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Strongly quasi-local algebras and their K -theories

Hengda Bao, Xiaoman Chen, and Jiawen Zhang

Abstract. In this paper, we introduce a notion of strongly quasi-local algebras. They are defined for
each discrete metric space with bounded geometry, and sit between the Roe algebra and the quasi-
local algebra. We show that strongly quasi-local algebras are coarse invariants, hence encoding
coarse geometric information of the underlying spaces. We prove that for a discrete metric space
with bounded geometry which admits a coarse embedding into a Hilbert space, the inclusion of the
Roe algebra into the strongly quasi-local algebra induces an isomorphism in K-theory.

1. Introduction

Roe algebras are C �-algebras associated to metric spaces which encode coarse geometric
information of the underlying spaces. They were introduced by J. Roe in his pioneering
work of higher index theory on open manifolds [9, 11], in which he showed that the K-
theory of Roe algebras serves as receptacles for indices of elliptic differential operators.
Hence the computation of their K-theories becomes a central problem in higher index
theory.

An efficient and practical approach is to employ the coarse Baum–Connes conjecture,
which asserts that the coarse assembly map from the coarse K-homology of the space to
the K-theory of the Roe algebra is an isomorphism [10, 20]. The coarse Baum–Connes
conjecture has fruitful and significant applications in geometry and topology, for instance
on the Novikov conjecture and the bounded Borel rigidity conjecture (see e.g. [2, 18, 19]),
and on the non-existence of metrics of positive scalar curvature on open Riemannian man-
ifolds (see e.g. [12, 17]).

By definition, the Roe algebra C �.X/ of a discrete metric space .X; d/ with bounded
geometry is defined to be the norm closure of all locally compact operators T 2
B.`2.X IH// (where H is an infinite-dimensional separable Hilbert space) with finite
propagation in the following sense: there exists R > 0 such that for any f; g 2 `1.X/
acting on `2.X IH/ by amplified pointwise multiplication, we have f Tg D 0 when their
supports are R-disjoint (i.e., d.suppf; suppg/ > R). Since general elements in Roe alge-
bras may not have finite propagation, it is usually hard to detect whether a given operator
belongs to them or not.
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To overcome this issue, J. Roe suggested an asymptotic version of finite propagation
called quasi-locality in [9, 11]. More precisely, an operator T 2 B.`2.X IH// is quasi-
local if for any " > 0 there exists R > 0 such that for any f; g 2 `1.X/ with R-disjoint
supports, we have kf Tgk < ". We form the quasi-local algebra1 C �q .X/ of X as the C �-
algebra consisting of all locally compact and quasi-local operators in B.`2.X IH//, and
show that they are coarse invariants. It is clear that operators with finite propagation are
quasi-local, and hence the quasi-local algebra C �q .X/ contains the Roe algebra C �.X/.

A natural question is to ask whether these two algebras coincide, which has been
extensively studied over the last few decades [1,6,8,11,13,14]. Currently the most general
result is due to Špakula and the third author [14], which states that C �.X/ D C �q .X/
for any discrete metric space with bounded geometry and having Yu’s property A. Here,
property A is a coarse geometric property introduced by Yu [19] in his study on the coarse
Baum–Connes conjecture. However, the question remains widely open outside the world
of property A [4, 7].

On the other hand, the property of quasi-locality is also crucial in the work of Engel [1]
on index theory of pseudo-differential operators. He discovered that while indices of genu-
ine differential operators on Riemannian manifolds live in the K-theory of (appropriate)
Roe algebras, the indices of uniform pseudo-differential operators are only known to be
in the K-theory of quasi-local algebras. Hence it is important to study whether the Roe
algebra and the quasi-local algebra have the same K-theory.

In this paper, we introduce a notion of strong quasi-locality and study associated
strongly quasi-local algebras. Our main focus is to study theirK-theories, which might be
a potential approach to attack the higher indices problem above. To illustrate the idea, let
us explain when X is uniformly discrete (i.e., there exists C > 0 such that d.x; y/ > C
for x ¤ y). For the general case, see Section 3.12. Fix an infinite-dimensional separable
Hilbert space H and denote by K.H/1 the unit ball of the compact operators on H. We
introduce the following:

Definition A. Let X be a uniformly discrete metric space with bounded geometry and
T 2 B.`2.X IH//. We say that T is strongly quasi-local if for any " > 0 there exists
L > 0 such that for any L-Lipschitz map g W X ! K.H/1, we haveŒT ˝ IdH; ƒ.g/�

 < "
whereƒ.g/ 2 B.`2.X IH˝H// is defined byƒ.g/.ıx ˝ � ˝ �/ WD ıx ˝ � ˝ g.x/� for
ıx ˝ � ˝ � 2 `

2.X IH˝H/ Š `2.X/˝H˝H.

Definition A is inspired by a characterisation for quasi-locality provided in [13] which
states that an operator T 2 B.`2.X IH// is quasi-local if and only if for any " > 0 there
exists L > 0 such that for any L-Lipschitz map g W X ! C with kgk1 � 1, we have

1Note that a uniform version was already introduced in [7].
2Note that the notion of strong quasi-locality in Definition A is equivalent to that in Definition 3.4

provided the underlying space is uniformly discrete.
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kŒT; g�k < ". Hence the notion of strong quasi-locality can be regarded as a compact oper-
ator valued version of quasi-locality, and undoubtedly strengthens the original notion (as
literally suggested).

Analogous to the case of quasi-locality, we form the strongly quasi-local algebra
C �sq.X/ as the C �-algebra consisting of all locally compact and strongly quasi-local oper-
ators in B.`2.X IH//. We show that the strongly quasi-local algebra C �sq.X/ contains
the Roe algebra C �.X/, and is contained in the quasi-local algebra C �q .X/ (see Propo-
sition 3.6). We also study coarse geometric features of strongly quasi-local algebras, and
show that they are coarse invariants as in the case of Roe algebras and quasi-local algebras
(see Corollary 3.12).

Our motivation of introducing strongly quasi-local algebras is that their K-theory is
relatively easy to handle when the underlying space is coarsely embeddable. More pre-
cisely, we prove the following:

Theorem B. Let X be a discrete metric space of bounded geometry. If X admits a coarse
embedding into a Hilbert space, then the inclusion of the associated Roe algebra C �.X/
into the strongly quasi-local algebra C �sq.X/ induces an isomorphism in K-theory.

Theorem B is the main result of this paper, which is inspired by the well-known the-
orem of Yu [19] that the coarse Baum–Connes conjecture holds for discrete bounded
geometry spaces admitting a coarse embedding into a Hilbert space. The proof of The-
orem B follows the outline of [16, Section 12] (which originates in [19]), but is more
involved and requires new techniques. We divide the proof into several steps, and here let
us explain several key ingredients in the proof.

First we prove a coarse Mayer–Vietoris argument for strongly quasi-local algebras
(Proposition 4.5), which allows us to cut the space and decompose the associated algebras.
Recall that an analogous result for Roe algebras was already established in [3]. This leads
to the reduction of the proof for Theorem B to the case of sequences of finite metric spaces
with block-diagonal operators thereon (Lemma 4.7).

We would like to highlight a technical lemma used to achieve the coarse Mayer–
Vietoris result. Recall that for a quasi-local operator T 2 C �q .X/, it is clear from defin-
ition that the restriction �AT�A belongs to C �q .A/ for any subspace A. However, this is
not obvious in the case of strongly quasi-local algebras due to certain obstructions on
Lipschitz extension (see Remark 3.9). To overcome the issue, we provide a character-
isation for strong quasi-locality in terms of compact operator valued Higson functions
(Proposition 3.7). Note that these functions appeared in [15, Section 4.2] to study the
stable Higson corona and the Baum–Connes conjecture. Thanks to the extendability of
Higson functions, we obtain a restriction result (Lemma 3.10) as required. Moreover, by
some delicate analysis, we obtain a “uniform” version (Proposition 3.8) which plays a key
role in following steps.

Then we construct a twisted version of strongly quasi-local algebras (Definition 5.10)
for sequences of finite metric spaces, and show that the identity map on the K-theory
of the strongly quasi-local algebra factors through the K-theory of its twisted counterpart
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(Proposition 6.8). To achieve this, we replace several propagation requirements for twisted
Roe algebras by different versions of (strong) quasi-locality, and construct an index map
in terms of the Bott–Dirac operators. We would like to point out that for the original quasi-
local algebras, there is a technical issue to define the index map (Lemma 6.4) following
the methods either in [19, Lemma 7.6] or in [16, Lemma 12.3.9]. Hence we have to move
to the world of strong quasi-locality.

Finally, we prove that the inclusion map from the twisted Roe algebra into the twis-
ted strongly quasi-local algebra induces an isomorphism in K-theory (Proposition 7.1).
Combining with a diagram-chasing argument, we conclude the proof for Theorem B.

Theorem B should be regarded as a first step to attack the problem whether quasi-local
algebras have the same K-theory as Roe algebras. More precisely, we pose the following
open question:

Question C. Let X be a metric space with bounded geometry which admits a coarse
embedding into a Hilbert space. Then, do we have K�.C �sq.X// D K�.C

�
q .X//?

The paper is organised as follows: In Section 2, we collect notions from coarse geo-
metry and recall the definition of Roe algebras. We also define quasi-local algebras and
show that they are coarse invariants. In Section 3, we introduce the main concept of this
paper—strong quasi-locality and study their permanence property and coarse geometric
features. Section 4 is devoted to the coarse Mayer–Vietoris sequence for (strongly) quasi-
local algebras, based on which we reduce the proof for Theorem B to the case of sequences
of finite metric spaces. We introduce twisted strongly quasi-local algebras in Section 5,
and construct the index map in Section 6. In Section 7, we show that twisted Roe algebras
and twisted strongly quasi-local algebras have the same K-theory, and hence conclude
the proof in Section 8. The appendix provides a proof for Proposition 5.4 which slightly
strengthens [16, Proposition 12.1.10] and is necessary to achieve the main theorem, hence
we give detailed proofs for the convenience of readers.

2. Preliminaries

We start with some notions and definitions.

2.1. Notions in coarse geometry

Here we collect several basic notions.

Definition 2.1. Let .X; dX / be a metric space, A � X and R � 0.

(1) A is bounded if its diameter diam.A/ WD sup¹dX .x; y/ W x; y 2 Aº is finite.

(2) The R-neighbourhood of A in X is NR.A/ WD ¹x 2 X W dX .x; A/ � Rº.

(3) A is a net in X if there exists some C > 0 such that NC .A/ D X .

(4) For x0 2 X , the open R-ball of x0 in X is B.x0IR/ WD ¹x 2 X W dX .x0; x/ < Rº.



Strongly quasi-local algebras and their K-theories 245

(5) .X; dX / is said to be proper if every closed bounded subset is compact.

(6) If .X; dX / is discrete, we say that X has bounded geometry if for any r > 0 there
exists an N 2 N such that jB.xI r/j � N for any x 2 X , where jB.xI r/j denotes
the cardinality of the set B.xI r/.

Definition 2.2. Let f W .X; dX /! .Y; dY / be a map between metric spaces.

(1) f is uniformly expansive if there exists a non-decreasing function �C W Œ0;1/!
Œ0;1/ such that for any x; y 2 X , we have

dY .f .x/; f .y// � �C.dX .x; y//:

(2) f is proper if for any bounded B � Y , the pre-image f �1.B/ is bounded in X .

(3) f is coarse if it is uniformly expansive and proper.

(4) f is effectively proper if there exists a proper non-decreasing function �� W

Œ0;1/! Œ0;1/ such that for any x; y 2 X , we have

��.dX .x; y// � dY .f .x/; f .y//:

(5) f is a coarse embedding if it is uniformly expansive and effectively proper.

Note that f being uniformly expansive is equivalent to the expansion function �f W
Œ0;1/! Œ0;1� of f , defined as

�f .s/ WD sup
®
dY .f .x/; f .y// W x; y 2 X with dX .x; y/ � s

¯
; (2.1)

being finite-valued.

Definition 2.3. Let .X; dX / and .Y; dY / be metric spaces.

(1) Two maps f; g W .X; dX /! .Y; dY / are close if there exists R � 0 such that for
all x 2 X , we have dY .f .x/; g.x// � R.

(2) A coarse map f W .X; dX /! .Y; dY / is called a coarse equivalence if there exists
another coarse map g W .Y; dY /! .X; dX / such that f ı g and g ı f are close
to identities, where g is called a coarse inverse to f . It is clear that f is a coarse
equivalence if and only if it is a coarse embedding and f .X/ is a net in Y .

(3) .X; dX / and .Y; dY / are said to be coarsely equivalent if there exists a coarse
equivalence from X to Y .

For families of metric spaces and maps, we also need the following notions.

Definition 2.4. Let ¹.Xn; dXn/ºn2N be a sequence of finite metric spaces. A coarse dis-
joint union of ¹.Xn; dXn/º is a metric space .X; dX / where X is the disjoint union of ¹Xnº
as a set, and dX is a metric on X satisfying the following:

• the restriction of dX on Xn coincides with dXn ;

• dX .Xn; X nXn/!1 as n!1.
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Note that any two such metrics dX are coarsely equivalent. We say that a sequence
¹.Xn; dXn/ºn2N has uniformly bounded geometry if its coarse disjoint union has bounded
geometry.

Definition 2.5. A family of maps ¹fi W Xi ! Yiºi2I between metric spaces is called a
uniformly coarse embedding if there are non-decreasing proper functions �˙ W Œ0;1/!
Œ0;1/ such that

��.dXi .x; y// � dYi .fi .x/; fi .y// � �C.dXi .x; y//

for all i 2 I and x; y 2 Xi . We say that ¹Xiºi2I uniformly coarsely embeds into Hilbert
spaces if there exists a uniformly coarse embedding ¹fi W Xi ! Eiºi2I where each Ei is
a Hilbert space.

It is clear that a sequence of finite metric spaces ¹Xnºn2N uniformly coarsely embeds
into Hilbert spaces if and only if its coarse disjoint union

F
nXn coarsely embeds into

some Hilbert space.

2.2. Roe algebras and quasi-local algebras

For a proper metric space .X;dX /, recall that anX -module is a non-degenerate �-represen-
tation C0.X/! B.HX / for some infinite-dimensional separable Hilbert space HX . We
also say that HX is an X -module if the representation is clear from the context. An
X -module is called ample if no non-zero element of C0.X/ acts as a compact operator
on HX . Note that every proper metric space X admits an ample X -module.

Let HX and HY be ample modules of proper metric spaces X and Y , respectively.
Given an operator T 2 B.HX ;HY /, the support of T is defined to be

supp.T / WD
®
.y; x/ 2 Y �X W �V T�U ¤ 0 for all neighbourhoods U of x and V of y

¯
:

When X D Y , the propagation of T 2 B.HX / is defined to be

prop.T / WD sup¹dX .x; y/ W .x; y/ 2 supp.T /º:

We say that an operator T 2 B.HX / has finite propagation if prop.T / is finite, and T is
locally compact if f T and Tf are compact for all f 2 C0.X/ (which is equivalent to
both �KT and T�K being compact for all compact subsets K � X ).

Definition 2.6. For a proper metric space X and an ample X -module HX , the alge-
braic Roe algebra CŒHX � of HX is defined to be the �-algebra of locally compact finite
propagation operators on HX , and the Roe algebra C �.HX / of HX is defined to be the
norm-closure of CŒHX � in B.HX /.

It is a standard result that the Roe algebra C �.HX / does not depend on the chosen
ample module HX up to �-isomorphisms, hence denoted by C �.X/ and called the Roe
algebra of X . Furthermore, C �.X/ is a coarse invariant of the metric space X (up to non-
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canonical �-isomorphisms), and their K-theories are coarse invariants up to canonical
isomorphisms (see, e.g., [10]).

Now we move on to the case of quasi-locality.

Definition 2.7. Given a proper metric space .X; dX / and an ample X -module HX , an
operator T 2 B.HX / is said to be quasi-local if for any " > 0, there exists R > 0 such
that T has ."; R/-propagation, i.e., for any Borel sets A;B � X with dX .A; B/ � R, we
have k�AT�Bk < ".

It is clear that the set of all locally compact quasi-local operators on HX forms a
C �-subalgebra of B.HX /, which leads to the following:

Definition 2.8. For a proper metric space X and an ample X -module HX , the set of all
locally compact quasi-local operators on HX is called the quasi-local algebra of HX ,
denoted by C �q .HX /.

As in the case of Roe algebras, we now show that quasi-local algebras do not depend
on the chosen ample modules either.

Let X and Y be proper metric spaces and HX ;HY be ample modules, respectively.
Let f W X ! Y be a coarse map. Recall that a covering isometry for f is an isometry
V WHX !HY such that supp.V / � ¹.y; x/ W dY .y; f .x// � C º for some C � 0. In this
case, we also say that V covers f . It is shown in [16, Proposition 4.3.4] that covering
isometries always exist. Following the case of Roe algebras, we have the following:

Proposition 2.9. Let HX and HY be ample modules for proper metric spaces X and Y ,
respectively. Let f W X ! Y be a coarse map with a covering isometry V W HX ! HY .
Then V induces the �-homomorphism

AdV W C �q .HX /! C �q .HY /; T 7! V T V �:

Furthermore, the inducedK-theoretic map .AdV /� WK�.C �q .HX //!K�.C
�
q .HY // does

not depend on the choice of the covering isometry V , hence denoted by f�.

Proof. Note that there exists a Borel coarse map close to f by [16, Lemma A.3.12], hence
without loss of generality, we can assume that f is Borel and V covers f .

Following the same argument as in the Roe case (see, e.g., [16, Lemma 5.1.12]),
V T V � is locally compact. Fix a t0 > 0 such that supp.V / � ¹.y; x/ W dY .y; f .x// < t0º.
For any " > 0, the quasi-locality of T implies that there exists a R0 > 0 such that T
has ."; R0/-propagation. We set R D 2t0 C �f .R0/C 1 where �f is defined as in equa-
tion (2.1). For any Borel sets C;D � Y with dY .C;D/ � R, it is clear that

dY .Nt0.C /;Nt0.D// � �f .R0/C 1 > �f .R0/

and hence dX .f �1.Nt0.C //; f
�1.Nt0.D/// � R0. Since V covers f , we obtain

�CV D �CV�f �1.Nt0 .C//
and V ��D D �f �1.Nt0 .D//

V ��D :
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Hence

k�CV T V
��Dk D k�CV�f �1.Nt0 .C//

T�f �1.Nt0 .D//
V ��Dk

� k�f �1.Nt0 .C//
T�f �1.Nt0 .D//

k < ";

which implies that V T V � is quasi-local.
The second statement follows almost the same argument as in the case of Roe algebra

(see, e.g., [16, Lemma 5.1.12]), hence omitted.

It is shown in [16, Proposition 4.3.5] that for a coarse equivalence f W X ! Y , we
can always choose an isometry V W HX ! HY covering f such that V is unitary. Con-
sequently, we obtain the following:

Corollary 2.10. Let HX and HY be ample modules for proper metric spaces X and Y ,
respectively. If X and Y are coarsely equivalent, then the quasi-local algebra C �q .HX /

is �-isomorphic to C �q .HY /. In particular, for a proper metric space X the quasi-local
algebra C �q .HX / does not depend on the chosen ample X -module HX up to �-isomor-
phisms, hence called the quasi-local algebra of X and denoted by C �q .X/.

3. Strongly quasi-local algebras

In this section, we introduce a new class of operator algebras which are called the strongly
quasi-local algebras. They sit between Roe algebras and quasi-local algebras and their
K-theories will be the main focus of the paper. Here we study their basic properties and
coarse geometric features.

Let us begin with some more notions:

Definition 3.1. Let .X; dX /, .Y; dY / be metric spaces and g W X ! Y be a map.

(1) Given L > 0, we say that g is L-Lipschitz if dY .g.x/; g.y// � LdX .x; y/ for any
x; y 2 X .

(2) Given A � X , " > 0 and R > 0, we say that g has .";R/-variation on A if for any
x;y 2 A with dX .x; y/ < R, we have dY .g.x/; g.y// < ". When AD X , we also
say that g has ."; R/-variation.

Definition 3.2. Let g W X ! C be a continuous function on a metric space .X; dX /.

(1) We say that g is bounded if its norm kgk1 WD supx2X jg.x/j<1. Denote the set
of all bounded continuous functions on X by Cb.X/, and by Cb.X/1 the subset
consisting of functions with norm at most 1.

(2) We say that g is a Higson function if g 2 Cb.X/ and for any " > 0 and R > 0,
there exists a compact subset K � X such that g has ."; R/-variation on X nK.
Denote Ch.X/ the set of all Higson functions on X .
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Our notion of strong quasi-locality is inspired by the following result partially from
[13, Theorem 2.8]. Recall that for operators T;S 2B.H / on some Hilbert space H , their
commutator is defined to be ŒT; S� WD TS � ST .

Proposition 3.3. Let X be a proper metric space, HX be an ample X -module and T 2
B.HX / be a locally compact operator. Then the following are equivalent:

(1) T is quasi-local in the sense of Definition 2.7;

(2) for any "> 0, there existsL>0 such that for anyL-Lipschitz function g 2Cb.X/1
we have kŒT; g�k < ";

(3) for any " > 0, there exist ı; R > 0 such that for any function g 2 Cb.X/1 with
.ı; R/-variation we have kŒT; g�k < ";

(4) ŒT; h� is a compact operator for any h 2 Ch.X/.

Note that the equivalence among (1), (2) and (4) are the “easier” part of [13, The-
orem 2.8]. And also note that the equivalence between (1) and (3) can be proved using the
same argument therein to show “(1), (2)”, hence omitted.

3.1. Strong quasi-locality

Now we introduce the notion of strong quasi-locality, where we consider compact operator
valued functions instead of complex valued ones in Proposition 3.3 (3).

Throughout the rest of the paper, we only consider proper discrete metric spaces to
simplify the notation. We also fix an infinite-dimensional separable Hilbert space H.

Let X be a proper discrete metric space and HX be an ample X -module. For each
x 2 X , denote Hx WD �¹xºHX . An operator S 2 B.HX ˝ H/ can be regarded as an
X -by-X matrix .Sx;y/x;y2X , where Sx;y 2 B.Hy ˝ H;Hx ˝ H/. Denote K.H/ the
C �-algebra of compact operators on H, and K.H/1 its closed unit ball (with respect to
the operator norm).

Recall that a map g W X ! K.H/ is bounded if kgk1 WD supx2X kg.x/k <1. Given
a bounded map g W X ! K.H/, we define an operatorƒ.g/ 2 B.HX ˝H/ by setting its
matrix entry as follows:

ƒ.g/x;y WD

´
IdHx

˝ g.x/; y D x;

0; otherwise:
(3.1)

Note that this is a block-diagonal operator with respect to the decomposition HX ˝H DL
x2X .Hx ˝H/. We also writeƒHX

.g/ instead ofƒ.g/ when we want to emphasise the
module HX involved.

The following is the main concept of this paper:

Definition 3.4. Let X be a proper discrete metric space and HX be an ample X -module.
An operator T 2B.HX / is called strongly quasi-local if for any " > 0 there exist ı;R > 0
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such that for any map g W X ! K.H/1 with .ı; R/-variation, we haveŒT ˝ IdH; ƒ.g/�


B.HX˝H/
< ": (3.2)

It is easy to see that the set of all locally compact strongly quasi-local operators on HX

forms a C �-algebra, hence called the strongly quasi-local algebra of HX and denoted by
C �sq.HX /.

Remark 3.5. A direct calculation shows that for x; y 2 X , the xy-matrix entry of the
commutator ŒT ˝ IdH; ƒ.g/� in inequality (3.2) is given by

ŒT ˝ IdH; ƒ.g/�x;y D Tx;y ˝
�
g.y/ � g.x/

�
: (3.3)

The following result records the relation amongst Roe algebras, quasi-local algebras
and strongly quasi-local algebras.

Proposition 3.6. LetX be a proper discrete metric space and HX be an ampleX -module.
Then we have

(1) C �sq.HX / � C
�
q .HX /;

(2) if X has bounded geometry, then C �.HX / � C
�
sq.HX /;

(3) ifX has bounded geometry and Property A, then C �.HX /DC
�
sq.HX /DC

�
q .HX /.

Proof. (1) Fix a rank-one projection p 2 B.H/. For g 2 Cb.X/1, we construct zg W X !
K.H/1 by zg.x/ WD g.x/p. Since ŒT ˝ IdH; ƒ.zg/� D ŒT; g�˝ p, the conclusion follows
from the definition of strong quasi-locality and Proposition 3.3 (3).

(2) Assume that T 2B.HX / has propagation at mostR. Then for any g WX!K.H/1,
the commutator ŒT ˝ IdH; ƒ.g/� has propagation at most R from (3.3). Since X has
bounded geometry, it is well known (see, e.g., [16, Lemma 12.2.4]) that there exists an N
depending on R such that for any g W X ! K.H/1 we haveŒT ˝ IdH; ƒ.g/�

 � N � sup
x;y2X;
d.x;y/�R

Tx;y ˝ �g.y/ � g.x/�:
This concludes the proof.

(3) It follows from [14, Theorem 3.3] that C �.HX / D C
�
q .HX / under the given as-

sumption, which (together with (1) and (2)) concludes the proof.

Our next aim is to explore characterisations for strong quasi-locality as in Proposi-
tion 3.3. First note that Definition 3.4 is a compact operator valued version of condition (3)
therein. Unfortunately, we cannot find an appropriate substitute for condition (1) in Pro-
position 3.3. As for condition (2) therein, it is clear that the compact operator valued
version is equivalent to strong quasi-locality provided the underlying space is uniformly
discrete (i.e., there exists C > 0 such that d.x; y/ > C for x ¤ y in X ). However, it is
unclear whether this holds in general.
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As for condition (4) in Proposition 3.3, we have the following result concerning com-
pact operator valued Higson functions. Recall that a compact operator valued function
h W X ! K.H/ on a metric space X is a Higson function if h is bounded and for any
" > 0 and R > 0, there exists a compact subset K � X such that h has ."; R/-variation
on X nK.

Proposition 3.7. LetX be a discrete metric space of bounded geometry and HX an ample
X -module. Then for a locally compact operator T 2B.HX /, the following are equivalent:

(1) T is strongly quasi-local;

(2) ŒT ˝ IdH; ƒ.h/� 2 K.HX ˝H/ for any Higson function h W X ! K.H/.

The proof of Proposition 3.7 is almost identical to that of [13, Theorem 2.8 “(1),
(3)”] with minor changes, hence omitted.

3.2. Strong quasi-locality on subspaces

In this subsection, we study the behaviour of strong quasi-locality under taking subspaces.
First note that in the case of quasi-locality, we have the following observation (which
follows directly from Definition 2.7): given a proper discrete metric spaceX and an ample
module HX , for any quasi-local operator T 2 B.HX / and any " > 0 there exists R > 0

such that for any A � X the operator �AT�A has ."; R/-propagation. In other words,
quasi-locality is preserved “uniformly” under taking subspaces.

Now we focus on the case of strongly quasi-local operators, and show that they have
similar behaviour when taking subspaces. However, the proof is more involved due to the
lack of characterisation in terms of ."; R/-propagation.

Proposition 3.8. Let X be a discrete metric space with bounded geometry and HX an
ample X -module. Assume T 2 B.HX / is locally compact and strongly quasi-local. Then
for any " > 0, there exist ı; R > 0 such that for any A � X and g W A! K.H/1 with
.ı; R/-variation, we haveŒ.�AT�A/˝ IdH; ƒ.g/�


B.HA˝H/

< ";

where �AT�A is naturally regarded as an operator on HA WD �AHX .

Remark 3.9. A natural thought for the proof is to extend a function g W A!K.H/1 toX
and preserve the variation (or at least with controlled variations). However (as pointed out
by Rufus Willett in personal communications), this is at least as hard as finding extensions
with values in a Hilbert space. The problem of extending Hilbert space valued functions is
fairly well studied [5], and there are known obstructions. In the following, we will bypass
the problem using Proposition 3.7.

First we prove a “subspace-wise” version of Proposition 3.8 (note the difference on
orders of quantifiers). To simplify the notation, forA�X we will regard the characteristic
function �A either as the multiplication operator on HX or the amplified multiplication
operator �A ˝ IdH on HX ˝H according to the context.
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Lemma 3.10. LetX be a discrete metric space with bounded geometry and HX an ample
X -module. Assume that T 2B.HX / is locally compact and strongly quasi-local. Then for
any A � X and " > 0, there exist ı;R > 0 such that for any g W A! K.H/1 with .ı;R/-
variation, we have

Œ.�AT�A/˝ IdH; ƒ.g/�


B.HA˝H/
< ".

Proof. By Proposition 3.7, we know that ŒT ˝ IdH;ƒ.h/� 2 K.HX ˝H/ for any Higson
function h W X ! K.H/. Now, fix a subspace A � X . For any Higson function g W A!
K.H/, it follows from [15, Lemma 4.3.4] that g can be extended to a Higson function
zg W X ! K.H/. Hence we obtain

Œ.�AT�A/˝ IdH; ƒ.g/� D �AŒT ˝ IdH; ƒ.zg/��A 2 �AK.HX ˝H/�A � K.HA ˝H/:

Using Proposition 3.7 again, we obtain that �AT�A is strongly quasi-local on HA. This
concludes the proof.

Now we are in the position to prove Proposition 3.8. Roughly, our idea is assuming
the contradiction and using the condition of strong quasi-locality repeatedly to obtain a
single piece of subspace, which is contradictory to Lemma 3.10.

Proof of Proposition 3.8. Fix a base point x02X , and write BS for B.x0IS/where S>0.
Assume the contrary, then there exists some "0 > 0 such that for each n 2 N, there exist
An � X and gn W An ! K.H/1 with . 1

n
; n/-variation on An such thatŒ�AnT�An ˝ IdH; ƒ.gn/�

 > "0: (3.4)

Note that .�BS /S>0 strongly converges to IdHX
as S !1, hence for n 2 N,

"0 < sup
S>0

�BS Œ�AnT�An ˝ IdH; ƒ.gn/��BS


D sup
S>0

Œ�An\BST�An\BS ˝ IdH; ƒ.gn/�
:

Without loss of generality, we can assume that each An is finite. For the above "0, there
exists R0 > 0 such that T has . "0

8
; R0/-propagation.

Claim. For any R > R0, there exists N 2 N such that for any n � N we haveŒ�AnnBRT�AnnBR ˝ IdH; ƒ.gn/�
 > "0

8
:

We assume the contrary, i.e., assume that there exist some R > R0 and an increasing
sequence .nk/1kD1 � N tending to infinity such thatŒ�Ank nBRT�Ank nBR ˝ IdH; ƒ.gnk /�

 � "0

8
:

Since dX .BR; X n B2R/ � R > R0 we obtain�Ank\BRT�Ank nB2R � "0

8
and

�Ank nB2RT�Ank\BR � "0

8
:
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Now we cut up the operator �Ank T�Ank as follows:

�Ank T�Ank D �Ank\B2RT�Ank\B2R C �Ank nBR
T�Ank nB2R

C �Ank nB2R
T�Ank\.B2RnBR/

C �Ank\BRT�Ank nB2R
C �Ank nB2R

T�Ank\BR :

Combining the above inequalities with (3.4), we obtainŒ�Ank\B2RT�Ank\B2R ˝ IdH; ƒ.gnk /�
 > "0 � 2 � "0

8
� 2 �

"0

4
D
"0

4
;

which is a contradiction since Ank \B2R is contained in a fixed finite subset B2R and gnk
has . 1

nk
; nk/-variation on Ank \ B2R. Hence we prove the Claim.

Now we continue the proof of Proposition 3.8. Set zA1 WD A1, n1 WD 1 and choose
R1 > R0 such that zA1 � BR1�2. We recursively choose subsets zA1; zA2; : : :, positive
numbers R1 < R2 < � � � and natural numbers n1 < n2 < � � � as follows. Suppose that
zA1; : : : ; zAi�1, R1 < � � � < Ri�1 and n1 < � � � < ni�1 are chosen for i � 2. The Claim

implies that there exists a natural number ni > ni�1 such thatŒ�Ani nBRi�1T�Ani nBRi�1 ˝ IdH; ƒ.gni /�
 > "0

8
:

We take zAi WD Ani n BRi�1 (which is non-empty by the above estimate) and choose
Ri > Ri�1 such that zA1 t � � � t zAi � BRi�2i . In summary, we obtain non-empty sub-
sets ¹ zAiºi2N and functions ygi WD gni j zAi W

zAi ! K.H/1 with . 1
ni
; ni /-variation such thatŒ� zAiT� zAi ˝ IdH; ƒ.ygi /�

 > "0

8
:

Define A WD
F
i2N
zAi and extend each ygi to A by zero on the complement (still

denoted by ygi ). It is clear from the above construction that dX . zAi ; A n zAi / � 2i�1, and
hence ygi has .1

i
; i/-variation on A. Moreover, we haveŒ�AT�A ˝ IdH; ƒ.ygi /�

 > "0

8
:

This is a contradiction to Lemma 3.10. Hence we conclude the proof.

3.3. Coarse invariance of strongly quasi-local algebras

In this subsection, we show that strongly quasi-local algebras are coarse invariants provid-
ed the underlying spaces have bounded geometry. In particular, this implies that strongly
quasi-local algebras are independent of ample modules. The proof follows the outline of
that for Proposition 2.9 but is more involved.
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Proposition 3.11. Let X; Y be discrete metric spaces with bounded geometry and HX ,
HY be ample modules for X and Y , respectively. Let f W X ! Y be a coarse map with a
covering isometry V W HX ! HY . Then V induces the following �-homomorphism

AdV W C �sq.HX /! C �sq.HY /; T 7! V T V �:

Furthermore, the inducedK-theoretic map .AdV /� WK�.C �sq.HX //!K�.C
�
sq.HY // does

not depend on the choice of the covering isometry V , hence denoted by f�.

Proof. We only show that V T V � 2 C �sq.HY / if T 2 C �sq.HX /. The “Furthermore” part
follows almost the same argument as in the case of Roe algebra, hence omitted.

First note that V T V � is locally compact as in Proposition 2.9. To see that V T V � is
strongly quasi-local, we assume that supp.V / � ¹.y; x/ W dY .f .x/; y/ < R0º for some
R0 > 0. Since Y has bounded geometry, there exists N 2 N such thatˇ̌

¹y 2 Y W dY .f .x/; y/ < R0º
ˇ̌
� N

for any x 2 X . Hence we can write (see, e.g., [16, Lemma 12.2.3])

V D W1 CW2 C � � � CWN

where each Wi 2 B.HX ;HY / satisfies supp.Wi / � supp.V /, supp.Wi / \ supp.Wj / is
empty for any j ¤ i , and for any pair .y1; x1/ ¤ .y2; x2/ 2 supp.Wi / we have x1 ¤ x2.
Set M WD max¹kWik W i D 1; : : : ; N º. For later use, we denote

Di WD
®
x 2 X W 9y 2 Y such that .y; x/ 2 supp.Wi /

¯
� X:

It follows that for each i there exists a map ti W Di ! Y such that .y; x/ 2 supp.Wi / if
and only if x 2 Di and y D ti .x/.

It suffices to show that each WiT W �j is strongly quasi-local. Given an " > 0, there
exist ı0; R0 > 0 such that for any ' W X ! K.H/1 with .ı0; R0/-variation, we have

kŒT ˝ IdH; ƒ.'/�k <
"

2M 2
:

Set
ı D min

° "

4M 2kT k
; ı0
±

and R D R0 C �f .R
0/;

where �f is defined in (2.1). For any g W Y ! K.H/1 with .ı;R/-variation and each i , we
construct 'i W X ! K.H/1 as follows:

'i .x/ WD

´
.g ı ti /.x/; if x 2 Di ;

0; otherwise:

It is clear that .ti .x/; x/ 2 supp.Wi / � supp.V / � ¹.y; x/ W dY .f .x/; y/ < R0º for each
i and x 2 Di , which implies that dY .ti .x/; f .x// < R0 � R. Hence we obtain

sup
x2Di

'i .x/ � .g ı f /.x/ � ı;
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which implies that for each i we have

kƒ.'i � g ı f /.W
�
i ˝ IdH/k � ıM and k.Wi ˝ IdH/ƒ.'i � g ı f /k � ıM: (3.5)

On the other hand, direct calculations show that for each i we have

ƒ.g/.Wi ˝ IdH/ D .Wi ˝ IdH/ƒ.'i /

and
.W �i ˝ IdH/ƒ.g/ D ƒ.'i /.W

�
i ˝ IdH/:

Hence we obtainŒ.WiT W �j /˝ IdH; ƒ.g/�


D
�.WiT /˝ IdH

�
ƒ.'j /.W

�
j ˝ IdH/ � .Wi ˝ IdH/ƒ.'i /

�
.T W �j /˝ IdH

�
�
�.WiT /˝ IdH

�
ƒ.g ı f /.W �j ˝ IdH/

� .Wi ˝ IdH/ƒ.g ı f /
�
.T W �j /˝ IdH

�C 2M 2
kT kı

�
.Wi ˝ IdH/ŒT ˝ IdH; ƒ.g ı f /�.W

�
j ˝ IdH/

C "

2
;

where we use (3.5) in the second inequality. Note that g ı f W X ! K.H/1 has .ı0; R0/-
variation. Hence kŒT ˝ IdH; ƒ.g ı f /�k <

"
2M 2 , which impliesŒ.WiT W �j /˝ IdH; ƒ.g/�
 < M 2

�
"

2M 2
C
"

2
D ":

Hence each WiT W �j is strongly quasi-local.

As a direct corollary, we obtain:

Corollary 3.12. Let HX and HY be ample modules for discrete metric spaces X and Y
of bounded geometry, respectively. If X and Y are coarsely equivalent, then the strongly
quasi-local algebra C �sq.HX / is �-isomorphic to C �sq.HY /. In particular, for a discrete
metric space X of bounded geometry the strongly quasi-local algebra C �sq.HX / does
not depend on the chosen ample X -module HX up to �-isomorphisms, hence called the
strongly quasi-local algebra of X and denoted by C �sq.X/.

3.4. The case for sequences of metric spaces

Here we study the strongly quasi-local algebra for a sequence of metric spaces. This is
crucial to analyse the “building blocks” when we prove our main theorem.

Let ¹Xnºn2N be a sequence of finite metric spaces and �n W C0.Xn/! B.Hn/ an
ample module for Xn. Let X be a coarse disjoint union of ¹Xnº and HX WD

L
n Hn.

Since C0.X/ D
L
n C0.Xn/, we can compose �n into a single representation,

� D
M
n

�n W C0.X/!
Y
n

B.Hn/ � B.HX /:

It is clear that � is an ample module for X . In the following, we also regard a sequence
.Tn/n2N 2

Q
n B.Hn/ as a single operator in B.HX /.
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For a locally compact operator T 2B.HX / with finite propagation, it follows directly
from definition that T is block-diagonal up to compact operators. Hence we have the
following decomposition for Roe algebras:

Lemma 3.13. Using the same notation as above, we have

(1) .C �.HX / \
Q
n B.Hn//CK.HX / D C

�.HX /;

(2) .C �.HX / \
Q
n B.Hn// \K.HX / D

L
n C
�.Hn/.

In the case of (strong) quasi-locality, we have similar results as follows. We only need
those concerning strong quasi-locality for later use, while we collect them here for com-
pletion.

Lemma 3.14. Using the same notation as above, we have

(1) .C �q .HX / \
Q
n B.Hn//CK.HX / D C

�
q .HX /;

(2) .C �q .HX / \
Q
n B.Hn// \K.HX / D

L
n C
�
q .Hn/;

(3) .C �sq.HX / \
Q
n B.Hn//CK.HX / D C

�
sq.HX /;

(4) .C �sq.HX / \
Q
n B.Hn// \K.HX / D

L
n C
�
sq.Hn/.

Proof. The proof is different from that for Roe algebras, and we only prove (3) and (4)
since the other two are similar and easier.

For (3): note that K.HX / � C
�
sq.HX /, hence the left-hand side is contained in the right

one. For the converse, it follows from [13, Corollary 4.3] that for any T 2 C �sq.HX / �

C �q .HX / and " > 0, there exists some N 2 N such thatT � � NX
iD1

�Xi

�
T
� NX
iD1

�Xi

�
�

X
i>N

�XiT�Xi

 < ":
Since T is locally compact, then .

PN
iD1 �Xi /T .

PN
iD1 �Xi / is compact. It suffices to show

that
P
i>N �XiT�Xi 2 C

�
sq.HX /. Given " > 0, the strong quasi-locality of T implies that

there exist ı; R > 0 such that for any g W X ! K.H/1 with .ı; R/-variation, we have
kŒT ˝ IdH; ƒ.g/�k < ". Now, for any such g, we haveh�X

i>N

�XiT�Xi

�
˝ IdH; ƒ.g/

i D sup
i>N

Œ.�XiT�Xi /˝ IdH; ƒ.g/�


D sup
i>N

�Xi ŒT ˝ IdH; ƒ.g/��Xi
 < ":

Hence we obtain that
P
i>N �XiT�Xi is strongly quasi-local, which concludes (3).
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For (4): note that C �.Hn/ D C
�
q .Hn/ D C

�
sq.Hn/ D K.Hn/ for each n and hence�

C �sq.HX / \
Y
n

B.Hn/
�
\K.HX / D C

�
sq.HX / \

�Y
n

B.Hn/ \K.HX /
�

D C �sq.HX / \
M
n

K.Hn/ D
M
n

K.Hn/

D

M
n

C �sq.Hn/:

Hence we conclude the proof.

For later use, we introduce the following notion of (strong) quasi-locality for a se-
quence of operators. Note that the definition is nothing but uniform versions of (strong)
quasi-locality.

Definition 3.15. Let ¹Xnºn2N be a sequence of finite metric spaces and �n W C0.Xn/!
B.Hn/ be ample modules. For a sequence .Tn/n2N where Tn 2 B.Hn/, we say that

(1) .Tn/n2N is uniformly quasi-local if for any " > 0 there exists R > 0 such that for
any n 2 N and Cn;Dn � Xn with d.Cn;Dn/ � R, we have k�CnTn�Dnk < ";

(2) .Tn/n2N is uniformly strongly quasi-local if for any " > 0 there exist ı; R > 0

such that for any n 2 N and gn W Xn ! K.H/1 with .ı; R/-variation, we have
kŒTn ˝ IdH; ƒ.gn/�k < ".

Lemma 3.16. Let ¹Xnºn2N be a sequence of finite metric spaces, �n W C0.Xn/!B.Hn/

be ample modules and HX WD
L
n Hn. For a sequence .Tn/n2N 2

Q
n K.Hn/, we have

(1) .Tn/ 2 C �q .HX / if and only if .Tn/ is uniformly quasi-local;

(2) .Tn/ 2 C �sq.HX / if and only if .Tn/ is uniformly strongly quasi-local.

Hence, if .Tn/ is uniformly strongly quasi-local, then it is uniformly quasi-local.

The proof is straightforward, hence omitted.
Analogous to the coarse invariance of Roe algebras, we have the following result con-

cerning sequences of spaces. The proof is similar, hence omitted.

Proposition 3.17. Let ¹Xnºn2N be a sequence of finite metric spaces with uniformly
bounded geometry, and �n W C0.Xn/! B.Hn/ be an ample module for Xn. Let X be
a coarse disjoint union of ¹Xnº and HX WD

L
nHn. Then theK-theoriesK�.C �.HX /\Q

nB.Hn//,K�.C �q .HX / \
Q
n B.Hn// andK�.C �sq.HX /\

Q
nB.Hn// are independ-

ent of �n up to canonical isomorphisms.

4. The coarse Mayer–Vietoris sequence

The tool of Mayer–Vietoris sequences is widely used within different area of mathematics,
especially in algebraic topology. It provides a “cutting and pasting” procedure, which
allows us to obtain global information from local pieces.
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In coarse geometry, Higson, Roe and Yu introduced a coarse Mayer–Vietoris sequence
for K-theories of Roe algebras associated to a suitable decomposition of the underlying
metric space in [3]. More precisely, recall that a closed cover .A; B/ of a metric space X
is said to be !-excisive if for each r > 0 there is some s > 0 such that Nr .A/\Nr .B/ �

Ns.A \ B/. Associated to an !-excisive closed cover .A; B/ of a metric space X , we
have the following short exact sequence (called the coarse Mayer–Vietoris sequence):

K0.C
�.A \ B// K0.C

�.A//˚K0.C
�.B// K0.C

�.X//

K1.C
�.X// K1.C

�.A//˚K1.C
�.B// K1.C

�.A \ B//:

In this section, we explore a coarse Mayer–Vietoris sequence for strongly quasi-local
algebras and use it to reduce the proof of Theorem B to the case of “sparse” spaces. Let
X be a discrete metric space with bounded geometry and HX be an ample X -module.

Definition 4.1. Let A be a (closed) subset of X . Denote by C �sq.A; X/ the norm-closure
of the set of all operators T 2 C �sq.HX / with support contained in NR.A/ � NR.A/ for
some R � 0.

Lemma 4.2. C �sq.A;X/ is a closed two-sided �-ideal in C �sq.HX /.

Proof. It suffices to show that for T; S 2 C �sq.HX / with supp.T / � NR.A/ �NR.A/ for
some R � 0, then TS and ST belong to C �sq.A; X/. By Proposition 3.6 (1), we know
that S 2 C �q .HX /. Hence for any " > 0, there exists R0 > 0 such that S has . "

kT k
; R0/-

propagation. It follows that

kTS � �NR.A/TS�NRCR0
.A/k D k�NR.A/T .�NR.A/S � �NR.A/S�NRCR0

.A//k < ":

Hence, by definition, we obtain that TS 2 C �sq.A; X/. A similar argument shows that
ST 2 C �sq.A;X/ as well, which concludes the proof.

Based on a similar argument as in the proof of [3, Section 5/Lemma 1] together with
Corollary 3.12, we have the following:

Lemma 4.3. For a (closed) subset A � X , take an isometry V covering the inclusion
i W A ,! X . Then the range of AdV W C �sq.A/! C �sq.X/ is contained in C �sq.A; X/. Fur-
thermore, the map i� W K�.C �sq.A//! K�.C

�
sq.A;X// is an isomorphism.

We also have the following result analogous to [3, Section 5/Lemma 2]:

Lemma 4.4. Let .A;B/ be an !-excisive (closed) cover of X , then we have

C �sq.A;X/C C
�
sq.B;X/ D C

�
sq.X/

and
C �sq.A;X/ \ C

�
sq.B;X/ D C

�
sq.A \ B;X/:
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Proof. Given T 2 C �sq.X/ and " > 0, it follows from Proposition 3.6 (1) that there exists
R>0 such that T has .";R/-propagation. Note that T D�AT C�BnAT sinceA[BDX ,
then T is 2"-close to �AT�NR.A/ C �BnAT�NR.BnA/. Hence we obtain that C �sq.A;X/C

C �sq.B; X/ is dense in C �sq.X/. It follows from a standard argument in C �-algebras (e.g.,
[3, Section 3/Lemma 1]) that C �sq.A;X/C C

�
sq.B;X/ D C

�
sq.X/.

Concerning the second equation, we only need to show that C �sq.A; X/C
�
sq.B; X/ �

C �sq.A \ B; X/. Fix T; S 2 C �sq.X/ with supp.T / � NR.A/ � NR.A/ and supp.S/ �
NR.B/�NR.B/ for some R > 0. The assumption of !-excision implies that there exists
an L > 0 such that NR.A/\NR.B/�NL.A\B/. Hence we have TS D T�NL.A\B/S .
For any " > 0 there exists an L0 > 0 such that T has . "

kSk
; L0/-propagation and S has

. "
kT k

; L0/-propagation. Hence we have

kTS � �NLCL0 .A\B/
TS�NLCL0 .A\B/

k � 2":

Therefore we obtain that TS 2 C �sq.A \ B;X/, which concludes the proof.

Applying the Mayer–Vietoris sequence in K-theory for C �-algebras (see [3, Sec-
tion 3]) to the ideals C �sq.A; X/, C

�
sq.B; X/ in C �sq.X/ and combining with Lemma 4.3

and Lemma 4.4, we obtain the following coarse Mayer–Vietoris principle for strongly
quasi-local algebras:

Proposition 4.5. Let .A;B/ be a (closed) !-excisive cover of X . Then there is a six-term
exact sequence

K0.C
�
sq.A \ B// K0.C

�
sq.A//˚K0.C

�
sq.B// K0.C

�
sq.X//

K1.C
�
sq.X// K1.C

�
sq.A//˚K1.C

�
sq.B// K1.C

�
sq.A \ B//:

For future use, we record that the same argument can be applied to obtain the Mayer–
Vietoris principle for quasi-local algebras as follows. However, this will not be used in
this paper.

Proposition 4.6. Let .A;B/ be a (closed) !-excisive cover of X . Then there is a six-term
exact sequence

K0.C
�
q .A \ B// K0.C

�
q .A//˚K0.C

�
q .B// K0.C

�
q .X//

K1.C
�
q .X// K1.C

�
q .A//˚K1.C

�
q .B// K1.C

�
q .A \ B//:

Now we use Proposition 4.5 to reduce the proof of Theorem B to the case of block-
diagonal operators.
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Lemma 4.7. To prove Theorem B for all bounded geometry metric spaces that coarsely
embed into a Hilbert space, it suffices to prove that for any sequence of finite metric spaces
¹Ynº

1
nD1 which has uniformly bounded geometry and uniformly coarsely embeds into a

Hilbert space, the inclusion C �.HY / \
Q
n B.Hn/ ,! C �sq.HY / \

Q
n B.Hn/ induces

isomorphisms in K-theory where Hn is an ample Yn-module, HY is their direct sum and
Y is a coarse disjoint union of ¹Ynº.

Proof. Lemma 3.13 and 3.14 imply that

C �.HY /

K.HY /
Š
C �.HY / \

Q
n B.Hn/L

n C
�.Hn/

and
C �sq.HY /

K.HY /
Š
C �sq.HY / \

Q
n B.Hn/L

n C
�
sq.Hn/

:

Since C �.Hn/ D C
�
sq.Hn/ for each n, we obtain the following commutative diagram:

� � � K�
�L

n C
�.Hn/

�
K�.C

�.HY / \
Q
n B.Hn// K�.C

�.HY /=K.HY // � � �

� � � K�
�L

n C
�
sq.Hn/

�
K�.C

�
sq.HY / \

Q
n B.Hn// K�.C

�
sq.HY /=K.HY // � � � :

Hence, the right vertical map is an isomorphism from the assumption and the Five Lemma.
Now consider the following commutative diagram:

� � � K�.K.HY // K�.C
�.HY // K�.C

�.HY /=K.HY // � � �

� � � K�.K.HY // K�.C
�
sq.HY // K�.C

�
sq.HY /=K.HY // � � � ;

we obtain that K�.C �.HY //! K�.C
�
sq.HY // is an isomorphism by the Five Lemma.

Now for a metric space X satisfying the assumption, we follow the argument in [16,
Lemma 12.5.3]. Fix a basepoint x0 2 X and for each n 2 N [ ¹0º, we set

Xn WD
®
x 2 X W n3 � n � dX .x; x0/ � .nC 1/

3
C .nC 1/

¯
:

Let A WD
F
nWevenXn and B WD

F
nWoddXn. It is obvious that .A;B/ is an !-excisive cover

ofX . Applying the coarse Mayer–Vietoris sequences for the associated Roe algebras ([3])
and strongly quasi-local algebras (Proposition 4.5), we obtain the following commutative
diagram:

� � � K�.C
�.A \ B// K�.C

�.A//˚K�.C
�.B// K�.C

�.X// � � �

� � � K�.C
�
sq.A \ B// K�.C

�
sq.A//˚K�.C

�
sq.B// K�.C

�
sq.X// � � � :

The left and middle vertical maps are isomorphisms according to the previous paragraph,
hence we conclude the proof by the Five Lemma again.
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5. Twisted strongly quasi-local algebras

In this section, we recall the Bott–Dirac operators which will be used in the next section
to construct index maps. We also recall the notion of twisted Roe algebras from [16, Sec-
tion 12.3] (originally in [19, Section 5]) and introduce their strongly quasi-local analogue.

5.1. The Bott–Dirac operators on Euclidean spaces

Let us start by recalling some elementary properties of the Bott–Dirac operators. Here we
only list necessary notions and facts, while guide readers to [16, Section 12.1] for details.

Let E be a real Hilbert space (also called a Euclidean space) with even dimension
d 2 N. The Clifford algebra of E, denoted by CliffC.E/, is the universal unital complex
algebra containing E as a real subspace and subject to the multiplicative relations x � x D
kxk2E for all x 2 E. It is natural to treat CliffC.E/ as a graded Hilbert space (see for
example [16, Example E.2.12]), and in this case we denote it by HE .

Denote L2
E the graded Hilbert space of square integrable functions from E to HE

where the grading is inherited from HE , and denote �E the dense subspace consisting of
Schwartz class functions from E to HE . Fix an orthonormal basis ¹e1; : : : ; ed º of E and
let x1; : : : ; xd W E! R be the corresponding coordinates. Recall that the Bott operator C
and the Dirac operator D are unbounded operators on L2

E with domain �E defined as

.Cu/.x/ D x � u.x/ and .Du/.x/ D

dX
iD1

yei �
@u

@xi
.x/

for u 2 �E and x 2 E, where yei W CliffC.E/! CliffC.E/ is the operator determined by
yei .w/ D .�1/

@ww � ei for any homogeneous element w 2 CliffC.E/.

Definition 5.1. The Bott–Dirac operator is the unbounded operator B WDD C C on L2
E

with domain �E .

Given x 2 E, recall that the left Clifford multiplication operator associated to x is
the bounded operator cx on L2

E defined as the left Clifford multiplication by the fixed
vector x, and the translation operator associated to x is the unitary operator Vx on L2

E

defined by .Vxu/.y/ WD u.y � x/. Given s 2 Œ1;1/, recall that the shrinking operator
associated to s is the unitary operator Ss on L2

E defined by .Ssu/.y/ WD s�d=2u.sy/.

Definition 5.2. For s 2 Œ1;1/ and x 2 E, the Bott–Dirac operator associated to .x; s/ is
the unbounded operator Bs;x WD s�1D C C � cx on L2

E with domain �E .

Note that B1;0 D B and Bs;x D s�1=2 VxSpsBS
�p
s
V �x . It is also known that for each

s 2 Œ1;1/ and x 2 E, the operator Bs;x is unbounded, odd, essentially self-adjoint and
maps �E to itself (see, e.g., [16, Corollary 12.1.4]).

Definition 5.3. Let s 2 Œ1;1/, x 2 E and Bs;x be the Bott–Dirac operator associated
to .x; s/. Define a bounded operator on L2

E by

Fs;x WD Bs;x.1C B
2
s;x/
�1=2:
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We list several important properties of the operator Fs;x . For simplicity, we denote
�x;R WD �B.xIR/ for x 2 E and R � 0.

Proposition 5.4 ([16, Proposition 12.1.10]). For each " > 0 there exists an odd function
‰ W R! Œ�1; 1� with ‰.t/! 1 as t !C1, satisfying the following:

(1) For all s 2 Œ1;1/ and x 2 E, we have kFs;x �‰.Bs;x/k < ".

(2) There exists R0 > 0 such that for all s 2 Œ1;1/ and x 2 E, we have

prop.‰.Bs;x// � s�1R0:

(3) For all s 2 Œ1;1/ and x 2 E, ‰.Bs;x/2 � 1 is compact.

(4) For all s 2 Œ1;1/ and x; y 2 E, ‰.Bs;x/ �‰.Bs;y/ is compact.

(5) For all s 2 Œ1;1/ and x; y 2 E, kFs;x � Fs;yk � 3kx � ykE . And there exists
c > 0 such that for all s 2 Œ1;1/ and x; y 2 E, we have

k‰.Bs;x/ �‰.Bs;y/k � ckx � ykE :

(6) For all x 2 E, the function

Œ1;1/! B.L2
E /; s 7! ‰.Bs;x/

is strong-� continuous.

(7) The family of functions

Œ1;1/! B.L2
E /; s 7! ‰.Bs;x/

2
� 1

is norm equi-continuous as x varies overE and s varies over any fixed compact
subset of Œ1;1/.

(8) For any r � 0, the family of functions

Œ1;1/! B.L2
E /; s 7! ‰.Bs;x/ �‰.Bs;y/

is norm equi-continuous as .x; y/ varies over the elements of E � E with
jx � yj � r , and s varies over any fixed compact subset of Œ1;1/.

(9) For any "1 > 0, there existsR1 > 0 such that for allR �R1, s � 2d and x 2E,
we have

k.‰.Bs;x/
2
� 1/.1 � �x;R/k < "1:

(10) For any "2 > 0, r > 0 there exists R2 > 0 such that for all R � R2, s � 2d and
x; y 2 E with kx � ykE � r , we have

k.‰.Bs;x/ �‰.Bs;y//.1 � �x;R/k < "2:

Moreover, we can require the function ‰, the constants R0 in (2), c in (5), R1 in (9) and
R2 in (10) are independent of the dimension d of the Euclidean space E.

Remark 5.5. Note that statements (9) and (10) above are slightly stronger than those in
[16, Proposition 12.1.10]. For completeness, we give the proofs in Appendix A.
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5.2. Twisted Roe and strongly quasi-local algebras

Thanks to Lemma 4.7, we only focus on sequences of finite metric spaces with uniformly
bounded geometry.

We fix some notation first. Let ¹Xnºn2N be a sequence of finite metric spaces with
uniformly bounded geometry which admits a uniformly coarse embedding into Euclidean
spaces ¹fn W Xn! Enº where each En is a Euclidean space of even dimension dn. Let X
be a coarse disjoint union of ¹Xnº and denote E WD ¹Enºn2N .

Recall that H is a fixed infinite-dimensional separable Hilbert space. Denote Hn WD

`2.Xn/ ˝H, which is an ample Xn-module under the amplified multiplication repres-
entation. Denote Hn;En WD Hn ˝L2

En
, which is both an ample Xn-module and an ample

En-module similarly. Also define HX WD
L
n Hn and HX;E WD

L
nHn;En , both of which

are ample X -modules. For Tn 2 B.Hn;En/, write propXn.Tn/ and propEn.Tn/ for the
propagation of Tn with respect to the Xn-module structure and the En-module structure,
respectively. From Definition 2.6 and Definition 3.4, we form the Roe algebrasC �.Hn;En/

of Xn and C �.HX;E / of X , and the strongly quasi-local algebras C �sq.Hn;En/ of Xn and
C �sq.HX;E / of X .

To introduce the twisted Roe and strongly quasi-local algebras, we need an extra con-
struction from [16, Definition 12.3.1] which involves the information of the uniformly
coarse embedding as follows:

Definition 5.6. Given n 2 N and T 2 B.L2
En
/, we define a bounded operator T V on

Hn;En D `
2.Xn/˝H˝L2

En
by the formula

T V W ıx ˝ � ˝ u 7! ıx ˝ � ˝ Vfn.x/T V
�
fn.x/

u;

for x 2 Xn, � 2 H and u 2 L2
En

, where fn is the uniformly coarse embedding and Vfn.x/
is the translation operator defined in Section 5.1.

For each n, decompose Hn D
L
x2Xn

Hn;x where Hn;x WD �¹xºHn for x 2 Xn and
Hn;En D

L
x2Xn

Hn;x ˝L2
En

. Hence T 2 B.Hn;En/ can be considered as an Xn-by-
Xn matrix operator .Tx;y/x;y2Xn where Tx;y is a bounded operator from Hn;y ˝L2

En
to

Hn;x ˝L2
En

. It is clear that for T 2 B.L2
En
/ we have

T Vx;y D

´
IdH ˝ Vfn.x/T V

�
fn.x/

; y D x;

0; otherwise:

Hence T V is a block-diagonal operator with respect to the above decomposition.
Now we introduce the following twisted Roe algebras from [16, Section 12.6].

Definition 5.7. Let
Q
n2N Cb.Œ1;1/;K.Hn;En// denote the product C �-algebra of all

bounded continuous functions from Œ1;1/ to K.Hn;En/ with supremum norm. Write
elements of this C �-algebra as a collection .Tn;s/n2N;s2Œ1;1/ for Tn;s 2K.Hn;En/, whose
norm is

k.Tn;s/k D sup
n2N;
s2Œ1;1/

kTn;skB.Hn;En /
:
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Let A.X IE/ denote the �-algebra of
Q
n2N Cb.Œ1;1/;K.Hn;En// consisting of elements

satisfying the following conditions:

(1) sups2Œ1;1/;n2N propXn.Tn;s/ <1;

(2) lims!1 supn2N propEn.Tn;s/ D 0;

(3) further,

lim
R!1

sup
s2Œ1;1/;
n2N

k�V0;RTn;s � Tn;sk D lim
R!1

sup
s2Œ1;1/;
n2N

kTn;s�
V
0;R � Tn;sk D 0:

The twisted Roe algebra A.X IE/ of ¹Xnºn2N is defined to be the norm-closure of
A.X IE/ in

Q
n2N Cb.Œ1;1/;K.Hn;En//.

Remark 5.8. The above definition appears different to [16, Definition 12.6.2], while it
coincides with the case of r D 0 therein. To see this, note that each Xn is finite hence
C �.Hn;En/DK.Hn;En/ for n 2N. Then the following lemma shows that we can recover
condition (4) in [16, Definition 12.6.2].

Lemma 5.9. Given n 2 N and a compact operator T 2 K.Hn;En/, we have

lim
i2I
kpVi T � T k D lim

i2I
kTpVi � T k D 0

where ¹piºi2I is the net of finite rank projections on L2
En

.

Proof. Given " > 0, it suffices to find a finite rank projection p 2 B.L2
En
/ such that

kpV T � T k < ". Replacing T by its adjoint T �, we obtain the other equality as well.
Since T is compact, there exists a finite rank projection P 2 B.Hn;En/ such that

kPT �T k< "
2

. Moreover, we can assume that the image ofP is contained in the subspace
spanned by the finite set®

ıx ˝ �i ˝ uj W x 2 Xn; �i 2 H; uj 2 L2
E for i; j D 1; 2; : : : ; N

¯
:

Hence for each x 2 Xn, there exists a finite rank projection qx 2 B.L2
En
/ such that

P �
X
x2Xn

px ˝ IdH ˝ qx ;

where px is the orthogonal projection onto Cıx � `2.Xn/. Take an arbitrary finite rank
projection p 2 B.L2

En
/ with p � V �

fn.x/
qxVfn.x/ for each x 2 Xn. Then we have

pV D
X
x2Xn

px ˝ IdH ˝ Vfn.x/pV
�
fn.x/

�

X
x2Xn

px ˝ IdH ˝ qx � P:

This implies that pVP D P . Hence we obtain

kpV T � T k � kpV T � pVPT k C kPT � T k � 2kPT � T k < ";

which concludes the proof.
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Definition 5.10. Let
Q
n2N Cb.Œ1;1/;K.Hn;En// denote the product C �-algebra of all

bounded continuous functions from Œ1;1/ to K.Hn;En/ with supremum norm. Write
elements of this C �-algebra as a collection .Tn;s/n2N;s2Œ1;1/ for Tn;s 2K.Hn;En/, whose
norm is

k.Tn;s/k D sup
n2N;s2Œ1;1/

kTn;skB.Hn;En /
:

Let Asq.X IE/ denote the �-algebra of
Q
n2N Cb.Œ1;1/;K.Hn;En// consisting of ele-

ments satisfying the following conditions:

(1) For any " > 0, there exists ı; R > 0 such that for any n 2 N; s 2 Œ1;1/ and
gn WXn!K.H/1 with .ı;R/-variation we have kŒTn;s ˝ IdH;ƒHn;En

.gn/�k< ",
where H is the fixed Hilbert space and ƒ is from (3.1).

(2) lims!1 supn2N propEn.Tn;s/ D 0.

(3) For any " > 0, there exists R0 > 0 such that for each n, Cn � Xn and Borel
set Dn � En with dEn.fn.Cn/; Dn/ � R

0 we have k�CnTn;s�Dnk < " and also
k�DnTn;s�Cnk < " for all s 2 Œ1;1/.

The twisted strongly quasi-local algebraAsq.X IE/ of ¹Xnºn2N is defined to be the norm-
closure of Asq.X IE/ in

Q
n2N Cb.Œ1;1/;K.Hn;En//.

Remark 5.11. We provide some explanation on condition (3) in Definition 5.10. Recall
that Hn;En is both an Xn-module and an En-module, so we can consider the .Xn � En/-
support of a given operator T 2 B.Hn;En/ defined as

suppXn�En.T / WD
®
.x; v/ 2 Xn �En W �¹xºT�U ¤ 0 for all neighbourhoods U of v

¯
:

We define the associated .Xn �En/-propagation of T to be

propXn;En.T / WD sup
®
kfn.x/ � vkEn W .x; v/ 2 suppXn�En.T /

¯
:

For .Tn;s/ 2
Q
n2N Cb.Œ1;1/;K.Hn;En//, we say that .Tn;s/ has uniformly finite

.Xn � En/-propagation if supn2N;s2Œ1;1/ propXn;En.Tn;s/ is finite, and say that .Tn;s/ is
uniformly .Xn �En/-quasi-local if for any " > 0 there exists R > 0 such that for each n,
Cn�Xn and Borel setDn�En withCn �Dn�

®
.x;v/2Xn �En W kfn.x/� vkE �R

¯
,

we have k�CnTn;s�Dnk < " for all s 2 Œ1;1/. It is clear that limits of uniformly finite
.Xn �En/-propagation operators are uniformly .Xn �En/-quasi-local. Note that Defini-
tion 5.10 (3) says that Tn;s and T �n;s are both uniformly .Xn �En/-quasi-local.

Lemma 5.12. We have A.X IE/ � Asq.X IE/ �
Q
n2N Cb.Œ1;1/;K.Hn;En//.

Proof. Given T D .Tn;s/n2N;s2Œ1;1/ 2 A.X IE/, condition (1) in Definition 5.10 fol-
lows from Proposition 3.6 and Lemma 3.16. We only need to check condition (3). Note
that Definition 5.7 (3) tells us that Tn;s�V0;R ! Tn;s and T �n;s�

V
0;R ! T �n;s (equivalent to

�V0;RTn;s ! Tn;s) uniformly, hence Remark 5.11 implies that it suffices to show that for
any R > 0, Tn;s�V0;R and T �n;s�

V
0;R both have uniformly finite .Xn � En/-propagation for
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all n 2 N and s 2 Œ1;1/. Now Definition 5.7 (1) implies that there exists an M > 0

such that propXn.Tn;s/ �M and propXn.T
�
n;s/ �M for all n 2 N and s 2 Œ1;1/. Since

¹fn W Xn ! Enºn2N is a uniformly coarse embedding, there exists some �C W RC! RC

such that kfn.x/� fn.y/kEn � �C.dXn.x;y// for all n 2N and x;y 2Xn. It follows dir-
ectly from definition that propXn;En.Tn;s�

V
0;R/� �C.M/CR and propXn;En.T

�
n;s�

V
0;R/�

�C.M/CR for all n 2 N and s 2 Œ1;1/.

Finally, we introduce the following operators:

Definition 5.13 ([16, Section 12.3 and 12.6]). For each n 2 N, s 2 Œ1;1/ and x 2 En,
Definition 5.3 provides a bounded operatorFs;x 2B.L2

En
/, also denoted byFn;s;x . Apply-

ing Definition 5.6, we obtain an operator Fn;s WD F Vn;sC2dn;0 in B.Hn;En/ where dn is the
dimension of En. Let Fs be the block diagonal operator in

Q
n B.Hn;En/ � B.HX;E /

defined by Fs WD .F Vn;sC2dn;0/n. Finally, we define F to be an element inY
n

B.L2.Œ1;1/IHn;En// � B.L2.Œ1;1/IHX;E //

defined by .F.u//.s/ WD Fsu.s/.
Similarly, given " > 0 let‰ be a function as in Proposition 5.4 and F‰s be the bounded

diagonal operator on HX;E defined by F‰s WD .F
‰
n;s/n where F‰n;s D ‰.Bn;sC2dn;0/

V .
Let F‰ be the bounded operator on

L
n L

2.Œ1;1/;Hn;En/ defined by .F‰.u//.s/ WD
F‰s u.s/.

6. The index map

Recall that in [16, Section 12.3 and 12.6], Willett and Yu construct an index map (with
notation as in Section 5.2),

IndF W K�
�
C �.HX / \

Y
n

B.Hn/
�
! K�.A.X IE//;

where F is the operator in Definition 5.13. They use IndF to transfer K-theoretic inform-
ation from Roe algebras to their twisted counterparts, which allows them to reprove the
coarse Baum–Connes conjecture via local isomorphisms. More precisely, they prove the
following:

Proposition 6.1 ([16, Proposition 12.6.3]). With notation as in Section 5.2, for each s 2
Œ1;1/ the composition

K�

�
C �.HX / \

Y
n

B.Hn/
� IndF
���! K�.A.X IE//

�s�
�! K�

�
C �.HX;E / \

Y
n

B.Hn;En/
�

is an isomorphism, where �s W A.X IE/! C �.HY;E / is the evaluation map at s.
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In this section, we construct index maps in the strongly quasi-local setting and prove
similar results. This allows us to prove certain isomorphisms in K-theory to attack The-
orem B later. We follow the procedure in [16, Section 12.3], while more technical analysis
is required.

We follow the same notation as in Section 5.2. Let ¹Xnºn2N be a sequence of finite
metric spaces with uniformly bounded geometry which admits a uniformly coarse embed-
ding into Euclidean spaces ¹fn W Xn ! Enº where each En is a Euclidean space of even
dimension dn.

Let us start with several lemmas to analyse relations between the operator F from
Definition 5.13 and the twisted strongly quasi-local algebra Asq.X IE/. Here we remind
the reader that for any element .Tn;s/ in Definition 5.7 and 5.10, we only require the
continuity of Tn;s for each (not uniformly with respect to) n 2 N.

Lemma 6.2. The operator F is a self-adjoint, norm one, odd operator in the multiplier
algebra of Asq.X IE/.

Proof. The operator F is self-adjoint, norm one and odd since each Fn;s;x is. Given " > 0,
let ‰ W R! Œ�1; 1� be a function as in Proposition 5.4 for this ". Then Proposition 5.4 (1)
implies

kF � F‰k � sup
n2N;s2Œ1;1/

kF Vn;s;0 �‰.Bn;s;0/
V
k

� sup
n2N;s2Œ1;1/

sup
x2Xn

kFn;s;fn.x/ �‰.Bn;s;fn.x//k � ":

Hence it suffices to show that .Tn;s/F‰ D .Tn;sF
‰
n;s/ belongs to Asq.X I E/ for any

.Tn;s/ 2 Asq.X IE/.
First it follows from [16, Lemma 12.3.5] that for each n 2 N, the map s 7! Tn;sF

‰
n;s

is norm-continuous. Now we verify conditions (1)–(3) in Definition 5.10 for .Tn;sF‰n;s/.
Note that condition (2) follows directly from Proposition 5.4 (2), and (3) holds since
propEn.F

‰
n;s/ are uniformly finite for all n 2 N and s 2 Œ1;1/. For condition (1), note

that for any n 2 N, s 2 Œ1;1/ and g W Xn ! K.H/1, we have�
F‰n;s ˝ IdH

�
�ƒ.g/ D ƒ.g/ �

�
F‰n;s ˝ IdH

�
:

Hence we obtainŒ.Tn;sF‰n;s/˝ IdH; ƒ.g/�
 D �ŒTn;s ˝ IdH; ƒ.g/�

�
�
�
F‰n;s ˝ IdH

�
�
ŒTn;s ˝ IdH; ƒ.g/�

;
which concludes the proof.

Lemma 6.3. Considered as represented onL2.Œ1;1//˝HX;E via amplification of iden-
tity, C �sq.HX / \

Q
n B.Hn/ is a subalgebra of the multiplier algebra of Asq.X IE/.
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Proof. It suffices to show that .SnTn;s/ 2 Asq.X IE/ for any .Tn;s/ 2 Asq.X IE/ and
.Sn/ 2 C

�
sq.HX / \

Q
n B.Hn/.3 It is clear that the map s 7! SnTn;s is norm-continuous

and bounded for each n 2 N.
Now we verify conditions (1)–(3) in Definition 5.10 for s 7! .SnTn;s/. First note that

for any n 2 N, s 2 Œ1;1/ and g W Xn ! K.H/1 we haveŒSn ˝ IdL2
En
˝ IdH; ƒHn;En

.g/�
 D ŒSn ˝ IdH; ƒHn

.g/�
: (6.1)

Hence condition (1) follows from direct calculations together with Lemma 3.16.
Condition (2) follows from the fact that each Sn ˝ IdL2

En
has zero En-propagation.

Now we check condition (3). Given " > 0, it follows from .Sn/ 2 C
�
sq.HX / � C

�
q .HX /

that there exists R1 > 0 such that Sn has . "
2k.Tn;s/k

; R1/-propagation for all n 2 N. On
the other hand, there exists R2 > 0 such that for any n 2 N, s 2 Œ1;1/, Cn � Xn and
Borel set Dn � En with dEn.fn.Cn/; Dn/ � R2 we have k�CnTn;s�Dnk <

"
2k.Sn/k

and
k�DnTn;s�Cnk<

"
2k.Sn/k

. Now letRD �C.R1/CR2 where �C comes from the uniformly
coarse embedding ¹fn W Xn ! Enº. For any n 2 N, C 0n � Xn and Borel set D0n � En
with dEn.fn.C

0
n/; D

0
n/ � R we have fn.NR1.C

0
n// � N�C.R1/.fn.C

0
n//, which implies

that dEn.fn.NR1.C
0
n//;D

0
n/ � R2. Therefore, we obtain

k�C 0nSnTn;s�D0nk � k�C 0nSnTn;s�D0n � �C 0nSn�NR1
.C 0n/

Tn;s�D0nk

C k�C 0nSn�NR1
.C 0n/

Tn;s�D0nk

� k�C 0nSn�.NR1
.C 0n//c

k � kTn;sk C kSnk � k�NR1
.C 0n/

Tn;s�D0nk

<
"

2k.Tn;s/k
� k.Tn;s/k C k.Sn/k �

"

2k.Sn/k
D "

for all s 2 Œ1;1/. On the other hand, we have

k�D0nSnTn;s�C 0nk D kSn�D0nTn;s�C 0nk � kSnk � k�D0nTn;s�C 0nk < "

for all s 2 Œ1;1/. So we finish the proof.

Regarding C �sq.HX / \
Q
n B.Hn/ as a subalgebra in B.L2.Œ1;1// ˝ HX;E / as in

Lemma 6.3, we have the following:

Lemma 6.4. For any .Sn/ 2 C �sq.HX / \
Q
n B.Hn/, we have Œ.Sn/; F � 2 Asq.X IE/.

Proof. From Proposition 5.4 (1), it suffices to show that the map

s 7! Œ.Sn/; F
‰
s � D Œ.Sn/; .‰.Bn;sC2dn;0/

V /�

belongs to Asq.X IE/ for any ‰ as in Proposition 5.4, i.e., to verify conditions (1)–(3) in
Definition 5.10.

3To be more precise, .SnTn;s/ stands for ..Sn ˝ IdL2
En
/ � Tn;s/.
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First note that for any n 2 N, s 2 Œ1;1/ and g W Xn ! K.H/1 we have�
ŒSn; ‰.Bn;sC2dn;0/

V �˝ IdH; ƒHn;En
.g/
�

D ŒSn ˝ IdL2
En
˝ IdH; ƒHn;En

.g/�‰.Bn;sC2dn;0/
V

C‰.Bn;sC2dn;0/
V ŒƒHn;En

.g/; Sn ˝ IdL2
En
˝ IdH�;

which has norm at most 2kŒSn ˝ IdH; ƒHn
.g/�k according to (6.1). Hence we conclude

condition (1) from the strong quasi-locality of .Sn/. Condition (2) follows from Proposi-
tion 5.4 (2) and the fact that Sn has zero En-propagation.

To check condition (3), we fix an " > 0. It follows from Proposition 3.8 that there
exist ı0; R0 > 0 such that for any n 2 N, A � Xn and g W A ! K.H/1 with .ı0; R0/-
variation we have

Œ�ASn�A ˝ IdH; ƒ.g/�
 < "

4
. Moreover, since C �sq.HX / � C

�
q .HX /,

we assume that .Sn/ has . "
4
; R0/-propagation. Denote by �C the parameter function from

the uniformly coarse embedding ¹fn W Xn ! Enº.
By Proposition 5.4 (10), there exists R00 > 0 such that for all n 2 N, s � 2dn and

x; y 2 En with kx � ykEn � �C.R
0/ we have

k.‰.Bn;s;x/ �‰.Bn;s;y//.1 � �B.x;R00//k < ı
0:

Set R D R00 C �C.R0/. For any n 2 N, s 2 Œ1;1/, C � Xn and Borel set D � En with
dEn.fn.C /;D/ � R, we are going to estimate the norm k�C ŒSn; F‰n;s��Dk.

Denote C 0 WD NR0.C / � Xn. Since .Sn/ has . "
4
; R0/-propagation, we obtain�C ŒSn; F‰s ��D < 2 � "4 C �C Œ�C 0Sn�C 0 ; F‰s �D�: (6.2)

Consider the function

g W Xn ! B.L2
En
/1 by x 7! ‰.Bn;sC2dn;fn.x//�D :

Proposition 5.4 (4) implies that g.x/� g.y/ 2 K.L2
En
/ for any x; y 2 Xn. Moreover, we

claim that g has .ı0;R0/-variation on C 0. In fact, for any x;y 2 C 0 with dXn.x;y/ < R
0 we

have kfn.x/� fn.y/kEn � �C.R
0/. Note that dEn.fn.C /;D/�R and x 2C 0DNR0.C /,

hence D � En n B.fn.x/; R00/. Therefore, by the choice of R00 above, we obtain that g
has .ı0; R0/-variation on C 0.

Finally, note that each L2
En

is separable and infinite-dimensional, hence isomorphic to
the fixed Hilbert space H. Fixing an x0 2 Xn, we define yg W Xn ! K.L2

En
/1 by yg.x/ WD

g.x/�g.x0/
2

. It follows from the above analysis that yg has .ı0; R0/-variation on C 0. Hence
by the choice of ı0; R0 at the beginning, we obtain that

Œ�C 0Sn�C 0 ; F
‰
s �D� D

�
.�C 0Sn�C 0/˝ IdL2

En
; 2ƒHn

.yg/
�

has norm at most "
2

. Combining with (6.2), we obtain�C ŒSn; F‰s ��D < 2 � "4 C �C Œ�C 0Sn�C 0 ; F‰s �D� � "

2
C
"

2
D ":

Similarly, we have k�DŒSn; F‰n;s��C k < ". Hence we conclude the proof.
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Lemma 6.5. For any projection .pn/ 2 C �sq.HX / \
Q
n B.Hn/, the function

s 7! ..pn/Fs.pn//
2
� .pn/

is in .pn/Asq.X IE/.pn/.

Proof. From Lemma 6.4, it suffices to show that the function s 7! .pn/F
2
s � .pn/ is in

Asq.X IE/. Moreover, we only need to show that the function

s 7! .pn/.F
‰
n;s/

2
� .pn/ D .pn.‰.Bn;sC2dn;0/

V /2/ � .pn/

is in Asq.X IE/ for any ‰ as in Proposition 5.4. For n 2 N, it follows from Proposi-
tion 5.4 (7) that the function s 7! pn.F

‰
n;s/

2 � pn is bounded and continuous.
Now we verify conditions (1)–(3) in Definition 5.10. First note that for any n 2 N,

s 2 Œ1;1/ and g W Xn ! K.H/1 we have�
.pn.‰.Bn;sC2dn;0/

V /2 � pn/˝ IdH; ƒHn;En
.g/
�

D
�
pn ˝ IdL2

En
˝ IdH; ƒHn;En

.g/
�
�
�
.‰.Bn;sC2dn;0/

V /2 ˝ IdH
�

�
�
pn ˝ IdL2

En
˝ IdH; ƒHn;En

.g/
�
;

which has norm at most 2kŒpn ˝ IdH; ƒHn
.g/�k according to (6.1). Hence we conclude

condition (1) from the strong quasi-locality of .pn/. Condition (2) follows from Propos-
ition 5.4 (2) and the fact that pn has zero En-propagation. Finally, for condition (3),
it suffices to note that .pn/ is uniformly quasi-local. Hence, combining with Proposi-
tion 5.4 (9) and using a similar argument as in the last few lemmas, we conclude the
proof.

Having obtained the above essential ingredients, we are now in the position to con-
struct the index map. It follows from a standard construction in K-theories (see, e.g.,
[16, Definitoin 2.8.5]).

Definition 6.6. Let H D HC ˚H� be a graded Hilbert space with grading operator U
(i.e., U is a self-adjoint unitary operator in B.H / such that H˙ coincides with the .˙1/-
eigenspace of U ), and A be a C �-subalgebra of B.H / such that U is in the multiplier
algebra of A. Let F 2 B.H / be an odd operator of the form

F D

�
0 V

W 0

�
for some operators V W H� ! HC and W W HC ! H�. Suppose F satisfies

• F is in the multiplier algebra of A;

• F 2 � 1 is in A.

Then we define the index class IndŒF � 2 K0.A/ of F to be

IndŒF � WD
�

.1 � V W /2 V.1 �W V /

W.2 � V W /.1 � V W / W V.2 �W V /

�
�

�
0 0

0 1

�
:



Strongly quasi-local algebras and their K-theories 271

Combining Lemmas 6.2–6.5, we obtain that for any projection .pn/ 2 C
�
sq.HX /

\
Q
n B.Hn/ the operator ..pn/Fs.pn// is an odd self-adjoint operator on the graded

Hilbert space
L
n pn.L

2.Œ1;1/;Hn;En// satisfying

• ..pn/Fs.pn// is in the multiplier algebra of .pn/Asq.X IE/.pn/;

• ..pn/Fs.pn//
2 � .pn/ is in .pn/Asq.X IE/.pn/.

Hence Definition 6.6 produces an index class in K0..pn/Asq.X IE/.pn//. Composing
with the K0-map induced by the inclusion .pn/Asq.X IE/.pn/ ,! Asq.X IE/, we get an
element inK0.Asq.X IE//, denoted by IndF;sqŒ.pn/�. Analogous to [16, Lemma 12.3.11],
we obtain the following:

Proposition 6.7. Through the process above together with a suspension argument, we get
well-defined K�-maps for � D 0; 1,

IndF;sq W K�
�
C �sq.HX / \

Y
n

B.Hn/
�
! K�.Asq.X IE//;

which are called the strongly quasi-local index maps.

Finally, we have the following result (comparing with Proposition 6.1):

Proposition 6.8. Given s 2 Œ1;1/, let �s W Asq.X IE/! C �sq.HX;E / \
Q
n B.Hn;En/ be

the evaluation map at s . Then the composition

K�

�
C �sq.HX /\

Y
n

B.Hn/
� IndF;sq
����!K�.Asq.X IE//

�s�
�!K�

�
C �sq.HX;E /\

Y
n

B.Hn;En/
�

is an isomorphism.

Proof. The proof follows the outline of those for [16, Proposition 12.3.13 and Proposi-
tion 12.6.3]. Throughout the proof, we fix an s 2 Œ1;1/.

For each n 2 N, we define a map �n W En ! En by

�n.x/ D

´
x
jxj
.jxj � 1/; if jxj � 1;

0; otherwise

and a sequence of maps

F .k/n W Hn;En ! Hn;En ; ıx ˝ � ˝ u 7! ıx ˝ � ˝ Fn;sC2dn;�kn .fn.x//u

for k 2 N [ ¹1º, where �1n � 0. Denote F .k/ WD .F .k/n / 2 B.HX IE /. We note that for
the fixed s at the beginning, we have that F .0/ D Fs from Definition 5.13 and F .1/ D
.IdHn

˝ Fn;sC2dn;0/. Similar to the construction in Proposition 6.7, we obtain

IndF .k/ W K�
�
C �sq.HX / \

Y
n

B.Hn/
�
! K�

�
C �sq.HX;E / \

Y
n

B.Hn;En/
�

for each k 2 N [ ¹1º. It is clear that IndF .0/ D �
s
� ı IndF;sq .
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Using very similar arguments as in [16, Proposition 12.3.13 and Proposition 12.6.3],
we obtain that IndF .0/ D IndF .1/ . Hence it suffices to show that IndF .1/ is an isomor-
phism to conclude the proof. We will only focus on the case ofK0, and the case ofK1 can
be handled using a standard suspension argument.

Now we explain that IndF .1/ is an isomorphism. For each n 2 N, note that F .1/n D

IdHn
˝ Fn;sC2dn;0. Let pn;0 be the projection onto the kernel of Fn;sC2dn;0, which is one-

dimensional from [16, Corollary 12.1.4]. Recall that Fn;sC2dn;0D f ..sC 2dn/
�1DCC/

where f .x/ D x.1C x2/�1=2. For each n, we consider the path defined by

F tn;sC2dn;0 WD f
�
t ..s C 2dn/

�1D C C/
�
; t 2 Œ1;1�:

This defines a homotopy between Fn;sC2dn;0 and F1
n;sC2dn;0

, which decomposes with
respect to the grading as

F1n;sC2dn;0 D

�
0 1

1 � pn;0 0

�
:

Hence for each n, this homotopy provides that

Ind
F
.1/
n
Œpn� D Œpn ˝ pn;0�;

for any projection .pn/ 2 C �sq.HX / \
Q
n B.Hn/. Since the above homotopies are not

uniformly continuous with respect to n, we need an extra argument (which is called a
“stacking argument” in the proof of [16, Proposition 12.6.3]) to conclude that

IndF .1/ Œ.pn/� D Œ.pn ˝ pn;0/�:

As suggested by the referee, we provide more details here for the convenience of
readers. Without loss of generality, for any projection .pn/ 2 C �sq.HX / \

Q
n B.Hn/, we

assume that
IndF .1/ Œ.pn/� D Œ.qn/� � Œ.q

.0/
n /�

where .qn/ and .q.0/n / are projections in C �sq.HX;E / \
Q
n B.Hn;En/. For each n 2 N,

the path F t
n;sC2dn;0

above provides a homotopy of projections ¹Hn;tºt2Œ0;1� such that
Hn;0 D qn. Hence for each n 2 N, there exists ın > 0 such that for any t; s 2 Œ0; 1� with
jt � sj< ın, we have kHn;t �Hn;sk < 1

2
. Taking anKn 2N such that 1

Kn
< ın. For each

n 2 N, take an isometry

Vn W Hn;En ! H˚Knn;En
; v 7! .v; 0; : : : ; 0/:

They give rise to an isometry

V D .Vn/n W HX;E ! H 0X;E WD
M
n

H˚Knn;En
:

Note that V covers the identity map on X , hence the following homomorphism

ˆ WD AdV W C �sq.HX;E / \
Y
n

B.Hn;En/! C �sq.H
0
X;E / \

Y
n

B.H˚Knn;En
/
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gives rise to an isomorphism on K-theories. Hence it suffices to show that

ˆ�.IndF .1/ Œ.pn/�/ D ˆ�.Œ.pn ˝ pn;0/�/:

Note that for each n 2 N, we have26664
0BBB@
qn 0 � � � 0

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

1CCCA
37775 D

266664
0BBBB@
Hn;0 0 � � � 0

0 Hn; 1Kn
� � � 0

:::
:::

: : :
:::

0 0 � � � Hn;1

1CCCCA
377775

�

266664
0BBBB@
0 0 � � � 0

0 Hn; 1Kn
� � � 0

:::
:::

: : :
:::

0 0 � � � Hn;1

1CCCCA
377775 :

On the other hand, note that

0BBBB@
0 0 � � � 0

0 Hn; 1Kn
� � � 0

:::
:::

: : :
:::

0 0 � � � Hn;1

1CCCCA �
0BBBB@
0 0 � � � 0

0 Hn;0 � � � 0
:::

:::
: : :

:::

0 0 � � � H
n;Kn�1Kn

1CCCCA

<
1

2
:

Hence for each n 2 N there exists a homotopy connecting these two matrices, which are
uniformly continuous with respect to n. Following by a rotation homotopy between0BBBB@

0 0 � � � 0

0 Hn;0 � � � 0
:::

:::
: : :

:::

0 0 � � � H
n;Kn�1Kn

1CCCCA and

0BBBBBB@
Hn;0 0 � � � 0 0

0 Hn; 1Kn
� � � 0 0

:::
:::

: : :
:::

:::

0 0 � � � H
n;Kn�1Kn

0

0 0 � � � 0 0

1CCCCCCA ;

we obtain that26664
0BBB@
qn 0 � � � 0

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

1CCCA
37775 D

26664
0BBB@
0 � � � 0 0
:::

: : :
:::

:::

0 � � � 0 0

0 � � � 0 Hn;1

1CCCA
37775 D

26664
0BBB@
Hn;1 0 � � � 0

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

1CCCA
37775 :

Note that these homotopies are uniformly continuous with respect to n, hence from the
construction of ‰ we obtain that

ˆ�.IndF .1/ Œ.pn/�/ D ˆ�.Œ.pn ˝ pn;0/�/;

which concludes the proof.
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7. Isomorphisms between twisted algebras in K -theory

In this section, we study the K-theory of the twisted algebras A.X IE/ and Asq.X IE/

defined in Section 5.2. The main result is the following:

Proposition 7.1. The inclusion map from A.X IE/ to Asq.X IE/ induces an isomorphism
in K-theory.

The proof follows the outline of that in [16, Section 12.4], and the main ingredient is
to use appropriate Mayer–Vietoris arguments for twisted algebras (Proposition 7.4). This
allows us to chop the space into easily-handled pieces, on which we prove the required
local isomorphisms (Proposition 7.5).

By saying that .Fn/n2N is a sequence of closed subsets in .En/, we mean that Fn is
a closed subset of En for each n. Firstly, we define the following subalgebras associated
to .Fn/, which is inspired by [16, Definition 6.3.5].

Definition 7.2. For a sequence of closed subsets .Fn/ in .En/, we define Asq;.Fn/.X IE/

to be the set of elements .Tn;s/ 2Asq.X IE/ satisfying the following: for each n and " > 0
there exists sn;" > 0 such that for s � sn;" we have

suppEn.Tn;s/ � N".Fn/ �N".Fn/:

Denote by Asq;.Fn/.X IE/ the norm closure of Asq;.Fn/.X IE/ in Asq.X IE/. Similarly, we
define A.Fn/.X IE/ � A.X IE/ in the case of twisted Roe algebras.

It is easy to see that Asq;.Fn/.X IE/ and A.Fn/.X IE/ are closed two-side ideals in
Asq.X IE/ and A.X IE/ respectively. Moreover, we have the following:

Lemma 7.3. Let .Fn/ and .Gn/ be two sequences of compact subsets in .En/. Then

Asq;.Fn/.X IE/ \ Asq;.Gn/.X IE/ D Asq;.Fn\Gn/.X IE/

and
Asq;.Fn/.X IE/C Asq;.Gn/.X IE/ D Asq;.Fn[Gn/.X IE/:

The same holds for twisted Roe algebras.

Proof. We only prove the case of twisted strongly quasi-local algebras, while the Roe
algebra case is similar. The first equation follows from a C �-algebraic fact that two inter-
sections of ideals coincides with their product together with a basic fact for metric spaces:
For a compact metric space K, a closed cover .C;D/ of K and " > 0, there exists ı > 0
such that Nı.C / \Nı.D/ � N".C \D/.

For the second, we fix .Tn;s/ 2 Asq;.Fn[Gn/.X IE/. By definition, for each n there is a
strictly increasing sequence .sn;k/k2N in Œ1;1/ tending to infinity such that for s � sn;k
we have

suppEn.Tn;s/ � N 1
kC1
.Fn [Gn/ �N 1

kC1
.Fn [Gn/:
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For each n, we construct an operator .Wn;s/s on L2..1;1�/˝Hn;En as follows, where
Wn;s 2 B.Hn;En/. We set

Wn;s D

8<:�N1.Fn/; if 1 � s � sn;1;
sn;kC1�s

sn;kC1�sn;k
�N 1

k
.Fn/ C

s�sn;k
sn;kC1�sn;k

�N 1
kC1

.Fn/; if sn;k � s � sn;kC1; k 2 N:

Then .Wn;s/ is in the multiplier algebra of Asq.X IE/. Now we consider

.Tn;s/ D .Wn;s/.Tn;s/C .1 �Wn;s/.Tn;s/.Wn;s/C .1 �Wn;s/.Tn;s/.1 �Wn;s/:

It is clear that .Wn;s/.Tn;s/ and .1 �Wn;s/.Tn;s/.Wn;s/ are in Asq;.Fn/.X IE/. Also note
that from the construction above, for each n and s � sn;k we have

suppEn
�
.1 �Wn;s/Tn;s.1 �Wn;s/

�
� N 1

kC1
.Gn/ �N 1

kC1
.Gn/:

Hence we obtain that Asq;.Fn/.X IE/ C Asq;.Gn/.X IE/ is dense in Asq;.Fn[Gn/.X IE/,
which concludes the proof.

Consequently, we obtain the following Mayer–Vietoris sequences for twisted algebras:

Proposition 7.4. Let .Fn/ and .Gn/ be two sequences of compact subsets in .En/. Then
we have the following six-term exact sequence:

K0.Asq;.Fn\Gn/.X IE// K0.Asq;.Fn/.X IE//˚K0.Asq;.Gn/.X IE// K0.Asq;.Fn[Gn/.X IE//

K1.Asq;.Fn[Gn/.X IE// K1.Asq;.Fn/.X IE//˚K1.Asq;.Gn/.X IE// K1.Asq;.Fn\Gn/.X IE//:

The same holds in the case of twisted Roe algebra. Furthermore, we have the following
commutative diagram:

� � � K�.A.Fn\Gn/.X IE// K�.A.Fn/.X IE//˚K�.A.Gn/.X IE// K�.A.Fn[Gn/.X IE// � � �

� � � K�.Asq;.Fn\Gn/.X IE// K�.Asq;.Fn/.X IE//˚K�.Asq;.Gn/.X IE// K�.Asq;.Fn[Gn/.X IE// � � �

where the vertical maps are induced by inclusions.

Proposition 7.4 allows us to chop the space into small pieces, on which we have the
following “local isomorphism” result. Recall that a family ¹Yiºi2I of subspaces in a metric
space Y is mutually R-separated for some R > 0 if d.Yi ; Yj / > R for i ¤ j .

Proposition 7.5. Let .Fn/ be a sequence of closed subsets in .En/ such that we have
Fn D

F1
jD1 F

.n/
j for a mutually 3-separated family ¹F .n/j ºj and there exist R > 0 and

x
.n/
j 2 Xn such that F .n/j � B.f .x

.n/
j /IR/. Then the inclusion map from A.Fn/.X IE/ to

Asq;.Fn/.X IE/ induces an isomorphism in K-theory.
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Before we prove Proposition 7.5, let us use it to finish the proof of Proposition 7.1. To
achieve that, we need an extra lemma from [16, Lemma 12.4.5] (note that the assumption
of bounded geometry plays a key role here).

Lemma 7.6. For any s > 0, there exist M 2 N and decompositions

Xn D Xn;1 tXn;2 t � � � tXn;M ; for all n 2 N;

such that the family ¹B.fn.x/I s/ºx2Xn;i is mutually 3-separated for each n 2 N and
i D 1; 2; : : : ;M .

Proof of Proposition 7.1. Given s > 0, let M 2 N and ¹Xn;iºn2N;1�i�M be obtained
by Lemma 7.6. Setting W s

n WD Ns.fn.Xn// and W s
n;i WD

F
x2Xn;i

B.fn.x/I s/, we have
W s
n D

SM
iD1W

s
n;i . For each i applying Proposition 7.5 to the sequence of subsets .W s

n;i /n,
we obtain that the inclusion map

A.W s
n;i /
.X IE/! Asq;.W s

n;i /
.X IE/

induces an isomorphism in K-theory. Applying the Mayer–Vietoris sequence from Pro-
position 7.4 .M � 1/-times (and Proposition 7.5 again to deal with the intersection) to-
gether with the Five Lemma, we obtain that the inclusion map

A.W s
n /.X IE/! Asq;.W s

n /.X IE/

induces an isomorphism inK-theory. Finally, note that condition .3/ in Definition 5.7 and
condition .3/ in Definition 5.10 imply that

A.X IE/ D lim
s!1

A.W s
n /.X IE/ and Asq.X IE/ D lim

s!1
Asq;.W s

n /.X IE/:

Hence we conclude the proof.

The rest of this section is devoted to the proof of Proposition 7.5. First let us introduce
some more notation:

Let .Fn/ and .Gn/ be sequences of closed subsets in .En/. We define

Asq.X I .Gn// WD .1Hn
˝ �Gn/n � Asq.X IE/ � .1Hn

˝ �Gn/n

and
Asq;.Fn/.X I .Gn// WD Asq.X I .Gn// \ Asq;.Fn/.X IE/:

Also define A.X I .Gn// and A.Fn/.X I .Gn// in a similar way. Moreover, given a sequence
of subspaces Zn � Xn (n 2 N) we define

Asq..Zn/I .Gn// WD
�
�Zn ˝ IdL2

En

�
n
� Asq.X I .Gn// �

�
�Zn ˝ IdL2

En

�
n

and

Asq;.Fn/..Zn/I .Gn// WD
�
�Zn ˝ IdL2

En

�
n
� Asq;.Fn/.X I .Gn// �

�
�Zn ˝ IdL2

En

�
n
:

Also define A..Zn/I .Gn// and A.Fn/..Zn/I .Gn// in a similar way.
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Now we move back to the setting of Proposition 7.5. Let .Fn/ be a sequence of closed
subsets in .En/ such that Fn D

F1
jD1 F

.n/
j for a mutually 3-separated family ¹F .n/j ºj .

Taking G.n/j D N1.F
.n/
j / for each j and n, we define the “restricted product”

resY
j

A
sq;.F .n/j /

.X I .G
.n/
j // WD

�Y
j

A
sq;.F .n/j /

.X I .G
.n/
j //

�
\ Asq;.Fn/.X IE/:

Similarly, we define
Qres
j A

.F
.n/
j /
.X I .G

.n/
j // in the case of twisted Roe algebra.

The following lemma is a key step in the proof of Proposition 7.5.

Lemma 7.7. Using the same notation as above, the inclusion

i W

resY
j

A
sq;.F .n/j /

.X I .G
.n/
j // ,! Asq;.Fn/.X IE/

induces an isomorphism in K-theory. The same holds for the twisted Roe algebra case.

Proof. We only prove the case of twisted strongly quasi-local algebras, and the Roe case
is similar. The proof follows the outline of [16, Theorem 6.4.20].

Consider the following quotient algebras:

Asq;.Fn/;Q.X IE/ WD
Asq;.Fn/.X IE/

Asq;.Fn/;0.X IE/

and
res;QY
j

A
sq;.F .n/j /

.X I .G
.n/
j // WD

Qres
j A

sq;.F .n/j /
.X I .G

.n/
j //Qres

j A
sq;.F .n/j /;0

.X I .G
.n/
j //

;

where Asq;.Fn/;0.X IE/ consists of .Tn;s/ 2 Asq;.Fn/.X IE/ such that lims!1 kTn;sk D 0

for each4 n, and A
sq;.F .n/j /;0

.X I .G
.n/
j // is defined in a similar way. From a standard

Eilenberg Swindle argument (see for example [16, Lemma 6.4.11]), Asq;.Fn/;0.X IE/ andQres
j A

sq;.F .n/j /;0
.X I .G

.n/
j // both have trivial K-theories. Hence the quotient maps

Asq;.Fn/.X IE/! Asq;.Fn/;Q.X IE/

and
resY
j

A
sq;.F .n/j /

.X I .G
.n/
j //!

res;QY
j

A
sq;.F .n/j /

.X I .G
.n/
j //

induce isomorphisms in K-theory.
It is clear that the inclusion i induces a �-homomorphism

iQ W

res;QY
j

A
sq;.F .n/j /

.X I .G
.n/
j //! Asq;.Fn/;Q.X IE/:

4Note that here we do not require that kTn;sk ! 0 uniformly with respect to n.
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We also define a map

 W Asq;.Fn/.X IE/!

resY
j

A
sq;.F .n/j /

.X I .G
.n/
j // by .Tn;s/ 7!

Y
j

.�
G
.n/
j

Tn;s�G.n/j

/;

which induces a �-homomorphism

Q W Asq;.Fn/;Q.X IE/!

res;QY
j

A
sq;.F .n/j /

.X I .G
.n/
j //:

We can check that the compositions iQ ı Q and Q ı iQ are both the identity maps.
Hence iQ is an isomorphism in K-theory, which implies that the inclusion i induces an
isomorphism in K-theory.

Proof of Proposition 7.5. We use the same notation as above and defineG.n/j DN1.F
.n/
j /

for each n 2 N and j . Then there is a commutative diagram

A.Fn/.X IE/ Asq;.Fn/.X IE/

Qres
j A

.F
.n/
j /
.X I .G

.n/
j //

Qres
j A

sq;.F .n/j /
.X I .G

.n/
j //

where all maps involved are inclusion maps. It follows from Lemma 7.7 that vertical maps
induce isomorphisms in K-theory. Hence it suffices to show that the bottom horizontal
map induces an isomorphism in K-theory.

Note that conditions (3) in Definition 5.7 and 5.10 imply that
resY
j

A
.F

.n/
j /
.X I .G

.n/
j // D lim

m!1

resY
j

A
.F

.n/
j /

�
.B.x

.n/
j Im//I .G

.n/
j /

�
and

resY
j

A
sq;.F .n/j /

.X I .G
.n/
j // D lim

m!1

resY
j

A
sq;.F .n/j /

�
.B.x

.n/
j Im//I .G

.n/
j /

�
:

Hence it suffices to show that for each fixed m, the inclusion
resY
j

A
.F

.n/
j /

�
.B.x

.n/
j Im//I .G

.n/
j /

�
,!

resY
j

A
sq;.F .n/j /

�
.B.x

.n/
j Im//I .G

.n/
j /

�
induces an isomorphism in K-theory.

Note that the inclusion ¹x.n/j º ,! B.x
.n/
j Im/ induces a commutative diagramQres

j A
.F

.n/
j /

�
.B.x

.n/
j Im//I .G

.n/
j /

� Qres
j A

sq;.F .n/j /

�
.B.x

.n/
j Im//I .G

.n/
j /

�
Qres
j A

.F
.n/
j /

�
.¹x

.n/
j º/I .G

.n/
j /

� Qres
j A

sq;.F .n/j /

�
.¹x

.n/
j º/I .G

.n/
j /

�
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where the vertical maps are �-isomorphisms by standard arguments (see for example Pro-
position 2.9). Also note that the bottom horizontal inclusion map

resY
j

A
.F

.n/
j /

�
.¹x

.n/
j º/I .G

.n/
j /

�
,!

resY
j

A
sq;.F .n/j /

�
.¹x

.n/
j º/I .G

.n/
j /

�
is a �-isomorphism as well, since conditions .1/ and .3/ in Definition 5.7 and 5.10 are
equivalent in this case. Hence we conclude the proof.

8. Proof of Theorem B

In this final section, we finish the proof of the main result.

Proof of Theorem B. Consider the following commutative diagram:

K�.C
�.HX / \

Q
nB.Hn// K�.A.X IE// K�.C

�.HX;E / \
Q
nB.Hn;En//

K�.C
�
sq.HX / \

Q
nB.Hn// K�.Asq.X IE// K�.C

�
sq.HX;E / \

Q
nB.Hn;En//;

where the horizontal maps come from Proposition 6.1 and Proposition 6.8 and all vertical
maps are induced by inclusions. From Proposition 6.1 and Proposition 6.8 again, we know
that the compositions of horizontal maps are isomorphisms. The middle vertical map is an
isomorphism by Proposition 7.1, and the left vertical map identifies with the right one due
to Proposition 3.17. Hence the inclusion map

C �.HX / \
Y
n

B.Hn/ ,! C �sq.HX / \
Y
n

B.Hn/

induces an isomorphism in K-theory from diagram chasing. Finally, combining with
Lemma 4.7, we finish the proof.

A. Proof of Proposition 5.4

This appendix is devoted to the proof of Proposition 5.4. We follow the outline of that for
[16, Proposition 12.1.10] and use the same notation as in Section 5.1.

Define a function f W R! Œ�1; 1� by f .x/ D xp
1Cx2

, x 2 R. Also fix a smooth even
function g W R! Œ0;1/ of integral one and having compactly supported Fourier trans-
form. It follows from the proof of [16, Proposition 12.1.10] that given " > 0 there exists
ı > 0 such that the convolution‰ WD f � gı satisfies condition (1)–(8) in Proposition 5.4,
where gı.x/ WD 1

ı
g.x

ı
/ for x 2 R. In the following, we will prove condition (9) and (10)

therein.
Let us recall the following two lemmas, which follow from [16, Lemma 12.1.6 and

Lemma 12.1.8].



280 H. Bao, X. Chen, and J. Zhang

Lemma A.1. For all s 2 Œ1;1/, x 2 E and t 2 R, we have that

f .Bs;x � t / D
2

�

Z 1
0

.Bs;x � t /.1C �
2
C .Bs;x � t /

2/�1d�;

where the integral on the right converges in the strong-� operator topology.
Moreover, for any s 2 Œ1;1/, x; y 2 E and t 2 R, we have that

f .Bs;x � t / � f .Bs;y � t / D cx�y.1C .Bs;x � t /
2/�

1
2

C
2

�

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1

�
�
.Bs;y � t /cy�x C cy�x.Bs;x � t /

�
� .1C �2 C .Bs;x � t /

2/�1d�;

where the integral on the right again converges in the strong-� topology.

Proof. The first formula follows from the fact that for any t 2 R, we have the formula

x � tp
1C .x � t /2

D
2

�

Z 1
0

x � t

1C �2 C .x � t /2
d�

and functional calculus. And the second formula follows by easy computations as in the
proof of [16, Lemma 12.1.6].

Lemma A.2. For any R � 0, � 2 Œ0;1/, x 2 E and s � 2d , we have that.1C �2 C B2s;x/� 12 .1 � �x;R/ � �12 C �2 CR2�� 14 :
Proof of Proposition 5.4 (9). Given "1 > 0, there exists a compact subset K � R and a
function h W R ! Œ0;1/ of integral one and support in K such that kgı � hk1 < "1

4
.

Setting ˆ WD f � h, we have

k‰ �ˆk1 D kf � gı � f � hk1 D kf � .gı � h/k1 � kf k1 � kgı � hk1 <
"1

4
;

which implies kˆ.Bs;x/ �‰.Bs;x/k < "1
4

. Hence it suffices to show that there exists
R1 > 0 such that for all s � 2d and x 2 E, we have

k.ˆ.Bs;x/
2
� 1/.1 � �x;R1/k <

"1

4
:

Now we set ! W R! R by !.x/ WD 1
1Cx2

. For any R � 0, we have:

k.ˆ.Bs;x/
2
� 1/.1 � �x;R/k

D
�.f � h/2 � 1�.Bs;x/ � .1 � �x;R/

D

� .f � h/2 � 1
!

�
.Bs;x/ � !.Bs;x/.1 � �x;R/
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�

� .f � h/2 � 1
!

�
.Bs;x/

 � .1C B2s;x/� 12  � .1C B2s;x/� 12 .1 � �x;R/
�

� .f � h/2 � 1
!

�
.Bs;x/

 � .1C B2s;x/� 12  � �12 CR2�� 14 ;
where the last inequality comes from Lemma A.2 for � D 0. We claim that the function
.f �h/2�1

!
is bounded on R. Indeed, since h has support on K and integral one we have� .f � h/2 � 1
!

�
.x/ D

�Z
R
f .x � t /h.t/dt C 1

��Z
R
f .x � t /h.t/dt � 1

�
.1C x2/

D

�Z
K

�
f .x � t /C 1

�
h.t/dt

��Z
K

�
f .x � t / � 1

�
h.t/dt

�
� .1C x2/:

Direct calculation shows that�
f .x � t / � 1

�
.1C x2/ D �

xp
1C .x � t /2

�
x

.x � t /C
p
1C .x � t /2

�
1C x2

x2
;

which is uniformly bounded on Œ0;C1/ for t 2 K. Similarly, .f .x � t /C 1/.1C x2/ is
uniformly bounded on .�1; 0� for t 2 K. Hence .f �h/2�1

!
is bounded on R.

On the other hand, note that k.1 C B2s;x/
� 12 k � 1 from functional calculus. Hence

we obtain that k.ˆ.Bs;x/2 � 1/.1 � �x;R/k tends to zero as R tends to infinity, which
concludes the proof.

Proof of Proposition 5.4 (10). Given "2 > 0, there exists a compact subset K � R and
a function h W R! Œ0;1/ of integral one and support in K such that kgı � hk1 < "2

3
.

Setting ˆ WD f � h, we have kˆ.Bs;x/ �‰.Bs;x/k < "2
3

. Hence it suffices to show that
for any r > 0 there existsR2 >0 such that for any s � 2d and x;y 2E with dE .x; y/ � r ,
we have

k.ˆ.Bs;x/ �ˆ.Bs;y//.1 � �x;R2/k <
"2

3
:

For any R > 0, we have

.ˆ.Bs;x/ �ˆ.Bs;y//.1 � �x;R/ D
�
.f � h/.Bs;x/ � .f � h/.Bs;y/

�
.1 � �x;R/

D

Z
R

�
f .Bs;x � t / � f .Bs;y � t /

�
h.t/dt � .1 � �x;R/:

Combining with Lemma A.1, we have

.ˆ.Bs;x/ �ˆ.Bs;y//.1 � �x;R/

D

Z
R

�
cx�y.1C .Bs;x � t /

2/�
1
2 C

2

�

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1

�
�
.Bs;y � t /cy�x C cy�x.Bs;x � t /

�
.1C �2 C .Bs;x � t /

2/�1d�
�
h.t/dt

� .1 � �x;R/
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D

Z
K

cx�y.1C .Bs;x � t /
2/�

1
2 .1 � �x;R/h.t/dt

C
2

�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1.Bs;y � t /cy�x

� .1C �2 C .Bs;x � t /
2/�1.1 � �x;R/d�h.t/dt

C
2

�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1cy�x.Bs;x � t /

� .1C �2 C .Bs;x � t /
2/�1.1 � �x;R/d�h.t/dt:

Then it is suffices to show that each of the three terms on the right side tends to zero as R
tends to infinity.

For the first term, note that the constant

N1 WD sup
t2K;x2R

p
1C x2p

1C .x � t /2

is finite since K is compact. Hence using Lemma A.2 for � D 0, we obtain Z
K

cx�y.1C .Bs;x � t /
2/�

1
2 .1 � �x;R/h.t/dt


�

Z
K

kcx�yk � k.1C .Bs;x � t /
2/�

1
2 .1C B2s;x/

1
2 k

� k.1C B2s;x/
� 12 .1 � �x;R/kh.t/dt

� r �N1 �
�1
2
CR2

�� 14
;

which tends to zero as R tends to infinity.
For the second term, note that

2

�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1.Bs;y � t /cy�x

� .1C �2 C .Bs;x � t /
2/�1.1 � �x;R/d�h.t/dt

D
2

�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1.Bs;y � t / � cy�x

� .1C �2 C .Bs;x � t /
2/�

1
2 � .1C �2 C .Bs;x � t /

2/�
1
2

� .1C �2 C B2s;x/
1
2 � .1C �2 C B2s;x/

� 12 .1 � �x;R/d�h.t/dt:

From functional calculus, for any t 2 K and � 2 Œ0;1/ we have.Bs;y � t /.1C �2 C .Bs;y � t /2/�1.Bs;y � t / � 1
and .1C �2 C .Bs;x � t /2/� 12  � .1C �2/� 12 :
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Also note that the constant

N2 WD sup
t2K;x2R;
�2Œ0;1/

p
1C �2 C x2p

1C �2 C .x � t /2

is finite since K is compact. Hence using Lemma A.2, we obtain 2�
Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1.Bs;y � t /cy�x

� .1C �2 C .Bs;x � t /
2/�1.1 � �x;R/d�h.t/dt


�
2

�
� 1 � r �N2 �

Z 1
0

.1C �2/�
1
2
�1
2
C �2 CR2

�� 14 d�;

which tends to zero as R tends to infinity.
Finally, let us look at the last term. Note that

2

�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1cy�x.Bs;x � t /

� .1C �2 C .Bs;x � t /
2/�1.1 � �x;R/d�h.t/dt

D
2

�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1 � cy�x � .Bs;x � t /

� .1C �2 C .Bs;x � t /
2/�

1
2 .1C �2 C .Bs;x � t /

2/�
1
2

� .1C �2 C B2s;x/
1
2 � .1C �2 C B2s;x/

� 12 .1 � �x;R/d�h.t/dt:

It is easy to see that

sup
x2R

ˇ̌̌ x

1C �2 C x2

ˇ̌̌
�
1

2
.1C �2/�

1
2 :

Hence functional calculus gives that for any t 2 K,.Bs;y � t /.1C �2 C .Bs;y � t /2/�1 � 1

2
.1C �2/�

1
2 :

Note also that functional calculus give that for any t 2 K and � 2 Œ0;1/,.Bs;x � t /.1C �2 C .Bs;x � t /2/� 12  � 1:
Then using Lemma A.2, we have 2�

Z
K

Z 1
0

.Bs;y � t /.1C �
2
C .Bs;y � t /

2/�1cy�x.Bs;x � t /

� .1C �2 C .Bs;x � t /
2/�1.1 � �x;R/d�g.t/dt


�
2

�
� r � 1 �N2 �

Z 1
0

1

2
.1C �2/�

1
2
�1
2
C �2 CR2

�� 14 d�;

which tends to zero as R tends to infinity. Hence we conclude the proof.
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