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A short proof of the localization formula for the loop
space Chern character of spin manifolds

Matthias Ludewig and Zelin Yi

Abstract. In this note, we give a short proof of the localization formula for the loop space Chern
character of a compact Riemannian spin manifoldM , using the rescaled spinor bundle on the tangent
groupoid associated to M .

1. Introduction
In supersymmetric quantum mechanics, one is interested in the path integral correspond-
ing to the N D 1=2 supersymmetric � -model, which mathematically can be viewed as an
integration functional for differential forms � on the loop space LM of a compact Rieman-
nian spin manifold M . Formally, this should be given by the expression

I Œ�� D

Z
LM
e�S�! ^ �; (1.1)

where S is the classical energy and ! is the canonical pre-symplectic 2-form on the loop
space. This formula and its close relation to the Atiyah–Singer index theorem have been
inspiring research for more than 30 years (see [1,2] and the introduction of [10] for further
references).

The path integral formula (1.1) has been finally given a rigorous interpretation for a
certain class of differential forms � in [10, 12]; see also [16]. Essentially, this is the class
of iterated integrals, first considered by Chen [7] and later extended by Getzler, Jones,
and Petrack [9] in order to contain the Bismut–Chern character forms first introduced by
Bismut [4]. Iterated integrals are the image of the iterated integral map, which maps the
cyclic chain complex associated to the algebra �.M/ of differential forms on M to the
algebra �.LM/ of differential forms on the loop space.

Pulling back the integration functional I of [12] with the iterated integral map, one
obtains a coclosed functional on the cyclic chain complex of �.M/, which we denote by
ChD; namely, it has then been observed in [10] that this functional can be viewed as a
non-commutative Chern character associated to a Fredholm module over �.M/ deter-
mined by the Dirac operator D on M , with a combinatorial formula similar to the JLO
cocycle [14].
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The most remarkable feature of the loop space path integral I and its combinatorial
counterpart ChD is that they satisfy a localization formula of Duistermaat–Heckmann
type, as though the loop space LM was a finite-dimensional manifold; see [12, Theo-
rem 3.19] and [10, Theorem E]. This in particular facilitates the proof of the Atiyah Singer
index theorem using loop space localization envisioned by Atiyah [2].

Theorem. LetM be a compact Riemannian spin manifold of even dimension n and let‚
be an entire cyclic chain over �.M/. If ‚ is closed, then

ChD.‚/ D
1

.2�i/n=2

Z
M

yA.M/ ^ i.‚/: (1.2)

Here yA.M/ denotes the yA-genus-form, and i is the combinatorial analog of the map
that restricts a differential form on the loop space to the fixed point setM�LM (see (2.14)).
In fact, we prove formula (1.2) more generally for entire cyclic chains over the acyclic
extension �T .M/ of �.M/ (see Section 2.1), which is necessary in order to encompass
the Bismut–Chern characters.

The purpose of this note is to give a short proof of the above theorem using Connes’
tangent groupoid and its extension to the spinor bundle introduced by Higson and the sec-
ond author [13,20]. The strategy is as follows: rescaling of the Fredholm module to which
ChD is associated yields a one-parameter family of Chern-characters ¹Chtºt>0, which are
all cohomologous on suitable complexes by the homotopy invariance of the Chern charac-
ter. Therefore, for closed chains ‚, the value Cht .‚/ is therefore independent of t , hence
can be obtained from calculating its limit as t ! 0. The result is Theorem 2.10 below,
which can be viewed as a “loop space version” of a corresponding result of Block-Fox on
the JLO cocycle [5, Theorem 4.1].

It is the calculation of this limit for which the machinery of the tangent groupoid is
particularly useful. In brief, the Chern character is defined as the supertrace of a certain
family of operators, the kernels of which turn out to patch together to define a smooth sec-
tion of the rescaled spinor bundle S over the tangent groupoid TM that can be extended
down to zero. Here one then has a one-parameter family of supertraces at disposal (defined
in [13]), which allow to easily calculate the value at zero.

Below, we briefly explain the construction of the Chern characters Cht and reduce the
proof of formula (1.2) to the calculation of the short time limit of Cht . This is essentially
algebraic. In the second part of this note, we briefly recount the theory of the rescaled
spinor bundle and prove the relevant Theorem 2.10 below.

2. The Chern character

In this section, we give a short review of the construction of the Chern character associated
to the Fredholm module over �.M/ determined by the Dirac operator over a compact
Riemannian spin manifold. We focus on the algebraic construction, leaving out many
analytical details; for these, we refer to [10].
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2.1. The bar complex and cyclic chains

LetM be a manifold and let�.M/ be its complex of (complex-valued) differential forms.
The acyclic extension of �.M/ is the algebra �T .M/ WD �.M/Œ��, where � is a formal
variable of degree �1 satisfying �2 D 0. Elements of �T .M/ will be written as � D
� 0 C �� 00 with � 0; � 00 2 �.M/. �T .M/ has a differential dT D d � �, where d is the de
Rham differential and � is defined by �.� 0 C �� 00/ D � 00.

Remark 2.1. In [9], the algebra�.M �T /T of T -invariant differential forms onM �T
is used (where T D S1). This corresponds to our setup through setting � D t2d', where
' is the coordinate of T and t is a formal variable of degree �1. Carrying around the
formal variable t would allow us to stay Z-graded throughout, but we feel that for this
presentation, it is simpler to leave this variable out and to just take the grading mod 2.

The bar complex of �T .M/ is

B
�
�T .M/

�
D

1M
ND0

�T .M/h1i˝N ;

where�T .M/h1i denotes a grading shift, i.e., .�T .M/h1i/` D�`C1T .M/. There are two
differentials on B.�T .M//, given on homogeneous elements by

b0.�1; : : : ; �N / D �

NX
kD1

.�1/nk�1.�1; : : : ; �k�1; dT�k ; : : : ; �N /;

b1.�1; : : : ; �N / D �

N�1X
kD1

.�1/nk .�1; : : : ; �k�1; �k ^ �kC1; �kC2; : : : ; �N /;

where nkDj�1j C � � � C j�kj � k. Here elements of B.�T .M// are written as .�1; : : : ; �N /,
omitting the tensor signs for brevity. The above differentials satisfy b0b1 C b1b0 D 0,
hence turn B.�T .M// into a (Z2-graded) bi-complex with total differential b WD b0C b1.
The differentials descend to the subspace

B\
�
�T .M/

�
D span

² NX
kD0

.�1/nk.nN�nk/.�kC1; : : : ; �N ; �1; : : : ; �k/

³
(2.1)

of cyclic chains, making it a subcomplex.

Remark 2.2. The significance of the space B.�T .M// for loop space geometry is that via
Chen’s iterated integral map, it provides a combinatorial model for the space of equivariant
differential forms on the loop space ofM via the (extended) iterated integral map � [7,9].
Explicitly, it is given by the formula

�.�1; : : : ; �N / D

Z
�N

�
�K�
0
1.�1/ � �

00.�1/
�
^ � � � ^

�
�K�
0
N .�N / � �

00.�N /
�
d�; (2.2)
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where we wrote �.�/ for the pullback of � 2 �.M/ by the evaluation-at-� -map ev� W
LM ! M , 
 7! 
.�/ and �K denotes insertion of the velocity vector field K.
/ D P

on LM . The iterated integral map can be viewed as a differential form counterpart of the
Jones isomorphism [15], which connects the bar complex of the dg algebra of singular
chains on M to chains on the loop space.

A straightforward calculation shows that the iterated integral map sends the subspace
B\.�T .M// of cyclic chains to the space �.LM/T � �.LM/ of equivariant differential
forms (where T acts by rotation) and on this domain intertwines the differential b D
b0 C b1 with the equivariant differential d � �K on LM .

The Bismut–Chern characters alluded to above in fact do not live in B.�T .M// but
in the larger complex of entire chains B�.�T .M//, which allows certain infinite sums of
chains. It is defined as the closure of B.�T .M// with respect to the seminorms

�k.‚/ WD

1X
ND0

k‚N kk;N

bN=2cŠ
for ‚ D

1X
ND0

‚N : (2.3)

Here cN 2�T .M/h1i˝N ��.MN /Œ�1; : : : ; �N �hN i and k � kk;N denotes the C k norm
on �.MN /; see [10, Section 3.3] for details. The differential b extends to the entire com-
plex and, in total, we have the hierarchy of chain complexes

(entire cyclic chains) B\�
�
�T .M/

�
� B�

�
�T .M/

�
(entire chains)

� �

(cyclic chains) B\
�
�T .M/

�
� B

�
�T .M/

�
(bar chains).

The Bismut–Chern character Ch.p/ defined below is an entire cyclic chain. In contrast,
the Chern character ChD (to be defined in the next section) is a linear functional, defined
a priori on B.�T .M//, which turns out to satisfy the necessary estimates to extend to the
space of entire chains. In particular, ChD can be evaluated on Ch.p/.

Example 2.3. The Bismut–Chern characters forms on the loop space LM were first de-
fined in [4], while their combinatorial versions, to be reviewed now, were introduced by
Getzler–Jones–Petrack [9, Section 6]. Let p be a smooth function on M with values in
Mm.C/ such that p2 D p and let p? D 1 � p. Then E WD im.p/ is a vector bundle on
M , which inherits a natural metric and connection from the trivial Cm bundle over M (in
fact, any vector bundle with connection on M can be realized this way [17, Theorem 1]).
We set

R WD .2p � 1/dp C �.dp/2; (2.4)

which is an odd element of �T .M/. The (cyclic) Bismut Chern character of p is then
defined by

Ch.p/ WD
1X
ND0

NX
kD0

tr
�

R; : : : ;R„ ƒ‚ …
k

; �p;R; : : : ;R„ ƒ‚ …
N�k

�
; (2.5)
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where tr is the functional defined for elements � iD..�i /
a
b
/1�a;b�m2�T .M/˝Mm.C/ by

tr.�1; : : : ;�N / D
mX

a1;:::;aND1

�
.�1/

a1
aN
; .�2/

a2
a1
; : : : ; .�N /

aN
aN�1

�
:

Due to the grading shift in the definition of B.�T .M//, it is an even chain, which is clearly
cyclic, i.e., contained in the subcomplex (2.1). It was shown by [9, Section 6] that the
iterated integral map (2.2) sends Ch.p/ to the Bismut–Chern character form on �.LM/,
defined in [4]. A complication of the theory is that Ch.p/ is not closed with respect to the
differential b; instead b.Ch.p// is contained in a certain subcomplex of B\�.�T .M//. One
says that Ch.p/ is closed as a Chen normalized cochain; see [10, Section 7]. A construc-
tion of odd Bismut–Chern characters (depending on a smooth map to a unitary group) has
been given in [6], providing further examples of interesting chains.

A subtle point in this theory is that the Bismut–Chern characters are not directly closed
in B\�.�T .X//, i.e., b Ch.p/ ¤ 0. However, we have b Ch.p/ 2 ker.�/, in other words,
Ch.p/ is closed in the quotient complex

N\�
�
�T .X/

�
D B\�

�
�T .X/

�ı�
ker.�/ \ B\�

�
�T .X/

��
; (2.6)

called the Chen-normalized complex. Since b is a chain map when restricted to B\�.�T.X//,
ker.�/ \ B\�.�T .X// is indeed a subcomplex of B\�.�T .X//.

2.2. Cochains and the Chern character

Given a Z2-graded algebra1 L, an L-valued bar cochain over �T .M/ is a linear map
` W B.�T .M//! L. Such a cochain can be viewed as a sequence of multilinear maps:

` W �T .M/ � � � � ��T .M/„ ƒ‚ …
N

! L;

again denoted by the same letter. In particular, for N D 0, this is just an element of L,
which we denote by `.;/, by abuse of notation. We say that ` is even if it preserves
parity and odd if it reverses parity. The standard coalgebra structure on the tensor algebra
B.�T .M// induces a product on bar cochains, given by

.`1`2/.�1; : : : ; �N / D

NX
kD0

.�1/nk j`2j`1.�1; : : : ; �k/`2.�kC1; : : : ; �N /; (2.7)

where nk D j�1j C � � � C j�kj � k. This product is compatible with the codifferential ˇ on
cochains defined by

.ˇ`/.�1; : : : ; �N / D �.�1/
j`j`
�
b.�1; : : : ; �N /

�
; (2.8)

1In the case that L D C, we endow C with the trivial grading rendering it purely even and just speak
of bar cochains.
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in the sense that ˇ.`1`2/ D ˇ.`1/`2 C .�1/j`1j`1ˇ.`2/ for all homogeneous cochains `1,
`2; in other words, ˇ is a derivation on the cochain algebra.

To obtain interesting cochains on B.�T .M//, one starts with a Fredholm module over
�.M/, which is a triple .H;Q; c/, consisting of a Z2-graded Hilbert space H , an odd
operator Q on H , and an even linear map c W �.M/ ! B.H/, which are assumed to
satisfy �

Q; c.f /
�
D c.df / and c.f �/ D c.f /c.�/ (2.9)

for f 2 �0.M/ and � 2 �.M/, together with some further analytic conditions; see [10,
Section 2] for details.

Example 2.4. Our main example here is defined in case that M is an even-dimensional
compact spin manifold with spinor bundle S ; in that case, H D L2.M; S/, Q D D, the
Dirac operator, and c is the quantization map (see Section 3.1).

Inspired by Quillen [18], a Fredholm module induces a connection !, which is a
cochain on B.�T .M// with values in linear operators on H , given by

!.;/ D Q; !.�/ D c.� 0/; !.�1; : : : ; �k/ D 0 .k � 2/:

Due to the grading shift in the definition of B.�T .M//, this is an odd cochain. Its cur-
vature is defined by the formula F WD ˇ! C !2, where ˇ is the codifferential (2.8).
Explicitly, its components can be easily calculated to be F.;/ D Q2,

F.�/ D
�
Q; c.� 0/

�
� c.d� 0/C c.� 00/;

F .�1; �2/ D .�1/
j�1j
�
c.� 01 ^ �

0
2/ � c.�

0
1/c.�

0
2/
� (2.10)

and F.�1; : : : ; �k/ D 0 for k � 3; here ŒQ; c.� 0/� denotes the graded commutator. Moti-
vated by the definition of the Chern-character from Chern-Weil theory, one now makes
the following definition.

Definition 2.5. The Chern character of a Fredholm module .H;Q; c/ is the bar cochain

ChQ D Str
�
e�F

�
: (2.11)

Here, because F takes values in unbounded operators on H , some care is needed to
make sense of the exponential. This is dealt with by writing F DQ2 C F 0 and expanding
e�F D e�Q

2�F 0 as a perturbation series. This results in the formula

ChQ D
1X
ND0

.�1/N
Z
�N

Str
�
e��1Q

2
NY
pD1

F 0e�.�pC1��p/Q
2

�
d�; (2.12)

where �N D ¹0 � �1 � � � � � �N � �NC1 WD 1º is the N -simplex, giving an explanation
to the right-hand side of (2.11).

Proposition 2.6. Restricted to the space of cyclic chains, we have ˇ.ChQ/ D 0.
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Proof (Sketch). Since ˇ is a derivation with respect to the product (2.7), the curvature F
satisfies the Bianchi identity

ˇF D ˇ2! C ˇ.!2/ D .ˇ!/! � !.ˇ!/ D F! � !F D ŒF; !�:

Hence

ˇ.Ch/ D Str
�
ˇ.e�F /

�
D �Str

�
e�F ˇF

�
D �Str

�
e�F ŒF; !�

�
D �Str

�
Œe�F ; !�

�
:

One now verifies that the right-hand side is zero when restricted to cyclic chains to finish
the proof. The above calculations are somewhat formal and the proof remains a sketch
here due to the analytical difficulties involved in defining e�F ; a complete treatment is
given in [10, Section 4].

In order to evaluate ChQ at the Bismut–Chern characters (2.5), one needs the following
proposition; see [10, Theorem B].

Proposition 2.7. The Chern character is analytic, i.e., continuous with respect to the
seminorms (2.3) and hence extends to a cochain on the entire complex B�.�T .M//.

We now consider the Fredholm module given by the Dirac operator; see Example 2.4.
Before we give an explicit formula for the components of ChD , we slightly generalize
our Example 2.4. Namely, given a parameter t > 0, one can define a new Fredholm mod-
ule .H; Qt ; ct / by setting Qt D tD and ct .�/ D t j� jc.�/. Observing that the relations
(2.9) still hold, one obtains a one-parameter family ¹Chtº of Chern characters. Plugging
the product formula (2.7) into the perturbation series (2.12), one obtains the explicit but
somewhat cumbersome combinatorial formula

Cht .�1; : : : ; �N / D
NX
kD1

1�i1<���<ik�N

.�1/kt j� j�NC2k
Z
�k

Str
�
e�t

2�1D
2
kY

pD1

F.�ip�1C1; : : : ; �ip /e
�t2.�pC1��p/D

2

�
d�;

(2.13)

for homogeneous elements �1; : : : ; �N 2 �T .M/, where j� j D j�1j C � � � C j�N j is the
total degree. This formula can be understood as a certain time-ordered expectation value,
where, since the operators F vanish when more than two entries are filled, only neighbor-
ing �i “interact”.

Proposition 2.8. For each t > 0, the Chern characters Cht are Chen normalized, meaning
that they vanish on the subcomplex ker.�/ \ B\�.�T .X// � B\�.�T .X//.

This proposition can be found as [10, Theorem 5.5]. It implies that the Chern charac-
ters descend to linear functionals on the Chen normalized quotient complex N\�.�T .X//

defined in (2.6). Since the Chern characters Ch.p/ of Example 2.3 are only closed in this
quotient complex, but not in B\�.�T .X//, this property of Cht is crucial when calculating
the pairings Cht .Ch.p//.
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2.3. The localization formula

We now aim to prove the localization formula (1.2) for closed entire cyclic chains ‚,
where the restriction map is the map i W B.�T .M//! �.M/ given by

i.�1; : : : ; �N / D
.�1/N

NŠ
� 001 ^ � � � ^ �

00
N I (2.14)

here, as always, �i D � 0i C ��
00
i 2 �T .M/. By the following lemma, this map is an “alge-

braic version” of the restriction to map to the subset of constant loops M � LM .

Lemma 2.9. The above map satisfies i D j ��, where � is the iterated integral map (2.2)
and j � denotes the pullback with respect to the inclusion j W M ! LM as the subset of
constant loops.

Proof. For any � 2 T , we have j ��.�/ D � , while j �.�K�.�// D 0 (as K � 0 on con-
stant loops). The result therefore follows directly from the formula (2.2) for the iterated
integral map, after observing that the integral over �N in (2.2) is constant and integration
contributes a factor of vol.�N / D 1=N Š.

LetM be a compact Riemannian spin manifold of even dimension n, so that the family
¹.H;Qt ; ct /ºt>0 of Fredholm modules together with the corresponding family of Chern
characters ¹Chtºt>0 introduced in Section 2.2 is defined. By homotopy invariance of the
Chern character [10, Theorem 6.2], for any s; t > 0, there exists an analytic bar cochain
CSs;t such that, when restricted to B\�.�T .M//,

Chs �Cht D ˇ CSs;t I (2.15)

in other words Chs , Cht are cohomologous as cyclic cochains. Explicitly, this means that
for all entire cyclic chains ‚ 2 B\�.�T .M//, we have

ChD.‚/ � Cht .‚/ D ˇ CS1;t .‚/ D CS1;t
�
b.‚/

�
:

Therefore, if‚ is additionally closed, i.e., b.‚/D 0, then ChD.‚/D Ch1.‚/D Cht .‚/
for all t > 0. This discussion shows that we can compute the value of ChQ.‚/ by taking
the limit of Cht .‚/, as t ! 0. The localization formula (1.2) therefore follows from the
following theorem, which will be proved in Section 3.

Theorem 2.10. For all �1; : : : ; �N 2 �T .M/, we have

lim
t!0

Cht .�1; : : : ; �N / D
.2�i/n=2

Z
M

yA.M/ ^ i.�1; : : : ; �N /; (2.16)

where the characteristic form yA.M/ is given by

yA.M/ D det1=2
�

R=2

sinh.R=2/

�
: (2.17)

Here R is the Riemannian curvature tensor, interpreted as a skew-adjoint matrix of differ-
ential 2-forms in a local frame.
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2.4. An application

We finish this section with an application of the localization formula, which features the
Bismut–Chern characters from Example 2.3; compare [10, Section 8]. An issue here is that
we cannot directly apply the localization formula (1.2), since Ch.p/ is not closed, but only
satisfies b Ch.p/ 2 ker.�/. This problem can be remedied as follows. By Proposition 2.8,
each of the Chern characters Cht is Chen-normalized, i.e., vanishes on ker.�/. The same
result holds for CSs;t , so that

ChD
�

Ch.p/
�
� Cht

�
Ch.p/

�
D CS1;t

�
b Ch.p/

�
D 0:

Hence the localization formula (1.2) applies for the Bismut–Chern characters, so that

ChD
�

Ch.p/
�
D lim

t!0
Cht

�
Ch.p/

�
D .2�i/�n=2

Z
M

yA.M/ ^ i
�

Ch.p/
�
: (2.18)

We have

i
�

Ch.p/
�
D

1X
ND0

.�1/N

NŠ
tr
�
p.dp/2N

�
D tr

�
p exp

�
� .dp/2

��
:

Since .dp/2 is the curvature of the bundle E D im.p/ with respect to the connection pdp,
this is precisely the Chern character form ch.E/ for the bundle E.

On the other hand, we have the following proposition, which calculates the value
ChD.Ch.p// independently of the localization formula.

Proposition 2.11. Let p 2 �.M/˝Mn.C/ with p2 D p and define

Dp D pDp C .1 � p/D.1 � p/;

where, by abuse of notation, D denotes the Dirac operator on S ˝Cn. Then

ChD
�

Ch.p/
�
D Str

�
pe�D

2
p
�
:

By the McKean–Singer formula, the supertrace Str.pe�Dp / is just the index of the
Dirac operator twisted with the vector bundle E D im.p/.

Proof of Proposition 2.11. Observe that Dp D D C c..2p � 1/dp/ and with R defined
as in (2.4),

F.R/ D
�
D; c

�
.2p � 1/dp

��
� c

�
.dp/2

�
;

F .R;R/ D c
�
.2p � 1/dp

�2
C c

�
.dp/2

�
:

Put together,

D2
p D D

2
C
�
D; c

�
.2p � 1/dp

��
C c

�
.2p � 1/dp

�2
D D2

C F.R/C F.R;R/:
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Writing e�Dp as a perturbation series, we therefore obtain

e�D
2
p D

1X
ND0

.�1/N
Z
�N

e��1D
2
NY
kD1

�
F.R/C F.R;R/

�
e�.�kC1��k/D

2

d�:

By the cyclic permutation property of the supertrace, multiplying this by p and taking the
supertrace yields ChD.Ch.p//.

Combining the localization result (2.18) with the one from Proposition 2.11 (and the
McKean–Singer formula) now gives the twisted Atiyah–Singer index theorem:

Corollary 2.12. Let E D im.p/, with its connection induced from viewing it as a vector
subbundle of the trivial Cm-bundle. LetDE be the Dirac operator twisted byE and ch.E/
its Chern character form. Then

ind.DE / D
Z
M

yA.M/ ^ ch.E/:

3. The tangent groupoid and the localization formula

In this section, we first give a brief introduction to the tangent groupoid and the rescaled
spinor bundle and then use the techniques introduced to prove Theorem 2.10.

3.1. The scaling order

Let M be a spin manifold of even dimension n, with spinor bundle S . In this section, we
briefly review the notion of scaling order for sections of the bundle S � S� overM �M ,
the fiber of which over .m1;m2/ is Sm1 ˝ S

�
m2

. For a more detailed treatment, we refer to
[13, Section 3.3].

To begin with, denote by Cliff.TmM/ the Clifford algebra of TmM and let

c W ƒ�TmM ! Cliff.TmM/

be the quantization map, defined by ei1 ^ � � � ^ eik 7! ei1 � � � eik in terms of an orthonormal
basis e1; : : : ; en 2 TmM ; see [3, Section 3.1] for details. c is not an algebra homomor-
phism, but defining Cliffk.TmM/ to be the image ofƒ�kTmM under c defines a filtration
on the Clifford algebra. An element a of the Clifford algebra is said to have Clifford
order k or less if it is contained in Cliffk.TmM/. For a 2 Cliff.TmM/, we denote by
Œa� 2 ƒ�TmM its inverse image under the quantization map (often called the Clifford
symbol) and if a 2Cliffk.TmM/, we let Œa�k be the k-form component of Œa� 2ƒ�kTmM .

A differential operator P has Getzler order p or less if, locally, it can be written as

P D fD1 � � �Dp;
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where f is a smooth function, and each Di is either a covariant derivative rX , a Clifford
multiplication c.X/, or the identity operator. The definition of scaling order now uses the
fact that on the diagonal of M �M , we have the identification

.S � S�/.m;m/ Š Sm ˝ S�m Š End.Sm/ Š Cliff.TmM/:

Definition 3.1 ([13, Section 3.4]). Let p 2 Z. We say that a section s of S � S� has
scaling order p or more if for every m 2M ,

Clifford-order
�
Ds.�; m/jm

�
� q � p

for every differential operator D of Getzler order q or less, acting on the first component
of s.

3.2. The tangent groupoid and the rescaled spinor bundle

The tangent groupoid was introduced by Alain Connes to give a simple and elegant proof
of the Atiyah–Singer index theorem [8, Chapter 2, Section 5]. Given smooth manifoldM ,
the tangent groupoid TM is a smooth manifold whose underlying set is

TM D .TM � ¹0º/ t .M �M �R�/:

If M � U
'
�! Rn is a local coordinate chart, then TU � TM is an open subset and there

is a local coordinate chart
TU

�
�! R2nC1

given by 8̂<̂
: .x;m; t/!

�
'.x/ � '.m/

t
; '.m/; t

�
;

.X;m; 0/!
�
'�X; '.m/; 0

�
:

(3.1)

In [11], the authors adopt a more algebraic way towards the tangent groupoid, namely
it is built as spectrum of the following algebra.

Definition 3.2. Denote by A.TM/ � C1.M �M/Œt�1; t � the R-algebra of those Lau-
rent polynomials X

p2Z

fpt
�p (3.2)

for which each coefficient fp is a smooth, real-valued function on M �M that vanishes
to order � p on M (and all but finitely many fp are zero).

In general, the spectrum of an algebra comes naturally with a topology, the Zariski
topology. In this particular case, the spectrum of A.TM/ turns out to have a smooth
manifold structure that coincides with the manifold structure on TM defined above. A
Laurent polynomial of the form (3.2) naturally defines a smooth function on the tangent
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groupoid TM , and the evaluation maps are given by

".x;m;�/ W
X
p2Z

fpt
�p
7!

X
p2Z

fp.x;m/�
�p;

".X;m/ W
X
p2Z

fpt
�p
7!

X
p2Z

1

pŠ
Xp.fp/:

The set of smooth functions on TM is locally smoothly generated by these functions (see
[11, Lemma 2.4]).

LetM be an even dimensional spinor manifold with spinor bundle S!M . In order to
introduce Getzler’s rescaling technique in the context of the tangent groupoid, by deform-
ing S , we build a vector bundle S ! TM over the tangent groupoid, following the
construction in [13]. This bundle is called the rescaled bundle and it is built from the
following A.TM/-module.

Definition 3.3. Denote by S.TM/ the complex vector space of Laurent polynomialsX
p2Z

spt
�p; (3.3)

where each sp is a smooth section of S � S� of scaling order at least p.

The complex vector space S.TM/ so constructed is indeed an A.M/-module; the
module structure is given by the Laurent polynomial multiplication. It turns out that the
module S.TM/ can be made into a sheaf of locally free modules over the sheaf of smooth
functions on TM , thus giving rise to the rescaled bundle S! TM .

A Laurent polynomial of the form (3.3) naturally defines a smooth section of S whose
evaluation map is given by

".x;m;�/ W
X
p2Z

spt
�p
7!

X
p2Z

sp.x;m/�
�p; (3.4)

".X;m/ W
X
p2Z

spt
�p
7!

X
q;p

1

qŠ

�
r
q
Xsp.�; m/jm

�
q�p

; (3.5)

where rX is the covariant derivative acting on the first variable of S � S� and Œ��k .
Observe here that since sp has scaling order at least p, rqXsp.�; m/jm 2 Cliff.TmM/

has Clifford order at most q � p at eachm 2M , and hence its .q � p/-th Clifford symbol
is well defined. A general smooth section f of S can locally be written as a finite sum

f D
X
j

fj � sj ; (3.6)

where fj 2 C1.TM/ and the sj are Laurent polynomials of the form (3.3), which deter-
mine smooth sections of S denoted by the same symbol.
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Set theoretically, over M �M � ¹tº, the rescaled bundle is the tensor product bundle
S � S� while over TM � ¹0º are the pullback of the exterior bundle^�T �M !M along
� W TM !M :

S

��

TM

�� ^� T �M

��

S � S�

��

TM � ¹0º t M �M �R�:

The space of compactly supported smooth sections of the rescaled bundle has an algebra
structure in the following way: for f; g 2 C1c .TM;S/, f � g 2 C

1
c .TM;S/ is defined

by

.f � g/.x;m; t/ D

Z
M

f .x; y; t/g.y;m; t/t�ndy;

.f � g/.X;m; 0/ D

Z
TmM

f .X � Y;m; 0/g.Y;m; 0/e�
1
2 Œ�.X;Y /�dY;

(3.7)

where .x; m; t/ 2 M �M � R� and .X; m; 0/ 2 TM � ¹0º and where � is the curva-
ture tensor of the spinor bundle (so that �.X; Y / 2 Cliff.TmM/ for X; Y 2 TmM ) and
Œ�.X; Y /� 2 ƒTmM is the inverse image of the Clifford algebra element �.X; Y / under
the quantization map (see [13, Section 5.2]). Crucially, we will use the following result.

Theorem 3.4 ([13, Theorem 5.4.2]). For each t 2 R, the formula

Strt .f / D
Z
M

str
�
f .m;m; t/

�
t�ndm for t ¤ 0;

Str0.f / D
�
2

i

�n=2 Z
M

f .0;�; 0/

(3.8)

defines a supertrace on C1c .TM;S/; here in the second integral, f .0;�; 0/ is a differ-
ential form on M , which is integrated using the orientation on M . Moreover, the map
t 7! Strt .f / is smooth.

Remark 3.5. For t ¤ 0, the traces Strt can be viewed as an integral over the t -fiber of
TM , when the fibers are equipped with the rescaled metric t�2g. The theorem then asserts
that the formula for Str0 is the continuous (even smooth) extension of this family to the
fiber over t D 0.

3.3. Rapidly decaying sections

A disadvantage of the algebra C1c .TM;S/ considered above is that it is too small to con-
tain the “heat kernel element” e�t

2D2
. In this section, we shall construct an enlargement

�.TM;S/ of this algebra consisting of sections of rapid decay, in particular e�t
2D2

, and
this still supports the family of supertraces (3.8).
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Definition 3.6. Let f be a compactly supported smooth section of the rescaled bundle.
Define a family of norms ¹Nkº, k 2 N, on C1c .TM;S/ by

Nk.f / D sup
.x;m;t/2M�M�R�

�
1C

d.x;m/2

t2

�k=2 ˇ̌
f .x;m; t/

ˇ̌
; (3.9)

where d.x;m/ is the Riemannian distance between x and m and let

�.TM;S/ WD
®
f 2 C.TM;S/ j 8k 2 N W Nk.f / <1

¯
:

Lemma 3.7. The following holds:

(1) �.TM;S/ is complete and C1c .TM;S/ � �.TM;S/ is dense;

(2) the convolution product extends continuously to a product on �.TM;S/;

(3) each of the supertraces (3.8) extends continuously to �.TM; S/ and for each
f 2 �.TM;S/, Strt .f / is continuous in t .

Proof. (1) Let ¹'˛ W M � U˛ ! Rnº be a collection of coordinate charts on M and let
¹�˛ W TU˛ ! R2nC1º be the induced coordinate charts on TM , as given in (3.1). One
then easily shows that restricted to TU˛ , the seminorm Nk is equivalent to the seminorm

sup
.a;b;t/2�˛.TU˛/

�
1C jaj2

�k=2 ˇ̌
f ı ��1˛ .a; b; t/

ˇ̌
:

The rest follows from routine arguments.
(2) We calculate

Nk.f � g/ D sup
.x;m;t/

�
1C

d.x;m/2

t2

�k=2 ˇ̌̌̌ Z
M

f .x; y; t/g.y;m; t/t�ndy

ˇ̌̌̌
� Ck sup

.x;m;t/

ˇ̌̌̌ Z
M

�
1C

d.x; y/2

t2

�k=2
f .x; y; t/g.y;m; t/t�ndy

ˇ̌̌̌
C Ck sup

.x;m;t/

ˇ̌̌̌ Z
M

f .x; y; t/

�
1C

d.y;m/2

t2

�k=2
g.y;m; t/t�ndy

ˇ̌̌̌
� CkNkCnC1.f /N0.g/ sup

.x;t/

Z
M

�
1C

d.x; y/2

t2

��.nC1/=2
t�ndy

C CkNnC1.f /Nk.g/ sup
.x;t/

Z
M

�
1C

d.x; y/2

t2

��.nC1/=2
t�ndy;

where Ck is a constant such that for all a; b � 0,

.1C aC b/k=2 � Ck.1C a/
k=2
C Ck.1C b/

k=2:

It remains to show that the integralZ
M

�
1C

d.x; y/2

t2

��.nC1/=2
t�ndy (3.10)
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is uniformly bounded with respect to t 2R�. For " > 0, split the integral up in one integral
over M nB".x/ and one over B".x/. The first of these is clearly bounded, and the second
one can be estimated by the integralZ

B".0/

�
1C
jvj2

t2

��.nC1/=2
t�ndv D

Z
B"=t .0/

�
1C j�j2

��.nC1/=2
d�

over Euclidean space. In the second step, we replaced � D v=t to obtain an expression
which is clearly bounded.

(3) For t ¤ 0, the formula (3.8) clearly extends to a continuous linear functional on
�.TM; S/. In the case t D 0, we observe that by (1) above, elements f 2 �.TM; S/
satisfy jf .X;m; 0/j � Ck.1C jX j2/k=2 for any k 2 N. Hence also the second formula in
(3.8) extends to a continuous linear functional on �.TM;S/. To show continuity at t D 0,
let fi 2 Cc.TM;S/ be compactly support sections with fi ! f in �.TM;S/. Thenˇ̌

Strt .f / � Str0.f /
ˇ̌
�
ˇ̌
Strt .f / � Strt .fi /

ˇ̌
C
ˇ̌
Strt .fi / � Str0.fi /

ˇ̌
C
ˇ̌
Str0.fi / � Str0.f /

ˇ̌
:

The second term converges to zero by Theorem 3.4, and the first and the third by continuity
of Strt . This finishes the proof.

3.4. The heat kernel element

We now show that the space �.TM; S/ of rapidly decaying sections of S contains the
“heat kernel element” e�t

2D2
.

Lemma 3.8. Let f be a smooth section of S � S� !M �M �R. Then tnC1f defines
a smooth section of the rescaled bundle S! TM such that

�
tnC1f

�
.
/ D

´
tnC1f .x; y; t/ 
 D .x; y; t/;

0 
 D .X;m; 0/:

Proof. As a C1.M �M � R/ module, C1.M �M � R; S � S�/ is locally finitely
generated and free. We could choose s1; s2; : : : ; sp as a sequence of local sections of
S � S� !M �M such that f can be locally written as combination of s1; : : : ; sp . That
is

tnC1f .x; y; t/ D f1.x; y; t/t
nC1s1.x; y/C � � � C fp.x; y; t/t

nC1sp.x; y/

locally, for some smooth functions f1; f2; : : : ; fp on M �M � R. Here tnC1si defines
local section of the rescaled bundle and its value at .X;m; 0/ which can be evaluated by
(3.5) is clearly zero.

Proposition 3.9. For each � > 0, there is H� 2 �.TM;S/ such that for t > 0,

H� .x;m; t/ D t
ne�t

2�D2

.x;m/; (3.11)
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where e�t
2�D2

.x;m/ is the heat kernel of D. Moreover, this element satisfies

H� .X;m; 0/

D
1

.4��/n=2
det1=2

�
�R=2

sinh.�R=2/

�
exp

�
�
1

4�

�
X;
�R

2
coth

�
�R

2

�
X

��
; (3.12)

where R is the Riemannian curvature tensor, interpreted as a skew-adjoint matrix of dif-
ferential 2-forms in a local frame.

Proof. We need a slight refinement of [3, Theorem 4.1]. By the asymptotic expansion of
the heat kernel, near the diagonal in M �M , we have

tn � e�t
2�D2.x;m/ D

1

.4��/n=2
e
�d.x;m/2

4t2�

n=2X
iD0

t2i� iˆi .x;m/CO.tnC1/; (3.13)

where the ˆi .�; m/ are determined by a system of differential equations:´
rRˆ0.�; m/ D 0;�
rR C i

�
ˆi .�; m/ D �Bˆi�1.�; m/

with initial condition ˆ0.m; m/ D 1, where R is the radial vector field associated with
a Riemannian normal coordinate system around m, B is a differential operator on S of
Getzler order 2 (see [3, Section 2.5] for details). We claim thatˆi has scaling order 2i . The
first equation rRˆ0 D 0 says that ˆ0.x;m/ D P.x;m/, the parallel translation operator
which has scaling order 0 according to [13, Proposition 3.3.10]. The rest can be shown
by an induction argument: assume that ˆi�1 has scaling order 2i � 2; then Bˆi�1 has
scaling order 2i . Since R vanishes at m, rR does not change the scaling order so that by
the differential equation, ˆi also has scaling order 2i . According to (3.6), the sum of the
first n terms in the asymptotic expansion defines a smooth section of S. The remainder
term O.tnC1/ is a section of S � S� ! M �M � R which satisfies the condition of
Lemma 3.8. Overall, H� defines an element in C1.TM;S/.

Next we shall show that Nk.H� / <1 for all k. If x ¤ y, it is well known that the
heat kernel is rapidly decreasing as t ! 0. We only have to consider the case when .x; y/
is very close to the diagonal. In that case, the estimate is done by using the asymptotic
expansion (3.13). Indeed, ˆi .x; y/ are all bounded near the diagonal, and�

1C
d.x;m/2

t2

�k=2
e
�d.x;m/2

4t2�

is uniformly bounded in .x;m; t/ for any given k and � > 0. Therefore, H� 2 �.TM;S/.
The value ofH� .X;m;0/ is calculated for example in [3, Theorem 4.20] or [19, Propo-

sition 12.25] with other means. However, (3.12) can also be obtained within the framework
of [13], as we explain now. Because D2 has Getzler order 2, the results of [13, Sec-
tion 3.6] imply that t2D2 extends to an operator D2 on TM , acting on sections of S; over
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t D 0, it is given by its Getzler symbol, as computed, e.g., in [19, Proposition 12.17]. For
X 2 TmM � TM , the formula is

"X .D2s/ D L � "X .s/ with L D
dX
iD1

�
@

@Xi
�
1

4

dX
jD1

RijXj

�2
: (3.14)

Here "X D ".X;m/ is the point evaluation map (3.5) and the components Xi of X and the
Rij 2 ƒ

2TmM are the components of the curvature tensor of M defined with respect to
some orthonormal basis of TmM .

We want to show that for any � > 0, we have

"X
�

exp.��D2/s
�
D exp.��L/ � "X .s/: (3.15)

It suffices to verify this for all s in the A.TM/-module S.TM/ (remember Defini-
tion 3.3), as the general section is a linear combination over C1.TM/ of elements of
S.TM/ and one easily checks that the formula (3.15) still holds when replacing s by
f � s for f 2 C1.TM/. On S.TM/, D2 acts as

D2 W
X
p

spt
�p
7!

X
p

D2.sp/t
�pC2:

Let S0.TM/ be the quotient of S.TM/ by the subspace t � S.TM/. Since the point
evaluations "X are zero on t � S.TM/, they descend to S0.TM/ and it suffices to verify
(3.15) for s 2 S0.TM/. However, since any section of S � S� has scaling order at least
�n, we see that the action of .�D2/N is zero on S0.TM/ for N sufficiently large. Hence
both sides of (3.15) are actually given by an exponential series truncated at some finite N ,
so that (3.15) follows from (3.14).

On the other hand, by (3.7),

"X
�

exp.��D2/s
�
D

Z
TmM

"X�Y .H� /e
� 12 Œ�.X;Y /�"Y .s/dY: (3.16)

Equations (3.15) and (3.16) together imply

exp.��L/.X; Y / D "X�Y .H� /e�
1
2 �.X;Y / (3.17)

in particular, exp.��L/.X; 0/ D "X .H� / which combined with Mehler’s formula (see,
e.g., [3, Section 4.2]) verifies (3.12).

Remark 3.10. Fix m 2M . The full integral kernel zH� .X; Y / WD e��L.X; Y / of the heat
operator e��L on TmM is given by Mehler’s formula,

zH� .X; Y / D .4�/
�n=2
� det

�
�R=2

sinh.�R=2/

�1=2
� exp

�
�

�
X;
R

8
coth

�
�R

2

�
X

�
C

�
X; e�R=2

R

4
cosech

�
�R

2

�
Y

�
�

�
Y;
R

8
coth

�
�R

2

�
Y

��
I



206 M. Ludewig and Z. Yi

see [3, Section 4.2], which satisfies the convolution identity

zH�C� 0.X;Z/ D

Z
TmM

zH� .X; Y / zH� 0.Y;Z/dY:

Now one can check that zH� .X; Y /DH� .X � Y;m; 0/e�
1
2 Œ�.X;Y /�, hence the elementH�

from above satisfies the twisted convolution identity

H�C� 0.X;m; 0/ D .H� �H� 0/.X;m; 0/

D

Z
TmM

H� .X � Y;m; 0/H� 0.Y;m; 0/e
� 12 Œ�.X;Y /�dY:

Of course, this twisted convolution identity H�C� 0 D H� � H� 0 also follows from the
semigroup property of e�t

2�D2
, which holds for t ¤ 0 and by continuity must continue to

hold at zero. However, the above calculations show that the factor of e�
1
2 Œ�.X;Y /� appearing

in the formula (3.7) for the twisted convolution precisely accounts for the failure of the
Mehler kernel to be translation invariant.

3.5. Proof of Theorem 2.10

Let M be a compact Riemannian spin manifold of even dimension n and t > 0. Given
�1; : : : ; �N , the explicit formula (2.13) reveals that the corresponding Chern character
Cht .�1; : : : ; �N / is a sum of terms of the form

.�1/kt j� jC2k�N
Z
�k

Str
�
e�t

2�1D
2
kY

pD1

F.�ip�1C1; : : : ; �ip /e
�t2.�pC1��p/D

2
�
d�; (3.18)

where k � N and 1 � i1 < � � � ik � N are given, and where j� j D j�0j C � � � C j�N j; we
assume each �i to be homogeneous throughout. Recall moreover that

F.�/ D
�
D; c.� 0/

�
� c.d� 0/C c.� 00/;

F .�1; �2/ D .�1/
j�1j
�
c.� 01 ^ �

0
2/ � c.�

0
1/c.�

0
2/
�
:

To prove Theorem 2.10, the goal is now to calculate the limit as t ! 0 of these terms. In
fact, we will show that if k < N , the result is zero, while if k D N , we have

lim
t!0

.�1/N t j� jCN
Z
�k

Str
�
e�t

2�1D
2
NY
iD1

F.�i /e
�t2.�iC1��i /D

2

�
d�

D
.�1/N

.2�i/�n=2NŠ

Z
X

yA.X/ ^ � 001 ^ � � � ^ �
00
N : (3.19)

The proof of this will occupy the rest of this section.

Lemma 3.11. Let �; �1; �2 2 �T .M/ be homogeneous. Then each of the operators

t j� jC1F.�/; t j�1jCj�2jF.�1; �2/;
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acting on sections of S � S� overM �M �R� with respect to the first variable, extends
smoothly to an operator acting on sections of S over TM . Moreover, over TM � ¹0º �
TM , these extensions are given by

� 00 ^ .�/; respectively 0:

Proof. Each of the operators F.�/, F.�1; �2/ can (locally) be written as a composition
of Clifford multiplication and covariant derivatives, therefore it follows from [13, Lem-
mas 3.6.2 and 3.6.3] that when multiplied by t` for ` less than or equal to their Getzler
order, they extend smoothly to all of TM and their action over the t D 0 slice is given by
their Getzler symbol. We deal with them in turn.

(a) Regarding the operator F.�/, suppose that � D � 0 C �� 00 has total degree j� j D `,
meaning that � 0 2 �`.M/ and � 00 2 �`C1.M/. A local calculation shows that in terms of
a local orthonormal basis e1; : : : ; en, one has the formula�

D; c.� 0/
�
� c.d� 0/ D �2

nX
iD1

c.eiy� 0/rei C c.d
�� 0/;

where y denotes insertion of vectors into differential forms and d� is the L2-adjoint of
the de-Rham differential; compare [3, Proposition 3.45]. Since for each i , c.eiy�/ can
be written as a sum of composites of ` � 1 Clifford multiplications, the right hand has
Getzler order at most `. We obtain that ŒD; c.� 0/� � c.d� 0/ is of lower order compared
to c.� 00/, which has Getzler order `C 1 (as c.� 00/ can be written as a sum of composites
of `C 1 Clifford multiplications). Hence t`C1F.�/ extends smoothly to all of TM , and
over t D 0, we have t`C1F.�/ D t`C1c.� 00/. It then follows from [13, Lemma 3.6.2] that
over t D 0, t`C1c.� 00/ is given by wedging with � 00.

(b) Looking at the formula for F.�1; �2/, it is clear that it has Getzler order at most
`1 C `2 (where `i D j�i j), hence t`1C`2 extends continuously to all of TM , and over
t D 0, it is given by wedging with

.�1/`1
��
c.� 01 ^ �

0
2/
�
`1C`2

�
�
c.� 01/

�
`1
^
�
c.� 02/

�
`2

�
D 0;

where Œ��` denotes the `-th order Clifford symbol (see Section 3.1).

We are now in the position to prove the following result, which implies Theorem 2.10
and hence finishes the proof of the localization formula.

Proposition 3.12. If k < N , the expression (3.18) converges to zero, as t ! 0. In the case
k D N , the limit is given by the right-hand side of (2.16).

Proof. Observe that since F vanishes whenever if more than two �i are inserted, the
expression (3.18) can be non-zero only if ip � ip�1 � 2 for all p D 1; : : : ; k; we assume
throughout that this is the case. We set

p̀ D

´
j�ip j C 1 if ip � ip�1 D 1;

j�ip�1j C j�ip j if ip � ip�1 D 2:
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Observe that p̀ is precisely the Getzler order of F.�ip�1C1; : : : ; �ip /, as seen in the proof
of Lemma 3.11. Hence if we set

Kp� D t
nC p̀F.�ip�1C1; : : : ; �ip /e

�t2�D2

;

then by Lemma 3.11 and Proposition 3.9, each Kp� (a priori defined only over M �
M � R�) extends smoothly to a section of the bundle S ! TM ; in fact an element of
�.TM;S/.

Because necessarily ip � ip�1 D 1 for 2k �N many p and ip � ip�1 D 2 for N � k
many p (p � 1), we have

`0 C � � � C `k D j� j C 2k �N:

Therefore, using the factors of t in formula (3.18) together with the additional factors
of t present in the formulas (3.7) for the twisted convolution and definition (3.8) for the
t -supertrace, the expression from formula (3.18) can be written as

.�1/k
Z
�k

Strt
�
H�1 �K

1
�2��1

� � � � �Kk1��k

�
d�; (3.20)

where � denotes the twisted convolution. By Lemma 3.7 (2), the integrandH�1 �K
1
�2��1

�

� � � � Kk1��k is now an element of �.TM; S/, hence it can be evaluated at t D 0. But if
k < N , then necessarily one of theKp� contains a factor of F.�ip�1; �ip /, which evaluates
to zero over TM � ¹0º, by Lemma 3.11. This shows that the term (3.18) converges to zero
as t ! 0 (if k < N ), as Strt .A/ only depends on the restriction of A to TM � ¹0º (see
Theorem 3.4) and convolution preserves the fibers of TM ! R.

It is left to consider the case k D N . In this case, it follows from Lemma 3.11 and
Proposition 3.9 that over t D 0,

Ki� .X;m; 0/ D t
j�i jC1F.�i /H� .X;m; t/

ˇ̌
tD0
D � 00p ^H� .X;m; 0/;

hence

H�1 �K
1
�2��1

� � � � �KN1��N D H�1 �
�
� 001 ^H�2��1

�
� � � � �

�
� 00N ^H1��N

�
D � 001 ^ � � � ^ �

00
N ^

�
H�1 �H�2��1 � � � � �H1��N

�
:

Here in the second step, we used that the �i can be pulled out of the convolution product
since they are constant as functions on TmM and theH� are even. The twisted convolution
identity of H� (see Remark 3.10) now implies that

H�1 �H�2��1 � � � � �H1��N D H1:

By continuity of the t -supertraces (compare Lemma 3.7 (3)), the expression (3.20) is con-
tinuous in t . With a view on (3.8), evaluating at t D 0 therefore yields

Str0
�
H�1 �K

1
�2��1

� � � � �KN1��N

�
D

�
2

i

�n=2�Z
M

� 001 ^ � � � ^ �
00
N ^H1.0;�; 0/

�
:
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This shows that the integrand of (3.20) is in fact constant in � , hence the integral over
�N just contributes a factor of vol.�N / D 1=N Š. Finally, comparing formula (3.12) with
(2.17), one observes that H1.0;�; 0/ is precisely .4�/�n=2 times the yA-form on M . In
total, we obtain (3.19), which finishes the proof of the theorem.
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