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The inverse function theorem for curved L-infinity spaces

Lino Amorim and Junwu Tu

Abstract. In this paper, we prove an inverse function theorem in derived differential geometry.
More concretely, we show that a morphism of curved L1 spaces which is a quasi-isomorphism at
a point has a local homotopy inverse. This theorem simultaneously generalizes the inverse function
theorem for smooth manifolds and the Whitehead theorem for L1 algebras. The main ingredients
are the obstruction theory forL1 homomorphisms (in the curved setting) and the homotopy transfer
theorem for curved L1 algebras. Both techniques work in the A1 case as well.

1. Introduction

1.1. Curved L1 spaces

The notion of curvedL1 space was introduced by Costello [8], as an alternative approach
to derived differential geometry. In [8] an L1 space is defined as a pair .M;G/ whereM
is a smooth manifold, and G is a curved L1 algebra (see [17] for a definition) over the de
Rham algebra ��M . In this paper, we shall work with a more down-to-earth notion of L1
space, following analogous constructions in the theory of dg-schemes by Behrend [2, 3],
and Ciocan-Fontanine–Kapranov [6, 7]. This notion is however equivalent to the original
one – see [22] for a proof of the equivalence. Interestingly, a related concept also appeared
in the study of deformations of coisotropic submanifolds in symplectic geometry [14,
18]. Conceptually, the L1 approach to derived geometric structures is Koszul dual to the
more classical approach using dg (or simplicial) commutative algebras as developed by
Toën–Vezzosi [21]. Such structures naturally appear in various gauge theories, producing
L1 enhancements of the associated Maurer–Cartan moduli spaces.

More precisely, throughout the paper, an L1 space M D .M; g/ is given by a pair
of M a smooth manifold and g a curved L1 algebra over the ring of smooth functions
C1.M/. We also require that g is of the form

g D g2 ˚ g3 ˚ � � � ˚ gd ;

where each gi is a vector bundle in degree i . In particular, it has minimal degree 2 and
maximal degree d for some d � 2. Conceptually, this grading condition reflects the fact
that we are interested in derived schemes, not stacks.
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The main goal of this paper is to understand when maps of L1 spaces are “invert-
ible”. Let us introduce some terminology and notation in order to describe our results.
Throughout the paper, we use the notation

�k W gŒ1�˝ � � � ˝ gŒ1�! gŒ1�; k � 0

to denote the (shifted) higher brackets of an L1 algebra. We shall use the same notation
in the A1 case as well. Note that in the L1 case, the maps �k are all graded symmetric
by definition. Given an L1 space M D .M; g/, the curvature term �0 2 g2 is a section
of the bundle g2. Let p 2 ��10 .0/ be a point in its zero locus. The tangent complex at p is
defined as the chain complex

TpM WD TpM
d�0jp
���! g2jp

�1jp
���! g3jp

�1jp
���! � � � :

The fact that this is a chain complex follows from the L1 algebra equation together with
�0.p/ D 0. A morphism between two curved L1 spaces M D .M;g/ and N D .N;h/ is
given by a pair f D .f; f ]/ where f WM ! N is a smooth map and f ] D .f ]1 ; f

]
2 ; : : :/ W

g! f �h is a sequence of bundle maps which define an L1 homomorphism.
Let f WM! N be a morphism and p 2 M a point in the zero locus of the curvature

of g. This morphism induces a map between the tangent complexes dfp W TpM! Tf .p/N,
explicitly given by

TpM �����! g2jp �����! g3jp �����! � � �

dfp

??y f
]
1

??y f
]
1

??y
Tf .p/N �����! h2jf .p/ �����! h3jf .p/ �����! � � �

We are now ready to state our first main result which states that if dfp is a quasi-isomor-
phism of chain complexes then f is “locally invertible”.

Theorem 1.1. Let .M; g/ and .N; h/ be L1 spaces and f D .f; f ]/ W .M; g/! .N; h/

be an L1 morphism. Assume that the tangent map dfp is a quasi-isomorphism at p 2
.�M
0 /
�1.0/. Then there exist open neighborhoods U of p and V of f .p/ such that the

restriction
fjU W .U;gjU /! .V; hjV /

is a homotopy equivalence1 of L1 spaces.

In the case when both g and h are trivial, this is simply the inverse function theorem
for smooth manifolds. When the L1 bundle g is concentrated in degree 2, we obtain
the notion of m-Kuranishi neighborhood in the work of Joyce [13], or Kuranishi chart
(with trivial isotropy) introduced by Fukaya–Oh–Ohta–Ono [12]. In this special case,

1The notion of homotopy between L1 spaces is formulated in Definition 4.5.
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our theorem essentially recovers [13, Theorem 4.16], but with a slightly different notion
of homotopy. In the case when both M and N are a point, the above theorem recov-
ers the well-known fact (see [19] and [15]) that quasi-isomorphisms between (uncurved)
L1 algebras are homotopy equivalences – this statement is referred to as the Whitehead
theorem for L1 algebras in [12].

In forthcoming work, we shall use the complex analytic version of the above theorem
to prove local invariance of the Maurer–Cartan moduli space associated with boundedL1
algebras (see [22]). This result is essential to understand L1 enhancements of moduli
spaces from gauge theory, such as moduli spaces of flat connections on a vector bundle.

We also expect a global version of Theorem 1.1 to hold. We formulate it in the follow-
ing conjecture.

Conjecture 1.2. Let f D .f; f ]/ W .M; g/! .N; h/ be an L1 morphism. Assume that
the tangent map dfp is a quasi-isomorphism for all p 2 .�M

0 /
�1.0/, and that the induced

map f W .�M
0 /
�1.0/! .�N

0 /
�1.0/ on the zero loci is a bijection. Then there exist open

neighborhoods U of .�M
0 /
�1.0/ and V of .�N

0 /
�1.0/ such that the restriction

fjU W .U;gjU /! .V; hjV /

is a homotopy equivalence2 of L1 spaces.

At this moment we are able to prove this conjecture on the special case where both
g and h are concentrated in degree 2. Our proof of this result uses a partition-of-unity
argument similar to the one used by Joyce in [13] where an analogous result is proved for
m-Kuranishi spaces.

The second main result of the paper is the construction of a minimal chart around
a point p 2 ��10 .0/ � M . This construction generalizes the so-called minimal model
construction for (uncurved) L1 algebras (see [9, 15, 23]). More precisely, we have the
following:

Theorem 1.3. Let M D .M; g/ be an L1 space and p 2 ��10 .0/. Then there exists an
L1 space W D .W; h/ with W �M a submanifold containing p, such that

• the tangent complex TpW has zero differential;

• there exists an open neighborhood U � M of p which contains W and such that the
inclusion map i W W ! U extends to a homotopy equivalence

.i; i]/ W .W; h/! .U;gjU /

of L1 spaces. Here, the map i] W h ! i�g is an L1 homomorphism constructed
explicitly using summation over trees. We refer to Section 5.2 for details.

2See Definition 4.5 for homotopy equivalence of L1 spaces. In this global setting it requires the
existence of torsion-free, flat connections on M and N .
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This theorem is one of the main ingredients in our proof of Theorem 1.1 but we expect
it will have many other applications in derived differential geometry. For instance, the
analogous statement in Derived Algebraic Geometry is an important step in the proof of
the Darboux theorem for shifted symplectic derived schemes in [5].

1.2. About the proofs

The proof of Theorem 1.3 generalizes the homotopy transfer theorem (sometimes also
called homological perturbation lemma) to the curved setting. We would like to point
out that we do not impose any conditions on the curvature term, unlike the filtered case
considered in [11, 12]. In that case, one assumes the algebra is equipped with a filtration
and the curvature term lives in the positive part of the filtration. For these filtered algebras
the transfer theorem was stated in [11] and proved in detail for A1 algebras in [12]. Our
theorem is valid for general curvedA1 orL1 algebras in the presence of a generalization
of the usual homotopy retraction data .i; p;H/. We refer to Section 3 for more details, but
for example, the homotopy operator H must satisfy

�1H CH�1 D ip � id �H�21H;

which reduces to the usual homotopy identity in the uncurved case since �0 D 0 implies
that�21D 0. Remarkably, both the minimalL1 structure on h and theL1 homomorphism
i] are given by summation over the same stable trees as in the uncurved setting, and the
curvature term does not play a big role (see Section 3). In that sense, the construction is
closer to the uncurved case than to the filtered one studied in [11, 12].

For the proof of Theorem 1.1 we first develop an obstruction theory for L1 (or A1)
homomorphisms between curved L1 (respectively A1) algebras, again without making
any additional assumptions on the ground ring or on the curvature term. Since we are
in the general curved setting (and therefore have no good notion of convergence), the
homomorphisms we consider are by definition strict (in the terminology of [12]), meaning
the constant terms f0 vanish. Therefore our theory is once again closer to the uncurved
case than the filtered case for which an analogous theory was developed in [12].

Our obstruction theory is set up in a way which easily generalizes fromL1 algebras to
spaces. Combining this new obstruction theory with Theorem 1.3 we prove Theorem 1.1
using an argument analogous to that in [12].

We present our results in the smooth realm, meaning all the manifolds (and vector
bundles, maps . . .) are real C1 manifolds. But our proofs and constructions also work in
the complex analytic setting, with only minor modifications, see Remark 4.6.

1.3. Other related works

A recent preprint [4] by Behrend–Liao–Xu obtained similar results, using the framework
of categories of fibrant objects. While the definitions of L1 spaces3 and the tangent

3In [4] the authors use derived manifolds.
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complexes are clearly the same as ours, it is not clear at the moment of writing how
Behrend–Liao–Xu’s notion of homotopy between morphisms of L1 spaces is related to
ours (see Definition 4.5). One could say our approach is more algebraic in the sense that
both the obstruction theory and the homological perturbation technique are generalizations
of the situation for uncurved algebras.

An interesting question is whether Theorem 1.1 and Theorem 1.3 admit generaliza-
tions to allow the tangent complex to have components in non-positive degrees. This is
related to the notion of shifted Lie algebroid structure studied by Pym–Safronov [20].

1.4. Organization of the paper

In Section 2, we develop the obstruction theory for constructingA1/L1 homomorphisms
between curved A1/L1 algebras. Section 3 generalizes the homotopy transfer theorem
to the curved setting. In Section 4, we recall basic definitions of L1 spaces. In particu-
lar, we explicitly describe homotopies between L1 morphisms. In Section 5, we prove
Theorem 1.1 and Theorem 1.3.

2. Obstruction theory

Let .A;�A0 ;�
A
1 ; : : :/ and .B;�B0 ;�

B
1 ; : : :/ be two curved A1/L1 algebras over a commu-

tative ring R. In this section, we study the obstruction theory of A1/L1 homomorphisms
from A to B . Classically, in the non-curved case, this is done by using a pro-nilpotent
L1 algebra structure on the space Hom.T cAŒ1�; B/ of cochains on A with values in B .
In particular, the obstruction class to construct the .nC 1/-th component of an A1/L1
homomorphism .fj /

n
jD1 from A to B is a cohomology class

o
�
.fj /

n
jD1

�
2 H 1

�
Hom.AŒ1�nC1; BŒ1�/; d D Œ�1;��

�
;

determined by the first n components. However, adding the curvature term spoils the pro-
nilpotent structure, and obviously the above obstruction space is not even defined as �A1
and �B1 might not square to zero. In this section, we define a variant of the above obstruc-
tion space which takes into account the appearance of curvatures, which allows us to
extend the obstruction theory of A1/L1 homomorphisms to the curved setting.

2.1. Definition of obstruction spaces

First, using the curvature term �A0 , we form the complex C.A;B/ as follows:

C.A;B/ WD � � � ! Hom.AŒ1�˝k ; BŒ1�/
ı
�! Hom.AŒ1�˝k�1; BŒ1�/! � � �

! BŒ1�! 0;

ı.�k/.a1; : : : ; ak�1/ WD

k�1X
jD0

.�1/j�k j
0Cja1j

0C���Cjaj j
0

�k.a1; : : : ; aj ; �
A
0 ; ajC1; : : : ; ak�1/:
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One verifies that ı2 D 0. We shall denote its cohomology by Dk.A; B/ where k is the
tensor degree. Next, using the operators �A1 and �B1 , we define another operator d as

d W Hom.AŒ1�˝k ; BŒ1�/! Hom.AŒ1�˝k ; BŒ1�/;

d.�k/.a1; : : : ; ak/ WD �
B
1 �k.a1; : : : ; ak/ �

kX
jD1

.�1/j�k j
0C?�k.a1; : : : ; �

A
1 .aj /; : : : ; ak/

where ?D ja1j0C � � � C jaj�1j0. One can readily verify that dıC ıd D 0. Thus, d induces
a map on the ı-cohomology, i.e. we obtain maps

d W Dk.A;B/! Dk.A;B/; 8k � 0:

In complete generality we do not have d2 D 0. However, we have the following:

Lemma 2.1. If there exists an R-linear map f W A! B such that f .�A0 /D �
B
0 , then the

composition d2 W Dk.A;B/! Dk.A;B/ equals zero.

Proof. Choose any such f . Given Œ�k � 2 Dk.A;B/, define  2 Hom.AŒ1�kC1; BŒ1�/ as

 WD .�1/j�k j
0

k�1X
iD0

�k.idi ˝ �A2 ˝ idk�1�i /C �B2 .�k ˝ f /C �
B
2 .f ˝ �k/:

One can verify that we have d2.�k/ D ı . Hence d2 D 0 in ı-cohomology.

Definition 2.2. Under the assumptions forA andB in Lemma 2.1, we set the k-th obstruc-
tion spaceH k.A;B/ to be the degree one cohomology of the complex .Dk.A;B/;d/, i.e.

H k.A;B/ WD H 1
�
Dk.A;B/; d

�
:

2.2. Obstruction classes

Let fj W AŒ1�˝j ! BŒ1� (j D 1; : : : ; n) be n multi-linear maps of cohomological degree
zero, such that the following conditions hold:

(i) The A1 homomorphism axiom holds up to .n � 1/ inputs, i.e. we haveX
j�0;i1;:::;ij�1

i1C���CijDk

�Bj .fi1 ˝ � � � ˝ fij / D
X

r�0;s�0;t�0
rCsCtDk

frCtC1.id˝r ˝ �As ˝ id˝t /

for all 0 � k � n � 1.

(ii) In the case with n inputs, we require thatX
j�0;i1;:::;ij�1
i1C���CijDn

�Bj .fi1 ˝ � � �˝ fij /�
X

r�0;t�0;s�1
rCsCtDn

frCtC1.id˝r ˝�As ˝ id
˝t / (1)

is ı-exact, i.e. it lies in the image of ı W C nC1.A;B/! C n.A;B/.
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Given such a collection of maps fj WAŒ1�˝j ! BŒ1� (j D 1; : : : ; n), we define its obstruc-
tion class as follows. Choose any f 0nC1 of cohomological degree zero such that ıf 0nC1
equals the expression in (1). Then we set

obsnC1 WD
X

j�2;i1;:::;ij�1
i1C���CijDnC1

�Bj .fi1 ˝ � � � ˝ fij /

�

X
r�0;t�0;s�2
rCsCtDnC1

frCtC1.id˝r ˝ �As ˝ id˝t /C df 0nC1:

Lemma 2.3. The above expression obsnC1 is ı-closed. Moreover, d.obsnC1/ is ı-exact.
Thus, it represents a well-defined class which we denote by o..fj /

n
jD1/ 2 H

nC1.A; B/.
This class is independent of the choice of f 0nC1.

Proof. Denote by Fn the extension of
Pn
jD1 fj as a coalgebra map T .AŒ1�/! T .BŒ1�/.

Similarly, denote by z�k the extension of �k as coderivations on the tensor coalgebra.
Condition (i) implies that we have

z�BFn D Fn z�
A
W AŒ1�N ! BŒ1�M ; 8 � 1 � N �M � n � 2:

Observe also that ı.�/ D .�1/j�j
0

� z�0. Then we compute

ı.obsnC1/ D �z�¤1Fn z�0 C Fn z��2 z�0 � z�1f 0nC1 z�0 C f
0
nC1 z�1 z�0

D .�z�¤1 z�Fn C z�¤1Fn z��1/C Fn z��2 z�0 � .z�1 z�Fn C z�1Fn z��1/

C .�z�Fn z�1 C Fn z��1 z�1/:

The two terms�z�¤1 z�Fn and�z�1 z�Fn combine to give zero since z�z�D 0. The following
three terms give

z�¤1Fn z��1 C z�1Fn z��1 � z�Fn z�1 D z�Fn z��2:

Since there are n inputs, after applying z��2, we are left with at most n � 1 inputs to
apply z�Fn. In this case, we may use the commutativity z�Fn D Fn z�, i.e. we have the
above three terms sum up to

z�¤1Fn z��1 C z�1Fn z��1 � z�Fn z�1 D Fn z�z��2 D �Fn z�z�0 � Fn z�z�1:

The last equality follows from z�z� D 0. Now, putting these back into the calculation of
ı.obsnC1/, we obtain

ı.obsnC1/ D Fn z��2 z�0 C Fn z��1 z�1 � Fn z�z�0 � Fn z�z�1
D �Fn z�1 z�0 � Fn z�0 z�1 D 0:

Here, we have used theA1 relation that z�0 z�0D 0 and z�0 z�1C z�1 z�0D 0. Next, we prove
that d.obsnC1/ is ı-exact. We use the notation F 0nC1 W T .AŒ1�/! T .BŒ1�/ to denote the
extension of f1; : : : ; fn; f 0nC1 to the tensor coalgebra. By definition of f 0nC1 we have that

z�F 0nC1 D F
0
nC1 z� W AŒ1�

N
! BŒ1�M ; 8 � 1 � N �M � n � 1:
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Using the notation F 0nC1, we may write the obstruction as

obsnC1 D z�F 0nC1 � F
0
nC1 z��1 W AŒ1�

nC1
! BŒ1�:

Applying the operator d to it yields

d.obsnC1/ D z�1 z�F 0nC1 � z�1F
0
nC1 z��1 C z�F

0
nC1 z�1 � F

0
nC1 z��1 z�1:

The first and the third terms give

z�1 z�F
0
nC1 C z�F

0
nC1 z�1 D �z��2 z�F

0
nC1 C z�F

0
nC1 z�1

D �z��2F
0
nC1 z�C z�F

0
nC1 z�1

D �z��2F
0
nC1 z�0 � z��2Fn z��1 C z�Fn z�1 C z�1f

0
nC1 z�1

D �z��2F
0
nC1 z�0 � z��2Fn z��2 C z�1f

0
nC1 z�1:

Similarly, we have

�z�1F
0
nC1 z��1 � F

0
nC1 z��1 z�1 D �z�1F

0
nC1 z��1 � F

0
nC1 z�z�1

D �z�1F
0
nC1 z��1 C F

0
nC1 z�z�0 C F

0
nC1 z�z��2

D �z�1F
0
nC1 z��1 C F

0
nC1 z�z�0 C z�Fn z��2

D F 0nC1 z�z�0 C z�Fn z��2 � z�1Fn z��2 � z�1f
0
nC1 z�1

D F 0nC1 z�z�0 C z��2Fn z��2 � z�1f
0
nC1 z�1:

Adding the two equations together yields the desired formula

d.obsnC1/ D �z��2F 0nC1 z�0 C F
0
nC1 z�z�0 D ı

�
z��2F

0
nC1 � F

0
nC1 z�

�
:

Finally, to see that the class o..fj /
n
jD1/ D ŒobsnC1� is independent of f 0nC1, let f 00nC1 be

another such map. Then we have the two obstructions differ by d.f 0nC1 � f
00
nC1/ with

ı.f 0nC1 � f
00
nC1/ D 0, this proves the two obstruction classes are equal.

2.3. A.n/ homomorphisms

In the following, we shall refer to a collection of maps .fj WAŒ1�˝j !BŒ1�/njD1 satisfying
conditions (i), (ii) in Section 2.2 as an A.n/ homomorphism from A to B . Obviously, an
A.n/ homomorphism is also an A.k/ homomorphism, for any k � n. Just as in the case of
the usualA1 homomorphisms, one can composeA.n/ homomorphisms, using the formula

.g ı f /j WD
X

l;i1;:::;il�1
i1C���CilDj

gl .fi1 ˝ � � � ˝ fil /; (2)

for j D 1; : : : ; n. If we denote by f 0nC1 (and g0nC1) a map such that ıf 0nC1 equals the
expression in (1), then we can define

.g ı f /0nC1 WD g
0
nC1.f1 ˝ � � � ˝ f1/C g1.f

0
nC1/C

X
l;i1;:::;il�1

i1C���CilDnC1

gl .fi1 ˝ � � � ˝ fil /:

Please note that this composition is strictly associative.
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The simple but crucial observation is that an A.n/ homomorphism lifts to an A.nC1/
homomorphism if and only if its obstruction class o..fj /

n
jD1/ vanishes.

Next, we recall the notion of homotopy between A.n/ homomorphisms. Let ��
Œ0;1�

be
piece-wise polynomial differential forms on the interval Œ0;1� (as in [12, Definition 4.2.9]).
This is a unital dg-algebra, therefore given an A1 algebra B we can easily define the
tensor product B ˝ ��

Œ0;1�
(see [1] for details). Moreover, there are naive (also called

linear) maps of A1 algebras ev0; ev1 W B ˝ ��Œ0;1� ! B , given by “evaluating at t D
0; 1”. Two A.n/ homomorphisms f D .f1; : : : ; fn/, g D .g1; : : : ; gn/ W A! B are called
homotopic, denoted by f Š g, if there exists an A.n/ homomorphism

F D .F1; : : : ; Fn/ W A! B ˝��Œ0;1�

such that ev0 ı F D f and ev1 ı F D g. The following properties are standard:

• The homotopy relation “Š ” between A.n/ morphisms is an equivalence relation.

• If h W A0 ! A is another A.n/ morphism and f Š g, then f ı h Š g ı h.

• If h W B ! B 0 is another A.n/ morphism and f Š g, then h ı f Š h ı g.

• Two homotopic A.n/ homomorphisms .fj /njD1 and .gj /njD1 from A to B have the
same obstruction class, i.e. we have

o
�
.fj /

n
jD1

�
D o

�
.gj /

n
jD1

�
:

Indeed, it is clear that we have

o
�
.fj /

n
jD1

�
D .ev0/�o

�
.Fj /

n
jD1

�
;

o
�
.gj /

n
jD1

�
D .ev1/�o

�
.Fj /

n
jD1

�
:

Then observe that every cohomology class inHnC1.A;B ˝��
Œ0;1�

/ can be represented
by an element of the form � ˝ 1 with � 2 C nC1.A; B/ and 1 the constant function
in��

Œ0;1�
, which clearly shows that applying the two evaluation maps ev0 and ev1 both

yield Œ�� 2 HnC1.A;B/.

It is useful to spell out the definition of homotopy in the n D 1 case.

Lemma 2.4. Two A.1/ homomorphisms f1, g1 W A! B are A.1/ homotopic if and only if
there is a mapH WA!B of degree�1, such thatH.�A0 /D 0 and f1�g1��B1 H�H�

A
1

is ı-exact.

Proof. AnA.1/ homotopy gives a map F1 WA!B ˝��
Œ0;1�

. If we write F1.a/D f t1 .a/C

.�1/jaj
0

ht1.a/dt , then the A.1/ homomorphism equation for F is equivalent to: f 11 D f1,

f 01 D g1, ht1.�
A
0 /D 0 and�df

t
1

dt
C�B1 h

t
1C h

t
1�

A
1 is ı-exact. We obtain the desired equal-

ity by taking H D
R 1
0
ht1dt .

Two A1 algebras A and B are called A.n/ homotopic, if there exist A.n/ homomor-
phisms f W A! B and g W B ! A such that f ı g and g ı f are both A.n/ homotopic to
the identity homomorphism.
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2.4. Homotopy invariance of obstruction theory

The obstruction spaces are natural with respect to A.1/ homomorphisms. Namely, fix two
curved A1 algebras A and B . Assume that there exists an R-linear map f W A! B such
that f .�A0 /D�

B
0 , so that the obstruction spaceH k.A;B/ is defined. Let h WB!B 0 be an

A.1/ homomorphism. By definition, we have hf .�A0 / D h.�
B
0 / D �

B 0

0 , which shows that
the obstruction space H k.A; B 0/ is also defined. Furthermore, the morphism h induces a
push-forward map

h� W H
k.A;B/! H k.A;B 0/;

defined by Œ�� 7! Œh ı �� where � 2 Hom.AŒ1�˝k ; BŒ1�/ is a representative. Similarly, let
g W A0Œ1�! AŒ1� be an A.1/ homomorphism. We may define the pull-back map

g� W H k.A;B/! H k.A0; B/;

by Œ�� 7! Œ� ı .g ˝ � � � ˝ g/� where we used k-copies of g in the tensor product.

Lemma 2.5. Assume that h W B ! B 0 and g W A0 ! A are both A.1/ homotopy equiva-
lences. Then both h� and g� are isomorphisms.

Proof. It follows from Lemma 2.4 that if h0 and h1 are A.1/ homotopic, then .h0/� D
.h1/� and .h0/� D .h1/

�. This, together with the identities .h0h1/� D .h0/�.h1/� and
.g1g0/

� D .g0/
�.g1/

�, immediately give the result.

2.5. Whitehead theorem for curved A1 algebras

Proposition 2.6. Let f D .f1; : : : ; fn/ W A! B be an A.n/ homomorphism. Assume that
o..fj /

n
jD1/ D 0. Denote by L.f / the set of liftings of f to an A.nC1/ homomorphism

modulo the homotopy equivalence relation. Then L.f / carries a natural transitive action
by the abelian group H 0.DnC1.A;B/; d/.

Proof. Let fnC1 be a lift of f to an A.nC1/ homomorphism. Denote by ŒfnC1� its equiv-
alence class in L.f /. Let ˇ W AŒ1�˝nC1 ! BŒ1� be a map representing an element Œˇ� 2
H 0.DnC1.A;B/; d/. We define the group action by the formula

Œˇ�:ŒfnC1� WD ŒfnC1 C ˇ�: (3)

To see that the action is independent of the choice of ˇ, let ˇ0 be another repre-
sentative of the class Œˇ�. Thus, the difference ˇ0 � ˇ D d˛ for some ı-closed mor-
phism ˛ W AŒ1�˝nC1 ! BŒ1�. We may define a homotopy between the two extensions
.f1; : : : ; fnC1 C ˇ/ and .f1; : : : ; fnC1 C ˇ0/ by putting

F W A! B ˝��Œ0;1�;

Fk D fk ; 1 � k � n;

FnC1 D fnC1 C t � ˇ
0
C .1 � t / � ˇ C ˛ � dt:

This shows that the action map (3) is independent of the choice of ˇ.
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Similarly, assume that f 0nC1 is another representative of the lift class ŒfnC1�, i.e. there
exists a homotopyH WA!B ˝��

Œ0;1�
between .f1; : : : ; fn; fnC1/ and .f1; : : : ; fn; f 0nC1/.

We simply change HnC1 to HnC1 C ˇ, which gives a homotopy between the two lifts
.f1; : : : ; fn; fnC1 C ˇ/ and f1; : : : ; fn; f 0nC1 C ˇ/. This verifies that the action map is
well defined.

Transitivity of the action map is clear: since any two lifts differ by some ˇ that would
represent a class in H 0.DnC1.A;B/; d/.

Lemma 2.7. Let f W A! B be an A.n/ homomorphism. Assume that h W B ! B 0 and
g W A0 ! A are both A.nC1/ homomorphisms. Then we have

o
��
.hf /j

�n
jD1

�
D .h1/�o

�
.fj /

n
jD1

�
;

o
��
fg/j

�n
jD1

�
D .g1/

�o
�
.fj /

n
jD1

�
:

Moreover, the natural map � ı g W L.f / ! L.f ı g/ given by composition of
A.nC1/ homomorphisms is a homomorphism of H 0.DnC1.A; B/; d/-modules. Here, the
H 0.DnC1.A;B/; d/-module structure of L.f ı g/ is via the group homomorphism

.g1/
�
W H 0

�
DnC1.A;B/; d

�
! H 0

�
DnC1.A0; B/; d

�
:

Proof. The first statements can be proved as in the uncurved case, see [12, Theorem 4.5.1].
The second statement follows from the action map (3) and the formula for composition
in (2).

Theorem 2.8. An A1 homomorphism f D .f1; f2; : : :/ W A! B between curved A1
algebras is a homotopy equivalence if and only if the map f1 is an A.1/ homotopy equiv-
alence.

Proof. The only if part is trivial, so we prove the if part. Let g1 W B ! A be an A.1/
homotopy inverse of f1 W A! B . We argue by induction on n that if we are given an A.n/
homomorphism

g WD .g1; : : : ; gn/ W B ! A

such that g ı f Š id as A.n/ homomorphisms, then there exists gnC1 W BŒ1�˝nC1! AŒ1�

that extends g to an A.nC1/ homomorphism zg D .g1; : : : ; gn; gnC1/ such that zg ı f Š id
as A.nC1/ homomorphisms.

We first argue that o.g/ D 0. Using the homotopy invariance of obstruction class, we
have

f �o.g/ D o.g ı f / D o.id/ D 0:

But f is an A.1/ homotopy equivalence, thus f � is an isomorphism, which shows that
o.g/ D 0. Similarly, one can argue that if H W A ! A ˝ ��

Œ0;1�
is an A.n/ homotopy

between id and g ı f , then we also have o.H/ D 0.
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Now, consider the following diagram of maps, provided by Proposition 2.6 and Lem-
ma 2.7:

L.H/
.ev0/�
�����! L.idA/

.ev1/�

??y
L.g ı f /

�ıf
 ����� L.g/:

Observe that the upper-right corner admits a canonical lift by idA. We claim that there
exists a lift �H of H such that

.ev0/�. �H/ D idA:

Indeed, let �H 0 be any lift of H . By the transitivity of the action map, there exists an
element ˇ 2 H 0.DnC1.A;A/; d/ such that

ˇ:
�
.ev0/�. �H 0/� D idA:

Since ev0 is a homotopy equivalence, there exists 
 2 H 0.DnC1.A;A˝��
Œ0;1�

/; d/ such
that .ev0/�
 D ˇ. Using Lemma 2.7 we obtain

.ev0/�
�

: �H 0� D ˇ:�.ev0/�. �H 0/� D idA:

We set �H WD 
: �H 0. By the same argument, one can show that there exists a lift zg of g
such that

.ev1/�. �H/ D zg ı f:
In conclusion, we obtained an A.nC1/ homomorphism zg W B ! A such that zg ı f Š idA.

Finally, we need to prove that f ı zg Š idB . Since zg is also a weak equivalence, the
conclusion above implies that there exists an A.nC1/ homomorphism f 0 W A! B extend-
ing .f1; : : : ; fn/ such that f 0 ı zg Š idB . Thus we have

f ı zg Š f 0 ı zg ı f ı zg Š f 0 ı zg Š idB ;

which finishes the proof.

Remark 2.9. Observe that in the uncurved case, according to Lemma 2.4 our notion
of A.1/ homotopy between morphisms of chain complexes agrees with the usual one.
Furthermore, if we are over a field, quasi-isomorphic chain complexes are in fact homo-
topy equivalent. Thus, the above theorem easily implies the usual Whitehead theorem
of uncurved A1 algebras over a field which states that a quasi-isomorphism between
uncurved A1 algebras over a field is in fact a homotopy equivalence.

2.6. Curved L1 algebras

The previous discussion and results have direct analogues in the L1 setting. Let A and B
be two curved L1 algebras. In this case, we set the ı-complex C.A;B/ as

C.A;B/ WD � � � ! Hom.symkAŒ1�; BŒ1�/
ı
�! Hom.symk�1AŒ1�; BŒ1�/! � � �

! BŒ1�! 0;

ı.�k/.a1 � � � ak�1/ WD .�1/
j�k j

0

� �k.�
A
0 � a1 � � � ak�1/:
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One verifies that ı2 D 0. As before, we denote its cohomology by Dk.A; B/ where k is
the tensor degree. Using the operators �A1 and �B1 , we define another operator d by

d W Hom.symkAŒ1�; BŒ1�/! Hom.symkAŒ1�; BŒ1�/;

d.�k/.a1 � � � ak/ WD �
B
1 �k.a1 � � � ak/ �

kX
jD1

.�1/?�k.a1 � � ��
A
1 .aj / � � � ak/

with ?D j�kj0C ja1j0C � � � C jaj�1j0. Here sym stands for the graded symmetric algebra.
If there exists an R-linear map f W A! B such that f .�A0 / D �

B
0 , we set the k-th

obstruction space H k.A;B/ to be H k.A;B/ WD H 1.Dk.A;B/; d/.
Let fj W symjAŒ1�! BŒ1� (j D 1; : : : ; n) be n multi-linear maps of cohomological

degree zero. We call the sequence .f1; : : : ; fn/ an L.n/ morphism if the following condi-
tions hold:

(i) The L1 homomorphism axiom holds up to .n � 1/ inputs, i.e. for all 0 � m �
n � 1 we haveX

k

1

kŠ

X
�

"� � �
B
k

�
fi1.a�.1/ � � � / � � � fik .� � � a�.m//

�
D

X
r�0

X
�

"� � fm�rC1
�
�Ar .a�.1/ � � � a�.r// � � � a�.m/

�
where � is a .i1; : : : ; ik/ type shuffle, and � is a .r; n � r/ type shuffle, and "�
and "� are Koszul signs associated with these permutations.

(ii) In the case with n inputs, we require thatX
k;�

1

kŠ
�Bk .fi1 ˝ � � � ˝ fik /Sh� �

X
r�1;�

fn�rC1.�
A
r ˝ id˝n�r /Sh� (4)

is ı-exact, i.e. it lies in the image of ı WC nC1.A;B/!C n.A;B/. Here, � , � are
as above and Sh� is the map that permutes the inputs according to the shuffle � .

Given an L.n/ homomorphism .f1; : : : ; fn/ W A ! B , we define its obstruction class
as follows. Choose any f 0nC1 of cohomological degree zero such that ıf 0nC1 equals the
expression in (4). Then we set

obsnC1 WD
X
k�2;�

i1C���CikDnC1

1

kŠ
�Bk .fi1 ˝ � � � ˝ fik /Sh�

�

X
r�2;�

fn�rC2.�
A
r ˝ id˝nC1�r /Sh� C df 0nC1;

and define the obstruction class by

o
�
.fj /

n
jD1

�
D ŒobsnC1� 2 HnC1.A;B/:
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Again, one can verify (similar to Lemma 2.3) that this class is well defined and indepen-
dent of the choice of f 0nC1.

The formal properties of the obstruction theory still holds in the L1 case, with which
we deduce the following result for curved L1 algebras. Again, in the uncurved case and
over a field, this result immediately implies the classical Whitehead theorem of L1 alge-
bras that quasi-isomorphisms are also homotopy equivalences.

Theorem 2.10. An L1 homomorphism f D .f1; f2; : : :/ W A! B between curved L1
algebras is a homotopy equivalence if and only if f1 is an L.1/ homotopy equivalence.

3. Homotopy transfer of curved algebras

In this section, we prove a curved version of the homological perturbation lemma. This
works for both A1 and L1 algebras in the presence of a new version of homotopy retrac-
tion data in the curved case. This is used to construct minimal charts of L1 spaces in
Section 5.2.

3.1. Curved homotopy retraction data

Let us consider the following situation: we are given a curved A1 algebra .A; mk/, a
graded vector space V , R-linear degree zero maps i W V ! A and p W A ! V and an
R-linear map H W A! A of degree �1. Assume there is C 2 V of degree 2 satisfying
i.C / D m0 and moreover:

m1H CHm1 D ip � idA �Hm21H; (5)

pm1H D 0; Hm1i D 0: (6)

We have the following:

Theorem 3.1. In the situation described, there is a curved A1 algebra structure on V
with �0 D C and �1 D pm1i . Moreover, there is an A1 homomorphism ' W .V; �k/!

.A;mk/ with '1 D i .

A common application of this theorem is to construct “minimal” algebras. In that case,
we have the side conditions Hi D pH D 0 and pi D id. In the presence of these extra
conditions, (6) follows from (5).

Before we go into the proof we describe the maps �k , for k � 2,

�k D
X
T2�k

�T ;

where �k is the set of rooted stable planar trees with k-leaves.
We use T as a flow chart to define a map �T W V ˝k ! V:We assign to each v 2 V.T /

the mapmval.v/; to the internal edges we assignH ; and finally we assign p to the root and
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i to the leaves. For example, the tree in Figure 1 gives the map

�T .u1; u2; u3; u4; u5; u6/

D p ım3.H ım3.i.u1/; i.u2/; i.u3//; i.u4/;H ım2.i.u5/; i.u6///:

We would like to point out that these are exactly the same formulas as in the uncurved
case. In particular, the m0 term plays no role in the formulas for �k , k � 2.

To prove these maps define an A1 algebra we will need the following auxiliary maps.
Let T 2 �k , denote by E.T / the set of edges of T and by e.T / the set of internal edges
of T . For each T 2 �k , we define T as the tree T with one additional vertex in each
internal edge of T . Given e 2 E.T / we define y�T ;e in the same way as �T with the
extra assignment of m1 to the edge e. Given e 2 e.T / we define �…T;e , �

id
T;e and �
T;e in

the same way as �T , but with … D ip (respectively id and 
 WD Hm21H ) assigned to e
instead of H .

Proof of Theorem 3.1. One can easily check the first twoA1 equations for�k using equa-
tions (5), (6). For two or more inputs we define

y�k;ˇ .u1; : : : ; uk/ D
X
T2�k ;
e2E.T /

.�1/jTe j y�T ;e.u1; : : : ; uk/

where jTej D
Pme
iD1 jui j

0 with me defined as the smallest 1 � j � k such that the path
from the i -th leaf to the root does not include e, for all i < j . Then, given e 2 e.T /, denote
by E� and EC the edges of T contained in e. Equation (5) implies

y�T ;E� C y�T ;EC D �
…
T;e � �

id
T;e � �



T;e:

Therefore,

y�k D
X
T2�k ;

e2E.T /ne.T /

.�1/jTe j y�T ;e C
X
T2�k ;
e2e.T /

.�1/jTe j.�…T;e � �
id
T;e � �



T;e/: (7)

s
s

s

p

i i i i i

HH

m2

m3

i

m3

Figure 1. Example of an element of �6.
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On the other hand,
y�k D

X
T2�k

X
v2V.T /

X
e2E.T /
v2@e

.�1/jTe j y�T ;e;

and the A1 equation implies that

y�k D�
X
T2�k

X
v2V.T /

X
S2�k ;
e2e.S/;
S=eDT

.�1/jSe j�idS;e �
X

S2�kC1;
S=iDT

.�1/jSe j�S .: : : ;ui�1;�0;ui ; : : :/: (8)

Here S=e is the tree obtained from S by collapsing the edge e and S=i is the tree obtained
by deleting the i -th leaf of S . Putting (7) and (8) together we conclude

X
T2�k

� X
e2e.T /

.�1/jTe j.�…T;e � �


T;e/C y�T;r C

kX
iD1

.�1/jTe j y�T;li

�
C

X
T2�k

X
S2�kC1;
S=iDT

.�1/jSe j�S .: : : ; ui�1; �0; ui ; : : :/ D 0; (9)

where r is the edge adjacent to the root and the li are the edges adjacent to the leaves of T .
It follows from the definition of �T thatX
T2�k

X
e2e.T /

.�1/jTe j�…T;e D
X

k1¤0;1;
k2¤1

.�1/��k2.u1; : : : ; �k1.uiC1; : : : ; uiCk1/; : : : ; uk/:

Equations (5) and (6) imply pm1 D �1p � pm21H . This combined with the A1 equation
gives

y�T;r D �1�T C �C2ı2T .�0; : : :/C .�1/
��C2ı1T .: : : ; �0/;

where C2 is the unique tree with two leaves and C2 ıi T is the tree obtained by grafting
the root of T to the i -th leaf of C2.

Analogously, the identity m1i D i�1 �Hm21i implies

kX
iD1

.�1/jTe j y�T;li D
X
i

�T .: : : ; �1.ui /; : : :/C
X
i

.�1/��T ıiC2.: : : ; �0; ui ; : : :/

C .�1/��T ıiC2.: : : ; ui ; �0; : : :/:

Finally, using the fact that �
.u/ D Hm2.m0;H.u//C .�1/jujm2.H.u/;m0/ we have

.�1/jTe jC1�


T;e D .�1/

��T1ıiC2ı2T2.: : : ; �0; ui ; : : :/

C .�1/��T1ıiC2ı1T2.: : : ; �0; uiCjC1; : : :/;

where T1 and T2 are the trees obtained from cutting T along the edge e and j is the
number of leaves in T2. These last four identities prove that equation (9) is equivalent to
the A1 algebra equation for the �k .
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The construction of map ' W V ! A is similar. We put '1 D i and 'k D
P
T2�k

'T
where the map 'T is defined in the same way as �T , the only difference is that we assign
H to the root vertex (instead of p as in the case of �T ). Similarly we define the auxiliary
maps

y'k D
X
T2�k ;

e2e.T /

.�1/jTe j y'T ;e;

and for each e 2 e.T / we define '…T;e , '
id
T;e and '
T;e .

The same argument we used above applies to showX
T2�k

� X
e2e.T /

.�1/jTe j.'…T;e � '


T;e/C y'T;r C

kX
iD1

.�1/jTe j y'T;li

�
C

X
T2�k

X
S2�kC1;
S=iDT

.�1/jSe j'S .: : : ; ui�1; �0; ui ; : : :/ D 0: (10)

Now, using (5) again, we see that

y'T;r D �m1 ı 'T C i ı �T � '
id
T;r � '



T;r ;

and
' idT;r D mj .'T1 ; : : : ; 'Tj /;

where j is the valency of the vertex of T closest to the root and Ti are the trees obtained
from cutting T at the incoming edges at that vertex. One can now see by the same argu-
ment that equation (10) is equivalent to the A1 homomorphism equation for ',X

j; i1C:::CijDk

mj
�
'i1.u1; : : : ; ui1/; : : : ; 'ij .: : : ; uk/

�
�

X
0�j�k;
0�i�k�j

.�1/�'k�jC1
�
u1; : : : ; �j .uiC1; : : : ; uiCj /; : : : ; uk

�
D 0:

Remark 3.2. In the case of uncurved A1 algebras, there are also explicit formulas for a
homomorphism  W .A;mk/! .V 0; �k/ with  1 D p and a homotopy H W .A;mk/!

.A;mk/ between ' ı  and idA. See [16] for this construction.

3.2. The L1 case

The discussion in the L1 case is very much the same as the A1 case, except that instead
of using planar stable rooted trees in the formulas, one uses isomorphism classes of stable
rooted trees.

The only difference is how to define the map �T for each tree T (as opposed to a
planar tree): we pick �T a planar embedding of T and define ��T as before. Then we take

�T D
1

jAut.T /j
��T ı Sh
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where Sh is the symmetrization map and jAut.T /j is the order of the automorphism group
of T . We refer to [10, Section 4] for a detailed treatment of this construction.

The rest of the proof is exactly the same.

4. The category of curved L1 spaces

In this section, we recall basic definitions of curved L1 spaces, morphisms between these
spaces, and describe the notion of homotopy between morphisms.

4.1. Curved L1 spaces

A curved L1 space (sometimes shortened to L1 space) is a pair .M; g/ where M is a
smooth manifold, and g is a Z-graded vector bundle over M of the form

g D g2 ˚ g3 ˚ � � � ˚ gd

for some d � 2, together with bundle maps �k W symk.gŒ1�/! gŒ1� of degree one such
that the L1 equation holds,

nX
kD0

X
�2Sh.k;n�k/

"� � �n�kC1
�
�k.a�.1/; : : : ; a�.k//; a�.kC1/; : : : ; a�.n/

�
D 0;

where Sh.k;n� k/ consists of .k;n� k/ type shuffles, and "� is the Koszul sign associated
with the permutation a1˝ � � � ˝ an 7! a�.1/; : : : ; a�.n/ with the a’s considered as elements
of gŒ1�.

In order to formulate a good notion of homotopy between morphisms ofL1 spaces we
will need “special” connections on TM and g. Therefore we make the following assump-
tion:

TM has a torsion-free, flat connection and g has a flat connection.

In fact, it would be enough for most purposes to require the existence of these connections
on an open neighborhood of ��10 .0/. But for simplicity we stick to the whole M .

The main results in this paper are local, meaning M is an open ball in Rn, therefore
this assumption is trivially satisfied.

A morphism from .M;g/ to .N;h/ is a pair f D .f; f ]/where f WM !N is a smooth
map, and f ] W g! f �h is a homomorphism of L1 algebras. This means a sequence of
(degree zero) bundle maps f ]

k
W symk.gŒ1�/! f �hŒ1� satisfyingX

k

1

kŠ

X
�

"� � �k
�
f
]
i1
.a�.1/ � � � / � � � f

]
ik
.� � � a�.n//

�
D

X
r

X
�

"� � f
]
n�rC1

�
�r .a�.1/ � � � a�.r// � � � a�.n/

�
;

where � is a .i1; : : : ; ik/ type shuffle, and � is a .r; n � r/ type shuffle. On the left-hand
side there is an abuse of notation: �k stands for f ��k .
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Morphisms of L1 spaces can be composed similarly to the algebra case. Given L1
morphisms e W .M 0; g0/! .M; g/ and f W .M; g/! .N; h/ we define f ı e WD .f ı e;

f ] ı e]/ where

.f ] ı e]/n.a1 � � � ak/ D
1

kŠ

X
�

"� � e
�.f

]

k
/
�
e
]
i1
.a�.1/ � � � / � � � e

]
ik
.� � � a�.n//

�
: (11)

As in the algebra case, we also define L.n/ morphisms between curved L1 spaces.

4.2. Extensions of L1 structures

Let .M; g/ be an L1 space. By our assumptions, we can choose a torsion-free, flat con-
nection on TM and also a flat connection on the bundle g. We set

zg WD TM ˚ g;

with TM at cohomological degree one. The L1 structure on g naturally extends to zg by
inductively applying the formula

�kC1.X � ˛1 � � �˛k/ WD rX�k.˛1 � � �˛k/ �

kX
jD1

�k.˛1 � � � rX j̨ � � �˛k/: (12)

Using the torsion-freeness and the flatness, one can verify that when pulling out tangent
vectors using the above formula, the choice of order does not matter, i.e. we have that

�kC2.X � Y � ˛1 � � �˛k/ D �kC2.Y �X � ˛1 � � �˛k/

for any two tangent vectors X; Y 2 TM .

Lemma 4.1. Equation (12) defines an L1 algebra structure on zg.

Proof. We prove the L1 identity by induction on the total number of tangent vectors.
Indeed, when there is no tangent vector, the L1 identity holds since g forms an L1
algebra to begin with. We want to verify the L1 identity

nX
kD1

X
�2Sh.k;n�k/

"� � �n�kC1
�
�k.a�.1/; : : : ; a�.k//; a�.kC1/; : : : ; a�.n/

�
D 0:

It is enough to consider the case when all the inputs a’s are flat with respect to the chosen
connection r. Now, we pick a tangent vector, say a1, among the inputs and apply equa-
tion (12) to pull it out of the inputs. If a1 falls into a�.1/; : : : ; a�.k/, we obtain terms of the
form XX

"��n�kC1
�
ra1�k�1.� � � /; : : :

�
When a1 falls into a�.kC1/; : : : ; a�.n/, we get

ra1

�XX
"��n�k.�k.� � � /; : : :/

�
�

XX
"��n�kC1

�
ra1�k�1.� � � /; : : :

�
:

Thus, their sum yields ra1.
PP

"��n�k.�k.� � � /; : : :// which vanishes by induction.



L. Amorim and J. Tu 1464

L1 morphisms betweenL1 spaces can also be extended to the tangent bundles. More
precisely, let .f; f ]/ W .M; g/ ! .N; h/ be a morphism of L1 spaces and, as above,
choose torsion-free and flat connections on both spaces and consider the extended L1
algebras zg, zh. We extend the homomorphism f ] to a homomorphism

f ] W zg! f �zh;

which we still denote by f ]. The formula of extension is the same as in equation (12), i.e.
we inductively define

f
]

kC1
.X � ˛1 � � �˛k/ WD rXf

]

k
.˛1 � � �˛k/ �

kX
jD1

f
]

k
.˛1 � � � rX j̨ � � �˛k/: (13)

The difference is that here we need k � 1. When k D 0 we define the map f ]1 W TM !
f �TN to be the tangent map df .

Lemma 4.2. The maps defined in equation (13) form an L1 morphism f ] W zg! f �zh.

Proof. We need to verify thatX
k

1

kŠ

X
�

"� � �k
�
f
]
i1
.a�.1/ � � � / � � � f

]
ik
.� � � a�.n//

�
D

X
r

X
�

"� � f
]
n�rC1

�
�r .a�.1/ � � � a�.r// � � � a�.n/

�
:

Let us pick up a tangent vector, say a1, among the inputs. Also we assume that all the
input vectors are flat. If a1 is inside fij , and ij D 1, we getX
k

1

.k � 1/Š

X
�

"� � ra1�k�1
�
f
]
i1
.a�.1/ � � � / � � �2f1.a1/ � � � f ]ik .� � � a�.n//

�
�

X
k

1

.k � 1/Š

X
�

"� � �k�1
�
f
]
i1
.a�.1/ � � � / � � �2f1.a1/ � � � ra1f ]il .� � � / � � � f

]
ik
.� � � a�.n//

�
:

The coefficient becomes 1
.k�1/Š

since there are k possible choices of j . The second term
cancels precisely the terms with a1 inside fij with ij � 2. Thus, the left-hand side is equal
to (by induction on the total number of tangent vectors)

ra1

�X
k

1

.k � 1/Š

X
�

"� � �k�1
�
f
]
i1
.a�.1/ � � � / � � �2f1.a1/ � � � f ]ik .� � � a�.n//

��
D ra1

�X
r

X
�

"� � f
]
n�r

�
�r .� � � / � � �

��
D

X
r

X
�

"� � f
]
n�rC1

�
�r .a�.1/ � � � a�.r// � � � a�.n/

�
which is exactly the right-hand side.

These extensions of L1 spaces induced by the choice of connections are in fact inde-
pendent of these choices up to isomorphism.
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Lemma 4.3. Let r and r 0 be torsion-free and flat connections. Let zg and zg0 be the asso-
ciated extended L1 algebras. Then there is an isomorphism

ˆg
W zg! zg0

defined by ˆg
1 D id, ˆg

2.X; ˛/ D .r
0
X � rX /.˛/, and for k � 3 by the recursive formula

ˆ
g
k
.X � ˛1 � � �˛k�1/ WD r

0
Xˆ

g
k�1

.˛1 � � �˛k�1/ �

k�1X
jD1

ˆ
g
k�1

.˛1 � � � rX j̨ � � �˛k/:

Moreover, this isomorphism is natural: given an L1 morphism .f; f ]/ W .M; g/!

.N; h/ and different choices of connections, the induced extended L1 morphisms f ] W
zg! f �zh and .f ]/0 W zg0 ! f � zh0 satisfy ˆh ı f ] D .f ]/0 ıˆg.

Proof. As before, we prove the L1 homomorphism equation by induction on the number
of inputs that are tangent vectors. When there is no tangent vector, the operations �k and
�0
k

agree and ˆ is just the identity. Let us now pick up a tangent vector, say a1, among
the inputs. For simplicity we assume that all the inputs are flat with respect to r. Let us
consider the left-hand side of the L1 equation, when a1 is inside ˆij with ij D 1, we getX

k

1

.k � 1/Š

X
�

"� � r
0
a1
�0k�1

�
ˆi1.a�.1/ � � � / � � �

2̂
1.a1/ � � �ˆik .� � � a�.n//

�
�

X
k

1

.k � 1/Š

X
�

"� � �
0
k�1

�
ˆi1.a�.1/ � � � / � � �

2̂
1.a1/ � � �

� r
0
a1
ˆil .� � � / � � �ˆik .� � � a�.n//

�
;

using the definition of�0
k

and the factˆ1D id. The second sum above exactly cancels with
the other terms in the left-hand side of the L1 homomorphism equation with a1 inside
fij with ij � 2. This is because the ai are r flat and ˆ2.a1; aj / D r 0a1aj . Therefore, by
induction hypothesis, the left-hand side equals

r
0
a1

�X
r

X
�

"� �ˆn�r
�
�r .a�.2/ � � � / � � � a�.n/

��
D r

0
a1

�
�n�1.a2 � � � an/

�
C

X
r�n�2

X
�

"� �ˆnC1�r
�
a1 � �r .a�.2/ � � � / � � � a�.n/

�
C

X
r�n�2

X
�

"� �ˆn�r
�
ra1

�
�r .a�.2/ � � � /

�
� � � a�.n/

�
: (14)

Here, the first term equals ˆ2.a1; �n�1.a2 � � � an// and in the third term we have

ra1

�
�r .a�.2/ � � � /

�
D �rC1.a1 � a�.2/ � � � /:

Hence (14) equals X
r

X
�

"� �ˆn�rC1
�
�r .a�.1/ � � � a�.r// � � � a�.n/

�
:
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More precisely, the first two terms in (14) correspond in the above to the terms where a1
is outside the �r .

The proof of the naturality statement is entirely analogous and we omit it.

4.3. Homotopy of L1 morphisms

In order to define the notion of homotopy we need to consider the space version of tensor-
ing with��

Œ0;1�
as in Section 2.3. Let .M;g/ and .N;h/ be twoL1 spaces and let F WM �

Œ0; 1�! N be a smooth map. Consider the graded bundle F �zhŒ0;1� WD F �zh˝ ��2�
�
Œ0;1�

,
where �2 WM � Œ0; 1�! Œ0; 1� is the projection and denote �t

k
D .f t /��k , f t D F.�; t /.

On F �zhŒ0;1� we define the operations

�˝0 WD �
t
0 � .dF=dt/dt;

�˝1 .x.t/C y.t/dt/ WD �
t
1.x.t//C �

t
1.y.t//dt

C .�1/jx.t/jrd=dt .x.t///dt;

�˝
k
.: : : ; xi .t/C yi .t/dt; : : :/ WD �

t
k.: : : ; xi .t/; : : :/

C

X
i

.�1/��tk.x1.t/; : : : ; yi .t/; : : : ; xk.t//dt;

(15)

for k � 2, where � D
Pk
aDiC1 jxaj

0.

Lemma 4.4. The operations �˝
k

define a curved L1 algebra structure on F �zhŒ0;1�.

Proof. The proof is standard, it follows from the fact that the tensor product of an L1
algebra and a commutative dg-algebra is again an L1 algebra together with the relation

r d
dt
�tk.a1; : : : ; ak/ D �

˝

kC1

�@F
@t
dt; a1; : : : ; ak

�
;

for flat ai .

We are now ready to define homotopy.

Definition 4.5. Two L1 morphisms .f 0; f 0;]/ and .f 1; f 1;]/ from .M;g/ to .N;h/ are
homotopic if there exists a map F WM � Œ0; 1�!N , together with anL1 homomorphism

F ] W ��1 zg! F �zhŒ0;1�;

where �1 WM � Œ0; 1�!M is the projection map, satisfying the following conditions:

• It is compatible with the connection, i.e.

F
]

kC1
.X � ˛1 � � �˛k/ WD rXF

]

k
.˛1 � � �˛k/ �

kX
jD1

F
]

k
.˛1 � � � rX j̨ � � �˛k/

and F ]1 .X/ D dF.X/, 8X 2 TM .
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• The following boundary conditions hold:

.F; F ]/jtD0 D .f
0; f 0;]/;

.F; F ]/jtD1 D .f
1; f 1;]/:

Note that by Lemma 4.3, this definition is independent of the choice of r.

Like usual we say an L1 morphism f WM! N is a homotopy equivalence if there
is another L1 morphism e W N !M such that both f ı e and e ı f are homotopic to the
identity L1 morphism.

Remark 4.6. The above definition can be easily adapted to the complex analytic setting
when both .M; g/ and .N; h/ are holomorphic L1 spaces such that the underlying com-
plex manifolds M and N admits holomorphic torsion-free and flat connections. More
precisely, we simply require that F and F ] be fiberwise holomorphic, i.e. they are smooth
in the t direction, and holomorphic whenever we fix a value t 2 Œ0; 1�. This is more trans-
parent with explicit formulas of F ] in the following paragraph.

It will be helpful to unwind this definition. The compatibility condition implies the
morphism F ] is determined by its values on the elements of ��1 g. We write

F
]

k
.a1; : : : ; ak/ D f

t
k .a1; : : : ; ak/C .�1/

P
i jai j

0

htk.a1; : : : ; ak/dt:

Then the L1 morphism equation for F ] is equivalent to

(1) the maps .f t
k
/k�1 define an L1 homomorphism g! .f t /�h;

(2) the maps ht
k

satisfy the equations ht1.�0/ D
@F
@t

and for n � 1X
k

1

.k � 1/Š

X
�

"��
t
k

�
hti1.a�.1/ � � � /f

t
i2
� � � f tik .� � � a�.n//

�
C

X
j�0

X
�

"�h
t
n�jC1

�
�j .a�.1/ � � � a�.r// � � � a�.n/

�
D r d

dt
f tn .a1; : : : ; an/ (16)

where � is a .i1; : : : ; ik/ type shuffle, � is a .r; n � r/ type shuffle and the ai are
flat.

Proposition 4.7. (a) Homotopy of L1 morphisms is an equivalence relation.

(b) Let .f 0; f 0;]/ and .f 1; f 1;]/ be homotopic L1 morphisms. Then .f 0; f 0;]/ ı
.d; d ]/ and .f 1; f 1;]/ ı .d; d ]/ are homotopic, and .e; e]/ ı .f 0; f 0;]/ and
.e; e]/ ı .f 1; f 1;]/ are homotopic, for any composable L1 morphisms .d; d ]/,
.e; e]/.

Proof. For (a) first note that a diffeomorphism � W Œ0; 1�! Œ0; 1� induces, by pull-back, an
L1 homomorphism �� W F �zhŒ0;1� ! .F�/

�zhŒ0;1�, where F� WD F ı .id � �/. Now, given
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a homotopy .F; F ]/ from .f 0; f 0;]/ to .f 1; f 1;]/, take �.t/ D 1 � t and consider the
pair .F�; F

]
� WD �

� ı F ]/. This defines a homotopy from .f 1; f 1;]/ to .f 0; f 0;]/, which
shows symmetry of the homotopy relation. For transitivity let � be a non-decreasing dif-
feomorphism which is constant in neighborhoods of 0 and 1 in Œ0; 1�. For this choice of �,
F� WD .F�; F

]
� / is a new homotopy from .f 0; f 0;]/ to .f 1; f 1;]/. Given a homotopy

.G;G]/ from .f 1; f 1;]/ to .f 2; f 2;]/ we consider G�, as before and define the concate-
nation F� �G� by

F� �G�.x; t/ D

´
F�.x; 2t/; t � 1=2;

G�.x; 2t � 1/; t � 1=2;

and analogously F ]� � G
]
�. By our choice of � these are smooth maps and can be easily

seen to determine a homotopy from .f 0; f 0;]/ to .f 2; f 2;]/.
For (b) we prove only the second statement as they are analogous. Let .F; F ]/ be a

homotopy from .f 0; f 0;]/ to .f 1; f 1;]/ and e] W h! e�h0 be an L1 homomorphism. It
is easy to check there is an induced L1 homomorphism ze] W F �zhŒ0;1� ! .e ı F /� zh0Œ0;1�.
Now the pair .e ı F; ze] ı F ]/ defines the required homotopy from .e; e]/ ı .f 0; f 0;]/ to
.e; e]/ ı .f 1; f 1;]/.

5. The inverse function theorem for L1 spaces

In this section, we first adapt the obstruction theory of Section 2 to the case of L1 spaces.
Then we prove Theorem 1.1 and Theorem 1.3.

5.1. Obstruction theory for morphisms between L1 spaces

Much of the discussion on the obstruction theory for A1 and L1 homomorphisms in
Section 2 translates without significant changes to the L1 space setting. When we are
given two L1 spaces .M; g/, .N; h/ and a smooth map f W M ! N , we can define a
differential ı on

L
k Hom.sym

k.gŒ1�/; f �hŒ1�/, as in Section 2.1,

ı.�k/.a1; : : : ; ak�1/ WD .�1/
j�k j

0

�k.�0; a1; : : : ; ak�1/:

We denote by Dk.g; f �h/ the ı cohomology and, assuming there is a map f ]1 satisfying
f
]
1 .�0/ D f

��0, we define the differential

d�.a1; : : : ; ak/ WD�1�.a1; : : : ; ak/� .�1/
j�j0Cjai j

0
Pi�1
lD1 jal j

0

�.�1.ai /;a1 : : : ;bai ; : : : ; ak/;
as before �1 in the first term really stands for f ��1. As in Definition 2.2, we define the
obstruction space

H k.g; f �h/ WD H 1
�
Dk.g; f �h/; d

�
:

We also define a sequence of maps .f ]1 ; : : : ; f
]
n / W g ! f �h (together with f ) to

be an L.n/ morphism, if it satisfies the L1 homomorphism equation for 0 � k � n � 1



The inverse function theorem for curved L-infinity spaces 1469

inputs and for n inputs up to a ı-exact term. We define, in the same way as in Section 2,
an obstruction class

o
�
.f

]
j /
n
jD1

�
2 HnC1.g; f �h/:

This obstruction class vanishes if and only if the map can be lifted to anL.nC1/ morphism.

Lemma 5.1. The obstruction class o..f
]
j /
n
jD1/ 2 H

nC1.g; f �h/ vanishes if and only
if the corresponding class (in the extended L1 algebras) o..f

]
j /
n
jD1/ 2 H

nC1.zg; f �zh/

vanishes.

Proof. If there exists f ]nC1 W sym
nC1.gŒ1�/! f �hŒ1�, we may extend it using equation

(13) to obtain anL.nC1/ homomorphism on the extendedL1 algebras, which implies that
o..f

]
j /
n
jD1/ 2 H

nC1.zg; f �zh/ vanish. Conversely, if the latter obstruction class vanishes,
we simply restrict the map f ]nC1 to symnC1.gŒ1�/! f �hŒ1�.

Extra work is needed to formulate the homotopy invariance of obstruction spaces
and classes. Let .F; F ]/ be a homotopy between two L.1/ morphisms .f 0; f 0;]/ and
.f 1; f 1;]/. Denote by �a WM !M � Œ0; 1� the inclusion map �a.x/ D .x; a/. For an ele-
ment ' 2 Hom.symnC1��1 zgŒ1�; F

�zhŒ0;1�Œ1�/, we have ��a.'/2 Hom.sym
nC1zgŒ1�; .f a/�zh/,

for a D 0; 1. It is easy to see this assignment induces a map on obstruction spaces eva W
HnC1.��1 zg; F

�zhŒ0;1�/! HnC1.zg; .f a/�zh/, which we call the evaluation map.

Proposition 5.2. The evaluation map

eva W HnC1.��1 zg; F
�zhŒ0;1�/! HnC1.zg; .f a/�zh/

is an isomorphism.

Proof. Both cases are identical, we will prove the statement for aD 0, by constructing i, a
homotopy inverse to ev0. Given ' 2 Hom.symnC1zgŒ1�; .f 0/�zh/, we define i'.a1; : : : ; ak/
by taking the (unique) flat extension of '.a1; : : : ; ak/ in the t -direction and so obtain an
element of F �zh. It is clear, i commutes with the ı differential and hence it induces a map
from Dk.zg; .f 0/�zh/ to Dk.��1 zg; F

�zhŒ0;1�/. We pick a flat frame of the bundle F �zh and
compute, for a ı-closed ',

d.i.'// � i.d.'// D .�t1 � �
0
1/ ı i' D

Z t

0

rd=ds�
s
1 ı i' ds

D

Z t

0

�s2.
@F

@s
; i'/ ds D

Z t

0

�s2.h
s
1.�0/; i'/ ds

D ı

�Z t

0

�s2.h
s
1 � i'/ ds

�
:

Here, ht1 is the map coming from the definition of homotopy in (16). Hence, i induces a
map between the corresponding obstruction spaces. Clearly, we have ev0 ı i D id. Let

K W Dk.��1 zg; F
�zhŒ0;1�/! Dk.��1 zg; F

�zhŒ0;1�/
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be the map induced by the integration map

K.'t C  tdt/.a1; : : : ; ak/ D .�1/
j j0C?

Z t

0

 s.a1; : : : ; ak/ ds;

where ? WD ja1j0 C � � � C jakj0. We claim that i ı ev0 � id D dK CKd . For � WD 't C
 tdt we compute (omitting the inputs)

.dK CKd/.�/ D .�1/j j
0C?�t1

Z t

0

 s ds � r d
dt

Z t

0

 s ds dt � .�1/?C1
Z t

0

 s ��1 ds
�

Z t

0

r d
ds
's ds C .�1/j j

0C?C1

Z t

0

�s1 
s ds � .�1/?

Z t

0

 s ��1 ds
D .�1/j j

0C?

�Z t

0

r d
ds
�s1K. 

sds/ dt �

Z t

0

�s1
�
r d
ds
K. sds/

�
dt

�
�  tdt � 't C '0

D iev0.�/ � � C .�1/j j
0C?

Z t

0

�s2

�@F
@s
�K. sds/

�
dt

D iev0.�/ � � � .�1/j j
0C?ı

�Z t

0

�s2

�
hs1;

Z s

0

 u du
�
dt

�
:

In the last equality we have used the fact that hs1.�0/ D
@F
@s

. Thus, we conclude that
i ı ev0 D id

HnC1.��1 zg;F
�zhŒ0;1�/

and therefore ev0 is an isomorphism.

Corollary 5.3. Let .f 0; f 0;]/ and .f 1; f 1;]/ be two homotopic L.n/ morphisms. Then
.f 0; f 0;]/ lifts to an L.nC1/ morphism if and only if .f 1; f 1;]/ does.

Proof. The morphism .f a; f a;]/ lifts to an L.nC1/ morphism if and only if o..f
a;]
j /njD1/

vanishes. Let .F; F ]/ be the homotopy between the two L.n/ morphisms. We can easily
see

o
�
.f

a;]
j /njD1

�
D eva

�
o
�
.F

]
j /
n
jD1

��
:

By the previous proposition, eva is an isomorphism and therefore o..f
a;]
j /njD1/ vanishes

if and only if o..F
]
j /
n
jD1/ does.

The push-forward .e/� and pull-back .d/� maps on the obstruction space, under an
L.1/ morphism, are defined in the same manner as in the algebra case. We have the ana-
logue to Lemma 2.5.

Lemma 5.4. Let eD .e; e
]
1/ W .N;h/! .N 0;h0/ and dD .d; d

]
1/ W .M

0;g0/! .M;g/ be
L.1/ homotopy equivalences. Then both maps

.e/� W H
n.g; f �h/! Hn.g; .e ı f /�h0/;

.d/� W Hn.g; f �h/! Hn.g0; .f ı d/�h/

are isomorphisms.
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Proof. Let E be an L.1/ homotopy between two L.1/ morphisms e0 and e1. Observe that
eva ı .E/� D .ea/� for a D 0; 1. Since eva is an isomorphism, by Proposition 5.2, we
conclude .ea/� is an isomorphism if and only if .E/� is an isomorphism. Now, let Ne be
an L.1/ homotopy inverse for e, then by the previous argument .e ı Ne/� (and .Ne ı e/�) is
an isomorphism. Hence we conclude .e/� is an isomorphism from the equality .e ı Ne/� D
.e/� ı .Ne/�.

The same argument proves the statement for .d/�.

With these preparations, we may deduce the following result which is the analogue of
Theorem 2.8 in the case ofL1 spaces. Its proof is essentially the same: using the previous
results we prove analogues of Proposition 2.6 and Lemma 2.7 which lead to the following
theorem. Since this involves only minor modifications we omit its proof.

Theorem 5.5. AnL1 space homomorphism f D .f;f ]/ W .M;g/! .N;h/ is a homotopy
equivalence if and only if .f; f ]1 / is an L.1/ homotopy equivalence.

Remark 5.6. Unlike in the algebraic case (see Remark 2.9) the Whitehead theorem ofL1
spaces (Theorem 1.1) does not immediately follow from the above result. The proof that
quasi-isomorphisms are L.1/ homotopies in the curved situation is considerably harder.
In the remaining part of the section, we shall first prove Theorem 1.3 on the existence of
minimal charts. Then we make use of the minimal charts to prove the desired Whitehead
theorem.

5.2. Minimal charts

Let M D .M; g/ be an L1 space and let p 2 M be a point in the zero-set of �0. As in
the introduction we define the tangent complex of .M;g/ at p to be

TpM WD TpM
r�0jp
����! g2jp

�1jp
���! g3jp

�1jp
���! g4jp

�1jp
���! � � �

�1jp
���! gN jp: (17)

The fact that this is indeed a complex follows from the L1 algebra equation together with
the condition �0jp D 0. Also note that the first map is independent of the connection.

Let f D .f; f ]/ W .M; g/! .N; h/ be an L1 morphism and p 2 ��10 .0/. It easily
follows from the definition of morphism that df and f ]1 induce a chain map Tpf W TpM!
Tf .p/N.

Definition 5.7. Let .M;g/ be an L1 space and let p 2 ��10 .0/. We say .M;g/ is minimal
at p if all the maps in the complex TpM are zero.

A morphism f W .M;g/! .N; h/ is called a quasi-isomorphism at p if the chain map
Tpf induces an isomorphism in cohomology.

We have the following easy lemma.

Lemma 5.8. An L1 morphism which is an L.1/ homotopy equivalence is a quasi-iso-
morphism at any point.
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For any open set W �M we can restrict the L1 structure to W and so obtain a new
L1 space .W;gjW /: We define a chart at p to be an L1 space .N;h/, with np 2 ��10 .0/,
together with an L1 homotopy equivalence i D .i; i]/ W .N; h/ ! .W; gjW / for some
neighborhood W of p in M , such that i.np/ D p. We say the chart is minimal if .N;h/ is
minimal at np .

The main step in the proof of the inverse function theorem for L1 spaces is the con-
struction of minimal charts. We will do it in two steps.

Proposition 5.9. Let .M;g/ be anL1 space and q 2��10 .0/. There is a chart at q, .N;h/
with the property r�N0 jnq D 0.

Proof. In a neighborhood U of q with coordinates .x1; : : : ; xn/, trivialize the bundle
g2 and write �0 D s D .s1; : : : ; sm/ W U ! Rm. If r�0jq ¤ 0, there is i; j such that
@si
@xj
.q/ ¤ 0. Hence, N D si

�1.0/ \ W , for some small open set W � U , is a smooth
submanifold. It follows from the inverse function theorem (for smooth manifolds) that we
can find coordinates onW , .x1; : : : ;xn�1;y/ such thatN D¹.x1; : : : ;xn�1;0/º. Moreover,
we can decompose the bundle g2jN DE2˚C2 such that s.x;y/D .�.x;y/;y/. We define
Ek D gkjN for k � 3. We define the map � W N ! M as �.x/ D .x; 0/. Additionally we
denote by i the inclusion E! g and by p the projection g! E. We claim the operations
�0 WD �jN and �k D �kjE , k � 1 define an L1 space. Indeed this is a degenerate case of
Theorem 3.1 where we take H D 0. Please note that even though equation (21) does not
hold on g2, the theorem still holds since it is enough to have equation (21) hold on g�3,
since this is the only situation where it is applied.

Therefore we have an L1 space�
N;E WD

M
k�2

Ek ; �k

�
:

Moreover, there is an L1 homomorphism �] W E ! ��g, with �]1 D i jN . We now
construct an L.1/ homotopy inverse to .�; �]/. For this purpose, we define the maps … W
M � Œ0; 1�!M , ….x; y; t/ D .x; ty/ and � t;]1 W g! .…t /�g by the formula"

id �
R 1
t
@�
@y
.x; sy/ ds

0 t � id

#
W g2 ! .…t /�g2;

and � t;]1 D id on gk�3. We claim the pair .P; P ]1 /, where P.x; y/ D x and P ]1 D p�
0;]
1 ,

is an L.1/ morphism from .M;g/ to .N;E/, and moreover it is an L.1/ homotopy inverse
to .�; �]/. We first show that � t;]1 is an L.1/ homomorphism. An easy computation gives

�
t;]
1 .�0/ D .�.x; ty/; ty/ D .…

t /�.�0/:

In the decomposition g2jN D E2 ˚ C2, we write �1 D .'; ˛/ and compute�
�
t;]
1 �1 � �

t
1�

t;]
1

�
jg2 D

�
' � 't ; ˛ � t˛t C 't �

Z 1

t

@�

@y
.sy/ ds

�
:
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We claim this is ı-exact. We define

P2 D

Z 1

t

�s2.K ˝ id/ � �s2.id˝K/ds;

where K W g2 ! TM is the map defined as K.e; c/ D c @
@y

, and compute

ı.P2/.e; c/ D

Z 1

t

�s2.y
@

@y
; .e; c// � �s2.�0; c

@

@y
/ ds

D

Z 1

t

r d
ds
�s1..e; c// � c

@�1

@y
.x; sy/.�0/ ds

D

�
' � 't ; ˛ � ˛t �

Z 1

t

@'

@y
.sy/ � �.x; y/ ds �

Z 1

t

@˛

@y
.sy/y ds

�
.e; c/:

(18)

Therefore ı.P2/ D .�
t;]
1 �1 � �

t
1�

t;]
1 /jg2 is equivalent to the following identity:Z 1

t

'.x; ty/ �
@�

@y
.sy/ ds C

Z 1

t

@'

@y
.sy/ � �.x; y/ ds D t˛t � ˛;

which in turn follows from the fact that the left-hand side equalsZ 1

t

@.' � �/

@y
.x; sy/ ds: (19)

The L1 relation �1.�0/ D 0 implies ' � � D �˛ � y, henceZ 1

t

@.' � �/

@y
.x; sy/ ds D �

Z 1

t

@˛

@y
.x; sy/sy C ˛.x; sy/ ds D t˛.x; ty/ � ˛.x; y/:

Here, the last equality is given by integration by parts. Similarly one shows that

�
�
t;]
1 �1 � �

t
1�

t;]
1

�
jg�3 D ı

� Z 1

t

�s2.K ˝ id/
�
:

Hence we conclude that � t;]1 is an L.1/ homomorphism.
We observe that P ] ı �] D id, �0;]1 D �] ı P ] and �0;]1 D id. Therefore, in order to

conclude that .P;P ]/ is an L.1/ homotopy inverse to .�; �]/ it is enough, by (16), to define

ht1 D

´
K; g2;

0; g�3;

and check the following identities:

ht1.�0/ D
@…

@t
;

@�
t;]
1

@t
D �t1h

t
1 C h

t
1�:
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We have thus proved that the L1 morphism .�; �]/ is an L.1/ homotopy equivalence. It
now follows from Theorem 5.5 that .�; �]/ is an L1 homotopy equivalence and therefore
.N;E/ is a chart at q. By construction, the rank of r�0jq in n is strictly smaller than in
the original space M , hence, by applying the previous construction finitely many times,
we can find a chart at q such that r�0jq has rank zero as claimed in the statement.

We now state and prove Theorem 1.3 in the Introduction.

Theorem 5.10. Let .M; g/ be an L1 space and q 2 ��10 .0/. There is a minimal chart
at q.

Proof. Proposition 5.9 implies that we can assume r�0jq D 0. We pick a sub-bundle
E3�g3 such thatE3jq ˚ Im.�1jq/Dg3jq . Then ��1 Wg2!g3=E3 is surjective at q, since
Im�1jq D Im��1jq . Hence ��1 is surjective on some neighborhood of q, which we denote
by U . This implies that A2 WD ker ��1jU is a sub-bundle of g2. We pick a complement
A2 ˚ B2 D g2 and define C3 D �1.B2/ � g3jU . By construction, �1jB2 is injective and
therefore C3 is a bundle. Moreover, gj3 D E3 ˚ C3.

Next, we pick E4 � g4 such that E4jq ˚ Im.�1jq/ D g4jq and define A3 WD ker ��1 W
E3! g4=E4. We pick a complementA3˚B3DE3 and define C4 WD�1.B3/. We repeat
this argument, for all k and obtain a decomposition gk D Ak ˚ Bk ˚ Ck in a neighbor-
hood of q, here C2 D 0. In this decomposition, the map �1 takes the form

�1 D

24' 0 ˛

 0 ˇ

0 " 


35 :
Note that " is an isomorphism, so we can define the degree �1 map

H D

240 0 0

0 0 �"�1

0 0 0

35 W g! g:

On g2, H is defined to be zero. We denote by i the inclusion A! g and by p the projec-
tion onto A. We have the following identities on g, which are easy to check:

H ı i D 0; p ıH D 0; (20)

H�1 C �1H D i ı p � idg �H�
2
1H: (21)

The first L1 equation �1.�0/ D 0 implies that �0 D .�; 0/, since " is an isomorphism.
Hence, i.�/jN D ���0 and we have all the data and conditions as in Theorem 3.1. There-
fore, Theorem 3.1 constructs an L1 space�

M;A WD
M
k�2

Ak ; �k

�
;
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with �0 D � and �1 D p�1i . Moreover, there is an L1 morphism .�; �]/ W .U;A/ !

.U; gjU /, with � D id and �]1 D i . Also observe that, by definition of Ak , �1jq.Ak/ D 0
and thus .U;A/ is minimal at q.

The last step is to construct an L.1/ homotopy inverse to .�; �]/ and then appeal to
Theorem 5.5 to conclude that .�; �]/ is an L1 homotopy equivalence. For this purpose, we
define the maps � t;]1 W g! g by the formula24id 0 0

0 t � id 0

0 0 t � id

35 W g! g:

We first show that � t;]1 is anL.1/ homomorphism. Since �0D.�; 0/we have � t1.�0/D�0.
Next, we define the map

P2 D .1 � t /
�
H�2.p ˝ p/C p�2.H ˝ id/ � p�2.id˝H/

�
:

A simple computation using (21) gives

�1�
t;]
1 � �

t;]
1 �1 D ı.P2/:

In particular, we have shown that P ]1 WD …�
0;] (where… W g! A is the projection) is an

L.1/ morphism from g to A.
It is obvious that P ]1 ı �

] D idA. Finally, we need to show that �] ı P ]1 is L.1/ homo-
topic to the identity. First note �1;] D idg and �0;] D �] ı P ]1 . We define ht1 D �H and
easily check

ht1.�0/ D 0;
@� t;]

@t
D ht1�1 C �1h

t
1 � ı.Q2/;

where Q2 D H�2.H ˝ id/CH�2.id˝H/. This completes the proof that .�; �]/ is an
L.1/ and therefore an L1 homotopy equivalence.

We are now ready to prove Theorem 1.1 in the introduction.

Theorem 5.11. Let .M;g/ and .N;h/ be L1 spaces and f D .f; f ]/ W .M;g/! .N;h/

be an L1 morphism. Assume that f is a quasi-isomorphism at q 2 ��10 .0/. Then there are
neighborhoods U of q and V of f .q/ such that f .U / � V and

fjU W .U;gjU /! .V; hjV /

is an L1 homotopy equivalence.

Proof. Theorem 5.10 provides minimal charts at p and f .p/ and hence we have the fol-
lowing diagram:

.L; a/ .U;gjU /

.zL; za/ .V; hjV /:

J

i

p

fUJ�1

zi

zp
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Here the pairs i, p and zi; zp are homotopy inverses and J WD zp ı fU ı i. It follows from
Lemma 5.8 that J is a quasi-isomorphism at nq DW p.q/, but since .L; a/ and .zL; za/ are
minimal at nq and J.nq/, we conclude that J is a local diffeomorphism and J ]1 jnq is an
isomorphism. After restricting to small neighborhoods U 0 and V 0 of nq and J.nq/ we
have that J is a diffeomorphism and J ]1 is an isomorphism of bundles. Therefore we can
solve equation (11) inductively on n to find a strict L1 inverse to J ], which we denote
by J�1.

We make the neighborhoods U and V smaller, if necessary, to ensure the restrictions
of i, p (and zi, zp) are homotopy inverses on .U 0; ajU 0/ (and .V 0; zajV 0/). We define K WD

i ı J�1 ı zp. By construction J�1 ı zp ı fU Š p, therefore

K ı fU Š i ı J�1 ı zp ı fU Š i ı p Š id:

Similarly, fU ı i ı J�1 Š zi, hence fU ı K Š zi ı zp Š id. Thus, K is a homotopy inverse
to fU .

Acknowledgments. We are grateful to Jim Stasheff for sending us his comments and
suggestions of an earlier version of the paper.

References

[1] L. Amorim, Tensor product of filtered A1-algebras. J. Pure Appl. Algebra 220 (2016), no. 12,
3984–4016 Zbl 1344.18012 MR 3517566

[2] K. Behrend, Differential graded schemes I: Perfect resolving algebras. 2002,
arXiv:math/0212225

[3] K. Behrend, Differential graded schemes II: The 2-category of differential graded schemes.
2002, arXiv:math/0212226

[4] K. Behrend, H. Liao, and P. Xu, Derived differential geometry. 2020, arXiv:2006.01376
[5] C. Brav, V. Bussi, and D. Joyce, A Darboux theorem for derived schemes with shifted sym-

plectic structure. J. Amer. Math. Soc. 32 (2019), no. 2, 399–443 Zbl 1423.14009
MR 3904157

[6] I. Ciocan-Fontanine and M. Kapranov, Derived Quot schemes. Ann. Sci. École Norm. Sup. (4)
34 (2001), no. 3, 403–440 Zbl 1050.14042 MR 1839580

[7] I. Ciocan-Fontanine and M. Kapranov, Virtual fundamental classes via dg-manifolds. Geom.
Topol. 13 (2009), no. 3, 1779–1804 Zbl 1159.14002 MR 2496057

[8] K. Costello, A geometric construction of the Witten genus, II. 2011, arXiv:1112.0816
[9] V. A. Dolgushev, A. E. Hoffnung, and C. L. Rogers, What do homotopy algebras form? Adv.

Math. 274 (2015), 562–605 Zbl 1375.18053 MR 3318161
[10] D. Fiorenza and M. Manetti, L1 structures on mapping cones. Algebra Number Theory 1

(2007), no. 3, 301–330 Zbl 1166.17010 MR 2361936
[11] K. Fukaya, Deformation theory, homological algebra and mirror symmetry. In Geometry and

physics of branes (Como, 2001), pp. 121–209, Ser. High Energy Phys. Cosmol. Gravit., IOP,
Bristol, 2003 Zbl 1058.81002 MR 1950958

https://zbmath.org/?q=an:1344.18012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3517566
https://arxiv.org/abs/math/0212225
https://arxiv.org/abs/math/0212226
https://arxiv.org/abs/2006.01376
https://zbmath.org/?q=an:1423.14009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3904157
https://zbmath.org/?q=an:1050.14042&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1839580
https://zbmath.org/?q=an:1159.14002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2496057
https://arxiv.org/abs/1112.0816
https://zbmath.org/?q=an:1375.18053&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3318161
https://zbmath.org/?q=an:1166.17010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2361936
https://zbmath.org/?q=an:1058.81002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1950958


The inverse function theorem for curved L-infinity spaces 1477

[12] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly
and obstruction. Part I. AMS/IP Stud. Adv. Math. 46, American Mathematical Society, Prov-
idence, RI; International Press, Somerville, MA, 2009 Zbl 1181.53002 MR 2553465

[13] D. Joyce, A new definition of Kuranishi space. 2014, arXiv:1409.6908
[14] H. V. Lê and Y.-G. Oh, Deformations of coisotropic submanifolds in locally conformal sym-

plectic manifolds. Asian J. Math. 20 (2016), no. 3, 553–596 Zbl 1352.53072 MR 3528832
[15] J.-L. Loday and B. Vallette, Algebraic operads. Grundlehren Math. Wiss. 346, Springer, Hei-

delberg, 2012 Zbl 1260.18001 MR 2954392
[16] M. Markl, Transferring A1 (strongly homotopy associative) structures. Rend. Circ. Mat.

Palermo (2) Suppl. (2006), no. 79, 139–151 Zbl 1112.18007 MR 2287133
[17] M. Markl, Deformation theory of algebras and their diagrams. CBMS Reg. Conf. Ser. Math.

116, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by
the American Mathematical Society, Providence, RI, 2012 Zbl 1267.16029 MR 2931635

[18] Y.-G. Oh and J.-S. Park, Deformations of coisotropic submanifolds and strong homotopy Lie
algebroids. Invent. Math. 161 (2005), no. 2, 287–360 Zbl 1081.53066 MR 2180451

[19] A. Proute, Algèbres différentielles fortement homotopiquement associatives. Thèse d’Etat,
Université Paris VII, 1984

[20] B. Pym and P. Safronov, Shifted symplectic Lie algebroids. Int. Math. Res. Not. IMRN (2020),
no. 21, 7489–7557 Zbl 1475.53090 MR 4176831

[21] B. Toën and G. Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applica-
tions. Mem. Amer. Math. Soc. 193 (2008), no. 902 Zbl 1145.14003 MR 2394633

[22] J. Tu, Homotopy L-infinity spaces. 2014, arXiv:1411.5115
[23] B. Vallette, Homotopy theory of homotopy algebras. Ann. Inst. Fourier (Grenoble) 70 (2020),

no. 2, 683–738 Zbl 07210769 MR 4105949

Received 15 February 2021; revised 10 June 2021.

Lino Amorim
Department of Mathematics, Kansas State University, 138 Cardwell Hall, 1228 N. 17th Street,
Manhattan, KS 66506, USA; lamorim@ksu.edu

Junwu Tu
Institute of Mathematical Sciences, ShanghaiTech University, 393 Middle Huaxia Road, Pudong
New District, Shanghai, 201210, China; tujw@shanghaitech.edu.cn

https://zbmath.org/?q=an:1181.53002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2553465
https://arxiv.org/abs/1409.6908
https://zbmath.org/?q=an:1352.53072&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3528832
https://zbmath.org/?q=an:1260.18001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2954392
https://zbmath.org/?q=an:1112.18007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2287133
https://zbmath.org/?q=an:1267.16029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2931635
https://zbmath.org/?q=an:1081.53066&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2180451
https://zbmath.org/?q=an:1475.53090&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4176831
https://zbmath.org/?q=an:1145.14003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2394633
https://arxiv.org/abs/1411.5115
https://zbmath.org/?q=an:07210769&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4105949
mailto:lamorim@ksu.edu
mailto:tujw@shanghaitech.edu.cn

	1. Introduction
	1.1. Curved L_\infty spaces
	1.2. About the proofs
	1.3. Other related works
	1.4. Organization of the paper

	2. Obstruction theory
	2.1. Definition of obstruction spaces
	2.2. Obstruction classes
	2.3. A_(n) homomorphisms
	2.4. Homotopy invariance of obstruction theory
	2.5. Whitehead theorem for curved A_\infty algebras
	2.6. Curved L_\infty algebras

	3. Homotopy transfer of curved algebras
	3.1. Curved homotopy retraction data
	3.2. The L_\infty case

	4. The category of curved L_\infty spaces
	4.1. Curved L_\infty spaces
	4.2. Extensions of L_\infty structures
	4.3. Homotopy of L_\infty morphisms

	5. The inverse function theorem for L_\infty spaces
	5.1. Obstruction theory for morphisms between L_\infty spaces
	5.2. Minimal charts

	References

