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Noncommutative CW-spectra as enriched
presheaves on matrix algebras

Gregory Arone, Ilan Barnea, and Tomer M. Schlank

Abstract. Motivated by the philosophy that C�-algebras reflect noncommutative topology, we
investigate the stable homotopy theory of the (opposite) category of C�-algebras. We focus on
C�-algebras which are noncommutative CW-complexes in the sense of Eilers et al. (1998). We con-
struct the stable1-category of noncommutative CW-spectra, which we denote by NSp. Let M be
the full spectral subcategory of NSp spanned by “noncommutative suspension spectra” of matrix
algebras. Our main result is that NSp is equivalent to the1-category of spectral presheaves on M.

To prove this, we first prove a general result which states that any compactly generated sta-
ble 1-category is naturally equivalent to the 1-category of spectral presheaves on a full spectral
subcategory spanned by a set of compact generators. This is an 1-categorical version of a result
by Schwede and Shipley (2003). In proving this, we use the language of enriched1-categories as
developed recently by Hinich.

We end by presenting a “strict” model for M. That is, we define a category Ms strictly enriched
in a certain monoidal model category of spectra SpM. We give a direct proof that the category of
SpM-enriched presheaves M

op
s ! SpM with the projective model structure models NSp and conclude

that Ms is a strict model for M.

1. Introduction

The celebrated Gelfand theorem gives a contravariant equivalence between the categories
of locally compact Hausdorff spaces and commutative C �-algebras. This correspondence
led to the point of view that C �-algebras are noncommutative generalizations of topolog-
ical spaces. The study of C �-algebras from this perspective is the subject of noncommu-
tative geometry and topology. In this paper, we study noncommutative stable homotopy
theory, i.e., the stable homotopy category of the opposite of the category of C �-algebras.
In doing this, we are continuing the investigations of Østvær [24] and Mahanta [20],
among others.

To be a little more specific, in this paper we construct the 1-category of noncom-
mutative CW-spectra, which we denote by NSp, and show that NSp is equivalent to the
category of spectral presheaves over a spectrally enriched category M. The objects of M

2020 Mathematics Subject Classification. Primary 46L85; Secondary 55P42.
Keywords. Noncommutative CW-complexes, noncommutative spectra, stable infinity categories, enriched
infinity categories, enriched model categories.

https://creativecommons.org/licenses/by/4.0/


G. Arone, I. Barnea, and T. M. Schlank 1412

are noncommutative suspension spectra of matrix algebras, and its morphisms are map-
ping spectra between matrix algebras. In a companion paper [2], we analyze the category
M in considerable detail. In that paper, we introduce a rank filtration of M, describe the
subquotients of the rank filtration, and use it, in particular, to give an explicit model for
the rationalization of NSp.

We construct the 1-category of noncommutative CW-spectra as the stabilization of
the1-category of noncommutative CW-complexes. Our construction of the1-category
of noncommutative CW-complexes mimics Lurie’s construction of the 1-category of
“ordinary” CW-complexes as the Ind-completion of the 1-category of finite CW-com-
plexes [17]. The latter is considered an 1-category by first viewing it as a topological
category in the obvious way and then taking the topological nerve [17, Section 1.1.5].
(By a topological category in this paper we mean a category enriched in the category of
compactly generated weak Hausdorff spaces.)

In more detail, consider the class of C �-algebras called “noncommutative CW-com-
plexes” in [8, Section 2.4]. These are algebras generated from the finite dimensional
matrix algebras by a finite inductive procedure, generalizing the construction of finite
CW-complexes from S0 in the commutative case. We will therefore call them finite non-
commutative CW-complexes in this paper.

Finite noncommutative CW-complexes have been studied in several places (for in-
stance [25] and [7]). In Section 2 we define the topological category of finite noncommu-
tative CW-complexes to be the opposite of the topological category whose objects are the
C �-algebras which are noncommutative CW-complexes and whose hom-spaces are given
by taking the topology of pointwise norm convergence on the sets of �-homomorphisms.
We define the1-category of finite noncommutative CW-complexes by taking the topolog-
ical nerve of this topological category. We denote both versions of this category by NCWf .
We now define the1-category of noncommutative CW-complexes to be the Ind-comple-
tion of NCWf . This will be our generalization of the1-category of spaces and we denote
it by NCW. It can be shown that the 1-category NCWf is pointed, essentially small and
admits finite colimits, so NCW is a pointed compactly generated1-category.

Let NSp WD Sp.NCW/ be the1-category of noncommutative CW-spectra, i.e., the stabi-
lization of NCW. By construction NSp is a stable1-category. In particular, it is enriched and
tensored over the 1-category of “ordinary” spectra Sp. There is a suspension-spectrum
functor from noncommutative spaces to noncommutative spectra, which we denote by
†1NC W NCW! NSp. It can be shown (see Section 2) that the (maximal) tensor product of
C �-algebras induces a closed symmetric monoidal structure on both NCW and NSp, such
that †1NC W NCW! NSp is symmetric monoidal. Our main result is a presentation of NSp as
a category of spectral presheaves over a full spectral subcategory spanned by an explicit
set of generators.

In order to prove this, we first prove a general result about presenting a compactly
generated stable1-category as a category of spectral presheaves over a full spectral sub-
category spanned by a set of compact generators. Such a result was proven by Schwede
and Shipley [28] using model categories (see also [11] for the same result under more
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general hypotheses). However, in this paper we need a more general result formed in the
language of1-categories. To obtain this we use the formalism of enriched1-categories
developed by Hinich [14, 15] and reviewed in Section 3. We can formulate our result as
follows:

Theorem 1.1 (Theorem 4.1). Let D be a cocomplete stable 1-category. Suppose that
there is a small set C of compact objects in D , that generates D under colimits and
desuspensions. Thinking of D as left-tensored over the1-category of spectra Sp, we let
C be the full Sp-enriched subcategory of D spanned by C . Then D is naturally equivalent
to the1-category of spectral presheaves on C , denoted by PSp.C/.

There is also a monoidal version of Theorem 1.1, given in Theorem 4.3.
The classical stable infinity category of spectra Sp is generated by a single object, the

sphere spectrum S, and this is closely related to the fact that Sp can be identified with
the category of S-modules. By contrast NSp requires infinitely many generators. Let Mn

be the algebra of n � n matrices over C. The algebras ¹Mn j n D 1; 2; : : :º are the finite
dimensional simple C �-algebras. Collectively, they play the same role in NCW as S0 in
the usual category of CW-complexes. The suspension spectra ¹†1NCMn j n D 1; 2; : : :º are
compact objects of NSp, and they generate NSp under1-colimits and desuspensions. Let
M be the full Sp-enriched subcategory of NSp spanned by ¹†1NCMn j n D 1; 2; : : :º.

For every n; m � 0 we have Mn ˝Mm 'Mn�m, so the set ¹Mn j n D 1; 2; : : :º

is closed under the tensor product. Since †1NC is monoidal, we see that ¹†1NCMn j n D

1; 2; : : :º is also closed under the tensor product. It follows that the Sp-enriched category
M acquires a symmetric monoidal structure from NSp. This monoidal structure induces
a symmetric monoidal structure on the1-category of spectral presheaves PSp.M/ (Day
convolution). Using the monoidal version of Theorem 1.1 we obtain the following:

Theorem 1.2 (Theorem 6.2). The symmetric monoidal 1-category NSp is naturally
equivalent to the symmetric monoidal1-category PSp.M/ of spectral presheaves on M.

Thus, understanding the spectral 1-category M should help us understand the 1-
category NSp. The objects of M are in one-one correspondence with natural numbers and
the monoidal product acts as multiplication. Given natural numbers k; l , we denote the
corresponding mapping spectrum by Sk;l

Sk;l
WD HomNSp.†1NCMk ; †1NCMl /:

One can describe Sk;l explicitly as follows. First, let us define a functor Gk;l from finite
pointed spaces to pointed spaces by the formula

Gk;l .X/ D MapNCWf .Mk ; X ^Ml /:

Since the pointed 1-category NCWf has finite colimits, it is tensored over finite spaces
and enriched over spaces. The spectrum Sk;l is the stabilization of Gk;l , i.e., Sk;l is the
spectrum given by the sequence ¹Gk;l .S

0/; Gk;l .S
1/; : : :º. In the companion paper [2] we

undertake a detailed study of the spectra Sk;l and the structure of M.
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We end the paper by constructing a “strict” version of M. Namely, let SpM be the
category of continuous pointed functors from finite pointed CW-complexes to topological
spaces, endowed with the stable model structure. This is a symmetric monoidal model
category, that models the 1-category of spectra [19, 22]. In Definition 6.3, we define a
symmetric monoidal category, strictly enriched in SpM, denoted by Ms . We give a direct
proof of the following, which can be considered a strict version of Theorem 1.2:

Theorem 1.3 (Theorem 6.7). The category of SpM-enriched functors M
op
s ! SpM with the

projective model structure and Day convolution is a symmetric monoidal model category
that models the symmetric monoidal1-category NSp.

In Definition 3.6 we define the notion of enriched1-localization. This takes a cate-
gory strictly enriched in a monoidal model category, and produces an1-category enriched
in the 1-localization of this model category (see also Remark 2.1). A consequence of
Theorem 1.3 is that the enriched1-localization of Ms is equivalent to M.

Remark 1.4. Using the work of Blom and Moerdijk [5], it is possible to define a model
category structure on the opposite of the pro-category of separable C �-algebras that mod-
els NCW. This model structure is a right Bousfield localization of the model structure
presented in [4]. We might then be able to use known results on stable model categories
to prove a similar result to Theorem 1.3. We did not pursue this approach in this paper.

An alternative definition, via nonabelian derived categories. We will now digress to
describe another natural way of defining a noncommutative analogue to the1-category of
pointed spaces of Lurie. It relies even more on1-categorical constructions, and we do not
develop it in this paper. Namely, we can do so using the concept of a nonabelian derived
category (see [17, Section 5.5.8]). If C is a small1-category with finite coproducts, Lurie
defines the nonabelian derived category of C , denoted by P†.C/, as the 1-category
obtained from C by formally adjoining colimits of sifted diagrams. Loosely speaking
sifted diagrams are generated by filtered diagrams and the simplicial diagram �op. Taking
C D Fin� to be the category of finite pointed sets, we obtain the1-category of pointed
spaces, that is, we have a natural equivalence P†.Fin�/ ' ��.

Under the Gelfand correspondence, the finite pointed sets correspond to the finite
dimensional commutative C �-algebras. We thus denote by NFin� the full subcategory
of NCWf spanned by the finite dimensional C �-algebras (which are just finite products of
matrix algebras). We can now define a noncommutative analogue to the 1-category of
pointed spaces to be the nonabelian derived category of NFin�,

NCW WD P†.NFin�/:

We have natural inclusions

NFin� ,! NCWf ,! Ind.NCWf / D NCW
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and the1-category NCW admits sifted colimits, so by the universal property we have an
induced functor

NCW D P†.NFin�/! NCW;

that commutes with sifted colimits. We do not know if this functor is an equivalence. This
is true iff for every n � 0 and every simplicial object X in NCWf the natural map

colim
�op

MapNCW.Mn; X/! MapNCW.Mn; colim
�op

NCWX/

is an equivalence. We know how to prove this last assertion when X is a simplicial object
in NFin� or X has the form Y ˝Mk for k � 1 and Y is a simplicial object in NCWf

composed of commutative algebras.
What we do know is that the induced map on stabilizations

Sp.NCW/! Sp.NCW/ D NSp

is an equivalence. To see this, note that, by a similar reasoning as in the beginning of
Section 6, we have that M WD ¹†1Mi j i 2 Nº generates Sp.NCW/ under small colimits.
Thus, by Theorem 6.2, it is enough to show that for every k; l � 1 the induced map

HomSp.NCW/.†
1Mk ; †1Ml /! HomNSp.†1Mk ; †1Ml /

is an equivalence. We can define the functor xGk;l from finite pointed spaces to pointed
spaces by

xGk;l .X/ WD MapNCW.Mk ; X ^Ml /:

The stabilization of xGk;l is the mapping spectrum

MapSp.NCW/.†
1Mk ; †1Ml /:

It is thus enough to show that the induced natural transformation xGk;l!Gk;l is an equiva-
lence. The functor xGk;l clearly commutes with sifted colimits and therefore it is equivalent
to the (derived) left Kan extension of xGk;l jFin� along the inclusion Fin� � ��. We prove
in [2] that the same holds for the functor Gk;l . Therefore it is enough to show that the
restriction xGk;l jFin� ! Gk;l jFin� is an equivalence. But for every Œt � 2 Fin� we have

xGk;l .Œt �/ D MapP†.NFin�/.Mk ; Œt � ^Ml / ' MapNFin�.Mk ; M t
l /

D MapNCWf .Mk ; M t
l / ' MapInd.NCWf /.Mk ; Œt � ^Ml / D Gk;l .Œt �/;

so we are done. Note that since the main results in this paper (and in [2]) concern the sta-
bilization of NCW, they apply equally well to the stabilization of the alternative model NCW.

Comparison with previous work. We end the introduction by relating the1-categories
NCWf and NCW constructed here with different1-categories constructed in [20]. For more
detail see Section 2. In [20], Mahanta constructed the 1-category SC�1 as the topolog-
ical nerve of the topological category of all separable C �-algebras, with the mapping
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spaces given by the topology of pointwise norm convergence on the sets of �-homo-
morphisms. He called .SC�1/op the 1-category of pointed compact metrizable noncom-
mutative spaces. He then defined the1-category N�� as the Ind-completion of .SC�1/op,
and called it the1-category of pointed noncommutative spaces.

It can be shown that our 1-category NCWf is a full subcategory of .SC�1/op and the
inclusion commutes with finite colimits. It follows that our1-category NCW is a coreflec-
tive full subcategory of N��, and thus the inclusion admits a right adjoint

i W NCW � N�� WR:

We call a morphism gWX ! Y in N�� a weak homotopy equivalence if for every n � 1

the induced map
g�WMapN��

.Mn; X/! MapN��
.Mn; Y /

is an equivalence of spaces. This is analogous to weak homotopy equivalences between
topological spaces. The counit of the adjunction above i ıR! IdN�� is a levelwise weak
equivalence, and thus can be thought of as a CW approximation to elements in N��. If
X and Y are noncommutative CW-complexes then g is a weak equivalence iff it is an
equivalence in N��.

Informally speaking, since the equivalences in .SC�1/op are homotopy equivalences
of C �-algebras, the category N�� D Ind..SC�1/op/ is somewhat analogous to the infinity
category modeled by the Strøm model structure on topological spaces [29], in which the
weak equivalences are the homotopy equivalences. The category NCW constructed here is
analogous to the infinity category modeled by the Quillen model structure on topological
spaces, in which the weak equivalences are the weak homotopy equivalences.

Section by section outline of the paper. In Section 2, we define the1-category NCW: a
noncommutative analogue of the1-category of pointed spaces.

In Section 3, we review the theory of enriched1-categories, as developed by Hinich
[14, 15]. In particular, we state the enriched Yoneda lemma for 1-categories. We also
present a way to pass from model categories to1-categories is the enriched setting.

In Section 4, we review the notion of a stable1-category and show that a compactly
generated stable1-category is equivalent to the category of spectral presheaves on a full
subcategory spanned by a set of compact generators.

In Section 5, we review the process of stabilizing an1-category. We use the frame-
work established by Lurie in [18, Section 1.4]. We also review how a similar procedure
can be applied to an ordinary topologically enriched category, and compare the strict and
the1-categorical versions of stabilization.

In Section 6, we define the category of noncommutative CW-spectra NSp as the sta-
bilization of the category NCW. We identify the suspension spectra of matrix algebras as
an explicit set of generators of NSp. Letting M be the full subcategory of NSp spanned by
matrix algebras, we conclude that NSp is (monoidally) equivalent to PSp.M/, the category
of spectral presheaves on M. We give a strict model for M, denoted Ms , as a category
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enriched over a Quillen model category of spectra SpM. We also show that the category
of SpM-enriched functors M

op
s ! SpM with the projective model structure models the1-

category NSp and conclude that M is equivalent to the enriched1-localization of Ms .

2. The 1-category of noncommutative CW-complexes

In this section, we define a noncommutative analogue of the1-category of pointed spaces
defined by Lurie [17].

Let SC� (resp. CSC�) denote the category of all (resp. commutative) separable C �-
algebras and �-homomorphisms. Following the common convention in the field, the term
C �-algebra or �-homomorphism will always mean non-unital. The Gelfand correspon-
dence implies that the functor

X 7! C0.X/ W CM� ! CSC�op

that assigns to every pointed compact metrizable space X the commutative separable C �-
algebra of continuous complex valued functions on X that vanish at the basepoint, is an
equivalence of categories. It is thus natural to regard SC�op as the category of noncommu-
tative pointed compact metrizable spaces.

Consider CM� as a topologically enriched category, where for every X; Y 2 CM� we
endow the set of pointed continuous maps CM�.X; Y / with the compact open topology.
Now we take the topological nerve [17, Section 1.1.5] of this topological category and
obtain the 1-category .CM�/1. It is well known that .CM�/1 admits finite 1-colimits
and that1-pushouts can be calculated using the standard cylinder object.

Let us construct the1-category of pointed spaces in a way that admits a natural gen-
eralization to the noncommutative case. We denote by CWf

� the smallest full subcategory
of CM� that contains S0 and is closed under finite homotopy-colimits using the standard
cylinder object. Thus, CWf

� is the topological category of finite pointed CW-complexes.
We will also consider CWf

� as an1-category, by applying the coherent nerve functor to it.
We will use the same notation CWf

� to indicate both the ordinary (topologically enriched)
and the1-categorical incarnation of the category, trusting that it is clear from the context
which is meant. The 1-category of pointed spaces can be defined as the 1-categorical
Ind construction of CWf

� . Note that under the Gelfand correspondence, S0 corresponds
to C, which is the only nonzero finite dimensional simple commutative C �-algebra.

We now turn to the noncommutative analogue. We first recall from [20, Section 2.1]
the construction of the1-category SC�1. Consider SC� as a topologically enriched cate-
gory, where for every A; B 2 SC� we endow the set of �-homomorphisms SC�.A; B/ with
the topology of pointwise norm convergence. Now, we take the topological nerve of this
topological category and obtain the1-category SC�1. It is shown in [20, Section 2.1] that
SC�1 is (essentially) small, pointed, and finitely complete.
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Remark 2.1. Recall that any relative category, that is a pair .C ; W/ consisting of a cate-
gory C and a subcategory W � C , has a canonically associated1-category C1, obtained
by formally inverting the morphisms in W , in the infinity categorical sense. There is also
a canonical localization functor C ! C1 satisfying a universal property. We refer the
reader to [12] for a thorough account, and also to the discussion in [3, Section 2.2]. We
refer to C1 as the1-localization of C (with respect to W ). If C is a model category or a
(co)fibration category, we always take W to be the set of weak equivalences in C .

Using1-localization, there is another natural way of considering separable C �-alge-
bras as an1-category. There is a well-known notion of homotopy equivalence between
C �-algebras. We can consider SC� as a relative category, with the weak equivalences given
by the homotopy equivalences, and take its1-localization. This is the point of view taken,
for instance, in [1,30]. It follows from [4, Proposition 3.17] that we obtain an1-category
equivalent to SC�1.

Remark 2.2. It is well known that SC� is cotensored over the category of pointed finite
CW-complexes [1]. If K is a finite pointed CW-complex and A2 SC�, then the cotensoring
of A and K is given by the C �-algebra of pointed continuous functions from K to A.
One can define finite homotopy limits in SC� using this cotensoring. Consequently, the
1-pullbacks in SC�1 can be calculated as homotopy pullbacks using the standard path
object [20, Proposition 2.7].

Definition 2.3. We denote by NCWf the opposite of the smallest full subcategory of SC�

that contains the nonzero finite dimensional simple algebras in SC� (which are just the
matrix algebras over C) and is closed under finite homotopy-limits using the standard
path object. We call NCWf the category of finite pointed noncommutative CW-complexes.
The category NCWf is an “ordinary” topologically enriched category. We will also consider
NCWf as an1-category, by applying the coherent nerve functor to it. Like in the commuta-
tive case, we will use the same notation NCWf to indicate both the ordinary (topologically
enriched) and the1-categorical incarnation of the category, trusting that it is clear from
the context which is meant.

Using Remark 2.2 and unwinding definitions it is not hard to see that the topolog-
ical category NCWf contains precisely the C �-algebras that are noncommutative CW-
complexes in the sense of [8, Section 2.4]. In particular, NCWf contains as a full topological
subcategory the topological category of (usual) finite pointed CW-complexes (where the
finite pointed CW-complex X corresponds to C0.X/ 2 NCWf ).

Using [25, Theorem 11.14], the same proof as in [21, Proposition 1.1] gives that the
(maximal) tensor product of C �-algebras induces a symmetric monoidal structure on the
1-category NCWf , that preserves finite colimits in each variable separately. Note also
that since the topological category SC� is cotensored over pointed finite CW-complexes,
the topological category NCWf is tensored over pointed finite CW-complexes. We will
denote the tensoring of a finite CW-complex K and a noncommutative finite complex X

by K ^X .
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We now define the 1-category of noncommutative pointed CW-complexes to be the
1-categorical Ind-completion of NCWf ,

NCW WD Ind.NCWf /:

The1-category NCWf is (essentially) small, pointed and finitely cocomplete so NCW is a
compactly generated pointed1-category. By [18, Corollary 4.8.1.14] there is an induced
closed symmetric monoidal structure on the1-category NCW ' Ind.NCWf / such that the
natural embedding j W NCWf ! NCW is symmetric monoidal.

In [20], Mahanta defined the1-category N�� as the Ind-completion of .SC�1/op, and
called it the 1-category of pointed noncommutative spaces. By definition our category
NCWf is a full subcategory of .SC�1/op. Since1-pushouts in both NCWf and .SC�1/op can
be calculated as homotopy pushouts using the standard cylinder object, we see that the
inclusion NCWf ,! .SC�1/op commutes with finite colimits. Passing to Ind-completions
we get that the induced inclusion NCW ,! N�� admits a right adjoint (or in other words,
NCW is a coreflective full subcategory of N��)

i W NCW � N�� WR:

We call a morphism gWX ! Y in N�� a weak homotopy equivalence if R.g/ is an equiv-
alence in NCW, or equivalently, if for every object W in NCW the induced map

g�WMapN��
.i.W /; X/! MapN��

.i.W /; Y /

is an equivalence in � . Since every object in NCW is a small colimit of matrix algebras and
i commutes with small colimits, we see that g is a weak equivalence iff for every n � 1

the induced map
g�WMapN��

.Mn; X/! MapN��
.Mn; Y /

is an equivalence in � . This is analogous to weak homotopy equivalences between topo-
logical spaces. The counit of the adjunction above i ı R ! IdN�� is a levelwise weak
equivalence, and thus can be thought of as a CW approximation to elements in N��. If X

and Y are noncommutative CW-complexes then g is a weak equivalence iff it is an equiv-
alence in N��. Since the weak equivalences in .SC�1/op are the homotopy equivalences,
the category N�� is somewhat analogous to the infinity category modeled by the Strøm
model category on topological spaces [29].

3. Enriched infinity categories

In Theorem 1.1, we make use of enriched infinity categories. There are a few approaches
to this theory (see, for example, [9, 18]) but so far only in [14] the Yoneda embedding
is defined and its basic properties are shown. Since we need these results, we chose to
follow Hinich’s approach in this paper. In this section, we give an overview of the basic
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definitions and constructions needed for later on. We also present some new material in
Section 3.1, concerning the connection between model categories and1-categories in the
enriched setting.

Let Cat denote the1-category of1-categories, and let CatL denote the1-subcate-
gory of Cat whose objects are1-categories having small colimits and whose morphisms
preserve these colimits. The category Cat is symmetric monoidal under the cartesian prod-
uct, while CatL has a symmetric monoidal structure induced from the cartesian structure
on Cat (see [18, Corollary 4.8.1.4]). With this structure on CatL, MapCatL.P ˝ L; M/

is the subspace of MapCat.P � L; M/ consisting of functors preserving small colimits
along each argument. Note that a monoidal 1-category is equivalent to an associative
algebra object in Cat, while an associative algebra in CatL is equivalent to a monoidal1-
category with colimits, whose monoidal product commutes with colimits in each variable.
We define a closed monoidal1-category to be an associative algebra in CatL.

If M is a closed monoidal 1-category, then a category left-tensored over M is by
definition a left module over M in CatL. More generally, if O is an 1-operad, an O-
monoidal category is an algebra over O in CatL. If M is an O-monoidal category one can
define an O-algebra in M.

Let Ass be the associative operad and LM be the two colored operad of left modules.
Algebras over Ass are associative algebras and algebras over LM consist of an associa-
tive algebra and a left module over it. Therefore, an Ass-monoidal category is just a
closed monoidal1-category and an LM-monoidal category is a pair consisting of a closed
monoidal1-category and a category left-tensored over it.

Let M be a closed monoidal 1-category. For every space (i.e., an 1-groupoid) X ,
Hinich constructs (see [14, Sections 3 and 4]) a closed monoidal structure on the 1-
category of Quivers

QuivX .M/ WD Fun.Xop
�X; M/:

Hinich’s monoidal structure is an 1-categorical version of the usual convolution prod-
uct that one uses to define ordinary enriched categories. For B a category left-tensored
over M, Hinich constructs a left action of the closed monoidal1-category QuivX .M/ on
the1-category Fun.X; B/. In his notation we obtain an LM-monoidal category

QuivLM
X .M; B/ WD .QuivX .M/; Fun.X; B//:

Definition 3.1. An M-enriched category, with space of objects X is an associative algebra
in QuivX .M/.

Remark 3.2. Hinich uses the term M-enriched precategory for an associative algebra
in QuivX .M/. He reserves the term M-enriched category for precategories satisfying a
version of the Segal completeness condition (see [14, Definition 7.1.1]). In this paper, we
are not concerned with Segal completeness, so we will not distinguish between enriched
categories and precategories. We will just say “enriched category” where Hinich might
have said “enriched precategory”.



Noncommutative CW-spectra as enriched presheaves on matrix algebras 1421

Remark 3.3. If M is the 1-category of spaces, then the category of M-enriched cate-
gories with space of objects X is equivalent to the category of simplicial spaces satisfying
the Segal condition and equaling X in simplicial degree zero. See [14, Corollary 5.6.1],
where a more general statement is proved. In other words, a category enriched in spaces is
the same thing as an ordinary1-category. For a general closed monoidal1-category M,
there is a monoidal “forgetful” functor from M to spaces, given by MapM.1;�/. In this
way we obtain a forgetful functor from the category of M-enriched categories to ordinary
infinity categories (compare with [14, Definition 7.1.1]).

Remark 3.4. As we show in Section 3.1, the theory of monoidal model categories and
categories enriched or tensored over them extends nicely to the theory presented above
upon application of1-localization.

In [14, Section 6], Hinich defines the notion of an M-functor from an M-enriched
category to a category left-tensored over M. Let A be an M-enriched category with space
of objects X and B a category left-tensored over M. Then A is an associative algebra
in QuivX .M/ and Fun.X; B/ is left-tensored over QuivX .M/. An M-functor A ! B

is defined to be a left module over A in Fun.X; B/, and the 1-category of M-functors
A! B is defined to be

FunM.A; B/ WD LModA.Fun.X; B//:

For a; b objects of B, we define the presheaf HomB.a; b/ 2 P.M/ by

HomB.a; b/.K/ WD MapB.K ˝ a; b/:

Clearly HomB.a; b/WMop ! � preserves limits, but it is not necessarily representable. If
it happens to be representable, then the representing object serves as an internal mapping
object from a to b. Every M-functor F WA! B induces maps in P.M/

hA.x;y/ ! HomB.F.x/; F.y//

for x; y 2 X (where hA.x;y/ 2 P.M/ denotes the representable presheaf associated to
A.x; y/ 2M). The M-functor F is called M-fully faithful if all these maps are equiva-
lences.

If HomB.b; c/WMop ! � is representable for all objects b; c of B, then B is enriched
as well as left-tensored. More generally and more precisely, Hinich proves the follow-
ing proposition (see [14, Proposition 6.3.1 and Corollary 6.3.4]). We note that if M is
presentable, then any functor Mop ! � that preserves limits is representable (see [17,
Proposition 5.5.2.2]).

Proposition 3.5. Let M be a closed monoidal1-category and B left-tensored over M.
Let C be a class of objects of B. If for all x; y 2 C , the presheaf HomB.x; y/ is repre-
sentable, then there exists an M-enriched category C whose class of objects is C , such
that for any two objects x;y of C , the morphism object C.x;y/ is a representing object for
the functor HomB.x; y/. There is a fully faithful M-enriched functor C ! B, extending
the inclusion of C into B.
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Using [14, Lemma 6.3.3], it is not hard to see that given the conditions of Theorem 3.5
all the categories C that can be obtained are canonically equivalent (via the choice of X

as the full subspace of B spanned by C in [14, Corollary 6.3.4]). We can thus call C the
full enriched subcategory of B spanned by C . Taking C to be the class of all objects in
B we see that if HomB.x; y/ is representable for all x; y, then B is enriched as well as
tensored over M.

3.1. From enriched model categories to enriched infinity categories

Let Cat1 denote the category of small categories and functors between them and let �M

denote the category of simplicial sets. We have the usual nerve functor

N W Cat1 ! �M:

The functor N is limit preserving and in particular, it is a (cartesian) monoidal functor.
In [16, Section 2.1], Horel constructs a (large, colored) Cat1-operad denoted by

ModCat. The colors in ModCat are model categories, while the category of multilinear
operations MapModCat.M1; : : : ; Mn; N / is the category of left Quillen n-functors

M1 � � � � �Mn ! N

and natural weak equivalences (on cofibrant objects) between them. Since N is a monoidal
functor, we obtain a simplicial operad from ModCat by composing with N. We denote this
simplicial operad also by ModCat.

Let ��op

M denote the category of simplicial objects in �M with Rezk’s model structure.
This is a combinatorial simplicial cartesian closed symmetric monoidal model category
with all objects cofibrant. Let CSS denote the full simplicial subcategory of ��op

M spanned
by the fibrant objects. Then CSS is a monoidal simplicial category (under the cartesian
product) whose simplicial nerve is naturally equivalent to the monoidal1-category Cat.
Horel also constructs in [16, Section 2.1] another full simplicial subcategory Cat1 � ��op

M
containing CSS and closed under the cartesian product. He shows that the inclusion CSS!
Cat1 induces an equivalence of1-categories after application of simplicial nerve.

Let ModCatc be the full sub simplicial operad of ModCat on model categories that
are Quillen equivalent to a combinatorial model category. For M 2 ModCatc , let NR.M/

denote the Rezk nerve construction on the cofibrant objects in M and weak equivalences
between them. Furthermore, by [16, Theorem 2.16], NR extends to a map of simplicial
operads ModCatc ! Cat1. Applying simplicial nerve, we obtain a map of 1-operads
N� .ModCatc/! Cat. By [16, Remark 2.17], this map factors through CatL. Since Rezk’s
nerve is one of the models for 1-localization (see, for example, [3, Section 2.2]), we
obtain a map of1-operads

.�/1 W N� .ModCatc/! CatL

which acts as1-localization on objects.
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Let M be the nonsymmetric operad (in Set) freely generated by an operation in degree 0
and 2. An algebra over M in Set is a set with a binary multiplication and a base point. Let P
be the operad in Cat1 which is given in degree n by the groupoid whose objects are points
of M.n/ with a unique morphism between any two objects. Then an algebra over P in Cat1

is a monoidal category. The nerve of P is a simplicial operad which we also denote by P.
Clearly, we have an equivalence of1-operads N�P ' Ass.

Let M be a monoidal model category, Quillen equivalent to a combinatorial model cat-
egory. Then M is an algebra over P in ModCatc (as operads in Cat1 and thus in �M). Apply-
ing the simplicial nerve we get that M is an algebra over N�P ' Ass in N� .ModCatc/. It
follows that M1 is an algebra over Ass in CatL, so M1 is a presentable closed monoidal
1-category. Furthermore, the localization functor

M!M1

is lax monoidal.
Now, let C be a model category, Quillen equivalent to a combinatorial one. Suppose

that C is an M-model category, in the sense that C is tensored closed over M and satisfies
the Quillen SM7 axiom. As above, we can construct a simplicial operad Q whose simplicial
nerve is equivalent to LM and such that .M; C/ is an algebra over Q in ModCatc . Applying
the simplicial nerve we get that .M; C/ is an algebra over N�Q ' LM in N� .ModCatc/. It
follows that .M1; C1/ is an algebra over LM in CatL, so C1 is a presentable1-category
left-tensored over M1. Furthermore, the localization functor

.M; C/! .M1; C1/

is LM-lax monoidal.
Let .�/f and .�/c denote fibrant and cofibrant replacement functors in a model cate-

gory. The model category C is an M-model category so for every A 2 C we have a Quillen
pair

.�/˝ Ac
WM � C WHomC .Ac ;�/:

By [23] we have an induced adjunction of1-categories

L.�/˝ Ac
WM1 � C1WR HomC .Ac ;�/:

Thus we have equivalences natural in A; B 2 C ,

MapM1
.K; R HomC .Ac ; B// ' MapC1

.LK ˝ Ac ; B/:

Clearly L.�/˝Ac WM1! C1 represents the tensor product .�/˝A of C1 as tensored
over M1 so we have natural equivalences

MapM1
.K; HomC .Ac ; Bf // ' MapC1

.K ˝ A; B/:

We see that HomC .Ac ; Bf / 2M1 is a representing object for HomC1.A; B/ 2 P.M1/

and thus we have
HomC .Ac ; Bf / ' HomC1.A; B/:



G. Arone, I. Barnea, and T. M. Schlank 1424

Definition 3.6. Let A be a strictly enriched category over M. Let X denote the discrete
space on the set of objects of A. Then A is an algebra over Ass in the monoidal category
QuivX .M/ (see [13]). The localization functor

M!M1

is lax monoidal, so the induced functor

QuivX .M/! QuivX .M1/

is also lax monoidal. We define the enriched1-localization functor to be the composition
with this last functor

.�/1WAlgAss.QuivX .M//! AlgAss.QuivX .M1//:

Thus, A1 is an enriched1-category over M1.
Let F WA! C be a strict M-functor. We have an LM-monoidal category

QuivLM
X .M; C/ WD .QuivX .M/; Fun.X; C//

and F is just a module in Fun.X; C/ over A (see [13]). In this case, .A; F / is an algebra
over LM in the LM-monoidal category QuivLM

X .M; C/. The localization functor

.M; C/! .M1; C1/

is LM-lax monoidal, so the induced functor

QuivLM
X .M; C/! QuivLM

X .M1; C1/

is also LM-lax monoidal. It follows that we obtain a functor that we denote by

.�/1WAlgLM.QuivLM
X .M; C//! AlgLM.QuivLM

X .M1; C1//:

Clearly, this functor lifts the functor above so we have

.A; F /1 D .A1; F1/:

Thus, F1 is an M1-functor from A1 to C1 and we call it the enriched1-localization
of F .

We call F homotopy fully faithful if for every x; y 2 X the composition

A.x; y/
F
�! HomC .F.x/; F.y//! HomC .F.x/c ; F .y/f /

is an equivalence in the model category M.

Theorem 3.7. Let A be a strictly enriched category over M and let F WA ! C be a
strict M-functor which is homotopy fully faithful. Then the M1-functor F1WA1 ! C1
is M1-fully faithful (in the sense described after Remark 3.4).
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Proof. Let LWM!M1 denote the localization functor. Then for every x;y 2X we have
a commutative square in M1

L.A.x; y//

**

LF //

��

L.HomC .F.x/; F.y///

��

A1.x; y/
F1 // HomC1.F1.x/; F1.y//:

The left map is an equivalence by definition of A1 and the right map is equivalent to L

applied to the map HomC .F.x/; F.y//! HomC .F.x/c ; F .y/f /. Since F is homotopy
fully faithful, the diagonal map is an equivalence, and thus also the bottom map.

Corollary 3.8. Let A be a strictly enriched category over M and let F WA! C be a strict
fully faithful M-functor that lands in the fibrant cofibrant objects. Then the M1-functor
F1WA1 ! C1 is M1-fully faithful.

Enriched Yoneda lemma. Hinich formulates and proves a version of the enriched Yoneda
lemma, which is of key importance to us. We will review this part of Hinich’s work next.

Let M be a closed monoidal1-category and let A be an M-enriched category with
space of objects X . Recall that Mrev denotes the closed monoidal1-category which has
the same underlying 1-category as M but with the monoidal multiplication reversed,
that is m1 ˝

rev m2 WD m2 ˝m1. Hinich defines the opposite category Aop, which is an
Mrev-enriched category with space of objects Xop, and constructs a structure of a category
left-tensored over M on the1-category of M-presheaves

PM.A/ WD FunMrev.Aop; M/:

Here, M is considered as a right M-module which is the same as a left Mrev-module.

Remark 3.9. In the case of interest to us, M is the category of spectra, which is a sym-
metric monoidal category. This means that there is a canonical equivalence of monoidal
categories M 'Mrev.

Hinich also constructs an M-fully faithful functor called the enriched Yoneda embed-
ding

Y WA! PM.A/:

In [15] it is shown that this construction has the following universal property: If B is any
category left-tensored over M then precomposition with Y induces an equivalence

MapLModM
.PM.A/; B/ ' MapM.A; B/:

In [15], all the above is done more generally relative to an 1-operad O. Taking
O D Com to be the terminal1-operad and noting that Com˝ Ass ' Com, we obtain the
following. Suppose M is a closed symmetric monoidal1-category. Then the category of
M-left-tensored categories is symmetric monoidal and we define a symmetric monoidal
M-left-tensored category to be a commutative algebra in the category of M-left-tensored
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categories. Similarly, the category of M-enriched categories is symmetric monoidal and
we define a symmetric monoidal M-enriched category to be to be a commutative alge-
bra in the category of M-enriched categories. Moreover, one can define the notion of a
symmetric monoidal M-functor from a symmetric monoidal M-enriched category to a
symmetric monoidal M-left-tensored category.

If A is a symmetric monoidal M-enriched category, the category of presheaves PM.A/

acquires a canonical symmetric monoidal M-left-tensored structure (Day convolution),
and the Yoneda embedding Y WA! PM.A/ acquires a structure of a symmetric monoidal
M-functor. Moreover, this construction has the following universal property: If B is any
symmetric monoidal M-left-tensored category then precomposition with Y induces an
equivalence

MapCom
LModM

.PM.A/; B/ ' MapCom
M .A; B/:

4. Stable 1-categories and spectral presheaves

In this section, we consider the notion of stable1-categories. We show that a compactly
generated stable 1-category is equivalent to PSp.A/ for some small Sp-enriched cate-
gory A.

Let D be a pointed finitely cocomplete1-category. We define the suspension functor
on D

†D WD ! D

by the formula
†D.X/ WD �

a
X

�:

Alternatively, the suspension functor can be defined as the smash product S1 ^X , using
the fact that a pointed finitely cocomplete1-category is tensored over pointed spaces.

If the suspension functor is an equivalence of categories, then D is called stable.
A stable presentable 1-category is naturally left-tensored over the closed monoidal 1-
category of spectra Sp (see [18, Proposition 4.8.2.18]). Moreover, Sp is presentable, so
for every b; c 2D the presheaf HomD.b; c/ 2 P.Sp/ is representable (we will denote the
representing object also by HomD.b; c/ 2 Sp). By Proposition 3.5 it follows that a stable
presentable 1-category is canonically enriched over Sp (this was observed by Gepner–
Haugseng in [9, Example 7.4.14], where they also pointed out that the presentability
assumption is unnecessary).

Theorem 4.1. Let D be a cocomplete stable1-category. Suppose that there is a small set
C of compact objects in D , that generates D under colimits and desuspensions. Thinking
of D as left-tensored over Sp, we let C be the full Sp-enriched subcategory of D spanned
by C . Then we have a natural functor of categories left-tensored over Sp,

PSp.C/
�
�! D ;

which is an equivalence of the underlying 1-categories and sends each representable
presheaf Y.c/ 2 PSp.C/ to c 2 C .
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Remark 4.2. Theorem 4.1 appears in [18, Theorem 7.1.2.1] for the case that jC j D 1.
The general case, formulated in the language of model categories, can be found in [28,
Theorem 3.3.3]. In [11] the last result can be found under more general hypotheses.

Proof. By definition of the full enriched subcategory, there is a fully faithful Sp-functor
i WC !D . By the universal property of the Yoneda embedding, we have an induced func-
tor of categories left-tensored over Sp,

I WPSp.C/! D ;

such that I ı Y ' i . We thus get an equivalence I.Y.c//' i.c/' c, for every c 2 C , and
it remains to show that I is an equivalence.

The functor I is a morphism of left modules over Sp in CatL, so in particular, I

commutes with colimits. The 1-category D is presentable by [17, Theorem 5.5.1.1].
Let X denote the full subspace of D generated by C and recall that the 1-category
PSp.C/ is defined as the category of left Cop-modules with values in Fun.Xop; Sp/. Since
Fun.Xop; Sp/ is stable and presentable, so is PSp.C/ (see [18, Proposition 1.1.3.1 and
Corollary 4.2.3.5]). Thus, by the adjoint functor theorem I has a right adjoint J ,

I WPSp.C/ � D WJ:

We first show that the unit Y.c/! J.I.Y.c/// of the adjunction I a J is an equiva-
lence for every c 2 C . It is not hard to show that J preserves Sp-enrichment, so both Y and
J ı I ı Y are Sp-functors C ! PSp.C/, and that the unit induces a map Y ! J ı I ı Y

of Sp-functors. Note that

FunSp.C ; PSp.C// D LModC .Fun.X; PSp.C///

D LModC .Fun.X; FunSprev.Cop; Sp///

D LModC .Fun.X; LModCop.Fun.Xop; Sp////

D LModC .LModCop.Fun.X; Fun.Xop; Sp////

D LModC .RModC .Fun.Xop
�X; Sp///;

so an Sp-functor C ! PSp.C/ is the same as a C -C -bimodule in the category

Fun.Xop
�X; Sp/:

Thus, we can view Y ! J ı I ı Y as a map of C -C -bimodules in Fun.Xop � X; Sp/

and we need to show that it is an equivalence. The forgetful functor to Fun.Xop � X; Sp/

reflects equivalences, and an equivalence in Fun.Xop �X; Sp/ can be verified objectwise,
so we can fix two objects c; d in C and show that the induced map of spectra

Y.c; d/! .J ı I ı Y /.c; d/
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is an equivalence. But since Y and i are Sp-fully faithful, we have

.J ı I ı Y /.c; d/ D J.I.Y.d///.c/

' HomPSp.C/.Y.c/; J.I.Y.d//// ' HomD.I.Y.c//; I.Y.d///

' HomD.i.c/; i.d// ' C.c; d/ ' HomPSp.C/.Y.c/; Y.d//

' Y.d/.c/ ' Y.c; d/:

Since I.Y.c// ' c and J.c/ ' Y.c/, the counit I.J.c// ! c of I a J is also an
equivalence, for every c 2 C . Note that C generates D under colimits, ¹Y.c/ j c 2 C º

generates PSp.C/ under colimits and the functor I commutes with colimits. Thus, if we
can show that J also commutes with colimits, it would follow that the unit and counit of
I a J are equivalences, and we are done.

Let us show first that J commutes with filtered colimits. So let d D colimi2I di be a
filtered colimit diagram in D . We need to verify that the induced map colimi2I J.di /!

J.d/ is an equivalence. Recall that

PSp.C/ D FunSprev.Cop; Sp/ D LModCop.Fun.Xop; Sp//:

The forgetful functor U from PSp.C/ to Fun.Xop; Sp/ commutes with colimits (see [18,
Corollary 4.2.3.5]) and reflects equivalences, so it is enough to verify that

colim
i2I

U.J.di //! U.J.d//

is an equivalence. Now, colimits in Fun.Xop; Sp/ are pointwise, so we can fix c 2 C and
show that

colim
i2I

U.J.di //.c/! U.J.d//.c/

in an equivalence. We have an equivalence natural in e 2 D ,

U.J.e//.c/ D J.e/.c/ D HomPSp.C/.Y.c/; J.e// ' HomD.I.Y.c//; e/

' HomD.i.c/; e/ ' HomD.c; e/;

so it is enough to show that

colim
i2I

HomD.c; di /! HomD.c; d/

is an equivalence, which is true by the compactness of c in D .
Since both range and domain of J are stable, and in a stable1-category every pull-

back square is a pushout square and vice versa, it follows that J sends pushout squares to
pushout squares. Thus, J commutes with all small colimits.

Using the results in [15] one can prove an extension to Theorem 4.1:
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Theorem 4.3. In the situation of Theorem 4.1, suppose D is symmetric monoidal and
the set C is closed under the monoidal product in D and contains the unit of D . Then
C acquires a canonical symmetric monoidal Sp-enriched structure, the category of pre-
sheaves PSp.C/ acquires a canonical symmetric monoidal left Sp-tensored structure and
the equivalence PSp.C/

�
�! D acquires a canonical symmetric monoidal left Sp-tensored

structure.

5. Stabilization of categories

In this section, we review the notion of stabilization of an 1-category. We will use the
framework established by Lurie in [18, Section 1.4]. We present in Section 5.1 a similar
procedure that can be applied to an ordinary topologically enriched category. We will
compare the strict and the1-categorical versions of stabilization.

Let C be a pointed1-category. To ensure that C has all the good properties we may
want, we will assume that C ' Ind.C0/ where C0 is a small pointed1-category that is
closed under finite colimits. This includes NCW ' Ind.NCWf /. By [17, Theorem 5.5.1.1],
C is presentable, and therefore has small limits and colimits [17, Corollary 5.5.2.4]. Fur-
thermore, filtered colimits commute with finite limits in C by the remark immediately
following [17, Definition 5.5.7.1]. It follows, in particular, that C is differentiable in the
sense of [18, Definition 6.1.1.6] and therefore the results of [18, Chapter 6] apply to C .

Recall that CWf
� is the1-category of pointed finite CW-complexes. Let F W CWf

� ! C

be a functor. Recall that F is called reduced if F.�/ is a final object of C , and F is
called 1-excisive if F takes pushout squares to pullback squares. Let linear functors be
functors that are both reduced and 1-excisive. Linear functors provide a good framework
for defining spectra in the context of general1-categories.

Definition 5.1 ([18, Definition 1.4.2.8]). A spectrum object in C is a linear functor

CWf
� ! C :

Let Sp.C/ be the1-category of linear functors CWf
� ! C .

Sp.C/ is called the category of spectra of C , or the stabilization of C . By results
in [18], Sp.C/ is a stable and presentable1-category ([18, Corollary 1.4.2.17 and Propo-
sition 1.4.4.4] respectively).

Let Fun�.CWf
� ; C/ be the category of all pointed functors from CWf

� to C . Then Sp.C/

is by definition a full subcategory of Fun�.CWf
� ; C/. The fully faithful functor Sp.C/ ,!

Fun�.CWf
� ; C/ has a left adjoint

LWFun�.CWf
� ; C/! Sp.C/

called linearization. Explicitly, if F W CWf
� ! C is a pointed functor, then the linearization

of F is given by the following formula:

LF.X/ D colim
n!1

�n
C F.†nX/:
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See [18, Example 6.1.1.28] for a discussion of this formula in the context of1-categories
(of course this formula is older than [18] and goes back at least to [10]). The stabilization
Sp.C/ is the left Bousfield localization of Fun�.CWf

� ; C/ at the stable equivalences and L

is the localization functor (a map between functors is a stable equivalence if it induces an
equivalence between linearizations).

There is an adjoint pair of functors

†1C WC � Sp.C/ W�1C ;

where †1
C

x.K/ D colimn!1�n
C

†n
C

.K ^ x/ and �1
C

GDG.S0/. This formula for �1
C

agrees with the one in [18, Notation 1.4.2.20], and therefore our †1
C

, being left adjoint
to �1

C
, is also equivalent to Lurie’s. The functor †1

C
satisfies the following universal

property: For every stable presentable1-category D , precomposition with †1
C

induces
an equivalence of1-categories

FunL.Sp.C/; D/
'
�! FunL.C ; D/;

where FunL denotes left functors (that is, colimit preserving functors).
An important special case is when C D �� is the 1-category of pointed spaces. In

this case Sp WD Sp.��/ is the classical1-category of spectra, presented as the category
of linear functors from CWf

� to ��. Whenever C D �� we write Sp, †1 or �1, omitting
the subscript C .

There is another useful way to construct Sp.C/ when C D Ind.C0/, with C0 closed
under finite colimits. We will now describe it.

Definition 5.2. Let C0 be an1-category closed under finite colimits. Define the Spanier–
Whitehead category of C0, which we denote by SW.C0/, to be the colimit of the sequence

C0

†C0
���! C0

†C0
���! � � �

in Cat.

Thus, the objects of SW.C0/ are pairs .X; n/ where X 2 C0 and n 2N. The pair .X; n/

represents the n-fold desuspension of X . The mapping spaces in SW.C0/ are given by

MapSW.C0/..X; n/; .Y; m// D colim
k2N

MapC0
.†k�n

C X; †k�m
C Y /;

where the colimit is taken in the 1-category of spaces. Clearly, SW.C0/ is a stable 1-
category. It is closed under finite colimits, but not under arbitrary colimits. It plays the
role of the category of finite spectra over C . There is a finite suspension spectrum functor

†1C0

f
WC0 ! SW.C0/

given by X 7! .X; 0/, which satisfies the following universal property: For every stable
1-category D , precomposition with †1

C0

f induces an equivalence of1-categories

Funfc
� .SW.C0/; D/

'
�! Funfc

� .C0; D/;

where Funfc
� denotes pointed finite colimit preserving functors.
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One has the following description of Sp.Ind.C0//:

Proposition 5.3. Let C0 be a small pointed finitely cocomplete1-category, and let C WD

Ind.C0/. Then there is a natural equivalence

Sp.C/ ' Ind.SW.C0//:

and under this equivalence,

†1C W Ind.C0/ ' C ! Sp.C/ ' Ind.SW.C0//;

is just the prolongation of
†1C0

f
W C0 ! SW.C0/:

Proof. This is proved in [18, Chapter 1.4] for the case C0D CWf
� and C D Ind.CWf

� /' ��.
The proof in the general case is similar. In brief, one can check that Ind.SW.C0// satisfies
the same universal property as Sp.C/.

This proposition has the following rather important corollary.

Corollary 5.4. Let C0; C be as before. Suppose A is a set of objects of C0 that generates
C0 under finite colimits, in the sense that C0 is the only subcategory of C0 that contains
A and is closed under finite colimits and equivalences. Then the set of suspension spectra
¹†1

C
x j x 2 Aº generates SW.C0/ under finite colimits and desuspensions, and generates

Sp.C/ under arbitrary colimits and desuspensions.

The following notation is going to be used quite a lot.

Definition 5.5. Suppose C is a pointed1-category with finite colimits. Let x and y be
objects of C . Then the functor GC

x;y WCWf
� ! �� is defined by GC

x;y.K/DMapC .x;K ^ y/.
Sometimes we will omit the superscript C and write simply Gx;y .

Lemma 5.6. If C is a stable1-category then Gx;y is linear for any two objects x; y.

Proof. We need to prove that Gx;y.�/' � and that Gx;y is 1-excisive. The first condition
holds because � ^ y is equivalent to a final object of C . Now, let us prove that Gx;y is
1-excisive. We have equivalences

MapC .x; K ^ y/
'
�! MapC .S1

^ x; S1
^K ^ y/

'
�! MapC .x; �.S1

^K ^ y//:

Here, the first map is an equivalence because C is stable, and the second equivalence is
a standard adjunction. The composite equivalence can be reinterpreted as saying that the
canonical map Gx;y!�Gx;y† is an equivalence. It follows that the map Gx;y!LGx;y

is an equivalence, so Gx;y is linear.

If C is a stable1-category then GC
x;y is in fact equivalent to the canonical enrichment

of C over spectra. The next lemma and remark say that more generally the linearization
of GC gives, in favorable circumstances, the spectral enrichment of the stabilization of C .
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Lemma 5.7. Let C0 be a small finitely cocomplete1-category. To simplify notation, let
S WC0 ! SW.C0/ be the finite suspension spectrum functor. Then the natural map

GC0
x;y ! G

SW.C0/

S.x/;S.y/

induced by the finite suspension spectrum functor is equivalent to the linearization map

GC0
x;y ! LGC0

x;y :

Proof. By definition, we have equivalences

G
SW.C0/

S.x/;S.y/
.K/ D MapSW.C0/.S.x/; K ^ S.y// D colim

n!1
MapC0

.Sn
^ x; Sn

^K ^ y/

D colim
n!1

�n MapC0
.x; Sn

^K ^ y/ D colim
n!1

�nGC0
x;y.Sn

^K/

D LGC0
x;y.K/

and the map from G
C0
x;y is precisely the linearization map.

Remark 5.8. If C D Ind C0, with C0 as in the previous lemma, and x; y are objects of C ,
it is not true that G

Sp.C/

†1
C

.x/;†1
C

.y/
is equivalent to the linearization of GC

x;y . Rather, there is
an equivalence

G
Sp.C/

†1
C

.x/;†1
C

.y/
.K/ D MapC .x; colim

n!1
�n.Sn

^ y//:

This is equivalent to LGC
x;y.K/ if x is a compact object, but not in general. In particular,

it is true when x 2 C0, which is the case considered in the previous lemma.

5.1. Spectral enrichment of pointed topological categories

Suppose C is an 1-category and x; y are objects of C . We saw that functors of the
form GC

x;y can be used to define the spectral enrichment of the stabilization of C . If
C is an ordinary topological category, one can use similar functors GC

x;y to define a
spectral enrichment of C , using the more traditional view of spectra as modeled by the
Quillen model category of continuous functors. In this subsection, we define a strict spec-
tral enrichment of pointed topological categories and compare it with the1-categorical
enrichment.

Let Top denote the category of pointed compactly generated weak Hausdorff spaces
with the standard model structure of Quillen [26]. Every object in Top is fibrant, and
every CW-complex is cofibrant. The model category Top is a model for the1-category
of pointed spaces ��. This means that the1-localization of Top with respect to the weak
equivalences (see Remark 2.1) is canonically equivalent to ��. Note that any pointed topo-
logical category is naturally enriched in Top.

Definition 5.9. A pointed topological category C is called tensored closed over CWf
� if we

are given a bi-continuous left action ^W CWf
� � C ! C such that the following hold:
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(1) The 1-category C1 is finitely cocomplete, where C1 is the topological nerve
of C .

(2) After application of the topological nerve the functor

^1 W CWf
� � C1 ! C1

commutes with finite colimits in each variable.

Definition 5.10. Let C be a pointed topological category, tensored closed over CWf
� . Let

x and y be objects of C . In keeping with notation we introduced in Definition 5.5, we
define the pointed topological functor GC

x;y WCWf
� ! Top by GC

x;y.K/ D MapC .x; K ^ y/.
Again, we may omit the superscript C and write simply Gx;y .

Remark 5.11. We saw earlier that pointed1-functors from CWf
� to �� provide a way of

defining the1-category of spectra. This is known also in the more traditional approach to
spectra via model categories. There is a Quillen model structure on the category
Fun�.CWf

� ; Top/ of continuous pointed functors, called the stable model structure, and
it provides one of the models for the category of spectra. We refer the reader to [19, 22]
for more details about this model structure.

We denote the category Fun�.CWf
� ;Top/ with the stable model structure by SpM. We de-

note the category Fun�.CWf
� ; Top/ with the projective model structure by Fun�.CWf

� ; Top/.
The model category SpM is a left Bousfield localization of Fun�.CWf

� ; Top/, so we have a
Quillen pair

IdWFun�.CWf
� ; Top/ � SpM

W Id :

Applying1-localization, this Quillen pair becomes the localization adjunction

LWFun�.CWf
� ; ��/ � Sp W ı:

Let C be a pointed topological category, tensored closed over CWf
� and let x; y 2 C .

By the previous definition we have a functor GC
x;y W CWf

� ! Top. Under the identification

Fun�.CWf
� ; Top/1 ' Fun�.CWf

� ; ��/, the functor GC
x;y can be thought of as an object in

Fun�.CWf
� ; ��/. We will now compare this with the functor G

C1
x;y WCWf

� ! �� from Defini-
tion 5.5.

Clearly, the bi-functor
^1W CWf

� � C1 ! C1

is a left action of the monoidal1-category CWf
� on C1. It follows that we have an induced

action on the Ind-categories

^1W �� � Ind.C1/! Ind.C1/

and this action commutes with small colimits in each variable. Since �� is a mode in the
sense of [6, Section 5], this action coincides with the canonical action of �� on Ind.C1/
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as a presentable pointed1-category. In particular, we get that the restriction

^1W CWf
� � C1 ! C1

coincides with the canonical action of CWf
� on C1 as an1-category with finite colimits.

It follows that under the identification Top1 ' ��, for any K 2 CWf
� and z 2 C we

have natural equivalences

MapC .x; z/ ' MapC1
.x; z/;

K ^ y ' K ^1 y:

Thus, we have

GC1
x;y .K/ D MapC1

.x; K ^1 y/ ' MapC .x; K ^ y/ D GC
x;y.K/; (1)

or G
C1
x;y ' GC

x;y :

Definition 5.12. Let C be a pointed topological category, tensored closed over CWf
� . We

define a strict enrichment of C over SpM as follows: If x and y are objects of C we define

HomC .x; y/ WD GC
x;y 2 SpM:

Let x; y; z be objects of C and let K and L be finite CW-complexes. Note that there is a
natural map Gx;y.K/ ^Gy;z.L/! Gx;z.K ^ L/, defined as the composite

MapC .x; K ^ y/ ^MapC .y; L ^ z/

! MapC .x; K ^ y/ ^MapC .K ^ y; K ^ L ^ z/

! MapC .x; K ^ L ^ z/

where the first map is induced by the topological functor K ^ .�/WC ! C and the second
map is given by composition. This map induces a natural map Gx;y ˝Gy;z!Gx;z , where
˝ denotes Day convolution which is the tensor product in SpM. Thus, we have defined
composition and it can be checked that the above indeed defines a strict enrichment of C

over SpM.

Theorem 5.13. Let C be a small pointed topological category, tensored closed over CWf
� .

Then under the identification SpM
1 ' Sp, for any two objects x and y of C we have a

natural equivalence

HomC .x; y/ ' HomSp.Ind.C1//.†
1.x/; †1.y//:

Proof. Let x and y be objects in C . Recall that HomC .x; y/ D GC
x;y and consider GC

x;y

as an object in Fun�.CWf
� ; Top/. By (1), we have GC

x;y ' G
C1
x;y :
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We have a commutative square

Fun�.CWf
� ; Top/1

L Id
��

� // Fun�.CWf
� ; ��/

L

��

SpM � // Sp:

Let .GC
x;y/f be a fibrant replacement to GC

x;y in SpM. Then the map GC
x;y ! .GC

x;y/f ,
considered in Fun�.CWf

� ; Top/, translates to G
C1
x;y !LG

C1
x;y under the top horizontal map.

By Lemma 5.7 the last map is equivalent to

GC1
x;y ! G

SW.C1/

S.x/;S.y/
:

After applying L, this map becomes an equivalence, so we have a natural equivalence in
Sp,

GC
x;y ' G

SW.C1/

S.x/;S.y/
' HomSW.C1/.S.x/; S.y//:

By Proposition 5.3 we are done.

6. The 1-category of noncommutative CW-spectra

In this section, we define the1-category of noncommutative CW-spectra NSp. The sus-
pension spectra of matrix algebras form a set of compact generators of NSp. We denote
by M the full spectral subcategory of NSp spanned by this set of generators (see Proposi-
tion 3.5). Thus, M is an Sp-enriched1-category. We prove our main theorem: there is an
equivalence of1-categories between NSp and the category of spectral presheaves on M.
We give two versions and two independent proofs of this result. One version is formu-
lated fully in the language of enriched1-categories, using Hinich’s theory. In the second
approach, we first define a strict version of M, denoted Ms , which is a category strictly
enriched in SpM. We then prove that NSp is modeled by a Quillen model category of SpM-
valued presheaves on Ms . Finally, we prove that our two models of M are equivalent, in
the sense that M is equivalent to the enriched1-localization of Ms (see Definition 3.6).

Let us proceed with the definition of NSp. Recall that in Section 2 we defined the
1-category of finite noncommutative CW-complexes and denoted it by NCWf . We then
defined the 1-category of all noncommutative CW-complexes by the formula NCW WD
Ind.NCWf /: We now define the1-category of noncommutative CW-spectra to be

NSp WD Sp.NCW/:

By the results in Section 5 we know that NSp is a presentable stable 1-category. In
particular, NSp is naturally left-tensored over spectra. By [18, Corollary 4.8.2.19], the
monoidal structure on NCW induces a closed symmetric monoidal structure on NSp, such
that †1NC W NCW! NSp is symmetric monoidal.
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Recall that Mn is the algebra of n � n matrices over C. Since the set of objects
¹Mi j i 2 Nº generates NCWf under finite colimits, it follows by Corollary 5.4 that M WD

¹†1NCMi j i 2Nº generates NSp under small colimits and desuspensions. The following is
one of the main definitions of the paper:

Definition 6.1. Let M be the full Sp-enriched subcategory of NSp spanned by the spectra
¹†1NCMi j i 2 Nº.

Since M is closed under the monoidal product in NSp, the following theorem is a
special case of Theorem 4.3:

Theorem 6.2. The Sp-enriched category M acquires a canonical symmetric monoidal
structure, the category of presheaves PSp.M/ acquires a canonical symmetric monoidal
left Sp-tensored structure and we have a natural symmetric monoidal left Sp-tensored
functor

PSp.M/
�
�! NSp;

which is an equivalence of the underlying 1-categories and sends each representable
presheaf Y.†1NCMn/ 2 PSp.C/ to †1NCMn.

6.1. Strictification of M

In this subsection, we give a strict model for the category M as a monoidal spectrally
enriched category, as well as a strict version of Theorem 6.2.

In the context of Section 5.1, let us consider the example C D NCWf , considered as a
topological category. Then NCWf is a pointed topological category, tensored closed over
CWf
� (see Definition 5.9). As explained in Definition 5.12, we have a strict enrichment of

NCWf over the model category of spectra SpM using the functors GNCWf

x;y .
The topological category NCWf has a continuous symmetric monoidal structure in-

duced by tensor product in SC�. The spectral enrichment respects the monoidal structure,
in the sense that for given objects x; x1; y; y1, there is a natural transformation

GNCWf

x;y .K/ ^GNCWf

x1;y1
.L/! GNCWf

x˝x1;y˝y1
.K ^ L/:

Thus the spectral enrichment of NCWf is symmetric monoidal.

Definition 6.3. Let Ms be the full (strict) SpM-enriched subcategory of NCWf spanned by
¹Mn j n 2Nº. That is, the objects of Ms are ¹Mn j n 2Nº and for any m; n 2N we have

HomMs
.Mm; Mn/ D GNCWf

Mm;Mn
2 SpM:

Since Ms is a category enriched over SpM, we can define the strict category of spectral
presheaves on Ms , which we denote by PSpM.Ms/, to be the category of enriched functors
M

op
s ! SpM. We endow PSpM.Ms/ with the projective model structure (see, for example,

[11] on the projective model structure in the enriched setting). Since both M
op
s and SpM

have a symmetric monoidal structure, the category PSpM.Ms/ has a symmetric monoidal
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structure given by enriched Day convolution turning it into a symmetric monoidal model
category.

Consider NCWf as a category enriched in SpM. There is a canonical strict spectral func-
tor

RYW NCWf
! PSpM.Ms/; (2)

which is the composition of the enriched Yoneda embedding NCWf ! PSpM.NCWf / fol-
lowed by the restriction PSpM.NCWf /! PSpM.Ms/. It is well known, and easy to check
that RY is lax symmetric monoidal.

We call a map A! B in NCWf a weak equivalence if it is a homotopy equivalence in
NCWf considered as a topological category.

Lemma 6.4. The functor RY sends weak equivalences to weak equivalences.

Proof. Let A ! B be a weak equivalence in NCWf . We need to show that RY.A/ !

RY.B/ is a levelwise weak equivalence in PSpM.Ms/. Let n � 1. We need to show that
the induced map HomNCWf .Mn; A/ ! HomNCWf .Mn; B/ is a weak equivalence in SpM.
Since SpM is a localization of the projective model structure, it is enough to show that
HomNCWf .Mn;A/!HomNCWf .Mn;B/ is a levelwise weak equivalence in Fun�.CWf

� ;Top/.
That is, it is enough to show that for every finite pointed CW-complex K,

MapNCWf .Mn; K ^ A/! MapNCWf .Mn; K ^ B/

is a weak equivalence. Since NCWf is a topological category, and a weak equivalence in
NCWf is just a homotopy equivalence, we are done.

By the lemma above, we can apply1-localization with respect to weak equivalences
(see Remark 2.1) to RY and obtain a functor of1-categories

RY1W NCWf
1 ! PSpM.Ms/1:

Lemma 6.5. The1-category NCWf
1 is naturally equivalent to NCWf defined above as the

topological nerve of the topological category NCWf .

Proof. The category SC�op (defined in the beginning of Section 2) has the structure of a
category of cofibrant objects with the weak equivalences given by the homotopy equiva-
lences and the cofibrations by Schochet cofibrations (see, for instance, in [1, 30]). We say
that a map in NCWf is a weak equivalence (resp. cofibration) if it is a weak equivalence
(resp. cofibration) when regarded as a map in SC�op. Since SC�op is a category of cofibrant
objects and NCWf � SC�op is a full subcategory which is closed under weak equivalences
and pushouts along cofibrations it follows that NCWf inherits a structure of a category of
cofibrant objects. In exactly the same way as in [3, Lemma 7.1.1] one can show that the
natural map between1-localizations with respect to weak equivalences

.NCWf /1 ! .SC�op
/1

is fully faithful.
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By [4, Proposition 3.17], we have that the1-localization of SC�op is equivalent to the
topological nerve of the topological category structure on SC�op described in Section 2
(see Remark 2.1 and the paragraph before). Since NCWf is a full topological subcategory
of SC�op, we are done.

Lemma 6.6. The functor RY1 preserves finite colimits.

Proof. By [17, Corollary 4.4.2.5], it is enough to prove that the functor preserves initial
objects and pushout squares. Since NCWf is a pointed category, the initial object of NCWf

is also the final object, and the first condition obviously holds.
In both NCWf

1 and PSpM.Ms/1 pushouts can be calculated as homotopy pushouts in
an appropriate structure. Suppose we have a homotopy pushout diagram in NCWf

y0 ! y1

# #

y2 ! y12:

(3)

We want to prove that for any x 2 Ms the induced diagram of functors is a homotopy
pushout in the stable model structure

MapNCWf .x;� ^ y0/ ! MapNCWf .x;� ^ y1/

# #

MapNCWf .x;� ^ y2/ ! MapNCWf .x;� ^ y12/:

Since we are working in the stable model structure, a square is a homotopy pushout if
and only if it is a homotopy pullback. A square of functors is a homotopy pullback in the
stable model structure if the induced square of linearizations is a homotopy pullback. But
the linearization of the functor

MapNCWf .x;� ^ y/W CWf
� ! Top

evaluated at K is the same as the linearization of the functor

MapNCWf .x; K ^ �/W NCWf
! Top

evaluated at y. Indeed, the two linearizations are given by the equivalent formulas

hocolim
n!1

�n MapNCWf .x; †nK ^ y/ D hocolim
n!1

�n MapNCWf .x; K ^†n
NCWf y/:

We have been thinking of the functor MapNCWf .x; K ^ �/W NCWf ! Top as a strict func-
tor, but now let us think of it as a functor between 1-categories by applying the 1-
localization. The1-category NCWf has finite colimits and a final object. The conditions
of [17, Lemma 6.1.1.33] are satisfied, and therefore the linearization of this functor really
is linear, i.e., takes homotopy pushout squares to homotopy pullback squares. Therefore,
applying the linearization to the square (3) yields a homotopy pullback square, which is
what we wanted to prove.
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Since PSpM.Ms/1 is a stable 1-category, we have, by the lemma above, that RY1
extends canonically to a finite-colimit preserving functor

RY1W SW.NCWf /! PSpM.Ms/1:

This functor extends, in turn, to an all-small-colimit-preserving functor

RY1W NSp D Ind.SW.NCWf //! PSpM.Ms/1: (4)

This functor takes an object †1NCMn to the presheaf represented by Mn.

Theorem 6.7. The functor RY1W NSp! PSpM.Ms/1 is an equivalence of1-categories.

Proof. First let us prove that RY1 is fully faithful, that is, that for all objects x; y of NSp
the map of spectral mapping functors

G
NSp
x;y ! G

PSpM .Ms/1

RY1.x/;RY1.y/
(5)

is an equivalence. First, consider the case x; y 2 †1Ms , i.e., x D †1NCMk ; y D †1NCMl

for some k; l . In this case x; y are in the image of the finite suspension functor NCWf !

SW.NCWf /. The functor SW.NCWf /! NSp is fully faithful, so it induces an equivalence

GSW.NCWf /
x;y

'
�! G

NSp
x;y :

By Lemma 5.7, the map GNCWf

Mk ;Ml
! G

SW.NCWf /
x;y is the stabilization.

The functor RY W NCWf !PSpM.Ms/ when restricted to Ms is just the enriched Yoneda
embedding of Ms ,

Y WMs ! PSpM.Ms/:

Since the unit in SpM is cofibrant, RY1.†1Mk/ D Y.Mk/ is cofibrant in the projec-
tive model structure on PSpM.Ms/ (see [11, Theorem 4.32]). The fibrant replacement in
PSpM.Ms/ is levelwise, so using the (strict) enriched Yoneda lemma we get

G
PSpM .Ms/1

RY1.x/;RY1.y/
D HomPSpM .Ms/1.Y.Mk/; Y.Ml //

' HomPSpM .Ms/.Y.Mk/; Y.Ml /
f /

Š .Y.Ml /
f /.Mk/ ' Y.Ml /.Mk/f

D .GNCWf

Mk ;Ml
/f :

But the map GNCWf

Mk ;Ml
! .GNCWf

Mk ;Ml
/f translates to the stabilization GNCWf

Mk ;Ml
! LGNCWf

Mk ;Ml

under1-localization (see the proof of Theorem 5.13). Thus the map

GNCWf

Mk ;Ml
! G

PSpM .Ms/1

RY1.x/;RY1.y/

is also the stabilization. By the uniqueness of the stabilization map, we get that the map (5)
is an equivalence in the case when x; y are suspension spectra of matrix algebras.
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Next, let x be a fixed suspension spectrum of a matrix algebra, but let y vary. We
may consider the functor y 7! G

NSp
x;y as a functor NSp ! Sp. This functor preserves all

small colimits, because x is compact in NSp and both NSp and Sp are stable. Similarly, the
functor y 7! G

PSpM .Ms/1

RY1.x/;RY1.y/
is also a functor NSp! Sp that preserves small colimits. It

follows that the category of objects y for which the map (5) is an equivalence is closed
under colimits and also desuspensions. Since this category contains Ms , it is all of NSp.

Now fix y, and consider the functors x 7! G
NSp
x;y and x 7! G

PSpM .Ms/1

RY1.x/;RY1.y/
as con-

travariant functors from NSp to spectra. Since both functors take small colimits to limits,
a similar argument shows that this map is an equivalence for all x 2 NSp.

We have shown that the functor RY1W NSp! PSpM.Ms/1 is fully faithful and also
preserves all small colimits, so it is a left adjoint. It follows that the image of RY1 is
closed under small colimits. Since the image contains the representable presheaves, RY1
is essentially surjective. It follows that RY1 is an equivalence of categories.

Thus, RY1 is an explicit monoidal model for the inverse of the equivalence given by
Theorem 6.2. This also allows us to show that Ms is indeed a strictification of M from
Definition 6.1.

Theorem 6.8. We have a natural equivalence .Ms/1 ' M between the enriched 1-
localization of Ms and M.

Proof. By definition, Ms is an SpM-enriched category, whose set of objects is the set of
natural numbers N. Let SpMN-Cat be the category of all SpM-enriched categories, whose
set of objects is N, and whose morphisms are functors that are the identity on objects.
This category has a Quillen model structure, where fibrations and weak equivalences
are defined levelwise, and where cofibrant objects are levelwise cofibrant [27, Proposi-
tion 6.3]. Thus, Ms is an object in SpMN-Cat. Let Ms !M

f
s be a fibrant replacement of

Ms in SpMN-Cat. We get a Quillen adjunction

LKani WPSpM.Ms/ � PSpM.Mf
s / W i�:

It follows from [11, Proposition 2.4] that this adjunction is a Quillen equivalence. To give
a little more detail, it follows from the general result of Guillou and May that it is enough
to show that for every cofibrant object M of SpM and every two objects x; y of Ms , the
following induced map is an equivalence:

M ^ HomMs
.x; y/!M ^ Hom

M
f
s

.x; y/;

where Hom.�;�/ denotes the spectral mapping object. The map

HomMs
.x; y/! Map

M
f
s

.x; y/

is an equivalence by definition of M
f
s . It follows by [22, Proposition 12.3] that the induced

map is an equivalence for all cofibrant M .
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Applying1-localization we obtain an equivalence

PSpM.Ms/1
�
�! PSpM.Mf

s /1:

Now, PSpM.M
f
s / is an SpM-model category, and it is Quillen equivalent to a combinatorial

model category. The enriched Yoneda embedding

Y WMf
s ! PSpM.Mf

s /

is a fully faithful SpM-enriched functor and it clearly lands in the fibrant cofibrant objects.
Thus, by Corollary 3.8, the Sp-functor

Y1 W .M
f
s /1 ! PSpM.Mf

s /1

is Sp-fully faithful. Note that this claim is made with respect to the action of Sp on
PSpM.M

f
s /1 induced by the structure of PSpM.M

f
s / as an SpM-model category. Since Sp

is a mode in the sense of [6, Section 5], this action coincides with the canonical action of
Sp on PSpM.M

f
s /1 as a presentable stable1-category.

Now, using Theorem 6.7, we have the following composition:

.Mf
s /1

Y1
��! PSpM.Mf

s /1
�
�! PSpM.Ms/1

�
�! NSp:

We get a fully faithful Sp-enriched functor .M
f
s /1 ! NSp, with essential image M, so

that .M
f
s /1 'M.
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