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Purely infinite corona algebras and extensions

Ping Wong Ng

Abstract. We classify all essential extensions of the form

0! B ! D ! C.X/! 0

where B is a nonunital, simple, separable, finite, real rank zero, Z-stable C�-algebra with continu-
ous scale, and where X is a finite CW complex. In fact, we prove that there is a group isomorphism

Ext.C.X/;B/! KK.C.X/;M.B/=B/:

1. Introduction

Motivated by the problem of classifying essentially normal operators on a separable,
infinite dimensional Hilbert space, Brown, Douglas and Fillmore (BDF) classified all C �-
algebra extensions of the form

0!K ! D ! C.X/! 0

where K is the C �-algebra of compact operators on a separable, infinite dimensional
Hilbert space, and X is a compact metric space. This was a starting point for much inter-
esting phenomena in operator theory and has led to the rapid development of extension
theory with many effective techniques (especially from KK theory) to compute the Ext-
group Ext.A;B/ for many C �-algebras A;B.

However, in general, Ext.A;B/ does not capture all unitary equivalence classes of
extensions. Among other things, there can be many distinct unitary equivalence classes
of trivial extensions, and also, an extension � with Œ�� D 0 in Ext.C.X/;B/ need not be
trivial. (For these and other shortcomings, see, for example, [36, 46], and [37].)

One of the implicit reasons for the success of the original BDF Theory is that B.l2/ and
the Calkin algebra B.l2/=K have particularly nice structure. Among other things, B.l2/
has strict comparison and real rank zero (it is a von Neumann algebra), and B.l2/=K is

2020 Mathematics Subject Classification. Primary 46L80; Secondary 47A10, 47A53.
Keywords. Brown–Douglas–Fillmore theory, extension theory, KK theory, continuous scale, purely
infinite.

https://creativecommons.org/licenses/by/4.0/


P. W. Ng 1364

simple purely infinite. (For example, the BDF–Voiculescu result that roughly speaking
says that all essential extensions are absorbing would not be true without the simplicity of
B.l2/=K .1)

It would be nice to find a class of corona algebras which generalize nice features
from B.l2/=K , with the goal of developing operator theory and extension theory in an
agreeable context, among other things generalizing further the theories developed by BDF,
Voiculescu and other workers. These ideas where clearly present2 in the early literature.

Simple purely infinite corona algebras have been completely characterized. Recall
that a simple C �-algebra has continuous scale if, roughly speaking, it has a sequential
approximate identity which is like a “Cauchy sequence”. More precisely:

Definition 1.1. Let B be a nonunital, separable, simple C �-algebra. Then B has contin-
uous scale if B has an approximate identity ¹enº1nD1 such that enC1en D en for all n, and
for every b 2 BC � ¹0º, there exists an N � 1 such that for all m > n � N ,

em � en � b:

(See, for example, [45].)

In the above equation, � is a subequivalence relation for positive elements (gener-
alizing Murray–von Neumann subequivalence for projections) given as follows: For a
C �-algebra D , for a; d 2 DC, a � d if there exists a sequence ¹xnº in D such that
xndx

�
n ! a.

Often, we will write “continuous scaleC �-algebra” to mean aC �-algebra with contin-
uous scale. Many simple C �-algebras have continuous scale. For example, every nonuni-
tal, � -unital, simple purely infinite C �-algebra has continuous scale. In fact, a � -unital,
stable, simple C �-algebra has continuous scale if and only if it is simple purely infinite
(see [45, Theorem 3.7]). Also, every nonelementary, separable, simple C �-algebra has a
hereditary C �-subalgebra with continuous scale (e.g., see [41, Proposition 2.3]). On the
other hand, the C �-algebra K of compact operators on a separable, infinite dimensional
Hilbert space does not have continuous scale.

Theorem 1.2. Let B be a nonunital, separable, simple, nonelementary C �-algebra. Then
the following statements are equivalent:

(1) B has continuous scale.

(2) M.B/=B is simple.

(3) M.B/=B is simple purely infinite.

([41, 45]; see also [9, 55].)

1In fact, under a nuclearity hypothesis, Kasparov’s KK1 only classifies, up to unitary equivalence, the
absorbing extensions.

2As a proper subset.
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We note that purely infinite simple C �-algebras have real rank zero ([57]). We further
note that for a general nonunital, separable, simple C �-algebra D , an extension of D by
C.X/ can often be decomposed in a way where one piece sits inside the minimal ideal
of M.D/=D , and this piece is essentially an extension of a simple continuous scale C �-
algebra (e.g., [37]; see also [25]). Thus, simple purely infinite corona algebras are not just
a very nice context, but are part of the general picture.3

Nonetheless, difficulties still arise that are not present in the case of B.l2/=K . For ex-
ample, for a simple continuous scale C �-algebra B, theK theory of M.B/ and M.B/=B

can be much more complicated than that of B.l2/ and B.l2/=K . Moreover, in the case
where B is nonstable, we do not have infinite repeats and the powerful tools of the classi-
cal theory of absorbing extensions (e.g., [2, 6, 13, 27, 29, 40, 53]) are no longer completely
available.

In effect, one needs to develop a type of nonstable absorption theory, where one takes
into account the fine structure of the K theory. Such a theory has previously been con-
sidered with definite results (e.g., [36, 37, 46]). The author of the aforementioned results
studied the case where the ideal was a simple, nonunital, continuous scale algebra with
real rank zero, stable rank one, strict comparison and unique tracial state. In the present
paper, one of the results removes the unique tracial state condition, but with the addition
of the highly restrictive condition of Jiang–Su-stability.

As part of the program, we also have results characterizing (not necessarily simple)
purely infinite corona algebras. Under mild regularity conditions on a simple C �-alge-
bra B, we have the following equivalences: B has quasicontinuous scale, M.B/ has
strict comparison , M.B/=B is purely infinite , M.B/ has finitely many ideals ,
	min D 	cont, V.M.B// has finitely many order ideals. We believe that this category is
suitable to the development of a definitive and elegant extension theory, and should be the
first case before the construction of an even more general theory. Furthermore, all such
corona algebras have real rank zero,4 and many other related fundamental results have
been investigated (e.g., [24–26, 30, 44, 49]).

1.1. Notation

We end this section with some brief remarks on notation. In the last part, we also spell out
some necessary prerequisites for reading this paper.

For a C �-algebra B, M.B/ denotes the multiplier algebra of B. Thus, C.B/ Ddf

M.B/=B is the corresponding corona algebra.

3And thus, also, the nonstable case is important even for understanding the stable case. We further note
that nonstabilization has been a key part of some of the most interesting and difficult results in the field.
See, for example, [4, 34, 38, 40].

4We note that real rank zero was a reoccurring, though implicit, theme in the proof of the original BDF
index theorem. Moreover, the Kasparov technical lemma, which is a foundation for the construction of the
Kasparov product and the important properties ofKK, implies that the corona algebra of a � -unital algebra
is an SAW*-algebra, a property with formal similarities to real rank zero.
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For each extension
0! B ! D ! C ! 0

(of B by C )5, we will work with the corresponding Busby invariant which is a *-homo-
morphism � W C ! M.B/=B. We will always work with essential extensions which
is equivalent to requiring that the corresponding Busby invariant be injective; hence,
throughout the paper, when we write “extension”, we mean essential extension. An exten-
sion is unital if the corresponding Busby invariant is a unital map.

Say that �; W C !M.B/=B are two extensions. We say that � and  are unitarily
equivalent (and write � �  ) if there exists a unitary u 2M.B/ such that

�.c/ D �.u/ .c/�.u/�

for all c 2 C . Here, � WM.B/!M.B/=B is the quotient map.
Ext.C ;B/ denotes the set of unitary equivalence classes of nonunital extensions of B

by C . If, in addition, C is unital, Extu.C ;B/ is the set of unitary equivalence classes of
unital extensions.

For a unital simple C �-algebra C , T .C/ denotes the tracial state space of C . If C is a
nonunital simple C �-algebra, T .C/will denote the class of (norm-)lower semicontinuous,
densely defined traces which are normalized at a fixed element e 2 CC � ¹0º, where e is
in the Pedersen ideal of C (of course, for statements in this paper involving T .C/, where
C is nonunital, the choice of e will not be relevant). For � 2 T .C/ (where C is unital or
nonunital), for c 2 CC, d� .c/ Ddf limn!1 �.c

1=n/. (Good references are [24] and [25].)
For a C �-algebra D and for a; b 2 DC, a � b means that there exists a sequence

¹xnº in D such that xnbx�n ! a. (This subequivalence generalizes Murray–von Neumann
subequivalence for projections.) For a 2 DC, we let herD.a/ Ddf aDa, the hereditary
C �-subalgebra of D generated by a. Sometimes, for simplicity, we write her.a/ in place
of herD.a/. Similarly, for a C �-subalgebra C � D , we let herD.C/ or her.C/ denote
CDC , the hereditary C �-subalgebra of D generated by C . Finally, for a subset S � D ,
we let IdealD.S/ denote the ideal of D which is generated by S . Again, we often write
Ideal.S/ in place of IdealD.S/.

In this paper, any simple, separable, stably finite C �-algebra is assumed to have the
property that every quasitrace is a trace.

Throughout this paper, Z denotes the Jiang–Su algebra ([23]). A C �-algebra C is said
to be Z-stable if C ˝Z Š C .

Let A;C be C �-algebras. Throughout this paper, we will write that a map � WA! C

is c.p.c. if it is linear and completely positive contractive. Let F � A be a finite subset
and let ı > 0. A c.p.c. map  W A ! C is said to be F -ı-multiplicative if k .fg/ �
 .f / .g/k < ı for all f; g 2 F .

We will be using, without definition or explanation, many notations and results from
KK theory and other theories. The reader will be required to be familiar with the refer-
ences listed below.

5In the literature, the terminology is sometimes reversed and this is sometimes called an “extension of
C by B”. Following Arveson, BDF, Voiculescu and others, we prefer “B by C”.
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Good references for basic multiplier algebra theory, extension theory, K theory, and
KK theory are [5, 28, 39, 54]. See also [24–26] for much of the advanced multiplier alge-
bra machinery. We emphasize that we will be extensively using, without definition or
explanation, notation and results from [5, 28, 39].

For the notation and basic KK-theoretic tools (which, again, we will freely use with-
out definition or explanation), we refer the reader to [8, 17, 19, 22, 36, 38–40, 43, 46–48],
and the references therein. We emphasize, once more, the nonstable aspects of the theory
which can be found in, say, [19] as well as other references mentioned above.

References for simple continuous scale algebras are [45] and [41]. Section 1 of [42]
contains computations of the K theory for the multiplier and corona algebras of simple,
separable, continuous scale C �-algebras with real rank zero, stable rank one and strict
comparison (see also [44, Propositions 4.2, 4.4 and Corollary 4.6]; and also [12]). Other
good sources are [24] and [25]. We note that simple continuous scale algebras play a key
role in recent outstanding breakthroughs (see, for example, [11]). The reader should also
be familiar with [1–4, 6, 7, 20, 21, 33, 34, 53, 56, 57].

The first version of this paper, with essentially the same proof, was typed up in 2016,
and starting 2016, many talks on the main result of the present paper were given in multiple
conferences in Canada, China, and the USA.

We thank the referee for many helpful comments that improved the presentation of
the paper. Among other things, this includes the referee’s pointing out the arguments of
[16, Paragraphs 5.11 and 5.12] to us, which greatly simplified some of the key proofs in
the paper.

2. Some results in nonstable absorption

This section is a brief exposition of some results from [48]. Precursors to the results in
this section are [2, 6, 13, 27, 31, 37, 46, 53]. This section has the flavor of operator theory,
especially Halmos’ proof of the Weyl–von Neumann–Berg Theorem. (See also the histor-
ical remark before Definition 2.2.) We note that this is true also for later parts of the paper
(e.g., see Proposition 4.6). Recall, from the end of the first section, that all our extensions
are assumed to be essential.

The following definition/lemma is [48, Remark 1 (after Proposition 2.5) and Subsec-
tion 3.1].

Definition 2.1 (And also Lemma). Let B be a nonunital, separable, simple, continuous
scale C �-algebra, and let X be a compact metric space. Then there is an addition on
the class of nonunital extensions of B by C.X/. More precisely, say that �; W C.X/!
M.B/=B are two nonunital *-monomorphisms. Then the BDF sum of � and is given by

S�.�/S� C T .�/T �

where S; T 2M.B/=B are isometries such that SS� C T T � � 1. We denote the above
sum by � ˚  .
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The above sum is well defined up to unitary equivalence. Thus, the above sum induces
an addition and hence a semigroup structure on Ext.C.X/;B/.

Suppose, in addition, that Œ1M.B/=B � D 0 in K0.M.B/=B/. Then the same holds for
Extu.C.X/;B/, but where, in the above, we require that SS� C T T � D 1.

The concepts of null and totally trivial extensions (see Definitions 2.2 and 2.5) are due
to Lin (e.g., see [46] and [37]), though we have modified the definitions. Early versions of
these concepts were already present in [6].

Recall that in the original BDF case, where X is a compact subset of the plane,
uniqueness of the trivial element of Ext.C.X/;K/ essentially follows from the Weyl–von
Neumann–Berg Theorem. Recall also that for a simple, separable, real rank zero C �-
algebra B, M.B/ has the classical Weyl–von Neumann Theorem if and only if M.B/

has real rank zero (e.g., [56,57]; see also [15,33]). This is perhaps one clue for the reasons
for the assumption that M.B/ has real rank zero in some early papers (see, for example,
[37, 46]). All this also indicates the operator-theoretic nature of the present study.

Recall, from the end of the first section, that for extensions � and  , � � means that
� and  are unitarily equivalent. The next definition is for both the unital and nonunital
cases.

Definition 2.2. Let B be a simple, nonunital, separable, continuous scale C �-algebra. Let
X be a compact metric space and let � W C.X/!M.B/=B be an essential extension.

(1) � is said to be null if there exists a commutative AF-subalgebra C �M.B/=B

such that Ran.�/ � C and Œp� D 0 in K0.M.B/=B/ for every projection p 2 C .

(2) � is said to be self-absorbing if � ˚ � � �.

Proposition 2.3. Let B be a nonunital, simple, separable C �-algebra with continuous
scale and let X be a compact metric space. Then we have the following:

(1) There exists a null extension � W C.X/!M.B/=B. Moreover, we can require �
to be nonunital or unital (if, additionally, Œ1M.B/=B � D 0 in K0.M.B/=B/).

(2) Every null extension C.X/!M.B/=B is self-absorbing.

(3) Any two unital self-absorbing extensions C.X/!M.B/=B are unitarily equiv-
alent. The same holds for any two nonunital self-absorbing extensions.

(4) Every self-absorbing extension must be null.

Proof. This is [48, Theorem 3.4].

Theorem 2.4. Let B be a nonunital, separable, simple, continuous scale C �-algebra. Let
X be a compact metric space.

Then Ext.C.X/;B/ is a group where the zero element is the class of a null extension.
If, in addition, Œ1C.B/�K0.C.B// D 0, then the same holds for Extu.C.X/;B/.

Proof. This is [48, Theorem 3.5]. Another proof that Ext.C.X/;B/ is a group can be
found in [50, Theorem 2.10].
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Definition 2.5. Let B be a nonunital, separable C �-algebra, and let X be a compact met-
ric space. An extension � W C.X/!M.B/=B is totally trivial if there exist a strictly con-
verging properly increasing sequence ¹enº1nD1 of projections in B, and a dense sequence
¹xnº

1
nD1 in X , with each term repeating infinitely many times, such that

� D � ı  

where  W C.X/!M.B/ is the *-homomorphism given by

 .f / Ddf

1X
nD1

f .xn/.en � en�1/;

and where � WM.B/!M.B/=B is the quotient map. (Here, e0 Ddf 0.)

Sometimes, to save writing, we call a *-homomorphism  W C.X/!M.B/ a totally
trivial extension if it has the form as in Definition 2.5 above.

Theorem 2.6. Let X be a finite CW complex and let B be a nonunital, separable, simple,
continuous scale C �-algebra with real rank zero, stable rank one and weak unperforation.
Then an extension � W C.X/ ! M.B/=B is null if and only if � is totally trivial and
K0.�/ D 0.

Proof. This is a part of [48, Theorem 4.10].

3. Aspects of operator theory: KK theory

In this section, we gather some relevant results which have their origins in BDF theory
and closely related phenomena like Lin’s important work on almost commuting self-
adjoint matrices. This interesting phenomena have had manifold implications including
the important uniqueness and stable uniqueness theorems (e.g., [17–19, 38, 40, 43]). We
also briefly discuss results concerning the complementary problem of stable existence.

As noted at the end of the first section, we will be freely using, without definition or
explanation, notation and basic results from standard references onKK theory, especially
with regard to parts of the theory concerning existence, uniqueness, absorbing extensions
and nonstable aspects of the theory. A key reference is [39]. Other references are [5,8,18,
19, 28, 38, 40, 43], and other references listed at the end of the first section. The reader is
assumed to be familiar with the notation and contents of these references.

Firstly, recall that one of our standing hypotheses is that for the unital, separable,
simple, stably finite C �-algebras discussed in this paper, we always assume that every
quasitrace is a trace.

LetX be a compact metric space and let A be a C �-algebra. Recall that a *-homomor-
phism � W C.X/!A is said to be finite dimensional if there exist x1; x2; : : : ; xn 2 X and
pairwise orthogonal projections p1; p2; : : : ; pn 2 A such that �.f / D

Pn
jD1 f .xj /pj

for all f 2 C.X/. In this case, the spectrum sp.�/ of �, is defined to be sp.�/ Ddf

¹x1; x2; : : : ; xnº.
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For allm� 1, let Ym be the 2-dimensional CW complex obtained by attaching a 2-cell
to S1 via the degree m map from S1 to S1. Let C0.Ym/ be the C �-algebra of continuous
functions on Ym which vanish at a fixed point 1 2 Ym. Recall that K0.C.Ym// D Z˚
Z=m, K0.C0.Ym// D Z=m, and K1.C.Ym// D K1.C0.Ym// D 0. We note that Ym is
actually the space TII;m in [10, Paragraph 4.2(b)].

Recall that for any unital C �-algebra C , P .C/ is the notation for the collection of pro-
jections in

S1
nD1 Mn.C.S

1/˝ C.Ym/˝ C/. Recall that K.C/C, the image of P .C/ in
K.C/, is a positive cone forK.C/. (See, for example, [8, Definition 4.4], [36, Section 2.1]
or [39].) To simplify notation, for a subset P � P .C/, we also use P to denote its image
in K.C/C.

Definition 3.1. Let X be a compact metric space, and let A be a C �-algebra. Let P �

P .C.X//. Then NP denotes the set of all maps ˛ W P ! K.A/ such that there exists a
finite dimensional *-homomorphism � W C.X/!Mk ˝A for which Œ��jP D ˛.

Let N denote the set of ˛ 2 KL.C.X/;A/ such that there exists a finite dimensional
*-homomorphism � W C.X/!Mk ˝A for which Œ�� D ˛.

Proposition 3.2. Let X be a finite CW complex, and let m Ddf 2 dim.X/C 1. Let " > 0,
a finite subset F � C.X/, and a finite subset P � P .C.X// be given. Then there exist a
ı > 0 and a finite subset G � C.X/ such that the following statement is true:

For every unital C �-algebra A and for every unital c.p.c. G -ı-multiplicative map
� W C.X/! A, there exists a unital c.p.c. F -"-multiplicative map  W C.X/!Mm.A/

such that
Œ� ˚  �jP 2 NP :

Proof. This follows from [35, Corollary 1.24].

Theorem 3.3. Let X be a finite CW complex, " > 0 and F � C.X/ a finite subset. Then
there exists a nonempty finite subset E � C.X/C � ¹0º such that for all � > 0, there exist
a finite subset G � C.X/, ı > 0, and a finite subset P � P .C.X// such that the following
holds:

For all unital, separable, simple, finite, real rank zero, Z-stable C �-algebras A, for
every unital G -ı-multiplicative c.p.c. map � W C.X/! A, if Œ��jP W P ! K.A/ lies in
NP , and

d� .�.g// > �

for all � 2 T .A/ and all g 2 E , then there exists a unital *-homomorphism WC.X/!A

with finite dimensional range such that

k�.f / �  .f /k < "

for all f 2 F .

Proof. This is [47, Theorem 2.12].
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Let ¹AN º
1
ND1 be a sequence of unital C �-algebras. Define

Q
b K0.AN / to consist

of all those ¹xN º1ND1 2
Q
K0.AN / such that there exists an L � 1 (dependent on ¹xN º)

where for allN � 1, xN can be represented by ŒpN �� ŒqN � where pN , qN are projections
in ML.AN /. (Of course, here

Q
K0.AN / is our notation for

Q1
ND1K0.AN /.)

We thank the referee for pointing out to us the arguments of the next two results, which
are essentially from [16, Paragraphs 5.11 and 5.12] (see also [18]).

Lemma 3.4 (See [16, Paragraph 5.12]). Let ¹AN º
1
ND1 be a sequence of simple, unital,

separable, finite, real rank zero, Z-stable C �-algebras.
Then for all m � 2,

Kernel
�Y

b

K0.AN /
�m
!

Y
b

K0.AN /
�
D Kernel

�Y
K0.AN /

�m
!

Y
K0.AN /

�
and

Cokernel
�Y

b

K0.AN /
�m
!

Y
b

K0.AN /
�
D Cokernel

�Y
K0.AN /

�m
!

Y
K0.AN /

�
:

In the above, �m is the group homomorphism between abelian groups, given by x 7!mx.
(It takes x to x added to itself m times.)

Proof. For all N � 1, since AN is simple, finite, Z-stable and has real rank zero, it has
strict comparison of positive elements by traces and cancellation of projections, and the
image of K0.AN /C is (uniform norm) dense in Aff.T .AN //C (see, for example, [51]).
Hence, every torsion element of K0.AN / can be represented by the difference of classes
of two projections in AN . From this, we get the first equality

Kernel
�Y

b

K0.AN /
�m
!

Y
b

K0.AN /
�
D Kernel

�Y
K0.AN /

�m
!

Y
K0.AN /

�
:

Next, for all N � 1, since AN is nonelementary, simple and has real rank zero,
K0.AN / is weakly divisible, i.e., for every x 2 K0.AN /C, for every n � 2, there exist
x1; x2 2 K0.AN /C for which x D nx1 C .n C 1/x2 (e.g., see [51]). Hence, since AN

has strict comparison of positive elements by traces and cancellation of projections, for
every x 2 K0.AN /C, there exist x0; x00 2 K0.AN /C for which x D x0 Cmx00 and x0 is
the class of a projection in AN . From this we get the second equality

Cokernel
�Y

b

K0.AN /
�m
!

Y
b

K0.AN /
�
D Cokernel

�Y
K0.AN /

�m
!

Y
K0.AN /

�
:

Recall that for a C �-algebra C , for j D 0; 1 and for all m � 2, Kj .C I Z=m/ D
Kj .C0.Ym/˝ C/ and Kj .C IZ˚ Z=m/ D Kj .C.Ym/˝ C/ D Kj .C/˚Kj .C IZ=m/.
(See, for example, [39].)
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Lemma 3.5 (See [16, Paragraphs 5.11, 5.12] and [18]). Let ¹AN º
1
ND1 be a sequence of

simple, unital, separable, finite, real rank zero, Z-stable C �-algebras.
Then

K0

�Y
AN

�
D

Y
b

K0.AN / and K1

�Y
AN

�
D

Y
K1.AN /;

and for j D 0; 1 and all m � 2,

Kj

�Y
AN IZ=m

�
D

Y
Kj .AN IZ=m/:

Proof. Since AN is simple Z-stable finite and has real rank zero, it has weak unperfora-
tion, stable rank one and weakly divisible K0 group (see, for example, [51]). Hence, by
[18, Corollary 2.1],

K0

�Y
AN

�
D

Y
b

K0.AN / and K1

�Y
AN

�
D

Y
K1.AN /: (3.6)

The standard mod p K theory exact sequences induce the following commuting dia-
gram where both rows are exact (e.g., see [52, Proposition 1.6], [16, Paragraph 5.11],
[39, Section 5.8]):Q

K0.AN /
�m //

Q
K0.AN / //

Q
K0.AN IZ=m/ //

Q
K1.AN /

�m //
Q
K1.AN /

K0
�Q

AN

�.1/

OO

�m // K0
�Q

AN

�.1/

OO

// K0
�Q

AN IZ=m
�.2/

OO

// K1
�Q

AN

�.3/

OO

�m // K1
�Q

AN

�.3/

OO

(3.7)

Firstly, by [18, Corollary 2.1], the vertical maps (1) and (2) are injective. By (3.6), the
vertical map (3) is an isomorphism.

Let G, G0, H , H 0 be the abelian groups that are given as follows:

G Ddf Cokernel
�Y

K0.AN /
�m
!

Y
K0.AN /

�
;

G0 Ddf Cokernel
�
K0

�Y
AN

�
�m
! K0

�Y
AN

��
;

H Ddf Kernel
�Y

K1.AN /
�m
!

Y
K1.AN /

�
;

and
H 0 Ddf Kernel

�
K1

�Y
AN

�
�m
! K1

�Y
AN

��
:

Then the commuting diagram (3.7) induces the following commuting diagram where the
rows are exact:

0 // G //
Q
K0.AN IZ=m/ // H // 0

0 // G0

.10/

OO

// K0
�Q

AN IZ=m
�.2/

OO

// H 0

.30/

OO

// 0



Purely infinite corona algebras and extensions 1373

where the vertical maps .10/ and .2/ are injective and the vertical map .30/ is an iso-
morphism. But by the second equality in Lemma 3.4 and by (3.6), the map .10/ is an
isomorphism. Thus, the map .2/ is an isomorphism.

So we have a group isomorphism

K0

�Y
AN IZ=m

�
Š

Y
K0.AN IZ=m/:

By a similar argument, we have a group isomorphism

K1

�Y
AN IZ=m

�
Š

Y
K1.AN IZ=m/:

Recall that for all m � 1, 	m is the notation for the (nonunitized) dimension drop
algebra 	m D ¹f 2 C Œ0; 1�˝Mm W f .0/ D 0 and f .1/ 2 Cº, and �	m is the unitization
of 	m (i.e., the unitized dimension drop algebra). Recall that for a C �-algebra C and for
m � 2, K�.C IZ˚ Z=m/ D KK. �	m; C.S1/˝ C/, K0.C IZ˚ Z=m/ D KK. �	m;C/,
K�.C IZ=m/DKK.	m;C.S1/˝C/, andK0.C IZ=m/DKK.	m;C/. Under the above
identifications, recall that

K0.C IZ˚ Z=m/CC Ddf ¹Œ�� W � W �	m ! C ˝K is a *-homomorphismº;

K�.C IZ˚ Z=m/CC Ddf ¹Œ�� W � W �	m ! C.S1/˝ C ˝K is a *-homomorphismº;

K0.C IZ=m/ D ¹Œ � W  W 	m ! C ˝K is a *-homomorphismº;

and

K�.C IZ=m/ D ¹Œ � W  W 	m ! C.S1/˝ C ˝K is a *-homomorphismº:

K.C/CC is the subsemigroup ofK.C/ generated byK�.C/CC andK�.C IZ˚Z=m/CC

(for all m � 2). Recall that K.C/CC is a cone for K.C/ (see, for example, [8, Defini-
tions 4.4 and 4.5, Proposition 4.9, Theorem 5.2], etc.).

For each x 2 K.C/, we denote x D ¹x.j;m/º0�j�1;0�m<1, where x.j; 0/ 2 Kj .C/,
x.j; 1/ D 0 and for all m � 2, x.j;m/ 2 Kj .C IZ=m/.

Recall that if C is a unital, separable, simple, finite, real rank zero, Z-stable C �-
algebra, and if X is a compact metric space, then C.X/˝ C ˝K has strict comparison
of projections by traces in T .C.X/˝C/ ([51, Corollary 4.10]; the hypothesis of exactness
is replaced by our standing assumption that all quasitraces are traces).

In general, for a C �-algebra C , K.C/C and K.C/CC need not to coincide. However,
this is so under additional hypotheses. The next lemma is well known and straightforward.
We do the easy formal computation for the convenience of the reader.

Lemma 3.8. Suppose that C is a unital, separable, simple, finite, real rank zero and Z-
stable C �-algebra. Then

K.C/C D K.C/CC D ¹0º [ ¹x 2 K.C/ W x.0; 0/ > 0º:
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We note that in [8, Definition 4.6], for a simple C �-algebra C , the set ¹0º [ ¹x 2
K.C/ W x.0; 0/ > 0º is denoted by K.C/C.

Proof. That
K.C/C D ¹0º [ ¹x 2 K.C/ W x.0; 0/ > 0º

follows from the fact that for any compact metric space X , C.X/ ˝ C ˝K has strict
comparison for projections. (See two paragraphs before this lemma.)

It is clear, from the definition of K.C/CC, that

K.C/CC � ¹0º [ ¹x 2 K.C/ W x.0; 0/ > 0º:

So it suffices to prove the reverse inclusion.
Say that x 2 K.C/ such that x.0; 0/ > 0. Let y 2 K.C/ so that

x D x.0; 0/C y:

By the hypotheses on C , it is well known that we can find l � 1, mj � 1, pj 2
Proj.1C.S1/ ˝ C ˝K/, and *-homomorphisms  j W 	mj ! pj .C.S

1/˝ C ˝K/pj for
1 � j � l , such that

i. pj ? pk for all j ¤ k,

ii. x.0; 0/ D
Pl
jD1Œpj �, and

iii. y D
Pl
jD1Œ j �.

For 1 � j � l , let �j W e	mj ! pj .C.S
1/˝ C ˝K/pj be given by

�j j	mj D  j and �j .1/ D pj :

Then
lX

jD1

Œ�j � 2 K.C/
CC

and
lX

jD1

Œ�j � D x.0; 0/C y D x:

For j D 0; 1 and n � 0, we will use the standard notation for the Bockstein operations

�jn W Kj .A/! Kj .AIZ=n/;

ˇjn W Kj .AIZ=n/! KjC1.A/;

�jn;mn W Kj .AIZ=mn/! Kj .AIZ=n/;

�jmn;n W Kj .AIZ=n/! Kj .AIZ=mn/:

And we are using their standard definitions as Kasparov products.
The next computation is formal and trivial.
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Lemma 3.9. Let ¹AN º
1
ND1 be a sequence of unital, separable, simple, finite, real rank

zero, Z-stable C �-algebras.
Under the identifications

K0

�Y
AN

�
D

Y
b

K0.AN /

and
K0

�Y
AN IZ=n

�
D

Y
K0.AN IZ=n/

(see Lemma 3.5), the Bockstein operation

�0n W K0

�Y
AN

�
! K0

�Y
AN IZ=n

�
is given by

�0n Ddf

Y
�0n;N

where for all N ,
�0n;N W K0.AN /! K0.AN IZ=n/

is the corresponding Bockstein operation for the N th component algebra.
Similar statements hold for �1n, ˇjn , �jn;mn, �jmn;n.

Proof. We prove the statement for �0n. The proofs for the other Bockstein operations are
similar.

Recall that for a unital C �-algebra C , the Bockstein operation

�0n W K0.C/! K0.C IZ=n/

is given by taking the Kasparov product with the element Œı1� 2 KK.	n;C/, where ı1 W
	n ! C is the *-homomorphism ı1.f / Ddf f .1/. (Recall that, for this Bockstein opera-
tion, we are using the identificationsK0.C/DKK.C;C/ andK0.C IZ=n/DKK.	n;C/.)

Let x 2 K0.
Q

AN / D
Q
b K0.AN /. We want to prove that �0n.x/ D

Q
�0n;N .xN /.

Since each AN is nonelementary, simple, unital, real rank zero, stable rank one and weakly
unperforated, the elements of K0.

Q
AN / are generated by the classes of projections inQ

AN . Hence, we may assume that

x D
Y
ŒpN �

where pN 2 AN is a projection, for all N .
Let  W C !

Q
AN be the *-homomorphism given by

 .1/ Ddf

Y
pN :

For all N , let  N W C ! AN be the *-homomorphism given by

 N .1/ Ddf pN :
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Under the identification K0.
Q

AN / D KK.C;
Q

AN /,

x D Œ �:

Hence,

�0n.x/ D Œ ı ı1� D
hY

. N ı ı1/
i

D

Y
Œ N ı ı1� D

Y
�0n;N .xN /:

Let X be a finite CW complex. Recall that there exists a finite subset P � P .C.X//
such that for any C �-algebra D , if ˛; ˇ 2 KL.C.X/;D/ satisfy that ˛jP D ˇjP then
˛ D ˇ in KL.C.X/;D/.

Lemma 3.10. Let X be a finite CW complex, " > 0 and a finite subset F � C.X/ be
given. Then there exist anN � 1 and a finite subset P � P .C.X// such that the following
statement is true:

Suppose that A is a unital, separable, simple, finite, real rank zero, Z-stable C �-
algebra, and say that ˛ 2 KK.C.X/;A/ satisfies that

˛.Œ1C.X/�/ D Œ1A�

in K0.A/ and
˛.Œp�/ � 0

for all p 2 P .
Then there exist a unital c.p.c. F -"-multiplicative map � W C.X/!MNC1.A/ and a

unital finite dimensional *-homomorphism  W C.X/!MN .A/ such that

Œ�� D ˛ C Œ �

in KK.C.X/;A/.

Proof. LetX be a finite CW complex. We may assume thatX is connected. Let " > 0 and
a finite subset F � C.X/ be given.

Suppose, to contrary, that the conclusion of Lemma 3.10 is false. Let ¹PN º1ND1 be
an increasing sequence of finite subsets of P .C.X//, ¹AN º

1
ND1 a sequence of unital,

separable, simple, finite, real rank zero, Z-stable C �-algebras, and ˛N 2KK.C.X/;AN /

for all N � 1 such that
˛N .Œ1C.X/�/ D Œ1AN

�

in K0.AN /,
˛N .Œp�/ � 0

for all p 2 PN ,
1[
ND1

ŒPN � D K.C.X//
C;



Purely infinite corona algebras and extensions 1377

and there are no unital c.p.c. F -"-multiplicative map �0 W C.X/!MNC1.AN / and no
unital finite dimensional *-homomorphism  0 W .C /!MN .AN / for which

Œ�0� D ˛N C Œ 
0�

in KK.C.X/;AN /, for all N � 1.
We denote the above statement by “(*)”.
Let ˇ W K.C.X//!

Q1
ND1K.AN / be the group homomorphism given by

ˇ Ddf

1Y
ND1

˛N :

Now, let P 2 P .C.X// be arbitrary. For simplicity, let us assume that m � 2 is such
that ŒP � 2 K0.C.X/IZ˚ Z=m/ D K0.C.Ym/˝ C.X//. Choose M � 1 so that ŒP � �
MŒ1C.Ym/˝C.X/�DMŒ1C.X/� inK0.C.Ym/˝C.X//DK0.C.X//˚K0.C.X/IZ=m/.

Since ¹˛N º is asymptotically positive for sufficiently large N , we must have that
˛N .ŒP �/ � 0 and ˛N .ŒP �/ �M˛N .Œ1C.X/�/DMŒ1AN

�. Hence, since C.Ym/˝AN has
strict comparison for projections for all N , we must have that

ˇ.ŒP �/ 2
Y
b

K0.AN IZ˚ Z=m/:

Since P was arbitrary, we must have that

Ran.ˇjK0.C.X/IZ˚Z=m// �
Y
b

K0.AN IZ˚ Z=m/:

Hence, by Lemma 3.5, we have that

Ran.ˇ/ � K
�Y

AN

�
:

Since every ˛N respects the Bockstein operations, it follows, by Lemma 3.9, that ˇ
respects the Bockstein operations. Hence,

ˇ 2 Homƒ

�
K.C.X//;K

�Y
AN

��
:

Hence, by [39, Theorem 6.1.11] (see also [38, Theorem 5.9])6, there is an integer L � 1,
a unital c.p.c. F -"=2-multiplicative map ˆ W C.X/!MLC1 ˝

Q1
ND1 AN , and a finite

dimensional unital *-homomorphism ‰ W C.X/!ML ˝
Q1
ND1 AN such that

Œˆ� D ˇ C Œ‰�

in KK.C.X/;
Q1
ND1 AN /. (Recall that X is a finite CW complex.)

6The hypothesis of separability of the codomain algebra in Lin’s existence result, can be easily
removed.
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We have decompositions

ˆ D

1Y
ND1

�N and ‰ D

1Y
ND1

 N

where for all N , �N W C.X/!MLC1 ˝AN is a unital c.p.c. F -"=2-multiplicative map,
and  N W C.X/!ML ˝AN is a unital finite dimensional *-homomorphism such that

Œ�N � D ˛N C Œ N �

in KK.C.X/;AN /. This contradicts (*).

The next result is straightforward, but we nonetheless sketch a proof.

Lemma 3.11. Let X be a connected finite CW complex. Then there exists a finite subset
PX � Proj.C.X/˝K/ for which the following is true:

For every finite subset P � P .C.X//, there exists an integer N � 1 such that for
every unital, separable, simple, finite, real rank zero, Z-stable C �-algebra A, for every
˛ 2 KL.C.X/;A/ with ˛.Œ1C.X/�/ D Œ1A� in K0.A/ and

˛.Œp�/ � 0

for all p 2 PX , and for every unital finite dimensional *-homomorphism  W C.X/!

MN ˝A, we have that
.˛ C Œ �/jP � 0:

Sketch of proof. SinceX is a finite CW complex, let F � Proj.C.X/˝K/ be a finite set
whose image, in K0.C.X//C, generates K0.C.X//. Say that F D ¹p1; : : : ; pKº. For all
1 � j � K, let Mj � 1 be such that pj �

LMj 1C.X/.
Define PX Ddf ¹1C.X/; pj ; rj W 1 � j � Kº, where for all j , rj 2 C.X/ ˝K is a

projection such that Œrj � D .Mj C 1/Œ1C.X/� � Œpj �.
Say P D ¹q1; q2; : : : ; qLº � P .C.X//. For each 1 � j � L, let qj .0; 0/ be a pro-

jection of qj into Proj.C.X/˝K/. (Recall that for all j , qj is a projection in C.Ym/˝
C.S1/˝C.X/˝K for somem dependent on j . By taking a point evaluation, with point
in Ym � S1, we get a projection in C.X/˝K .) Then Œqj .0; 0/� is the K0 piece of Œqj � in
K�.C.X/IZ˚ Z=m/ D K0.C.X//˚K1.C.X//˚K�.C.X/IZ=m/.

For all l , let ml;j be integers such that

Œql .0; 0/� D

KX
jD1

ml;j Œpj �:

Let N D
PL
lD1

PK
jD1.Mj C 10/jml;j j C 1. We would be done since, by Lemma 3.8,

an element ofK.A/ is positive if and only if it is either zero or itsK0 component is strictly
positive.
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Corollary 3.12. Let X be a finite CW complex. Then there is a finite subset

PX � Proj.C.X/˝K/

for which the following is true:
For every " > 0 and finite subset F � C.X/, there exists N � 1 such that for every

unital, separable, simple, finite, real rank zero, Z-stable C �-algebra A, and for every
˛ 2 KK.C.X/;A/ such that

˛.Œ1C.X/�/ D Œ1A�

in K0.A/ and
˛.Œp�/ � 0

for all p 2PX , there exists a unital c.p.c. F -"-multiplicative map � W C.X/!MNC1.A/

and a unital finite dimensional *-homomorphism  W C.X/!MN .A/ such that

Œ�� D ˛ C Œ �

in KK.C.X/;A/.

Recall that an extension of C �-algebras

0! B ! D ! A! 0

is said to be quasidiagonal if there exists an approximate unit ¹enº1nD1 of B, consisting of
an increasing sequence of projections, such that for all x 2 D ,

kxen � enxk ! 0

as n!1.

Proposition 3.13. Let X be a compact metric space, and let B be a nonunital, � -unital,
simple C �-algebra with real rank zero and continuous scale.

Suppose that � W C.X/!M.B/=B is an essential extension such that

Œ�� D 0

in KL.C.X/;M.B/=B/. Then � is quasidiagonal.

Proof. This follows from [36, Theorem 1.5] (see also [42, Theorems 7.10 and 7.11]).

4. A nonstable Brown–Douglas–Fillmore Theorem

We move towards the technical, operator-theoretic argument of Proposition 4.6. This result
and its proof has many precursors, including the Weyl–von Neumann Theorem and its
many generalizations over the years. (The reader is expected to be comfortable with the
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references in the last paragraph of Section 1.) We have tried to make the proof easy to
read. Nonetheless, we expect the proof of Proposition 4.6 to not be too easy, even for a
very well-prepared reader.

Recall, from the previous sections, that we will be using much notation and results
from KK theory without definition and explanation. (See the references from previous
sections, especially those from the end of Section 1.) Recall, also, our standing assumption
that for separable, simple, unital, stably finite C �-algebras, we always assume that every
quasitrace is a trace.

We would additionally like to remind the reader of the references (which the reader
should be familiar with) [24, 25, 41, 45] and [44]. Recall that for a compact convex set K,
Aff.K/ is the collection of all real-valued affine continuous functions on K. Recall that
with the uniform norm and the natural strict order (i.e., the order where f is below g if
f .s/ < g.s/ for all s 2 K), Aff.K/ is an ordered Banach space. We let LAff.K/ denote
the class of affine lower semicontinuous functions from K to .�1;1�.

Recall also that Aff.K/CC (LAff.K/CC) denotes the functions in Aff.K/ (respec-
tively LAff.K/) which are strictly positive at every point in K.

Let B be a nonunital, separable, stably finite, simple C �-algebra. Here, we follow
the previously mentioned and universally well-established convention by fixing a nonzero
positive element of the Pedersen ideal of B (if B has real rank zero, a nonzero projection
would do) and defining T .B/ to be the set of all densely defined, (norm-)lower semicon-
tinuous traces on B that are normalized at that fixed positive element. In what follows,
when B is nonunital, the choice of that nonzero positive Pedersen ideal element will not
be relevant. (When B is unital, we always take the Pedersen ideal element to be the unit.)
It is well known that T .B/, with the topology of pointwise convergence on Ped.B/, is a
compact convex set (see [14]).

Suppose that B, as in the previous paragraph (and nonunital), also has real rank zero.
Fix an approximate unit ¹enº1nD1 for B, consisting of an increasing sequence of projec-
tions. Recall that every nonzero A 2 M.B/C induces an element yA 2 LAff.T .B//CC
which is defined by

yA.�/ Ddf lim
n!1

�.enAen/:

(Note that when B has continuous scale, yA 2 Aff.T .B//CC, i.e., yA is continuous.)
The above then extends naturally to a map

b� W .Mn ˝M.B//C ! LAff.T .B//CC [ ¹0º

for all n. Recall that there is an ordered group homomorphism

� W K0.B/! Aff.T .B//

which is given by
�.Œp�/ Ddf cŒp� Ddf yp;

for all Œp� 2 K0.B/C.
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Next, recall that if C is a C �-algebra and a 2 CC with kak � 1 and a2 � a close
enough, then there is a projection p such that p � a very close. We introduce the notation

dae Ddf p

which is well defined up to Murray–von Neumann equivalence.
Finally, for all C �-algebras C ;D , for any linear map � W C ! D , we denote again

by � the natural induced linear map Mn ˝ C !Mn ˝D , for all n. And for a nonunital
C �-algebra B, recall that � WM.B/!M.B/=B is the quotient map.

We remind the reader of the following result, which was essentially proven by Lin
in 1991:

Theorem 4.1. Let B be a nonunital, separable, simple, continuous scale C �-algebra
with real rank zero, stable rank one, and weakly unperforated K0 group. Then we have
the following:

(1) .K0.M.B//;K0.M.B//C/ D .Aff.T .B//;Aff.T .B//CC [ ¹0º/.

(2) For any two projections P;Q 2M.B/ �B, P � Q if and only if �.P / D �.Q/
for all � 2 T .B/.

(3) For any f 2Aff.T .B//CC, there exist k� 1 and a projectionP 2Mk ˝M.B/�

Mk ˝B such that �P D f . Moreover, if f .�/ < �.1M.B// for all � 2 T .B/, then
we can choose P 2M.B/ �B.

(4) The six-term exact sequence (for the ideal B � M.B/) induces a short exact
sequence

0! Aff.T .B//=�.K0.B//! K0.M.B/=B/! K1.B/! 0:

Proof. The first three statements were proven in [32]. A more widely available version
is [42, Theorem 1.4] (see also [12] and [44]). The last statement can be found in [42,
Corollary 1.5].

Lemma 4.2. Let X be a compact metric space, and let B be a nonunital, separable,
simple, continuous scale C �-algebra. Let �;  W C.X/! C.B/ be nonunital essential
extensions.

Then there exists a nonunital essential extension �0 W C.X/! C.B/ such that

� � �0 ˚  :

(Recall that ˚ means BDF sum and � means unitary equivalence with unitary coming
from M.B/.)

Proof. This follows immediately from Theorem 2.4.
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Lemma 4.3. Let X be a finite CW complex, and let B be a nonunital, separable, simple,
continuous scale C �-algebra with real rank zero, stable rank one and weak unperforation.
Let � W C.X/! C.B/ be a nonunital essential extension such that

KL.�/ D 0:

Let  be any nonunital essential null extension (which exists by Proposition 2.3).
Then there exists a nonunital essential quasidiagonal extension �0 W C.X/! C.B/

for which
� � �0 ˚  

and
KL.�0/ D 0:

Proof. By Lemma 4.2, let �0 W C.X/! C.B/ be a nonunital essential extension such that

� � �0 ˚  :

Now, since

KL.�/ D KL. / D 0;

KL.�0/ D 0:

Hence, by Proposition 3.13, �0 is quasidiagonal.

Lemma 4.4. Let X be a finite CW complex, and let B be a nonunital, separable, simple,
continuous scale C �-algebra. Let

K0.C.X// D F ˚ T

where F is a finitely generated free abelian group and T is a finite torsion group, and for
all 1 � j � n, let pj ; qj 2 Proj.C.X/˝K/ be such that if

ej Ddf Œpj � � Œqj �;

then ¹e1; e2; : : : ; enº is a basis for F .
Let ˆ W C.X/ ! M.B/ be a c.p.c. almost multiplicative map which is sufficiently

multiplicative so that dˆ.pj /e and dˆ.qj /e are well defined as elements of Proj.M.B//,
for all j . Suppose that

3dˆ.pj /e; 2dˆ.qj /e 2 �.K0.B//
for all j . Then there exists an ˛ 2 KL.C.X/;B/ such that

1̨.ej / D3dˆ.pj /e � 2dˆ.qj /e
for all j , and

˛jT D 0:
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Proof. For all 1 � j � n, let e0j 2 K0.B/ be such that

ye0j D
3dˆ.pj /e � 2dˆ.qj /e:

Let ˇ W .K0.C.X//;K1.C.X///! .K0.B/;K1.B// be given by

ˇ.ej / D e
0
j

for all j ,
ˇjT D 0; and ˇjK1.C.X// D 0:

By the Universal Coefficient Theorem, we can lift ˇ to ˛ 2 KL.C.X/;B/.

Lemma 4.5. Let X be a finite CW complex and let B be a nonunital, separable, simple,
continuous scale C �-algebra. Then there exist " > 0 and a finite subset F � C.X/ such
that the following statements hold:

Let ¹rnº be a sequence of pairwise orthogonal projections in B for which
P
rn con-

verges strictly in M.B/, and let �n W C.X/! rnBrn be a c.p.c. F -"-multiplicative map
for all n, such that for all f; g 2 C.X/,

k�n.fg/ � �n.f /�n.g/k ! 0

as n!1. Let
ˆ Ddf

X
�n

where the sum converges in the pointwise strict topology. Suppose that ˆ satisfies the
hypotheses of Lemma 4.4 and induces an essential extension. Apply Lemma 4.4 to ˆ to
get ˛ 2 KL.C.X/;B/.

Then for every p 2 Proj.C.X/˝K/,

1̨.Œp�/ �
NX
nD1

3Œ�n�.Œp�/ D
1X

nDNC1

3Œ�n�.Œp�/:

Hence, for the given p, there exists an M � 1 such that for all N �M ,

1̨.Œp�/ �
NX
nD1

3Œ�n�.Œp�/ > 0:

In particular, suppose, in addition, that B has real rank zero, stable rank one and weak
unperforation. Then for all N �M ,

˛.Œp�/ �

NX
nD1

Œ�n�.Œp�/ � 0

in K0.B/.

Proof. As in the statement and proof of Lemma 4.4, let

K0.C.X// D F ˚ T

where F is a finitely generated free abelian group and T is a finite torsion group.
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Let pj ; qj 2 Proj.C.X/˝K/ be such that if

ej Ddf Œpj � � Œqj �

for 1 � j � m then ¹e1; e2; : : : ; emº is a basis for F .
Let ˛ be given as in Lemma 4.4 with the above pj , qj , ej . Let " > 0 be small

enough and a finite subset F � C.X/ be big enough so that for any unital C �-algebra
C , for any c.p.c. map � W C.X/! C , if � is F -"-multiplicative, then � induces a well-
defined element Œ�� 2 KL.C.X/; C/, d�.pj /e, d�.qj /e are well-defined elements of
Proj.C.X/˝K/, and

Œ��.Œpj �/ D Œd�.pj /e� and Œ��.Œqj �/ D Œd�.qj /e�

for all j . Let p 2 Proj.C.X/˝K/ be given. Let

Œp� D xF C xT

where xF 2 F and xT 2 T . Let

xF D

mX
jD1

nj ej :

Hence,

1̨.Œp�/ D 1˛.xF / (since ˛.xT / is a torsion element)

D

mX
jD1

nj1̨.ej /

D

mX
jD1

nj .3dˆ.pj /e � 2dˆ.qj /e/ (by definition of ˛)

D

mX
jD1

nj

 � 1X
kD1

�k.pj /

��
�

� 1X
kD1

�k.qj /

��!
:

Also,
NX
kD1

3Œ�k �.Œp�/ D
NX
kD1

3Œ�k �.xF / (since Œ�k �.xT / is a torsion element)

D

NX
kD1

mX
jD1

nj 2Œ�k �.ej /

D

NX
kD1

mX
jD1

nj .3�k.dpj e/ �3�k.dqj e// (since �k is F -"-multiplicative)

D

mX
jD1

nj

 6NX
kD1

�k.dpj e/ �

5NX
kD1

�k.dqj e/

!
:
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Then

1̨.Œp�/ �
5NX
kD1

Œ�k �.Œp�/

D

mX
jD1

nj

 
1X

kDNC1

3d�k.pj /e �
1X

kDNC1

3d�k.qj /e
!

D

1X
kDNC1

mX
jD1

nj

 
3d�k.pj /e �3d�k.qj /e

!

D

1X
kDNC1

3Œ�k �.xF / (since each �k is F -"-multiplicative)

D

1X
kDNC1

3Œ�k �.Œp�/ (since each Œ�k �.xT / is a torsion element):

But for all sufficiently large N , for all k � N ,

Œ�k �.Œp�/ � 0

in K0.B/, and we are done.

Proposition 4.6. Let B be a nonunital, separable, simple, finite, real rank zero, Z-stable
C �-algebra with continuous scale. Let X be a finite CW complex. Suppose that

� W C.X/! C.B/

is a nonunital *-monomorphism such that KL.�/ D 0.
Then � is a null extension.

Proof. For simplicity, let us first assume that X is a connected finite CW complex. Let
B be as in the hypotheses, and suppose that � W C.X/! C.B/ is a nonunital essential
extension such that

KL.�/ D 0:

By Theorem 2.6, it suffices to prove that � is totally trivial.
By Lemma 4.3,

� � z� ˚  .1/ ˚  .2/ (4.7)

where  .d/ is a nonunital essential null extension (d D 1; 2),

KL.z�/ D 0

and z� is a nonunital essential quasidiagonal extension.
Moreover, let ¹�nº, ¹ 

.d/
n º (d D 1; 2; 3) be sequences of c.p.c. maps from C.X/ to B

such that the following statements are true:
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(a) ¹�n.1/º is a sequence of pairwise orthogonal projections for which
P
�n.1/ con-

verges strictly.

(b) For all d D 1; 2; 3; ¹ 
.d/
n .1/º is a sequence of pairwise orthogonal projections

for which
P
 
.d/
n .1/ converges strictly.

(c) For all m; n; k,
�m.1/ ?  

.1/
n .1/ ?  

.2/

k
.1/ ? �m.1/:

(d) For all d D 1; 2; 3;  .d/n is a finite dimensional *-homomorphism.

(e)
z� D �

�X
�n

�
:

(f) For d D 1; 2;
 .d/ D �

�X
 .d/n

�
:

(g) The map C.X/! C.B/ given by

f 7! �
�X

 .3/n .f /
�

is an essential extension.

Let ¹"nº be a strictly decreasing sequence in .0; 1/ such that

"n ! 0

as n!1. Let BC.X/ denote the closed unit ball of C.X/C. Let ¹Fnº be an increasing
sequence of finite subsets of BC.X/ such that

1[
nD1

Fn D BC.X/:

Apply Theorem 3.3 to each ."n;Fn/ to get a finite subset En � C.X/C � ¹0º. We may
assume that

1 2 En � EnC1

for all n. For all n, let p.2/n 2 B be a nonzero projection such that

p.2/n � p

for every nonzero projection p 2 Ran. .2/n /.
For d D 1; 2; throwing away finitely many initial terms from ¹ .d/n º and replacing

each  .d/n with an appropriate block of the form
Pm
kDl  

.d/

k
if necessary, we may assume

that the spectrum of  .d/n is "n-dense in X .
Doing the same again for d D 1; 3; we may assume that for d D 1; 3, for all n, for all

f 2 En,
 .d/n .f / > 0
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and
10�. .d/n .1// < �.p.2/n / (4.8)

for all � 2 T .B/. Hence, for d D 1; 3, there exists a nonzero projection p.d/n 2 B such
that

p.d/n � p (4.9)

for every nonzero projection p 2 Ran. .d/n /. Note that this implies that for all f 2 En,
there is a projection q 2 B such that q � p.d/n and

q .d/n .f / D  .d/n .f /q 2 .0;1/q: (4.10)

We may assume that
p.d/n � p

.d/
nC1

for all n. For all n and for d D 1; 3; let

�.d/n Ddf min
�2T.B/

�.p
.d/
n /

2�. 
.d/
n .1//

> 0: (4.11)

For all n, apply Theorem 3.3 to "n, Fn, En, �.d/n (d D 1; 3). We then get "0n, F 0n, P 0n. We
may assume that

"0nC1 < "
0
n < "n;

Fn � F 0n � F 0nC1 � BC.X/

and
P 0n � P 0nC1

for all n, such that
"0n ! 0

as n!1, and
1[
nD1

ŒP 0n� D K.C.X//
C:

For all n, apply Proposition 3.2 to X , m D 2 dim.X/C 1, "0n, F 0n, P 0n to get "00n, F 00n . We
may assume that

"00nC1 < "
00
n < "

0
n

and
F 0n � F 00n � F 00nC1 � BC.X/:

As a consequence,
"00n ! 0

as n!1, and
1[
nD1

F 00n D BC.X/:
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For all n, apply Proposition 3.2 to X , m D 2 dim.X/C 1, "00n, F 00n , P 0n to get "000n , F 000n . We
may assume that for all n,

"000nC1 < "
000
n < "

00
n

and
F 00n � F 000n � F 000nC1 � BC.X/:

As a consequence,
"000n ! 0

as n!1, and
1[
nD1

F 000n D BC.X/:

Now, for all n, apply Corollary 3.12 to X , "000n , F 000n to get Nn � 1. Let

ˆ Ddf

1X
nD1

�n:

Since KL.z�/ D 0, throwing away finitely many initial terms �j if necessary, we may
assume that ¹�nº andˆ satisfies the hypotheses of Lemma 4.5. Apply Lemma 4.5 to ¹�nº
and ˆ to get ˛ 2 KL.C.X/;B/.

Now, let ¹Mnº be a strictly increasing sequence of positive integers for which the
following statements hold:

i. We have �
˛ �

MnX
jD1

Œ�j �

�
.Œp�/ � 0

for all p 2 PX . (Recall that, by Lemma 4.5, ˛ �
PM
jD1Œ�j � is asymptotically

positive on K0.C.X//. Also, by Lemma 3.8, for all x 2 K.B/ � ¹0º, x � 0 if
and only if the K0 part of x is strictly positive.)

ii. For all n, for all j �Mn, �j is F 000n -"000n -multiplicative.

iii. For all n, let rn 2 B be a projection such that

Œrn�K0.B/ D ˛.Œ1�/ �

MnX
jD1

Œ�j �.Œ1�/:

Then for all � 2 T .B/,

.1C 5mCm2/.1CNn/�.rn/ < min¹�.p.1/n /; �.p.3/n /º: (4.12)

(Recall that m D 2 dim.X/C 1.)

iv. Increasing the Mn if necessary, we may assume that for all n and � 2 T .B/,

NnC1�.rnC1/ < Nn�.rn/: (4.13)
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To simplify notation, for all l , let

ˇl Ddf ˛ �

lX
jD1

Œ�j �:

We have that for all n � 2 and all p 2 PX ,

ˇMn.Œp�/ � 0:

So by Corollary 3.12, there exists a unital c.p.c. F 000n -"000n -multiplicative map �n W C.X/!
rnBrn ˝MNnC1 and a unital finite dimensional *-homomorphism

fd 0n W C.X/! rnBrn ˝MNn

such that
Œ�n� D ˇMn C Œfd

0
n�: (4.14)

By Proposition 3.2, let �n W C.X/! .rnBrn/˝MNnC1 ˝Mm be a unital c.p.c. F 00n -"00n-
multiplicative map and let fd 00n W C.X/! .rnBrn/˝MNnC1 ˝MmC1 be a unital finite
dimensional *-homomorphism such that

Œ�n ˚ �n�jP 0n D Œfd
00
n �jP 0n : (4.15)

By Proposition 3.2 again, let �n W C.X/! .rnBrn/˝MNnC1 ˝Mm ˝Mm be a c.p.c.
F 0n-"0n-multiplicative map and let fd 000n W C.X/! .rnBrn/˝MNnC1 ˝Mm ˝MmC1

be a finite dimensional *-homomorphism such that

Œ�n ˚ �n�jP 0n D Œfd
000
n �jP 0n : (4.16)

For all n, from (4.15), we have that

Œ�n� � Œ�nC1�C Œ�n� � Œ�nC1�jP 0n D Œfd
00
n � � Œfd

00
nC1�jP 0n :

(Recall that P 0n � P 0nC1.) But from (4.14) and the definition of ˇl , we have that

Œ�n� � Œ�nC1� D

MnC1X
jDMnC1

Œ�j �C Œfd
0
n� � Œfd

0
nC1�:

Hence,

MnC1X
jDMnC1

Œ�j �C Œ�n� � Œ�nC1�jP 0n D Œfd
00
n � � Œfd

00
nC1�C Œfd

0
nC1� � Œfd

0
n�jP 0n :

From this and (4.16), we have that

MnC1X
jDMnC1

Œ�j �C Œ�n�C Œ�nC1�jP 0n D Œfd
00
n � � Œfd

00
nC1�C Œfd

0
nC1� � Œfd

0
n�C Œfd

000
nC1�jP 0n :
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Since X is connected, by the definitions of the fd 0
l
, fd 00

l
and fd 000

l
and by (4.13) (from

the definition of rn), we can find a nonzero projection pn 2 B ˝K with

�.pn/ D .NnmCmC 1/�.rn/ � .NnC1mCmC 1/�.rnC1/

C .NnC1 C 1/m.mC 1/�.rnC1/

for all � 2 T .B/, and we can find a unital finite dimensional *-homomorphism fd
.4/
n W

C.X/! pn.B ˝K/pn such that

Œfd .4/n � D Œfd 00n � � Œfd
00
nC1�C Œfd

0
nC1� � Œfd

0
n�C Œfd

000
nC1�:

Hence,
MnC1X

jDMnC1

Œ�j �C Œ�n�C Œ�nC1�jP 0n D Œfd
.4/
n �jP 0n (4.17)

for all n.
Note that

�.�n.1/C �n.1// D .Nn C 1/m.mC 1/�.rn/

for all � 2 T .B/. From this, Theorem 3.3, (4.15), the definition of �.3/n in (4.11), and
(4.12) in the definition of the Mn, we have that there exists a unital finite dimensional
*-homomorphism

FD00;n W C.X/! .fd 000n .1/˚  
.3/
n .1//.B ˝K/.fd 000n .1/˚  

.3/
n .1//

such that some unitary conjugate of �n ˚ �n ˚  
.3/
n is within "n of FD00;n on Fn.

From the definition of FD00;n, by (4.8), and since the spectrum of  .2/n is "n-dense
in X , by conjugating FD00;n by a unitary if necessary, we can find finite dimensional
*-homomorphisms FD0n, FD00n, with pairwise orthogonal ranges such that

FD0n C FD
00
n D  

.2/
n

and FD00;n is within "n of FD0n on the closed unit ball of C.X/.

Hence, replacing �n, �n,  .3/n by appropriate (simultaneous) unitary conjugates if nec-
essary, we may assume that

�n.1/C �n.1/C  
.3/
n .1/ �  .2/n .1/

and �n C �n C  
.3/
n is within 2"n of FD0n on Fn. We denote this assumption by (A).

Also, note that for all n, for all � 2 T .B/,

�

� MnC1X
jDMnC1

�j .1/C �n.1/C �nC1.1/

�
< .Nn C 1/.1CmC .mC 1/.mC 2//�.rn/:

(We are also using (4.13), among other things.)
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Hence, by Theorem 3.3, (4.17), and (4.12), there exists a unital finite dimensional
*-homomorphism

FD000n W C.X/! herB

�
�n.1/C �nC1.1/C

MnC1X
jDMnC1

�j .1/C  
.1/
n .1/

�
such that on Fn, FD000n is within "n of �nC �nC1C

PMnC1

jDMnC1
�j C 

.1/
n . Denote this (B).

To keep the rest of the argument simple, we introduce a notation. For all c.p.c. maps
�; � W C.X/!M.B/, we let

� �B �

mean that there exists a unitary u 2M.B/ such that for all f 2 C.X/,

u�.f /u� � �.f / 2 B:

Let x� W C.X/!M.B/ be a c.p.c. map that lifts �, i.e., � ı x� D �. Then,

x� �B

X
�j ˚

X
 .1/n ˚

X
 .2/n (by (4.7))

�B

1X
nD1

MnC1X
jDMnC1

�j ˚
X

 .1/n ˚
X

.FD0n ˚ FD
00
n/

�B

1X
nD1

� MnC1X
jDMnC1

�j ˚ �n ˚ �nC1 ˚  
.3/
n ˚  

.1/
n

�
˚

X
FD00n (by (A))

�B

X
FD000n ˚  

.3/
n ˚

X
FD00n (by (B)):

Hence, � is totally trivial. Since KL.�/ D 0, � is null by Theorem 2.6.

Let X be a compact metric space and C be a unital C �-algebra. Let


 W KK.C.X/;C/! Hom.K�.C.X//;K�.C//

be the surjective map from the Universal coefficient theorem. We let KKu.C.X/;C/ be
the set of elements x 2KK.C.X/;C/ such that 
.x/maps Œ1C.X/� (inK0.C.X//) to Œ1C �

(in K0.C/).
Finally, denote by J the natural group homomorphism

J W Ext.C.X/;B/! KK.C.X/;M.B/=B/ W Œ��Ext 7! Œ��KK :

Similarly, we have the analogous map

J W Extu.C.X/;B/! KKu.C.X/;M.B/=B/

which is a group homomorphism when Œ1C.B/�K0.C.B// D 0.
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Theorem 4.18. Let X be a finite CW complex, and let B be a nonunital, simple, separa-
ble, finite, real rank zero, Z-stable C �-algebra with continuous scale.

Then the map

J W Ext.C.X/;B/! KK.C.X/;M.B/=B/

is a group isomorphism.

Proof. The argument is a minor variation on the argument of [36, Theorem 2.10]. We
provide the proof for the convenience of the reader.

Firstly, surjectivity of the map J follows from [35, Theorem 1.17]. Next, injectivity
of J follows from Proposition 4.6.

A trivial argument, using Theorem 4.18, gives us the unital case:

Theorem 4.19. LetX be a finite CW complex and let B be a nonunital, simple, separable,
finite, real rank zero, Z-stable C �-algebra with continuous scale such that Œ1M.B/=B �D 0

in K0.M.B/=B/. Then the map

J W Extu.C.X/;B/! KKu.C.X/;M.B/=B/

is a group isomorphism.
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