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A proof of a conjecture of Shklyarov

Michael K. Brown and Mark E. Walker

Abstract. We prove a conjecture of Shklyarov concerning the relationship between K. Saito’s
higher residue pairing and a certain pairing on the periodic cyclic homology of matrix factor-
ization categories. Along the way, we give new proofs of a result of Shklyarov (Corollary 2 of
[Adv. Math. 292 (2016), 181–209]) and Polishchuk–Vaintrob’s Hirzebruch–Riemann–Roch for-
mula for matrix factorizations (Theorem 4.1.4 (i) of [Duke Math. J. 161 (2012), 1863–1926]).

1. Introduction

LetQDCŒx1; : : : ; xn�, and let m denote the maximal ideal .x1; : : : ; xn/�Q. Fix f 2m,
and assume the only singular point of the associated morphism f W Spec.Q/! A1C is m.
Let mf .Q; f / denote the differential Z=2-graded category of matrix factorizations of f ;
see Section 3.1 for the definition of mf .Q; f /. Shklyarov proves in [16, Theorem 1]
that a certain pairing on the periodic cyclic homology of mf .Q; f / coincides, up to a
constant factor cf (which possibly depends on f ), with K. Saito’s higher residue pairing,
via the Hochschild–Kostant–Rosenberg (HKR) isomorphism. Shklyarov conjectures in
[16, Conjecture 3] that cf D .�1/n.nC1/=2. The main goal of this paper is to prove this
conjecture.

We begin by discussing Shklyarov’s conjecture in more detail.

1.1. Background on Shklyarov’s conjecture

Let HN.mf .Q; f // denote the negative cyclic complex of mf .Q; f /, and let
HN�.mf .Q; f // denote its homology. See, for instance, [2, Section 3] for the definition
of the negative cyclic complex of a dg-category. The dg-category mf .Q; f / is proper,
i.e., each cohomology group of the (Z=2-graded) morphism complex of any two objects
is a finite dimensional C-vector space. As with any such dg-category, there is a canonical
pairing of Z=2-graded C-vector spaces,

Kmf W HN�
�
mf .Q; f /

�
�HN�

�
mf .Q; f /

�
! CŒŒu��;

where u is an even degree variable. The pairing Kmf is defined exactly as in [16, p. 184],
but with periodic cyclic homology HP� replaced with HN� and C..u// replaced with
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CŒŒu��. We note that Kmf is CŒŒu��-sesquilinear; i.e., for any ˛; ˇ 2 HN�.mf .Q; f //
and g 2 CŒŒu��, we have

Kmf
�
g.u/ � ˛; ˇ

�
D g.u/Kmf .˛; ˇ/ D Kmf

�
˛; g.�u/ � ˇ

�
:

It follows from the work of Segal [14, Corollary 3.4] and Polishchuk–Positselski [9,
Section 4.8] that there is a quasi-isomorphism

If W HN
�
mf .Q; f /

� '
�!

�
��Q=CŒŒu��; ud � df

�
; (1.1)

which generalizes the classical HKR theorem. The target of If is called the twisted de
Rham complex, and it is a Z=2-graded complex indexed by setting �m

Q=C to have (homo-
logical) degree m and u to have degree �2. (Since the twisted de Rham complex is
Z=2-graded, we could just as well say �m has degree �m and u has degree 2. Note
that the map ud has degree �1 whereas df has degree 1, but since this is regarded as a
Z=2-graded complex, there is no problem.) In particular, we have an isomorphism

If W HNn
�
mf .Q; f /

� Š
�! H

.0/

f
;

where

H
.0/

f
WD Hn

�
��Q=CŒŒu��; ud � df

�
D

�n
Q=CŒŒu��

.ud � df / ��n�1
Q=CŒŒu��

:

In [13], K. Saito equips the CŒŒu��-module H .0/

f
with a pairing

Kf W H
.0/

f
�H

.0/

f
! CŒŒu��

known as the higher residue pairing. Shklyarov has proven the following result concerning
the relationship between the canonical pairing and the higher residue pairing under the
HKR isomorphism.

Theorem 1.2 ([16, Theorem 1]). For each polynomial f as above, there is a constant
cf 2 C (possibly depending on f ) such that the diagram

HNn
�
mf .Q; f /

��2 If �If

Š
//

cf �u
n�Kmf ''

�
H
.0/

f

��2
Kfzz

CŒŒu��

(1.3)

commutes.

Moreover, Shklyarov makes the following prediction.

Conjecture 1.4 ([16, Conjecture 3]). For any f , cf D .�1/n.nC1/=2.
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1.2. Outline of the proof of Conjecture 1.4

The constant cf can be determined from a related, but simpler, pairing on
HH�.mf .Q; f //, the Hochschild homology of mf .Q; f /. We recall that, for any dg-
category C , there is a short exact sequence

0! HN.C/
�u
�! HN.C/! HH.C/! 0 (1.5)

of complexes. It follows, for instance from (1.1), that HN�.mf .Q; f // and
HH�.mf .Q; f // are concentrated in degree n .mod 2/. The long exact sequence in
homology induced by (1.5) therefore induces an isomorphism

HN�
�
mf .Q; f /

�
=u �HN�

�
mf .Q; f /

� Š
�! HH�

�
mf .Q; f /

�
: (1.6)

The pairing Kmf determines a well-defined pairing modulo u, which we write, via (1.6),
as

�mf W HH�
�
mf .Q; f /

�
�HH�

�
mf .Q; f /

�
! C:

The isomorphism If is CŒŒu��-linear and, upon setting u D 0, it induces an isomorphism

If .0/ W HHn
�
mf .Q; f /

� Š
�! Hn

�
��Q=C;�df

�
:

The higher residue pairing Kf has the form

Kf

 
! C

X
j�1

!ju
j ; !0 C

X
j�1

!0ju
j

!
D h!;!0iresu

n
C higher order terms;

where h!;!0ires is the classical residue pairing determined by the partial derivatives of f .
It is defined algebraically as

hg � dx1 � � � dxn; h � dx1 � � � dxnires D res

"
gh � dx1 � � � dxn
@f
@x1
; : : : ; @f

@xn

#
;

where the right-hand side is Grothendieck’s residue symbol.
Thus, upon dividing the maps in diagram (1.3) by un and setting u D 0, we obtain the

commutative triangle

HHn
�
mf .Q; f /

�
�HHn

�
mf .Q; f /

� If .0/�If .0/

Š
//

cf �mf

((

�n
Q=C

df ^�n�1
Q=C

�
�n
Q=C

df ^�n�1
Q=C

h�;�iresxx
C:

(1.7)

Since If .0/ is an isomorphism, and the residue pairing is nonzero, the value of cf is
uniquely determined by the commutativity of (1.7).

In this paper, we re-establish the commutativity of diagram (1.7) using techniques that
differ from those used by Shklyarov. Our method results in an explicit calculation of cf .
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Theorem 1.8. Shklyarov’s conjecture holds: that is, for any f as above,

cf D .�1/
n.nC1/=2:

In fact, we prove the commutativity of diagram (1.7), and Theorem 1.8, in the case
where Q is an essentially smooth algebra over a characteristic 0 field k, m is a k-rational
maximal ideal, and f 2 m is such that m is the only singularity of the morphism f W

Spec.Q/ ! A1
k

. The special case k D C, Q D CŒx1; : : : ; xn�, and m D .x1; : : : ; xn/

yields Shklyarov’s conjecture.
The general outline of our proof is summarized by the diagram

HHn
�
mf .Q; f /

�
�HHn

�
mf .Q; f /

�
id�‰
��

If .0/�If .0/

Š
// Hn

�
��
Q=k

;�df
�
�Hn

�
��
Q=k

;�df
�

id�.�1/n

��

HHn
�
mf .Q; f /

�
�HHn

�
mf .Q;�f /

�If .0/�I�f .0/
Š

//

?

��

Hn
�
��
Q=k

;�df
�
�Hn

�
��
Q=k

; df
�

^

��

HH2n
�
mf m

�
Qm; 0

��
.�1/n.nC1/=2 trace

))

" // H2nR�m

�
��
Qm=k

�
res

vv
k:

(1.9)
The map ‰ is induced by taking Q-linear duals; ? is induced by a Künneth map fol-
lowed by the tensor product of matrix factorizations; trace is defined in Section 4; res is
Grothendieck’s residue map; ^ is induced by exterior multiplication of differential forms,
using that the complexes .��

Q=k
;˙f / are supported on ¹mº; and the map " is an HKR-

type map. We prove that

(1) the diagram commutes (Lemma 3.11, Lemma 3.14, Corollary 3.26, and Theorem
4.36),

(2) the composition along the left side of this diagram is the canonical pairing �mf
(Lemma 4.23), and

(3) the composition along the right side of this diagram is the residue pairing h�;�ires

(Proposition 4.34).

Finally, in Section 5, we use some of our results to give a new proof Polishchuk–
Vaintrob’s Hirzebruch–Riemann–Roch theorem for matrix factorizations [10, Theorem
4.1.4 (i)].

We note that a result closely related to the commutativity of (1.7) was also proven
by Polishchuk–Vaintrob [10, Corollary 4.1.3]. More precisely, they prove that the residue
pairing on Hn.�

�
Q=k

;�df / �Hn.�
�
Q=k

; df / and the canonical pairing on
HHn.mf .Q; f // � HHn.mf .Q;�f // coincide up to multiplication by .�1/.n�1/n=2
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via an isomorphism

 W HHn
�
mf .Q; f /

� Š
�! Hn

�
��Q=k ; df

�
described in [10, (2.28)]. Combining this result of Polishchuk–Vaintrob with our Theo-
rem 1.8 and the nondegeneracy of the residue pairing, we conclude that, if ˛; ˛0 2
HHn.mf .Q; f //, ˝

.˛/; .˛0/
˛
res D

˝
If .0/.˛/; If .0/.˛

0/
˛
res: (1.10)

If one could prove (1.10) directly, one could simply combine [10, Corollary 4.1.3] with the
commutativity of the top square of diagram (1.9) to quickly prove Shklyarov’s conjecture.
But we believe there is no way to prove (1.10) without going through Theorem 1.8.

2. Generalities on Hochschild homology for curved dg-categories

We review some background on Hochschild homology of curved dg-categories and estab-
lish some new results concerning pairings of such. Throughout this section, k is a field,
and “graded” means �-graded for � 2 ¹Z;Z=2º. We will eventually focus on the case
� D Z=2.

2.1. Hochschild homology of curved dg-categories

We refer the reader to [2, Section 2.1] for the definition of a curved differential �-graded
category (henceforth referred to as a cdg-category). Recall that a cdg-category with just
one object is a curved differential �-graded algebra (cdga).

For a cdg-category C whose objects form a set, define HH.C/\ to be the �-graded
k-vector space given by the direct sum totalization of the Z � �-bicomplex which, in
Z-degree n, is the �-graded k-vector spaceM

X0;:::;Xn2C

Hom.X1; X0/˝k †Hom.X2; X1/˝k � � �

˝k †Hom.Xn; Xn�1/˝k †Hom.X0; Xn/:

When C is essentially small, so that the isomorphism classes of objects in the �-graded
category underlying C form a set (see [9, Section 2.6]), we defineHH.C/\ by first replac-
ing C with a full subcategory consisting of a single object from each isomorphism class.
From now on, we will tacitly assume all of our cdg-categories are essentially small. Given
˛i 2 Hom.XiC1; Xi / for i D 0; : : : ; n (with XnC1 D X0), we write ˛0Œ˛1j � � � j˛n� for the
element ˛0 ˝ s˛1 ˝ � � � ˝ s˛n of HH.C/\.

The Hochschild complex of C , denoted byHH.C/, is the above graded k-vector space
equipped with the differential b WD b2C b1C b0, where b2;b1;b0 are defined as in [2, Sec-
tion 3.1]. Roughly, b2 is the classical Hochschild differential induced by the composition
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law in C , b1 is induced by the differentials of C , and b0 is induced by the curvature ele-
ments of C . When C has just one object with trivial curvature, then C is a dga, and the
maps b2 and b1 are the classical ones (and b0 D 0 in this case).

We will also need “Hochschild homology of the second kind,” as introduced by
Polishchuk–Positselski in [9] and by Căldăraru–Tu in [4]; the latter authors call this
theory “Borel-Moore Hochschild homology”. Define HH II .C/\ to be the �-graded k-
vector space given as the direct product totalization of the above bicomplex. Equivalently,
HH II .C/\ is the completion of HH.C/\ under the topology determined by the evident
filtration. Since b is continuous for this topology, it induces a differential on HH II .C/\,
which we also write as b, and we write HH II .C/ for the resulting chain complex.

2.2. The Künneth map for Hochschild homology of cdga’s

For a cdga A D .A; dA; hA/, we have

HH.A/\ D A˝k T .†A/;

where, for any graded k-vector space V , T .V / D
L
n�0 V

˝n. Recall that T .V / is a
commutative k-algebra under the shuffle product:

.v1 ˝ � � � ˝ vp/ � .vpC1 ˝ � � � ˝ vpCq/ D
X
�

˙v�.1/ ˝ � � � ˝ v�.pCq/;

where � ranges over all .p; q/-shuffles. The sign is given by the usual rule for permuting
homogeneous elements in a product.

Since A is also an algebra, HH.A/\ has an algebra structure, whose multiplication
rule will be written as

� ? � W HH.A/\ ˝k HH.A/
\
! HH.A/\:

It is given explicitly as

xŒa1j � � � jap� ? yŒapC1j � � � japCq� D
X
�

˙xyŒa�.1/j � � � ja�.pCq/�:

Note that the canonical inclusion T .†A/ ,! HH.A/\ lands in the center of HH.A/\ for
the ? multiplication.

If B D .B; dB ; hB/ is another cdga, the tensor product of A and B is defined to be

A˝k B D .A˝k B; dA ˝ 1C 1˝ dB ; hA ˝ 1C 1˝ hB/:

We define the Künneth map

�Q?� W HH.A/\ ˝k HH.B/
\
! HH.A˝k B/\

to be the composition of the tensor product of the maps induced by the canonical inclu-
sionsHH.A/\ ,!HH.A˝B/\ andHH.B/\ ,!HH.A˝B/\ with the ? product for
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A˝k B. The ? product on HH.A/\ can be recovered from the Künneth map by setting
B D A: the ? product coincides with the composition

HH.A/\ ˝k HH.A/
\ Q?
�! HH.A˝k A/\

��
��! HH.A/\;

where
�� W .A˝k A/˝k T

�
†.A˝ A/

�
! A˝k T .†A/

is induced by the multiplication map � W A˝ A! A.
It is important to note that, for an algebra A, the ? product does not, in general, make

HH.A/ into a dga, since b2 is not a derivation for the ? multiplication unless A is com-
mutative. But b2 is a derivation for the Künneth map; see Lemma 2.6.

The ? product does behave well with respect to b1. In detail, recall that the tensor alge-
bra functor T .�/ sends �-graded complexes of k-vector spaces to differential �-graded
algebras under the shuffle product. Let dT denote the differential on T .†A/ induced from
the differential †d on †A. Then .T .†A/; �; dT / is a dga, where � is the shuffle product.
By examining the explicit formula for b1, we see that

b1 D dA ˝ 1C 1˝ dT :

In other words, .HH.A/\; ?; b1/ is a dga, and it is given as a tensor product of dga’s:�
HH.A/\; ?; b1

�
D .A; �; dA/˝

�
T .†A/; �; dT

�
;

where � is the multiplication rule for A.
If z is an element of A of even degree, then we have

1Œz� ? a0Œa1j � � � jan� D
X
i

.�1/ja0jCja1jC���Cjai j�ia0Œa1j � � � jai jzjaiC1j � � � jan�:

In particular, the component b0 of the differential in HH.A/ is given by

b0 D 1Œh� ? �: (2.1)

Since 1Œh� is a central element of .A˝ T .†A/; ?/ of odd degree, it follows that

b0.�/ ? � D b0.� ? �/ D ˙� ?b0.�/: (2.2)

The ? product extends toHH II since it is continuous for the topology onHH whose
completion gives HH II .

2.3. Functoriality of HH II using the shuffle product

We recall that a morphism A D .A; dA; hA/! B D .B; dB ; hB/ of cdga’s is given by a
pair � D .�; ˇ/, with � W A! B a morphism of �-graded k-algebras and ˇ 2 B a degree
1 element, such that

� �.d.a// � d 0.�.a// D Œˇ; �.a/� for all a 2 A, and
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� �.h/ D h0 C d 0.ˇ/C ˇ2.

Such a morphism is called strict if ˇ D 0.
A strict morphism � induces maps

�� W HH.A/! HH.B/ and �� W HH
II .A/! HH II .B/

given by
��
�
a0Œa1j � � � jan�

�
D �.a0/

�
�.a1/j � � � j�.an/

�
:

A nonstrict morphism � does not, in general, induce a map on Hochschild homology, but
it does induce a map

�� W HH
II .A/! HH II .B/

given by sending a0Œa1j � � � jan� toX
i0;:::;in�0

.�1/i0C���Cin�.a0/
�
ˇj � � � jˇ„ ƒ‚ …
i0 copies

j�.a1/jˇj � � � jˇ„ ƒ‚ …
i1 copies

j�.a2/j � � � j�.an/jˇj � � � jˇ„ ƒ‚ …
in copies

�
: (2.3)

We next show how �� may also be defined using the ? product. Suppose b 2 B is a
degree 1 element, and let exp.1Œb�/ denote the degree 0, central element of the algebra
.HH II .B/\; ?/ given by evaluating the power series for the exponential function at 1Œb�:

exp
�
1Œb�

�
D 1C 1Œb�C

1

2Š

�
1Œb� ? 1Œb�

�
C
1

3Š

�
1Œb� ? 1Œb� ? 1Œb�

�
C � � �

D 1C 1Œb�C 1Œbjb�C 1Œbjbjb�C � � � :

The signs are correct, since s.b/ 2 T .†B/ has even degree. We have

exp
�
1Œb�

�
?
�
b0Œb1j � � � jbn�

�
D
�
b0Œb1j � � � jbn�

�
? exp

�
1Œb�

�
D

X
i0;:::;in�0

b0
�
bj � � � jb„ ƒ‚ …
i0 copies

jb1j bj � � � jb„ ƒ‚ …
i1 copies

jb2j � � � jbnj bj � � � jb„ ƒ‚ …
in copies

�
:

By comparing formulas, we see that

�� D exp
�
1Œ�ˇ�

�
? ��: (2.4)

That is,

��
�
a0Œa1j � � � jan�

�
D exp

�
1Œ�ˇ�

�
? �.a0/

�
�.a1/j � � � j�.an/

�
D �.a0/

�
�.a1/j � � � j�.an/

�
? exp

�
1Œ�ˇ�

�
:

2.4. The Künneth map for Hochschild homology of cdg-categories

For a pair of cdg-categories C and D , we write C ˝k D for the cdg-category whose
objects are ordered pairs .C;D/ with C 2 C and D 2 D and such that

Hom
�
.C;D/; .C 0;D0/

�
D HomC .C; C

0/˝k HomD.D;D
0/;
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with differentials given in the standard way for a tensor product. The composition rules
are the evident ones, and the curvature elements are defined by

h.C;D/ D hC ˝ idD C idC ˝ hD :

Note that, if A D .A; dA; hA/ and B D .B; dB ; hB/ are cdga’s, then this construction
specializes to the construction given above as follows:

A˝k B D
�
A˝k B; dA ˝ idB C idA ˝ dB ; hA ˝ idB C idA ˝ hB

�
:

We define the Künneth map for the cdg-categories C and D to be the map

�Q?� W HH.C/\ ˝k HH.D/\ ! HH.C ˝k D/\

given by

c0Œc1j � � � jcm� Q?d0Œd1j � � � jdn� D
X
�

˙c0 ˝ d0Œe�.1/j � � � je�.mCn/�;

where � ranges over all .m; n/-shuffles, and

ei WD

´
ci ˝ id; if 1 � i � m; and

id˝ di�m; if mC 1 � i � mC n:

This map extends to HH II .�/\:

�Q?� W HH II .C/\ ˝k HH
II .D/\ ! HH II .C ˝D/\:

Remark 2.5. There does not seem to be an analogue of the ? product for a general cdg-
category. The issue is that, in general, there is no “diagonal map”

C ˝k C ! C :

Lemma 2.6. For any two cdg-categories C and D , the diagram

HH.C/\ ˝k HH.D/\

bi˝idCid˝bi
��

�Q?� // HH.C ˝k D/\

bi

��

HH II .C/\ ˝k HH.D/\
�Q?� // HH.C ˝k D/\

commutes for i D 0; 1, and 2, and similarly for HH II .�/\. In particular,

�Q?� W HH.C/˝k HH.D/! HH.C ˝k D/

and
�Q?� W HH II .C/˝k HH

II .D/! HH II .C ˝k D/

are chain maps.

Proof. This follows from the definitions by a routine check.
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2.5. Naturality of the Künneth map

We recall that a morphism A ! B of cdg-categories is a pair � D .F; ˇ/, where F W
A! B is a morphism of categories enriched in �-graded k-vector spaces, and ˇ is an
assignment to each objectX of A a degree 1 element ˇX 2 EndB.F.X//. The pair .F;ˇ/
is required to satisfy that

� for all X; Y 2 Ob.A/ and f 2 HomA.X; Y /,

F
�
ı.f /

�
D ı

�
F.f /

�
C ˇY ı F.f / � .�1/

jf jF.f / ı ˇX ;

where ı is the differential on HomA.X; Y /; and

� for all X 2 Ob.A/,
F.hX / D hF.X/ C ı.ˇX /C ˇ

2
X :

� is called strict if ˇX D 0 for all X .

Lemma 2.7. Suppose A;A0;B;B 0 are curved differential �-graded categories, and � D
.F; ˇ/ W A! B, �0 D .F 0; ˇ0/ W A0 ! B 0 are morphisms of such categories. Then

(1) � ˝ �0 WD .F ˝ F 0; ˇ ˝ 1C 1˝ ˇ0/ is a morphism from A˝k A0 to B ˝k B 0,
and, if � and �0 are strict morphisms, then so is � ˝ �0;

(2) the diagram

HH II .A/˝k HH
II .A0/

Q?

��

.�/�˝.�
0/� // HH II .B/˝k HH

II .B 0/

Q?

��

HH II
�
A˝k A0

� .�˝�0/� // HH II
�
B ˝k B 0

�
commutes; and

(3) if � and �0 are strict morphisms, the corresponding diagram involving ordinary
Hochschild homology commutes.

Proof. The proof of (1) is a routine check, and (3) is an immediate consequence of (2).
For (2), to simplify the notation, we assume the cdg-categories involved are cdg-algebras;
the proof of the general claim is notationally more complicated but essentially the same.
Write � D .�; ˇ/, �0 D .�0; ˇ0/, so that, by (2.4),

�� D exp
�
1Œ�ˇ�

�
? �� and �0� D exp

�
1Œ�ˇ0�

�
? �0�:

Let � W HH II .A/ ,! HH II .A˝k A0/ and �0 W HH II .A0/ ,! HH II .A˝k A0/ be
the canonical inclusions. We have

exp
�
1Œ�ˇ�

�
Q? exp

�
1Œ�ˇ0�

�
D exp

�
�
�
1Œ�ˇ�

��
? exp

�
�0
�
1Œ�ˇ0�

��
D exp

�
1Œ�ˇ ˝ 1 � 1˝ ˇ0�

�
I
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the second equation holds since �.1Œ�ˇ�/ and �0.1Œ�ˇ0�/ commute. Therefore, for elements
˛ 2 HH II .A/ and ˛0 2 HH II .A0/, using also the associativity of ?, we get

.�/�.˛/ Q?.�
0/�.˛

0/ D
�
exp.1Œ�ˇ�/ ? �.˛/

�
Q?
�
exp

�
1Œ�ˇ0�

�
? �0.˛0/

�
D
�
exp

�
1Œ�ˇ�

�
Q? exp

�
1Œ�ˇ0�

��
?
�
�.˛/ Q?�0.˛0/

�
D exp

�
1Œ�ˇ ˝ 1 � 1˝ ˇ0�

�
? .�˝ �0/.˛ Q?˛0/

D .� ˝ �0/�.˛ Q?˛
0/:

3. Hochschild homology of matrix factorization categories

Let k be a field, and let Q be an essentially smooth k-algebra. Fix f 2 Q.

3.1. Matrix factorizations

The dg-category mf .Q; f / of matrix factorizations of f over Q is defined as follows.

� Objects are pairs .P; ıP /, where P is a finitely generated Z=2-graded projective Q-
module, and ıP is an odd degree endomorphism of P such that ı2P D f idP .

� Hommf.Q;f /..P; ıP /; .P
0; ıP 0// is the Z=2-graded complex HomQ.P; P

0/ with dif-
ferential @ given by

@.˛/ D ıP 0˛ � .�1/
j˛j˛ıP

for ˛ homogeneous. From now on, we will omit the subscript on
Hommf.Q;f /.�;�/.

We emphasize that f is allowed to be 0. The homotopy category ofmf .Q;f /, denoted by
Œmf .Q; f /�, is the Q-linear category with the same objects as mf .Q; f / and morphisms
given by HomŒmf .Q;f /�.�;�/ WD H

0 Hom.�;�/.
Let X;Y 2 mf .Q;f /, and let ˛0; ˛1 2 Hom.X; Y / be cocycles. We recall that ˛0; ˛1

are homotopic if there is an odd degree Q-linear map h W X ! Y such that

hdX C dY h D ˛0 � ˛1:

This is just the usual notion of a homotopy between morphisms of a Z=2-graded com-
plex, adapted verbatim to the setting of matrix factorizations. An object X 2 mf .Q; f /
is contractible if idX is null-homotopic. Morphisms in mf .Q; f / that are cocycles are
homotopic if and only if they are equal in Œmf .Q; f /�.

Definition 3.1. Given X 2 mf .Q; f /, the support of X is the set

supp.X/ D
®
p 2 Spec.Q/ j Xp is not a contractible object of mf .Qp; f /

¯
:

For a closed subset Z of Spec.Q/, let mf Z.Q; f / denote the full dg-subcategory of
mf .Q; f / consisting of those X with supp.X/ � Z.

We record the following.
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Proposition 3.2. Let X 2 mf .Q; f /.

(1) When f D 0, supp.X/ is the set of points at which the Z=2-complex X is not
exact. Therefore, when f D 0, the notion of support defined above agrees with the
usual notion of support for a Z=2-graded complex.

(2) One has supp.X/ � Spec.Q=f /. When f is a nonzero-divisor, supp.X/ �
Sing.Q=f /.

Proof. (1) This is [1, Lemma 2.3]. (2) It is easy to check that any matrix factorization of
a unit is contractible. Suppose f is a nonzero-divisor. By [8, Theorem 3.9], the homotopy
category Œmf .Q;f /� is equivalent to the singularity category ofQ=f , and the singularity
category is trivial when Q=f is regular.

Remark 3.3. If f is a nonzero-divisor, so that the morphism of schemes f W Spec.Q/!
A1
k

is flat, then
Spec.Q=f / \ Sing.f / D Sing.Q=f /;

where Sing.f / denotes the set of points of Spec.Q/ at which the morphism f W Spec.Q/!
A1
k

is not smooth.

Let R be another essentially smooth k-algebra, and let g 2 R. Given X 2 mf .Q; f /
and Y 2 mf .R; g/, we form the tensor product

X ˝ Y 2 mf .Q˝k R; f ˝ 1C 1˝ g/

by adapting the notion of tensor product of Z=2-graded complexes to matrix factoriza-
tions. The tensor product gives a dg-functor

mf .Q; f /˝k mf .R; g/! mf .Q˝k R; f ˝ 1C 1˝ g/:

If Z and W are closed subsets of Spec.Q/ and Spec.R/, respectively, one has an induced
functor

mf Z.Q; f /˝k mf
W .R; g/! mf Z�W .Q˝k R; f ˝ 1C 1˝ g/:

If Q D R, composing with multiplication in Q gives a functor

mf Z.Q; f /˝k mf
W .Q; g/! mf Z\W .Q; f C g/:

We also have a duality functor D which determines an isomorphism of dg-categories

D W mf .Q; f /op Š
�! mf .Q;�f /:

The functor D sends an object P D .P; ıP / of mf .Q; f / to the object P � D .P �;�ı�P /
of mf .Q;�f /, and it sends an element ˛ of Hom.P2; P1/op D Hom.P1; P2/ to the ele-
ment ˛� of Hom.P �2 ; P

�
1 /. Note that ˛�./ D .�1/j˛jj j ı ˛. If X 2 mf Z.X; f /op for
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some closed Z � Spec.Q/, then D.X/ 2 mf Z.X;�f /. If X; Y 2 mf .Q; f /, there is a
canonical isomorphism

Hom.X; Y / Š D.X/˝ Y:

In particular, if X 2 mf Z.Q; f / and Y 2 mf W .Q; f /, we have

Hom.X; Y / 2 mf Z\W .Q; 0/: (3.4)

3.2. The HKR map

Assume for the rest of Section 3 that char.k/ D 0. Given a Z-graded complex .C �; d /
of k-vector spaces, its Z=2-folding is the Z=2-graded complex whose even (resp., odd)
component is

L
i2Z C

2i (resp.,
L
i2Z C

2iC1) and whose differential is given by d .
Let ��

Q=k
denote the Z=2-graded commutative Q-algebra given by the Z=2-folding

of the exterior algebra over �1
Q=k

. That is,

�even
Q=k D

M
j

�
2j

Q=k
and �odd

Q=k D

M
j

�
2jC1

Q=k
:

We write .��
Q=k

; �df / for the Z=2-graded complex of Q-modules with underlying
gradedQ-module��

Q=k
and with differential given by left multiplication by �df 2�1

Q=k
.

LetZ be a closed subset of Spec.Q=f /. The goal of the rest of this section is to study,
for each triple .Q; f;Z/, an HKR-type map,

"Q;f;Z W HH
�
mf Z.Q; f /

�
! R�Z

�
��Q=k ;�df

�
: (3.5)

Here, R�Z is the right adjoint of the inclusion functor DZ
Z=2.Q/ � DZ=2.Q/, where

DZ=2.Q/ denotes the derived category of Z=2-graded Q-modules, and DZ
Z=2.Q/ �

DZ=2.Q/ the subcategory spanned by complexes with support contained in Z. It will
be convenient for us to use the following Čech model for R�Z . Choose g1; : : : ; gm 2 Q
such that Z D V.g1; : : : ; gm/, and let

C D C.g1; : : : ; gm/ D
O
j

�
Q! QŒ1=gi �

�
be the (Z=2-folding of the) augmented Čech complex. It is well known that C ˝Q M

models R�Z.M/ for any M 2 DZ=2.Q/; i.e., the functor

C ˝Q � W DZ=2.Q/! DZ
Z=2.Q/

is right adjoint to the inclusion. From now on, given g1; : : : ; gm 2 Q such that V.g1; : : : ;
gm/DZ, we will tacitly identify R�Z.M/ with C ˝QM . Note that, for any Z=2-graded
complex M of Q-modules that is supported in Z, the natural morphism of complexes

C ˝Q M !M (3.6)
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given by the tensor product of the augmentation map C ! Q with idM is a quasi-
isomorphism.

HKR maps for matrix factorization categories have been widely studied. Segal and
Căldăraru–Tu give such an HKR map, involving Hochschild homology of the second kind
and without a support condition, in [14, Corollary 3.4] and [4, Theorem 4.2], respectively;
Efimov generalizes this result to the nonaffine setting in [6, Proposition 3.21]; and Preygel
gives a map just as in (3.5) (but also in the not-necessarily-affine setting), and proves it
is a quasi-isomorphism, in [11, Theorem 8.2.6 (iv)]. But [11] does not contain a concrete
formula for where the HKR map (3.5) sends an element of the bar complex computing
HH.mf Z.Q; f //, and we will need such a formula later on. So, we develop our own
version of (3.5).

3.2.1. Quasi-matrix factorizations. Define a curved dg-category qmf .Q; f /, the cate-
gory of quasi-matrix factorizations, in the following way.

� Objects .P; ıP / are defined in the same way as those ofmf .Q;f /, except we remove
the requirement that ı2P is given by multiplication by f .

� Morphisms are defined in the same way as in mf .Q; f /.

� The curvature element of Endqmf.Q;f /.P; ıP / is ı2P � f .

mf .Q; f / is precisely the full subcategory of qmf .Q; f / spanned by objects with triv-
ial curvature. Let qmf .Q; f /0 denote the full subcategory of qmf .Q; f / spanned by
those objects .P; ıP / such that ıP D 0. Note that the curvature element of an object in
qmf .Q; f /0 is �f . The pair .Q; 0/ determines an object of qmf .Q; f /0, and its endo-
morphisms form the curved differential Z=2-graded algebra .Q; 0;�f /. That is, we have
inclusions

mf .Q; f / ,! qmf .Q; f / - qmf .Q; f /0  - .Q; 0;�f /:

These functors are all pseudo-equivalences, in the language of [9, Section 1.5], and so, by
[9, Lemma A, p. 5319], the induced maps

HH II
�
mf .Q; f /

�
! HH II

�
qmf .Q; f /

�
 � HH II

�
qmf .Q; f /0

�
 � HH II .Q; 0;�f /

are all quasi-isomorphisms.
A key point is that there is a (nonstrict) cdg-functor

.F; ˇ/ W qmf .Q; f /! qmf .Q; f /0

given by F.P; ıP / D .P; 0/ and ˇ.P;ıP / D ıP . The induced map

.F; ˇ/� W HH
II
�
qmf .Q; f /

�
! HH II

�
qmf .Q; f /0

�
sends ˛0Œ˛1j � � � j˛n�, where ˛i 2 Hom..PiC1; ıiC1/; .Pi ; ıi //, to

X
i0;:::;in�0

.�1/i0C���Cin˛0
� i0‚ …„ ƒ
ı1j � � � jı1 j˛1j

i1‚ …„ ƒ
ı2j � � � jı2 j � � � j˛nj

in‚ …„ ƒ
ı0j � � � jı0

�
:
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3.2.2. The supertrace. Given a Z=2-graded finitely generated projective Q-module P ,
define the supertrace map

str W EndQ.P /! Q

as the composition

EndQ.P / Š P � ˝Q P
˝p 7!.p/
��������! Q

for homogeneous elements  , p. Equivalently, for ˛ 2 EndQ.P / we have

str.˛/ D

´
tr.˛0 W P0 ! P0/ � tr.˛1 W P1 ! P1/; if ˛ has degree 0, and

0; if ˛ has degree 1:

Here, tr is the classical trace of an endomorphism of a projective module. We extend str
to a map

End��
Q=k

�
P ˝Q �

�
Q=k

�
Š EndQ.P /˝Q ��Q=k

str˝id
����! ��Q=k ;

which we also write as str.

3.2.3. The HKR map without supports.

Definition 3.7. A connection on an object .P; ıP / 2 qmf .Q; f / is a k-linear map

r W P ! �1Q=k ˝Q P

of odd degree such that r.qp/ D dq ˝ p C qr.p/, i.e., a superconnection, in the lan-
guage of [12]. Notice that the definition does not involve ıP .

Choose a connection rP on each object .P; 0/ 2 qmf .Q; f /0; we stipulate that the
connection chosen for Q 2 qmf .Q; f /0 is the canonical one given by the de Rham dif-
ferential, d W Q! �1

Q=k
. Define

"0 W HH II
�
qmf .Q; f /0

�\
! ��Q=k

by

"0
�
˛0Œ˛1j � � � j˛m�

�
D

1

mŠ
str
�
˛0˛

0
1 � � �˛

0
m

�
;

where, for ˛ W .P1; 0/! .P2; 0/, we set ˛0 D rP2 ı ˛ � .�1/
j˛j˛ ı rP1 . By [2, Theo-

rem 5.18], "0 gives a chain map

HH II
�
qmf .Q; f /0

�
!
�
��Q=k ;�df

�
:

Then the composition

"Q W HH II .Q; 0;�f /
'
�! HH II

�
qmf .Q; f /0

� "0

��!
�
��Q=k ;�df

�
;
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where the first map is induced by inclusion, is given by the classical HKR map

"Q
�
q0Œq1j � � � jqn�

�
D
q0dq1 � � � dqn

nŠ
2 �nQ=k :

In particular, "0 is a quasi-isomorphism. .F; ˇ/� is also a quasi-isomorphism, since

qmf .Q; f /0
'
�! qmf .Q; f /

.F;ˇ/
����! qmf .Q; f /0

is the identity.
We define the HKR map

"Q;f W HH
�
mf .Q; f /

�
!
�
��Q=k ;�df

�
to be the composition

HH
�
mf .Q; f /

� can
��! HH II

�
mf .Q; f /

� '
�! HH II

�
qmf .Q; f /

�
.F;ˇ/�
�����! HH II

�
qmf .Q; f /0

� "0

��!
�
��Q=k ;�df

�
;

where “can” denotes the canonical map. A more explicit formula for "Q;f is given as
follows. Given objects .P0; ı0/; : : : ; .Pn; ın/ of mf .Q; f / and maps

P0
˛0
 �� P1

˛1
 �� � � �

˛n�1
 ��� Pn

˛n
 �� P0;

set ri D rPi . Then

"Q;f
�
˛0Œ˛1j � � � j˛n�

�
D

X
i0;:::;in�0

.�1/i0C���Cin

.nC i0 C � � � C in/Š
str
�
˛0.ı

0
1/
i0˛01 � � � .ı

0
n/
in�1˛0n.ı

0
0/
in
�
;

where, just as above,

˛0j D rj ı j̨ � .�1/
j j̨ j

j̨ ı rjC1 .with rnC1 D r0/;

and
ı0j D Œrj ; ıi � D rj ı ıj C ıj ı rj :

Note that the sum in this formula is finite, since �j
Q=k
D 0 for j > dim.Q/.

Summarizing, we have a commutative diagram

HH.mf .Q; f //

"Q;f

((

//HH II .mf .Q; f //
' //HH II .qmf .Q; f //

' .F;ˇ/�

��

HH II.qmf .Q; f /0/

"0'

��

HH II.Q; 0;�f /
'oo

"Q

'

vv

.�Q=k ;�df /:

(3.8)
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Notice that this implies that "Q;f is independent, up to natural isomorphism in the derived
category, of the choices of connections. In particular, the map on homology induced by
"Q;f is independent of such choices.

We include the following result, although it will not be needed in this paper.

Proposition 3.9. If the only critical value of f W Spec.Q/! A1 is 0, "Q;f is a quasi-
isomorphism.

Proof. By [9, Section 4.8, Corollary A], the canonical map

HH
�
mf .Q; f /

�
! HH II

�
mf .Q; f /

�
is a quasi-isomorphism. The statement therefore follows from the commutativity of dia-
gram (3.8).

3.2.4. The HKR map with supports. We now define the HKR map for a general closed
subset Z of Spec.Q/. Composing "Q;f with the natural map induced by the inclusion
mf Z.Q; f / � mf .Q; f / gives a map

HH
�
mf Z.Q; f /

�
!
�
��Q=k ;�df

�
: (3.10)

By Proposition 3.2 (1) and (3.4), if X; Y 2 mf Z.Q; f /, Hom.X; Y / is a complex of Q-
modules whose support is contained in Z. (When f is a nonzero-divisor, this complex
is in fact supported on Z \ Sing.Q=f /.) It follows that each row of the bicomplex used
to define HH.mf Z.Q; f // is supported on Z. Since HH.mf Z.Q; f // is the direct
sum totalization of this bicomplex, we have that HH.mf Z.Q; f // is supported on Z.
Adjointness thus gives a canonical isomorphism

"Q;f;Z W HH
�
mf Z.Q; f /

�
! R�Z

�
��Q=k ;�df

�
in D.Q/. In other words, "Q;f;Z is represented in D.Q/ by the diagram

HH
�
mf Z.Q; f /

� (3.6)
 ���
'

R�ZHH
�
mf Z.Q; f /

� (3.10)
���! R�Z

�
��Q=k ;�df

�
:

We will sometimes refer to "Q;f;Z as just ", if no confusion can arise.

3.3. Relationship between the HKR map and the map If .0/

When Q D CŒx1; : : : ; xn� and m D .x1; : : : ; xn/ is the only singular point of the map
f W AnC ! A1C , Shklyarov defines in [16, Section 4.1] an isomorphism

If .0/ W HH�
�
mf .Q; f /

� Š
�! H�

�
��Q=k ;�df

�
as follows. Let Af be the endomorphism dga of the following matrix factorization .P; ıP /
which represents the residue field Q=m in the singularity category of Q=f : choose poly-
nomials y1; : : : ; yn 2 Q so that f D

P
i xiyi , let P be the Z=2-graded exterior algebra

over Q on generators e1; : : : ; en, and define a differential on P given by

ıP D
X
i

xie
�
i C yiei :
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Here, e�i is the Q-linear derivation of P determined by e�i .ej / D ıij . By a theorem of
Dyckerhoff [5, Theorem 5.2(3)], the inclusion

� W Af ,! mf .Q; f /

is a Morita equivalence. Since Hochschild homology is Morita invariant, the induced map

�� W HH�.Af /
Š
�! HH�

�
mf .Q; f /

�
is an isomorphism.

From now on, we identify P withQ˝C ƒ, whereƒDƒC.e1; : : : ; en/, and Af with
Q˝C EndC.ƒ/. Shklyarov defines a quasi-isomorphism

˛ W HH.Af /
'
�!

�
��Q=k ;�df

�
as the composition

HH.Af /
exp.�1ŒıP �/
��������! HH II .Af /

"0

�!
�
��Q=k ;�df

�
;

where

"0
�
q0 ˝ ˛0Œq1 ˝ ˛1j � � � jqn ˝ ˛n�

�
D
.�1/

P
i odd j˛i j

nŠ
str.˛0 � � �˛n/q0dq1 � � � dqn:

Finally, If .0/ is the composition

HH�
�
mf .Q; f /

� ��1�
��! HH�.Af /

˛
�! H�

�
��Q=k ;�df

�
:

Lemma 3.11. The map "0 coincides with the map "Q;f restricted toHH.End.P // for the
choice of connection rP defined as rP .q ˝ ˛/ D dq ˝ ˛. Thus, If .0/ D "Q;f .

Proof. We have

"Q;f
�
q0 ˝ ˛0Œq1 ˝ ˛1j � � � jqn ˝ ˛n�

�
D

1

nŠ
str
�
.q0 ˝ ˛0/.dq1 ˝ ˛1/ � � � .dqn ˝ ˛n/

�
D
.�1/

P
i i j˛i j

nŠ
str.˛0 � � �˛n/q0dq1 � � � dqn

D
.�1/

P
i odd j˛i j

nŠ
str.˛0 � � �˛n/q0dq1 � � � dqn:

3.4. Compatibility of the HKR map with taking duals

Shklyarov proves in [15, Proposition 3.2] that, for any differential Z=2-graded algebra A,
there is a canonical isomorphism of complexes

ˆ W HH.A/
Š
�! HH.Aop/ (3.12)
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given by

a0Œa1j � � � jan� 7! .�1/nC
P
1�i<j�n.jai j�1/.jaj j�1/a

op
0

�
aop
n j � � � ja

op
1

�
;

where, for a 2 A, aop denotes a regarded as an element of Aop. The same formula gives
an isomorphism

HH.C/
Š
�! HH.Cop/

for any curved differential �-graded category C , where � 2 ¹Z;Z=2º.
Composing ˆ and D, where D is the dualization functor defined in Section 3.1, we

obtain the isomorphism of complexes

‰ W HH
�
mf Z.Q; f /

� Š
�! HH

�
mf Z.Q;�f /

�
(3.13)

given explicitly by

‰
�
a0Œa1j � � � jan�

�
D .�1/nC

P
1�i<j�n.jai j�1/.jaj j�1/a�0 Œa

�
nj � � � ja

�
1 �:

Lemma 3.14. The diagram

HH
�
mf Z.Q; f /

�
‰

��

"Q;f;Z
// R�Z

�
��
Q=k

;�df
�



��

HH
�
mf Z.Q;�f /

� "Q;�f;Z
// R�Z

�
��
Q=k

; df
�

commutes in D.Q/, where  is R�Z applied to the map whose restriction to �j
Q=k

is
multiplication by .�1/j for all j .

Proof. The map "Q;f;Z factors as

HH
�
mf Z.Q; f /

�
! R�ZHH

�
mf .Q; f /

� "Q;f
���!

�
��Q=k ;�df

�
;

where the first map is the canonical one. "Q;�f;Z factors similarly. Since the diagram

HH
�
mf Z.Q; f /

�
‰

��

// R�ZHH
�
mf .Q; f /

�
R�Z.‰/

��

HH
�
mf Z.Q;�f /

�
// R�ZHH

�
mf .Q;�f /

�
evidently commutes, we may assume Z D Spec.Q/.

Recall from (3.8) that "Q;f fits into a commutative diagram

HH
�
mf .Q; f /

� � //

"Q;f
))

HH II
�
qmf .Q; f /0

�
"0'

��

HH II .Q; 0;�f /
can
'
oo

"Q

'

uu�
��
Q=k

;�df
�
;

(3.15)
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where

�
�
˛0Œ˛1j � � � j˛n�

�
D

X
i0;:::;in�0

.�1/i0C���Cin˛0
�
ı
i0
1 j˛1jı

i1
2 j � � � j˛njı

in
0

�
:

Here, ıi stands for

i‚…„ƒ
ıj � � � jı.

The map ‰ extends to a map

‰ W HH II
�
qmf .Q; f /0

�
! HH II

�
qmf .Q;�f /0

�
using the same formula, and this map in turn restricts to a map

‰ W HH II .Q; 0;�f /! HH II .Q; 0; f /

given by
‰
�
q0Œq1j � � � jqn�

�
D .�1/nC.

n
2/q0Œqnj � � � jq1�:

We claim that the diagram

HH
�
mf .Q; f /

� � //

‰

��

HH II
�
qmf .Q; f /0

�
‰

��

HH II .Q; 0;�f /
can
'

oo

‰

��

HH
�
mf .Q;�f /

� � // HH II
�
qmf .Q;�f /0

�
HH II .Q; 0; f /

can
'

oo

(3.16)

commutes. This is evident for the right square. As for the left, the element ˛0Œ˛1j � � � j˛n�
is mapped via ‰ ı � toX

i0;:::;in�0

.�1/I .�1/nCIC
P
1�i<j�n.j˛i j�1/.j j̨ j�1/˛�0

��
ı�0
�in
j˛�n j � � � j

�
ı�2
�i1
j˛�1 j

�
ı�1
�i0�

;

where I D i0 C � � � C in. The sign is correct since jıi j � 1 is even for all i . The map � ı‰
sends ˛0Œ˛1j � � � j˛n� toX
j0;:::;jn�0

.�1/J .�1/nC
P
1�i<j�n.j˛i j�1/.j j̨ j�1/˛�0

��
�ı�0

�j0
j˛�n j � � � j

�
�ı�2

�jn�1
j˛�1 j

�
�ı

jn
1

���
;

where J D j0 C � � � C jn. The reason for the minus sign in .�ı�j /
i is that the differential

of .P; d/� is �d�. Since these two expressions are equal, the left square commutes.
Using the commutativity of the diagrams (3.15) and (3.16), it suffices to prove that the

square

HH II .Q; 0;�f /
‰ //

"Q

��

HH II .Q; 0; f /

"Q

���
��
Q=k

;�df
� 

//
�
��
Q=k

; df
�
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commutes. This holds since ��
Q=k

is graded commutative, so that

"Q
�
q0Œq1j � � � jqn�

�
D
.�1/n

nŠ
q0dq1 � � � dqn

D
.�1/nC.

n
2/

nŠ
q0dqn � � � dq1

D "Q‰
�
q0Œq1j � � � jqn�

�
:

3.5. Multiplicativity of the HKR map

Let .Q; f; Z/ and .R; g; W / be triples consisting of an essentially smooth k-algebra,
an element of the algebra, and a closed subset of the spectrum of the algebra. The tensor
product of matrix factorizations (Section 3.1), along with the Künneth map for Hochschild
homology of dg-categories (Section 2.4), gives a pairing

� Q?� W HH
�
mf Z.Q; f /

�
˝k HH

�
mf W .R; g/

�
! HH

�
mf Z�W .Q˝k R; f ˝ 1C 1˝ g/

�
: (3.17)

Write f C g for the element f ˝ 1C 1˝ g 2 Q˝k R. Multiplication in ��
Q˝kR=k

defines a pairing of complexes of Q˝k R-modules

� ^ � W
�
��Q=k ;�df

�
˝k

�
��R=k ;�dg

�
!
�
��Q˝kR=k ;�df � dg

�
:

We compose this with the canonical maps R�Z.��Q=k ; �df / ! .��
Q=k

; �df / and
R�W .��R=k ;�dg/! .��

R=k
;�dg/ to obtain the map

R�Z
�
��Q=k ;�df

�
˝k R�W

�
��R=k ;�dg

�
!
�
��Q˝kR=k ;�df � dg

�
:

The source of this map is supported on the closed subset Z � W of Spec.Q ˝k R/ D
Spec.Q/ �k Spec.R/. Thus, by adjointness, we obtain a pairing

� ^� W R�Z
�
��Q=k ;�df

�
˝Q R�W

�
��R=k ;�dg

�
! R�Z�W

�
��Q˝kR=k ;�df � dg

�
: (3.18)

A key fact is that the pairings (3.17) and (3.18) are compatible via the HKR maps.

Proposition 3.19. The diagram

HH
�
mf Z.Q; f /

�
˝k HH

�
mf W .R; g/

� "Q;f;Z˝"R;f;W
//

�Q?�

��

R�Z
�
��
Q=k

;�df
�
˝k R�W

�
��
R=k

;�dg
�

^

��

HH
�
mf Z�W .Q˝k R; f C g/

� "Q˝kR;fCg;Z�W // R�Z�W
�
��
Q˝kR=k

;�df � dg
�

in D.Q˝k R/ commutes.
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Proof. It is enough to show the diagrams

HH
�
mf Z.Q; f /

�
˝kHH

�
mf W .R; g/

�
//

�Q?�

��

R�ZHH
�
mf .Q; f /

�
˝kR�WHH

�
mf .R; g/

�
�Q?�

��

HH
�
mf Z�W .Q˝k R; f C g/

�
// R�Z�WHH

�
mf .Q˝k R; f C g/

�
(3.20)

and

R�ZHH
�
mf .Q; f /

�
˝kR�WHH

�
mf .R; g/

�
�Q?�

��

//

�Q?�

��

R�Z
�
��
Q=k

;�df
�
˝kR�W

�
��
R=k

;�dg
�

^

��

R�Z�WHH
�
mf .Q˝k R; f C g/

�
// R�Z�W

�
��
Q˝kR=k

;�df � dg
�

(3.21)
commute. Here, the right-most vertical map in (3.20) (which coincides with the left-most
vertical map in (3.21)) is defined in a manner similar to the map (3.18), and the horizontal
maps in (3.20) are the canonical ones. The commutativity of (3.20) is clear. As for (3.21),
it suffices to show the diagram

HH
�
mf .Q; f /

�
˝k HH

�
mf .R; g/

�
�Q?�

��

"Q;f˝"R;g
//

�Q?�

��

�
��
Q=k

;�df
�
˝k

�
��
R=k

;�dg
�

^

��

HH
�
mf .Q˝k R; f C g/

� "Q˝kR;fCg //
�
��
Q˝kR=k

;�df � dg
�

in D.Q ˝k R/ commutes. Factoring the HKR maps as in diagram (3.8), it suffices to
show the squares

HH
�
mf .Q; f /

�
˝k HH

�
mf .R; g/

�
�Q?�

��

// HH II
�
qmf 0.Q; f /

�
˝k HH

II
�
qmf 0.R; g/

�
�Q?�

��

HH
�
mf .Q˝k R; f C g/

�
// HH II

�
qmf 0.Q˝k R; f C g/

�
(3.22)

and

HH II
�
qmf .Q; f /

�
˝k HH

II
�
qmf .R; g/

� "0˝"0
//

�Q?�

��

�
��
Q=k

;�df
�
˝k

�
��
R=k

;�dg
�

^

��

HH II
�
qmf .Q˝k R; f C g/

� "0 //
�
��
Q˝kR=k

;�df � dg
� (3.23)

commute. It follows immediately from Lemma 2.7 that (3.22) commutes. The square

HH II .Q;�f /˝k HH
II .R;�g/

' //

�Q?�

��

HH II
�
qmf .Q; f /

�
˝k HH

II
�
qmf .R; g/

�
�Q?�

��

HH II .Q˝k R;�f � g/
' // HH II

�
qmf .Q˝k R; f C g/

� (3.24)
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evidently commutes, and concatenating this diagram with (3.23) gives a commutative dia-
gram. It follows that (3.23) commutes.

For an essentially smooth k-algebra Q, any element f 2 Q, and any pair of closed
subsets Z and W of Spec.Q/, there is a pairing

HH
�
mf Z.Q; f /

�
�HH

�
mf W .Q;�f /

� ?
�! HH

�
mf Z\W .Q; 0/

�
(3.25)

defined by composing the Künneth map

HH
�
mf Z.Q; f /

�
�HH

�
mf W .Q;�f /

�
Q?
�! HH

�
mf Z�W .Q˝k Q;f ˝ 1 � 1˝ f /

�
with the map

HH
�
mf Z�W .Q˝k Q;f ˝ 1 � 1˝ f /

�
! HH

�
mf Z\W .Q; 0/

�
induced by the multiplication map Q ˝ Q ! Q. The previous result, along with the
functoriality of the HKR map, yields the following corollary.

Corollary 3.26. The diagram

HH
�
mf Z.Q; f /

�
˝k HH

�
mf W .Q;�f /

� "Q;f;Z˝"Q;�f;Z
//

��

R�Z
�
��
Q=k

;�df
�
˝k R�W

�
��
Q=k

; df
�

^

��

HH
�
mf Z\W .Q; 0/

� "Q;0;Z\W
// R�Z\W��Q=k

in D.Q˝k Q/ commutes.

We will be especially interested in the case where Z \W D ¹mº.

4. Proof of Shklyarov’s conjecture

Throughout this section, we assume

� k is a field,

� Q is a regular k-algebra, and

� m is a k-rational maximal ideal of Q; i.e. the canonical map k ! Q=m is an isomor-
phism.

Let us review our progress on the proof of Conjecture 1.4. Recall from the introduction
that, to prove the conjecture, it suffices to show that diagram (1.9) commutes, the compo-
sition along the left side of this diagram computes the pairing �mf , and the composition
along the right side computes the residue pairing. So far, we have shown the two interior
squares of (1.9) commute: this follows from Lemma 3.11, Lemma 3.14, and Corollary
3.26. In this section, we show the left side of the diagram gives the canonical pairing �mf
(Lemma 4.23), the right side of the diagram gives the residue pairing (Proposition 4.34),
and the bottom triangle commutes (Theorem 4.36).
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4.1. Computing HH.mf m.Q; 0//

We carry out a calculation of the Hochschild homology of the dg-categorymf m.Q;0/ that
we will use repeatedly throughout the rest of the paper. Let n denote the Krull dimension
of Qm. We recall that a sequence x1; : : : ; xn 2 m is called a system of parameters if
x1; : : : ; xn generate an m-primary ideal, and a system of parameters is called regular if
the elements generate m.

Fix a regular system of parameters x1; : : : ;xn forQm, and setKDKosQm.x1; : : : ;xn/

2 mf m.Qm; 0/, the Z=2-folded Koszul complex on the xi ’s. Explicitly, K is the dif-
ferential Z=2-graded algebra whose underlying algebra is the exterior algebra over Qm

generated by e1; : : : ; en with dK.ei / D xi . The differential Z=2-graded Qm-algebra
E WD Endmfm.Qm;0/.K/ is generated by odd degree elements e1; : : : ; en, e�1 ; : : : ; e

�
n satis-

fying e2i D 0D .e
�
i /
2, Œei ; ej �D 0D Œe�i ; e

�
j �, and Œei ; e�j �D ıij ; and the differential dE is

determined by the equations dE.ei / D xi and dE.e�i / D 0. Let ƒ be the dg-k-subalgebra
of E generated by the e�i . So, ƒ is an exterior algebra over k on n generators, with triv-
ial differential. The inclusion ƒ � E is a quasi-isomorphism of differential Z=2-graded
k-algebras. Since ƒ is graded commutative, HH�.ƒ/ is a k-algebra under the shuffle
product, and, by a standard calculation, there is an isomorphism

ƒ˝k kŒy1; : : : ; yn�
Š
�! HH�.ƒ/; (4.1)

of k-algebras, where e�i ˝ 1 7! e�i Œ �, and 1˝ yi 7! 1Œe�i �. Here, and throughout the paper,
we use the notation ˛0Œ � to denote an element of a Hochschild complex of the form
˛0Œ˛1j � � � j˛n� with n D 0.

Lemma 4.2. The canonical morphisms

E ,! mf m.Qm; 0/ (4.3)

and
mf m.Q; 0/! mf m.Qm; 0/ (4.4)

of dg-categories are Morita equivalences. In particular, one has canonical quasi-
isomorphisms

HH.ƒ/
'
�! HH

�
mf m.Qm; 0/

� '
 � HH

�
mf m.Q; 0/

�
: (4.5)

Proof. To prove (4.3) is a Morita equivalence, we prove the thick closure of K in the
homotopy category Œmf m.Qm; 0/� is all of Œmf m.Qm; 0/�. Let D denote the derived cat-
egory of all Z=2-complexes of finitely generated Qm-modules whose homology groups
are finite dimensional over k. Since Qm is regular, it follows from [1, Proposition 3.4]
that the canonical functor �

mf m.Qm; 0/
�
! D

is an equivalence. It therefore suffices to show Thick.K/DD ; in fact, we need only show
every object in D with free components is in Thick.K/.
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Let X be an object of D with free components. We may assume that X is minimal,

i.e., that k ˝Qm X is a direct sum of copies of k and †k. The isomorphism K
Š
�! k in D

induces an isomorphism

K ˝Qm X
Š
�! k ˝Qm X;

and therefore K ˝Qm X 2 Thick.k/. It thus suffices to prove X 2 Thick.K ˝Qm X/.
Since

K ˝Qm X Š KosQm.x1/˝Qm � � � ˝Qm KosQm.xn/˝Qm X;

it suffices to show that, for every Y 2 D whose components are free Qm-modules, and
every x 2 m n ¹0º, Y 2 Thick.Y=xY /. Using induction and the exact sequence

0! Y=xn�1Y
x
�! Y=xnY ! Y=xY ! 0;

we get Y=xnY 2 Thick.Y=xY / for all n. Observing that EndD.Y /Œ1=x�D 0, choose n�
0 such that multiplication by xn on Y determines the zero map in D . The distinguished
triangle

Y
xn

��! Y ! Y=xn ! †Y

in D therefore splits, implying that Y is a summand of Y=xn. Thus, Y 2 Thick.Y=xn/ �
Thick.Y=xY /.

As for (4.4), the functor Œmf m.Q; 0/� ! Œmf m.Qm; 0/� is fully faithful, since
HomŒmfm.Q;0/�.X; Y / is supported in ¹mº for any X; Y . It follows that the induced map�

mf m.Q; 0/
�idem

!
�
mf m.Qm; 0/

�idem (4.6)

on idempotent completions is fully faithful, so we need only to show that (4.6) is essen-
tially surjective. By the above argument, it suffices to show thatK is in the essential image
of (4.6). Choose a Q-free resolution F of k; Fm is homotopy equivalent to the Koszul
complex on the xi ’s, and so the Z=2-folding of Fm is isomorphic toK in Œmf m.Qm; 0/�.

Remark 4.7. Let bQ denote the m-adic completion of Q. Letting bQ play the role of Q in
Lemma 4.2 implies that the inclusion

End
mfm.bQ;0/ �K ˝Qm

bQ� ,! mf m.bQ; 0/
is a Morita equivalence. The same proof that shows the map (4.4) in Lemma 4.2 is a Morita
equivalence shows the canonical map

mf m.Q; 0/! mf m.bQ; 0/
is a Morita equivalence.
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4.2. The trace map

We define an even degree map

trace W HH�
�
mf m.Q; 0/

�
! k

of Z=2-graded k-vector spaces, with k concentrated in even degree, as follows. Let
PerfZ=2.k/ denote the dg-category of Z=2-graded complexes of (not necessarily finitely
dimensional) k-vector spaces having finite dimensional homology. There is a dg-functor
mf m.Q; 0/! PerfZ=2.k/ induced by restriction of scalars along the structural map k!
Q that induces a map

u W HH�
�
mf m.Q; 0/

�
! HH�

�
PerfZ=2.k/

�
;

and there is a canonical isomorphism

v W k
Š
�! HH�

�
PerfZ=2.k/

�
given by a 7! aŒ �. Here, k is considered as a Z=2-graded complex concentrated in even
degree, and, on the right, a is regarded as an endomorphism of this complex. We define

trace WD v�1u:

In the rest of this subsection, we establish several technical properties of the trace map
that we will need later on.

Given an object .P;ıP/2mf m.Q;0/, there is a canonical map of complexes End.P/!
HH.mf m.Q; 0// given by ˛ 7! ˛Œ � and hence an induced map

H�
�
End.P /

�
! HH�

�
mf m.Q; 0/

�
: (4.8)

Proposition 4.9. If .P; ıP / 2 mf m.Q; 0/, and ˛ is an even degree endomorphism of P ,
the composition

H0
�
End.P /

� (4.8)
���! HH0

�
mf m.Q; 0/

� trace
���! k

sends ˛ to the supertrace of the endomorphism of H�.P / induced by ˛:

trace
�
˛Œ �
�
D str

�
H�.˛/ W H�.P /! H�.P /

�
D tr

�
H0.˛/ W H0.P /! H0.P /

�
� tr

�
H1.˛/ W H1.P /! H1.P /

�
:

In particular,
trace

�
idP Œ �

�
D dimkH0.P / � dimkH1.P /:

Proof. Let VectZ/2.k/ denote the subcategory of PerfZ=2.k/ spanned by finite-dimensional
Z=2-graded vector spaces with trivial differential. It is well known that the inclusion
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VectZ/2.k/ ,! PerfZ=2.k/ induces a quasi-isomorphism on Hochschild homology. Com-
posing the map End.H�.P //! HH�.VectZ=2.k// given by ˛ 7! ˛Œ � with the canonical
map H�.End.P //! End.H�.P // gives a map

H�
�
End.P /

�
! HH�

�
VectZ=2.k/

�
: (4.10)

We first show that the square

H�
�
End.P /

�
(4.10)
��

(4.8)
// HH�

�
mf m.Q; 0/

�
u

��

HH�
�
VectZ=2.k/

� Š // HH�
�
PerfZ=2.k/

� (4.11)

commutes. Let ˇ be an even degree cycle in End.P /, and let H�.ˇ/ denote the induced
endomorphism of H�.P /. We must show the cycles ˇŒ � and H�.ˇ/Œ � coincide in
HH�.PerfZ=2.k//. To see this, choose even degree k-linear chain maps

� W H�.P /! P; � W P ! H�.P /

such that

� � ı � D idH�.P /, and

� � ı � is homotopic to idP via a (Z=2-graded) homotopy h, i.e.,

� ı � � idP D ıP ı hC h ı ıP :

Applying the Hochschild differential b to

�Œˇ ı �� 2 Hom
�
P;H�.P /

�
˝ Hom

�
H�.P /; P

�
� HH

�
PerfZ=2.k/

�
;

we get

b
�
�Œˇ ı ��

�
D .b2 C b1/

�
�Œˇ ı ��

�
D b2

�
�Œˇ ı ��

�
D .� ı ˇ ı �/Œ � � .� ı � ı ˇ/Œ �

D H�.ˇ/Œ � � .� ı � ı ˇ/Œ �:

Next, observe that

.b2 C b1/
�
.h ı ˇ/Œ �

�
D b1

�
.h ı ˇ/Œ �

�
D .� ı � ı ˇ � ˇ/Œ �:

It follows that diagram (4.11) commutes.
The isomorphism

v W k
Š
�! HH�

�
PerfZ=2.k/

�
factors as

k
Š
�! HH�.k/

Š
�! HH�

�
VectZ=2.k/

� Š
�! HH�

�
PerfZ=2.k/

�
;
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where each map is the evident canonical one. There is a chain map HH.VectZ=2.k//!
HH.k/ given by the generalized trace map described in [14, Section 2.3.1] and an evident
isomorphism HH�.k/

Š
�! k. It follows from [14, Lemma 2.12] that composing these

maps gives the inverse of

k
Š
�! HH�.k/

Š
�! HH�

�
VectZ=2.k/

�
:

As discussed in [14, P. 872], the generalized trace sends a class of the form ˛0Œ � to
str.˛0/Œ �. The statement now follows from the commutativity of (4.11).

Remark 4.12. If Z and W are closed subsets of Sing.Q=f / that satisfy Z \W D ¹mº,
then, from (3.25), we obtain the pairing

HH�
�
mf Z.Q; f /

�
�HH�

�
mf W .Q;�f /

� ?
�! HH�

�
mf m.Q; 0/

�
:

By Proposition 4.9, given X 2 mf Z.Q; f / and Y 2 mf W .Q;�f /, the composition

H�
�
End.X/

�
�H�

�
End.Y /

�
! HH�

�
mf Z.Q; f /

�
�HH�

�
mf W .Q;�f /

�
?
�! HH�

�
mf m.Q; 0/

� trace
���! k

sends a pair of endomorphisms .˛; ˇ/ to tr.H0.˛ ˝ ˇ//� tr.H1.˛ ˝ ˇ//. In particular, it
sends .idX ; idY / to

�.X; Y / WD dimkH0.X ˝ Y / � dimkH1.X ˝ Y /:

Recall from Subsection 4.1 the folded Koszul complex K and the exterior algebra
ƒ � Endmfm.Qm;0/.K/. Denote by � W ƒ! k the augmentation map that sends e�i to 0.

Proposition 4.13. The composition

HH�.ƒ/
(4.5)
���! HH�

�
mf m.Qm; 0/

� trace
���! k (4.14)

coincides with
HH�.ƒ/

HH�.�/
������! HH�.k/

Š
�! k; (4.15)

where the second map in (4.15) is the canonical isomorphism. In particular, if
˛0Œ˛1j � � � j˛n� is a cycle in HH.ƒ/, where n > 0, the map (4.14) sends ˛0Œ˛1j � � � j˛n�
to 0.

Proof. If C is a Z-graded complex, denote its Z=2-folding by Fold.C /. Similarly, given
a differential Z-graded category C , define a differential Z=2-graded category Fold.C/
with the same objects as C and morphism complexes given by taking the Z=2-foldings
of the morphism complexes of C . In this proof, we use the notation HHZ.�/ (resp.,
HHZ=2.�/) to denote the Hochschild complex of a differential Z-graded (resp., Z=2-
graded) category. We observe that, if C is a differential Z-graded category,

Fold
�
HHZ

� .C/
�
D HHZ=2

�

�
Fold.C/

�
: (4.16)
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Let Perfm.Q/ denote the dg-category of perfect complexes ofQ-modules with support
in ¹mº, and let PerfZ.k/ denote the differential Z-graded category of complexes of (not
necessarily finite dimensional) k-vector spaces with finite dimensional total homology. As
in the Z=2-graded case, there is an isomorphism

ev W k Š
�! HHZ

�

�
PerfZ.k/

�
;

where k is concentrated in degree 0, given by a 7! aŒ �.
Let eK denote the Z-graded Koszul complex on the regular system of parameters

x1; : : : ; xn for Qm chosen in Subsection 4.1, so that the Z=2-folding of eK is K. Sim-
ilarly, denote by eƒ the subalgebra (with trivial differential) of End.eK/, defined in the
same way as ƒ, so that the Z=2-folding of eƒ is ƒ. Notice that every ˛i appearing in our
cycle ˛0Œ˛1j � � � j˛n� can be considered as an element of eƒ.

We consider the composition

HHZ
� .
eƒ/! HHZ

�

�
End.eK/�! HHZ

�

�
Perfm.Q/

�
! HHZ

�

�
PerfZ.k/

� .ev/�1
����! k (4.17)

of maps of Z-graded k-vector spaces. We claim (4.17) coincides with the composition

HHZ
� .
eƒ/! HHZ

� .k/
Š
�! k; (4.18)

where the first map is induced by the augmentation map eƒ! k. We need only check this
in degree 0. HHZ

0 .
eƒ/ is a 1-dimensional k-vector space generated by idK Œ �. The map

(4.18) sends idK Œ � to 1, and, by (the Z-graded version of) Lemma 4.9, the map (4.17)
does as well.

Applying Fold.�/ to (4.17), and using (4.16), we arrive at a composition

HHZ=2
� .ƒ/! HHZ=2

�

�
Fold

�
Perfm.Q/

��
! k

of maps of Z=2-graded complexes of k-vector spaces, which may be augmented to a
commutative diagram

HH
Z=2
� .ƒ/ //

(4.5)
))

HH
Z=2
�

�
Fold

�
Perfm.Q/

��
��

// k

HH
Z=2
�

�
mf m.Q; 0/

�
:

trace

77

(4.19)

On the other hand, applying Fold.�/ to (4.18), and once again applying (4.16), we get the
map (4.15).

Lemma 4.20. Suppose Q and Q0 are regular k-algebras, and m � Q, m0 � Q0 are k-
rational maximal ideals. Let g W Q ! Q0 be a k-algebra map such that g�1.m0/ D m,
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the induced map Qm ! Q0m0 is flat, and g.m/Q0m0 D m0Q0m0 . Then g induces a quasi-
isomorphism

g� W HH
�
mf m.Qm; 0/

� '
�! HH

�
mf m0.Q0m0 ; 0/

�
;

and
traceQ0

m0
ıg� D traceQm :

Proof. Let bQ (resp., cQ0) denote the m-adic (resp., m0-adic) completion of Q (resp., Q0).

The assumptions on g imply that it induces an isomorphism bQ Š
�!cQ0. The first assertion

follows since the canonical maps

HH�
�
mf m.Qm; 0/

�
! HH�

�
mf m.bQ; 0/�

and
HH�

�
mf m0.Q0m0 ; 0/

�
! HH�

�
mf m.cQ0; 0/�

are isomorphisms by Remark 4.7.
As for the second assertion, let n D dim.Qm/, choose a regular system of parameters

x1; : : : ; xn of Qm, and construct the exterior algebra ƒ using this system of parameters,
as in Subsection 4.1. The hypotheses ensure that g.x1/; : : : ; g.xn/ form a regular sys-
tem of parameters for Q0m0 , and we let ƒ0 be the associated exterior algebra. We have a
commutative diagram

HH�.ƒ/

Š

��

Š // HH�.ƒ
0/

Š

��

HH�
�
mf m.Qm; 0/

�
// HH�

�
mf m0.Q0m0 ; 0/

�
;

where the vertical isomorphisms are as in Lemma 4.2. By Proposition 4.13, it now suffices
to observe that the composition

HH�.ƒ/
Š
�! HH�.ƒ

0/! k;

where the second map is induced by the augmentation ƒ0 ! k, coincides with the map
induced by the augmentation ƒ! k.

Lemma 4.21. SupposeQ,Q0 are essentially smooth k-algebras and m0 �Q0, m00 �Q00

are k-rational maximal ideals. Set Q D Q0 ˝k Q00 and m D m0 ˝k Q
00 CQ0 ˝k m00.

Then Q is an essentially smooth k-algebra, m is a k-rational maximal ideal of Q, and
the diagram

HH�
�
mf m0.Q0m0 ; 0/

�
˝k HH�

�
mf m00.Q00m00 ; 0/

� Q? //

trace˝ trace
��

HH�
�
mf m.Qm; 0/

�
trace
��

k ˝k k
Š // k

commutes.
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Proof. The first two assertions are standard facts. As for the final one, let n0 and n00 denote
the dimensions of Q0m0 and Q00m00 , resp. Choose regular systems of parameters x1; : : : ; xn0
and y1; : : : ; yn00 of Q0m0 and Q00m00 , resp., so that x1; : : : ; xn0 ; y1; : : : ; yn00 form a regular
system of parameters ofQm. As in the proof of Lemma 4.20, letƒ;ƒ0, andƒ00 be exterior
algebras associated to these systems of parameters, as constructed in Subsection 4.1. By
Lemma 2.7, we have a commutative square

HH�.ƒ
0/˝k HH�.ƒ

00/
Š //

Q?

��

HH�
�
mf m0.Q0m0 ; 0/

�
˝k HH�

�
mf m00.Q00m00 ; 0/

�
Q?

��

HH�.ƒ/
Š // HH�

�
mf m.Qm; 0/

�
;

where the horizontal isomorphisms are as in Lemma 4.2. By Proposition 4.13, it now
suffices to observe that the composition

ƒ
Š
�! ƒ0 ˝k ƒ

00
! k;

where the second map is the tensor product of the augmentations, coincides with the aug-
mentation ƒ! k.

4.3. The canonical pairing on Hochschild homology

A k-linear differential Z=2-graded category C is called proper if, for all pairs of objects
.X; Y /, dimkHi HomC .X; Y / <1 for i D 0; 1.

Definition 4.22. For a proper differential Z=2-graded category C , the canonical pairing
for Hochschild homology is the map

�C .�;�/ W HH�.C/˝k HH�.C/! k

given by the composition

HH�.C/˝k HH�.C/
id˝ˆ
����! HH�.C/˝k HH�.C

op/
Q?
�! HH�.C ˝k Cop/

HH..X;Y /7!HomC .Y;X//
�����������������! HH�

�
PerfZ=2.k/

� Š
 �� k;

where ˆ is the map defined in (3.12).

When Sing.Q=f / D ¹mº, mf .Q; f / is proper, so we have the canonical pairing

�mf W HH�
�
mf .Q; f /

�
˝k HH�

�
mf .Q; f /

�
! k:

Lemma 4.23. When Sing.Q=f / D ¹mº, �mf coincides with the pairing given by the
composition

HH�
�
mf .Q; f /

�
˝k HH�

�
mf .Q; f /

�
id˝‰
����! HH�

�
mf .Q; f /

�
˝k HH�

�
mf .Q;�f /

� ?
�! HH�

�
mf m.Q; 0/

� trace
���! k;

where ‰ is defined in (3.13).
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Proof. By Lemma 2.7, there is a commutative square

HH�
�
mf .Q; f /

�
˝k HH�

�
mf .Q; f /op

� HH.id/˝HH.D/
//

�Q?�

��

HH�
�
mf .Q; f /

�
˝k HH�

�
mf .Q;�f /

�
�Q?�

��

HH�
�
mf .Q; f /˝k mf .Q; f /

op
� HH.id˝D/

// HH�
�
mf .Q; f /˝k mf .Q;�f /

�
;

where D is the dg-functor defined in Subsection 3.4. Therefore, it suffices to show the
composition

HH�
�
mf .Q; f /˝k mf .Q; f /

op� 1˝D
����! HH�

�
mf .Q; f /˝k mf .Q;�f /

�
can
��! HH�

�
mf m.Q; 0/

�
Forget
����! HH�

�
PerfZ=2.k/

�
coincides with the map induced by the dg-functor

mf .Q; f /˝k mf .Q; f /
op
! PerfZ=2.k/

given by .X; Y / 7! Hommf .Y;X/, and this is clear.

4.4. The residue map

Assume that Q is an essentially smooth k-algebra and m is a k-rational maximal ideal
of Q. Let n be the Krull dimension of Qm. In this subsection, we recall the definition of
Grothendieck’s residue map

resG W Hn
m

�
�nQm=k

�
! k

and some of its properties. Recall from Subsection 3.2 that for any system of parameters
x1; : : : ; xn of Qm, we have a canonical isomorphism

Hn
m

�
�nQm=k

�
Š Hn

�
C.x1; : : : ; xn/˝Qm �nQm=k

�
: (4.24)

We will temporarily use Z-gradings and index things cohomologically, using superscripts.
In particular, ��

Qm=k
is a graded Qm-module with �j

Qm=k
declared to have cohomologi-

cal degree j .
We introduce some notation that will be convenient when computing with the aug-

mented Čech complex. First form the exterior algebra overQmŒ1=x1; : : : ; 1=xn� on (coho-
mological) degree 1 generators ˛1; : : : ; ˛n, and make it a complex with differential given
as left multiplication by the degree 1 element

P
i ˛i . We identify C.x1; : : : ; xn/ as the

subcomplex whose degree j component isM
i1<���<ij

Qm

�
1

xi1 � � � xij

�
˛i1 � � �˛ij :
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Define

E.x1; : : : ; xn/ WD
QmŒ1=x1; : : : ; 1=xn�P

j QmŒ1=x1; : : : ; b1=xj ; : : : ; 1=xn�
:

Since x1; : : : ; xn is a regular sequence, there is an isomorphism

E.x1; : : : ; xn/
Š
�! Hn

�
C.x1; : : : ; xn/

�
sending g to g˛1 � � �˛n for g 2 QmŒ1=x1; : : : ; 1=xn�. Using that �n

Qm=k
is a flat Qm-

module, we obtain the isomorphism

Hn
�
C.x1; : : : ; xn/˝Qm �nQm=k

�
Š E.x1; : : : ; xn/˝Qm �nQm=k

: (4.25)

Every element of E.x1; : : : ; xn/˝Qm �n
Qm=k

is a sum of terms of the form

1

x
a1
1 � � � x

an
n

˝ !

with ai � 1 and ! 2 �n
Qm=k

, and this element corresponds to

˛1 � � �˛n

x
a1
1 � � � x

an
n

˝ ! 2 Hn
�
C.x1; : : : ; xn/˝Qm �nQm=k

�
(4.26)

under the isomorphism (4.25).

Definition 4.27. Given a system of parameters x1; : : : ; xn for Qm, integers ai � 1 for
each 1 � i � n, and an n-form ! 2 �n

Qm=k
, the generalized fraction�

!

x
a1
1 ; : : : ; x

an
n

�
2 Hn

m

�
�nQm=k

�
is the class corresponding to the element in (4.26) under the canonical isomorphism (4.24).

To define Grothendieck’s residue map, we now assume that x1; : : : ; xn is a regular
system of parameters. Since m is k-rational, the m-adic completion bQ ofQ is isomorphic
to the ring of formal power series kŒŒx1; : : : ; xn��, and a basis for E.x1; : : : ; xn/ as a k-
vector space is given by the set

®
1

x
a1
1 ���x

an
n
j ai � 1

¯
. We also have that �n

Qm=k
is a free

Qm-module of rank one spanned by dx1 � � � dxn. It follows that the set²�
dx1 � � � dxn

x
a1
1 ; : : : ; x

an
n

�
j ai � 1

³
is a k-basis of Hn

m.�
n
Qm=k

/.

Definition 4.28. Grothendieck’s residue map resG W Hn
m.�

n
Q=k

/ ! k is the unique k-
linear map such that, if x1; : : : ; xn is a regular system of parameters of Qm, then

resG
�
dx1 � � � dxn

x
a1
1 ; : : : ; x

an
n

�
D

´
1 if ai D 1 for all i , and

0 otherwise:
(4.29)
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See [7, Theorem 5.2] for a proof that this definition is independent of the choice of
x1; : : : ; xn.

We now revert to the Z=2-grading used throughout most of this paper. In particular, we
regard ��

Qm=k
as a Z=2-graded Qm-module with �j

Qm=k
located in degree j .mod 2/,

and we use subscripts to indicate degrees.

Definition 4.30. The residue map for the Z=2-graded Qm-module ��
Qm=k

is the map

res D resQ;m W H2nR�m

�
��Qm=k

�
! k;

defined as the composition

H2nR�m

�
��Qm=k

�
� H2nR�m

�
†�n�nQm=k

�
Š Hn

m

�
�nQm=k

� resG
���! k;

where the first map is induced by the canonical projection ��
Qm=k

� †�n�n
Qm=k

.

We will need the following two properties of the residue map.

Lemma 4.31. SupposeQ andQ0 are essentially smooth k-algebras and m�Q, m0�Q0

are k-rational maximal ideals. Let g WQ!Q0 be a k-algebra map such that g�1.m0/ D
m, the induced map Qm ! Q0m0 is flat, and g.m/Q0m0 D m0Q0m0 . Then Qm and Q0m0
have the same Krull dimension, say n; g induces an isomorphism

g� W H2nR�m

�
��Qm=k

� Š
�! H2nR�m0

�
��
Q0

m0
=k

�
of k-vector spaces; and one has

resQ0;m0 ıg� D resQ;m :

Proof. Let x1; : : : ; xn be a regular system of parameters forQm, and set x0i D g.xi /. The
assumptions on g give that x01; : : : ; x

0
n form a regular system of parameters for Q0m0 , and

hence the induced map on completions is an isomorphism. The first two assertions follow.
The map E.x1; : : : ; xn/˝Qm �n

Qm=k
! E.x01; : : : ; x

0
n/˝Q0m0

�n
Q0

m0
=k

induced by g

sends ˛1���˛n

x
a1
1 ���x

an
n
˝ dx1 � � �dxn to the expression obtained by substituting x0i for xi , and thus

g�

�
dx1 � � � dxn

x
a1
1 ; : : : ; x

an
n

�
D

�
dx01 � � � dx

0
n

.x01/
a1 ; : : : ; .x0n/

an

�
:

The equation resQ0;m0 ıg� D resQ;m follows from (4.29).

Lemma 4.32. Let .Q0;m0/, .Q00;m00/, and .Q;m/ D .Q0 ˝k Q00;m0 ˝k Q00 CQ0 ˝k
m00/ be as in Lemma 4.21. Set m D dim.Q0/ and n D dim.Q00/. The diagram

H2mR�m

�
��
Q0

m0
=k

�
˝k H2nR�m00

�
��
Q00

m00
=k

� ^ //

resQ0;m0 ˝ resQ00;m00

��

H2mC2nR�m

�
��
Qm=k

�
resQ;m

��

k ˝k k
Š // k

commutes up to the sign .�1/mn.
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Proof. It suffices to prove that the analogous diagram given by replacing ��
Q0

m0
=k

and
��
Q00

m00
=k

with�m
Q0

m0
=k

and�n
Q00

m00
=k

commutes. Let x01; : : : ; x
0
m and x001 ; : : : ; x

00
n be regular

systems of parameters for Q0m0 and Q00m00 . Then, upon identifying x0i and x00j with the
elements x0i ˝ 1 and 1˝ x00i of Qm, the sequence x01; : : : ; x

0
m; x

00
1 ; : : : ; x

00
n forms a regular

system of parameters forQm. We use these three regular systems of parameters to identify
H2mR�m0.�

m
Q0

m0=k

/ with H2m.C.x01; : : : ; x
0
m/˝Q0m0

�m
Q0

m0
=k
/ and similarly for Q00 and

Q. Under these identifications, the map labeled ^ in the diagram sends

˛01 � � �˛
0
m

x01 � � � x
0
m

˝ dx01 � � � dx
0
m ˝

˛001 � � �˛
00
n

x001 � � � x
00
n

˝ dx001 � � � dx
00
n

to

.�1/mn
˛01 � � �˛

0
m˛
00
1 � � �˛

00
n

x01 � � � x
0
mx
00
1 � � � x

00
m

˝ dx01 � � � dx
0
mdx

00
1 � � � dx

00
n;

with the sign arising since the dx0i ’s and ˛00j ’s have odd degree. The result now follows
from Definition 4.27 and (4.29).

4.5. The residue pairing

We assume Q, k, and m are as in Subsection 4.4. All gradings in this section are Z=2-
gradings. Fix f 2 Q, and assume Sing.f W Spec.Q/! A1

k
/ D ¹mº. Then the canonical

map �
��Q=k ;�df

�
!
�
��Qm=k

;�df
�

is a quasi-isomorphism, and the only nonzero homology module is

�n
Q=k

df ^�n�1
Q=k

Š
�n
Qm=k

df ^�n�1
Qm=k

;

located in degree n WD dim.Qm/. Choose a regular system of parameters

x1; : : : ; xn 2 mQm:

Then dx1; : : : ; dxn forms a Qm-basis for �1
Qm=k

, and we write

@1; : : : ; @n 2 Derk.Qm/ D HomQm

�
�1Qm=k

;Qm

�
for the associated dual basis. Set fi D @i .f /. The sequence f1; : : : ; fn forms a system of
parameters forQm. For example, whenQmD kŒx1; : : : ;xn�.x1;:::;xn/, we have @i D @=@xi ,
so that fi D @f=@xi .

Definition 4.33. With the notation of the previous paragraph, the residue pairing is the
map

h�;�ires W
�n
Q=k

df ^�n�1
Q=k

�
�n
Q=k

df ^�n�1
Q=k

! k

that sends a pair .gdx1 � � � dxn; hdx1 � � � dxn/ to resG
�
ghdx1���dxn
f1;:::;fn

�
.
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Proposition 4.34. The residue pairing coincides with the composition

�n
Q=k

df ^�n�1
Q=k

�
�n
Q=k

df ^�n�1
Q=k

D Hn
�
��Q=k ;�df

�
�Hn

�
��Q=k ;�df

�
Š
�! Hn

�
��Qm=k

;�df
�
�Hn

�
��Qm=k

;�df
�

id�.�1/n
������! Hn

�
��Qm=k

;�df
�
�Hn

�
��Qm=k

; df
�

Š
 � HnR�m

�
��Qm=k

;�df
�
�Hn

�
��Qm=k

; df
�

Künneth
�����! H2n

�
R�m

�
��Qm=k

;�df
�
˝Qm

�
��Qm=k

; df
��

^
�! H2nR�m

�
��Qm=k

; 0
�

res
��! k:

In particular, it is well defined and independent of the choice of regular system of param-
eters.

Proof. We need a formula for the inverse of the canonical isomorphism

HnR�m

�
��Qm=k

;�df
� Š
�! Hn

�
��Qm=k

;�df
�
: (4.35)

Since the isomorphism isQm-linear, we just need to know where the inverse sends dx1 ^
� � � ^ dxn. Note that C.x1; : : : ; xn/˝Qm ��

Qm=k
is a graded-commutative Qm-algebra

(but not a dga), and the differential is left multiplication by
P
i ˛i � fidxi . Observe that

the element

! WD

�
�
1

f1
˛1 C dx1

��
�
1

f2
˛2 C dx2

�
� � �

�
�
1

fn
˛n C dxn

�
D .�1/n

1

f1 � � � fn
.˛1 � f1dx1/.˛2 � f2dx2/ � � � .˛n � fndxn/

2 C ˝Qm

�
��Qm=k

;�df
�

is a cocycle, and it maps to dx1 ^ � � � ^ dxn 2 Hn.��Qm=k
;�df / via (4.35). Therefore,

the composition

�n
Q=k

df ^�n�1
Q=k

�
�n
Q=k

df ^�n�1
Q=k

Š
�! Hn

�
��Qm=k

;�df
�
�Hn

�
��Qm=k

;�df
�

id�.�1/n
������! Hn

�
��Qm=k

;�df
�
�Hn

�
��Qm=k

; df
�

Š
 � Hn

�
C ˝Qm

�
��Qm=k

;�df
��
�Hn

�
��Qm=k

; df
�

Künneth
�����! H2n

�
C˝Qm

�
��Qm=k

;�df
�
˝Qm

�
��Qm=k

; df
��
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sends .gdx1 � � � dxn; hdx1 � � � dxn/ to

g
Y
i

�
�
1

fi
˛i C dxi

�
˝ .�1/nhdx1 ^ � � � ^ dxn:

Under the composition

H2n
�
C ˝Qm

�
��Qm=k

;�df
�
˝Qm

�
��Qm=k

; df
��

^
�! H2n

�
C ˝Qm

�
��Qm=k

; 0
�� Š
�! E ˝Qm �nQm=k

;

this element maps to
gh

f1 � � � fn
˝ dx1 ^ � � � ^ dxn;

which is sent to resG
�
ghdx1���dxn
f1;:::;fn

�
2 k by the residue map.

4.6. Relating the trace and residue maps

Our goal in this subsection is to prove the following theorem.

Theorem 4.36. Let k be a field of characteristic 0, Q an essentially smooth k-algebra,
and m a k-rational maximal ideal of Q. Then the diagram

HH0
�
mf m.Qm; 0/

�
.�1/n.nC1/=2 trace

&&

" // H2nR�m

�
��
Qm=k

�
res

xx
k

commutes, where n D dim.Qm/.

Our strategy for proving this theorem is to reduce it to the very special case when
Q D kŒx� and m D .x/ and then to prove it in that case via an explicit calculation.

Lemma 4.37. Given a pair .Q;m/ and .Q0;m0/ satisfying the hypotheses of Theorem
4.36, suppose there is a k-algebra map g WQ!Q0 such that g�1.m0/ Dm, the induced
map Qm ! Q0m0 is flat, and mQ0m0 D m0Q0m0 . Then

(1) Theorem 4.36 holds for .Q;m/ if and only if it holds for .Q0;m0/;

(2) Theorem 4.36 holds provided it holds in the special case where Q D kŒt1; : : : ; tn�
and m D .t1; : : : ; tn/.

Proof. (1) follows from Lemmas 4.20 and 4.31 and the naturality of the HKR map ". As
for (2), for .Q;m/ as in Theorem 4.36, applying (1) to the map g W Q! Qm allows us
to reduce to the case when Q is local. In this case, let x1; : : : ; xn be a regular system of
parameters for Q, define g W kŒt1; : : : ; tn�! Q to be the k-algebra map sending ti to xi ,
and apply (1) to g.
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Lemma 4.38. SupposeQ0;Q00 are essentially smooth k-algebras, and m0�Q0;m00�Q00

are k-rational maximal ideals. Let Q D Q0 ˝k Q00 and m D m0 ˝k Q
00 CQ0 ˝k m00. If

Theorem 4.36 holds for each of .Q0;m0/ and .Q00;m00/, then it also holds for .Q;m/. In
particular, the theorem holds in general if it holds for the special caseQD kŒx�, mD .x/.

Proof. For brevity, let HH 0 D HH0.mf
m0.Q0m0 ; 0//, HH

00 D HH0.mf
m00.Q00m00 ; 0//,

and HH0 D HH0.mf m.Qm; 0//, and similarly R� 0 D Hdim.Q0
m0
/R�m0.�

�

Q0
m0
=k
/, etc.

We consider the diagram

k ˝k k

Š

��

D // k ˝k k

Š

��

HH 0 ˝k HH
00

Q?

��

gg

"0˝"00
// R� 0 ˝k R� 00

88

^

��

HH
" //

ww

R�

''
k

D // k;

where the diagonal maps are the appropriate trace or residue maps. The left and right
trapezoids commute by Lemmas 4.21 and 4.32, the middle square commutes by Propo-
sition 3.19, the top trapezoid commutes by assumption, and the outer square obviously
commutes. It follows from (4.1) and Lemma 4.2 that HH 0˝k HH 00

Q?
�! HH is an iso-

morphism. A diagram chase now shows that the bottom trapezoid commutes, which gives
the first assertion. The second assertion is an immediate consequence of the first assertion
and Lemma 4.37.

Proof of Theorem 4.36. By Lemma 4.38, we need only to show that

res ı" D � trace

in the case whereQDkŒx� and mD.x/. LetK be the Koszul complex on x, considered as
a differential Z=2-graded algebra, as in Section 4.1, and let EDEndmf .x/.kŒx�.x/;0/.K.x//.
Recall from Section 4.1 that E is the differential Z=2-graded Q-algebra generated by
odd degree elements e; e� satisfying the relations e2 D 0 D .e�/2 and Œe; e�� D 1, and
the differential dE is given by dE.e/ D x and dE.e�/ D 0. By Lemma 4.2, we have an
isomorphism

kŒy�
Š
�! HH0

�
mf .x/

�
kŒx�.x/; 0

��
;

where
y 7! idK Œe�� 2 HH.E/ � HH

�
mf .x/

�
kŒx�.x/; 0

��
;

and, more generally,

yj 7! j ŠidK
� j‚ …„ ƒ
e�j � � � je�

�
; for j � 0:
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As usual, we identify H2R�.x/.��kŒx�.x/=k/ with kŒx�.x/Œx
�1�

kŒx�.x/
� ˛ ˝kŒx�.x/ �

1
kŒx�.x/=k

, where
j˛j D 1. Theorem 4.36 follows from the calculations

(1) res.˛
x
˝ dx/ D 1,

(2) res. ˛
xi
˝ dx/ D 0 for all i > 1,

(3) trace.y0/ D 1,

(4) trace.yj / D 0 for all j � 1, and

(5) ".yj / D �j Š. ˛
xjC1
˝ dx/ for all j � 0.

In fact, (1) and (2) follow from the definition of the residue map, and (3) and (4) follow
from Propositions 4.9 and 4.13, so it remains only to establish (5).

Recall that the map " is induced by the diagram

kŒy�
Š
�! HH0.E/

Š
 �� H2R�.x/HH.E/

R�.x/"
0

�����! H2R�.x/
�
��kŒx�.x/=k

�
; (4.39)

where "0 denotes the composition

HH.E/
.id;dK /�
������! HH II .E0/

"0

��! ��kŒx�.x/=k :

Here, E0 is the same as E , but with trivial differential, .id; dK/ is a morphism E ! E0 of
curved dga’s (with trivial curvature), and "0 is as defined in 3.2.3.

We need to calculate the inverse of the isomorphism H2R�.x/HH.E/
Š
�! HH0.E/

occurring in (4.39). As usual, we make the identification

R�.x/HH.E/ D HH.E/˚HH.E/Œ1=x� � ˛:

The differential on the right is @ WD b C ˛, where ˛ denotes left multiplication by ˛; note
that ˛2 D 0. So, for a class  C  0˛, we have

@. C ˛ 0/ D b./ � b. 0/˛ C ˛:

With this notation, the quasi-isomorphism R�.x/HH.E/
'
�! HH.E/ is given by setting

˛ D 0.
For j � 0, we define

y.j / D
1

j Š
yj D idK

� j terms‚ …„ ƒ
e�je�j � � � je�

�
and

!j D e
� j terms‚ …„ ƒ
e�je�j � � � je�

�
2 HH.E/Œ1=x�:

Then, for j � 0, we have
b.!j / D xy

.j /
� y.j�1/;
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where y.�1/ WD 0, from which we get

b

�
1

x
!j C

1

x2
!j�1 C � � � C

1

xjC1
!0

�
D y.j /:

It follows that, for each j � 0, the class

y.j / C ˛

�
1

x
!j C

1

x2
!j�1 C � � �

1

xjC1
!0

�
is a cycle in R�.x/HH.E/ that maps to y.j / 2 HH.E/ under the canonical map
R�.x/.HH.E//! HH.E/. We conclude that the inverse of

H2R�.x/HH.E/
Š
�! HH0.E/ D kŒy�

maps yj to the class of

�j WD y
j
C j Š˛

�
1

x
!j C

1

x2
!j�1 C � � � C

1

xjC1
!0

�
for each j � 0, and hence

".yj / D R�.x/"
0.�j /:

Recall that "0 sends �0Œ�1j � � � j�n� 2 HH.E/ toX
.�1/j0C���Cjn

1

.nC J /Š
str
�
�0.d

0
K/
j0� 01 � � � �

0
n.d
0
K/
jn
�
;

where the derivatives are computed relative to any specified flat connection on K. Using
the Levi-Civita connection associated to the basis ¹1; eº of K, we get e0 D 0, .e�/0 D 0,
and hence d 0K D �e

�dx. It follows that

"0.!j / D 0 for j � 1;

"0.!0/ D str.e/C str.ee�dx/;

"0.y.j // D 0 for j � 1, and

"0.y.0// D str.idK/C str.e�dx/:

It is easy to see that str.ee�/ D �1, str.e�/ D 0, str.e/ D 0, and str.idK/ D 0, so that
"0.!0/ D �dx, "0.!j / D 0 for all j � 0, and "0.yj / D 0 for all j . We obtain

".yj / D R�.x/"
0.�j / D �j Š

�
˛

xjC1
˝ dx

�
for all j � 0, as needed.



A proof of a conjecture of Shklyarov 1519

4.7. Proof of the conjecture

LetQDCŒx1; : : : ; xn� and f 2mD .x1; : : : ; xn/�Q, and assume m is the only singular
point of the morphism f W Spec.Q/! A1. As discussed in the introduction, a result of
Shklyarov [16, Corollary 2] states that there is a commutative diagram

HHn
�
mf .Q; f /

��2 If .0/�If .0/

Š
//

cf �mf

%%

�
�n
Q=k

df ^�n�1
Q=k

��2
h�;�ireszz

C;

(4.40)

for some constant cf which possibly depends on f .

Theorem 4.41. Let k be a field of characteristic 0, Q an essentially smooth k-algebra,
m a k-rational maximal ideal, and f an element of m such that m is the only singularity
of the morphism f W Spec.Q/! A1

k
. Then the diagram

HHn
�
mf .Q; f /

��2 "�"

Š
//

.�1/n.nC1/=2�mf
%%

�
�n
Q=k

df ^�n�1
Q=k

��2
h�;�ires

zz
k

commutes.

Proof. Consider the diagram

HHn.mf .Q; f //�HHn.mf .Q; f //

id�‰

��

"�" // Hn.�
�
Q;�df /�Hn.�

�
Q;�df /

id�.�1/n

��

HHn.mf .Q; f //�HHn.mf .Q;�f //
"�" //

?

��

Hn.�
�
Q;�df /�Hn.�

�
Q; df /

^

��

HH2n.mf
m.Qm; 0//

.�1/n.nC1/=2 trace
((

" // H2nR�m.�
�
Qm
/

res
ww

k:

(4.42)

The top square commutes by Lemma 3.14, the square in the middle commutes by Corol-
lary 3.26, and the triangle at the bottom commutes by Theorem 4.36. By Lemma 4.23, the
map

HHn
�
mf .Q; f /

�
�HHn

�
mf .Q; f /

�
! k
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obtained by composing the maps along the left edge of (4.42) is .�1/n.nC1/=2�mf . By
Proposition 4.34, the map�

�n
Q=k

df ^�n�1
Q=k

��2
D Hn

�
��Q;�df

��2
! k

obtained by composing the maps along the right edge of (4.42) is h�;�ires.

Corollary 4.43. Conjecture 1.4 holds. That is, for f 2 m D .x1; : : : ; xn/ � Q D

CŒx1; : : : ; xn� such that m is the only singularity of the morphism f W Spec.Q/! A1
k

,
the unique constant cf that makes diagram (1.3) commute is .�1/n.nC1/=2, as predicted
by Shklyarov.

Proof. Under these assumptions, " D If .0/ by Lemma 3.11. Theorem 4.41 thus implies
that the value cf D .�1/n.nC1/=2 causes the diagram (4.40) to commute. As discussed
in the introduction, this uniquely determines the value of cf , and the unique constant cf
which makes diagram (4.40) commute is the same as that which makes diagram (1.3)
commute.

5. Recovering Polishchuk–Vaintrob’s Hirzebruch–Riemann–Roch
formula for matrix factorizations

Assume k, Q, m, and f are as in the statement of Theorem 4.41. We recall that, given
objects X; Y 2 mf .Q; f /, the Euler pairing applied to the pair .X; Y / is given by

�.X; Y / D dimkH0 Hom.X; Y / � dimkH1 Hom.X; Y /:

In this final section, we give a new proof of a theorem due to Polishchuk–Vaintrob that
relates the Euler pairing to the residue pairing via the Chern character map.

The following is an immediate consequence of the commutativity of diagram (4.42)
in the proof of Theorem 4.41.

Corollary 5.1. Let k, Q, m, and f be as in the statement of Theorem 4.41, and assume
n D dim.Qm/ is even. Then the triangle

HH0
�
mf .Q; f /

�
˝k HH0

�
mf .Q;�f /

� "˝k" //

))

�n
Q=k

df ^�n�1
Q=k

˝k

�n
Q=k

df ^�n�1
Q=k

h�;�ires
xx

k

commutes, where the left diagonal map is .�1/n.nC1/=2 trace ı.� ? �/, and " denotes the

composition of the HKR map and the isomorphism Hn.�
�
Q=k

;˙df /
Š
�!

�n
Q=k

df ^�n�1
Q=k

.
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Let X 2 mf .Q; f /. We recall that the Chern character of X

ch.X/ 2 HH0
�
mf .Q; f /

�
is the class represented by

idX Œ � 2 End.X/ � HH
�
mf .Q; f /

�
:

Assume now that n is even. The isomorphism

" W HH0
�
mf .Q; f /

� Š
�!

�n
Q=k

df ^�n�1
Q=k

sends ch.X/ to the class
1

nŠ
str
�
.ı0X /

n
�
;

where ı0X D Œr; ıX � for any choice of connection r on X . Abusing notation, we also

denote this element of
�n
Q=k

df ^�n�1
Q=k

as ch.X/.

For example, if the components of X are free, then, upon choosing bases, we may
represent ıX as a pair of square matrices .A; B/ satisfying AB D f Ir D BA. Using the
Levi-Civita connection associated to this choice of basis, we have

ch.X/ D
2

nŠ
tr
� n factors‚ …„ ƒ
dAdB � � � dAdB

�
: (5.2)

Recall from Remark 4.12 that, for X 2 mf .Q; f / and Y 2 mf .Q;�f /, �.X; Y / is
given by

dimkH0.X ˝ Y / � dimkH1.X ˝ Y /;

and we have
�.X; Y / D trace

�
ch.X/ ? ch.Y /

�
: (5.3)

Corollary 5.4. Under the assumptions of Corollary 5.1,

(1) if X 2 mf .Q; f / and Y 2 mf .Q;�f /, then

�.X; Y / D .�1/.
n
2/
˝
ch.X/; ch.Y /

˛
resI

(2) if X; Y 2 mf .Q; f /, then

�.X; Y / D .�1/.
n
2/
˝
ch.X/; ch.Y /

˛
res:

Remark 5.5. Corollary 5.4 (2) is Polishchuk–Vaintrob’s Hirzebruch–Riemann–Roch for-
mula for matrix factorizations [10, Theorem 4.1.4 (i)].
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Proof. (1) is immediate from Corollary 5.1 and (5.3). We now prove (2). Without loss of
generality, we may assume Q is local, so that the underlying Z=2-graded Q-modules of
X and Y are free. Given a matrix factorization .P; ıP / 2 mf .Q; f / written in terms of
its Z=2-graded components as

.ı1 W P1 ! P0; ı0 W P0 ! P1/;

we define a matrix factorization N.P; ıP / 2 mf .Q;�f / with components

.ı1 W P1 ! P0;�ı0 W P0 ! P1/:

We have ˝
ch.X/; ch

�
N.Y /

�˛
res D .�1/

.n2/�
�
X;N.Y /

�
D �.X; Y /:

The first equality follows from (1), and the second equality follows from [3, Corollary 8.5]
and [1, Proposition 3.18]; note that .�1/.

n
2/ D .�1/n=2, since n is even, and also that the

notation � in [1, Proposition 3.18] has a different meaning than it does here. It suffices to
show ch.N.Y // D .�1/n=2 ch.Y /, and this is clear by (5.2).
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