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The Arens-Michael envelopes of the Jordan plane and
Uq.sl.2//

Dmitrii Pedchenko

Abstract. The Arens-Michael functor in noncommutative geometry is an analogue of the analytifi-
cation functor in algebraic geometry: out of the ring of “algebraic functions” on a noncommutative
affine scheme, it constructs the ring of “holomorphic functions” on it when viewed as a noncommu-
tative complex analytic space. In this paper, we explicitly compute the Arens-Michael envelopes of
the Jordan plane and the quantum enveloping algebra Uq.sl.2// of sl.2/ for jqj D 1.

1. Introduction

The basic idea of noncommutative geometry is to view an arbitrary (noncommutative)
algebra as an “algebra of functions on a noncommutative space”. This idea is based on an
observation that many important geometric concepts and constructions stated in algebraic
terms remain meaningful for noncommutative algebras providing us with the tools and
intuition for studying these algebras.

Noncommutative geometry currently includes several mathematical disciplines which
have different research objects but are unified by that aforementioned idea. Noncommu-
tative measure theory studies von Neumann algebras; noncommutative topology studies
C�-algebras; noncommutative affine algebraic geometry studies finitely generated alge-
bras; noncommutative differential geometry studies dense subalgebras of C�-algebras
equipped with a special “differential” structure.

Notice that an important discipline is missing from this list – noncommutative com-
plex analytic geometry which in the commutative case bridges differential and algebraic
geometry. One of the main reasons of why this theory is underdeveloped is that it is unclear
which algebras should be considered the noncommutative generalizations of the algebras
of holomorphic functions on complex analytic spaces.

The ideal starting point for the development of any kind of noncommutative geometry
is having a category A of associative algebras such that the full subcategory of A consist-
ing of commutative algebras is anti-equivalent to a certain category C of “spaces”. In such
a situation, we may think of algebras belonging to A as the noncommutative analogues
of the spaces belonging to C. Therefore, in the case of noncommutative complex analytic
geometry we would like to start with some category consisting of algebras such that the
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commutative ones are exactly the algebras of holomorphic functions on complex analytic
spaces. As Pirkovskii states in [5], apparently in full generality such a class of algebras
has not yet been introduced.

However, we can simplify our problem as follows. Any affine algebraic variety over
C is certainly a complex analytic space. So we can narrow down the category C of
complex analytic spaces to the category of affine algebraic varieties over C viewed as
complex analytic spaces. It turns out that in this case we have a construction that for each
finitely generated C-algebra A (deemed as the “algebra of regular algebraic functions on
a noncommutative affine scheme of finite type”) assigns a new algebra yA (deemed as the
“algebra of holomorphic functions on that scheme”) such that if our algebra was a com-
mutative algebra of regular algebraic functions A D Oalg.X/ on an affine scheme X of
finite type, then we obtain the algebra of holomorphic functions on X : yA D Ohol.X/.

The resulting algebra yA is known as the Arens-Michael envelope of the algebra A.
Therefore, we view the Arens-Michael envelopes of finitely generated algebras as the
algebras of holomorphic functions on noncommutative affine schemes of finite type. This
way, the Arens-Michael functor can be viewed as a generalization of the classic analytifi-
cation functor in complex algebraic geometry to the noncommutative setting.

So far, the Arens-Michael envelopes are explicitly known only for a handful of non-
commutative algebras (see Section 3 and [6, Section 5]), and it is important for the devel-
opment of the theory and its scope of applicability to grow the body of examples.

In this paper, we add two algebras to the list of examples: we explicitly compute the
Arens-Michael envelopes of the Jordan plane (see Theorem 5.4) and the quantum envelop-
ing algebra Uq.sl.2// for jqj D 1 (see Theorem 6.3) following the recently developed
techniques in this area. We find that the Arens-Michael envelopes of the Jordan plane and
the quantum enveloping algebra Uq.sl.2// for jqj D 1, q ¤ 1;�1 are given as conver-
gent power series with a “twisted” multiplication, and in this sense are seen as a direct
generalization of holomorphic functions in the noncommutative setup. In contrast, the
Arens-Michael envelope of the quantum enveloping algebra Uq.sl.2// for q D 1 comes
in a representation-theoretic form (see Example 3.8 and Theorem 6.3 (1)).

Organization of the paper. In Section 2, we review the basic definitions pertaining to
the Arens-Michael functor. In Section 3, we recall some known examples of algebras
for which the Arens-Michael envelope is explicitly known. In Section 4, we review the
theoretical constructions necessary for our computations following [6].

Finally, we present our key results in Sections 5 and 6. In Section 5, we explicitly com-
pute the Arens-Michael envelope of the Jordan plane. In Section 6, we explicitly compute
the Arens-Michael envelope of the quantum enveloping algebra Uq.sl.2// for jqj D 1.

2. The Arens-Michael functor

In what follows all vector spaces and algebras are taken over the field of complex numbers
C; all algebras are assumed to be associative and unital. A seminorm k � k on an algebra
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A is called submultiplicative if kabk � kakkbk for all a; b 2 A. A complete topological
algebra with a topology generated by a family of submultiplicative seminorms is called an
Arens-Michael algebra. We start with our main definitions.

Definition 2.1. Let A be a topological algebra. The pair . yA; �A/, consisting of an Arens-
Michael algebra yA and a continuous homomorphism �A W A ! yA, is called the Arens-
Michael envelope of algebraA if for an arbitrary Arens-Michael algebraB and an arbitrary
continuous homomorphism ' W A! B , there exists a unique continuous homomorphism
y' W yA! B such that the following diagram commutes:

yA B

A

y'

'
�A

Arens-Michael envelopes were introduced by Taylor [10], but here we are using the
terminology of Helemskii [1] and Pirkovskii [6, Section 3].

It is clear from the definition that the Arens-Michael envelope is unique up to a unique
isomorphism of topological algebras over A. Moreover, it always exists [10], and it can
be obtained as the completion of A with respect to all continuous submultiplicative semi-
norms on A. Note that the topology induced by submultiplicative seminorms might be
non-Hausdorff so that before taking the completion we should take the quotient by the
closure of ¹0º. Therefore, the canonical homomorphism �A W A! yAmight have a nontriv-
ial kernel.

Definition 2.2. Let A be an algebra without a topology. The Arens-Michael envelope of A
is the Arens-Michael envelope of A endowed with the strongest locally convex topology
in the sense of Definition 2.1.

Finally, let us note that the association A 7! yA extends to algebra homomorphisms
A! B so that we obtain a functor from the category of algebras to the category of Arens-
Michael algebras (the Arens-Michael functor).

3. Examples of Arens-Michael envelopes

Next we discuss some known examples of the Arens-Michael envelopes.
The next example and proposition justify our assertions from the introduction about

the Arens-Michael functor being a noncommutative analogue of the analytification functor
in algebraic geometry.

Example 3.1. As was noted by Taylor [10], the Arens-Michael envelope of the polyno-
mial algebra CŒx1; : : : ; xn�D Oalg.Cn/ is the algebra of holomorphic functions Ohol.Cn/

with compact-open topology.

Pirkovskii generalized this statement to affine algebraic varieties.
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Proposition 3.2 ([5, Proposition 1] and [6, Example 3.6]). Let X be an affine algebraic
variety over C and let A D Oalg.X/ be the algebra of regular algebraic functions on X .
The Arens-Michael envelope of A is the algebra Ohol.Xan/ of holomorphic functions on X
when we view X as a complex analytic space, with compact-open topology. The same is
true for the affine schemes of finite type over C.

From this proposition, we see that the geometric analytification functor associating to
an affine algebraic schemeX a complex analytic spaceXan corresponds to the algebraic or
functional-analytic Arens-Michael functor when we instead work with functions on those
spaces. As we noted in the introduction, the finitely generated noncommutative algebras
are the natural candidates for the noncommutative affine schemes of finite type, so we
view the Arens-Michael envelopes of the finitely generated noncommutative algebras as
the algebras of holomorphic functions on the noncommutative affine schemes of finite
type.

Here is the “most noncommutative” example:

Example 3.3 (The free algebra). Let Fn D Chx1; : : : ; xni be a free algebra with n gen-
erators. For each k-tuple ˛ D .˛1; : : : ; ˛k/ of integers, 1 � ˛i � n, set x˛ D x˛1 � � �

x˛k and j˛j D k. Then each element of Fn is written as a noncommutative polynomialP
j˛j�N c˛x˛ . Denote the set of all ˛ by Wn.
Taylor [10] showed that

cFn D ²a D X
˛2Wn

c˛x˛ W kak� D
X
˛2Wn

jc˛j�
j˛j <1 for any � > 0

³
:

The topology on cFn is defined by the family of seminorms ¹k � k� W � 2 R>0º.

Example 3.4 (The quantum plane). Fix a complex number q 2 C n ¹0º. The quantum
plane is an algebra (denoted by O

alg
q .C2/) with two generators x; y, subject to a relation

xy D qyx. The monomials xiyj .i; j � 0/ form a basis of O
alg
q .C2/ so that this algebra

can be viewed as an algebra of polynomials with a “twisted” multiplication.

Denote the Arens-Michael envelope of O
alg
q .C2/ by Ohol

q .C
2/, and view it as an alge-

bra of holomorphic functions on the quantum plane. The next result is due to Pirkovskii.

Proposition 3.5 ([6, Corollary 5.14]). Let q 2 C n ¹0º.

(1) If jqj � 1, then

Ohol
q .C

2/D

²
aD

1X
i;jD0

cijx
iyj W kak�D

1X
i;jD0

jcij j�
iCj <1 for any � > 0

³
:

(2) If jqj � 1, then

Ohol
q .C

2/D

²
aD

1X
i;jD0

cijx
iyj W kak�D

1X
i;jD0

jcij jjqj
ij�iCj <1 for any � > 0

³
:
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In both cases the topology on Ohol
q .C

2/ is generated by the family of seminorms ¹k � k� W
� 2 R>0º and the multiplication is defined by the relation xy D qyx.

Example 3.6. Consider the universal enveloping algebra of the Lie algebra g with basis
¹x; yº and the commuting relation Œx; y� D y. Due to the Poincaré–Birkhoff–Witt theo-
rem, the universal enveloping algebra U.g/ can be viewed as a polynomial algebra with a
“twisted” multiplication. As shown in [6, Example 5.1],

yU.g/ D

²
a D

1X
i;jD0

cijx
iyj W

1X
iD0

jcij j�
i <1;8j 2 ZC;8� > 0

³
:

The topology of yU.g/ is generated by the family of seminorms²
k � kn;� W





 1X
i;jD0

cijx
iyj






n;�

D

nX
jD0

1X
iD0

jcij j�
i <1; n 2 ZC; � 2 R>0

³
:

Remark 3.7. In Examples 3.3–3.6 above, one could instead generate the topology by a
countable family of submultiplicative seminorms. Such complete locally m-convex alge-
bras whose topology can be generated by a countable family of submultiplicative semi-
norms are called Fréchet–Arens-Michael algebras or m-convex Fréchet algebras.

In the previous examples, the Arens-Michael envelopes of polynomial algebras with a
“twisted” multiplication happened to be algebras of “noncommutative (convergent) power
series”, as one would expect by comparing to the commutative case. Interestingly, the next
example (due to Taylor [10]) shows that this is not always the case.

Example 3.8 (The universal enveloping algebra of a semisimple Lie algebra). Suppose
that g is a semisimple Lie algebra. Every finite-dimensional irreducible representation ��
of the algebra g extends to a homomorphism

�� W U.g/!Md�.C/ .d� D dim��/:

If we denote the set of equivalence classes of irreducible finite-dimensional representa-
tions of g by Og, we get a homomorphismY

�2Og

�� W U.g/!
Y
�2Og

Md�.C/:

The algebra
Q
�2Og Md�.C/ with the product topology and the homomorphism

Q
�2Og ��

form the Arens-Michael envelope of U.g/.
This example is a bit discouraging since contrary to the above examples, this time the

Arens-Michael envelope looks completely different from the initial algebra (for example,
U.g/ is an integral domain but

Q
�2Og Md�.C/ is not). Nonetheless, the canonical homo-

morphism A! yA is injective (as it was in all other examples so far).

The next example shows the worst possible situation.
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Example 3.9 (Weyl’s algebra). The Weyl algebra A is an algebra with two generators
x; @ with the commutation relation Œ@; x� D 1. It is well known that in a non-zero normed
algebra there are no elements with this commutation relation. Therefore, yA D 0 and the
canonical homomorphism is not injective.

It is interesting to note that if we quantize the Weyl algebra by taking the commutation
relation to be

@x � qx@ D 1 .q ¤ 0; 1/;

the resulting Arens-Michael envelope would again be the algebra of “noncommutative”
power series (see [6, Corollary 5.19]). In the case 0 < q < 1, this can also be explained
by noting that the above q-Weyl algebra admits a different presentation as a quantum
disk whose Arens-Michael envelope is an algebra of “noncommutative” power series; see
[7, Sections 4 and 5]. The connection between quantum Weyl algebras and quantum balls
and polydisks can be traced back to the work of Vaksman [11].

For more examples of Arens-Michael envelopes, see [5, 6].

4. Theoretical constructions

In this section, we collect the theoretical facts necessary for our computations following
[4, 6]. We will be referring to a complete, Hausdorff, locally convex topological algebra
with jointly continuous multiplication as an y̋ -algebra.

4.1. Arens-Michael envelopes of tensor products

First, we recall how to describe the topology on the projective tensor product of two y̋ -
modules.

Proposition 4.1 ([6, Proposition 2.3 (vi)]). Suppose that A is an y̋ -algebra, X is a right
A- y̋ -module, Y is leftA- y̋ -module. Furthermore, suppose that bothX and Y have count-
able or finite dimension and the topology on X and Y is the strongest locally convex
topology. Then the algebraic tensor product X ˝A Y with the strongest locally convex
topology coincides with the projective tensor product X y̋A Y .

The next proposition shows that the Arens-Michael envelope of the projective ten-
sor product of two y̋ -algebras can be computed as the projective tensor product of their
Arens-Michael envelopes.

Proposition 4.2 ([4, Proposition 6.4]). Let A;B be y̋ -algebras. Then there exists a topo-
logical algebra isomorphism

.A y̋ B/y Š yA y̋ yB:

In other words, the operations of taking the Arens-Michael envelope and taking the
projective tensor product can be interchanged.
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4.2. Arens-Michael envelopes of Ore extensions

The computation of the Arens-Michael envelopes of many polynomial algebras (including
Examples 3.4 and 3.6) is greatly facilitated by a theoretical construction known as an Ore
extension.

4.2.1. Algebraic Ore extensions. First, we consider a purely algebraic construction.

Definition 4.3. Let R be an associative C-algebra (without a topology) and ˛ W R ! R

an algebra endomorphism. A C-linear map ı W R! R is called ˛-derivation if

ı.ab/ D ı.a/b C ˛.a/ı.b/

for any a; b 2 R. The Ore extension RŒzI ˛; ı� is a noncommutative algebra obtained by
endowing the left R-module of polynomials

Pn
iD0 riz

i with a “twisted” multiplication
with a relation

zr D ˛.r/z C ı.r/

for r 2 R. Note that the natural inclusions R ,! RŒzI˛; ı� and CŒz� ,! RŒzI˛; ı� become
algebra homomorphisms.

Let us also recall a useful formula describing multiplication in RŒzI ˛; ı�. For any
k; n 2 Z>0 with k � n, let Sn;k W R ! R denote an operator defined as the sum of all�
n
k

�
different compositions of k derivations ı and n� k homomorphisms ˛. Then for any

r 2 R, we have the following formula for how to commute zn and r (see [6, Section 4.1]):

znr D

nX
kD0

Sn;k.r/z
n�k : (4.3.1)

Turning back to our examples, we see that the quantum plane from Example 3.4 is the
Ore extension CŒx�ŒyI ˛; 0�, where ˛.x/ D q�1x and the commutation relation becomes
yx D q�1xy. The universal enveloping algebra U.g/ from Example 3.6 is the Ore exten-
sion CŒy�ŒxI id; y d

dy
�, and the commutation relation becomes xy D yx C y.

4.2.2. Analytic Ore extensions. Next we consider a locally convex counterpart of the
algebra RŒzI ˛; ı� – an analytical Ore extension O.C; RI ˛; ı/ – and state the theorem
telling us the conditions under which the algebra O.C; RI ˛; ı/ (or some variant of it)
becomes the Arens-Michael envelope of RŒzI˛; ı�. Below we explain the key steps in the
construction of O.C; RI˛; ı/. This theoretical framework is explained in detail in [6].

First, we recall the following two technical definitions.

Definition 4.4 ([6, Definition 4.1]). Let E be a vector space and let T be a family of
linear operators on E. A seminorm on E is T -stable if for any T 2 T there exists C > 0

such that
kT vk � Ckvk

for every v 2 E.
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Definition 4.5 ([6, Definition 4.2]). LetE be a locally convex topological space. A family
T of linear operators on E is called localizable if the topology on E can be defined by a
family of T -stable seminorms. A single operator T is called localizable if the singleton
family T D ¹T º is localizable.

Let now R be an y̋ -algebra equipped with a localizable endomorphism ˛ W R ! R

and a localizable derivation ı W R! R. The next two lemmas will show that we can equip
the space O.C; R/ of R-valued entire functions with a “twisted” multiplication which
coincides with the multiplication on the Ore extension RŒzI ˛; ı� when we restrict to the
polynomial subspace in O.C; R/. Recall that O.C; R/ is isomorphic to the projective
tensor product R y̋ O.C/ both as a locally convex topological space and as a left R- y̋ -
module. Explicitly, for any family of seminorms ¹k � k�º�2ƒ defining the topology on R,
the space O.C; R/ is described as convergent Taylor series²

f .z/ D
X
n

cnz
n
W cn 2 R; kf k�;� <1 for any � 2 ƒ; � > 0

³
;

where kf k�;� D
P1
nD0 kcnk� �

n. The topology on O.C; R/ is defined by the family of
seminorms ®

k � k�;� W � 2 ƒ; � 2 R>0
¯
:

Consider the inclusion of locally convex topological vector spaces

RŒzI˛; ı� ,! O.C; R/;

where RŒzI ˛; ı� is equipped with the “twisted multiplication” from Definition 4.3 and
the induced topology from O.C; R/. The next lemma shows that we can extend (4.3.1)
from the dense subspace RŒzI ˛; ı� to the whole space O.C; R/. We use the shorthand
O.C/ D O.C;C/ to denote complex-valued entire functions.

Lemma 4.6 ([6, Lemma 4.2]). Suppose thatR is an y̋ -algebra, ˛ WR!R – a localizable
endomorphism, and ı W R ! R – a localizable derivation. Then there exists a unique
continuous linear map

� W O.C/ y̋ R! R y̋ O.C/;

such that

�.zn ˝ r/ D

nX
kD0

Sn;k.r/˝ z
n�k for all r 2 R and n 2 Z�0:

Now set AD O.C;R/Š R y̋ O.C/. Define the multiplication mapmA W A y̋ A! A

as the composition

R y̋ O.C/ y̋ R y̋ O.C/
1R˝�˝1O.C/
���������! R y̋ R y̋ O.C/ y̋ O.C/

mR y̋mO.C/
��������! R y̋ O.C/:
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Proposition 4.7 ([6, Proposition 4.3]). The map mA W A y̋ A! A turns A D O.C; R/
into an y̋ -algebra, such that the inclusion map i W RŒzI ˛; ı� ,! O.C; R/ is an algebra
homomorphism.

The last proposition allows us to give the following definition.

Definition 4.8 ([6, Definition 4.3]). The algebra A D R y̋ O.C/ with the above multi-
plication map will be denoted by O.C; RI˛; ı/ and called the analytical Ore extension of
the algebra R.

Note that O.C; RI ˛; ı/ contains R as a closed subalgebra and is therefore an R- y̋ -
algebra.

Next, we strengthen the above result in the case whenR is moreover an Arens-Michael
algebra. First, we have the following refinement of Definition 4.5.

Definition 4.9 ([6, Definition 4.4]). Let R be an Arens-Michael algebra. A family T of
linear operators onR is calledm-localizable if the topology onR can be defined by a fam-
ily of T -stable submultiplicative seminorms. A single operator T is called m-localizable
if the singleton family T D ¹T º is m-localizable.

The next proposition shows that if R is an Arens-Michael algebra and operators ˛ and
ı form an m-localizable family, then the analytic Ore extension O.C; RI ˛; ı/ is itself an
Arens-Michael algebra.

Proposition 4.10 ([6, Proposition 4.5]). Let R be an Arens-Michael algebra, ˛ W R! R

– an algebra endomorphism, and ı W R! R – an ˛-derivation. Suppose that the set ¹˛; ıº
is m-localizable. Then O.C; RI˛; ı/ is an Arens-Michael algebra.

Now suppose thatR is an algebra (without a topology), ˛ D id W R! R is the identity
map, and ı W R ! R is a derivation. Denote by Rı the Arens-Michael algebra obtained
as the completion of R by the system of all ı-stable submultiplicative seminorms. Let j
be the canonical homomorphism j W R ! Rı . Clearly, ı defines a unique m-localizable
derivation yı of Rı with the property yı ı j D j ı ı. Therefore, we get homomorphisms

RŒzI id; ı�! Rı ŒzI id; yı� ,! O.C; Rı I id; yı/;

where the first one coincides with j on R and maps z to z, and the second one is a canon-
ical inclusion. Let �RŒzIid;ı� be the composition homomorphism. The next result describes
the Arens-Michael envelope of RŒzI id; ı� as the analytic Ore extension O.C; Rı I id; yı/.

Theorem 4.11 ([6, Theorem 5.1]). The pair .O.C; Rı I id; yı/; �RŒzIid;ı�/ is the Arens-
Michael envelope of the algebra RŒzI id; ı�.

The situation when ˛ ¤ id is harder to handle. Let R be an algebra, let ˛ W R! R be
an endomorphism, and let X be an R-bimodule. We will denote by ˛X the R-bimodule
obtained by endowing the underlying abelian group of X with a new R-multiplication
rule �:

r � x D ˛.r/x; x � r D xr; r 2 R; x 2 X:
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Let now ı W R! R be an ˛-derivation. By applying the Arens-Michael functor to ˛,
we obtain an endomorphism

y̨ W yR! yR

of the Arens-Michael envelope of R satisfying

y̨ ı �R D �R ı ˛:

Since we can view �R W R! yR as a morphism ˛R! y̨
yR of R-bimodules, we get that the

composition

R
ı
�! R

�R
�!y̨

yR

is a derivation. By applying the universal property of the Arens-Michael envelopes (or
rather its version for R-modules, see [6, Definition 3.2]), we obtain a unique derivation

yı W yR!y̨ yR;

i.e., a unique y̨-derivation of yR satisfying

yı ı �R D �R ı ı:

We have the following general result describing the Arens-Michael envelope of the
algebraic Ore extension as an analytic Ore extension when certain technical conditions
are met.

Theorem 4.12 ([6, Theorem 5.17]). In the above setup, if the family ¹y̨; yıº is m-localiz-
able, then there exists a unique R-homomorphism

�RŒzI˛;ı� W RŒzI˛; ı�! O.C; yRI y̨; yı/ such that z 7! z:

The algebra O.C; yRI y̨;yı/ with the homomorphism �RŒzI˛;ı� is the Arens-Michael envelope
of RŒzI˛; ı�.

5. The Arens-Michael envelope of the Jordan plane

Now we turn to the main results of this paper. We first compute the Arens-Michael enve-
lope of the Jordan plane.

Definition 5.1. The Jordan plane over k is the k-algebra ƒ2.k/ given by generators x
and y and a commutation relation yx D xy C y2, i.e.,

ƒ2.k/ D khx; yi=.yx � xy � y2/:

We are interested in the case when k D C so we will use the following shorthand
notation ƒ2 D ƒ2.C/.
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Following a simple induction argument, it is easy to check that the monomials ¹xiyj j
i; j 2 ZCº span ƒ2. It is shown in [9] by a direct computation that they are also linearly
independent and, therefore, form the basis of ƒ2. Alternatively, this follows from the
theory of quadratic algebras (see [8, Section 4, Theorem 2.1]). As a result, we can again
view ƒ2 as a polynomial algebra with a “twisted” multiplication.

Comparing Definition 5.1 to Definition 4.3, we see that the Jordan plane is the Ore ex-
tension CŒy�ŒxI id;�y2 d

dy
�. Therefore, in order to apply Theorem 4.11 we need to describe

the system of all submultiplicative ı-stable seminorms on CŒy�, where ıD�y2 d
dy

.
Write an element a 2 CŒy� as a polynomial

Pn
iD0 aiy

i . We first have the following
result.

Proposition 5.2. The family²
k � k� W kak� D

nX
iD0

jai j
1

.i � 1/Š
�i <1; � 2 R>0

³
; .�1Š WD 1; 0Š WD 1/;

is equivalent to the family of all submultiplicative ı-stable seminorms on CŒy� with ı D
�y2 d

dy
.

Proof. We split the proof of the proposition into steps for the reader’s convenience.

Step 1. First note that k � k� is indeed a seminorm. Moreover, it is submultiplicative:

kykylk� D ky
kCl
k� D

�kCl

.k C l � 1/Š
�

�k

.k � 1/Š

�l

.l � 1/Š
D kykk�ky

l
k�; 8k; l � 0:

Now for a; b 2 CŒy� we have

kabk� D





 nX
iD0

aiy
i
�

mX
jD0

bjy
j






�

D





 n;mX
i;jD0

aibjy
iyj






�

�

n;mX
i;jD0

jai jjbj jky
iyj k� �

n;mX
i;jD0

jai jjbj jky
i
k�ky

j
k�

D

nX
iD0

jai jky
i
k� �

mX
jD0

jbj jky
j
k� D





 nX
iD0

aiy
i






�

�





 mX
jD0

bjy
j






�

D kak�kbk�:

Step 2. Next, we show that k � k� is ı-stable. Note that

ı.yi / D �y2
d

dy
.yi / D �iyiC1; 8i � 1;

and

ı.y0/ D ı.1/ D �y2
d

dy
.1/ D 0:
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We have

ı.a/


�
D





ı� nX
iD0

aiy
i

�




�

D





 nX
iD0

aiı.y
i /






�

D





 nX
iD1

ai .�iy
iC1/






�

D





 nX
iD1

ai iy
iC1






�

D





 nC1X
jD2

aj�1.j � 1/y
j






�

D

nC1X
jD2

jaj�1j
j � 1

.j � 1/Š
�j

D �

nC1X
jD2

jaj�1j
1

.j � 2/Š
�j�1 � �

nX
iD1

jai j
1

.i � 1/Š
�i

� �

nX
iD0

jai j
1

.i � 1/Š
�i D �kak�:

Step 3. Finally, we show that any submultiplicative ı-stable seminorm k � k is dominated
by k � k� for some � > 0.

Note that by induction we get

ıj .y/ D .�1/j j Š yjC1; j � 1:

From ı-stability, we get

ıj .a/

 � C

ıj�1.a/

 � � � � � C j kak:
Now setting a D y, we have

kıj .y/k D j ŠkyjC1k � C j kyk;

so that

kyjC1k �
C j kyk

j Š
; j � 1:

Note that if we pick C � 1 and set � WD C max¹kyk; 1º, we have

C j kyk � C j max
®
kyk; 1

¯
� C j

�
max

®
kyk; 1

¯�j
D �j ;

and therefore

kyjC1k �
C j kyk

j Š
�
�j

j Š
�
�jC1

j Š
D kyjC1k�; j � 1:

For j D 0, we have

kyk D
kyk

�
� � Dkyk�;

where

D D max
²
kyk

�
; 1

³
:
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Finally,

kak D





 nX
iD0

aiy
i





 � nX
iD0

jai jky
i
k � ja0j C ja1jDkyk� C

nX
iD2

jai jky
i
k�

� D

nX
iD0

jai jky
i
k� D Dkak�:

Next, we pass to a simpler family of seminorms.

Lemma 5.3. The family of seminorms on CŒy�

P D

²
k � k� W kak� D

nX
iD0

jai j
1

.i � 1/Š
�i <1; � 2 R>0;

³
; .�1Š WD 1; 0Š WD 1/;

is equivalent to the family

Q D

²
k � kq W kakq D

nX
iD0

jai j
1

iŠ
qi <1; q 2 R>0

³
; .0Š WD 1/;

where

a D

nX
iD0

aiy
i
2 CŒy�:

Proof. First, we observe that

nX
iD0

jai j
1

iŠ
qi �

nX
iD0

jai j
1

.i � 1/Š
qi ;

and, therefore, Q � P .
Since for i � 0

i � 2i ,
1

.i � 1/Š
�
2i

i Š
;

we have
nX
iD0

jai j
1

.i � 1/Š
�i �

nX
iD0

jai j
2i

i Š
�i D

nX
iD0

jai j
1

iŠ
qi ; q D 2�;

and P � Q.

Finally, we can apply Theorem 4.11 to get the description of the Arens-Michael enve-
lope of the Jordan plane ƒ2.

Theorem 5.4. The Arens-Michael envelope of the Jordan plane ƒ2 is

yƒ2 WD

²
a D

1X
i;jD0

aijx
iyj W kak� <1 for any � > 0

³
;
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where

kak� D

1X
i;jD0

jaij j
1

j Š
�iCj :

The topology on yƒ2 is generated by the system ¹k � k� W � 2 R>0º, and multiplication
is characterized by the relation yx D xy C y2.

Proof. By Theorem 4.11, the Arens-Michael envelope of ƒ2 D CŒy�ŒxI id;�y2 d
dy
� is

given by the analytic Ore extension O.C;CŒy�ı I id; yı/, where CŒy�ı is the completion of
CŒy� with respect to the family Q of seminorms by Lemma 5.3.

By the discussion preceding Theorem 4.11, the space O.C;CŒy�ı I id; yı/ can be de-
scribed as the set²

a D

1X
iD0

1X
jD0

aijx
iyj W kakq;� <1 for any q; � > 0

³
;

where

kakq;� D

1X
iD0





 1X
jD0

aijy
j






q

�i D

1X
iD0

1X
jD0

jaij j
1

j Š
qj�i ;

with topology given by the family of seminorms ¹k � kq;� W q; � 2 R>0º. It is easy to check
that this description is equivalent to the description in the statement of the theorem.

We see that again the Arens-Michael envelope of a polynomial algebra with a“twisted”
multiplication is a power series algebra with the same multiplication rule.

6. The Arens-Michael envelope of Uq.sl.2//, jqj D 1

In this section, we turn to the second main result of this paper.
The quantum enveloping algebra Uq.sl.2// of the Lie algebra sl.2/ is an important

basic example of a Hopf algebra and a quantum group. It can be defined in two slightly
different ways.

Definition 6.1. For q 2 C n ¹1;�1º, consider an algebra Uq.sl.2// on four generators E,
F , K, K�1 subject to the following relations:

(1) KK�1 D K�1K D 1,

(2) KEK�1 D q2E, KFK�1 D q�2F ,

(3) ŒE; F � D K�K�1

q�q�1
.

Definition 6.2. For q 2 C n ¹1;�1º, consider an algebra U 0q.sl.2// on five generators E,
F , K, K�1, L with the relations

(1) KK�1 D K�1K D 1,

(2) KEK�1 D q2E, KFK�1 D q�2F ,
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(3) ŒE; F � D L, .q � q�1/L D K �K�1,

(4) ŒL;E� D q.EK CK�1E/, ŒL; F � D �q�1.FK CK�1F /.

Clearly, U 0q.sl.2// is isomorphic to Uq.sl.2// via a map that sends L 2 U 0q.sl.2//

to ŒE; F � 2 Uq.sl.2// and leaves other generators intact. Note that the second definition
allows us to consider the limiting case q D 1 where our quantum enveloping algebra
almost becomes the usual enveloping algebra U.sl.2//. In fact, we have the following
isomorphisms (see [2]):

U 01
�
sl.2/

�
Š
U.sl.2//ŒK�

.K2 � 1/
Š U

�
sl.2/

�
˝

CŒK�

.K2 � 1/
: (6.2.1)

For more information on Uq.sl.2//, see [2].
We obtain the following description of the Arens-Michael envelope of Uq.sl.2// for

jqj D 1.

Theorem 6.3. Let Uq.sl.2// be the quantum enveloping algebra of sl.2/ and 3Uq.sl.2//

its Arens-Michael envelope.

(1) If q D 1, then
4U1
�
sl.2/

�
Š

3U �sl.2/
�
y̋

CŒK�

.K2 � 1/
:

(2) jqj D 1, q ¤ 1;�1, then

4Uq
�
sl.2/

�
D

²
c D

X
i2Z;n;m�0

ci;n;mK
iF nEm W kck� <1 for any � > 0

³
;

where
kck� D

X
i2Z;n;m�0

jci;n;mj�
iCnCm:

The topology on 3Uq.sl.2// is generated by the system ¹k � k� W � 2 R>0º.

Proof. We split the proof of the theorem into two cases according to how the theorem is
stated.

Proof of (1). Definition 6.2 allows us to consider the limiting case q D 1, where our
quantum enveloping algebra almost becomes the usual enveloping algebra U.sl.2// as
we mentioned in (6.2.1).

The representation of U 01.sl.2// as the tensor product of two algebras for which the
Arens-Michael envelope is already known allows us to quickly compute the Arens-Michael
envelope of U 01.sl.2// using the results of Section 4.1. Specifically, endow U 01.sl.2//

with the strongest locally convex topology �str. By Proposition 4.1, we have the following
isomorphism of y̋ -algebras:�

U 01
�
sl.2/

�
; �str

�
Š
�
U
�
sl.2/

�
; �str

�
y̋

�
CŒK�

K2 � 1
; �str

�
:
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Next, we apply Proposition 4.2 (along with Definition 2.2) to the above projective tensor
product to get

4U 01
�
sl.2/

�
Š

3U �sl.2/
�
y̋

�
CŒK�

K2 � 1

�y
:

Since CŒK�
.K2�1/

is a finite-dimensional vector space, its Arens-Michael envelope coin-

cides with CŒK�
.K2�1/

. Therefore, we finally get

4U 01
�
sl.2/

�
Š

3U �sl.2/
�
y̋

CŒK�

.K2 � 1/
:

The Arens-Michael envelope 3U.sl.2// was shown to be the direct product of matrix alge-
bras in Example 3.8.

Proof of (2). For q ¤ 1;�1, note that the algebra Uq.sl.2// is an iterated Ore extension
(see Section 4.2). Namely, start with

A0 D CŒK;K�1�

along with a C-linear algebra homomorphism ˛0 W A0 ! A0 defined by

˛0.K/ D q
2K:

Next, consider the Ore extension

A1 D A0ŒF; ˛0; ı0 D 0�

equipped with a C-linear algebra homomorphism ˛1 and a C-linear derivation ı defined
by

˛1.F
jKl / D q�2lF jKl ; ı.K/ D 0; ı.F jKl / D

j�1X
iD0

F j�1 ıq�2iK.F /K
l ;

where ıK.F / D K�K1

q�q�1
is a Laurent polynomial in K. Finally, consider the Ore extension

A2 D A1ŒE; ˛1; ı�:

One easily checks by comparing the above sequence of Ore extensions to Definition 6.1
that

A2 Š Uq
�
sl.2/

�
:

Therefore, we can apply the results of Section 4.2 to each consecutive Ore extension to
calculate the Arens-Michael envelope of A2.

The Arens-Michael envelope of the algebra A0 D CŒK;K�1� is very simple:

cA0 D ²a DX
i2Z

aiK
i
W kak� D

X
i2Z

jai j�
i <1 for all � > 0

³
;

where kak� D
P
i2Z jai j�

i , and the topology is generated by the family ¹k � k� W � 2R>0º.
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After extending ˛0 W A0 ! A0 to b̨0 W cA0 ! cA0, we check that b̨0 is indeed m-
localizable (use jqj D 1):



 b̨0�X

i2Z

aiK
i

�




�

D





X
i2Z

aiq
2iKi






�

D

X
i2Z

jai jjq
2i
j�i D

X
i2Z

jai j�
i
D





X
i2Z

aiK
i






�

:

Applying Theorem 4.12, we obtain

cA1 D O.C;cA0I b̨0; 0/ D ²b D X
i2Z;n�0

bi;nK
iF n W kbk� <1 for any � > 0

³
;

where kbk� D
P
i2Z;n�0 jbi;nj�

iCn, and the topology is generated by the family ¹k � k� W
� 2 R>0º.

Finally, the operators ˛1 and ı simply extend to cA1 by their action on the generators
K and F . We check that ¹ b̨1; yıº is an m-localizable family. In the calculations below, we
make extensive use of the relations between the generators KiF n D q�2inF nKl .b̨1 is m-localizable:



 b̨1� X

i2Z;n�0

bi;nK
iF n

�




�

D





 b̨1� X
i2Z;n�0

bi;nq
�2inF nKi

�




�

D





 X
i2Z;n�0

bi;nq
�2inq�2iF nKi






�

D

X
i2Z;n�0

jbi;njjq
�2in
jjq�2i j�iCn

D

X
i2Z;n�0

jbi;njjq
�2in
j�iCn D





 X
i2Z;n�0

bi;nq
�2inF nKi






�

D





 X
i2Z;n�0

bi;nK
iF n






�

:

Before proving that yı is m-localizable, let us perform one auxiliary computation:

ı.KiF n/ D ı.q�2inF nKi /

D q�2in
n�1X
jD0

F n�1ıq�2jK.F /K
i

D q�2inF n�1Ki
1

q � q�1

�
�
.K �K�1/C .q�2K � q2K/C � � � C .q�2.n�1/K � q2.n�1/K/

�
D q�2inF n�1Ki

1

q � q�1

�
�
K.1C q�2 C � � � C q�2.n�1// �K�1.1C q2 C � � � C q2.n�1//

�
D q�2inF n�1Ki

1

q � q�1

�
K

�
1 � q�2n

1 � q�2

�
�K�1

�
1 � q2n

1 � q2

��
:
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Now we can show that yı is m-localizable:



yı� X
i2Z;n�0

bi;nK
iF n

�




�

D





 X
i2Z;n�0

bi;nı.K
iF n/






�

D





 X
i2Z;n�1

bi;nq
�2inF n�1Ki

1

q � q�1

�
K

�
1 � q�2n

1 � q�2

�
�K�1

�
1 � q2n

1 � q2

��




�

D





 X
i2Z;n�1

bi;nq
�2in

�
F n�1KiC1

1�q�2n

.q�q�1/.1�q�2/
�F n�1Ki�1

1�q2n

.q�q�1/.1�q2/

�




�

D





 X
i2Z;n�0

�
bi�1;nC1q

�2.i�1/.nC1/ 1 � q�2.nC1/

.q � q�1/.1 � q�2/

� biC1;nC1q
�2.iC1/.nC1/ 1 � q2.nC1/

.q � q�1/.1 � q2/

�
F nKi






�

D

X
i2Z;n�0

ˇ̌̌̌�
bi�1;nC1q

�2.i�1/.nC1/ 1 � q�2.nC1/

.q � q�1/.1 � q�2/

� biC1;nC1q
�2.iC1/.nC1/ 1 � q2.nC1/

.q � q�1/.1 � q2/

�ˇ̌̌̌
�iCn

�

X
i2Z;n�0

�ˇ̌̌̌
bi�1;nC1q

�2.i�1/.nC1/ 1 � q�2.nC1/

.q � q�1/.1 � q�2/

ˇ̌̌̌

C

ˇ̌̌̌
biC1;nC1q

�2.iC1/.nC1/ 1 � q2.nC1/

.q � q�1/.1 � q2/

ˇ̌̌̌�
�iCn

�

X
i2Z;n�0

�
jbi�1;nC1jjq

�2.i�1/.nC1/
j

2

j.q � q�1/.1 � q�2/j

C jbiC1;nC1jjq
�2.iC1/.nC1/

j
2

j.q � q�1/.1 � q2/j

�
�iCn

�
2

j.q � q�1/.1 � q�2/j

X
i2Z;n�0

jbi;nj�
iCn

C
2

j.q � q�1/.1 � q�2/j

X
i2Z;n�0

jbiC1;nC1j
�iCnC2

�2

� C
X

i2Z;n�0

jbi;nj�
iCn
C
C

�2

X
i2Z;n�0

jbi;nj�
iCn
�

�
C C

C

�2

�



 X
i2Z;n�0

bi;nK
iF n






�

:
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Applying Theorem 4.12, we conclude that the Arens-Michael envelope of Uq.sl.2//

for jqj D 1, q ¤ 1;�1 is

4Uq
�
sl.2/

�
D cA2 D O.C;cA1I b̨1; yı/
D

²
c D

X
i2Z;n;m�0

ci;n;mK
iF nEm W kck� <1 for any � > 0

³
;

where
kck� D

X
i2Z; n;m�0

jci;n;mj�
iCnCm;

and the topology is generated by the family®
k � k� W � 2 R>0

¯
:

Remark 6.4. To the best knowledge of the author, the case jqj ¤ 1 remains an open
question. However, see [3, Section 4] for a recent discussion of the possible approaches
for this case.
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