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HPD-invariance of the Tate conjecture(s)

Gonçalo Tabuada

Abstract. We prove that the Tate conjecture (and its variants) is invariant under homological projec-
tive duality. As an application, we obtain a proof, resp. an alternative proof, of the Tate conjecture
(and of its variants) in the new case of linear sections of determinantal varieties, resp. in the old
cases of Pfaffian cubic fourfolds and complete intersections of quadrics. In addition, we generalize
the Tate conjecture (and its variants) from schemes to stacks and prove this generalized conjecture(s)
for low-dimensional root stacks and low-dimensional (twisted) orbifolds.

1. Introduction

Let k be a base field of characteristic p�0 andX a smooth projective k-scheme. Through-
out the article, we will write Z�.X/Q WD

Ldim.X/
iD0 Zi .X/Q for the graded Q-vector space

of algebraic cycles on X up to rational equivalence and Z�.X/Q=�num for its quotient
with respect to the numerical equivalence relation. Given a prime number l ¤ p, consider
the classical cycle class map

Z�.X/Ql
! H 2�

et

�
Xks ;Ql .�/

�Gal.ks=k/
; (1.1)

where ks stands for a (chosen) separable closure of k, Gal.ks=k/ for the absolute Galois
group of k, and H�et .�;Ql / WD .lim� H

�
et .�;Z=l

�//˝Zl Ql for l-adic cohomology. In
the sixties, Tate [40, 41] conjectured the following:

Conjecture Tl .X/. When k is finitely generated over its prime field, the above cycle class
map (1.1) is surjective.

Examples of fields which are finitely generated over their prime fields include finite
fields, number fields, function fields, etc. In contrast, algebraically closed fields are not
finitely generated over their prime fields. The Tate conjecture holds when dim.X/ � 1,
when X is an abelian variety of dimension � 3, and also when X is aK3-surface; consult
the surveys [3, 28, 44]. Besides these cases (and some other cases scattered in the litera-
ture), the Tate conjecture remains wide open. In Theorem 2.7, resp. in Theorems 2.13 and
2.15, below we will provide a proof, resp. an alternative proof, of the Tate conjecture in
some new, resp. old, cases.

2020 Mathematics Subject Classification. Primary 14C25; Secondary 14A22, 14F20.
Keywords. Tate conjecture, homological projective duality, noncommutative algebraic geometry.



164 G. Tabuada

The above conjecture of Tate admits several variants. For example, in the sixties, Tate
[40, 41] conjectured moreover the following:

Conjecture xTl .X/. When k is finitely generated over its prime field, the classical cycle
class map is surjective

Z�.Xks /Ql
!

[
k0=k

H 2�
et

�
Xks ;Ql .�/

�Gal.ks=k0/
; (1.2)

where the union runs over all the finite field extensions k0=k inside ks .

Conjecture SSl .X/. When k is finitely generated over its prime field, the (continuous)
l-adic representations ¹Hn

et .Xks ;Ql / j 0 � n � 2 dim.X/º of the absolute Galois group
Gal.ks=k/ are semi-simple.

It is well known that xTl .X/) Tl .X/. Moreover, when p D 0, we have the following
implication ¹xTl .X/ j X 2 SmProj.k/º ) ¹SSl .X/ j X 2 SmProj.k/º, where SmProj.k/
stands for the category of smooth projective k-schemes; consult [29].

In the 2000s, Milne [28] formulated the following p-adic variant:

Conjecture Tp.X/. When k is finite, the classical cycle class map is surjective:

Z�.X/Qp ! H 2�
crys.X/.�/

� ; (1.3)

where H�crys.�/ stands for crystalline cohomology and � is the crystalline Frobenius.

Finally, in the eighties, Beilinson (see [16, Conj. 50]) conjectured the following:

Conjecture B.X/. When k is finite, we have Z�.X/Q D Z�.X/Q=�num.

Note that combining Conjecture B.X/ with Conjectures Tl .X/ and Tp.X/, we con-
clude that the classical cycle class maps are bijective:

Z�.X/Ql

'
�! H 2�

et

�
Xks ;Ql .�/

�Gal.ks=k/
Z�.X/Qp

'
�! H 2�

crys.X/.�/
� :

This provides an optimal description of algebraic cycles using l-adic and crystalline coho-
mology. The conjectures C.X/, with C 2 ¹xTl ; SSl ; Tp;Bº, also hold when dim.X/ � 1
and whenX is an abelian variety of dimension� 3; consult [9,15,16,45]. Moreover, these
conjectures, with C 2 ¹xTl ;SSl ;Tpº, hold1 for K3-surfaces.

2. Statement of results

A differential graded (= dg) category A is a category enriched over complexes of k-
vector spaces; consult Section 3.1. As explained in Section 4, given a smooth proper dg

1When dim.X/ � 3, we have Tl .X/, Tp.X/ (for every l ¤ p).
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category A in the sense of Kontsevich, the Tate conjecture and its variants admit noncom-
mutative analogues Cnc.A/ with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº. Examples of smooth proper dg
categories include finite dimensional k-algebras of finite global dimension A as well as
the canonical dg enhancement perfdg.X/ of the category of perfect complexes perf.X/ of
every smooth proper k-scheme X (or, more generally, of every smooth proper algebraic
stack X); consult [18, 26].

Theorem 2.1. Given a smooth projective k-scheme X , we have the equivalences:

C.X/, Cnc
�

perfdg.X/
�

with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº:

Intuitively speaking, Theorem 2.1 shows that the Tate conjecture and its variants
belong not only to the realm of algebraic geometry but also to the broad noncommuta-
tive setting of smooth proper dg categories in the sense of Kontsevich.

HPD-invariance

For surveys on homological projective duality (HPD), we invite the reader to consult [25,
42]. Let X be a smooth projective k-scheme equipped with a line bundle LX .1/; we will
write X ! P .V / for the associated morphism, where V WD H 0.X;LX .1//

_. Assume
that the triangulated category perf.X/ admits a Lefschetz decomposition hA0;A1.1/; : : : ;
Ai�1.i � 1/iwith respect to LX .1/ in the sense of [23, Def. 4.1]. Following [23, Def. 6.1],
let Y be the HP-dual ofX , LY .1/ the HP-dual line bundle, and Y !P .V _/ the morphism
associated to LY .1/. Given a linear subspace L � V _, consider the linear sections XL WD
X �P.V / P .L?/ and YL WD Y �P.V _/ P .L/. As a first application of Theorem 2.1, we
obtain the following result:

Theorem 2.2 (HPD-invariance). Assume the following:

(a) the linear sections XL and YL are smooth2;

(b) we have dim.XL/ D dim.X/ � dim.L/ and dim.YL/ D dim.Y / � dim.L?/;

(c) the conjectures Cnc.A
dg
0 /, with C 2 ¹Tl ; xTl ; SSl ;Tp;Bº, hold, where Adg

0 stands
for the dg enhancement of A0 induced from perfdg.X/.

Under the assumptions (a)–(c), we have the following equivalences:

C.XL/, C.YL/ with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº:

Remark 2.3 (Mild assumptions). Given a generic subspaceL� V _, the sectionsXL and
YL are smooth, and the equalities dim.XL/D dim.X/� dim.L/ and dim.YL/D dim.Y /�
dim.L?/ hold. Moreover, the conjectures Cnc.A

dg
0 /, with C 2 ¹Tl ; xTl ; SSl ; Tp;Bº, hold

whenever the triangulated category A0 admits a full exceptional collection. This is the
case in all the examples in the literature. For these reasons, the assumptions (a)–(c) of
Theorem 2.2 are quite mild.

2The linear section XL is smooth if and only if the linear section YL is smooth; see [25, p. 9].
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Remark 2.4 (Generalization). Theorem 2.2 holds more generally when Y is singular.
In this case, we need to replace Y by a noncommutative resolution of singularities
perfdg.Y IF /, where F is a certain sheaf of noncommutative algebras (consult [25, §2.4]),
and conjecture C.Y / by its noncommutative analogue Cnc.perfdg.Y IF //.

To the best of the author’s knowledge, Theorem 2.2 is new in the literature. In what
follows, we illustrate its strength in three important examples:

Example 1: Determinantal duality

Let U1 and U2 be two k-vector spaces of dimensions d1 and d2, with d1 � d2, V WD
U1 ˝ U2, and 0 < r < d1 an integer. Consider the determinantal variety Zr

d1;d2
� P .V /

defined as the locus of those matrices U2 ! U_1 with rank � r . Recall that the deter-
minantal varieties with r D 1 are the classical Segre varieties. For example, Z12;2 � P3

is the quadric hypersurface ¹Œv0 W v1 W v2 W v3� j v0v3 � v1v2 D 0º. In contrast with the
Segre varieties, the determinantal varieties Zr

d1;d2
, with r � 2, are not smooth. The sin-

gular locus of Zr
d1;d2

consists of those matrices U2 ! U_1 with rank < r , i.e., it agrees
with the closed subvariety Zr�1

d1;d2
. Nevertheless, it is well known that Zr

d1;d2
admits a

canonical Springer resolution of singularities Xr
d1;d2

! Zr
d1;d2

, which comes equipped
with a projection qWXr

d1;d2
! Gr.r;U1/ to the Grassmannian of r-dimensional subspaces

in U1. Following [4, §3.3], the category perf.X/, with X WD Xr
d1;d2

, admits a Lefschetz
decomposition hA0;A1.1/; : : : ;Ad2r�1.d2r � 1/i, where A0 D A1 D � � � D Ad2r�1 D
q�.perf.Gr.r; U1/// ' perf.Gr.r; U1//.

Proposition 2.5. The conjectures Cnc.A
dg
0 /, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold.

Dually, consider the variety W r
d1;d2

� P .V _/ of those matrices U_2 ! U1 with corank
� r , and the associated resolution of singularities Y WD Yr

d1;d2
! W r

d1;d2
. As proved3

in [4, Prop. 3.4 and Thm. 3.5], X and Y are HP-dual to each other. Given a generic
linear subspace L � V _, consider the associated smooth linear sections XL and YL; note
that whenever P .L?/ does not intersect the singular locus of Zr

d1;d2
, we have XL D

P .L?/ \Zr
d1;d2

. Theorem 2.2 yields the following result:

Corollary 2.6. We have the following equivalences:

C.XL/, C.YL/ with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº:

By construction,

dim.X/ D r.d1 C d2 � r/ � 1 and dim.Y / D r.d1 � d2 � r/C d1d2 � 1:

3In [4, Prop. 3.4 and Thm. 3.5], the authors worked over an algebraically closed field of characteristic
zero. However, the same proof holds mutatis mutandis over any field k. Simply replace the reference [17]
concerning the existence of a full strong exceptional collection on perf.Gr.r; U1// by the reference [7,
Thm. 1.3] concerning the existence of a tilting bundle on perf.Gr.r;U1//. The author is grateful to Marcello
Bernardara for an e-mail exchange on this issue.
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Consequently, we have

dim.XL/D r.d1Cd2�r/� 1�dim.L/ and dim.YL/D r.d1�d2�r/� 1Cdim.L/:

Since the Tate conjecture and its variants hold in dimensions � 1, we hence obtain from
Corollary 2.6 the following result:

Theorem 2.7 (Linear sections of determinantal varieties). Let XL and YL be as in Corol-
lary 2.6 and C 2 ¹Tl ; xTl ;SSl ;Tp;Bº.

(i) When r.d1 C d2 � r/ � 1 � dim.L/ � 1, the conjectures C.XL/ hold.

(ii) When r.d1 � d2 � r/ � 1C dim.L/ � 1, the conjectures C.YL/ hold.

To the best of the author’s knowledge, Theorem 2.7 is new in the literature. It proves
the Tate conjecture and its variants in new cases. Here are two examples:

Example 2.8 (Segre varieties). Let r D 1. Thanks to Theorem 2.7 (i), the conjectures
C.XL/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold when d1 � d2 � 2C dim.L/ � 1. In all these
cases,XL is a linear section of the Segre variety Z1

d1;d2
and its dimension is 2.d2�dim.L//

or 2.d2 � dim.L//C 1. Therefore, by letting d2 !1 and by keeping dim.L/ fixed, we
obtain infinitely many new examples of smooth projective k-schemes XL, of arbitrary
dimension, satisfying the Tate conjecture and its variants.

Subexample 2.9. Let r D 1, d1 D 4, and d2 D 2. In this particular case, the Segre variety
Z14;2�P7 agrees with the rational normal 4-fold scroll S1;1;1;1; see [13, Ex. 8.27]. Choose
a generic linear subspace L � V _ of dimension 1 such that the hyperplane P .L?/ � P7

does not contain any 3-plane of the ruling of S1;1;1;1. By combining Example 2.8 with [8,
Prop. 2.5], we hence conclude that the rational normal 3-fold scroll XL D S1;1;2 satisfies
the Tate conjecture and its variants.

Example 2.10 (Square matrices). Let d1 D d2 D d . Thanks to Theorem 2.7 (i), the con-
jectures C.XL/, with C 2 ¹Tl ; xTl ; SSl ; Tp; Bº, hold when �r2 � 1 C dim.L/ � 1. In
all these cases, XL is of dimension 2.dr � dim.L// or 2.dr � dim.L//C 1. Therefore,
by letting d ! 1 and by keeping r and dim.L/ fixed, we obtain infinitely many new
examples of smooth projective k-schemes XL, of arbitrary dimension, satisfying the Tate
conjecture and its variants.

Subexample 2.11. Let d1 D d2 D 3 and r D 2. In this particular case, the determinan-
tal variety Z23;3 � P8 has dimension 7 and its singular locus is the 4-dimensional Segre
variety Z13;3 � Z23;3. Given a generic linear subspace L � V _ of dimension 5, the asso-
ciated smooth linear section XL is 2-dimensional and, thanks to Example 2.10, it satisfies
the Tate conjecture and its variants. Note that since codim.L?/D 5 > 4D dim.Z13;3/, the
subspace P .L?/� P8 does not intersect the singular locus Z13;3 of Z23;3. Therefore, for all
the above choices of L, the associated surface XL is a linear section of the determinantal
variety Z23;3.
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Example 2: Grassmannian–Pfaffian duality

Assume that p D 0. Let W be a k-vector space of dimension 6 and X D Gr.2; W / the
Grassmannian variety equipped with the Plücker embedding

Gr.2;W /! P
�
^
2 .W /

�
; .w1; w2/ 7! Œw1 ^ w2�:

Following [22] and [25, §4.4], the category perf.X/ admits a Lefschetz decomposition
hA0; : : : ;A5.5/i with A0 D A1 D A2 D hOX ;U_X ; S

2.U_X /i and A3 D A4 D A5 D
hOX ;U

_
X i, where U_X stands for the dual of the tautological bundle on X and S2.U_X /

for the symmetric power of U_X . Following Remark 2.3, these full exceptional collections
imply that the conjectures Cnc.A

dg
0 /, with C 2 ¹Tl ; xTl ; SSl ; Tp; Bº, hold. As proved in

[22, Thm. 1] and [25, §4.4], the HP-dual Y of X is given by perf.Pf.4;W _/IF /, where
Pf.4;W _/� P .^2.W _// is the (singular) Pfaffian variety and F is a certain sheaf of non-
commutative algebras; consult Remark 2.4. LetL�^2.W _/ be a generic linear subspace.
When dim.L/ � 6, the associated subspace P .L/ � P .^2.W _// does not intersect the
singular locus of Pf.4;W _/. Consequently, the linear section YL agrees with the smooth
section Pf.4;W _/L WD Pf.4;W _/ \ P .L/. Theorem 2.2 yields the following result:

Corollary 2.12. When dim.L/ � 6, we have the following equivalences:

C.XL/, C
�

Pf.4;W _/L
�

with C 2 ¹Tl ; xTl ;SSlº:

By construction, dim.XL/D 8� dim.L/ and dim.YL/D dim.L/� 2. Moreover, when
dim.L/D 6,XL is aK3-surface and YL a cubic fourfold; consult [22, §10]. Since the Tate
conjecture and its variants hold for K3-surfaces, we hence obtain from Corollary 2.12 the
following result:

Theorem 2.13 (Pfaffian cubic fourfolds). Let Pf.4;W _/L be as in Corollary 2.12. When
dim.L/ D 6, the conjectures C.Pf.4;W _/L/, with C 2 ¹Tl ; xTl ;SSlº, hold.

An alternative (geometric) proof of Theorem 2.13, based on the Kuga–Satake corre-
spondence, was obtained by André in the mid nineties; consult [1, Thm. 1.6.1].

Example 3: Veronese–Clifford duality

Let W be a k-vector space of dimension d and X the projective space P .W / equipped
with the double Veronese embedding P .W /! P .S2W /, Œw� 7! Œw ˝ w�. Consider the
Beilinson full exceptional collection

perf.X/ D
˝
OX .�1/;OX ;OX .1/; : : : ;OX .d � 2/

˛
(see [5]) and set i WD dd=2e and

A0 D A1 D � � � D Ai�2 WD
˝
OX .�1/;OX

˛
; Ai�1 WD

´ ˝
OX .�1/;OX

˛
if d D 2i;˝

OX .�1/
˛

if d D 2i � 1:
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Under the preceding notations, the category perf.X/ admits the Lefschetz decomposition
hA0;A1.1/; : : : ;Ai�1.i � 1/i with respect to the line bundle LX .1/ D OX .2/. Following
Remark 2.3, these full exceptional collections imply that the conjectures Cnc.A

dg
0 /, with

C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold.
Let H WD X �P.S2W / Q � X � P .S2.W _// be the universal hyperplane section,

where Q � P .S2.W // � P .S2.W _// stands for the incidence quadric. By construction,
the projection qWH ! P .S2.W _// is a flat quadric fibration. As proved in [24, Thm. 5.4]
(see also [2, Thm. 2.3.6]) the HP-dual Y of X is given by perfdg.P .S

2.W _//IC l0.q//,
where C l0.q/ stands for the sheaf of even Clifford algebras associated to q; consult
Remark 2.4. Let L � S2.W _/ be a generic linear subspace. On the one hand, XL corre-
sponds to the smooth complete intersection of the dim.L/ quadric hypersurfaces in P .W /
parametrized by L. On the other hand, YL is given by perfdg.P .L/IC l0.q/jL/. Theorem
2.2 yields the following result:

Corollary 2.14. We have the following equivalences:

C.XL/, Cnc
�

perfdg

�
P .L/IC l0.q/jL

��
with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº:

Recall that the space of quadrics P .S2.W _// comes equipped with a canonical filtra-
tion �d � � � � � �2 � �1 � P .S2.W _//, where �i stands for the closed subscheme of
those singular quadrics of corank � i .

Theorem 2.15 (Intersection of two quadrics). Let XL be as in Corollary 2.14. Assume
that dim.L/ D 2 and that P .L/ \�2 D ;.

(i) When d is even, the conjectures C.XL/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold.

(ii) When d is odd and kD Fq is a finite field of characteristic p� 3, the conjectures
C.XL/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold.

The proof of Theorem 2.15 is based on the solution of the corresponding noncom-
mutative conjectures of Corollary 2.14; consult Section 8 for details. In what concerns
the Tate conjecture, an alternative (geometric) proof, based on the notion of variety of
maximal planes, was obtained by Reid4 in the early seventies; consult [31, Thms. 3.14
and 4.14]. Therein, Reid proved the Hodge conjecture but, as Bruno Kahn informed me,
a similar proof works for the Tate conjecture. In what concerns the variants of the Tate
conjecture, Theorem 2.15 is, to the best of the author’s knowledge, new in the literature.

Remark 2.16 (Intersection of even-dimensional quadrics). As explained in Remark 8.3
below, when d is even and dim.L/ � 2, i.e., when XL is the intersection of dim.L/ even-
dimensional quadric hypersurfaces, a proof similar to the one of Theorem 2.15 shows that
the conjectures C.XL/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, are equivalent to the corresponding
conjectures for the discriminant 2-fold cover of the projective space P .L/. This result is
also new in the literature.

4Reid also assumed in loc. cit. that P .L/ \�2 D ;; consult [31, Def. 1.9].
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Tate conjecture(s) for stacks

As a second application of Theorem 2.1, we obtain the following extension of the Tate
conjecture and of its variants to the broad setting of smooth proper algebraic k-stacks:

C.X/ WD Cnc
�

perfdg.X/
�

with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº: (2.17)

The next results prove these extended conjectures in several different cases:

Theorem 2.18 (Root stacks). Let X be a smooth projective k-scheme, L a line bundle on
X , & 2 �.X;L/ a global section, n � 1 an integer, and X WD n

p
.L; &/=X the associated

root stack. When the zero locus Z ,! X of the global section & is smooth, we have the
following equivalences:

C.X/C C.Z/, C.X/ with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº: (2.19)

Corollary 2.20 (Low-dimensional root stacks). When dim.X/ � 1 or X is an abelian
surface, the conjectures C.X/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold. The conjectures C.X/,
with C 2 ¹Tl ; xTl ;SSl ;Tpº, also hold when X is a K3-surface.

Theorem 2.21 (Orbifolds). Let G be a finite group of order n, X a smooth projective k-
scheme equipped with aG-action, and X WD ŒX=G� the associated global orbifold. When
p − n, we have the following implications:X

��G

C
�
X� � Spec

�
kŒ��

��
) C.X/ with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº; (2.22)

where � is a cyclic subgroup of G. Moreover, when k contains the nth roots of unity, the
k-schemes X� � Spec.kŒ��/ in (2.22) can be replaced by the k-schemes X� .

Corollary 2.23 (Low-dimensional orbifolds). Assume that p − n.

(i) When dim.X/ � 1, the conjectures C.X/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold.

(ii) Assume that k contains the nth roots of unity. When X is an abelian surface, the
conjectures C.X/, with C 2 ¹Tl ; xTl ; SSl ; Tp;Bº, hold. The conjectures C.X/,
with C 2 ¹Tl ; xTl ;SSl ;Tpº, hold also when X is a K3-surface.

(iii) Assume that k contains the nth roots of unity. When X is an abelian variety of
dimension 3 and G acts by group homomorphisms5, the conjectures C.X/, with
C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold.

LetG,X , and X WD ŒX=G� be as above in Theorem 2.21. Suppose that X is equipped
with a sheaf of Azumaya algebras6 F of rank r . In this case, similarly to (2.17), we can
write C.XIF / WD Cnc.perfdg.XIF //, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, where perfdg.XIF /

stands for the dg category of perfect complexes of F -modules. The following result is the
“twisted” version of Theorem 2.21.

5For example, in the case where G D Z=2, we can consider the canonical involution x 7! �x.
6In other words, F is a G-equivariant sheaf of Azumaya algebras of rank r over X .
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Theorem 2.24 (Twisted orbifolds). When p − nr and k contains the nth roots of unity,
we have the following implications:X

��G

C.Y� /) C.XIF / with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº; (2.25)

where � is a cyclic subgroup of G and Y� is a certain �_-Galois cover of X� induced by
the restriction of F to X� .

Corollary 2.26 (Low-dimensional twisted orbifolds). When dim.X/�1 orX is an abelian
surface, the conjectures C.XIF /, with C 2 ¹Tl ; xTl ; SSl ; Tp;Bº, hold. The conjectures
C.XIF /, with C 2 ¹Tl ; xTl ;SSl ;Tpº, also hold when X is a K3-surface.

3. Preliminaries

Throughout the article, k denotes a base field of characteristic p � 0.

3.1. Dg categories

For a survey on dg categories, we invite the reader to consult [18]. A differential graded
(= dg) category A is a category enriched over complexes of k-vector spaces. Let us write
dgcat.k/ for the category of (small) dg categories. Let A be a dg category. The opposite
dg category Aop has the same objects and Aop.x; y/ WD A.y; x/. A right dg A-module
is a dg functor M WAop ! Cdg.k/ with values in the dg category Cdg.k/ of complexes
of k-vector spaces. Following [18, §3.2], the derived category D.A/ of A is defined as
the localization of the category of right dg A-modules C.A/ with respect to the object-
wise quasi-isomorphisms. Let us write Dc.A/ for the triangulated subcategory of compact
objects.

A dg functor F WA! B is called a Morita equivalence if it induces an equivalence
on derived categories D.A/ ' D.B/; see [18, §4.6]. As explained in [35, §1.6], the cat-
egory dgcat.k/ admits a Quillen model structure whose weak equivalences are the Morita
equivalences. Let us denote by Hmo.k/ the associated homotopy category.

The tensor product A˝ B of dg categories is defined as follows: the set of objects
is obj.A/ � obj.B/ and .A ˝ B/..x; w/; .y; z// WD A.x; y/ ˝ B.w; z/. As explained
in [18, §2.3], this construction gives rise to a symmetric monoidal structure � ˝ � on
dgcat.k/ which descends to the homotopy category Hmo.k/.

A dg A-B-bimodule is a dg functor BWA˝Bop! Cdg.k/ or, equivalently, a right dg
.Aop ˝B/-module. A standard example is the dg A-B-bimodule

FB W A˝Bop
! Cdg.k/; .x; z/ 7! B

�
z; F.x/

�
(3.1)

associated to a dg functor F W A! B. Following Kontsevich [19–21], a dg category A

is called smooth if the dg A-A-bimodule idA belongs to the category Dc.A
op ˝A/ and

proper if
P
n dimHnA.x; y/ <1 for any pair of objects .x; y/.
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3.2. Additive invariants

Given dg categories A and B and a dg A-B-bimodule B, consider the following dg cate-
gory T .A;BIB/: the set of objects is obj.A/q obj.B/; the complexes of k-vector spaces
of morphisms T .A;BIB/.x; y/ are equal to A.x; y/ when x; y 2 A, to B.x; y/ when
x;y 2B, to B.x;y/when x 2A and y 2B, and to 0when x 2B and y 2A; and the com-
position law is induced by the composition law of A and B and by the dg A-B-bimodule
structure of B. By construction, we have canonical dg functors �AWA! T .A;BIB/ and
�B WB ! T .A;BIB/.

Recall from [35, Def. 2.1] that a functor EW dgcat.k/! D, with values in an additive
category, is called an additive invariant if it satisfies the following conditions:

(i) it sends the Morita equivalences to isomorphisms;

(ii) given A, B, and B, as above, the dg functors �A and �B induce an isomorphism

E.A/˚E.B/
'
�! E

�
T .A;BIB/

�
:

Let us write rep.A;B/ for the full triangulated subcategory of D.Aop ˝B/ consisting
of those dg A-B-modules B such that for every object x 2 A the associated right dg B-
module B.x;�/ belongs to Dc.B/. As explained in [35, §1.6.3], there is a natural bijection
between HomHmo.k/.A;B/ and the set of isomorphism classes of the category rep.A;B/.
Under this bijection, the composition law of Hmo.k/ corresponds to the (derived) tensor
product of bimodules. Therefore, since the dg A-B-bimodules (3.1) belong to rep.A;B/,
we have the following functor:

dgcat.k/! Hmo.k/; A 7! A;
�
A

F
�! B

�
7! FB: (3.2)

The additivization of Hmo.k/ is the additive category Hmo0.k/ with the same objects as
Hmo.k/ and with abelian groups of morphisms HomHmo0.k/.A;B/ given by the Grothen-
dieck group K0 rep.A;B/ of the triangulated category rep.A;B/. As explained in [35,
§2.3], the following composition is the universal additive invariant:

U W dgcat.k/
(3.2)
��! Hmo.k/! Hmo0.k/; A 7! A;

�
A

F
�! B

�
7! ŒFB�: (3.3)

3.3. Noncommutative motives

For a book on noncommutative motives, we invite the reader to consult [35]. Recall from
[35, §4.1] that the category of noncommutative Chow motives NChow.k/Q (with Q-
coefficients) is defined as the idempotent completion of the full subcategory of Hmo0.k/Q
consisting of those objects U.A/Q with A a smooth proper dg category. This category
NChow.k/Q is Q-linear, additive, and rigid symmetric monoidal. Moreover, we have nat-
ural isomorphisms:

HomNChow.k/Q

�
U.A/Q; U.B/Q

�
WD K0

�
rep.Aop

˝B/
�

Q
' K0.A

op
˝B/Q: (3.4)
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Given a Q-linear, additive, rigid symmetric monoidal category .C ;˝; 1/, its N -ideal is
defined as follows (tr.g ı f / stands for the categorical trace of g ı f ):

N .a; b/ WD
®
f 2 HomC .a; b/ j 8g 2 HomC .b; a/ we have tr.g ı f / D 0

¯
:

Under these notations, recall from [35, §4.6] that the category of noncommutative numer-
ical motives NNum.k/Q (with Q-coefficients) is defined as the idempotent completion of
the quotient category NChow.k/Q=N .

4. Noncommutative conjectures

Let A be a smooth proper (k-linear) dg category.

Noncommutative conjecture Tl
nc.A/

Let l ¤ p be a prime number. Following Thomason [43], consider the l-adic étale K-
theory groups

K
Ol;et
n .A˝k ks/ WD �n

�
holim�LKU IK.A˝k ksIZ=l

�/
�
n 2 Z; (4.1)

where IK.A˝k ksIZ=l�/ stands for the (non-connective) algebraic K-theory spectrum
with Z=l�-coefficients of the dg category A˝k ks and LKU IK.A˝k ksIZ=l�/ for the
Bousfield localization of IK.A ˝k ksI Z=l�/ with respect to complex topological K-
theory KU . Thanks to the work of Suslin [33, 34] and Gabber [12], we have a Z-graded
ring isomorphism K

Ol;et
� .ks/ ' Zl Œt; t

�1�, where t is of degree 2. Note that this implies
that the above K-theory groups (4.1) are Zl -modules and that

K
Ol;et
n .A˝k ks/ ' K

Ol;et
nC2.A˝k ks/

for every n 2 Z. Note also that, by construction, the absolute Galois group Gal.ks=k/ acts
on the above Zl -modules (4.1) and that we have a canonical Ql -linear homomorphism:

K0.A/Ql
! K

Ol;et
0 .A˝k ks/

Gal.ks=k/
1=l

: (4.2)

Conjecture Tlnc.A/. When k is finitely generated over its prime field, the above homo-
morphism (4.2) is surjective.

Noncommutative conjecture xTl
nc.A/

Let l ¤ p be a prime number. Similarly to (4.2), we have a canonical Ql -linear homo-
morphism

K0.A˝k k
0/Ql
! K

Ol;et
0 .A˝k ks/

Gal.ks=k0/
1=l

(4.3)

for every finite field extension k0=k inside ks . Moreover, since ks D
S
k0=k k

0, where
the union runs over all the finite field extensions k0=k inside ks , the functors A ˝k �
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and K0.�/Ql
preserve filtered colimits, and the Ql -linearized Grothendieck group

K0.A˝k ks/Ql
identifies with colimk0=k K0.A ˝k k

0/Ql
. Consequently, we obtain a

canonical Ql -linear homomorphism:

K0.A˝k ks/Ql
!

[
k0=k

K
Ol;et
0 .A˝k ks/

Gal.ks=k0/
1=l

: (4.4)

Conjecture xTlnc.A/. When k is finitely generated over its prime field, the above homo-
morphism (4.4) is surjective.

Lemma 4.5. We have the implication xTlnc.A/) Tlnc.A/.

Proof. Let ˇ be an element of K
Ol;et
0 .A ˝k ks/1=l which is fixed under the Gal.ks=k/-

action. We need to construct an element ˛ of K0.A/Ql
which is mapped to ˇ by the

homomorphism (4.2). Since the conjecture xTlnc.A/ holds, there exists a finite field exten-
sion k0=k inside ks (which we can assume without loss of generality to be Galois7) and an
element ˛0 of K0.A˝k k0/Ql

which is mapped to ˇ by the homomorphism (4.3). Recall
from [27, §7] that we have well-defined Ql -homomorphisms

�˝k k
0
WK0.A/Ql

! K0.A˝k k
0/Ql

; resk0=k WK0.A˝k k0/Ql
! K0.A/Ql

such that
resk0=k.˛0/˝k k0 D

X
�2Gal.k0=k/

�.˛0/:

Let us take ˛ WD 1
Œk0Wk�

resk0=k.˛0/. Since ˇ is fixed by the Gal.ks=k/-action and (4.3) is
Gal.k0=k/-equivariant, we hence conclude that ˛ is mapped to ˇ by the homomorphism
(4.2).

Noncommutative conjecture SSl
nc.A/

Recall from above that, up to isomorphism, we have two (continuous) l-adic representa-
tions

K
Ol;et
0 .A˝k ks/1=l ; K

Ol;et
1 .A˝k ks/1=l (4.6)

of the absolute Galois group Gal.ks=k/.

Conjecture SSlnc.A/. When k is finitely generated over its prime field, the above l-adic
representations (4.6) are semi-simple.

Noncommutative conjecture Tp.A/

Let k WD Fq be a finite field of characteristic p > 0,W.k/ the associated ring of p-typical

Witt vectors,K WDW.k/1=p the fraction field ofW.k/, and � WK
'
�!K the automorphism

induced by the Frobenius map � 7! �p on k. Recall that the associated field extension
K=Qp is finite.

7If the field extension k0=k is not Galois, take the normal closure of k0 inside ks .
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Consider the topological Hochschild homology THH.A/ of the dg category A.
The canonical S1-action on THH.A/ gives rise to the spectrum of homotopy orbits
THH.A/hS1 , to the spectrum of homotopy fixed-points TC�.A/ WD THH.A/hS

1
, and

also to the Tate construction TP.A/ WD THH.A/tS
1
. As explained in [30, Cor. I.4.3],

these spectra are related by the following cofiber sequence:

†THH.A/hS1
N
�! THH.A/hS

1 can
��! THH.A/tS

1

; (4.7)

where N is the norm map. It is well known that the abelian groups THH�.A/ are k-linear.
Hence, the spectrum †THH.A/hS1 becomes trivial after inverting p. Consequently, the
cofiber sequence (4.7) leads to a canonical isomorphism:

canWTC�0 .A/1=p
'
�! TP0.A/1=p: (4.8)

Recall that TP0.A/1=p is a finitely-generated module over TP0.k/1=p ' K, i.e., a finite-
dimensional K-vector space. Since A is smooth and proper, it is also well known that the
spectrum THH.A/ is bounded below and p-complete. Making use of [30, Lem. II 4.2],
we hence obtain moreover a “cyclotomic Frobenius”:

'pWTC
�
0 .A/1=p ! TP0.A/1=p: (4.9)

Let us write ' WD 'p ı can�1 for the associated endomorphism of TP0.A/1=p . This endo-
morphism ' is not K-linear but only � -semilinear.

Now, recall from [36, Prop. 4.2] that the assignment A 7! TP0.A/1=p gives rise to
a Qp-linear functor from NChow.k/Qp to the category of K-vector spaces Vect.K/. By
compositing it with the forgetful functor from K-vector spaces to Qp-vector spaces, we
hence obtain the following Qp-linear functor:

TP0.�/1=pWNChow.k/Qp ! Vect.Qp/: (4.10)

This leads, in particular, to the induced Qp-linear homomorphism

K0.A/Qp ' HomNChow.k/Qp

�
U.k/Qp ; U.A/Qp

�
��

TP0.A/1=p ' HomVect.Qp/

�
TP0.k/1=p; TP0.A/1=p

�
:

(4.11)

Lemma 4.12. The preceding homomorphism (4.11) takes values in the Qp-linear sub-
space TP0.A/

'

1=p
of those elements that are fixed by '.

Proof. On the one hand, the Qp-linear endomorphisms 'W TP0.A/1=p ! TP0.A/1=p
(parametrized by the smooth proper dg categories A) give rise to a natural transforma-
tion from (4.10) to itself. On the other hand, thanks to the enriched Yoneda lemma, the
Qp-linear natural transformations from the following functor

K0.�/Qp ' HomNChow.k/Qp

�
U.k/Qp ;�

�
WNChow.k/Qp ! Vect.Qp/
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to the above functor (4.10) are in one-to-one correspondence with the elements of the Qp-
vector space TP0.k/1=p ' K. Under this bijection, the unit element 1 2 K corresponds
to the above homomorphism (4.11). Therefore, in order to prove Lemma 4.12, it suffices
to show that the endomorphism 'W TP0.k/1=p ! TP0.k/1=p sends 1 to 1. This follows
from the explicit descriptions

canWW.k/Œu; v�=.uv � p/! W.k/Œı; ı�1�; u 7! pı; v 7! ı�1;

'pWW.k/Œu; v�=.uv � p/! W.k/Œı; ı�1�; u 7! ı; v 7! pı�1

of the homomorphisms can; 'pW TC�� .k/! TP�.k/, where the variables u and ı have
degree 2 and the variable v has degree �2; consult [6, Props. 6.2-6.3].

Thanks to Lemma 4.12, we have an induced Qp-linear homomorphism:

K0.A/Qp ! TP0.A/
'

1=p
: (4.13)

Conjecture Tpnc.A/. The above homomorphism (4.13) is surjective.

Noncommutative conjecture Bnc.A/

Recall from [35, §4.7] that the Grothendieck group K0.A/ WD K0.Dc.A// of the dg cat-
egory A is equipped with the Euler pairing �WK0.A/ �K0.A/! Z defined as�

ŒM �; ŒN �
�
7!

X
n

.�1/n dim HomDc.A/

�
M;N Œ�n�

�
:

This bilinear pairing is not symmetric neither skew-symmetric. Nevertheless, as proved
in [35, Prop. 4.24], the left and right kernels of � agree. Consequently, we have a well-
defined numerical Grothendieck groupK0.A/=�num WDK0.A/=Ker.�/. In what follows,
we will writeK0.A/Q=�num for the associated Q-vector space .K0.A/=�num/Q, which is
isomorphic to the quotient K0.A/Q=Ker.�Q/.

Conjecture Bnc.A/. When k is finite, we have K0.A/Q D K0.A/Q=�num.

5. Proof of Theorem 2.1

We start by proving the equivalence Tl .X/, Tlnc.perfdg.X//. On the one hand, recall
from [11, §18.3] that since Q � Ql , we have a natural isomorphism between the Ql -
linearized Grothendieck group

K0
�

perfdg.X/
�

Ql
' K0.X/Ql

and the direct sum
Ldim.X/
iD0 Zi .X/Ql

. On the other hand, it follows from the canoni-
cal Morita equivalence perfdg.X/˝k ks ! perfdg.Xks / and from the work of Thomason
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[43, Thm. 4.1] and Soulé [32, §3.3.2] that we have a natural isomorphism between the
ZŒ1=l�-linearized l-adic étale K-theory group K

Ol;et
0 .perfdg.X/˝k ks/1=l and the direct

sum
Ldim.X/
iD0 H 2i

et .Xks ;Ql .i//. Moreover, as explained by Friedlander in [10, §5], under
the preceding isomorphisms the homomorphism (4.2) (with A D perfdg.X/) corresponds
to the graded homomorphism (1.1). Consequently, (1.1) is surjective if and only if (4.2) is
surjective.

We now prove the equivalence xTl .X/, xTlnc.perfdg.X//. Recall from Section 4 that
the canonical Ql -linear homomorphism (4.4) (with A D perfdg.X/) may be described as

colimk0=k

�
K0
�

perfdg.X/˝k k
0
�

Ql

(4.3)
��! K

Ol;et
0

�
perfdg.X/˝k ks

�Gal.ks=k0/
1=l

�
;

where k0=k is a finite field extension inside ks . Similarly, the canonical Ql -linear homo-
morphism (1.2) may be described as the filtered colimit

colimk0=k

�
Z�.Xk0/Ql

! H 2�
et

�
Xks ;Ql .�/

�Gal.ks=k0/�
:

Consequently, the proof is now similar to the proof of Tl .X/, Tlnc.perfdg.X// with k
replaced by a finite field extension k0 of k inside ks .

We now prove the equivalence SSl .X/, SSlnc.perfdg.X//. As above, by combin-
ing the canonical Morita equivalence perfdg.X/ ˝k ks ! perfdg.Xks / with the work of
Thomason [43, Thm. 4.1] and Soulé [32, §3.3.2], we obtain natural isomorphisms between
the l-adic (continuous) representations

K
Ol;et
0

�
perfdg.X/˝k ks

�
1=l
; K

Ol;et
1

�
perfdg.X/˝k ks

�
1=l

of the absolute Galois group Gal.ks=k/ and the direct sums
Ldim.X/
iD0 H 2i

et .Xks ;Ql .i// andLdim.X/
iD0 H 2iC1

et .Xks ;Ql .i//, respectively. Note that these direct sums are semi-simple if
and only if the l-adic representations®

H 2i
et .Xks ;Ql / j 0 � i � dim.X/

¯
and

®
H 2iC1

et .Xks ;Ql / j 0 � i � dim.X/
¯

are semi-simple. Therefore, we conclude that the l-adic representations (4.6) (with A D

perfdg.X/) are semi-simple if and only if the l-adic representations ¹Hn
et .Xks ;Ql / j 0 �

n � 2 dim.X/º are semi-simple.
We now prove the equivalence Tp.X/, Tpnc.perfdg.X//. Note first that we have the

following equality of graded Ql -vector spaces:

H 2�
crys.X/.�/

�
D H 2�

crys.X/
1
p�
�
;

where � stands for the crystalline Frobenius. Therefore, the conjecture Tp.X/ may be
re-formulated as the surjectivity of the classical cycle class map

Z�.X/Qp ! H 2�
crys.X/

1
p�
�
: (5.1)
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On the one hand, recall from [11, §18.3] that since Q � Ql , we have a natural isomor-
phism between the Qp-linearized Grothendieck groupK0.perfdg.X//Qp 'K0.X/Qp and
the direct sum

Ldim.X/
iD0 Zi .X/Qp . On the other hand, recall from [37, Thm. 5.2] that we

have a natural isomorphism between the ZŒ1=p�-linearized topological periodic cyclic
homology group TP0.perfdg.X//1=p and the direct sum

Ldim.X/
iD0 H 2i

crys.X/, which iden-
tifies ' with 1

p�
�. Under the preceding isomorphisms, the homomorphism (4.13) (with

A D perfdg.X/) corresponds to the graded homomorphism (5.1). Consequently, (5.1) is
surjective if and only if (4.13) is surjective.

Finally, we prove the equivalence B.X/, Bnc.perfdg.X//. Note first that since

Dc

�
perfdg.X/

�
' perf.X/;

the Euler pairing �WK0.X/ �K0.X/! Z may be re-written as�
ŒF �; ŒG �

�
7!

X
n

.�1/n dim Homperf.X/
�
F ;G Œ�n�

�
:

Recall from [11, §19] that a graded algebraic cycle ˛ 2Z�.X/Q is numerically equivalent
to zero if

R
X
ˇ � ˛ D 0 for every ˇ 2 Z�.X/Q. Recall also that we have the isomorphism

� WK0.X/Q
'
�!

dim.X/M
iD0

Zi .X/Q; ŒF � 7! ch.F / �
p

TdX ; (5.2)

where ch.F / stands for the Chern character of F and
p

TdX for the square root of
the Todd class; see [11, §18.3]. Given any two perfect complexes F ; G 2 perf.X/, the
Hirzebruch–Riemann–Roch theorem (see [11, Cor. 18.3.1]) yields the equality

Eu
�
��.F

_
˝OX G /

�
D

Z
X

�
�
ŒF _�

�
� �
�
ŒG �
�
;

where Eu denotes the Euler characteristic and � WX ! Spec.k/ is the structural mor-
phism of X . Since F _ ˝OX G ' Hom.F ; G /, where Hom.�;�/ stands for the inter-
nal Hom of the rigid symmetric monoidal category perf.X/, we hence conclude that
Eu.��.Hom.F ; G /// agrees with �.ŒF �; ŒG �/. This implies that (5.2) descends to the
numerical quotients

K0.X/Q

����

�

'
//
Ldim.X/
iD0 Zi .X/Q

����

K0.X/Q=�num �

' //
Ldim.X/
iD0 Zi .X/Q=�num:

(5.3)

Consequently, the proof follows now from the fact that the conjecture B.X/, resp.
Bnc.perfdg.X//, is equivalent to the injectivity of the vertical graded homomorphism on
the right-hand side of (5.3), resp. to the injectivity of the vertical homomorphism on the
left-hand side of (5.3).



HPD-invariance of the Tate conjecture(s) 179

6. Proof of Theorem 2.2

By definition of the Lefschetz decomposition hA0;A1.1/; : : : ;Ai�1.i � 1/i, we have a
chain of admissible triangulated subcategories Ai�1 � � � � � A1 � A0 with Ar .r/ WD
Ar ˝LX .r/. Note that Ar .r/ ' Ar . Let ar be the right orthogonal complement to ArC1
in Ar ; these are called the primitive subcategories in [23, §4]. By construction, we have
the semi-orthogonal decompositions

Ar D har ; arC1; : : : ; ai�1i; 0 � r � i � 1: (6.1)

As proved in [23, Thm. 6.3] (see also [2, Thm. 2.3.4]), the category perf.Y / admits an HP-
dual Lefschetz decomposition hBj�1.1� j /;Bj�2.2� j /; : : : ;B0iwith respect to LY .1/;
as above, we have a chain of admissible triangulated subcategories Bj�1 � Bj�2 � � � � �
B0. Moreover, the primitive subcategories coincide (via a Fourier–Mukai-type functor)
with those of perf.X/ and we have the semi-orthogonal decompositions

Br D ha0; a1; : : : ; adim.V /�r�2i; 0 � r � j � 1: (6.2)

Furthermore, the assumptions (a)–(b) of Theorem 2.2 imply the existence of the semi-
orthogonal decompositions

perf.XL/ D
˝
CL;Adim.V /.1/; : : : ;Ai�1

�
i � dim.V /

�˛
; (6.3)

perf.YL/ D
˝
Bj�1

�
dim.L?/ � j

�
; : : : ;Bdim.L?/.�1/;CL

˛
; (6.4)

where CL is a common (triangulated) category. Let us denote by Cdg
L , Adg

r , and a
dg
r , the

dg enhancement of CL, Ar , and ar , induced from the dg category perfdg.XL/. Similarly,
let us denote by Cdg0

L and Bdg
r the dg enhancement of CL and Br induced from the dg

category perfdg.YL/. Note that thanks to assumption (a) of Theorem 2.2, all the above dg
categories are smooth and proper.

We start by proving the equivalence Tl .XL/,Tl .YL/. As explained in [35, Prop. 2.2],
since the functor (3.3) is an additive invariant, the above semi-orthogonal decomposition
(6.3) gives rise to the direct sum decomposition

U
�

perfdg.XL/
�

Ql
' U.Cdg

L /Ql
˚ U.Adg

dim.V //Ql
˚ � � � ˚ U.Adg

i�1/Ql
(6.5)

in the Ql -linearized category NChow.k/Ql
. Consider the functors

K
Ol;et
n .�˝k ks/1=l W dgcat.k/! Vect.Ql /; n 2 Z (6.6)

with values in the category of Ql -vector spaces.

Proposition 6.7. The above functors (6.6) are additive invariants.

Proof. Let F WA! B be a Morita equivalence. As proved in [27, Prop. 7.1], the induced
dg functor F ˝k ks WA˝k ks ! B ˝k ks is also a Morita equivalence. Therefore, since
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(non-connective) algebraicK-theory with Z=l�-coefficients sends Morita equivalences to
equivalences of spectra (consult [35, §2.2.2]), we conclude that the above functors (6.6)
send Morita equivalences to isomorphisms. Let A and B be two dg categories and B a dg
A-B-bimodule. Following Section 3.2, we need to show that the dg functors �A and �B
induce an isomorphism:

K
Ol;et
n .A˝k ks/1=l ˚K

Ol;et
n .A˝k ks/1=l ! K

Ol;et
n

�
T .A;BIB/

�
1=l
: (6.8)

Consider the dg categories A˝k ks and B ˝k ks and the dg bimodule B˝k ks . Since
algebraicK-theory with Z=l�-coefficients is an additive invariant, the dg functors �A˝kks
and �B˝kks induce an equivalence of spectra between the wedge sum IK.A˝k ksIZ=l

�/_

IK.B ˝k ksIZ=l
�/ and IK.T .A ˝k ks;B ˝k ksI B ˝k ks/IZ=l�/. Therefore, using

the fact that the dg category T .A˝k ks;B ˝k ksIB˝k ks/ is equal to the dg category
T .A;BIB/˝k ks , we conclude from the definition of the above functors (6.6) that (6.8)
is indeed an isomorphism.

Proposition 6.7 yields, in particular, the Ql -linear functor

K
Ol;et
0 .�˝k ks/1=l WNChow.k/Ql

! Vect.Ql /: (6.9)

Making use of the functor (6.9), the canonical Ql -linear homomorphism (4.2) (with A D

perfdg.XL/) may be described as the induced homomorphism

HomNChow.k/Ql

�
U.k/Ql

; U
�

perfdg.XL/
�

Ql

�
��

HomVect.Ql /

�
K
Ol;et
0 .ks/1=l ; K

Ol;et
0

�
perfdg.XL/˝k ks

�
1=l

�
I

(6.10)

note that (6.10) takes values in K
Ol;et
0 .perfdg.XL/˝k ks/

Gal.ks=k/
1=l

. Therefore, thanks to the
above direct sum decomposition (6.5), the induced homomorphism (6.10) identifies with
the (diagonal) Ql -linear homomorphism:

K0.C
dg
L /Ql

˚
Li�1
rDdim.V /K0.A

dg
r /Ql

��

K
Ol;et
0 .Cdg

L ˝k ks/
Gal.ks=k/
1=l

˚
Li�1
rDdim.V /K

Ol;et
0 .Adg

r ˝k ks/
Gal.ks=k/
1=l

:

This implies the following equivalence:

Tlnc

�
perfdg.XL/

�
, Tlnc.C

dg
L /C Tlnc.A

dg
dim.V //C � � � C Tlnc.A

dg
i�1/: (6.11)

Note that all the above holds mutatis mutandis with XL replaced by YL. Hence, the semi-
orthogonal decomposition (6.4) leads to the equivalence

Tlnc

�
perfdg.YL/

�
, Tlnc.B

dg
j�1/C � � � C Tlnc.B

dg
dim.L?//C Tlnc.C

dg0

L /: (6.12)
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The assumption (c) of Theorem 2.2 and the semi-orthogonal decompositions (6.1)–(6.2)
imply that the conjectures Tlnc.A

dg
r / and Tlnc.B

dg
r /, with 0 � r � i � 1, hold. Conse-

quently, the right-hand side of (6.11), resp. (6.12), reduces to the conjecture Tlnc.C
dg
L /,

resp. Tlnc.C
dg0

L /. Moreover, since the functor perf.XL/! CL ! perf.YL/ is of Fourier–
Mukai type, the dg categories Cdg

L and Cdg0

L are Morita equivalent. This implies that
the conjectures Tlnc.C

dg
L / and Tlnc.C

dg0

L / are equivalent. Consequently, the proof of The-
orem 2.2 follows now from the equivalences Tl .XL/, Tlnc.perfdg.XL// and Tl .YL/,
Tlnc.perfdg.YL// established in Theorem 2.1.

We now prove the equivalence xTl .XL/, xTl .YL/. Recall from [27, Thm. 7.1] that the
functor �˝k ks W dgcat.k/! dgcat.ks/ preserves smooth proper dg categories and gives
rise to a Ql -linear functor � ˝k ks WNChow.k/Ql

! NChow.ks/Ql
. Consequently, the

above direct sum decomposition (6.5) in the Ql -linearized category NChow.k/Ql
gives

rise to the direct sum decomposition

U
�

perfdg.XL/˝k ks
�

Ql

' U.Cdg
L ˝k ks/Ql

˚ U.Adg
dim.V / ˝k ks/Ql

˚ � � � ˚ U.Adg
i�1 ˝k ks/Ql

in the Ql -linearized category NChow.ks/Ql
. Similarly to (the proof of) Proposition 6.7,

the functors
K
Ol;et
n .�/1=l W dgcat.ks/! Vect.Ql /

are additive invariants. This yields, in particular, the Ql -linear functor

K
Ol;et
0 .�/1=l WNChow.ks/Ql

! Vect.Ql /: (6.13)

Making use of the functor (6.13), the canonical Ql -linear homomorphism (4.4) (with AD

perfdg.XL/) may be described as the induced homomorphism

HomNChow.ks/Ql

�
U.ks/Ql

; U
�

perfdg.XL/˝k ks
�

Ql

�
��

HomVect.Ql /

�
K
Ol;et
0 .ks/1=l ; K

Ol;et
0

�
perfdg.XL/˝k ks

�
1=l

�
I

(6.14)

note that (6.14) takes values in
S
k0=kK

Ol;et
0 .perfdg.XL/˝k ks/

Gal.ks=k0/
1=l

. Therefore, thanks
to the above direct sum decomposition of U.perfdg.XL/˝k ks/Ql

, the induced homomor-
phism (6.14) identifies with the (diagonal) Ql -linear homomorphism

K0.C
dg
L ˝k ks/Ql

˚
Li�1
rDdim.V /K0.A

dg
r ˝k ks/Ql

��S
k0=k K

Ol;et
0 .Cdg

L ˝k ks/
Gal.ks=k0/
1=l

˚
Li�1
rDdim.V /

S
k0=k K

Ol;et
0 .Adg

r ˝k ks/
Gal.ks=k0/
1=l

:
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This implies the equivalence

xTlnc

�
perfdg.XL/

�
, xTlnc.C

dg
L /C

xTlnc.A
dg
dim.V //C � � � C

xTlnc.A
dg
i�1/: (6.15)

Note that all the above holds mutatis mutandis with XL replaced by YL. Hence, the semi-
orthogonal decomposition (6.4) leads to the equivalence:

xTlnc

�
perfdg.YL/

�
, xTlnc.B

dg
j�1/C � � � C

xTlnc.B
dg
dim.L?//C

xTlnc.C
dg0

L /: (6.16)

The remainder of the proof is now similar to the proof of Tl .XL/, Tl .YL/.
We now prove the equivalence SSl .XL/, SSl .YL/. Note that similarly to (the proof

of) Proposition 6.7, the following functors are additive invariants:

K
Ol;et
n .�˝k ks/1=l W dgcat.k/! RepGal.ks=k/.Ql / n 2 Z;

where RepGal.ks=k/.Ql / stands for the category of (continuous) l-adic representations of
Gal.ks=k/. Hence, they yield, in particular, the Ql -linear functors

K
Ol;et
0 .�˝k ks/1=l ; K

Ol;et
1 .�˝k ks/1=l WNChow.k/Ql

! RepGal.ks=k/.Ql /: (6.17)

Therefore, by applying the Ql -linear functors (6.17) to the above direct sum decomposi-
tion (6.5), we obtain the equivalence

SSlnc

�
perfdg.XL/

�
, SSlnc.C

dg
L /C SSlnc.A

dg
dim.V //C � � � C SSlnc.A

dg
i�1/:

All the above holds mutatis mutandis with XL replaced by YL. Consequently, the above
semi-orthogonal decomposition (6.4) leads to the equivalence

SSlnc

�
perfdg.YL/

�
, SSlnc.B

dg
j�1/C � � � C SSlnc.B

dg
dim.L?//C SSlnc.C

dg0

L /:

The remainder of the proof is now similar to the proof of Tl .XL/, Tl .YL/.
The proof of the equivalence Tp.XL/, Tp.YL/ is similar to the proof of Tl .XL/,

Tl .YL/: simply replace Ql by Qp and the Ql -linear functor (6.9) by the Qp-linear functor
(4.10).

Finally, we prove the equivalence B.XL/, B.YL/. As above, the semi-orthogonal
decomposition (6.3) gives rise to the direct sum decomposition

U
�

perfdg.XL/
�

Q
' U.Cdg

L /Q ˚ U.A
dg
dim.V //Q ˚ � � � ˚ U.A

dg
i�1/Q (6.18)

in the category NChow.k/Q. As proved in [36, §6], given any smooth proper dg category
A, we have a natural isomorphism:

HomNNum.k/Q

�
U.k/Q; U.A/Q

�
' K0.A/Q=�num: (6.19)

Therefore, by applying HomNChow.k/Q.U.k/Q;�/ and HomNNum.k/Q.U.k/Q;�/ to the
direct sum decomposition (6.18), we obtain the equivalence of

Bnc
�

perfdg.XL/
�
, Bnc.C

dg
L /C Bnc.A

dg
dim.V //C � � � C Bnc.A

dg
i�1/:x
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All the above holds mutatis mutandis with XL replaced by YL. Consequently, the above
semi-orthogonal decomposition (6.4) leads to the equivalence

Bnc
�

perfdg.YL/
�
, Bnc.B

dg
j�1/C � � � C Bnc.B

dg
dim.L?//C Bnc.C

dg0

L /:

The remainder of the proof is now similar to the proof of Tl .XL/, Tl .YL/.

7. Proof of Proposition 2.5

As proved in [7, Thms. 1.3 and 1.7], the dg category perfdg.Gr.r; U1// is Morita equiv-
alent to a finite dimensional k-algebra of finite global dimension A. Let us write J.A/
for the Jacobson radical of A, V1; : : : ; Vs for the simple (right) A=J.A/-modules, and
D1 WD EndA=J.A/.V1/; : : : ; Ds WD EndA=J.A/.Vs/ for the associated division k-algebras.
Thanks to the Artin–Wedderburn theorem, the quotient A=J.A/ is Morita equivalent to
the product D1 � � � � �Ds . Moreover, the center of Di is a finite field extension li of k
and Di is a central simple li -algebra. As proved in [38, Thm. 3.15], we have the direct
sum decomposition

U.Adg
0 /Q D U

�
perfdg

�
Gr.r; U1/

��
Q
' U

�
A=J.A/

�
Q
' U.l1/Q ˚ � � � ˚ U.ls/Q

in the category NChow.k/Q. Similarly to the proof of Theorem 2.2, we hence obtain the
equivalences

C.Adg
0 /, Cnc.l1/C � � � C Cnc.ls/ with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº:

Note that since the k-schemes Spec.li / are 0-dimensional, the conjectures C.Spec.li //,
with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº, hold. Consequently, the proof follows now from the equiv-
alences C.Spec.li //, Cnc.li / established in Theorem 2.1.

8. Proof of Theorem 2.15

Item (i). Following [24, §3.5] (see also [2, §1.6]), let us write Z for the center of C l0.q/jL
and Spec.Z/ DW zP .L/! P .L/ for the discriminant cover of P .L/. As explained in loc.
cit., zP .L/! P .L/ is a 2-fold cover which is ramified over the divisor D WD P .L/\�1.
Since by assumption dim.L/D 2, we have dim.D/D 0. Consequently, sinceD is smooth,
zP .L/ is also smooth. Let us write F for the sheaf of noncommutative algebras C l0.q/jL
considered as a sheaf of noncommutative algebras over zP .L/. As proved in loc. cit., since
by assumption we have P .L/\�2 D ;, F is a sheaf of Azumaya algebras over zP .L/ of
rank 2.d=2/�1. Moreover, the category perf.P .L/IC l0.q/jL/ is equivalent (via a Fourier–
Mukai-type functor) to perf.zP .L/IF /. This leads to a Morita equivalence between the dg
categories perfdg.P .L/IC l0.q/jL/ and perfdg.

zP .L/IF /. Making use of [38, Thm. 2.1],
we hence obtain the isomorphisms

U
�

perfdg

�
P .L/IC l0.q/jL

��
Q
' U

�
perfdg

�
zP .L/IF

��
Q
' U

�
perfdg

�
zP .L/

��
Q
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in the category NChow.k/Q. Similarly to the proof of Theorem 2.2, this leads to the
equivalences

Cnc
�

perfdg

�
P .L/IC l0.q/jL

��
, Cnc

�
perfdg

�
zP .L/

��
with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº:

Since zP .L/ is a curve, the conjectures C.zP .L//, with C 2 ¹Tl ; xTl ; SSl ; Tp; Bº, hold.
Consequently, thanks to Corollary 2.6, the proof follows now from the equivalence

C
�
zP .L/

�
, Cnc

�
perfdg

�
zP .L/

��
established in Theorem 2.1.

Item (ii). Following [24, §3.6] (see also [2, §1.7]), let us write yP .L/ for the discrimi-
nant stack associated to the pull-back qjL along P .L/ � P .S2.W _// of the flat quadric
fibration qWH ! P .S2.W _//. As explained in loc. cit., since by assumption 1=2 2 k,
yP .L/ is a smooth Deligne–Mumford stack. Moreover, using the fact that yP .L/ is a square
root stack and that the critical locus of the flat quadric fibration qjL is the divisor D, we
conclude from [14, Thm. 1.6] that perf.yP .L//D hperf.D/;perf.P .L//i. Hence, similarly
to the proof of Theorem 2.2, we obtain the equivalences

Cnc
�

perfdg

�
yP .L/

��
, C.D/C C

�
P .L/

�
with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº: (8.1)

Let us write F for the sheaf of noncommutative algebras C l0.q/jL considered as a sheaf
of noncommutative algebras over yP .L/. As proved in [24, §3.6] (see also [2, §1.7]), since
by assumption we have P .L/ \�2 D ;, F is a sheaf of Azumaya algebras over yP .L/.
Moreover, the category perf.P .L/I C l0.q/jL/ is equivalent (via a Fourier–Mukai-type
functor) to perf.yP .L/IF /. This leads to a Morita equivalence between the dg categories
perfdg.P .L/I C l0.q/jL/ and perfdg.

yP .L/IF /. Making use of Corollary 2.14, we hence
obtain the equivalences

C.XL/, Cnc
�

perfdg

�
yP .L/IF

��
with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº: (8.2)

Since by assumption dim.L/D 2, we have dim.P .L//D 1. Using the fact that the Brauer
group of every smooth curve over a finite field k is trivial, we hence conclude that in
(8.2) we can replace the dg category perfdg.

yP .L/IF / by the dg category perfdg.
yP .L//.

Consequently, since dim.D/ D 0, the proof follows now from the combination of the
above equivalences (8.1)–(8.2) with the fact that the Tate conjecture and its variants hold
in dimensions � 1.

Remark 8.3 (Intersection of even-dimensional quadrics). LetXL be as in Corollary 2.14.
Assume that d is even, that dim.L/� 2, that P .L/\�2 D ;, and that the divisor P .L/\
�1 is smooth. Under these assumptions, a proof similar to the one of Theorem 2.15 gives
rise to the equivalences

C.XL/, C
�
zP .L/

�
with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº; (8.4)

where zP .L/ is the discriminant 2-fold cover of P .L/.
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9. Proof of Theorem 2.18

Let us write f WX ! X for the canonical morphism. As proved by Ishii–Ueda in [14,
Thm. 1.6], we have a semi-orthogonal decomposition:

perf.X/ D
˝
perf.Z/n�1; : : : ; perf.Z/1; f �

�
perf.X/

�˛
;

where all the categories perf.Z/i are (Fourier–Mukai) equivalent to perf.Z/ and moreover
f �.perf.X// is (Fourier–Mukai) equivalent to perf.X/. Therefore, arguments similar to
those used in the proof of Theorem 2.2 yield the searched equivalences (2.19).

10. Proof of Theorem 2.21

Note first that since p − n, the integer n is invertible in k. Making use of [39, Thm. 1.1 and
Rk. 1.3], we hence conclude that the noncommutative Chow motive U.perfdg.X//Q is a
direct summand of

L
��G U.perfdg.X

� � Spec.kŒ��///Q. Therefore, arguments similar
to those used in the proof of Theorem 2.2 yield the searched implications (2.22). Assume
now moreover that k contains the nth roots of unity. In this case, [39, Cor. 1.5 (i)] implies
that U.perfdg.X//Q is a direct summand of

L
��G U.perfdg.X

� //
˚r�
Q , where r� are cer-

tain positive integers. Hence, as above, arguments similar to those used in the proof of
Theorem 2.2 yield the implications

P
��G C.X� /)C.X/, with C 2 ¹Tl ; xTl ;SSl ;Tp;Bº.

11. Proof of Theorem 2.24

The proof of Theorem 2.24 is similar to the proof of Theorem 2.21 (in the case where
p − n and k contains the nth roots of unity). Simply replace perf.X/ by perf.XI F /,
perfdg.X

� / by perfdg.Y� /, and [39, Cor. 1.5 (i)] by [39, Cor. 1.28 (ii)].
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