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Generators in Z-stable C �-algebras of real rank zero

Hannes Thiel

Abstract. We show that every separable C�-algebra of real rank zero that tensorially absorbs the
Jiang–Su algebra contains a dense set of generators. It follows that, in every classifiable, simple,
nuclear C�-algebra, a generic element is a generator.

1. Introduction

The generator problem for C �-algebras asks to determine the minimal number of genera-
tors for a given C �-algebra. One difficulty when studying this problem is that the minimal
number of generators is a rather ill-behaved invariant; in particular, it may increase when
passing to ideals or inductive limits. We showed in [13] that a much better behaved invari-
ant is obtained by considering the minimal number n such that generating n-tuples are
dense.

The most interesting aspect of the generator problem is to determine which C �-
algebras are generated by a single operator, and it is a major open question if every
separable, simple C �-algebra is singly generated. A natural variant of this problem is
to describe the class of C �-algebras that contain a dense set of generators. In previous
work, we showed that this class includes all separable AF algebras [13, Theorem 7.3] and
all separable, approximately subhomogeneous (ASH) algebras that are Z-stable, that is,
that tensorially absorb the Jiang–Su algebra Z [14, Theorem 5.10].

In this paper, we show that every separable, Z-stable C �-algebra of real rank zero
contains a dense set of generators; see Theorem 5.3. This includes all separable, nuclear,
purely infinite C �-algebras of real rank zero (Corollary 5.5) and in particular every Kirch-
berg algebra (Corollary 5.6). Together with the previous result about Z-stable ASH alge-
bras, we deduce that every classifiable, simple, nuclear C �-algebra contains a dense set of
generators; see Corollary 5.7.

The main tool to prove these results is the generator rank, which was introduced in
[13]. A unital, separableC �-algebraA has generator rank at most n, denoted by gr.A/�n,
if the set of self-adjoint .n C 1/-tuples that generate A as a C �-algebra is dense; see
Definition 2.1 for the general definition in the nonunital and nonseparable case. By [13,
Proposition 5.6], A has generator rank zero if and only if A is commutative with totally
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disconnected spectrum. Since two self-adjoint elements a and b generate the same sub-
C �-algebra as the element aC ib, it follows that A has generator rank at most one if and
only if A contains a dense set of generators.

Our main result (Theorem 5.3) shows that separable, Z-stableC �-algebras of real rank
zero have generator rank one. To prove this, we heavily rely on the permanence properties
of the generator rank that were established in [13]. In particular, the generator rank does
not increase when passing to ideals, quotients, or inductive limits, and we can estimate the
generator rank of extensions; see Theorem 2.4.

The general strategy is as follows: given a unital, separable, Z-stable C �-algebra A of
real rank zero, we use that Z is the inductive limit of generalized dimension-drop algebras
Z21;31 (see the proof of Proposition 4.3 for the definition) to reduce the problem to
computing the generator rank of A˝Z21;31 .

We obtain the estimate gr.A˝Z21;31/ � 1 by combining two results: first, we show
that A ˝ Z21;31 has finite generator rank (we verify that it is at most 8); see Propo-
sition 4.3. Then, using a delicate construction of generators in A ˝ Z21;31 , we show
that gr.A ˝ Z21;31/ � n C 1 implies that gr.A ˝ Z21;31/ � n, for every n � 1; see
Lemma 5.2.

To verify that A˝Z21;31 has finite generator rank, we use the short exact sequence

0! A˝ C0
�
.0; 1/;M61

�
! A˝Z21;31 ! A˝ .M21 ˚M31/! 0;

and it suffices to show that the ideal and the quotient have finite generator rank. To
estimate the generator rank of A ˝ C0..0; 1/; M61/, we use that it is an ideal in A ˝
C0.Œ0; 1�; M61/. In Section 3, we prove an upper bound for the generator rank of such
algebras.

The algebra A ˝ Z21;31 has a natural structure as a C.Œ0; 1�/-algebra, with each
fiber over .0; 1/ isomorphic to A ˝M61 , and with the fibers at 0 and 1 isomorphic to
A˝M31 and A˝M21 , respectively. We use a Stone–Weierstraß-type result that char-
acterizes when a set of self-adjoint elements generates A˝Z21;31 : the elements have to
generate each fiber, and they have to suitably separate the points in Œ0; 1�. The assumption
of real rank zero is crucial for both: it is used in the proof of Proposition 4.2 to show that
the tensor product of A with a UHF algebra has generator rank one, and it is used in the
proofs of Lemma 3.2 and Lemma 5.2 to construct self-adjoint elements that separate the
points in Œ0; 1�.

Notation

Given a C �-algebraA, we useAsa to denote the set of self-adjoint elements inA. We write
Md for the C �-algebra of d -by-d complex matrices. Given a subset F � A and a 2 A,
we write a 2" F if there exists b 2 F such that ka � bk < ". We set N WD ¹0; 1; 2; : : :º,
the natural numbers including 0. The spectrum of an operator a is denoted by �.a/.
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2. The generator rank

In this section, we recall the definition and basic properties of the generator rank gr and
its precursor gr0 from [13].

Definition 2.1 ([13, Definitions 2.1 and 3.1]). Let A be a C �-algebra. Then gr0.A/ is
defined as the smallest integer n � 0 such that, for every a0; : : : ; an 2 Asa, " > 0, and
c 2 A, there exist b0; : : : ; bn 2 Asa such that

kbj � aj k < " for j D 0; : : : ; n and c 2" C
�.b0; : : : ; bn/:

If no such n exists, then gr0.A/ D 1. The generator rank of A is defined as gr.A/ WD
gr0. zA/, where zA denotes the minimal unitization of A.

For the definition and the basic properties of the real rank of C �-algebras, we refer to
[1, Section V.3.2, p. 452ff].

Remark 2.2. Let A be a C �-algebra. If A is unital, then gr.A/ D gr0.A/ by definition.
By [14, Theorem 5.5], we also have gr.A/ D gr0.A/ whenever A is subhomogeneous. By
[13, Theorem 3.13], we have gr.A/Dmax¹rr.A/;gr0.A/º. In particular, if A has real rank
zero, then gr.A/ D gr0.A/.

In general, however, it is unclear whether gr.A/ D gr0.A/; see [13, Question 3.16].

For separable C �-algebras, the generator rank and its precursor can be described by
the denseness of generating tuples.

Theorem 2.3 ([13, Theorem 3.4]). Let A be a separable C �-algebra and n 2 N. Then
gr0.A/� n if and only if, for every a0; : : : ; an 2Asa and " > 0, there exist b0; : : : ; bn 2Asa

such that

kbj � aj k < " for j D 0; : : : ; n and A D C �.b0; : : : ; bn/:

Analogously, we obtain a characterization of gr.A/ � n by denseness of generating
tuples in zA.

We will repeatedly use the following permanence properties of the generator rank,
which were shown in [13, Theorems 6.2 and 6.3].

Theorem 2.4. Let I � A be a closed, two-sided ideal in a C �-algebra A. Then

max
®

gr.I /; gr.A=I /
¯
� gr.A/ � gr.I /C gr.A=I /C 1:

Moreover, if A D lim
�!�

A� is an inductive limit, then

gr.A/ � lim inf
�

gr.A�/:

It is natural to expect that the generator rank of the direct sum of two C �-algebras
is the maximum of the generator ranks of the summands. We have verified this in the
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case that both summands have real rank zero (see Proposition 2.5 below) and whenever
one of the summands is subhomogeneous [14, Proposition 5.8]. However, in general, this
remains unclear; see [13, Question 6.4].

Proposition 2.5 ([13, Lemma 7.1]). Let A; B be C �-algebras of real rank zero. Then
gr.A˚ B/ D max¹gr.A/; gr.B/º.

Proposition 2.6 ([13, Proposition 5.6]). A C �-algebra A has generator rank zero if and
only if A is commutative with totally disconnected spectrum.

Remark 2.7. Let A be a separable C �-algebra. Since two self-adjoint elements a and b
generate the same sub-C �-algebra as the element a C ib, and since the set of generators
in A is always a Gı -subset, we have gr0.A/ � 1 if and only if the set of (non-self-adjoint)
generators in A is a dense Gı -subset; see [13, Remark 3.7].

If A has real rank zero, then gr0.A/ D gr.A/. Thus, a separable C �-algebra A of
real rank zero has generator rank at most one if and only if a generic element in A is a
generator.

We end this section with a standard result that will be used in the proof of Lemma 5.2.
We include a proof for completeness. For the definition and basic results ofC.X/-algebras,
we refer to [3, Section 2].

Given an element a in a C.X/-algebra, and x 2 X , we let a.x/ denote the image of
a in the fiber at x. We will repeatedly use that the map X ! R, x 7! ka.x/k is upper
semicontinuous, and that kak D supx2X ka.x/k; see [3, Lemma 2.1].

Lemma 2.8. Let X be a compact Hausdorff space, let A be a unital C.X/-algebra, and
let B � A be a sub-C �-algebra. Then the following are equivalent:

(a) we have C.X/ � B;

(b) B separates the points in X in the sense that, for every distinct x0; x1 2 X , there
exists b 2 B with b.x0/ D 0 and b.x1/ D 1.

Proof. Assuming (b), we need to verify (a). We first show that 1 2 B . For every y 2 X ,
there exists by 2 B with by.y/ D 1. Replacing by by byb�y , we may assume that by is
positive. Set Uy WD ¹z 2 X W k1 � by.z/k < 1

2
º, which is open since k1 � by.�/k is upper

semicontinuous. Hence, the compact set X is covered by .Uy/y2X , which allows us to
choose y1; : : : ; yN 2 X such that X is covered by

SN
jD1 Uyj . Set b WD

PN
jD1 byk 2 B .

Let f WR! Œ0; 1� be a continuous function with f .0/ D 0 and such that f takes value 1
on Œ1

2
;1/. Set c WD f .b/ 2 B . For each x, we have b.x/ � 1

2
and therefore c.x/ D 1. It

follows that c D 1, since kc � 1k D supx2X kc.x/ � 1k D 0.

Claim 1. Let F � X be closed and x 2 X n F . Then there exists a positive b 2 B with
bjF D 0 and b.x/D 1. To prove the claim, let y 2 F . By assumption, there is by 2B such
that by.y/ D 0 and by.x/ D 1. As above, we may assume that by is positive, and we may
then find y1; : : : ; yN 2 F such that F is covered by the sets Uj WD ¹z 2X W kbyj .z/k<

1
2
º
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for j D 1; : : : ;N . Let gWR! Œ0; 1� be a continuous function with g.1/D 1 and such that
g takes the value 0 on .�1; 1

2
�. For each j , set cj WD g.byj / 2 B . Then cj vanishes on

Uyj , and cj .x/ D 1. Thus, b WD .c1c2 � � � cN /.c1c2 � � � cN /
� has the desired properties,

which proves the claim.

Claim 2. Let F � G � X with F closed and G open. Then there exists b 2 B with
0 � b � 1, bjXnG D 0, and bjF D 1. To prove the claim, set C WD X n G. Applying
Claim 1 and using that 1 2 B , for each y 2 C we obtain a positive by 2 B such that
by jF D 1 and by.y/ D 0. As in Claim 1, we find y1; : : : ; yM such that C is covered
by the sets ¹z 2 X W kbyj .z/k <

1
2
º for j D 1; : : : ; N . With g as above, the element

d WD g.by1/ � � �g.byM / satisfies d jC D 0 and d jF D 1. Set b WD h.dd�/, where hWR!R
is the function h.t/ D min¹t; 1º. Then b has the claimed properties.

Claim 3. Let f WX ! Œ0;1/ be continuous, and let " > 0. Then there exists b 2 B with
kb � f k � 2". Set b0 WD 1. For each k � 1, set

Fk WD
®
x 2 X W f .x/ � k"

¯
and Gk WD

®
x 2 X W f .x/ > .k � 1/"

¯
:

Then Gk is open, Fk is closed, and Fk � Gk . Using Claim 2, choose bk 2 B such that
0 � bk � 1, bkjXnGk D 0, and bkjFk D 1.

Note that bk D 0 for large enough k, which allows us to set b WD "
P1
kD0 bk . For each

x 2X , we have f .x/� b.x/� f .x/C 2" by construction, and thus kb.x/� f .x/k � 2".
Hence, kb � f k D supx2X kb.x/ � f .x/k � 2".

It follows from Claim 3 that B contains every positive function in C.Œ0; 1�/, which
implies the result.

3. Generator rank of C.Œ0; 1�; A/

Throughout this section, we let A denote a unital, separable C �-algebra of real rank zero
and generator rank at most one, and we set B WD A˝ C.Œ0; 1�/. We consider B with its
natural C.Œ0; 1�/-algebra structure, with each fiber isomorphic to A. The goal is to verify
gr.B/ � 6, which we accomplish in a series of lemmas.

Lemma 3.1. Let x1; : : : ; x4 2 Bsa and " > 0. Then there exist y1; : : : ; y4 2 Bsa such that

kyk � xkk < " for k D 1; : : : ; 4 and A D C �
�
y1.t/; : : : ; y4.t/

�
for all t 2 Œ0; 1�:

Proof. Using that each xj W Œ0; 1�! A is uniformly continuous, choose N � 1 such that
kxj .t/ � xj .t

0/k < "
3

for all t; t 0 2 Œ0; 1� with jt � t 0j � 1
N

.
Let j 2 ¹0; : : : ; N º. Then x1.

2j
2N
/ and x2.

2j
2N
/ belong to Asa. Using that A is unital

and separable with gr.A/� 1, we can apply Theorem 2.3 to obtain y.2j /1 ; y
.2j /
2 2 Asa such

thaty.2j /1 � x1

�
2j

2N

� < "

3
;

y.2j /2 � x2

�
2j

2N

� < "

4
; and A D C �.y

.2j /
1 ; y

.2j /
2 /:
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Analogously, we obtain y.2j /3 ; y
.2j /
4 2 Asa such thaty.2j /3 � x3

�
2j

2N

� < "

3
;

y.2j /4 � x4

�
2j

2N

� < "

3
; and A D C �.y

.2j /
3 ; y

.2j /
4 /:

For j 2 ¹0; : : : ; N º, let fj ; gj W Œ0; 1�! Œ0; 1� be continuous functions such that

(1) fj takes the value 1 on Œ 2j
2N
; 2jC1
2N

� for j D 0; : : : ; N � 1;

(2) the collection .fj /jD0;:::;N is a partition of unity subordinate to the family²�
0;

2

2N

�
;

�
1

2N
;
4

2N

�
; : : : ;

�
2N � 3

2N
;
2N

2N

�
;

�
2N � 1

2N
;
2N

2N

�³
I

(3) gj takes the value 1 on Œ2j�1
2N

; 2j
2N
� for j D 1; : : : ; N ;

(4) the collection .gj /jD0;:::;N is a partition of unity subordinate to the family²�
0;

1

2N

�
;

�
0

2N
;
3

2N

�
; : : : ;

�
2N � 4

2N
;
2N � 1

2N

�
;

�
2N � 2

2N
;
2N

2N

�³
:

The functions are depicted in the following picture:

1
f0 f1

0 1
2N

2
2N

fN�2 fN�1
fN

2N�1
2N

1

1
g0

g1 g2

0 1
2N

2
2N

gN�1 gN

2N�1
2N

1

Set

y1 WD

NX
jD0

y
.2j /
1 fj ; y2 WD

NX
jD0

y
.2j /
2 fj ; y3 WD

NX
jD0

y
.2j /
3 gj ; y4 WD

NX
jD0

y
.2j /
4 gj :

To verify that ky1 � x1k < ", we estimate ky1.t/ � x1.t/k for t 2 Œ0; 1�. For t D 1,
we have y1.1/ D y

.2N/
1 , and soy1.1/ � x1.1/ D y1.1/ � y.2N/1

 < "

3
�
2

3
":

Given t 2 Œ0;1/, let j 2 ¹1; : : : ;N º satisfy t 2 Œ2j�2
2N

; 2j
2N
/. Since jt � 2j�2

2N
j; jt � 2j

2N
j< 2

2N
,

we havey.2j�2/1 � x1.t/
�y.2j�2/1 � x1

�
2j � 2

2N

�Cx1�2j � 22N

�
� x1.t/

< "3C "3 � 23";y.2j /1 � x1.t/
�y.2j /1 � x1

�
2j

2N

�C x1� 2j2N
�
� x1.t/

 < "

3
C
"

3
�
2

3
":
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Using that y1.t/ D y
.2j�2/
1 fj�1.t/C y

.2j /
1 fj .t/ and that fj�1.t/C fj .t/ D 1, we gety1.t/ � x1.t/ � y.2j�2/1 � x1.t/
fj�1.t/C y.2j /1 � x1.t/

fj .t/ � 2

3
":

Hence, ky1 � x1k D supt2Œ0;1� ky1.t/ � x1.t/k �
2
3
" < ". Analogously, one shows

that kyk � xkk < " for k D 2; 3; 4.
It remains to verify that ¹y1; : : : ; y4º generatesA in each fiber. Given t 2 Œ0; 1�, choose

l 2 ¹0; : : : ; 2N � 1º such that t 2 Œ l
2N
; lC1
2N
�. If l is even, set j D l

2
. Then

y1.t/ D y
.2j /
1 and y2.t/ D y

.2j /
2 :

If l is odd, set j D lC1
2

. Then

y3.t/ D y
.2j /
3 and y4.t/ D y

.2j /
4 :

Thus, either ¹y1.t/; y2.t/º or ¹y3.t/; y4.t/º generates A, and it follows that A D
C �.y1.t/; : : : ; y4.t// in either case.

Lemma 3.2. Let x1; x2; x3 2 Bsa and " > 0. Then there exist y1; y2; y3 2 Bsa with
kyk � xkk < " for k D 1; 2; 3, and such that C �.y1; y2; y3/ separates the points in Œ0; 1�
in the sense of Lemma 2.8 (b).

Proof. Using that each xj W Œ0; 1�! A is uniformly continuous, choose N � 1 such that
kxj .t/ � xj .t

0/k < "
4

for all t; t 0 2 Œ0; 1� with jt � t 0j � 1
N

.
Let j 2 ¹0; : : : ; N º. Using that A has real rank zero, we find invertible elements

y
.3j /
1 ; y

.3j /
2 ; y

.3j /
3 2 Asa with finite spectra such thaty.3j /1 � x1

�
3j

3N

�< "

4
;

y.3j /1 � x2

�
3j

3N

�< "

4
; and

y.3j /1 � x3

�
3j

3N

�< "

4
:

By perturbing the elements, if necessary, we may assume that the spectra of y.3j /
k

and
y
.3j 0/

k0
are disjoint whenever k ¤ k0 or j ¤ j 0. Choose � > 0 such that any two distinct

points in ¹0º [
S
k;j �.y

.3j /

k
/ have distance at least 2�. We may assume that � < "

4
.

For j 2 ¹0; : : : ; N º, let fj ; gj ; hj W Œ0; 1�! Œ0; 1� be continuous functions such that

(1) fj takes the value 1 on Œ 3j
3N
; 3jC2
3N

� for j D 0; : : : ; N � 1;

(2) the collection .fj /jD0;:::;N is a partition of unity subordinate to the family²�
0;

3

3N

�
;

�
2

3N
;
6

2N

�
; : : : ;

�
3N � 4

3N
;
3N

3N

�
;

�
3N � 1

3N
;
3N

3N

�³
I

(3) gj takes the value 1 on Œ3j�2
3N

; 3j
2N
� for j D 1; : : : ; N ;

(4) the collection .gj /jD0;:::;N is a partition of unity subordinate to the family²�
0;

1

3N

�
;

�
0

3N
;
4

3N

�
; : : : ;

�
3N � 6

3N
;
3N � 2

3N

�
;

�
3N � 3

3N
;
3N

3N

�³
I
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(5) h0 takes the value 1 on Œ 0
3N
; 1
3N
�; hN takes the value 1 on Œ3N�1

3N
; 3N
3N
�; and hj

takes the value 1 on Œ3j�1
3N

; 3jC1
3N

� for j D 1; : : : ; N � 1;

(6) the collection .hj /jD0;:::;N is a partition of unity subordinate to the family²�
0;

2

3N

�
;

�
1

3N
;
5

2N

�
; : : : ;

�
3N � 5

3N
;
3N � 1

3N

�
;

�
3N � 2

3N
;
3N

3N

�³
:

The functions are depicted in the following picture:

1
f0 f1 fN�1

fN

0 1
3N

2
3N

3
3N

4
3N

5
3N

6
3N

3N�1
3N

1

1
g0 g1 gN�1 gN

0 1
3N

2
3N

3
3N

4
3N

3N�3
3N

1

1
h0 h1 hN�1 hN

0 1
3N

2
3N

3
3N

4
3N

5
3N

3N�2
3N

1

Define y1; y2; y3W Œ0; 1�! A by

y1.t/ WD

NX
jD0

.y
.3j /
1 C t�/fj .t/; y2.t/ WD

NX
jD0

.y
.3j /
2 C t�/gj .t/;

y3.t/ WD

NX
jD0

.y
.3j /
3 C t�/hj .t/;

for t 2 Œ0; 1�.
To verify that ky1 � x1k < ", we estimate ky1.t/ � x1.t/k for t 2 Œ0; 1�, similarly as

in the proof of Lemma 3.1. For t D 1, we obtainy1.1/ � x1.1/ D y.3j /1 C � � x1.1/
 < "

4
C
"

4
�
3

4
":

Given t 2 Œ0; 1/, let j 2 ¹1; : : : ; N º satisfy t 2 Œ3j�3
3N

; 3j
3N
/. Using at the second step that

jt � 3j
3N
j < 3

3N
, we havey.3j /1 C t� � x1.t/

 � �C y.3j /1 � x1

�
3j

3N

�C x1� 3j3N
�
� x1.t/

 � 3

4
":
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Analogously, we obtain ky.3j�3/1 C t� � x1.t/k �
3
4
". We deduce thaty1.t/ � x1.t/ D �.y.3j�3/1 C t�/fj�1.t/C .y
.3j /
1 C t�/fj .t/

�
� x1.t/

 � 3

4
":

Hence, ky1 � x1k D supt2Œ0;1� ky1.t/ � x1.t/k �
3
4
" < ". Analogously, one shows that

kyk � xkk < " for k D 2; 3.
It remains to verify that C �.y1; y2; y3/ separates the points in Œ0; 1� in the sense of

Lemma 2.8 (b). Let s; t 2 Œ0; 1� be distinct. Choose k 2 ¹1; 2; 3º such that both s and t are
contained in the set [

j2Z

�
3j C k � 1

3N
;
3j C k C 1

3N

�
:

Let us consider the case k D 1. Choose j; j 0 2 ¹0; : : : ; N º such that s 2 Œ 3j
3N
; 3jC2
3N

� and
t 2 Œ 3j

0

3N
; 3j

0C2
3N

�. Then

y1.s/ D y
.3j /
1 C s� and y1.t/ D y

.3j 0/
1 C t�:

Since s ¤ t , and by choice of �, it follows that y1.s/ and y1.t/ have finite spectra that are
disjoint and do not contain 0. Hence, there exists a continuous function f WR! Œ0; 1� such
that f .y1.s//D 0 and f .y1.t//D 1. Then the element b WD f .y1/ 2 B satisfies b.s/D 0
and b.t/ D 1.

The cases k D 2; 3 are analogous, using y2 and y3.

Proposition 3.3. LetA be a unital, separable C �-algebra of real rank zero and generator
rank at most one. Set B WD A˝ C.Œ0; 1�/. Then we have gr.B/ � 6.

Proof. We show that every 7-tuple in Bsa can be approximated by a tuple that generates
B . Since B is separable and unital, this verifies gr.B/ � 6; see Theorem 2.3.

Let x1; : : : ; x7 2 Bsa and " > 0. Applying Lemma 3.1 for x1; : : : ; x4, we obtain
y1; : : : ; y4 2 Bsa such that

kyj � xj k < " for j D 1; : : : ; 4 and A D C �
�
y1.t/; : : : ; y4.t/

�
for all t 2 Œ0; 1�:

Applying Lemma 3.2 for x5; x6; x7, we obtain y5; y6; y7 2 Bsa such that kyk � xkk < "
for k D 5; 6; 7, and such that C �.y5; y6; y7/ separates the points in Œ0; 1� in the sense of
Lemma 2.8 (b).

SetD WD C �.y1; : : : ; y7/� B . ThenD exhausts each fiber of B and, moreover, sepa-
rates the points in Œ0;1�. Hence,DDB by [15, Lemma 3.2], which shows that ¹y1; : : : ;y7º
generates B , as desired.

Remark 3.4. The proof of Proposition 3.3 can be generalized to show the following: if
A is a unital, separable C �-algebra of real rank zero, then B WD A˝ C.Œ0; 1�/ satisfies
gr.B/ � 2 gr.A/C 4.
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4. Establishing finite generator rank

In this section, we prove that unital, separable, Z-stable C �-algebras of real rank zero
have finite generator rank; see Proposition 4.3. In the next section, we will successively
reduce the upper bound for the generator rank of such algebras down to one.

We start with a lemma that simplifies the computation of the generator rank for C �-
algebras that absorb a strongly self-absorbing C �-algebra. For the definition and basic
results of strongly self-absorbing C �-algebras, we refer to [17]. Given a strongly self-
absorbing C �-algebra D, a C �-algebra A is said to be D-stable if A Š A ˝ D. Since
every strongly self-absorbing C �-algebra is nuclear, we do not need to specify the tensor
product. Typical examples of strongly self-absorbing C �-algebras are UHF algebras of
infinite type, the Jiang–Su algebra Z, and the Cuntz algebras O1 and O2.

Lemma 4.1. Let D be a strongly self-absorbing C �-algebra, let A be a separable, D-
stable C �-algebra, and let n 2 N. Then the following are equivalent:

(1) we have gr0.A/ � n;

(2) for every x0; : : : ; xn 2 Asa and " > 0, there exist y0; : : : ; yn 2 .A˝D/sa such thatyj � .xj ˝ 1/ < " for j D 0; : : : ; n and A˝D D C �.y0; : : : ; yn/I

(3) for every x0; : : : ; xn 2 Asa, " > 0, and z 2 A, there exist y0; : : : ; yn 2 .A˝D/sa

such thatyj � .xj ˝ 1/ < " for j D 0; : : : ; n and z ˝ 1 2" C
�.y0; : : : ; yk/:

Proof. Since A Š A˝D, we have gr0.A/ D gr0.A˝D/. Using that A is separable, it
follows from Theorem 2.3 that (1) implies (2). It is clear that (2) implies (3). Assuming
(3), let us verify (1). To show gr0.A˝D/ � n, let a0; : : : ; an 2 .A˝D/sa, " > 0, and
c 2 A˝D. We need to find b0; : : : ; bn 2 .A˝D/sa such that

kbj � aj k < " for j D 0; : : : ; n and c 2" C
�.b0; : : : ; bn/:

Since D is strongly self-absorbing and A is separable and D-stable, there exists a
�-isomorphism ˆWA! A˝D that is approximately unitarily equivalent to the inclusion
�WA! A˝D given by �.a/ D a˝ 1; that is, there exists a sequence .um/m of unitaries
in A˝D such that limm!1 umˆ.a/u

�
m D �.a/ for all a 2 A; see [17, Theorem 2.2]. Set

xj WD ˆ
�1.aj / for j D 0; : : : ; n and z WD ˆ�1.c/:

Using that u�m.xj ˝ 1/um ! aj for j D 0; : : : ; n and u�m.z ˝ 1/um ! c, we can choose
m such thatu�m.xj ˝ 1/um � aj < "

2
for j D 0; : : : ; n and

u�m.z ˝ 1/um � c < "

2
:
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By assumption (3), we obtain y0; : : : ; yn 2 .A˝D/sa such thatyj � .xj ˝ 1/ < "

2
for j D 0; : : : ; n and z ˝ 1 2"=2 C

�.y0; : : : ; yn/:

For j D 0; : : : ; n, we have

ku�myjum � aj k �
u�myjum � u�m.xj ˝ 1/umC u�m.xj ˝ 1/um � aj < ":

Moreover, from z ˝ 1 2"=2 C
�.y0; : : : ; yn/, it follows that

u�m.z ˝ 1/um 2"=2 C
�.u�my0um; : : : ; u

�
mynum/;

and thus
c 2" C

�.u�my0um; : : : ; u
�
mynum/;

which shows that u�my0um; : : : ; u
�
mynum have the desired properties.

Proposition 4.2. Let A be a separable, unital C �-algebra of real rank zero that tensori-
ally absorbs a UHF algebra of infinite type. Then gr.A/ � 1.

Proof. Let D be a UHF algebra of infinite type such that A is D-stable. Since A is unital,
we have gr.A/ D gr0.A/. To verify condition (3) of Lemma 4.1, let a; b 2 Asa, " > 0, and
c 2 A. We need to find x; y 2 .A˝D/sa such thatx � .a˝ 1/ < "; y � .b ˝ 1/ < "; and c ˝ 1 2" C

�.x; y/:

Since A has real rank zero, we may assume that a is invertible and that its spectrum
�.a/ is finite, so that there exist �1; : : : ; �n 2 R n ¹0º and pairwise orthogonal projections
p1; : : : ; pn 2 A that sum to 1A such that a D

Pn
jD1 �jpj . Choose � > 0 such that � is

strictly smaller than the distance between any two values in �.a/ [ ¹0º. We may assume
that � < ".

Choose d � 5 such that D admits a unital embedding Md � D. Using that c can
be written as a linear combination of four positive, invertible elements, we can choose
positive, invertible elements c2; c3 : : : ; cd 2 A such that

kcj k <
"

d
; for j D 2; : : : ; d and c 2 C �.c2; : : : ; cd /:

Let .ej;k/j;kD1;:::;d be matrix units for Md . We define x; y 2 A˝Md as

x WD a˝ 1C

dX
jD1

j

d
�ejj and y WD b ˝ 1C

dX
jD2

cj ˝ .e1j C ej1/:

As matrices, these elements look as follows:

x D

0BBBB@
aC 1

d
� 0 � � � 0

0 aC 2
d
�

:::
:::

: : : 0

0 � � � 0 aC �

1CCCCA ; y D

0BBBBBB@
b c2 c3 � � � cd
c2 b 0 � � � 0

c3 0 b
:::

:::
:::

: : : 0

cd 0 � � � 0 b

1CCCCCCA :
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Then x � .a˝ 1/ D  dX
jD1

j

d
�ejj

 D � < "
and

y � .b ˝ 1/ D  dX
jD2

cj ˝ .e1j C ej1/

 � dX
jD2

kcj k < ":

Set B WD C �.x; y/ � A˝Md � A˝D. We will verify that z ˝ 1 2 B . The j -th
element on the diagonal of x is aC j

d
�, whose spectrum is

�

�
aC

j

d
�

�
D

²
�1 C

j

d
�; : : : ; �n C

j

d
�

³
:

Given distinct j; k 2 ¹1; : : : ; dº, it follows from the choice of � that the spectra of
aC j

d
� and aC k

d
� are finite disjoint sets not containing 0. For j 2 ¹1; : : : ; dº, let

fj WR ! Œ0; 1� be a continuous function that takes the value 1 on �.aC j
d
�/ and the

value 0 on ¹0º [
S
k¤j �.aC

k
d
�/. Then

1˝ ejj D fj .x/ 2 B � A˝Md :

Thus, B contains the diagonal matrix units of Md .
To show that B also contains the other matrix units, we follow ideas of Olsen and

Zame from [9]. Given k 2 ¹2; : : : ; dº, we have

ck ˝ e1k D .1˝ e11/y.1˝ ekk/ 2 B:

Then
c2k ˝ e11 D .cj ˝ e1k/.cj ˝ e1k/

�
2 B:

Since ck is positive and invertible, we have c�1
k
2 C �.c2

k
/ � A, and it follows that

c�1
k
˝ e11 2 B . Hence,

1˝ e1k D .c
�1
k ˝ e11/.ck ˝ e1k/ 2 B:

It follows that 1˝Md � B . For each k 2 ¹2; : : : ; dº, we deduce that

ck ˝ 1 D

dX
jD1

.1˝ ej1/.ck ˝ e1k/.1˝ ekj / 2 B:

Since c 2 C �.c2; : : : ; cd /, we get c ˝ 1 2 B � A˝D, as desired.

We use M21 to denote the UHF algebra of type 21, and similarly for M31 .

Proposition 4.3. Let A be a unital, separable C �-algebra of real rank zero. Then
gr.A˝Z/ � 8.
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Proof. Let Z21;31 be the generalized dimension-drop algebra given by

Z21;31 D
®
f 2 C

�
Œ0; 1�;M21 ˝M31

�
W f .0/ 2M21 ˝ 1; f .1/ 2 1˝M31

¯
:

By [12, Theorem 3.4], Z is an inductive limit of a sequence of C �-algebras each iso-
morphic to Z21;31 . Hence, A ˝ Z is isomorphic to an inductive limit of C �-algebras
isomorphic to A ˝ Z21;31 . Using that the generator rank behaves well with respect to
inductive limits (Theorem 2.4), we get

gr.A˝Z/ � lim inf
n!1

gr.A˝Z21;31/ D gr.A˝Z21;31/:

It thus suffices to verify gr.A˝Z21;31/ � 8. Set

I WD
®
f 2 Z21;31 W f .0/ D f .1/ D 0

¯
:

Then I is a closed, two-sided ideal in Z21;31 and Z21;31=I Š M21 ˚M31 . Since
Z21;31 is nuclear, we obtain a short exact sequence

0! A˝ I ! A˝Z21;31 ! A˝ .M21 ˚M31/! 0:

Note that A˝ I is isomorphic to a closed, two-sided ideal in A˝M61 ˝ C.Œ0; 1�/.
Since real rank zero is preserved by passing to matrix algebras and inductive limits,

we get rr.A˝Mk1/D 0 for k D 2; 3; 6. By Proposition 4.2, we obtain gr.A˝Mk1/� 1

for k D 2; 3; 6. Using that the generator rank does not increase when passing to closed,
two-sided ideals (Theorem 2.4) at the first step and Proposition 3.3 for A˝M61 at the
second step, we get

gr.A˝ I / � gr
�
A˝M61 ˝ C

�
Œ0; 1�

��
� 6:

By Proposition 2.5, we have

gr
�
A˝ .M21 ˚M31/

�
D max

®
gr.A˝M21/; gr.A˝M31/

¯
� 1:

Applying the estimate for the generator rank of an extension (Theorem 2.4), we get

gr.A˝Z21;31/ � gr.A˝ I /C gr
�
A˝ .M21 ˚M31/

�
C 1 � 8;

as desired.

5. Establishing generator rank one

In this section, we prove our main result: separable, Z-stable C �-algebras of real rank
zero have generator rank one; see Theorem 5.3. We deduce some interesting corollaries,
most importantly that every classifiable, simple, nuclear C �-algebra has generator rank
one; see Corollary 5.7.
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Recall that the dimension-drop algebra Z2;3 is defined as

Z2;3 WD
®
f 2 C

�
Œ0; 1�;M2 ˝M3

�
W f .0/ 2M2 ˝ 1; f .1/ 2 1˝M3

¯
:

Below, we always view Z2;3 as the subalgebra of C.Œ0; 1/;M6/ given by the next result.

Lemma 5.1. The dimension-drop algebra Z2;3 is isomorphic to the subalgebra of
C.Œ0; 1�;M6/ consisting of the continuous functions f W Œ0; 1�!M6 that satisfy

f .0/ D

0BBBBBBBB@

˛11 ˛12

˛21 ˛22

˛11 ˛12

˛21 ˛22

˛11 ˛12

˛21 ˛22

1CCCCCCCCA
;

f .1/ D

0BBBBBBBB@

ˇ11 ˇ12 ˇ13

ˇ21 ˇ22 ˇ23

ˇ31 ˇ32 ˇ33

ˇ33 ˇ31 ˇ32

ˇ13 ˇ11 ˇ12

ˇ23 ˇ21 ˇ22

1CCCCCCCCA
;

for some j̨k ; ǰk 2 C.

Proof. Using an identification of M2 ˝M3 with M6, we naturally view Z2;3 as a subal-
gebra of C.Œ0; 1�;M6/. Let u 2M6 be the permutation matrix given as

u WD

0BBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1CCCCCCCCA
:

Let t 7! vt be a continuous path of unitaries in M6 with v0 D 1 and v1 D u. Then v is
a unitary in C.Œ0; 1�; M6/ that conjugates Z2;3 � C.Œ0; 1�; M6/ onto the subalgebra of
functions described in the statement.

Lemma 5.2. Let A be a unital, separable C �-algebra of real rank zero, and let n 2 N
such that gr.A/ � n C 2. Let x0; : : : ; xnC1 2 Asa, " > 0, and z 2 A. Then there exist
y0; : : : ; ynC1 2 .A˝Z2;3/sa such thatyj � .xj ˝ 1/ < " for j D 0; : : : ; nC 1 and z ˝ 1 2" C

�.y0; : : : ; ynC1/:
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Proof. Consider the nC 3 elements "
2
; x0; : : : ; xnC1 2 Asa. Using that A is unital, sepa-

rable with gr.A/ � nC 2, apply Theorem 2.3 to obtain a; x00; : : : ; x
0
nC1 2 Asa such thata � "

2

 < "

2
; kx0j � xj k < " for j D 0; : : : ; nC 1; and AD C �.a; x00; : : : ; x

0
nC1/:

Note that a is positive and invertible. To simplify notation, set b WD x00 and c WD x01. Choose
a polynomial p in noncommuting variables such thatz � p.a; b; c; x02; : : : ; x0nC1/ < ":
Since p is continuous as a map AnC3sa ! A, we can choose ı > 0 such that every Nc 2 Asa

with k Nc � ck < ı satisfies z � p.a; b; Nc; x02; : : : ; x0nC1/ < ":
Since A has real rank zero, we can choose an invertible element c0 2 Asa with finite

spectrum �.c0/ and such that kc0 � ck < ı
2

. Then c0 D
P
j2J �j qj for some finite set

J , some pairwise disjoint real numbers �j (the eigenvalues of c0), and some pairwise
orthogonal projections qj that sum to 1A.

Choose � > 0 such that any two points in ¹0º [ ¹�j W j 2 J º have distance strictly
larger than 4�. We may assume that 2� < " and 2� < ı

2
.

Next, we define auxiliary functions ˛.k/W Œ0; 1�! R for k D 1; : : : ; 6 by

˛.1/.t/ WD 1C t .1 � t /; ˛.5/.t/ WD 1; ˛.3/.t/ WD 1 � t

and
˛.6/.t/ WD �˛.1/.t/; ˛.2/.t/ WD �˛.5/.t/; ˛.4/.t/ WD �˛.3/.t/;

for t 2 Œ0; 1�. The functions are shown in the following picture:

1

�1

˛.1/

˛.5/˛.3/

˛.4/ ˛.2/

˛.6/

We note the following properties:

(a) ˛.k/ is continuous with k˛.k/k1 < 2, for k D 1; : : : ; 6;

(b) ˛.1/.0/ D ˛.5/.0/ D ˛.3/.0/ and ˛.4/.0/ D ˛.2/.0/ D ˛.6/.0/;

(c) ˛.1/.1/ D ˛.5/.1/, ˛.3/.1/ D ˛.4/.1/, and ˛.2/.1/ D ˛.6/.1/;

(d) ˛.6/.t/ < ˛.2/.t/ < ˛.4/.t/ < ˛.3/.t/ < ˛.5/.t/ < ˛.1/.t/ for each t 2 .0; 1/.
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For each k D 1; : : : ; 6, we define fkk W Œ0; 1�! A by

fkk.t/ WD
X
j2J

�
�j C �˛

.k/.t/
�
qj

for t 2 Œ0; 1�. We let ekl 2 M6 denote the matrix units, for k; l D 1; : : : ; 6. Then define
f; gW Œ0; 1�! A˝M6 by

f .t/ WD

6X
kD1

fkk.t/˝ ekk ;

g.t/ WD b ˝ 1C a˝ .e12 C e21 C e56 C e65/C �t.e23 C e32 C e46 C e64/

C .1 � t /a.e34 C e43/

for t 2 Œ0; 1�.
This means that f .t/ and g.t/ have the following matrix form:

f .t/ WD

0B@f11 : : :

f66

1CA ; g.t/ WD

0BBBBBBB@

b a

a b �t

�t b .1 � t /a

.1 � t /a b �t

b a

�t a b

1CCCCCCCA :

We view elements in A˝ Z2;3 as continuous functions Œ0; 1�! A˝M6. By (a), f
is continuous. Using (b) and (c), we deduce that f belongs to A˝ Z2;3. We also have
g 2 A˝Z2;3. Set

B WD C �.f; g; x02 ˝ 1; : : : ; x
0
nC1 ˝ 1/ � A˝Z2;3:

For each t 2 Œ0; 1�, we let B.t/ � A˝M6 be the image of B under the evaluation map
A˝Z2;3 ! A˝M6, h 7! h.t/. We use ekl to denote the matrix units in M6.

Claim 1a. Let t 2 .0; 1/. Then 1˝M6 � B.t/. To prove the claim, note that the spectrum
of fkk.t/ is

�
�
fkk.t/

�
D
®
�j C ˛

.k/
j .t/ W j 2 J

¯
;

for k D 1; : : : ; 6. Using (d), we obtain that �.fkk.t// and �.fl l .t// are disjoint whenever
k ¤ l .

Given k 2 ¹1; : : : ; 6º, let hk W R ! Œ0; 1� be a continuous function that takes the
value 1 on �.fkk.t// and that takes the value 0 on ¹0º [

S
l¤k �.fl l .t//. Then 1˝ ekk D

hk.f .t// 2 B.t/. Thus, B.t/ contains the diagonal matrix units of 1˝M6.
It follows that B.t/ contains

1˝ e23 D
1

�t
.1˝ e22/g.t/.1˝ e33/ and 1˝ e46 D

1

�t
.1˝ e44/g.t/.1˝ e66/:
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We have a˝ e12 D .1˝ e11/g.t/.1˝ e22/ 2 B.t/, and thus

a2 ˝ e22 D .a˝ e12/
�.a˝ e12/ 2 B.t/:

As in the proof of Proposition 4.2, we use that a is positive and invertible, to deduce
a�1 ˝ e22 2 B.t/, and thus

1˝ e12 D .a˝ e12/.a
�1
˝ e22/ 2 B.t/:

Analogously, we get that B.t/ contains 1˝ e34 and 1˝ e56. It follows that B.t/ contains
1˝ ekl for every k; l 2 ¹1; : : : ; 6º, and so 1˝M6 � B.t/. Similarly, one proves:

Claim 1b. We have

1˝ .ekl C ekC2;lC2 C ekC4;lC4/ 2 B.0/; for k; l 2 ¹1; 2º:

Claim 1c. We have 1˝ .e33 C e44/ 2 B.1/ and

1˝ .ekl C ekC4;lC4/ 2 B.1/; for k; l 2 ¹1; 2º;

and
1˝ .el3 C elC4;4/; 1˝ .e3l C e4;lC4/ 2 B.1/; for l 2 ¹1; 2º:

Claim 2. Let t 2 Œ0; 1�. Then z ˝ 1M6 2" B.t/. First, we assume that t 2 .0; 1/. By
Claim 1a, we have 1˝ e11; 1˝ e21 2 B.t/, and thus

a˝ e11 D .1˝ e11/g.t/.1˝ e21/ 2 B.t/:

Analogously, we obtain

b ˝ e11; f11.t/˝ e11; x
0
2 ˝ e11; : : : ; x

0
nC1 ˝ e11 2 B.t/:

We have f11.t/ � c � f11.t/ � c0C kc0 � ck < 2�C ı

2
� ı:

By choice of ı, we get z � p�a; b; f11.t/; x02; : : : ; x0nC1� < ";
and thus

z ˝ e11 2" B.t/:

It follows that z ˝ ekk 2" B.t/ for each k, and consequently z ˝ 1 2" B.t/.
Next, we consider the case t D 0. Set Qekl WD ekl C ekC2;lC2 C ekC4;lC4 2 M6 for

k; l 2 ¹1; 2º. By Claim 1b, we have 1˝ Qekl 2 B.0/ for each k; l , and thus

a˝ Qe11 D .1˝ Qe11/g.0/.1˝ Qe21/ 2 B.0/:

Analogously, we obtain

b ˝ Qe11; f11.0/˝ Qe11; x
0
2 ˝ Qe11; : : : ; x

0
nC1 ˝ Qe11 2 B.0/:

Arguing as in the proof of Claim 1a, we get z ˝ Qe11 2" B.0/. It follows that z ˝ Qe22 2"
B.0/, and consequently z ˝ 1 2" B.0/.

Similarly, one proves z ˝ 1 2" B.1/.
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Claim 3. Let s; t2Œ0;1�with s¤t . Then there exists d2B such that d.s/D0 and d.t/D1.
We first consider the case s < t . By choice of �, the intervals Œ�j � 2�; �j C 2�� are
pairwise disjoint for j 2 J . We may, therefore, choose a continuous function hWR! Œ0; 1�

that takes the value 0 on

S WD
[
j2J

��
�j � 2�; �j � .1 � s/�

�
[
�
�j C .1 � s/�; �j C 2�

��
and the value 1 on

T WD
[
j2J

�
�j � .1 � t /�; �j C .1 � t /�

�
:

Note that T consists of the real numbers that have distance at most .1 � t /� to some �j .
For the purposes below, one could consider S as the real numbers that have distance at
least .1 � s/� to each �j .

Set c WD h.f / 2 B , the element obtained by applying functional calculus for h to f .
Since f D diag.f11; : : : ; f66/, we have c D diag.h.f11/; : : : ; h.f66//.

Let r 2 Œ0; 1�. We have

�
�
fkk.r/

�
D
®
�j C �˛

.k/.r/ W j 2 J
¯
:

If k 2 ¹1; 5; 2; 6º, then j˛.k/.r/j � 1, and thusˇ̌
�j �

�
�j C �˛

.k/.r/
�ˇ̌
� � � .1 � s/�;

whence
�
�
fkk.r/

�
� S:

It follows that
h.f11/ D h.f55/ D h.f22/ D h.f66/ D 0:

For k 2 ¹3; 4º, we haveˇ̌
�j �

�
�j C �˛

.k/.s/
�ˇ̌
D �j1 � sj and

ˇ̌
�j �

�
�j C �˛

.k/.t/
�ˇ̌
D �j1 � t j;

whence
�
�
fkk.s/

�
� S and �

�
fkk.t/

�
� T:

It follows that

h.f33/.s/ D h.f44/.s/ D 0 and h.f33/.t/ D h.f44/.t/ D 1:

In conclusion, we have

c.s/ D 0 and c.t/ D 1˝ .e33 C e44/:
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If t < 1, then, by Claim 1a, there exist bkl 2 B such that bkl .t/ D 1˝ ekl for k; l 2
¹1; : : : ; 6º. Then the following element has the desired properties:

d WD c C b13cb31 C b23cb32 C b53cb35 C b63cb36:

If tD1, then, by Claim 1c, there exist bk3;b3l2B such that bk3.1/D1˝.ek3CekC4;4/
and b3l .1/ D 1 ˝ .e3l C e4;lC4/ for k; l 2 ¹1; 2º. Then the following element has the
desired properties:

d WD c C b13cb31 C b23cb32:

Next, let us indicate how to proceed in the case s > t . Let hWR! Œ0; 1� be a continuous
function that takes the value 0 on

S WD
[
j2J

�
Œ�j � 2�; �j � �� [

�
�j � .1 � s/�; �j C .1 � s/�

�
[ Œ�j C �; �j C 2��

�
and the value 1 on

T WD
[
j2J

®
�j � .1 � t /�; �j C .1 � t /�

¯
:

The element c WD h.f / 2 B satisfies c.s/ D 0 and c.t/ ¤ 0. Similar as in the case s < t ,
one then constructs d 2 B such that d.s/ D 0 and d.t/ D 1, which proves the claim.

Claim 3 verifies condition (b) in Lemma 2.8, whence B contains C.Œ0; 1�/. Thus, B
is a C.Œ0; 1�/-subalgebra of A˝ Z2;3. If �t denotes the quotient map from A˝ Z2;3 to
the fiber at t , then Claim 2 shows that �t .z ˝ 1/ 2" �t .B/D B.t/ for every t 2 Œ0; 1�. By
[3, Lemma 2.1], we get z ˝ 1 2" B , which proves the result.

Theorem 5.3. Let A be a separable, Z-stable C �-algebra of real rank zero. Then A has
generator rank one. In particular, a generic element of A is a generator.

Proof. We first prove the theorem under the additional assumption that A is unital. In this
case, we have gr.A/� 8 by Proposition 4.3. Next, we successively reduce the upper bound
for gr.A/.

Claim. Let n 2 N such that gr.A/ � nC 2. Then gr.A/ � nC 1. To prove the claim, we
verify condition (3) of Lemma 4.1. Let x0; : : : ; xnC1 2 Asa, " > 0, and z 2 A. We need to
find y0; : : : ; ynC1 2 .A˝Z/sa such thatyj � .xj ˝ 1/ < " for j D 0; : : : ; nC 1 and z ˝ 1 2" C

�.y0; : : : ; ynC1/:

By identifying Z2;3 with a unital sub-C �-algebra of Z, elements y0; : : : ; ynC1 with the
desired properties are provided by Lemma 5.2.

Applying the claim seven times, we obtain that gr.A/ � 1.
If A is nonunital, we use that A is separable and has real rank zero to choose an

increasing approximate unit .pn/n of projections inA; see [2, Proposition 2.9]. For each n,
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we consider the unital cornerAn WD pnApn. By [2, Corollary 2.8], real rank zero passes to
hereditary sub-C �-algebras. By [17, Corollary 3.1], Z-stability passes to hereditary sub-
C �-algebras. Thus, An is a unital, separable, Z-stable C �-algebra of real rank zero, and
thus gr.An/ � 1. By Theorem 2.4, we get

gr.A/ � lim inf
n

gr.An/ D 1:

Since A is noncommutative (if nonzero), we have gr.A/ ¤ 0 by Proposition 2.6, and so
gr.A/ D 1. Since A is separable and has real rank zero, gr.A/ D 1 means that generators
in A are a dense Gı -subset; see Remark 2.7

Remark 5.4. Using the methods developed in [13, Section 4], one can remove the as-
sumption of separability in Theorem 5.3: every Z-stable C �-algebra of real rank zero has
generator rank one. They key point is that, for every Z-stable C �-algebraA and every sep-
arable sub-C �-algebra B0 � A, there exists a separable, Z-stable sub-C �-algebra B � A
with B0 � B . Similar methods are used in the proof of Corollary 5.5 below.

For the definition and the basic properties of pure infiniteness for nonsimple C �-
algebras, we refer to [7].

Corollary 5.5. Every nuclear, purely infinite C �-algebra of real rank zero has generator
rank one.

Proof. Let A be a nuclear, purely infinite C �-algebra of real rank zero. As in [13, Para-
graph 4.1], we let Subsep.A/ denote the collection of separable sub-C �-algebras of A;
a subset � � Subsep.A/ is � -complete if

S
T 2 � for every countable, directed subset

T � � ; a subset � � Subsep.A/ is cofinal if, for every B0 2 Subsep.A/, there is B 2 � with
B0 � B .

We let �nuc, �pi, and �rr0 denote the sets of separable sub-C �-algebras of A that are
nuclear, purely infinite, and have real rank zero, respectively. It follows from [1, Para-
graph II.9.6.5 and Proposition IV.3.1.9] that �nuc is � -complete and cofinal. Using [7,
Proposition 4.18 and Corollary 4.22], it follows that �pi is � -complete and cofinal. Lastly,
it was noted at the end of [13, Paragraph 4.1] that real rank zero satisfies the “Löwenheim–
Skolem condition,” which means that �rr0 is � -complete and cofinal. Set

� WD �nuc \ �pi \ �rr0:

It is well known that the intersection of countably many � -complete, cofinal subsets is
again � -complete and cofinal, whence � is � -complete and cofinal.

LetB 2 � . ThenB is a separable, nuclear, purely infinite C �-algebra of real rank zero.
It follows from [8, Theorem 9.1] that B is O1-stable, and thus Z-stable. By Theorem 5.3,
we have gr.B/ D 1. Since A is the inductive limit of the system � (indexed over itself),
we obtain gr.A/ � 1 by Theorem 2.4. Since purely infinite C �-algebras are by definition
noncommutative, we have gr.A/ ¤ 0 by Proposition 2.6, and so gr.A/ D 1.
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Recall that a Kirchberg algebra is a separable, simple, nuclear, purely infinite C �-
algebra. By Zhang’s theorem [1, Proposition V.3.2.12, p. 454], every simple, purely infi-
niteC �-algebra has real rank zero. Thus, Kirchberg algebras have real rank zero. Applying
Corollary 5.5, we obtain the following corollary.

Corollary 5.6. Every Kirchberg algebra has generator rank one.

Let us say that a simple, nuclear C �-algebra is classifiable if it is unital, separable, Z-
stable and satisfies the universal coefficient theorem (UCT). By the recent breakthrough in
the Elliott classification program [4–6, 16], two simple, nuclear, classifiable C �-algebras
are isomorphic if and only if their Elliott invariants (K-theoretic and tracial data) are
isomorphic.

Corollary 5.7. Let A be a unital, separable, simple, nuclear, Z-stable C �-algebra satis-
fying the UCT. Then A has generator rank one. In particular, a generic element in A is a
generator.

Proof. By [10, Theorem 4.1.10], A is either stably finite or purely infinite. In the second
case, A is a Kirchberg algebra and we obtain gr.A/ D 1 by Corollary 5.6. (The purely
infinite case does not require the UCT.)

In the first case, it follows from [16, Theorem 6.2 (iii)] that A is an ASH algebra. By
[14, Theorem 5.10], every Z-stable ASH algebra has generator rank one. Thus, we have
gr.A/ D 1 in either case.

Since A is unital and separable, gr.A/ D 1 means that generators in A are a dense
Gı -subset; see Remark 2.7.

Remarks 5.8. (1) It seems likely that the proof of the main theorem can be generalized to
show the following: if A is a unital, separable, Z-stable C �-algebra such that A˝M21

and A˝M31 have real rank zero, then A has generator rank one.
(2) Let A be a unital, separable, Z-stable C �-algebra. By [15, Theorem 3.8], A is

singly generated. Our results show that, under additional assumptions, A even contains
a dense set of generators. It is reasonable to expect that every Z-stable C �-algebra has
generator rank one. However, by [13, Proposition 3.10], the real rank is a lower bound for
the generator rank, and it is not known that every Z-stable C �-algebra has real rank at
most one.

Note that every unital, separable, simple, Z-stable C �-algebra has real rank at most
one: it is either purely infinite and then has real rank zero or it is stably finite and thus has
stable rank one by [11, Theorem 6.7], which entails real rank at most one. Therefore, the
following question has no obvious obstruction:

Question 5.9. Does every unital, separable, simple, Z-stable C �-algebra have generator
rank one?
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