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Homotopy Rota-Baxter operators and post-Lie algebras
Rong Tang, Chengming Bai, Li Guo, and Yunhe Sheng

Abstract. Rota—Baxter operators and the more general (9-operators, together with their intercon-
nected pre-Lie and post-Lie algebras, are important algebraic structures, with Rota—Baxter operators
and pre-Lie algebras instrumental in the Connes—Kreimer approach to renormalization of quan-
tum field theory. This paper introduces the notions of a homotopy Rota—Baxter operator and a
homotopy (@-operator on a symmetric graded Lie algebra. Their characterization by Maurer—Cartan
elements of suitable differential graded Lie algebras is provided. Through the action of a homotopy
(-operator on a symmetric graded Lie algebra, we arrive at the notion of an operator homotopy
post-Lie algebra, together with its characterization in terms of Maurer—Cartan elements. A coho-
mology theory of post-Lie algebras is established, with an application to 2-term skeletal operator
homotopy post-Lie algebras.

1. Introduction

This paper carries out a homotopy study of Rota—Baxter operators, (9-operators (also
called relative Rota—Baxter operators and generalized Rota—Baxter operators), and the
related pre-Lie algebras and post-Lie algebras.

1.1. Background

Homotopy began with a fundamental notion in topology describing the continuous defor-
mation of one function to another.

The first homotopy construction in algebra is the A-algebra of Stasheff, arising from
his work on homotopy characterization of connected based loop spaces [44]. Later related
developments include the work of Boardman and Vogt [8] about E.-spaces on the infinite
loop space, the work of Schlessinger and Stasheff [40] about L-algebras on pertur-
bations of rational homotopy types, and the work of Chapoton and Livernet [13] about
pre-Lieso-algebras. Homotopy of a large class of algebraic structures was obtained in the
context of operads [31].

Homotopy structures, Axo- and Lo-algebras in particular, have many applications in
mathematics and physics, in supergravity, string theory [6,43], and especially in noncom-
mutative geometry [13,19,23,26,48].
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Rota-Baxter associative algebras originated from the probability study of G. Bax-
ter [7] and later found applications in the Connes—Kreimer algebraic approach to renor-
malization of quantum field theory [12, 14,22, 32]. Indeed, in the fundamental algebraic
Birkhoff factorization for regularization maps in the Connes—Kreimer approach, Rota—
Baxter algebra is the target of the regularization. Further, the algebraic Birkhoff factoriza-
tion can be interpreted as a factorization in a larger Rota—Baxter algebra [17, 18].

A Rota—Baxter operator on a Lie algebra is naturally the operator form of a classical
r-matrix [41] under certain conditions. To better understand such connection with the
classical Yang—Baxter equation and the related integrable systems, the notion of an O-
operator on a Lie algebra was introduced [9, 28].

An @-operator naturally gives rise to a pre-Lie or more generally a post-Lie alge-
bra, and also found broad applications in mathematics and mathematical physics [3, 5,
13,46, 47]. Incidentally, there is a pre-Lie algebra structure in Feynman graphs [15], as
the domain of the regularization. Pre-Lies,-algebras have been related to renormaliza-
tion [24].

1.2. Approach of the paper

Given the importance of Rota—Baxter algebras and (-operators, and homotopy theories, it
is useful to study the homotopy of these structures and establish the relationship to homo-
topy pre-Lie and post-Lie algebras. Such a study might further improve the understanding
of the roles played by these structures in renormalization and other applications.

The operadic framework of homotopy is not yet general enough to include Rota—
Baxter algebras. We thus take the more classical approach via differential graded Lie
algebras (dgla) and Maurer—Cartan elements whose idea can be traced back to the well-
known work of Gerstenhaber [21] on deformations.

This approach is based on the principle that objects of a certain algebraic structure on
a vector space are given by degree 1 solutions of the Maurer—Cartan equation in a suitable
dgLa built from the vector space. When the vector space is replaced by a graded vector
space, similar solutions give objects in the homotopy algebraic structure.

For instance, for a vector space V, the graded vector space EB;F;X(’, Hom(A"V, V)
together with the Nijenhuis—Richardson bracket [-, -]yr is a dgla with the trivial deriva-
tion. A Lie algebra structure on V is precisely a degree 1 solution @ € Hom(A2V, V) of
the Maurer—Cartan equation. For a graded vector space V = @®;cz V', let S(V) denote the
symmetric algebra of V' and let Hom” (S(1'), V') denote the space of degree n linear maps.
Then with a similarly defined Nijenhuis—Richardson bracket [-, -]yg on the graded vector
space ®,ez Hom"(S(V), V) (see equation (2.2)), we again have a graded Lie algebra
(gla) and (curved) Lo-algebras can be characterized as degree 1 solutions of the corre-
sponding Maurer—Cartan equation.

In a recent study [30, 45], this approach was taken to give a Maurer—Cartan charac-
terization of (9-operators and relative Rota—Baxter Lie algebras, and further to establish
a deformation theory and its controlling cohomology for (-operators and relative Rota—
Baxter Lie algebras.
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To illustrate our approach in a broader context, we focus on the Rota—Baxter Lie alge-
bra for now and regard its algebraic structure as a pair (£, T') consisting of a Lie bracket
{ = [-,-] and a Rota—Baxter operator 7. Then to obtain the homotopy of the Rota—Baxter
Lie algebra, one can begin with taking homotopy of either the binary operation £ or the
unary operation 7. The homotopy of the Lie algebra £, = {{; }l+=°f is well known as the
L «-algebra. Together with the natural Rota—Baxter operator action as defined in [39], we
have the Rota—Baxter homotopy Lie algebra (£, T') or Rota—Baxter L ,-algebra. Similar
to Rota—Baxter Lie algebra, a Rota—Baxter homotopy Lie algebra is expected to induce a
homotopy post-Lie algebra, giving rise to the commutative diagram

(¢.T) (loo: T)

lRB action lRB action (1 . 1)

post-Lie —————— homotopy post-Lie

where the horizontal arrows are taking homotopy and the vertical arrows are taking actions
of the Rota—Baxter operators.

In this paper, we will pursue the other direction, by taking homotopy of the Rota—
Baxter operator 7 and obtain T := {7}};"8, without taking homotopy of £. We call the
resulting structure (¢, Too) the operator homotopy Rota—Baxter Lie algebra to distinguish
it from the above-mentioned Rota—Baxter homotopy Lie algebra. The action of T, gives
rise to a variation of the homotopy post-Lie algebra which we will call the operator homo-
topy post-Lie algebra (see Remark 3.5). This gives another commutative diagram shown
as the front rectangle in equation (1.2) while the diagram in equation (1.1) is embedded as
the right rectangle.

Eventually, the full homotopy of the Rota—Baxter Lie algebra should come from the
combined homotopies of both the Lie algebra structure and the Rota—Baxter operator
structure, tentatively denoted by (£o0, Too) and called the full homotopy Rota—Baxter Lie
algebra. A suitable action of Ty, on £ should give the full homotopy post-Lie algebra
whose structure is still mysterious. These various homotopies of the Rota—Baxter Lie alge-
bra, as well as their derived homotopies of the post-Lie algebra, could be put together and
form the diagram

(loo. Too) (o, T)
¢, Too) I (¢.T)
1.2
full homotopy homotopy (12)
post-Lie post-Lie
/ /
operall)(:)rS (}E(I)jirémopy po st-Lie

where going in the left and inside directions should be taking various homotopy, and going
downward should be taking the actions of (homotopy) Rota—Baxter operators.
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1.3. Outline of the paper

After some background on dglLas and Maurer—Cartan equations summarized in Section
2.1, we introduce in Section 2.2 the notion of a homotopy (9-operator with any weight
(Definition 2.9). Using a derived bracket, we construct a dgl.a which characterizes homo-
topy -operators of any weight as their Maurer—Cartan elements (Theorem 2.16).

In Section 3, by applying a homotopy (-operator to a symmetric graded Lie alge-
bra (sglLa), we obtain a variation of the homotopy post-Lie algebra, called the operator
homotopy post-Lie algebra. From here we can specialize in several directions and obtain
interesting applications. First, when the weight of the (9-operator is taken to be zero, we
obtain homotopy (-operators of weight zero. Since (9-operators of weight zero naturally
derive pre-Lie algebras [39], it is expected that homotopy (-operators of weight zero
derive pre-Lieso-algebras. We confirm this in Corollary 3.12, yielding the commutative
diagram

homotopy
O-operators ——  homotopy (@-operators

l l (1.3)
homotopy

pre-Lie pre-Lie .

In other words, the compositions of taking homotopy and taking operator action in either
order give the pre-Lie,-algebras.

Another application of our general construction is the characterization of post-Lie
algebra structures on any given Lie algebra using Maurer—Cartan elements in a suitable
dgla (Corollary 3.7). There has been quite much interest on such constructions in the
recent literature [10, 11,20, 38].

In Section 4, we first consider the cohomology theory of post-Lie algebras. In the
“abelian” case of pre-Lie algebras, the cohomology groups were first defined in [16] by
derived functors and then in [34] by resolutions of algebras from the operadic Koszul
duality theory. We explicitly establish a cohomology theory of post-Lie algebras which
specializes to the above cohomology theory of pre-Lie algebras. The third cohomology
group of a post-Lie algebra is applied in Section 4.3 to classify 2-term skeletal operator
homotopy post-Lie algebras.

Notations. We assume that all the vector spaces are over a field of characteristic zero. For
a homogeneous element x in a Z-graded vector space, we also use x in the exponent, as
in (—1)*, to denote its degree in order to simplify the notation.

2. Homotopy O-operators of weight A
In this section, we introduce the notion of a homotopy (9-operator of weight A, where A is

a constant. We construct a dgla and show that homotopy (9-operators of weight A can be
characterized as its Maurer—Cartan elements to justify our definition.
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2.1. Maurer-Cartan elements and Nijenhuis—Richardson brackets
We first recall some background needed in later sections.

Definition 2.1 ([31]). Let (§ = ®xezgX.[.-].d) be a dgla. A degree 1 element 6 € g'
is called a Maurer—Cartan element of g if it satisfies the Maurer—Cartan equation

d9+%[9,9]=0. 2.1)

A permutation o € S, is called an (i,n —i)-shuffleif o (1) <---<o(i)ando (i + 1) <
.-« <o(n). Ifi =0 orn, we assume that o = Id. The set of all (i, n — i)-shuffles will be
denoted by S(; ,—;). The notion of an (i1, ..., ix)-shuffle and the set S, ... ;,) are defined
analogously.

Let V = @rez V¥ be a Z-graded vector space. We will denote by S(V) the symmetric
algebra of V. That is, S(V) := T(V)/I, where T(V) is the tensor algebra and I is the
2-sided ideal of 7'(V') generated by all homogeneous elements of the form

.....

r®y—(=DYy®x.

We will write
S(V) =&, 55" (V).

Denote the product of homogeneous elements vy,...,v, € Vin S*(V)by vy © -+ © vy,.
The degree of v; © - - - © vy, is by definition the sum of the degree of v;. For a permutation
o €Sy andvy,...,v, €V, the Koszul sign e(o; vy, ...,v,) € {—1, 1} is defined by

UNORERNORIM 8(0‘;1)1,...,1),,)120(1) O O Vo)
and the antisymmetric Koszul sign y(o;vy,...,v,) € {—1, 1} is defined by

x(0:iv1, ... 0n) = (=1)%(0;v1, ..., 0p).

Denote by Hom” (S(V'), V') the space of degree n linear maps from the graded vector space
S (V) to the graded vector space V. Obviously, an element f € Hom"(S(V), V) is the
sumof f; : S*(V) — V. We will write f = ;1;03. i.Set C"(V,V) := Hom"(S(V), V)
and C*(V, V) := ®pezC"(V, V). As the graded version of the classical Nijenhuis—
Richardson bracket given in [37], the Nijenhuis—Richardson bracket [-, -]yr on the graded
vector space C*(V, V), forany f = Y155 fi e C™(V, V), g = Z;fg gj € C"(V, V),
is given by

[f. &= fog—(=1)""go f. (2.2)
where f o g € C™T(V, V) is defined by

+o00

fog=(§ﬁ)o(§:gj) =3 (X fiem) 23)

k=0 i+ =k+1
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while f; o g; € Hom(St/~1(V), V) is defined by

(fiogj)(Wi,...,vitj—1)

= Y £0)fi(&Wo): - Vo(7): Vo(j41) - - Vali+j—1))-

0€Si-1)

with the convention that fp o g; := 0" and (f; 0 go)(v1,...,vj—1) = f;(g0,V1,...,Vj—1).
See [25,33] for the notion of a curved L-algebra.

Theorem 2.2 ([1,33]). With notations as above, (C*(V, V), [, |xr) is a graded Lie alge-
bra (glLa). Its Maurer—Cartan elements Z?:g [; are the curved Loo-algebra structures
onV.

We denote a curved Lo-algebra by (V, {lk},jzo‘(’)). A curved Loo-algebra (V, {li };’i‘(’)
with [p = 0 is exactly an Lo-algebra [29].

Definition 2.3 ([1]). A symmetric graded Lie algebra (sgLa) is a Z-graded vector space
g equipped with a bilinear bracket [-,-]q : ¢ ® g — g of degree 1, satistying
(1) (graded symmetry)
[x. ¥lg = (=D[y. x]g.

(2) (graded Leibniz rule)

[)C, [Y»Z]g]g = (_1)x+l[[-xv y]Q7Z]g + (_])(x+1)(y+1)[yv [x7Z]Q]g'

Here x, y, z are homogeneous elements in g, which also denote their degrees when in
exponent.

An sgla(q, [+, ]q) is just a curved L,-algebra (g, {lk}]'::a), in which /; = 0 for all
k >0,k #2.

For a graded vector space V = @,z V', the suspension operator s : V + sV assigns
V to the graded vector space sV = @®;ez(sV) with (sV)! := Vi~1. The natural degree 1
map s : V — sV is the identity map of the underlying vector space, sending v € V to its
suspended copy sv € sV. Likewise, the desuspension operator s~ changes the grading
of V according to the rule (s~'V)? := Vi*! The degree —1 map s~ : V — s~V is
defined in the obvious way.

Example 2.4. Let V be a graded vector space. Then s~ !gl(V) is an sglLa where the
symmetric Lie bracket, for any f € Hom™(V, V), g € Hom"(V, V), is given by

[s7 fis7 gl = (=1)"s [ f.g]- (2.4)

IThe linear map f; is just a distinguished element ® € V°.
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Let (g, [-.-]g) and (', [-, -]¢") be sgLas. A homomorphism from g to g’ is a linear map
¢ : g — g of degree 0 such that

P([x1, x2]g) = [¢(x1),¢(x2)]g/, Vxi,x2 € g.

Definition 2.5. A linear map of graded vector spaces D : ¢ — g of degree n is called a
derivation of degree n on an sgla (g, [, -]¢) if

D[x,ylg = (=1)"[Dx,y]g + (=1)"®FD[x, Dylg, Vx.yeg.

We denote the vector space of derivations of degree n by Der”(g). Denote Der(g) =
®nez Der” (g), which is a graded vector space.

Remark 2.6. A derivation of degree n on an sgla(q, [, ]4) is just a homotopy derivation
{Qk}]':‘:"i of degree n on (g, [-,*]q), in which 8 = 0 for all k > 2. See [25] for more details.

By a straightforward check, we obtain the following proposition.

Proposition 2.7. With the above notations, (s~ Der(q), [, -]) is a symmetric graded Lie
subalgebra of (s~ 'gl(g), [-,-]), where the bracket [-,-] is defined by (2.4).

Definition 2.8. An action of an sgla(q, [, :]¢) on an sgLa(b, [-, ]5) is a homomorphism
of graded vector spaces p : ¢ — Der(h) of degree 1 such that s~ o p : ¢ — 57! Der(h) is
an sgl.a homomorphism.

In particular, if (b, [, -]p) is abelian, we obtain an action of an sglLa on a graded vector
space. It is obvious that ad : ¢ — Der(g) is an action of the sglLa(g, [, -|q) on itself, which
is called the adjoint action.

Let p be an action of an sgla(g, [-,]q) on a graded vector space V. For x € g', we
have p(x) € Hom!t1(V, V). Moreover, there is an sgLa structure on the direct sum g @ V/,
for any x1,x5 € g,v1,v2 € V, given by

[x1 + vi.x2 + v2], 1= [x1, X2]g + p(x1)v2 + (—=1)"172 p(x2)vy.
This sgla is called the semidirect product of the sglLa(g, [, ]q) and (V; p), and denoted
by gx, V.
2.2. Homotopy O -operators of weight A
Now we give the main notion of this paper.
Definition 2.9. Let p be an action of an sgLa(g, [+, -]q) on an sgLa(}, [-,-]p). A degree O

element
+o0

T =T, € Hom(S(h).g) with 7; € Hom(S*(h). g)
i=0
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is called a homotopy O-operator of weight A on an sgla(g, [, :|q) with respect to the
action p if the following equalities hold for all p > 0 and all homogeneous elements

Vi,...,Vp €h:

Z (—l)an_l(k[vi,vj]b,1)1,...,13,',...,{)]',...,1)1,)

1<i<j<p

+ Z S(U)Tk—l(P(Tl(Uo(l), cees va(l)))vcf(l+l)v Vo(I42)s -+ va(p))

k+l=p+1
OES( 1, p-1-1)

1
=3 Z 8(0)[Tk—1(va(1),--.,vo(k—l)),Tl(vo(k),..-,va(p))]g, (2.5)

k+l=p+1
OES(k-1,1)

where
o =vi(;+-+vi-1) + v (V1 + -+ vj-1) + Viv;.

Remark 2.10. The linear map Ty is just an element Q € g°. Below are the generalized
Rota—Baxter identities for p = 0,1,2:

2,Q]; =0,
Ti(p(Q)v1) = [, T1(v)],.
[T1(v1). Ty (uz)]g = Ti(p(T1(v1))v2 + (=1)"""2p(T1(v2))v1 + Alv1, valp)
+ To(p(R)v1, v2) + (=12 T (p(R)v2, v1)
—[Q. (v, v2)] .

Remark 2.11. If the sgla reduces to a Lie algebra and the action reduces to an action
of a Lie algebra on another Lie algebra, the above definition reduces to the definition
of an O-operator of weight X [9,28] on a Lie algebra’. More precisely, the linear map
T : §h — g satisfies

[Tu,Tv]g = T(p(Tu)(v) —p(Tv)(u) + Alu, v]b), Yu,v € §.

Definition 2.12. A degree 0 element

+o0
R=)"R; € Hom(S(g).q) with R; € Hom(S'(g).q)
i=0

is called a homotopy Rota—Baxter operator of weight A on an sgLa(g, [+, ]¢) if the follow-

2An O@-operator was called a generalized Rota-Baxter operator in [46] and a relative Rota—Baxter
operator in [39].
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ing equalities hold for all p > 0 and all homogeneous elements xy, ..., X, € g,
Z (—1)“Rp_1(k[xi,xj]g,x1, e XX .,xp)
I<i<j=<p

+ Z e(0) Ri—1([R1 (Xo(1): - - -+ X (1)) xa(1+1)]g, Xo(142): - - -+ Xa(p))

k+l=p+1
€S, 1,p-1-1)

1
=3 Z 8(0)[Rk—1(xa(1),---,xc(k—l)),Rz(xa(k),--.,xa(p))]g,

k+l=p+1
UES(k_lJ)

where o = x; (x1 4+ -+ 4+ x;-1) + x5 (X1 + -+ x5-1) + xx;.
Remark 2.13. A homotopy Rota—Baxter operator

+00
R = ZRi € Hom (S(g). g)

i=0

of weight A on an sglLa(g, [, ]q) is a homotopy @-operator of weight A with respect to the
adjoint action ad. If, moreover, the sgla reduces to a Lie algebra, then the resulting linear
operator R : ¢ — g is a Rota—Baxter operator of weight A [7,22] in the sense that

[R(x). R(], = R([R(x), y], + [x. RD)], + Alx.ylg).  Yx.y €g.

In the sequel, we construct a dgla and show that homotopy (9-operators of weight A
can be characterized as its Maurer—Cartan elements to justify our definition of homotopy
O-operators of weight A. For this purpose, we recall the derived bracket construction of
graded Lie algebras. Let (g, [, ]g. d) be a dglLa. We define a new bracket on sg by

[sx,sy]qg := (=1)*s[dx,ylg, Vx,y €ag. (2.6)

The new bracket is called the derived bracket [27]. It is well known that the derived bracket
is a graded Leibniz bracket on the shifted graded space sg. Note that the derived bracket
is not graded skew-symmetric in general. We recall a basic result.

Proposition 2.14 ([27]). Let (g, [-,-]q. d) be adglLa, and let t C g be a subalgebra which
is abelian, i.e., [0, h]q = 0. If the derived bracket is closed on sY), then (s, [-,*]4) is a gLa.

Let p be an action of an sgLa(g. [-,-]q) on an sgLa(}, [-,-]5). Consider the graded vector
space C*(9, g) := ®nez Hom" (S(h), g). Define a linear map

d : Hom” (S(h). g) — Hom"*! (S(b). q)
by

dg)p(vy,...,vp) = Z (—l)agp_l(/\[vi,vj]b,vl,...,ﬁi,...,ﬁj,...,vp), 2.7)

I=i<j=p
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where
a=n+1+vi(vi+--+vi-1) +vj(vr +- +vj-1) + viv;.

Also define a graded bracket operation

[-.-] : Hom™ (S(b).g) x Hom" (S(h). g) — Hom™ "+ (S(B). q),
I/ g]]p(vl, .. Up)

== Y &) fim1(p(81 (o). - - - - Vo)) Vo +1): Va+2): - - - - Va(p))
k+l=p+1
OES(1,p—1-1)

+ D% Y w08 (p(fee1 Vo) - - Vot—1)) Vo) Vet 1)+ - - - - Vo(p))

k+l=s+1
OES(k—1,1,p—k)

- Z (_l)ﬂg(a)[fk—l(va(l)’-u’va(k—l))agl(vo(k)’-u’va(p))]g’ (2.8)

k+l=p+1
UES(k_l,l)

whereoo = (m + 1)(n + 1), B = n(voq) + -+ + Vok—1)) +m + 1 and

f =) fi eHom™(S(h).q). g= ) g €Hom"(S(h).g)

with f;, g; € Hom(S?(), g) and vy, ..., vp € hh. Here we write dg = ), (dg); with
(dg)i € Hom(S'(h). ). and [£. g] = 3=;[f. gl with [f. g]; € Hom(S (h). q).

Theorem 2.15. For an action p of an sgla(g, [, -|q) on an sgLa(b, [-, -]y), with the nota-
tions above, the triple (sC*(%, @), [, -], d) is a dgLa.

Proof. By Theorem 2.2, the graded Nijenhuis—Richardson bracket [-, -]yg associated to the
direct sum vector space g @ § gives rise to a gLa(C*(g @ , g & b), [, -]xr). Obviously,

C*(h, ) := Bnez Hom" (S(h), q)

is an abelian subalgebra. We denote the symmetric graded Lie brackets [-, -] and [+, -]y by
Ig and iy, respectively. Since p is an action of the sgLa(g. [, ‘]q), itq + p is a semidirect
product sglLa structure on g @ b. Theorem 2.2 implies that ;1g + p and Ay are Maurer—
Cartan elements of the gLa(C*(g @ b, g @ 0). [-, ]xr). Define a differential d;, 4, on
(C*(g@bh.a®@b), [ ]n) via

d/Lg+;0 = [:Uvg + 0, “Ing-

Further, we define the derived bracket on the graded vector space @,cz Hom" (S (), g)
by
[f 8] = (=D)"[dpg+p S glhe = (=D [I1tg + 0, fIvr: 8] e (2.9)
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forall f =) fi e Hom™(S(h).g), g = >_; & € Hom"(S(h). g). Write

+oo

g + 0. flw =D _[ig + p. flig:

i=0
where
[g + p. f1ig € Hom (S’ (). ).
By (2.3), forall k > 2, x1,...,x; € gand vy ..., vt € b, we have
g + p. fIa(Ger 1), (k. k)
= ((g + p) © fim1 = (D)™ fie1 © (g + p)) ((x1,01), - -, (X, v%))

k
=3 (D% (tg + P) (feor (1201 (a0, (e 00)). (51, 01))

=
-=nm Yy k(—1>ﬂfk_1((ug +0)(Cei i) (7. 07). (era v, (. vy),
I<i<j<
(i1 Vi) -+ (0675 07)s - (ks VE))
= Xk;(—l)“(ug + o) ((fe—1 (1. Diveens k), 0). (xi, v;))
—_<—1)'" > k(—l)"fk_l(([x,-,xﬂg,p(xi)v,- + (=1 p(x))vy).
I<i<j=<

(V1) e (X3 Vi) oo (5, 0))s e (s UR))

k
=Y D[S @rns O vi) i o it (U1 B vp)) i)
i=1
— (=™ Z (D (fro1(p(xi)vj 01, oo Dis e Dy 05), 0)
1<i<j<k
— (=D T EDP (S (D" p(j)vin vn o Bin By k). ).
1<i<j<k

Here
o =v;(Vig1 + -+ Vi),
B=vi(vi+--+vi-1) +vj(v1 + -+ vj—1) + Vivj.

On the other hand, we have

[ig +p. [ = 0.
[1tg + . fIr(x1.v1) = ([fo. x1]g. p(fo)v1).
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Moreover, we obtain

[[Mg + 0, f]ng]ﬁR((xl, v1), ..., (xp, vp))
:< Z [”e+Pvf]ﬁRng)((xl,vl),...,(xp,up))

k+l=p+1

_(—1)(m+l)n( 3 grolug +o. f]’;R)((xl,vl),...,(x,,,vp)).

k+l=p+1

By a straightforward computation, we have

(g + oo fIRe 0 &) ((x1.01). ... (. vp))
= > &0)lug + o [Ie(81 (o) Vo) - - - o) Vo))

UGS(l,pfl)
(Xo(41): Vo +1): - - - » (Xa(p) Vo (p)))

= Y e@lg +p i@ @), - Vo), 0),

O'ES(LP,])
(Xo(+1)s Vo +1))s - - -+ (Xa(p): Vo (p)))

= Y @D ([ fim1 o1 Vo) &1, -5 Vo1))] - 0)

(TES(]}F_I)

—=D" Y e0)

0ES(,p-1)

)4 _
X Z (—DP (fim1(p(81(Wa1)s - - -+ Vo)) Vo (j)s Vot41)s - - s Do) -+ - Vo)) 0)
j=l+1

where @ = (Vg(1) + *+* + Vo) + M Vo+1) + *+* + Vo(p) and B = vo(j)(Voq+1) +
-+ + vg(j—1)). Forany o € S, ,—), we define t = 75 € S,y by

. o(i +1), l<i=p-1L
(i) =
oi—p+1Il). p—l+1<i<p.
Thus e(t; vy, ...,vp) = &(0:v1,.. ., vp)(—1)(”0(1)+'“+Uv(l))(va(l+1)+"'+va(p)). In fact, the

elements of S(;, ,—7) are in bijection with the elements of S(,—; ;. Moreover, by k 4 [ =
p + 1, we have

Z (@) (=D)* ([ frm1 (Vo+1)+ - - -+ Vo) 81 (Vo) - - - va(z))]g, 0)

0€Sa,p-1)

= Z 8(t)(_1)s([fk—l(vr(l)v~~-vvr(k—l))sgl(vt(k)»“-vvr(p))]gyo)»

IGS(k,I,l)
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where £ = n(vy(1) + 4 Vg—1)). Forany 0 € S ,—yyand/ + 1 < j < p, we define
T =105j €S@,p-1-1) by
o(i), 1<i<l;
(), i=1+1;
(i) =
o (i), JH+1<i<p.
Thus we have

(T 01, ..., 0p) = (0501, . .., vp)(—1) o) ot FHVoG-1)

Then

p _
Yo e0) Y DP(fmi(p(81 (o). - - Vo)) Vo)
0E€S,p-1) j=Il+1 R
Uo(l+1)7-~~vv0(j)»~~-’vfr(p))’0)

= Z e()(fr=1(0(81(Wetys - - - V2()) Ve +1) Ve 42)s - - - Ve(p) ). 0).

TES@1p—1-1)

Therefore, we obtain

(Iitg + . f15 0 &) ((x1.01). - . (xp.vp))
= Y o)1) e )

O'ES(k_l’l)

X ([ fe=1(Wo(1)s - Votk=1))s &1 (Vo) - - - vo’(p))]g’ 0)

—=D" Y &0 (fie1 (p(81 Vo) - - Vo)) Valt+1): Vot 42)- - - -+ V() 0)-

OES@1,p-1-1)

On the other hand,

(g1 0 [1g + . FI5) (1. v1). - (p. 1))

= Z e(0)g1 (1t + p. SIK((Xo(1)s Vo))s - - - » (o) Vor))) s

OES (k,n—k)

(Xo(+1) Vote+1)): - - -+ (Xa(p): Vo(p)))

k
= Z &(0) Z(—l)“/ (&1(o(fr=1Wa(1)s -+ Vo) - - -+ Vo)) Vo (i) -

0ESk, p—k) i=1
Va+1) - -+ Va(p))- 0)-
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where o' = V5()(Vo(i+1) + -+ + Vo(k))- For 0 € S, p—k) and 1 <i < k, we define
T = T5i € S(k—1,1,p—k) bY

(), l<j=<i-1L
. o(j+1), i<j=<k-1
(j) = ) ,
o(i), j=k;
o(j)- k+1<j<p.
Thus we have &(t; vy, ..., vp) = &(0; V1, . . ., Up)(—1) %@ o+ TFV5®) Then we have

(g1 0 [itg + p. FINR) ((x1.01). - (Xp.Vp))

= Z £(0)(g1(P(fr=1(Vo(1): - - -+ Vo(k=1)) ) Vo k)» Vo (k+1) - - - » Vo (p))+ 0)-
OES(k—1,1,p—k)

By (2.9), we obtain that the derived bracket [-, -] is closed on s C*(}, g), and it is given by
(2.8). Therefore, (sC*(h, ), [,-]) is a gLa.

Moreover, we define a linear map d = [A 1y, -]y on the graded space C* (¢ ® b, g @ b).
By simple computations, we obtain that d is closed on the subspace sC*(}, g), and
is given by (2.7). By [Aup, Auglwe = 0, we obtain that d> = 0. Moreover, by Im p C
Der(h), we have [ug + p, Auglng = 0. Thus, we deduce that d is a derivation of the
gla(sC*(9,g), [-,-]). Therefore, (sC*(h, g), [, -], d) is a dgLa. The proof is finished. m

Homotopy @-operators of weight A can be characterized as Maurer—Cartan elements
of the above dglLa. Note that an element

+00
T =) T; € Hom(S(h). g)

i=0
is of degree 0 if and only if the corresponding element 7" € s Hom(S (), g) is of degree 1.

Theorem 2.16. Let p be an action of an sglLa(g, [, *]q) on an sgLa(h, [, ]g). A degree O
element

400
T =) T € Hom(S(b). )
i=0
is a homotopy O-operator of weight A on g with respect to the action p if and only if
T = Z;og T; is a Maurer—Cartan element of the dgla(sC*(, @), [-, -], d), i.e.,

1
a7 + S[T.7] =0.

Proof. For a degree 0 element T = Z;;og’ T; of the graded vector space C*(}, g), we
write

T + %[[T, T] = Z (dT + é[[T, T]])

1

il
14
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where (dT + %[[T T]); € Hom(S*(9), g). By straightforward computations, we have

(dT + %[[T, T]])p(vl, V)

= — Z (—1)"‘Tp_1(/\[v,-,vj]f),vl,...,f),-,...,ﬁj,...,vp)

I<i<j=p

- Z (o) Te—1(P(T1 (Vo1 - - -+ Vo)) Vo I+1)s Vo +2)+ - - - » Vo (p))
k+l=p+1
OES(1,p—1-1)

1
3 Y @ Te1@orys - Vote-1)) Ti(Wo @) - Vo)

k+l=p+1
O0ES(k-1,)

+

where @ = v; (V1 + -+ + vi—1) + vj(v1 + -+ + vj—1) + v;v;. Thus, T = Z;;og T: €
Hom(S (), g) is a homotopy @-operator of weight A on g with respect to the action p if
andonly if T = Z;’:g T; is a Maurer—Cartan element of the dglLa(sC*(§, @), [-,-],d). =

We note that a Lie algebra is an sgla concentrated at degree —1. Moreover, a Lie
algebra action is the same as an action of the sglLa on a graded vector space concentrated
at degree —1. Therefore, we have the following corollary.

Corollary 2.17. Let p : g — Der(Y) be an action of a Lie algebra g on a Lie algebra ).
Then a linear map T : §) — g is an OQ-operator of weight A on g with respect to the action
p if and only if T is a Maurer—Cartan element of the dgLa(®, 25 Hom(A"b, q), [, -], d),
where the differential d : Hom(A"}, g) — Hom(A" 1Y, q) is given by

(dg)(v1,. .., Vnt1)

= Z (—1)"+i+j_1g()t[vi,vj]f),vl,...,ﬁi,...,ﬁj,...,vn+1),

1<i<j<n+1
forall g € Hom(A"Y, g) and vy, ..., v,4+1 € Y, and the graded Lie bracket
[-.-] : Hom(A™}, ) x Hom(A™}, ) — Hom(A™ "}, q)
is given by
[g1. &2l (V1. Vmn)
= Y D" (p(22(o(1): - - Vom)) Vot 1): Vom42): - - -+ Vo(m-tn))

Ueg(m,l,n—l)

+ Z (—l)m”+ag2 (P(gl (Uo(l)v ceey Ua(n)))vo(n-ﬁ—l)v Vo(n+2)s -+ Uo(m+n))

UES(n,l,mfl)

+ (_1)1+mn+0 [gl (Ua(l)v cee Uo(n))’ gz(vo(n+1), ceey vo(m-i—n))] s
g

O'GS(n‘m)

for all g1 € Hom(A"Y), g), g2 € Hom(A™)), g) and vy, ..., Umyn € 5.
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If the Lie algebra |} is abelian in the above corollary, we recover the gla that controls
the deformations of ()-operators of weight O given in [45, Proposition 2.3].

3. Operator homotopy post-Lie algebras

In this section, we first recall the notion of a post-Lie algebra, and then give the definition
of an operator homotopy post-Lie algebra as a variation of a homotopy post-Lie algebra.
We construct a dglLa and show that operator homotopy post-Lie algebras can be charac-
terized as its Maurer—Cartan elements to justify the notion. We also show that operator
homotopy post-Lie algebras naturally arise from homotopy (9-operators of weight 1.

Definition 3.1 ([47]). A post-Lie algebra (g, [+, |4, >) consists of a Lie algebra (g, [, ]q)
and a binary product >: ¢ ® @ — @ such that

x> [y, zlg =[x >y, zlg + [y, x > zlq, (3.1)
[x.ylg >z = ap(x,y,2) —an(y. x. 2), (32
here an(x,y,z) :=x> (y>z)—(x>y)>zand x,y,z € g.

Define L : g — gl(g) by L= (x)(y) = x > y. Then by (3.1), L is a linear map
from g to Der(g). In the sequel, we will say that Ly is a post-Lie algebra structure on the
Lie algebra (g, [, -]q)-

Remark 3.2. Let (g, [-,:]q. ) be a post-Lie algebra. If the Lie bracket [-, ] = 0, then
(g, >) becomes a pre-Lie algebra. Thus, a post-Lie algebra can be viewed as a nonabelian
version of a pre-Lie algebra. See [10, 11] for the classifications of post-Lie algebras on
certain Lie algebras, and [35] for applications of post-Lie algebras in numerical integra-
tion.

The following well-known result is a special case of splitting of operads [4,39,47].
Proposition 3.3. Let (g, [.-]q.>) be a post-Lie algebra. Then the bracket -, -]c defined by
X, ylci=x>y—y>x+[x,ylg, Vx,yeagq, (3.3)
is a Lie bracket.

We denote this Lie algebra by € and call it the sub-adjacent Lie algebra of the post-
Lie algebra (g, [, |4, >).

Definition 3.4. An operator homotopy post-Lie algebra is an sgla(g, [-, -]q) equipped
with a collection (k > 1) of linear maps 60 : ®q — g of degree 1 satisfying, for every
collection of homogeneous elements xy, ..., X,, Xy+1 € g,

(1)  (graded symmetry) for every 0 € S,_1,n > 1,

9}1 (xU(l)’ ceey xa(n—l), xn) = S(O—)Gn(XI, e Xn—1, xn)s (34’)
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(i) (graded derivation) for alln > 1,

On (xlv ey Xn—1, [-x}’h xn+1]g)
— (_1)x1+-..+Xn—l+l[9n (xl’ e Xne1, xn), xn—i—l]g
+ (_1)(x1+~..+Xn—1+1)(xn+1)I:xn’ On(x1, ... »xn—l»xn-l-l)]gv (3.5)
@iii) foralln > 1,
> £(0)0; (6i (V5 (1)> - - -+ Vo (i—1)> V(i) Vo +1) - - - » Vo (n—1)» Un)

i+j=n+1,i>1,j>2
0E€S(i-1,1,j-2)

+ Z (=1)%e(0)0; (Vo(1ys - - -+ Vo(j—1)- i (Vo ().

i+j=n+1,i>1,j>1
0ES(j-1i-1)

-+ Ug(n—1)» Un))
= Z (_])ﬂen—l([xivxj]gs-xl»"'521-9"'7)2]‘7"'7)6}1)5 (3'6)
1<i<j<n-—1

where
&= Xg(1) + Xe2) t 0 F Xo(j-1)s
,3 =x;(xy + -+ xi—1) —}—xj(xl + .- +xj_1) + xix; + 1.

The notion of a pre-Lieso-algebra was introduced in [13]. Recall that a pre-Lieso-
algebra is a graded vector space V' equipped with a collection of linear maps

O 1 @V >V, k>1,

of degree 1 with the property that, for any homogeneous elements vy,
have

(i) (graded symmetry) for every o € S, _1,

..., €V, we

0n(Vo(1)s - - - » Vo(n—1)> Un) = €(0)0p (V1, ..., Vn—1,Vn),

(i) foralln > 1,

> £(0)0; (0 (Vo (1), - -+ Vo(i—1)s Vo (i) Vo (i+1)»

<o Vo(n—1)» vn)
i4j=nt1,ix1, j>2
0ES(i—1,1,j-2)
+ > (=D%e(0)0; (vo1)- - - -+ Vo(j=1) i Wa () - - -+ Vo(n—1)- Un)) = O.

i+j=n+1,ix1, j>1
0€S(j-1,i-1)
where & = Vg (1) + Vo(2) +** + Vo(j—1)-

Obviously, an operator homotopy post-Lie algebra (g, [-, |4, {6k }:ﬁ) reduces to a
pre-Lies-algebra when (g, [+, -]4) is an abelian sgLa.
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Remark 3.5. Since a Rota—Baxter Lie algebra of weight 1 gives a post-Lie algebra, we
expect that a Rota—Baxter homotopy Lie algebra of weight 1 (a homotopy Lie algebra
with a Rota—Baxter operator of weight 1) induces a homotopy post-Lie algebra.

Now we construct the dgla that characterizes operator homotopy post-Lie algebras as
Maurer—Cartan elements. Let (b, [, -]5) be an sgLa. Denote

€"(h.h) := Hom" (S(h).s ' Der(h)). C€*(h.h) := BuezC"(h. D).
Define a graded linear map 9 : €" (0, ) — €"*1(p, h) by

OB)p i vp) = Y (=D Bpoa([virvjlpe viee o Dine By vp),
I<i<j=<p
where o« =n + 1 4+ v;(vy + -+ + vi—1) + v;(v1 + -+ + vj—1) + v;v,. Then define a
graded bracket operation

[ -] : €™ (h,h) x €"(h, ) — €™ H1(p, )
by

[(X, ﬁ];(vl5 ey vp)

== Y e@a-1(s(Bi(Wor):- - Vo)) Vo 41): Vo 42): - - - Vo (p))
k+l=p+1
OES@,1,p—1-1)

+ D8 DT e@Bi(s (-1 (Wo(1): - - Vot—1)) Vo) Vol t1): - - - - Vo(p))
k+l=p+1
OES(k—1,1,p—k)

- Z (=1)"e(0)s ™ [setr—1(Ws(1): - - -+ Vok=1))s SBi (Vo (k)s - - -+ Vo () ]

k+l=p+1
OES k-1,

where § = (m + 1)(n 4+ 1), n = (2 + 1) (Vo(1) + -+ + Vok—1)) and @ =), a; €€™ (5, ),
B=>,Bi €€"(h,h withe;, B; € Hom(S* (), s~ Der()) and vy, ..., vp € b. Here
we write 8 = Y_;(9B); with (98); € Hom(S'(h), s~ ! Der(h)) and [, B] = Y, [e, BI¢
with [e, B]¢ € Hom(S* (), s~! Der(b)).

Theorem 3.6. With the above notations, (sg* (5, 9), [, ], 9) is a dgla. Moreover, its

Maurer—Cartan elements are precisely the operator homotopy post-Lie algebra structures
on the sglLa(b, [, ]g).

Proof. Setting A =1, g = s~ ! Der(h) and p = s in Theorem 2.15, we obtain that
(s€*(9,H),[,-]¢, d) is a dglLa.

Let L = ;;og L; € Hom°(S(9), s__1 Der()) with L; € Hom(S? (), s~! Der(h)) be
a Maurer—Cartan element of the dgla(s€*(, b), [-,-]¢, ). We define a collection of linear
maps 0y : ®h — § (k > 1) of degree 1 by

Or(Vy, ..., V) 1= (st_l(vl, e vk_l))vk, Yvi...,vr €5. (3.7
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By L,_; € Hom®(S"~1(h),s~! Der(h)), we obtain (3.4) and (3.5). Moreover, write dL +
SIL, L) =Y, (0L + 3[L, L]°); with (3L + 3[L.L]°); € Hom(S’ (). s~ ' Der(f)). Then
for all vy, ..., v, € 0, by a similar computation as in the proof of Theorem 2.16, we have

(s((aL + %[L, L]C)n—1) (v1,..., vn_l)) Up

=_ Z Op—1 (=1)* ([vi, vjl5. V1o s Dy Djs oo Unet, Un)

l<i<j<n—1

— > &@)0k(0111(We1): - - Vo) Vot +1))- Vot 42)+ - - -+ Vo(n—1)- Vn)

k+1=n
0ES(, 1,n—-1-2)

— Z (—l)ﬂg(a)ﬁk (vg(l), ey Ug(k_l), 91+1(v0(k), ey vo(,,_l), v,,)),
k+l=n

GES(k,l’l)
where @ = v;(v1 + -+ + vi—1) + v (v1 + -+ vj—1) + v;v; and B = veqa) + o0 +
Vg (k—1)» Which implies (3.6). Thus, {9;{};3 is an operator homotopy post-Lie algebra
structure on the sgLa(b, [, -]g). L]

When the sglal) reduces to a usual Lie algebra, we characterize post-Lie algebra
structures on ) as Maurer—Cartan elements. See [10, 11,20, 38] for classifications of post-
Lie algebras on some specific Lie algebras.

Corollary 3.7. Let (1, [, ]y) be a Lie algebra. Denote €" (b, ) := Hom(A", Der(h))
and €* (9, 5) := ®,=0€" (5. h). Then (€*(H.,9).[-.-|°. d) is a dgla, where the differential
3 :€"(h, h) — €1 (Y, ) is given by

(Qa)(uy, ..., Up41)
= Z (—1)"+i+j—1a([ui,uj]f,,ul,...,ﬁi,...,ﬁj,...,un+1),
1<i<j=<n+1

and the graded Lie bracket [-,-]¢ : €"(h, ) x €™(h, §) — €™ (., §) is given by

[o, BI°(urs - oo s Umtn)

= - Z (_l)ga(ﬂ(ua(l)v e uo(m))ua(m+1)a Us(m+2)s -+ uo(m+n))

UES(m,l,nfl)

+ (=™ Z (_l)oﬂ(a(ug(l), e, uo'(n))ua(n_l'_l), Ug(n42)s -+ ua(,,H_n))

UeS(n,l,m—l)

— (=™ Z (-1)° [O‘(ua(l)v cees ua(n))’ ,B(ua(n+1)a cees ucr(m+n))]»

OES(n,m)

for all « € Hom(A"h, Der(h)), B € Hom(A™Y, Der(h)), and uy, ..., upmyn € 5.
Moreover, L. : Y) — Der(Y) defines a post-Lie algebra structure on the Lie algebra
(b. [, -]g) if and only if L is a Maurer—Cartan element of the dgLa(€* (b, b), [-. ], d).
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When the sgla} is abelian, we characterize pre-Lie-algebras as Maurer—Cartan ele-
ments, which was originally given in [13].

Corollary 3.8. Let V be a Z-graded vector space. Denote
€"(V,V):=Hom" (S(V),gl(V)), €*(V.V) := ®uez€" (V. V).

Then (€*(V, V), [-,-) is a gLa, with the graded Lie bracket

[ €MV, V) x €NV, V) — €MV, V),

[a, B, (v1, ..., vp)

= - Z e(0)k—1(B1(Vo(1): - - -+ Vo)) Va(i4+1)s Va(i+2)s - - - + Vo (p))
k+l=p+1
OES@,1,p-1-1)
+ D™ Y 2 0)B(k-1 (Vo) - - Vok-1)Vo (k) Valkt 1) - - - Vo(p))
k+l=p+1
OES(k—1,1,p—k)

- Z (=¥ e(0)[et=1 Wo1)s - - -+ Votk=1))s Bt Vo k)s - - -+ Vo)) ]

k+l=p+1
OES(k—1.1)

where & = n(ve(1y + -+ + Vo—n) anda =Y ;a; € €™(V, V), B =Y. B € €E*(V,V)
with o, Bi € Hom(S*(V), V).

Moreover,
+oo

L =>"L; € Hom' (S(V).gl(V))
i=0

defines a pre-Lieso-algebra structure by
Ok (v1s.. o V) = Lg—1(V1, ..., V1)V, VU1...,0r €V, (3.8)

on the grc_lded vector space V if and only if L = Z;Log L; is a Maurer—Cartan element of
the gLa(€*(V, V), [-,"]°).

In the above corollary, if the graded vector space V reduces to a usual vector space, we
characterize pre-Lie algebra structures as Maurer—Cartan elements. See [13,36] for more
details.

It is known that post-Lie algebras naturally arise from ()-operators of weight 1 as
follows.

Proposition 3.9 ([5]). Let T : §) — g be an O-operator of weight 1. Then (b, [-, -]g. >) is
a post-Lie algebra with the multiplication u > v := p(Tu)v.

In the sequel, we generalize the above relation to homotopy (-operators of weight 1
and operator homotopy post-Lie algebras.
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Define a graded linear map W : C*(b, g) — €*(0, §) of degree 0 by

W(f)=s""opof ¥feHom"(S(h).q).

Therefore, we have W(f)r = s~ ! o po fi. In the following, we set A = 1 in Theorem
2.15 for notational simplicity.

Theorem 3.10. Let (g, [-,*]q) and (9. [-,]y) be sglas and p : ¢ — Der(b) an sglLa action.
Then ¥ is a homomorphism of dgLas from (sC*(9, g), [-,-], d) to (s€*(9, §), [, -], 9).

Proof. 1t follows from a direct but tedious computation. We omit details. |

Now we are ready to show that the homotopy (-operators of weight 1 induce operator
homotopy post-Lie algebras.

Theorem 3.11. Let T = Z;og T; € Hom®(S(h), q) be a homotopy O-operator of weight
1 on an sgla(ag, [-, 1) with respect to an action p : g — Der(h)). Then (b, [-, -]y, {Gk},j'zoi
is an operator homotopy post-Lie algebra, where 0y : @t — 0y (k > 1) are linear maps
of degree 1 defined by

Ok (1, v) == p(Te—1 (V1. ..., Vk—1))Vk, VYU1...,0% €D (3.9)

Proof. By Iheorems 2.16 and 3.10, we deduce that W(T') is a Maurer—Cartan element of
the dgLa(s€*(h,h),[-,-], d). Moreover, by Theorem 3.6, we obtain that (b, [-, ], {Gk};g)
is an operator homotopy post-Lie algebra. [

Corollary 3.12. Let T = Zj:g T; € Hom°(S(V), q) be a homotopy O-operator of
weight 0 on an sglLa(g, [+, -]g) with respect to an action p : g — gl(V). Then (V, {Qk};j:
is a pre-Lieso-algebra, where 0y : %V —V (k> 1) are linear maps of degree 1 defined by

O (v1, ..., vx) = p(Tg—1 (v, ..., vk,l))vk, Yvi...,v € V. (3.10)

It is straightforward to obtain the following result.
Proposition 3.13. Let (g, [-. ]g. {Hk}]:":ﬁ) be an operator homotopy post-Lie algebra.
Then (g, {lk},;’_i?) is an Loo-algebra, where |y = 64, [, is defined by

L(x,y) = 62(x,y) + (=) 62(y, x) + [x, ylq, (3.11)

and for k > 3, I is defined by

k
Be(xp,oxg) = Y (=DMt 00, (o % X ). (3.12)
i=1
Definition 3.14 ([25]). Let (V, {lk}?:fi) be an Lo-algebra and (V”, {l,/c}ljzo‘j) an Lgo-
algebra in which /; = 0 for all k > 1 except k = 2. A curved Lo-algebra homomorphism
from (V, {lk};{r:"i) to (V',1}) consists of a collection of degree 0 graded multilinear maps
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fi : V®* — V', k > 0, with the property that f,(Vs(1), - - - » Vo(n) = &(0) fu(V1,- - ., Vn),
for any n > 0 and homogeneous elements vy, ...,v, € V, and

n
Yo Y 0 famit (i) - Vo) Vo(it1)s - - - Vo(n)

i=10€S; i)
1 & ,
= EZ Y @G (/o) Vo) SaiWat1): - - - Vo))
i=00€S(; ;i)

Then combining Theorems 3.11 and 3.13, we obtain the following one.

Theorem 3.15. Let T = Z;’:g T; € Hom(S(Y), g) be a homotopy O-operator of weight
1 on an sgla(g, [, :]q) with respect to the action p : ¢ — Der(h). Then T is a curved
Loo-algebra homomorphism from the Lo-algebra (9, {lx }2‘3) to (g. [ 1g)-

Proof. Forall vy, ..., v, €0, by straightforward computations, we have

n
Y > @@ Tuiv1 (o). -2 Vo) Vo 41)s - - - Vom)

i=10€S; )
- Z (=D *T—1 ([vi, vj]5e V1o oo Disee o, Djsee oy 0p)s
1<i<j<n
n
Z Z () Tn-i+1(p(Ti-1(Wo 1) - - -+ Vo (i—1))) Vo (i) Vo i+1)s - - - > Vor(n))
i=1 U’ES(i_l,l,n—i)

n
s 1
= 5 Z Z 8(0)[n (va(l)a ceey Ua(i)), Th—i (Ua(i+l)y caey Ua(n))]g»

i=0 O‘ES(,"n_i)

where o« = v; (v + -+ 4+ vi—1) + v;(v1 + -+ vj_1) + v;vj, which implies that T is a
curved L -algebra homomorphism. ]

Similarly, the above result also holds for homotopy (-operators of weight 0.

4. Classification of 2-term skeletal operator homotopy post-Lie
algebras

In general, it is expected that the 2-term homotopy of an algebra structure is equivalent
to the categorification of this algebraic structure, and the 2-term homotopy algebras are
quasi-isomorphic to the 2-term skeletal homotopy algebras, which are classified by the
third cohomological group. Baez and Crans [2] accomplished these for Lie algebras. In
this spirit, we classify 2-term skeletal operator homotopy post-Lie algebras by the third
cohomology group of a post-Lie algebra. For this purpose, we first define representations
of post-Lie algebras and then develop the corresponding cohomology theory.
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4.1. Representations of post-Lie algebras

Here we introduce the notion of a representation of a post-Lie algebra (g, [, ]q.>) on a
vector space V. We show that there is naturally an induced representation of the sub-
adjacent Lie algebra g€ on Der(g, V). This fact plays a crucial role in our study of
cohomology groups of post-Lie algebras in the next subsection.

Definition 4.1. A representation of a post-Lie algebra (g, [, ]4. >) on a vector space V
is a triple (p, i, v), where p : ¢ — gl(}') is a representation of the Lie algebra (g, [, ]q)
onV,and p,v : g — gl(V) are linear maps satisfying that for all x, y € g,

plx > y) = p(x)op(y) —p(y) o pn(x), 4.1)
v([x, yla) = p(x) o v(y) = p(¥) 0 v(x), (4.2)
(B, ylg) = p(x) o () — p(x > ) — pu(y) o p(x) + p(y > x), (4.3)
v(y) o p(x) = pu(x) ov(y) —v(y) o u(x) —v(x > y) + v(y) o v(x). (4.4)

Let (g, [-,-]q. ) be a post-Lie algebra and (V'; p, i, V) a representation of (g, [, ]g. >).
By Proposition 3.3 and (4.3), we deduce that (V'; i) is a representation of the sub-adjacent
Lie algebra (g, [, -]c)- It is obvious that (g; ad, L~, R) is a representation of a post-Lie
algebra on itself, which is called the regular representation.
Let (V; p, i, v) be a representation of a post-Lie algebra (g, [, :]g. >>). Define a Lie
bracket [-,-], : ®*(a® V) - g@® V by
[x1 + vi,x2 + v2]p 1= [x1, x2]g + p(x1)v2 — p(x2)v1, 4.5)
and a bilinear operation >, ,: ®*(g® V) —> g @ V by
(X1 4+ v1) D (X2 +v2) 1= x1 > X2 + u(x1)v2 + v(x2)V1. (4.6)
By straightforward computations, we have the following theorem.

Theorem 4.2. With the above notations, (g ® V., [+, 1o, >u,v) is a post-Lie algebra.

The post-Lie algebra given above is called the semidirect product of the post-Lie alge-
bra (g, [, ]q, >) and the representation (V; p, i, v), and is denoted by g %, .., V.

Proposition 4.3. Let (V; p, i, v) be a representation of a post-Lie algebra (g, [, g, >).
Then (V; p + i — v) is a representation of the sub-adjacent Lie algebra (g, [-,*]c).

Proof. By Theorem 4.2, we have the semidirect product post-Lie algebra g x, ;.. V.
Considering its sub-adjacent Lie algebra structure [-, -]c, we have

[(x1 +v1). (2 +v2)]
= x1 > X2 + p(x)v2 + v(x2)vy — X2 D> X1 — p(x2)vy —v(x1)va
+ [x1, X2]g + p(x1)v2 — p(x2)V1
= [x1,x2]c + (p+ 1w —v)(x1)v2 — (p + u —v)(x2) V1. 4.7)
Thus (V; p + p — v) is a representation of the sub-adjacent Lie algebra (g, [+, ‘]c)- |



24 R. Tang, C. Bai, L. Guo, and Y. Sheng

In particular, if (p, u,v) = (ad, L>, R) is the regular representation of a post-Lie
algebra (g, [, "]g.>), thenad + L — Ry is the adjoint representation of the sub-adjacent
Lie algebra (g, [, "]c)-

Corollary 4.4. Let (V; p, i, v) be a representation of a post-Lie algebra (g, [+, |q, >).
Then the semidirect product post-Lie algebras @ X, ., V and g Xo p4u—v,0 V given by
the representations (V; p, u,v) and (V; 0, p + . — v, 0) respectively have the same sub-
adjacent Lie algebra g€ X ptpu—v V given by (4.7), which is the semidirect product of the
Lie algebra (g, [-,|c) and its representation (V; p + & — v).

Let (V; p, i, v) be a representation of a post-Lie algebra (g, [-, 4. >). We set

Der(g, V) := {f € Hom(g. V) | f([x.ylg) = p(x) f () — p(») f(x)} (4.8)

and define p : ¢ — Hom(Der(qg, V), Hom(g, V)) by

(B y = ) f () +v() f(x) = f(x > ), (4.9)

where x,y € g, f € Der(g, V). By a straightforward computation, we deduce the follow-
ing lemma.

Lemma 4.5. For all x € g, we have p(x) € gl(Der(g, V)).

Theorem 4.6. Let (V; p, |1, v) be a representation of a post-Lie algebra (g, [-, ]q, >).
Then (Der(g, V); p) is a representation of the sub-adjacent Lie algebra (g, [+, "|c), where
p is given by (4.9).

Proof. By (4.9), forall x,y,z € gand f € Der(g, V), we have

(([6(x). 2] = A([x. ¥1c)) ()=
= pn(@) () f(2) +v@) f(y) = f(y > 2))

+ (@) () f(xX) +v(x) f(y) = f(y > x))

— (kW flx>z)+vx>z2)f(y)— f(y > (x> 2))

— () (1) f(2) +v(2) f(x) = f(x > 2))

(@) () fG) +v()f(x) = fx > y))

+ () f(y>2)+v(y>2)f(x) = x> (y > 2)))

—pu(x >y =y x+[xylg) f(2) =vE@) f(x >y —y > x+[x,y]g)
+ f((x>y—y>x+[xylg)>2)
px)v(z) f(y) +v(@) ) f(x) +vE@)v(x) f(y) —vix > 2) f(y)
— @) f(x) —v(@)px) f(y) —vE@)v(y) f(x)
+v(y > 2) f(x) —v(z) f([x. ¥]g)

(3.2),4.3)
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(4.8)

2 E) fO) HYERO)SX) HEVE) FO) = v & 2 ()
—_—
—HOVE)SE) = @RE) f(0) v EVE)FE) + v > 2) f ()
—_————
—0()p(0) f() +0()p(r) /()
—_—————

44
(:) 0.

Thus (Der(g, V); p) is a representation of the sub-adjacent Lie algebra (g, [+, -]¢). |

4.2. Cohomology groups of post-Lie algebras

In this subsection, we define the cohomology groups of a post-Lie algebra with coefficients
in an arbitrary representation. Furthermore, we establish a precise relationship between the
cohomology groups of a post-Lie algebra and those of its sub-adjacent Lie algebra.

Let (V; p, i, v) be a representation of a post-Lie algebra (g, [, ]4. >>). We have the
natural isomorphism

® : Hom(A" g ®gq., V) — Hom(/\”_1 g.Hom(g, V))

defined by
(P(@) (X1, Xn—1))Xn 1= O(X1s o, Xp—1, X, (4.10)

where x1,...,X,—1,X, € g. Define the set of O-cochains to be 0. For n > 1, we define the
set of n-cochains CJj..(g. V') by

Che(g.V) = {f eHom(A" 'g ® . V) | D(f)(x1,....Xn—1) € Der(g, V)}.
For f € C}..(g. V), x1,...,Xp41 € g, define an operator
§:Ch.(g.V) - Hom(A"g® g, V)
by
)1y Xng1)
n
= D DT ) fn R X X))

i=1

n
+ Z(—l)iﬂv(an)f(xl, e Xy XL XG)

i=1

n
=) DT G R X X B Xng)
i=1
+ Y D F(xxlen X R R X ). (4.11)

1<i<j<n

Proposition 4.7. Forall f € CZ. (a,V), we have §f € CEI ' (a, V).
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Proof. By the definition of C]S’e"r'l (g. V), we just need to prove that ®(5f)(x1,...,Xp) is
in Der(g, V') for any x;,...,x, € g. Forall x, y € g, we have

OGL)(x1 - xa) (X, ¥]g)
@1n Z(_I)H'lu(xi)f(xl, e X X, [ Y]g)

i=1

+ Z(—l)iﬂv([x,y]g)f(xl, s X X, X))
i=1

n
—Z(—l)i+1f(x1,...,)?,-,...,x,,,xi > [x,y]g)

i=1

+ Z (=" f([xi xle Xt o Ry oo Ry X [, 0]g)

1<i<j<n

G142 Z(—l)i+1u(xi)(p(x)f(x1, c X X0 y)

i=1
_ 2(_1)i+lu(x,-)(p(y)f(xl, e Ris X X))
+ 2(—1)"“(/0@)\)@) = PWE)) (1o R Xn, Xi)
_ i(_l)”lp(xi > x) (X1, Xiv e Xnn )
i=1
+ Zn:(_l)i"‘lp(y)f(xl,...,fci,...,xn,xi > x)
i=1

n
=D DT ) f @ Fi e xi B )
i=1

n
+Z(—l)i+1p(x,- > ) (X1, Xiyeens Xn,y X)

i=1

+ Z (_1)i+jp(x)f([xi’xj]c’xl’""£i$“"'£j7“'7xn’y)
1<i<j<n

— > D) f (i xide s xae s Ris e Ry X X)
1<i<j<n

B EDF @ 0) = P E) f R x0)

i=1

+ Y (=D () () f (xR Xn. )

i=1
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n
Y Do) f(xra L K XX B )
i=1

=2 D) for R i B> )

i=1

=Y DT ) () fxrn Ris X )

i=1
+ Z (=" p) f([xi, X ]co Xta oo Ry oo R Xy )
1<i<j<n
— > D) f (Ixixile.xnn o RinR Xa, X)
1<i<j<n
= P (PG (X1, Xn)y) = P (PGS ) (X1, X)),
Thus we deduce that ®(5f)(x1,...,x,) is in Der(g, V). m

Proving that the operator § is indeed a coboundary operator needs some preparation.

Proposition 4.8. Let (V'; p, |, v) be a representation of a post-Lie algebra (g, [-, ]g. >).
Then we have ® o § = dy o ®, where dj is the coboundary operator of the sub-adjacent
Lie algebra g€ with coefficients in the representation (Der(g, V): p) given in Theorem 4.6
and § is defined by (4.11).

Proof. Forall f € C}..(g.V)and xq,...,x,41 € g, we have
(dﬁ(q)(f))(xl, ces xn))xn+l
= > D AR Fi X)) X

i=1

+ Z (—1)i+j(q>(f)([x,-,xj]c,xl,...,)?i,...,xj,...,xn))an

1<i<j<n

(49) Z(—l)i+lﬂ(xi)q)(f)(xl’ e X X)X

i=1

+ Y DT )P s Ri X)X

i=1
=Y DR R X)) (X B Xar)
i=1

+ Z (_I)Hj(q)(f)([xivx.i]c,x1, s R R X)) X

1<i<j<n
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n
(4.10) i N
=Y DT ) f e R X Xngr)

i=1

n
+ ) Do) f(x1 e R X, x0)

i=1
n
- Z(—l)’“f(xl,...,)Qi,...,x,,,x,- > Xp41)

i=1

+ Z (=" f([xix]e Xt oo Ry oo Ry oo Xy Xn1)
1<i<j<n

@11

= (61, Xnt1)
2 (@) (1 X)) s,
which implies that dj 0 ® = ® o §. L]

Theorem 4.9. The operator § : Cl5..(g. V) — C]S’e'rH (g, V) defined by (4.11) satisfies § o
§=0.

Proof. By Proposition 4.8, we have § = ®~! o d; o ®. Thus, by the fact that d; o d5 = 0,
we obtain§ 0§ = @l ods0ds0® =0. =

Let (V; p, i, v) be a representation of a post-Lie algebra (g, [-, ], ). Denote

Cre(3. V) := P Chr(g. V).

n>1

Then we have the cochain complex (CJ.. (g, V), §). Denote the set of closed n-cochains
by Z"(g, V) and the set of exact n-cochains by B" (g, V). We denote

H"(g.V)=Z"(g.V)/B"(g.V)

and call them the cohomology groups of the post-Lie algebra (g, [+, -]q, >) with coefficients
in the representation (V; p, i, v).
It is obvious that f € Ci,.(g, V) is closed if and only if f € Der(g, V) and

v S() +px) f(y) = flx>y) =0, Vx,yeg.
Also f € C2..(g, V) is closed if and only if ®( /) € Hom(g, Der(g, V)) and
v(x3) f(x2, x1) + pu(oxn) f (o2, x3) = fx2, x1 B> x3) = v(x3) f(x1. X2)

— pu(x2) f(x1,x3) + f(x1,x2 > x3) — f(x1 > x2,x3) + f(x2 > x1,x3)
— f([x1.x2]g. x3) =0, Vx1,x2,x3 € g.

There is a close relationship between the cohomology groups of post-Lie algebras and
those of the corresponding sub-adjacent Lie algebras.
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Theorem 4.10. Let (V; p, i, v) be a representation of a post-Lie algebra (g, [, g, ).
Then the cohomology group H" (g, V') of the post-Lie algebra (g, [, ]q. =) and the coho-
mology group H" (g€, Der(g, V)) of the sub-adjacent Lie algebra g€ are isomorphic
foralln > 1.

Proof. By Proposition 4.8, we deduce that ® is an isomorphism from the cochain complex
(CE..(g, V), 8) to the cochain complex (€*~!(g, Der(g, V)), dp). Thus, ® induces an
isomorphism ®, from H*(g, V) to H*~' (g€, Der(g, V)). |

In the above theorem, if [-, -] and p are zero, then the post-Lie algebra is a pre-Lie
algebra and we recover the result of [16] as follows.

Corollary 4.11. Let (V; i, v) be a representation of a pre-Lie algebra (g, t>). Then the
cohomology group H"™ (g, V') of the pre-Lie algebra (g, >) and the cohomology group
H" (g€, Hom(g, V)) of the sub-adjacent Lie algebra g€ are isomorphic for all n > 1.

4.3. Classification of 2-term skeletal operator homotopy post-Lie algebras

In this subsection, we first give an equivalent definition of an operator homotopy post-Lie
algebra and then classify 2-term skeletal operator homotopy post-Lie algebras using the
third cohomology group given in Section 4.2.

Foralli > 1,let ®; : A'=!q ® g — g be a graded linear map of degree 2 — i. Define

D®;): 0 s lg®s g —> s g

by y
D©) = (-5 00; 05,

which is a graded linear map of degree 1.
Using this process, we can give an equivalent definition of an operator homotopy post-
Lie algebra as follows.

Definition 4.12. An operator homotopy post-Lie algebra is a graded Lie algebra (g, [, -])
equipped with a collection of linear maps @ : @€q — g, k > 1, of degree 2 — k satisfying
that, for any homogeneous elements x1, ..., X,, X541 € g, the following conditions hold:

(i)  (graded antisymmetry) for every 0 € Sy_1,n > 1,
On(Xo(1)s -+ s Xom—1)s Xn) = X(0)On(X1,..., Xn—1,Xn), 4.12)
(i)  (graded derivation) for alln > 1,
On(x1. ..o Xn—1. [Xn, Xnt1lg)

= [®n(x1» e 9xn—17xn)7'xﬂ+l]g

+ (—l)x"(x1+"'+x"‘1+")[x,,, On(X1s. .., Xn—1, x,,+1)] (4.13)

Q’
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(iii) forallm > 1,

Z (—1)ﬁ®n_1([x,~,xj]g,x1,...,)?i,...,)?j,...,xn)

1<i<j<n-—1

= 2 DT

i+j=n+1,i>1,j>2
OES(-1,1,j-2)

X ®j (®l (x0(1)9 cees xo(i))» Xo(i+1)s--+>Xo(n—1)» xn)
+ > (=D (=D)*x(0)

i+j=n+1,i>1,j>1
UES(j—l,i—l)

b CH (xa(l), ce e Xg(j=1), Oi (X () - - -5 Xa(n—1)» X,,)), (4.14)
where B = x;(x; + -+ 4+ xi—1) + xj(x1 + -+ + xj—1) + x;x; + i + j and
o =i(Xg(1) + Xo2) +* + Xo(j—1))-
By (4.13), forn = 1, we have

O1([x1, x2]g) = [®1()61)7162]g + (=D* [xy, @1(x2)]g. (4.15)

By (4.14), for n = 1, we have @% = 0 and so (g, ®1) is a complex. By (4.14), forn = 2,
we have

0= —02(01(x1), x2) — (=1)""O2(x1. O1(x2)) + O1(O2(x1, x2)). (4.16)

Now we will show that the corresponding cohomology space H *(g) of the complex
(g, ®1) enjoys a graded post-Lie algebra structure and this justifies our definition of an
“operator homotopy post-Lie algebra”.

Theorem 4.13. Let (g, [+, ]g. {Ok };3) be an operator homotopy post-Lie algebra. Then
the cohomology space H*(g) is a graded post-Lie algebra.

Proof. For any homogeneous element x € ker(©®;), we denote by X € H*(g) its cohomo-
logical class. First, we define a graded bracket operation [-, -] on the graded vector space

H*(g) by
[¥.7] := [x.y]g. VX.y € H(g)

If x = X/, then there exists X € g such that x’ = x + ©1(X). Hence by (4.15), we have

[X/7)_}] = [X +®1(X)’y]g = [X»Y]g + ®1([XvY]g) = [X’Y]g = [)_C’.)_}]v

which implies that [-, -] is well defined. It is straightforward to obtain that (H *(g), [-,]) is
a graded Lie algebra.
Then we define a multiplication t> on the graded vector space H *(g) by

X y:i=0s(x,y), VX,ye€H(g)
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Similarly, by (4.16), we can deduce that >> is well defined. By (4.13) for n = 2, we have

X [7.2] = O2(x, [v.2lg) = [@2(x.9). 2] + (=D™[y, O2(x,2)],
=[xX>yzl++CDV Y x>z

In the same way, by (4.14) for n = 3, we have
X, V> zZ=ax(X,y,2) —ax (), X,Z).
Therefore, (H™*(g), [, ], ) is a graded post-Lie algebra. L]

By truncation, we obtain the definition of a 2-term operator homotopy post-Lie alge-
bra.

Definition 4.14. A 2-term operator homotopy post-Lie algebra is a 2-term graded Lie
algebra (g = go @ g1, [ J¢) equipped with

e alinearmap ®; : g—; — go,

* alinearmap ®, :q; ® g; — gi+j, 1 <i+j =<0,

e alinear map O3 : A%go ® qo — g_1

such that for all x, y,z,w € go and a, b € g_1, the following equalities hold:

(a1) O1([x,alg) = [x, O1(a)]g;

(a2) [©1(a),D]g = [a, ©1(D)]g:

(bl) @2(X, [va]g) = [@2()6, )’)vz]g + [yv®2(x’z)]g;

(b2) Oa2(x,[y,alg) = [O2(x, y),alqg + [y, O2(x,a)]g;

(b3) Oa(a,[x,ylg) = [O2(a,x), ylg + [x, O2(a, y)lq;

(C) @3()(', Y, [Z’ w]g) = [@3(X, y’Z)! w]g + [Z’ @3(X, Vs U))]g,

(d]) @1@2()(,0) = @z(x, @1(61));

(d2) ©102(a, x) = 02(01(a), x);

(d3) ©2(01(a),b) = Oz(a, O1(h));

(el) ®2(-xv ®2(yv Z)) - @2(@2()€, y), Z) - ®2(yv @2()6, Z)) + @2(@2()/’,)6), Z)
= 02([x, y]g.2) + ©103(x, y, 2);

(e2) O2(x,02(y,a)) — O2(Oz(x,y),a) — Ox(y, Oa(x,a)) + O2(O2(y, x),a)
= O2([x, ylq,a) + O3(x, y, B1(a));

(63) @2(0, ®2(y’ Z)) - @2(62(0, y)’ Z) - ®2(y» @2(61, Z)) + @2(@2()1,61),2)
= @2([(1, Y]gvz) + @3(@](0), y’Z);

(f) ©2(x,03(y,z,w)) = O2(y, O3(x, z, w)) + O2(z, O3(x, y, w))
+02(03(y, 2z, x), w) — O2(O3(x,z, ), w) + O2(O3(x, y,2), w)
—03(02(x, y) = O2(y. x) + [x. y]g. 2. w) — O3(O2(y. 2) — O2(z, y)
+[y,Z]g,X, U)) + @3(@2()6,2) - @2(Z,X) + [xvz]gs Y, U)) - ®3(y72, @2()6, w))
+®3(X,Z, ®Z(y7 w)) - ®3('x? y7 ®2(Z’ w)) = 0‘
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A 2-term operator homotopy post-Lie algebra (g = go ® g—1. [, |q. ©1, ©2, O3) is said
to be skeletal if ©1 = 0.

Remark 4.15. If the underlying graded Lie algebra (go @ g1, [, *]¢) in a 2-term operator
homotopy post-Lie algebra (g =go®g—1. [, |q. ©1, ©2, ®3) is abelian, then (go D g1,
01, 0y, ®3) reduces to a 2-term pre-Lies,-algebra or equivalently a pre-Lie 2-algebra.

In [42], the author showed that skeletal pre-Lie 2-algebras are classified by the third
cohomology group of pre-Lie algebras. See [2] also for more details of the classification
of skeletal Lie 2-algebras. Similarly, we have the following theorem.

Theorem 4.16. There is a one-to-one correspondence between 2-term skeletal operator
homotopy post-Lie algebras and triples ((b,[-,-]g.>)., (V:p, . v), w), where (b, [-,-]p.>)
is a post-Lie algebra, (V; p, 1, V) is a representation of the post-Lie algebra (b, [+, -]p. >),
and o € Hom(A?h ® 0, V) is a 3-cocycle of (b, [+, |y, I>) with coefficients in (V; p, i1, V).

Proof. Let (g = go ® g—1. [ ‘]g. @1, ©2, ©3) be a 2-term skeletal operator homotopy
post-Lie algebra, i.e., ®1 = 0. Then by condition (e;) in Definition 4.14, we deduce that
(g0, [+ -]g- ®2) is a post-Lie algebra. Define linear maps p, i, v from go to gl(g—1) by

p(x)(a) :=[x,alg, px)(a):=0Os(x,a), v(x)(a):= Os(a,x),

where x €gg, a €g—;. Obviously, (g—1; p) is arepresentation of the Lie algebra (go, [, *]g)-
Then by (b2), (b3), (e2), and (e3) in Definition 4.14, we deduce (4.1)—(4.4), respectively.
Thus (g—1; p, it, V) is a representation of the post-Lie algebra (go. [, "|q, ®2). Finally, by
(c) and (f) in Definition 4.14, we deduce that ®3 is a 3-cocycle of the post-Lie algebra
(0. [ -]g. ®2) with coefficients in the representation (q—1; p, i, V).

The proof of the other direction is similar. So the details will be omitted. ]
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