 0 in
K�.T /, we finally obtain

��b D .�1/n.n�1/=2 nŠ

n�1Y
kD1

ukkC1 � ˛1 � : : : � ˛n ¤ 0 in K�.V � T /: (B.8)

This completes the proof of the lemma and of the proposition.
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